Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


OPTICAL FIBER LASER

Subclass of:

372 - Coherent light generators

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20090213877FIBER LASER - A fiber laser for the production of self-similar pulses contains a pumped source and a linear resonator. The linear resonator has two reflectors. The laser further includes a polarization-maintaining fiber doped with an amplifying medium with a normal dispersion β08-27-2009
20130028275METHOD FOR MANUFACTURING OPTICAL FIBER GRATING, OPTICAL FIBER GRATING, AND FIBER LASER - A method for manufacturing an optical fiber grating that includes first and second gratings that configure an optical resonator, the method including: forming the first grating by radiating ultraviolet light to an optical fiber so that a irradiation intensity Z satisfies the following Equation 1: Z≦(Δλ01-31-2013
20130028276HIGH-POWER CW FIBER-LASER - A CW ytterbium-doped fiber-laser includes a gain-fiber having a reflector proximity-coupled to one end, with the other end left uncoated. A laser resonator is defined by the reflector and the uncoated end of the gain-fiber. Pump-radiation from fast-axis diode-laser bar-stacks emitting at 915 nm and 976 nm is combined and focused into the uncoated end of the gain-fiber for energizing the fiber. Laser radiation resulting from the energizing is delivered from the uncoated end of the gain-fiber and separated from the pump-radiation by a dichroic minor.01-31-2013
20130028274Method for Assembling High Power Fiber Laser System and Module Realizing the Method - A method for arranging a high power fiber laser system includes spiraling an active fiber in a housing with a diameter of spiral gradually decreasing towards the center of th housing. The method further includes coupling the opposite free ends of the spiraled active fiber to respective passive fibers providing optical communication between the active fiber and discrete components. Thereafter, the passive fibers with the discrete components are arranged next to inner spirals of the active fiber.01-31-2013
20100150183FREQUENCY-TRIPLED FIBER MOPA - Fundamental-wavelength pulses from a fiber a laser are divided into two portions and the two portions are separately amplified. One of the amplified fundamental-wavelength pulse-portions is frequency-doubled. The frequency doubled portion is sum-frequency mixed with the other amplified fundamental wavelength pulse-portions to provide third-harmonic radiation pulses.06-17-2010
20110194573FIBER LASER PROCESSING APPARATUS - A fiber laser processing apparatus controls a LD drive current I08-11-2011
20110194572COMPOSITE OPTICAL WAVEGUIDE, VARIABLE-WAVELENGTH LASER, AND METHOD OF OSCILLATING LASER - A composite optical waveguide 08-11-2011
20130083812MID-IR FIBER LASER APPARTUS - A laser apparatus uses a dysprosium doped chalcogenide glass fiber. The glass fiber has a laser pump operatively connected to it. The chalcogenide glass fiber is located in a laser cavity including one or more reflective elements such as a Bragg grating, a Bragg minor, a grating, and a non-doped fiber end face. The apparatus provides laser light output at a wavelength of about 4.3 μm to about 5.0 μm at a useful power level using laser light input at a wavelength of from about 1.7 μm to about 1.8 μm. Also disclosed is a method for providing laser light output at a wavelength of about 4.3 μm to about 5.0 μm using the apparatus of the invention.04-04-2013
20100074279ENVIRONMENTALLY STABLE PASSIVELY MODELOCKED FIBER LASER PULSE SOURCE - The present invention is directed to providing an environmentally stable, ultra-short pulse source. Exemplary embodiments relate to passively modelocked ultra-short fiber lasers which are insensitive to temperature variations and which possess only negligible sensitivity to pressure variations. Further, exemplary embodiments can be implemented in a cost-effective manner which render them commercially practical in unlimited applications. Arbitrary fiber lengths (e.g., on the order of 1 millimeter to 1 kilometer, or greater) can be used to provide an ultra-short pulse with a cost-effective architecture which is commercially practical.03-25-2010
20130034113FIBER LASER DEVICE - When an output instruction is input to a control unit, the control unit controls a seed laser light source and a pumping light source to be either in a pre-pumped state or in an output state. In the pre-pumped state, the pumping light source outputs, for a predetermined period, pumping light with an intensity determined based on the duration of the period of time from when the output state prior to the input of the output instruction to the control unit comes to an end till when the output instruction is input to the control unit. In the output state, to cause the output unit to output laser light, the seed laser light source outputs laser light, and the pumping light source outputs pumping light.02-07-2013
20080219300High Power Fiber Laser - Fiber laser (09-11-2008
20100046560Dispersion managed fiber stretcher and compressor for high energy/power femtosecond fiber laser - Methods and systems for generating high energy, high power, ultra-short laser pulses are disclosed, including coupling an electromagnetic radiation pulse emitted from a seed to a photonic crystal fiber stretcher; coupling the electromagnetic radiation pulse exiting the photonic crystal fiber stretcher to a preamplifier; coupling the electromagnetic radiation pulse exiting the preamplifier to a pulse picker; coupling the electromagnetic radiation pulse exiting the pulse picker to a high power amplifier; coupling the electromagnetic radiation pulse exiting the high power amplifier to a photonic crystal fiber compressor; and coupling out the electromagnetic radiation pulse from the photonic crystal fiber compressor. Other embodiments are described and claimed.02-25-2010
20100098113Selective deposition of carbon nanotubes on optical fibers - The specification describes a method for selectively depositing carbon nanotubes on the end face of an optical fiber. The end face of the optical fiber is exposed to a dispersion of carbon nanotubes while light is propagated through the optical fiber. Carbon nanotubes deposit selectively on the light emitting core of the optical fiber.04-22-2010
20130136146TEMPERATURE CONTROL OF A FIBER LASER SYSTEM - Techniques and architecture are disclosed for controlling the temperature of a fiber laser system. In some embodiments, a single thermoelectric cooler (TEC) may be utilized to control the temperature of multiple system components. In some embodiments, a TEC may be physically/thermally coupled to a laser diode, which in turn may be physically/thermally coupled with a mounting plate to which one or more fiber grating holders are physically/thermally coupled, and an optical fiber that is operatively coupled with the laser diode may be physically/thermally coupled with the one or more fiber grating holders. In some embodiments, this may provide a thermal pathway/coupling between the optical fiber (e.g., its fiber grating(s)), and the TEC. In some embodiments, this may reduce/minimize the quantity of temperature control components, reduce system size/complexity, increase system dependability, and/or increase system performance/efficiency. Numerous configurations and variations will be apparent in light of this disclosure.05-30-2013
20100027570FIBER LASER BASED PRODUCTION OF LASER DRILLED MICROVIAS FOR MULTI-LAYER DRILLING, DICING, TRIMMING OR MILLING APPLICATIONS - Fiber lasers and methods for constructing and using fiber lasers for micro-/nano-machining with output beams including stacked pulses and combinations of continuous wave, pseudo-continuous wave and pulse sequence components.02-04-2010
20090010287AUTOMATIC DISPERSION COMPENSATION IN AMPLIFICATION FOR SHORT PULSE FIBER LASER SYSTEM - A fiber Chirped Pulse Amplification (CPA) laser system includes a fiber mode-locking oscillator for generating a laser for projecting to a fiber stretcher for stretching a pulse width of the laser wherein the stretcher further comprising a Photonic Bandgap (PBG) fiber having a lower nonlinearity and an abnormal dispersion than a solid core fiber for connecting and transmitting a laser from the stretcher to a multistage amplifier for amplifying the laser into an output laser whereby a separate compressor is not required01-08-2009
20130083813NARROW LINEWIDTH BRILLOUIN LASER - A Brillouin laser having a narrowed linewidth, reduced relative intensity noise, and increased output power includes a pump laser that provides pump energy to an optical fiber resonant cavity to stimulate Brillouin emission. The output of pump laser is stabilized and its linewidth is narrowed by locking the frequency and phase of the optical signal generated by the pump laser to a longitudinal mode of the optical fiber resonant cavity. In addition, the resonant cavity is temperature and/or strain-tuned so that the Brillouin gain is substantially centered on a longitudinal mode of the cavity, thereby ensuring that the Brillouin frequency shift is substantially equal to an integer number of the free spectral range of the cavity.04-04-2013
20100329288OPTICAL FIBER LASER - An optical fiber laser including: a master oscillator; and a power amplifier, the power amplifier including: a plurality of excitation light sources; excitation ports each of which is connected to the excitation light sources and which an excitation light emitted from each of the excitation light source enters; a signal port which a laser beam emitted from the master oscillator enters; an optical coupler with an exit port that outputs the excitation lights from the excitation ports together with the laser beam from the signal port; and an optical fiber connected to the exit port, in which the optical fiber is a photonic bandgap fiber, and the optical fiber has a loss wavelength characteristic in that a photonic bandgap region is narrower than a gain wavelength band in a graph with an axis of abscissa representing a wavelength and an axis of ordinate representing a loss amount.12-30-2010
20090154503ALL-FIBER MODE SELECTION TECHNIQUE FOR MULTICORE FIBER LASER DEVICES - An optical device that includes 1) a gain section having a plurality of core regions including dopant species configured to absorb incident radiation at a first wavelength and emit radiation at a second wavelength, and 2) at least one passive section attached to the gain section. The gain section and the at least one passive section comprise an optical cavity which selectively promotes in-phase light emission from the optical cavity. An alternative optical device which includes a gain section having a plurality of core regions including dopant species configured to absorb incident radiation at a first wavelength and emit radiation at a second wavelength, and 2) two passive sections attached to the gain section at opposite ends. In this alternative optical device, the gain section and the two passive sections comprise an optical cavity which selectively promotes in-phase light emission from the optical cavity such that the light emission from the optical cavity, in a far field, has a singular Gaussian-like intensity distribution about a longitudinal axis extending from the optical cavity.06-18-2009
20130089112LARGE CORE HOLEY FIBERS - Holey fibers provide optical propagation. In various embodiments, a large core holey fiber comprises a cladding region formed by large holes arranged in few layers. The number of layers or rows of holes about the large core can be used to coarse tune the leakage losses of the fundamental and higher modes of a signal, thereby allowing the non-fundamental modes to be substantially eliminated by leakage over a given length of fiber. Fine tuning of leakage losses can be performed by adjusting the hole dimension and/or spacing to yield a desired operation with a desired leakage loss of the fundamental mode. Resulting holey fibers have a large hole dimension and spacing, and thus a large core, when compared to traditional fibers and conventional fibers that propagate a single mode. Other loss mechanisms, such as bend loss and modal spacing can be utilized for selected modes of operation of holey fibers.04-11-2013
20130089113SINGLE MODE PROPAGATION IN FIBERS AND RODS WITH LARGE LEAKAGE CHANNELS - Various embodiments include large cores fibers that can propagate few modes or a single mode while introducing loss to higher order modes. Some of these fibers are holey fibers that comprising cladding features such as air-holes. Additional embodiments described herein include holey rods. The rods and fibers may be used in many optical systems including optical amplification systems, lasers, short pulse generators, Q-switched lasers, etc. and may be used for example for micromachining.04-11-2013
20120219020ENVIRONMENTALLY STABLE PASSIVELY MODELOCKED FIBER LASER PULSE SOURCE - The present invention is directed to providing an environmentally stable, ultra-short pulse source. Exemplary embodiments relate to passively modelocked ultra-short fiber lasers which are insensitive to temperature variations and which possess only negligible sensitivity to pressure variations. Further, exemplary embodiments can be implemented in a cost-effective manner which render them commercially practical in unlimited applications. Arbitrary fiber lengths (e.g., on the order of 1 millimeter to 1 kilometer, or greater) can be used to provide an ultra-short pulse with a cost-effective architecture which is commercially practical.08-30-2012
20090041064Higher Order Mode Optical Fiber Laser or Amplifier - A method of producing higher power optical energy with an optical fiber can include providing a length of optical fiber having a core constructed so as to support more than one mode at a selected wavelength, the length of optical fiber comprising an active material for providing optical gain at the selected wavelength responsive to optical pumping, said optical gain being provided to the optical energy while propagating in at least one higher order mode of the core; providing a length of output optical fiber having a core; and providing for optical communication between the length of optical fiber and the core of the length of output optical fiber wherein the optical energy from the core of the length of optical fiber that experiences optical gain while propagating in at least one of the at least one higher order modes is communicated to the fundamental mode of the core of the length of output optical fiber.02-12-2009
20090041063FIBER LASER APPARATUS - In a fiber laser apparatus that uses a rare earth added fiber as a light amplifying medium of a resonator or amplifier, the rare earth added fiber is a photonic bandgap fiber in which a rare earth element has been added to a core. Moreover, the loss when the rare earth element absorption portion is excluded from the transmission loss in this photonic bandgap fiber is such that the transmission loss in the wavelength of primary Stokes light that is generated by induced Raman scattering is greater than the transmission loss in the wavelength of light that is output by the fiber laser apparatus. According to the present invention, it is possible to provide a fiber laser apparatus that suppresses the generation of Raman light created by induced Raman scattering, and suppresses the amplification of secondary Stokes light, and is able to efficiently amplify the power of the signal light that is the amplification target.02-12-2009
20090041062FIBER-BASED TUNABLE LASER - A fiber-based tunable laser includes a spectrum-expansion device comprising a micro structured fiber configured to receive a pump laser pulse having a first band width and a first pulse energy, and to produce a spectrally expanded laser pulse having a second band width at least two times broader than the first band width. The fiber-based tunable laser also includes a combiner that can couple the pump laser pulse into the spectrum-expansion device and a filter that can select a signal laser wavelength within the second band width and to produce a signal laser pulse at the signal laser wavelength. The signal laser pulse has a third band width narrower than the second band width. One or more cavity fibers allow propagation of the spectrally expanded laser pulse and the signal laser pulse between the spectrum-expansion device and the filter.02-12-2009
20130070793FIBER LASER - A fiber laser includes: a seed light source; a preamplifier unit including a first optical fiber doped with a first rare earth element and amplifying a pulse seed light; a main amplifier unit including a second optical fiber doped with a second rare earth element and the first rare earth element and further amplifying light amplified by the preamplifier unit; and a buffer optical fiber provided between the preamplifier unit and the main amplifier unit, and doped with the second rare earth element. Amplified spontaneous emission light emitted by energy stored in the second rare earth element and the second excitation light not absorbed into the first and second rare earth elements of the second optical fiber but remaining are absorbed into the second rare earth element of the buffer optical fiber.03-21-2013
20110013652Source of Optical Supercontinuum Radiation - A source of optical supercontinuum radiation is disclosed, for generating blue-enhanced spectral components using a pump wavelength of substantially 1064 nm. The source comprises a microstructured optical fibre and a pump laser arranged to generate lasing radiation at the pump wavelength of substantially 1064 nm. The microstructured optical fibre comprises a core region and a cladding region which surrounds the core region and the pump laser is adapted to launch the lasing radiation at the pump wavelength into the core region of the microstructured optical fibre to excite the fundamental mode of the fibre. The fibre comprises a zero dispersion wavelength within ±200 nm of the pump wavelength and can support a plurality of modes at the pump wavelength.01-20-2011
20130215914LASER APPARATUS AND LASER MATERIALS PROCESSING APPARATUS PROVIDED WITH SAME - A laser apparatus of the present invention has a first laser oscillator that emits a first laser beam; a passive fiber that is a double-clad fiber that transmits the first laser beam through a core; and a second laser oscillator that emits a second laser beam that is coupled into inner cladding of the passive fiber. Additionally, a laser materials processing apparatus of the present invention is provided with the laser apparatus; and an irradiation optical system having a collimating lens and a condenser lens.08-22-2013
20090279573FIBER LASER AND OPTICAL DEVICE - A fiber laser and an optical device for controlling polarization and outputting single polarized light are provided in a simple structure.11-12-2009
20090238216RARE-EARTH DOPED OPTICAL FIBER, METHOD OF PRODUCING THE SAME, AND FIBER LASER - A rare-earth doped optical fiber that includes a core and one or more clad layers surrounding the core, in which the core has a rare earth dopant, and a relationship of Equation (1) is satisfied:09-24-2009
20090238215Method Of Inducing Refractive Index Structures In A Micro-Structured Fiber, A Micro-Structured Fiber And An Article - Refractive index modifications such as e.g. Fiber Bragg gratings in micro-structured Fiber are according to an aspect of the invention fabricated by first filling and/or purging the holes of the micro-structured fiber with inert gas or by evacuation and, optionally subsequently scaling the ends. Alternatively, the ends of the micro-structured fiber may be sealed without a preceding purging or evacuation of the holes. In this way hydrogen or deuterium present in the holes after photosensitizing loading will not react with atmospheric oxygen to form water. Water formed this way would otherwise seriously impair the grating formation process. Bragg gratings and other refractive index structures can thus be fabricated with high quality and predictable specifications in micro-structured fiber. Sealing the fiber ends also prevents in-diffusion of moisture. The invention may e.g. find application in connection with fiber optical sensors, high-power fiber lasers, etc.09-24-2009
20090046746PULSED FIBER LASER - A fiber laser system includes a master oscillator configured to generate linear polarized infrared laser radiation with wavelengths of 1015-1085 nm, pulses with durations of 100 ps to 10 ns, pulse train repetition rates of 1 kHz to 10 MHz, spectral bandwidth less than 0.5 nm, and a predominately single spatial mode and a polarization-maintaining optical isolator optically coupled to the master oscillator. The fiber laser system also includes a fiber amplifier system optically coupled to the optical isolator and including a power amplifier configured to amplify the laser radiation transmitted through the optical isolator. The power amplifier includes a polarization-maintaining, large-mode-area, multiple-clad Yb-doped gain fiber having a core, an inner cladding, and at least an outer cladding, one or more diode pump lasers emitting pump light of a nominal wavelength of 976 nm, and a pump coupler configured to couple the pump light into the gain fiber.02-19-2009
20120269212INEXPENSIVE VARIABLE REP-RATE SOURCE FOR HIGH-ENERGY, ULTRAFAST LASERS - System for converting relatively long pulses from rep-rate variable ultrafast optical sources to shorter, high-energy pulses suitable for sources in high-energy ultrafast lasers. Fibers with positive group velocity dispersion (GVD) and self phase modulation are advantageously employed with the optical sources. These systems take advantage of the need for higher pulse energies at lower repetition rates so that such sources can be cost effective.10-25-2012
20120147909FIBER LASER SYSTEM - A fiber laser system including a laser pumping source, first and second wavelength reflectors, first and second gain fibers, and first and second long wavelength reflectors is provided. The laser pumping source is adapted to emit a pumping beam. The first wavelength reflector is coupled to the laser pumping source. The first gain fiber is coupled between the first and the second wavelength reflectors. The first long wavelength reflector is coupled between the first gain fiber and the second wavelength reflector. The second long wavelength reflector is coupled between the first long wavelength reflector and the second wavelength reflector. The second gain fiber is coupled between the first and the second long wavelength reflectors. The diameter of the core of the first gain fiber is greater than the diameter of the core of the second gain fiber.06-14-2012
20130016741OPTICAL FIBER AMPLIFIER AND FIBER LASER APPARATUS USING THE SAME - An optical fiber amplifier (01-17-2013
20110069723HIGHLY RARE-EARTH-DOPED OPTICAL FIBERS FOR FIBER LASERS AND AMPLIFIERS - Various embodiments described herein comprise a laser and/or an amplifier system including a doped gain fiber having ytterbium ions in a phosphosilicate glass. Various embodiments described herein increase pump absorption to at least about 1000 dB/m-9000 dB/m. The use of these gain fibers provide for increased peak-powers and/or pulse energies. The various embodiments of the doped gain fiber having ytterbium ions in a phosphosilicate glass exhibit reduced photo-darkening levels compared to photo-darkening levels obtainable with equivalent doping levels of an ytterbium doped silica fiber.03-24-2011
20110280263SATURABLE ABSORBER USING A FIBER TAPER EMBEDDED IN A NANOSTRUCTURE/POLYMER COMPOSITE AND LASERS USING THE SAME - A saturable absorber (SA) is constructed using a fiber taper embedded in a carbon nanotube/polymer composite. A fiber taper is made by heating and pulling a small part of standard optical fiber. At the taper's waist light is guided by the glass-air interface, with an evanescent field protruding out of the taper. Carbon nanotubes mixed with an appropriate polymer host material are then wrapped around the fiber taper to interact with the evanescent field. Saturable absorption is possible due to the unique optical properties of the carbon nanotubes. The device can be used in mode-locked lasers where it initiates and stabilizes the pulses circulating around the laser cavity. The SA can be used in various laser cavities, and can enable different pulse evolutions such as solitons, self-similar pulses and dissipative solitons. Other applications include but are not limited to optical switching, pulse cleanup and pulse compression.11-17-2011
20090010286Glass for Optical Amplifier Fiber - A germanate glass composition suitable for use in a fiber amplifier for broadband amplification of optical signals is provided. The glass preferably includes 35-75% GeO01-08-2009
20090086770OPTICAL FIBER AND OPTICAL FIBER RIBBON, AND OPTICAL INTERCONNECTION SYSTEM - An optical fiber, made of silica-based glass, comprising a core and a cladding, each of the optical fiber having a mode field diameter of 5.5 μm or larger at a wavelength of 1100 nm, transmitting light with a wavelength of 1250 nm in a single mode, and having a bending loss of 1 dB/turn or smaller at a wavelength of 1100 nm when the optical fiber is bent with a curvature radius of 2 mm.04-02-2009
20110299557Side Fire Laser Assembly With Diffractive Portion - Embodiments include an apparatus including an optical fiber having a distal end with a distal surface configured to emit a beam of energy at an angle relative to a longitudinal axis of the optical fiber. The apparatus also includes a tube including a channel and a diffractive portion. The distal end of the optical fiber is disposed in the channel of the tube such that the beam of energy emitted from the optical fiber passes through the diffractive portion. The beam of energy emitted from the diffractive portion has a greater beam angle than the beam of energy directed to the diffractive portion.12-08-2011
20090201954METHOD AND APPARATUS FOR PULSED HARMONIC ULTRAVIOLET LASERS - An apparatus for producing coherent, pulsed ultraviolet light with pulse durations that range between 1 ps and 1 μs includes one or more source lasers in the visible or near-infrared frequency range. The apparatus also includes one or more FC stages, at least one of the one or more FC stages including a nonlinear FC device and one or more optical elements. The optical elements include a reflector, a focusing element, a polarization-controlling optic, a wavelength separator, or a fiber optic component. The FC device includes a huntite-type aluminum double borate nonlinear optical material configured to produce FC light having a wavelength between 190 and 350 nm and a composition given by RAl08-13-2009
20120155498FIBER LASER DEVICE - A PA section (06-21-2012
20100215062WAVELENGTH OR PULSEWIDTH TUNABLE MODE-LOCKED FIBER LASER SYSTEM - A wavelength-tunable mode-locked fiber laser system is provided and includes an optical cavity. The optical cavity outputs an output laser pulse having an adjustable principal wavelength, and includes a short-wavelength-pass filter, a polarization controller, an optical gain fiber and a fiber. The short-wavelength-pass filter produces an intracavity laser pulse. The fiber has a length, and connects the short-wavelength-pass filter, the polarization controller and the optical gain fiber in series. The optical cavity has an anomalous dispersion range and a net group-velocity dispersion being within the anomalous dispersion range due to the length of the fiber. The optical cavity causes the intracavity laser pulse to propagate therein for providing the output laser pulse, providing a first laser pulse, a second laser pulse and a third laser pulse to the short-wavelength-pass filter, the polarization controller and the optical gain fiber respectively, and adjusting the intracavity laser pulse.08-26-2010
20090296749SCANNING TEMPORAL ULTRAFAST DELAY AND METHODS AND APPARATUSES THEREFOR - The present invention is directed to methods and apparatuses for performing temporal scanning using ultra-short pulsewidth lasers in which only minimal (micro-scale) mechanical movement is required. The invention also relates to methods for obtaining high-accuracy timing calibration, on the order of femtoseconds. A dual laser system is disclosed in which the cavity of one or more of the lasers is dithered, by using a piezoelectric element. A Fabry-Perot etalon is used to generate a sequence of timing pulses used in conjunction with a laser beam produced by the laser having the dithered laser cavity. A correlator correlates a laser pulse from one of the lasers with the sequence of timing pulses to produce a calibrated time scale. The methods and apparatuses of the present invention are applicable to many applications requiring rapid scanning and time calibration, including, but not limited to metrology, characterization of charge dynamics in semiconductors, electro-optic testing of ultrafast electronic and optoelectronic devices, optical time domain reflectometry, and electro-optic sampling oscilloscopes.12-03-2009
20100103958OPTICAL FIBER WITH MULTI SECTION CORE - An optical fiber comprising a core region embedded within a cladding. The core region of the optical fiber further comprises multiple sections, each doped with rare earth ions. The sections of the core region may be doped with different rare-earth ions or with different doping concentrations. The sections of the core region may also be made from different types of glass hosts. The optical fiber may further include multiple core regions embedded within the cladding, each core region having multiple sections doped with rare earth ions.04-29-2010
20080267227Gain-clamped optical amplifier using double-clad fiber - Provided is a gain-clamped optical amplifier amplifying light without bandwidth loss of an incident optical signal, and the gain-clamped optical amplifier using a double-clad fiber comprises: an optical fiber including a core doped with a gain material for amplifying an optical signal, a primary clad adjacent to the outside of the core and having a lower refractive index than the core, and a secondary clad adjacent to the outside of the primary clad and having a lower refractive index than the primary clad; a light emitting element emitting a pump light for population inversion of the gain material; and a cavity unit producing laser oscillation by resonating spontaneous emission light emitted from the gain material population-inverted by the pump light.10-30-2008
20090147807Fiber grating laser - A fiber (Bragg) laser comprising a fiber with a cladding and a core having a (Bragg) grating inscribed in the core forming a laser cavity.06-11-2009
20090310628FIBER LASER PROCESSING METHOD AND FIBER LASER PROCESSING APPARATUS - A fiber laser processing apparatus controls a LD drive current 12-17-2009
20100260212FIBER OUTPUT STABILIZER - A fiber output stabilizer according to an aspect of the invention stabilizes output light from a rare-earth doped optical fiber in which at least one kind of a rare-earth element is added to a core. The fiber output stabilizer includes: a monitoring light source that emits monitoring light having a wavelength shorter than that of excitation light exciting the rare-earth element; an optical multiplexer that multiplexes the monitoring light into the excitation light; an optical demultiplexer that demultiplexes the monitoring light passing through the rare-earth doped optical fiber; and a passing light detector that detects light intensity of the monitoring light from the optical demultiplexer.10-14-2010
20100142564ALL-FIBER COLOR LASER AND LIGHT-ILLUMINATING METHOD THEREOF - An all-fiber color laser and a light-illuminating method thereof are disclosed. The steps of the light-illuminating method include: providing a fiber color laser having a pump light source and an optical fiber with a multi-level wavelength gain medium, a first grating assembly and a second grating assembly; radiating a laser via the pump light source; generating a plurality of laser beams with various wavelengths via the multi-level wavelength gain medium; adjusting the deformation of the second grating assembly to control output of the laser beams with various wavelengths; and executing periodical modulation to generate a periodical lengthwise deformation of the second grating assembly for mixing color.06-10-2010
20090207867SURFACE-EMITTING FIBER LASER - In one aspect, the disclosure features an article, including a fiber waveguide extending along a waveguide axis, the fiber waveguide including a core extending along the waveguide axis and a confinement region surrounding the core. The confinement region is configured to guide radiation at a first wavelength, λ08-20-2009
20090201953MICROSTRUCTURED OPTICAL FIBERS AND MANUFACTURING METHODS THEREOF - Optical devices and a method for manufacturing these devices. One optical device includes a core region having a first medium of a first refractive index n08-13-2009
20110170564FIBER LASER OSCILLATORS AND SYSTEMS USING AN OPTIMIZED PHASE VARYING FUNCTION - A pulsed fiber laser oscillator and laser systems incorporating such laser oscillators are presented. The laser oscillator first includes a light generating module which generates optical pulses having an initial spectral profile. A spectrum tailoring module tailors the initial spectral profile of the optical pulses by imposing a phase variation on each optical pulse according to an optimized phase varying function. The optimized phase varying function has one of a rectified sinusoidal shape, a parabolic shape and a rectified parabolic shape. Laser systems incorporating such oscillators may be of a MOPA configuration, and may further include a nonlinear crystal for frequency conversion or a bulk solid-state amplifier.07-14-2011
20100002730FIBER LASER SYSTEM - A powerful fiber laser system is configured with at least one large-area multi-clad rare-earth doped fiber, which is configured with a MM core capable of propagating a single mode laser emission at a first wavelength, and with at least one pumping assembly capable of generating an optical pump output at a wavelength shorter than the first wavelength of the rare-earth doped fiber. The pumping assembly has a plurality SM fiber lasers coupled to a SM-MM combiner which is operative to lunch the pump output into the cladding of the rare-earth doped fiber so that the powerful fiber laser system is operative to deliver a power of up to 20 kW.01-07-2010
20090262760Laser Obstacle Ranging and Display - Apparatus, for detecting at least one object and preventing receiver burn-out, mounted on a vehicle, including a laser and at least one receiver, the receiver being coupled with the laser, the laser for transmitting a beam of light and the receiver for detecting reflections of the beam of light from the object, the laser including at least one signal diode, a commutator, a power supply signal diode driver, a circulator, an erbium doped fiber (EDF), a wavelength division multiplexer (WDM), a narrow band Bragg reflector, a first fiber pump diode, an output combiner and a second fiber pump diode, the commutator being coupled with each signal diode and the power supply signal diode drive, the circulator being optically coupled with each signal diode, the EDF and the output combiner, the WDM being optically coupled with the EDF, the narrow band Bragg reflector and the first fiber pump diode and the second fiber pump diode being optically coupled with the output combiner, each signal diode generating a beam of light distinct from one another, the power supply signal diode driver for supplying energy to each signal diode, the circulator for directing the beam of light in at least one of at least two different directions, the EDF for amplifying the beam of light thereby producing an amplified beam of light, the narrow band Bragg reflector for reflecting only the amplified beam of light through the EDF a second time, thereby producing a double amplified beam of light and the first fiber pump diode and the second fiber pump diode for pumping the EDF, wherein the WDM and each of the signal diodes are located on opposite sides of the EDF, wherein the output combiner outputs the beam of light, wherein the commutator enables each signal diode, one at a time, to draw a predetermined amount of energy from the power supply signal diode driver, wherein one signal diode generates a low energy beam of light and another one generates a high energy beam of light, wherein the low energy beam of light is transmitted by the output combiner before the high energy beam of light, and when the low energy beam of light is detected by the receiver, and the energy level of the low energy beam is above a predetermined threshold, the high energy beam of light is not transmitted.10-22-2009
20090285246MULTI-RESONANT OPTICAL FIBER LASER SYSTEM - Provided is a multi-resonant optical fiber laser system including a multi-resonator having an optical fiber containing at least one rare-earth element and an optical fiber inducing the stimulated Raman effect. The multi-resonant optical fiber laser system includes a pump light source irradiating pump light, a first resonator, which includes a first gain medium optical fiber containing at least one rare-earth element and first and second reflectors disposed to face each other across the first gain medium optical fiber and irradiates first laser radiation having a first wavelength by converting the pump light using the first gain medium optical fiber, a second resonator, which includes a second gain medium optical fiber inducing the stimulated Raman effect and third and fourth reflectors disposed to face each other across the second gain medium optical fiber and irradiates second laser radiation having a second wavelength by converting the first laser radiation using the second gain medium optical fiber. The multi-resonant optical fiber laser system furthermore may include a third resonator, which includes a second gain medium optical fiber inducing the stimulated Raman effect and fifth and sixth reflectors disposed to face each other across the second gain medium optical fiber and irradiates third laser radiation having a third wavelength by converting the second laser radiation using the second gain medium optical fiber.11-19-2009
20110170565RESONANT FABRY-PEROT SEMICONDUCTOR SATURABLE ABSORBERS AND TWO PHOTON ABSORPTION POWER LIMITERS - An intracavity resonant Fabry-Perot saturable absorber (R-FPSA) induces modelocking in a laser such as a fiber laser. An optical limiter such as a two photon absorber (TPA) can be used in conjunction with the R-FPSA, so that Q-switching is inhibited, resulting in laser output that is cw modelocked. By using both an R-FPSA and a TPA, the Q-switched modelocked behavior of a fiber laser is observed to evolve into cw modelocking.07-14-2011
20090296748LASER SYSTEMS AND MATERIAL PROCESSING - A diode pumped laser is disclosed having a CW level and adapted to output one or more pulses having peak power greater than the CW level thereby to provide higher peak power for use in material piercing or penetrating operations without affecting diode lifetime.12-03-2009
20090296747PHASED LASER ARRAY WITH TAILORED SPECTRAL AND COHERENCE PROPERTIES - Architectures for coherently combining an array of fiber-based lasers are provided. By matching their lengths to within a few integer multiples of a wavelength, the spatial and temporal properties of a single large laser are replicated, while extending the average or peak pulsed power limit.12-03-2009
20090052477Nonlinear polarization pulse shaping mode locked fiber laser - A fiber laser cavity that includes a laser gain medium for receiving an optical input projection from a laser pump. The fiber laser cavity further includes a positive dispersion fiber segment and a negative dispersion fiber segment for generating a net negative dispersion for balancing a self-phase modulation (SPM) and a dispersion induced pulse broadening/compression in the fiber laser cavity for generating an output laser with a transform-limited pulse shape.02-26-2009
20100111118Light coupler and fiber laser system including the same - A light coupler emitting a high power laser with a high beam quality and a fiber laser system including the light coupler is disclosed. The light coupler includes a first optical fiber bundle comprising a plurality of first optical fibers having either a single-mode core or a few-mode core and a second optical fiber, which guides multi-mode beams and is connected to the first optical fiber bundle. The optical fiber laser system includes a light coupler having a first optical fiber bundle comprising a plurality of first optical fiber having either a single-mode core or a few-mode core and a second optical fiber, which is connected to the first optical fiber bundle, is either a single cladding optical fiber or a double cladding optical fiber, and guides multi-mode beams, and one or more gain medium optical fiber, which is connected to the light coupler and emits light.05-06-2010
20100103959Selectively Pumping A Gain-Doped Region Of An Optical Fiber - The present disclosure provides an approach to more efficiently amplify signals by matching either the gain materials or the pump profile with the signal profile for a higher-order mode (HOM) signal. By doing so, more efficient energy extraction is achieved.04-29-2010
20100061408LASER APPARATUS - Provided is a laser apparatus including: a DFB fiber laser 03-11-2010
20080240172Radiation emitting apparatus with spatially controllable output energy distributions - A laser handpiece is disclosed, including a fiber optic end having a non-cylindrical shape and further including a reflector surrounding a portion of the fiber optic end. The reflector is shaped to direct laser energy emitted from the fiber optic end in a direction away from the laser handpiece and toward a treatment site.10-02-2008
20090052476Optical fiber for an optical fiber laser, method for fabricating the same, and optical fiber laser - The optical fiber 02-26-2009
20080259970Fiber Laser Arrangement - The present invention provides a system, which comprises a fiber laser (10-23-2008
20080247424FIBER LASERS - Fiber lasers for producing Band I wavelengths include a laser cavity having an optical fiber with specific parameters in length and thickness and doping concentration, and having high reflectivities. Examples show the feasibility of producing such fiber lasers.10-09-2008
20080212620MICROSPHERE FIBER LASER SYSTEM - A microsphere fiber laser system includes a laser beam conducting fiber coated with doped microspheres. One end of the fiber is pumped with a pumping laser. The other end of the fiber is an output. Microspheres with different dopants may be used to obtain outputs of different wavelengths. The microspheres may be attached to an outer surface of a solid fiber or to the internal wall of a hollow fiber.09-04-2008
20090190615HIGH POWER PULSED FIBER LASER - A high power fiber laser includes a pump source optically coupled to a first fiber laser, which is in turn optically coupled to a second fiber laser. The pump source is adapted to generate light, which is received by the first fiber laser and used to generate a first pulsed output. The first pulsed output is directed into the second fiber laser and is used to generate a second pulsed output. The first fiber laser includes a multi-mode fiber, while the second fiber laser includes a single mode fiber.07-30-2009
20090080472Optical fiber for an optical fiber laser, method for fabricating the same, and optical fiber laser - The optical fiber 03-26-2009
20090080471DISPERSION MANAGED FIBER STRETCHER FOR HIGH-ENERGY SHORT PULSE FEMOTOSECOND FIBER LASER SYSTEM - A fiber Chirped Pulse Amplification (CPA) laser system that includes a fiber mode-locking oscillator for generating a seed laser for projecting to a stretcher for generated a pulse-stretched laser for projecting to a multiple stage amplifier. The multiple stage amplifier further amplifying said laser for projecting to a compressor for compressing said laser to generate an output laser of an original pulse width. In this invention, pulse stretcher is implemented with a special dispersion management fiber that has a flat dispersion or a negative TOD (dispersion slope, or a slope of dispersion versus wavelength).03-26-2009
20100142563FIBER LASER DEVICE - A fiber laser device includes a laser pump for irradiating a laser beam, an optical component, an optical fiber and an optical sensor. The optical component has a first and a second output end, wherein a portion of the laser beam is output from the first output end and another portion of the laser beam is output from the second output end. The optical fiber including a core and a cladding layer is optically coupled between the laser pump and the optical component. A inclined angle θ of the first output end satisfies the following relations that θ06-10-2010
20090080469Optical coupler devices, methods of their production and use - The present invention relates to an optical component comprising an acceptance fibre, e.g. a photonic crystal fibre, for propagation of pump and signal light, a number of pump delivery fibres and a reflector element that reflects pump light from the pump delivery fibres into the acceptance fibre. It is an object of the invention to provide a fibre coupler for coupling two or more light sources into a multi-clad (e.g. double clad) optical fibre, which has practical advantages with respect to handling, loss and back reflection. An object of the invention is achieved by an optical component comprising a) a first fibre having a pump core with an NA1, and a first fibre end; b) a number of second fibres surrounding said pump core of said first fibre, at least one of said second fibres has a pump core with an NA2 that is smaller than NA1, said number of second fibres each having a second fibre end; and c) a reflector element comprising an end-facet with a predetermined profile for reflecting light from at least one of said second fibre ends into the pump core of said first fibre. The invention further relates to articles comprising the optical component (e.g. a laser or amplifier), to methods of its production and use. The invention further relates to a rod-type optical fibre with optimized stiffness to volume ratio. The invention may e.g. be useful in applications such as fibre lasers or amplifiers, where light can be coupled efficiently from pump sources to an acceptance fibre, e.g. a double clad fibre, using the optical component. The invention specifically addresses optical fibre amplifiers where pump light and signal light are propagating in different directions (counter-propagating pump) within a double-clad optical fibre.03-26-2009
20110206068OPTICAL FIBER EMISSION CIRCUIT AND FIBER LASER - Object An object of the present invention is to reuse unavailable excitation light without deteriorating reliability of a fiber laser.08-25-2011
20090161700FIBER LASER - A fiber laser includes: a solid laser fiber doped with a rare earth element; a first grating fiber provided at one end portion of both ends along an optical axis direction of the solid laser fiber; and a first reflective element provided at the other end portion of the solid laser fiber. The first and second reflective elements constitute a resonator structure for the solid laser fiber; the first grating fiber Bragg-reflects only two polarizations of a first polarization having a first wavelength, and a second polarization having a second wavelength different from the first wavelength and being mutually orthogonal with the first polarization in a polarization direction; and at least one reflection wavelength of light which is reflected at the first reflective element and either one wavelength of the two polarizations which are Bragg-reflected at the first grating fiber coincide with each other.06-25-2009
20090161701LASER LIGHT SOURCE DEVICE AND IMAGE DISPLAY APPARATUS - There has been a problem that pumping light leaks from a part having a coating at the joint of a double-clad fiber added with a rare earth and a general single-mode fiber, and heat is generated partly from the fiber by this energy thus causing deterioration of the fiber. Deterioration of a fiber due to residual excitation light can be prevented by preventing residual excitation light in a double-clad fiber from exiting to a single-mode fiber, and the reliability is enhanced. Output of oscillation light can be increased because output of excitation light is not limited. Furthermore, a laser display having a high color reproducibility can be achieved by employing a light source combining a fiber laser light source and a wavelength conversion module.06-25-2009
20090161699Laser emitting material, method for making the same and use thereof - A solid-state laser emitting material for use in conjunction with a light source includes a polymer matrix functioning as host materials, containing laser dye of rhodamine 590 or rhodamine 610 as gain materials and nano-submicron particles as scatters therein. The lowest lasing threshold of the laser emitting material is approximately 5 mJ/cm06-25-2009
20090129409Optical Fiber and Broadband Light Source - An optical fiber and a broadband light source that can generate SC light having a broader bandwidth. A broadband light source 05-21-2009
20090129411OPTICAL FIBER LASER AND EXCITING METHOD USING SAME - An optical fiber laser, according to the present invention, has an optical fiber including a core to which a rare earth element is added and a clad disposed around the core, and also has an excitation light source for emitting excitation light incident on a side of the optical fiber. The optical fiber has a corrugated shape on the outer circumference of the clad along the longitudinal direction thereof; and the optical fiber is wound in a spiral form and is bundled in such a way that adjacent sides of the clad are brought into contact with one another.05-21-2009
20090129410Fiber Laser Device Having Excitation Light Source Protection Device - In a fiber laser device equipped with at least a pumping source, a rare-earth element doped fiber and a resonator, there is provided the fiber laser device equipped with a pumping source protecting device that is between the pumping source and the resonator, that prevents a laser light generated by the resonator from being incident on the pumping source, and that has no isolator function.05-21-2009
20120069861Precisely-Shaped Core Fibers and Method of Manufacture - Non-circular core optical preforms are provided whose core-cladding interface edge has a sharpness that can be accurately controlled according to application-specific needs. Preform design and fiber fabrication is handled such that precisely edged fiber cores are maintained in the drawn fibers. This provides for markedly improved fiber functions, which rely on the non-circular structure of the core. In short, optical fibers having non-circular wave-guiding regions with precise, controlled edges are provided. By using selected manufacturing techniques that employ lower temperatures than commonly used, prior art techniques and by choosing proper materials with appropriate viscosities for core and cladding, the rounding of the edges of the wave-guiding region is precisely maintained in the final optical fibers.03-22-2012
20120069860Gain-Switched Fiber Laser - Pulsed fiber laser including an electronic driver, a laser diode and a laser cavity, the laser cavity including a combiner, a doped optical fiber and a coupler, the laser diode being coupled with the electronic driver, the combiner being coupled with the laser diode, the doped optical fiber being coupled with the combiner, and the coupler being coupled with the doped optical fiber and the combiner, the electronic driver for providing a drive current, the laser diode for generating a pump pulse, the doped optical fiber for absorbing the pump pulse and for generating a circulating laser pulse, the coupler for outputting a first portion of the circulating laser pulse and for returning a second portion of the circulating laser pulse to the combiner, wherein the electronic driver operating the laser diode at a specific pump pulse repetition rate (PRR), a specific pump pulse shape and a specific pump pulse width and wherein the combiner providing the pump pulse and the second portion of the circulating laser pulse to the doped optical fiber.03-22-2012
20120069859LOOP OPTICAL SYSTEM AND ALL-FIBER Q-SWITCHED LASER USING THE SAME - An all-fiber Q-switched laser including a laser resonant cavity and a loop optical system is provided. The loop optical system is disposed inside the laser resonant cavity, and the all-fiber Q-switched laser generates a pulsed laser through the loop optical system. The loop optical system includes a plurality of wavelength-division elements and a saturable absorber. One of the wavelength-division elements is coupled with another one of the wavelength-division elements through corresponding first connecting fibers. Two ends of the saturable absorber are respectively coupled to second connecting fibers of the wavelength-division elements, wherein the saturable absorber and the two wavelength-division elements form a loop such that an auxiliary unsaturated light source can be transmitted in the loop.03-22-2012
20120069858Photodarkening Resistant Optical Fibers and Fiber Lasers Incorporating the Same - Photodarkening resistant optical fiber lasing media and fiber lasers incorporating the same are disclosed. In one embodiment, an optical fiber lasing medium includes a core portion formed from silica-based glass comprising a rare-earth dopant and deuterium, the core portion having an index of refraction n03-22-2012
20080317071Dual-Single-Frequency Fiber Laser and Method - An embodiment of the invention is directed to a dual-single-frequency fiber laser. A linear cavity formed by a short length of highly doped optical waveguide with distributed Bragg reflectors (DBRs) at respective ends, one of which is a polarization-maintaining PM-DBR, and a suitable pump source, provides orthogonally polarized dual-single-frequency laser emissions. Operating characteristics of the laser may be customized by appropriate design of the PM-DBR. Wavelength spacing between dual lasing wavelengths can be controlled via the birefringence parameters of the PM-DBR. Laser emission wavelengths may be controlled as a function of the period of the PM-DBR. Output power may be scaled upward by optimizing the PM-DBR reflectance and via pump power adjustment. Relaxation-oscillation effects (noise peaks) may be reduced by using a negative-feedback circuit on the pump laser. The use of a polarization-filtering component in regard to the orthogonal polarizations of the dual emissions enable laser operation in a single-polarization-single-frequency regime.12-25-2008
20090052475Fiber Laser Device For Neutralizing Unexploded Ordinance - A device for directing a beam of radiation at a target. The device includes a fiber laser for producing the beam of radiation, an aiming mechanism, for aiming the beam of radiation at the target, that moves independently of the fiber laser, and an optical fiber for conveying the beam of radiation to the aiming mechanism.02-26-2009
20090080470Locally perturbed optical fibers for mode transformers - The specification describes optical devices and related methods wherein an input mode is converted by multiple LPG mode transformers to produce an output with multiple predetermined modes.03-26-2009
20090080468Locally perturbed optical fibers for mode transformers - The specification describes optical devices and related methods wherein the input has multiple modes, and at least one of the multiple modes are respectively converted by one or more multiple mode transformers to produce an output with predetermined modes that are different from the input. In one embodiment the output mode is a single mode. In another embodiment the power ratios of the input modes are controllably changed. In another embodiment one or more output mode is different from the input mode.03-26-2009
20090080467Pulse repetition frequency-multipler for fiber lasers - MOPA laser apparatus includes a master oscillator and a preamplifier providing a train of optical pulses. The pulse train is input to a fiber optic device arranged to multiply the pulse-repetition frequency (PRF) of the input pulse train. The PRF multiplying device divides each pulse in the into train into two pulses and delays one pulse relative to the other, some portion of one of the pulses and a portion of the other are delivered by the fiber optic PRF multiplying device as an output pulse-train having a PRF equal to twice the PRF of the input pulse train.03-26-2009
20090175301FIBRE LASER SYSTEM - A fibre laser system is disclosed comprising an optical fibre, a part of which is doped with a rare earth to form an optical gain medium; at least one laser diode; means for applying pump radiation from the laser diode to the optical gain medium and for generating a laser beam and delivery fibre means for delivering a laser beam to a workpiece, wherein the fibre laser is provided with at least one means for protecting one or more components from damage caused by errant radiation. Several different means of protection are disclosed.07-09-2009
20110142082FIBER LASER - Provided is a fiber laser generating Terahertz wave. The fiber laser comprises: a light source generating a laser beam as a pump light; first and second resonators first and second resonators first and second resonators resonating the laser beam into first and second wavelengths; and a coupler separating and supplying the laser beam generated in the light source to the first and second resonators and again feeding back the laser beam having the first and second wavelengths resonated respectively in the first and second resonators to the light source.06-16-2011
20110142083YTTERBIUM-DOPED OPTICAL FIBER, FIBER LASER AND FIBER AMPLIFIER - An ytterbium-doped optical fiber includes: a core which contains at least ytterbium, aluminum, and phosphorus; and a cladding which encircles the core, wherein an aluminum oxide equivalent concentration of the aluminum in the core is 0.2 mol % or more, a diphosphorus pentaoxide equivalent concentration of the phosphorus is higher than the aluminum oxide equivalent concentration, and the core either does not contain germanium or contains less than 1.1 mol % of germanium in a germanium dioxide equivalent concentration.06-16-2011
20090097508Fiber Laser Arrangement Having A High Beaming Power - A fiber laser arrangement having a high beaming power includes a plurality of continuously operating coherent individual fiber lasers. Pumping energy generated by a common master oscillator operated in the longitudinal mode is distributed to the fiber lasers by way of a fiber splitter, in a branched manner. An integrated electro-optical phase shifter is assigned to each individual fiber laser, and can be controlled by an electronic control system. By appropriate displacements of the optical phases in individual phases of the fiber laser arrangement atmospheric turbulence effects on the propagation path of the laser radiation to a target are compensated in order to obtain an optimal focusing of the entire laser radiation onto the remote target.04-16-2009
20090168814Second Harmonic Generation Laser System - A method of manufacturing a second harmonic laser system is provided. A seed laser is optically coupled to a first port of a polarizing beam splitter using a polarization maintaining fiber. A first end of a non-polarization maintaining doped optical fiber is optically coupled to a second port of the polarizing beam splitter. A second end of a non-polarization maintaining doped optical fiber is optically connected to a rotator/reflector. A third port of the polarizing beam splitter is optically coupled to a nonlinear crystal.07-02-2009
20120195330METHODS AND SYSTEMS FOR FIBER DELIVERY OF HIGH PEAK POWER OPTICAL PULSES - Methods and systems for delivery of high peak power optical pulses through optical fiber are disclosed. Raman soliton generation is utilized to maintain the properties of the pulses in the delivery fiber. The apparatus can comprise any high peak power pulse source and delivery fiber supporting Raman soliton generation.08-02-2012
20100189137OPTICAL DEVICE AND METHOD OF CONTROLLING A REFRACTIVE INDEX PROFILE IN THE OPTICAL DEVICE - An optical device includes an optical material comprising active dopant ions and absorber dopant ions spaced apart from the active dopant ions. The active dopant ions are provided to absorb a first radiation and convert a portion of the first radiation into sensible heat. A concentration profile of the absorber dopant ions is selected to absorb a second radiation different from the first radiation and optionally the first radiation in at least one direction of the optical material so as to control a refractive index profile in the at least one direction of the optical material. In another embodiment, a method of controlling a refractive index profile in an optical material includes exciting active dopant ions in the optical material with a first radiation, the active dopant ions converting at least a portion of the first radiation into sensible heat; and exciting absorber dopant ions in the optical material with a second radiation to control a refractive index profile in at least one direction of the optical material.07-29-2010
20090316734Laser Device Comprising Means for Controlling the Phase of a Large Number of Coherent Sources - The invention relates to a laser device comprising a number of fibre amplifiers (12-24-2009
20090296745HIGH-POWER FIBER AMPLIFIER EMPLOYING MULTI-POINT PUMP COUPLING VIA COILED GAIN FIBER - An apparatus that may be used as part of an optical amplifier or laser includes a pump fiber carrying pump light from a pump source and a clad gain fiber which includes a number of coils arranged with the pump fiber to form a pump coupler. The pump coupler includes (i) a coupling section of the pump fiber, (ii) a coupling section of each of the coils of the gain fiber arranged adjacent to the coupling section of the pump fiber, (iii) an index- matching material disposed between the coupling section of the pump fiber and the coupling sections of the gain fiber to provide a high degree of coupling of the pump light from the pump fiber to the gain fiber, and (iv) a low-index material at outward-facing surfaces of the coupling sections of the gain fiber. The coupling sections of the pump fiber and of the coils of the gain fiber along with the index-matching material form a waveguide exhibiting an oscillating characteristic of coupling efficiency versus coupling length. The lengths of the coupling sections are selected to correspond to a selected maximum of the oscillating characteristic for high-efficiency coupling of the pump light from the pump fiber to the gain fiber in the pump coupler.12-03-2009
20100189138High Power Fiber Laser System With High Quality Beam - A high power fiber laser system has a combiner configured of a plurality of single mode (SM) fibers which are fused together so as to define an output end of the fiber combiner. The fused SM fibers radiate respective fiber outputs, which collectively define a multimode (MM) combiner output. The SM fibers each are configured with such an optimally small numerical apertures (NA) that the MM combiner output is characterized by a minimally possible beam quality factor (M07-29-2010
20100189139PULSE MODULATION METHOD AND OPTICAL FIBER LASER - The present invention relates to a pulse modulation method and the like having a structure for effectively suppressing nonlinear optical phenomena which increase as an optical pulse becomes wider when amplifying the optical pulse with a predetermined period as seed light. A modulator performs pulse modulation for a laser light source which is a seed light source or light outputted from the laser light source. A modulation pattern of a modulated voltage outputted from the modulator is adjusted such as to include a plurality of pulse components each having a signal width shorter than the pulse width of the optical pulse as an optical pulse generation pattern within a modulation period corresponding to a period of the optical pulse.07-29-2010
20090316732FIBER OPTIC POWER LASER DEVICE - A power fibre laser device includes a power laser diode emitting a pump wave, an optical resonator including fully reflective and partially reflective ends, an amplifying multimode optical fibre, and an optical element coupling the pump wave in the multimode optical fibre. The optical resonator includes at least one submodule consisting of a spatial filtering element and including an optical element having a definite position in the optical submodule so as to enable the optical submodule to reproduce, after a round trip of the laser beam, the amplitude and phase of the fundamental mode of the multimode optical fibre to the input or output face of the multimode optical fibre, whereby minimising losses in the fundamental mode, and enabling the optical submodule to filter the other modes, producing additional losses in the modes in the optical resonator, whereby minimising the number of laser modes that propagate in the optical resonator.12-24-2009
20100166027LASER APPARATUS WITH ALL OPTICAL-FIBER - A laser apparatus with all optical-fiber includes a plurality of pumping light sources in different wave bands and an optical-fiber laser system. The optical-fiber laser system includes an optical fiber at least doped with erbium (Er) element and doped with or not doped with ytterbium (Yb) element according to a need. The optical-fiber laser system outputs a laser light through the pumping light source.07-01-2010
20080212621WAVELENGTH CONVERTER AND TWO-DIMENSIONAL IMAGE DISPLAY DEVICE - It is designed to prevent an efficiency reduction caused by the heat generation of a rare-earth doped fiber in a wavelength converter.09-04-2008
20100177792FIBER FUSE TERMINATOR, FIBER LASER, AND OPTICAL TRANSMISSION LINE - A fiber fuse terminator which is used to terminate a fiber fuse, comprising: an optical fiber which includes a core and a cladding having holes extending in a longitudinal direction thereof, in which: a refractive index of the core of the optical fiber is higher than a refractive index of a portion of the cladding excepting portions of the holes; when it is assumed that a mode field diameter at a used wavelength of the optical fiber is MFD, and a distance in a cross section perpendicular to the longitudinal direction of the optical fiber between a center of the core and a position, closest to the center of the core, of the hole that is closest to the core is Rmin, a value expressed by 2×Rmin/MFD is no less than 1.2 and no more than 2.1; when it is assumed that a width, in a diameter direction, of a region where the holes present in the cladding is W, a value expressed by W/MFD is no less than 0.3; and when it is assumed that a diameter of the cladding of the optical fiber is D07-15-2010
20100220751All-Normal-Dispersion Femtosecond Fiber Laser - A modelocked fiber laser is designed to have strong pulse-shaping based on spectral filtering of a highly-chirped pulse in the laser cavity. The laser generates femtosecond pulses without a dispersive delay line or anomalous dispersion in the cavity.09-02-2010
20090285245FIBER-BASED ULTRAFAST LASER - An ultrafast laser system includes a seed laser that provides a signal laser pulse and a fiber-based first chirped reflective Bragg grating that reflects the signal laser pulse propagating along a first path and produce a stretched laser pulse longer than the signal laser pulse. A grating frequency of the first chirped reflective Bragg grating varies along the first path. An amplifier can amplify the stretched laser pulse and output an amplified laser pulse. A second chirped reflective Bragg grating can reflect the amplified laser pulse and produce a compressed laser pulse shorter than the amplified laser pulse. The amplified laser pulse propagates along a second path in the second chirped reflective Bragg grating. A grating frequency of the second chirped reflective Bragg grating varies in an opposite direction along the second path as the grating frequency of the first chirped reflective Bragg grating varies along the first path.11-19-2009
20120033686ALL-GAIN GUIDING YB-DOBED FEMTOSECOND FIBER LASER - A mode-locked fiber laser system is presented with an improved optical cavity structure having a lower doped and longer gain medium. The laser system comprises: a laser source operable to produce a light beam; an optical cavity structure operable to amplify a light beam propagating therethrough; and a beam splitter operable to output the amplified light beam from the optical cavity. The optical cavity includes a single-mode fiber section and a gain fiber section doped with a lanthanide element, such as erbium or ytterbium, where the ratio between length of the gain fiber section to a total length of the cavity structure is greater than 1:5. By increasing length of the gain medium, peak power of the generated pulse is increased while keeping the nonlinear phase shift constant to avoid optical wave breaking.02-09-2012
20090074014MODE SELECTION FOR SINGLE FREQUENCY FIBER LASER - A method for generating a laser projection by employing a laser gain medium for receiving an optical input projection from a laser pump. The method further includes a step of generating a laser of a resonant peak from a single mode selection filter.03-19-2009
20090074013Thulium doped fiber configuration for enhanced high power operation - An optical fiber amplifier includes a laser pump source for generating laser pump light; a fiber including an inner cladding layer optically coupled to a laser pump source for receiving laser pump light; a large mode area (LMA) core surrounded by the inner cladding, the LMA core including a confined region having a predetermined doping concentration of rare-earth ions for undergoing excitation to generate laser light when pumped by the laser pump light; and an outer cladding layer surrounding the inner cladding layer for substantially confining the laser pump light to the inner cladding and the LMA core. In a method of forming the optical fiber amplifier, a ratio of an area of the confined region to an area of the LMA core, and the predetermined doping concentration of the rare earth ions are selected so as to achieve a quantum efficiency (QE) gain factor of approximately 2, but such that the heat dissipation per unit length can be controlled by adjusting the area of the confined region.03-19-2009
20090323734NOT TEMPERATURE STABILIZED PULSED LASER DIODE AND ALL FIBRE POWER AMPLIFIER - So as to establish laser light with a desired characteristic downstream a laser light source (12-31-2009
20090245294Fibre Laser with Intra-cavity Frequency Doubling - The invention disclosed herein relates to fibre lasers with intra-cavity frequency doubling. In one embodiment, the invention is directed to a fibre laser with intra-cavity frequency doubling characterized in that a non-linear crystal of type II phase matching is used to thereby enable operation of the fibre laser without selection of polarisation of the generated fundamental radiation. The non-linear crystal is oriented so as to minimise the walk-off angle of the second harmonic radiation, and a second dichroic mirror together with one of a plurality of focusing elements forms a telescopic reflector that provides for focusing and compensation of the spatial walk-off effect of the non-linear crystal.10-01-2009
20090323735Pulse stretching optical fiber and related systems and methods - An optical fiber for performing pulse stretching, and fiber laser systems and methods using the pulse-stretching fiber are disclosed. The pulse-stretching (PS) fiber has low fourth-order dispersion (dispersion curvature) and a third order dispersion (dispersion slope) with a small negative, nearly zero or small positive value. Two different types of fiber laser systems that use the PS fiber in a manner that achieves optimum performance are described. The PS fiber enables an all-fiber (up to the final pulse compressor) ultra-short pulsed laser systems reaching pulse energies exceeding 100 μJ, average powers exceeding 100 W, and output pulse widths of less than 100 fs.12-31-2009
20090129412Apparatus for bonding camera module, equipment for assembling camera module having the apparatus, and method of assembling camera module using the equipment - An apparatus for bonding a camera module, equipment for assembling the camera module having the apparatus, and a method of assembling the camera module using the equipment. The apparatus include: a laser generator, which generates a laser beam, and a bonding head, which is connected to the laser generator through an optical fiber and applies the laser beam propagating through the optical fiber to contact portions of a camera unit having an image sensor and lenses and a flexible printed circuit board (FPCB) electrically connected to the image sensor, so that the contact portions can be heated and bonded to each other such that the camera unit and the FPCB are bonded to each other. Thus, a process of bonding the camera module can be performed within a relatively short time, compared to the case where a hot-bar or an oven is used.05-21-2009
20090168815HIGH-POWER FIBER OPTIC PULSED LASER DEVICE - The invention relates to a high-power fiberoptic laser device comprising at least one laser diode (07-02-2009
20090316733OPTICAL FIBER FOR A FIBER LASER AND FIBER LASER USING THE SAME - The present invention provides an optical fiber, for use in a fiber laser, from which a high-quality single-mode laser beam with high optical power is obtained and also provides a fiber laser that uses the optical fiber. The novel optical fiber, which includes a core to which a rare earth element is doped and a cladding formed around the core, amplifies excitation light to oscillate a laser beam. A mode filter is formed at a predetermined position in the longitudinal direction of the optical fiber.12-24-2009
20130128904FIBER LASER PUMPING CONFIGURATION AND METHOD - The invention is an apparatus and method for free space pumping of active double-clad fiber based lasers and amplifiers. The apparatus comprises a laser emitting a signal laser beam; an active double-clad fiber having a core defining an optical axis of the apparatus and a pump cladding defining a cone of numerical aperture; an optical arrangement directing the signal laser beam along the optical axis through the core of the active double-clad fiber; at least one pump source emitting a pump beam; at least one delivery means coupling the pump beam to the pump cladding of the active double-clad fiber; and an optical arrangement coupling the amplified signal laser beam exiting the active double-clad fiber out of the apparatus.05-23-2013
20080267229Optical fiber, optical fiber production method and optical fiber production system - An optical fiber includes a rare-earth element-added core for serving as a gain medium, and a cladding formed on a periphery of the core. Pump light propagated through the cladding is coupled into the core. The cladding is in an undulation shape in the longitudinal direction of the cladding. The undulation shape of the cladding is formed according to a grating period at which the pump light is totally reflected and propagated in the cladding. The core includes an undulation shape in a longitudinal direction of the core. The cladding includes an undulating inner cladding, and an outer cladding provided on a periphery of the inner cladding. The core and/or the cladding is circular or abnormally circular in its transverse cross section.10-30-2008
20110128978Broad spectrum optical supercontinuum source - An optical supercontinuum radiation source for generating a broad optical supercontinuum from pump radiation having a wavelength in the range 900 nm to 1200 nm includes a microstructured optical fibre and a pump laser adapted to generate pump radiation for pumping the microstructured optical fibre. The fibre can have a Δ (“delta”) value of greater than 0.3, the core region of the fibre can support a plurality of modes at the pump wavelength, and the cladding region can comprise at least two air holes extending along the length of fibre wherein the ratio of the diameter (d) of the air holes to their pitch (Λ) is greater than 0.6. The fibre can comprise a zero dispersion wavelength (ZDW) within ±200 nm of said pump wavelength.06-02-2011
20100296528FIBER LASER COMPRISING A RING-SHAPED RESONATOR - The invention relates to a fiber laser comprising a ring-shaped resonator (11-25-2010
20100303104Apparatus and Method for Removing Unwanted Optical Radiation from an Optical Fiber - Apparatus comprising a source of optical radiation (12-02-2010
20100303103FIBER LASER DEVICE - An object of the invention is to provide a fiber laser device capable of stabilizing intensity of laser light output therefrom.12-02-2010
20130136147TUNABLE MODE LOCKED LASER - A laser for emitting simultaneously a first and second laser lights having respectively first and second wavelength differing from each other. The laser comprises: an optical resonator defining a first optical path and a second optical path, the first laser light travelling along the first optical path and the second laser light travelling along the second optical path; a modulated gain element inserted in the optical resonator for amplifying the first and second laser lights as the first and second laser lights propagate in the optical resonator respectively along the first and second optical paths, the modulated gain element having a variable gain modulated with a modulation period, round trip times of the first and second laser lights along respectively the first and second optical paths being respective integer multiples of the modulation period; and an output port for releasing the first and sec and laser lights from the optical resonator.05-30-2013
20100322268Dynamic Compensator for Controlling Stresses on Fiber in Fiber Optic Cables - A dynamic compensator for a fiber optic cable having a jacket which is centered along a longitudinal axis, an elongated buffer tube surrounded by the jacket, and an elongated fiber surrounded by the buffer tube and dimensioned to move radially inwards and outwards within the buffer tube. The dynamic compensator includes a cable holder configured to receive and loop a portion of the fiber optic cable so that when the jacket elongates, the fiber extending along the loop is displaced radially inwards so as to release stresses upon end portions of the fiber, and when the jacket shrinks, the fiber is displaced radially outward to increase stresses upon the end portions of the fiber.12-23-2010
20090067453Laser Light Source and Optical Device - A laser light source is provided with a pump light source (03-12-2009
20090034562Visible continuum generation utilizing a hybrid optical source - An all-fiber supercontinuum source is formed as a hybrid combination of a first section of continuum-generating fiber (such as, for example, highly-nonlinear fiber (HNLF)) spliced to a second section of continuum-extending fiber (such as, for example, photonic crystal fiber (PCF)). The second section of fiber is selected to exhibit an anomalous dispersion value in the region of the short wavelength edge of the continuum generated by the first section of fiber. A femtosecond pulse laser source may be used to supply input pulses to the section of HNLF, and the section of PCF is spliced to the termination of the section of HNLF. A section of single mode fiber (SMF) is preferably inserted between the output of the laser source and the HNLF to compress the femtosecond pulses prior to entering the HNLF. It has been found that the hybrid combination of these two types of fibers allows for extension of the continuum on the short wavelength side—into the visible portion of the spectrum—by virtue of the first section of fiber acting as a “pump” source for the second section of fiber.02-05-2009
20100172380MODE-LOCKED LASER - The present disclosure provides in a first aspect a mode-locked laser for generating laser pulses. The mode-locked laser comprises an optical coupler and a first optical path capable of carrying optical signals from and to the optical coupler. The first optical path includes an optical amplifier that is arranged so that saturation of optical amplification causes amplitude modulation of the light. The optical amplifier has a saturation time that is shorter than a pulse transition period of the mode-locked laser and is arranged for recovery of amplifying properties after the saturation within a period of time that is shorter than the pulse transition period of the mode-locked laser. The laser further comprises a second optical path capable of carrying optical signals from and to the optical coupler. The second optical path includes an optical isolator. The first optical path has a non-linear property and is arranged so that, when a light pulse that is received from the second optical path is split by the optical coupler into component light pulses that are directed in opposite directions in the first optical path, the component light pulses experience differing shifts in phase and wherein the mode-locked laser is arranged so that mode-locked lasing is initiated by a light pulse that is amplitude modulated by the optical amplifier.07-08-2010
20110044358High-Power Multi-Port Circulator - A high power (HP) fiber circulator is configured with a case enclosing a plurality of optical components which are arranged so as to define multiple ports. The fiber circulator further includes a plurality of launching and receiving fiber components each of which has spliced delivery and pigtailed passive fibers selectively coupling a HP input signal into and receiving a HP output signal from respective input and output ports. The passive fibers of each fiber component have respective protective coatings spaced from one another and each covering the cladding of the fibers. A light stripper, extending between the protective coatings, is operative to substantially remove cladding-supported light from one of the passive fibers before it reaches the protective coating of the other passive fiber. At least one of the ports includes a wavelength selective component configured to direct the HP input light beam along the desired path between the ports and including a fiber Bragg grating, volume Bragg grating or a combination of these.02-24-2011
20100189136Apparatus and method for generating high power optical pulses and narrow spectrum by single mode fiber laser - A laser system for effective injection seeding is configured with a master oscillator lasing a narrowband seed radiation which is characterized by a single longitudinal master mode injected into a slave oscillator so that the latter generates a broadband slave radiation with a dominant slave mode and side slave modes. The slave radiation is coupled into an input of a SM fiber laser amplifier operative to output an amplified radiation with the spectra which is substantially as narrow as the spectra of the slave radiation.07-29-2010
20090041061Method and apparatus for generation and amplification of light in a semi-guiding high aspect ratio core fiber - A planar laser gain medium and laser system. The novel laser gain medium includes an active core having a high aspect ratio cross-section with a fast-axis dimension and a slow-axis dimension, signal claddings adapted to form reflective boundaries at fast-axis boundaries of the core, and a material adapted to minimize reflections at slow-axis boundaries of the core. In an illustrative embodiment, the laser gain medium is an optical fiber. The core and claddings form a waveguide adapted to control modes propagating in the fast-axis direction. When the laser gain medium is employed as a laser oscillator, a high reflectivity mirror and an outcoupler are positioned at opposite ends of the core to form a laser resonator adapted to control modes in the slow-axis direction.02-12-2009
20100054285 All Fiber Mode Locked Fiber Laser at One Micron - Methods and systems for generating mode locked, femtosecond and picosecond laser pulses are disclosed, including generating electromagnetic radiation from a pump laser; coupling the pump laser electromagnetic radiation to a ring cavity comprising: a WDM coupler, a Ytterbium doped fiber, a first single mode fiber, a bandpass filter and dispersion device; a second single mode fiber; a first in-line polarization controller; an in-line polarization beam splitter comprising a polarization maintaining output configured to emit the laser pulses out of the ring cavity and a single mode fiber output coupled back into the ring cavity; a polarization insensitive isolator; a second in-line polarization controller; and a third single mode fiber; and wherein the ring cavity is configured to operate at net anomalous dispersion. Other embodiments are described and claimed.03-04-2010
20120230353OPTICAL PULSE SOURCE WITH INCREASED PEAK POWER - In at least one embodiment time separated pulse pairs are generated, followed by amplification to increase the available peak and/or average power. The pulses are characterized by a time separation that exceeds the input pulse width and with distinct polarization states. The time and polarization discrimination allows easy extraction of the pulses after amplification. In some embodiments polarization maintaining (PM) fibers and/or amplifiers are utilized which provides a compact arrangement. At least one implementation provides for seeding of a solid state amplifier or large core fiber amplifier with time delayed, polarization split pulses, with capability for recombining the time separated pulses at an amplifier output. In various implementations suitable combinations of bulk optics and fibers may be utilized. In some implementations wavelength converted pulse trains are generated. A method and system of the present invention can be used in time domain applications utilizing multiple beam paths, for example spectroscopy.09-13-2012
20100061407Figure eight fiber laser for ultrashort pulse generation - A polarization-maintaining figure eight (PMFE) fiber laser is configured to generate ultrashort (femtosecond) output pulses by intentionally inserting asymmetry (in the form of a phase bias) into the bi-directional loop of the fiber laser. The introduction of asymmetry (via an asymmetric coupler, splice, attenuator, fiber bend, multiple amplifying sections, or the like) allows for an accumulation of phase difference within the bi-directional loop sufficient to create modelocking and generate ultrashort output pulses.03-11-2010
20100061409FIBER LASER - A fiber laser of an MOPA type includes an MO which is a laser oscillator for generating seed light, a PA which is a light amplifier connected to a rear stage of the MO, for amplifying and outputting laser light emitted from the MO, and a reflection device which is provided between the MO and the PA. According to the present invention, the MOPA type fiber laser can decrease the peak value of the pulse which is emitted toward the MO or the pump light source by self-oscillation or reflection, and makes it unlikely that the pump light source or the MO will be damaged.03-11-2010
20100135339High power fiber laser system with cladding light stripper - A powerful fiber laser system is configured with at least one gain block. The gain block includes an input fiber guiding a pump light, a multiclad active fiber receiving the pump light so that a major portion is absorbed in the core of the active fiber while a minor portion of the pump light propagates in the inner cladding of the active fiber, and a multiclad output fiber. The multiclad output fiber is configured with a core, guiding a signal lased by the core of the active fiber upon absorption of the major portion of the pump light, an inner cladding receiving the minor portion of the pump light and an outer cladding. The inner and outer claddings of the multiclad output fiber have respective refractive indexes which are selected so that the refractive index of the outer cladding is higher than that one of the inner cladding. The configuration of the output fiber allows for the removal of substantially the entire light from the inner cladding of the output fiber before the signal is emitted through the downstream end of the output fiber.06-03-2010
20100135340FIBER LASER HAVING SUPERIOR RESISTANCE TO REFLECTION LIGHT - An MO-PA fiber laser having a master oscillator; and a first power amplifier which uses as a gain medium, a rare earth-doped optical fiber which is connected to a later stage of the master oscillator, wherein the MO-PA fiber laser has a wavelength conversion portion between the master oscillator and the power amplifier, and has a wavelength filter between the wavelength conversion portion and the master oscillator which only allows wavelength components of pulse light emitted from the master oscillator to pass, thereby making it possible to prevent breakage to a fiber laser which is caused by reflection light without using high-cost optical components.06-03-2010
20090028193BROADBAND OR MID-INFRARED FIBER LIGHT SOURCES - A broadband light source includes one or more laser diodes that are capable of generating a pump signal having a wavelength shorter than 2.5 microns, a pulse width of at least 100 picoseconds and a pump optical spectral width. The light source also includes one or more optical amplifiers that are coupled to the pump signal and are capable of amplifying the pump signal to a peak power of at least 500 W. The light source further includes a first fiber that is coupled to the one or more optical amplifiers. The first fiber including an anomalous group-velocity dispersion regime and a modulational instability mechanism that operates to modulate the pump signal. In one particular embodiment, the pump signal wavelength resides in the anomalous group-velocity dispersion regime of the first fiber and where different intensities in the pump signal can cause relative motion between different parts of the modulated pump signal produced through modulational instability in the first fiber. The light source also including a nonlinear element that is coupled to the first fiber that is capable of broadening the pump optical spectral width to at least 100 nm through a nonlinear effect in the nonlinear element.01-29-2009
20110075686HIGH ENERGY, ALL FIBER, MODE LOCKED FIBER LASER - Methods and systems for generating high energy, mode locked, femtosecond and picosecond laser pulses are disclosed, including generating electromagnetic radiation from a pump laser; coupling the electromagnetic radiation to a rare Earth doped fiber using a pump/signal coupler; coupling the output from the rare Earth doped fiber to a first fiber; coupling a bandpass filter to the first fiber output and to a second fiber; coupling a first in-line polarization controller to the second fiber output and an in-line polarization beam splitter comprising a non-polarization maintaining fiber output and a polarization maintaining fiber output configured to emit an output laser pulse; coupling a polarization insensitive isolator to the non-polarization maintaining fiber output of the in-line polarization beam splitter and to a second in-line polarization controller; coupling a third fiber output to the second in-line polarization controller and to the pump/signal coupler. Other embodiments are described and claimed.03-31-2011
20110069724Optical fiber for sum-frequency generation - The present invention embraces an optical fiber that includes a central core to transmit optical signals and an optical cladding surrounding the central core to confine transmitted optical signals. The optical fiber typically includes metallic nanostructures for increasing second-order nonlinearity effects. The optical fiber typically has a refractive index profile that ensures a phase-matching condition.03-24-2011
20110069722SWEPT FIBER LASER SOURCE FOR OPTICAL COHERENCE TOMOGRAPHY - The present invention provides a swept fiber optic laser source for optical coherence tomography emitting around ˜1060 nm wavelength, with tuning range higher than 50 nm, sweep repetition rate from DC to 40 kHz, instantaneous linewidth shorter than 50 pm (FWHM), and providing an average output around 1 mW (or 20 mW with output optical booster amplifier). The fiber laser source is based on a proper linear-cavity fiber laser configuration, with an intra-cavity half-symmetrical confocal Fabry-Perot tunable fiber (FP-TFF) filter and semiconductor optical amplifier (SOA), a device combination that gives a very robust and vibration-resistant laser configuration.03-24-2011
20110150011RESONANTLY PUMPED TM DOPED CYRSTALLINE LASERS - A resonantly pumped, trivalent thulium ion (Tm3+) doped, crystal laser with improved efficiency is disclosed. Embodiments are pumped from the 3H6 ground state manifold to the 1st excited 3F4 state manifold by photons with wavelengths between 1.4 and 2.2 microns and laser wavelengths ranging from 1.5 to 2.4 microns arising from 3F4 to 3H6 transitions ensue, with output wavelengths dependant upon the choice of pump wavelength, crystalline host, and resonator optics.06-23-2011
20110150010VERY LARGE MODE SLAB-COUPLED OPTICAL WAVEGUIDE LASER AND AMPLIFIER - A very large mode (VLM) slab-coupled optical waveguide laser (SCOWL) is provided that includes an upper waveguide region as part of the waveguide for guiding the laser mode. The upper waveguide region is positioned in the interior regions of the VLM SCOWL. A lower waveguide region also is part of the waveguide that guides the laser mode. The lower waveguide region is positioned in an area underneath the upper waveguide region. An active region is positioned between the upper waveguide region and the lower waveguide region. The active region is arranged so etching into the VLM SCOWL is permitted to define one or more ridge structures leaving the active region unetched. One or more mode control barrier layers are positioned between said upper waveguide region and said lower waveguide region. The one or more mode control barrier layers control the fundamental mode profile and prevent mode collapse of the laser mode. The mode control barrier layers also block carrier leakage from the active region. These layers are essential to obtaining VLM SCOWLs.06-23-2011
20100260211All-fiber staturable absorber Q-switched laser and method for producing staturable absorber Q-switched pulse - An all-fiber saturable absorber Q-switched laser and the method for producing saturable absorber Q-switched pulses are provided. By locating a saturable absorber fiber in the intensity-enhanced section of a ring resonator, the Q-switched pulses are produced and enhanced. The present application is advantageous in the simple design and effective cost, and is applicable for a variety of fiber-type laser materials.10-14-2010
20100296529MODE-LOCKED FIBER LASER WITH IMPROVED LIFE-TIME OF SATURABLE ABSORBER - A mode locked fiber laser system is arranged to have a lasing bandwidth and having a linear cavity, the cavity including a gain medium, a saturable absorber having a saturation power, and a filter having a spectral response, wherein the mode locked fiber laser system is arranged so that substantial CW mode locked operation is obtainable with less than 3 times the saturation fluence impinging on the saturable absorber.11-25-2010
20100260213LASER LIGHT SOURCE DEVICE AND IMAGE DISPLAY DEVICE - The present invention concerns a laser light source device capable of multiwavelength oscillation. This laser light source device is provided with a laser light source; a laser cavity including a fiber, a first fiber grating provided at a side of the fiber toward the laser light source and having a plurality of reflection peaks, and a second fiber grating provided at a light emission end of the fiber and having a plurality of reflection peaks; a wavelength converter for converting a fundamental wave emitted from the laser cavity into a harmonic wave; a reflection wavelength varying unit capable of shifting the reflection wavelengths of the reflection peaks of the second fiber grating; and a controller for controlling phase matching conditions of the wavelength converter. Intervals between adjacent reflection peaks of the first fiber grating are different from those between adjacent reflection peaks of the second fiber grating.10-14-2010
20100260214SINGLE-POLARIZATION HIGH POWER FIBER LASERS AND AMPLIFIERS - A novel polarization maintaining optical fiber, which can be used as a high-power polarization maintaining fiber laser or amplifier, is described. Insensitivity of the polarization state to external fiber bending and temperature changes is accomplished by minimizing polarization mode-coupling via reducing stresses inside the fiber core via increasing the fiber diameter. Alternatively, polarization mode-coupling can be minimized by an optimization of the fiber coating to minimize stresses at the interface between the fiber and the coating. As a result insensitivity to polarization mode-coupling is obtained at greatly reduced values of birefringence compared to small-diameter fibers. The fiber is of significant use in any application where polarization stability is important, and will be useful in telecommunications applications in particular for reducing polarization mode dispersion. An implementation in a parabolic pulse-producing fiber laser is also described as one specific high power example.10-14-2010
20100260210OPS-LASER PUMPED FIBER-LASER - An optical gain-fiber of a fiber-laser or a fiber-amplifier is optically pumped by radiation from a plurality of external cavity, optically pumped, surface-emitting semiconductor lasers (OPS-lasers). In one example, radiation from the OPS-lasers is focused by a lens into cladding of the gain-fiber at one end of the fiber. In another example radiation from the diode-lasers is focused into the core of a delivery fiber at one end of the delivery fiber. The other end of the delivery fiber is coupled to the cladding of the gain-fiber.10-14-2010
20100098114Frequency Control Method and Apparatus - A feedback control circuit and method for controlling laser frequency employing an interferometric phase sensor which accepts a light output from a laser and combines a phase modulated version of the light output, with an unmodulated version. By modulating only one component of the signal in the interferometric sensor, the improved noise characteristics are obtained, while demodulation can be performed relatively easily and cheaply. Methods and enclosures for reducing ambient noise in an interferometer or the delay coil thereof are also described.04-22-2010
20090022181OPTICAL SPECTRAL FILTERING AND DISPERSION CONTROL FOR WAVELENGTH MULTIPLEXED LASER SOURCES USING FIBER BRAGG GRATINGS - The embodiments of the invention provide an apparatus for optical spectral filtering and dispersion control for wavelength multiplexed laser sources using fiber Bragg gratings. More specifically, the apparatus includes a laser diode having a first end and a second end opposite the first end. The first end of the laser diode has a first semi-transparent portion; and, the second end of the laser diode has a second semi-transparent portion. The apparatus further includes an optical fiber connected to the second end of the laser diode. The optical fiber has a first end and a second end opposite the first end, wherein the first end of the optical fiber is connected to the second end of the laser diode. The laser diode comprises a laser cavity; and, the optical fiber comprises an extension of the laser cavity. Moreover, the second end of the optical fiber has a reflective surface.01-22-2009
20090110008Optical Fiber Pump Multiplexer - One or more single mode few-moded or multimode fibers are incorporated into a bundle to carry input to a fiber amplifier or output from a fiber amplifier or a fiber laser. The input is at the signal wavelength, which is the wavelength where amplification or lasing occurs. Each of the fibers in the bundle is cleaved individually or as a group and fiber ends are aligned in the same plane. The fiber amplifier or fiber laser may include a double clad fiber and the other fibers of the bundle couple light for cladding pumping. The device may also include a mode filter for controlling the output mode.04-30-2009
20090097507Wavelength and Intensity Stabilized Laser Diode and Application of Same to Pumping Solid-State Lasers - An efficient and low-noise solid-state laser is optically pumped by one or more laser diode(s) driven by RF modulated current. The solid-state laser operation is stabilized by the pump source stable in both spectrum and intensity, in conjunction with automatic power control wherein the feedback loop accurately reflects the true drift in the output power. Moreover, the pump efficiency is optimized and the optical noise is minimized by adjusting the diode operation temperature such that the pump wavelength coincides with the absorption peak of the gain medium. By internally or externally modulating the amplitude of the drive current, the pump diode(s) operate in pulsed mode with controllable shape, width, repetition rate, and pulse-to-pulse intervals, which enables essentially constant optical energy produced from each pulse of the solid-state laser in high repetition rates with variable pulse-to-pulse intervals.04-16-2009
20080267226Broadband fiber laser - A broadband fiber laser provides a lasing cavity including a reflective mirror and at least one fiber Bragg grating for further providing a lasing signal to resonate and be amplified therein. Alternatively, the wavelength of the fiber laser can be either fixed or tunable by varying the central wavelength of the fiber Bragg grating and/or by adjusting the switching status of an optical switch pair.10-30-2008
20100329289METHOD AND APPARATUS FOR GENERATING OPTICAL BEATS - Apparatus comprising an optical fibre laser having at least two laser cores and means arranged to combine laser output from the at least two laser cores at a first end of the optical fibre laser to produce a combined laser output having one or more beat signals.12-30-2010
20110134940NARROW LINEWIDTH BRILLOUIN LASER - A Brillouin laser having a narrowed linewidth, reduced relative intensity noise, and increased output power includes a pump laser that provides pump energy to an optical fiber resonant cavity to stimulate Brillouin emission. The output of pump laser is stabilized and its linewidth is narrowed by locking the frequency and phase of the optical signal generated by the pump laser to a longitudinal mode of the optical fiber resonant cavity. In addition, the resonant cavity is temperature and/or strain-tuned so that the Brillouin gain is substantially centered on a longitudinal mode of the cavity, thereby ensuring that the Brillouin frequency shift is substantially equal to an integer number of the free spectral range of the cavity.06-09-2011
20080219298FIBER LASER SYSTEM USING FIBER HAVING DYSPROSIUM - Provided is a fiber laser system including fiber containing dysprosium. The fiber laser system uses 1.7-μμm pump light. A resonator of the fiber laser system includes a dichroic mirror, a partial reflection mirror, and/or an FBG. Therefore, the fiber laser system can provide 3-μm laser light and have high light pumping efficiency and high output power. The fiber laser system includes: fiber including dysprosium, a pump light source disposed at a side of the fiber and emitting pump light having a wavelength exciting electrons of the dysprosium from a ground energy level 09-11-2008
20100118897MULTI-CORE FIBER FOR OPTICAL PUMPING DEVICE AND MANUFACTURING METHOD THEREOF, OPTICAL PUMPING DEVICE, FIBER LASER AND FIBER AMPLIFIER - A multi-core fiber for an optical pumping device is provided. The multi-core fiber includes a plurality of optical fibers that are inserted into holes of an alignment member. The optical fibers and the alignment member are integrated by heating. The alignment member includes a material that has a lower softening temperature than a softening temperature of the optical fibers.05-13-2010
20100226395GAIN-SWITCHED FIBER LASER SYSTEM - This invention discloses a method to control laser dynamics in a gain-switched fiber laser so as to generate stable, clean pulses in an all-fiber format. The gain-switched fiber laser is suitable as a standalone laser source, and as a pump source for harmonic generation and an optical-parametric-oscillator.09-09-2010
20100166026High-power narrowed-linewidth fiber laser system - A high-power narrow-linewidth fiber laser system includes a seed oscillator with multiple resonant cavities and an amplifier stage. The seed oscillator includes a gain fiber, a pump source to introduce pump light into the gain fiber, a single-mode output fiber arranged at the end of the active gain fiber, a first resonant cavity including the active gain fiber, and a second resonant cavity including the active gain fiber. The first and second resonant cavities cooperate to minimize the synchronization of longitudinal modes and thereby reduce modal beating. The amplifier preferably includes an active multimode gain fiber capable of supporting a single fundamental mode at the signal wavelength, wherein the single mode output fiber of the seed oscillator and the multimode gain fiber of the amplifier are mode-matched and coupled without a mode converter.07-01-2010
20100008386Broadband fiber laser - A broadband fiber laser provides a lasing cavity including a reflective minor and at least one fiber Bragg grating for further providing a lasing signal to resonate and be amplified therein. Alternatively, the wavelength of the fiber laser can be either fixed or tunable by varying the central wavelength of the fiber Bragg grating and/or by adjusting the switching status of an optical switch pair.01-14-2010
20100195676System and method for coupling multiple beams to an active fiber - A system and a method for coupling multiple pump light beams to an active fiber. The system including an inverted conical disk, concave lens or glass wedge, an active fiber placed in a center of the inverted conical disk (or concave lens) or at a bottom facet of the glass wedge and a plurality of pump light sources. The system further includes a plurality of lenses for focusing pump light beams from pump light sources towards a side of the inverted conical disk, concave lens or glass wedge, wherein the inverted conical disk, concave lens or glass wedge, couples the pump light beams into the active fiber.08-05-2010
20100195677PULSED LASER SOURCES - Various embodiments include modelocked fiber laser resonators that may be coupled with optical amplifiers. An isolator may separate the laser resonator from the amplifier, although certain embodiments exclude such an isolator. A reflective optical element on one end of the resonator having a relatively low reflectivity may be employed to couple light from the laser resonator to the amplifier. Enhanced pulse-width control may be provided with concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers may be also be included in the laser cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth may be obtained by matching the dispersion value of the fiber Bragg grating to the inverse of the dispersion of the intra-cavity fiber. Frequency comb sources may be constructed from such modelocked fiber oscillators. In various exemplary embodiments, low dispersion and an in-line interferometer that provides feedback, assist in controlling the frequency components output from the comb source.08-05-2010
20110051755Frequency Conversion Laser Head - A laser assembly is configured with a frequency conversion laser head operative to shift a fundamental frequency of input light to the desired frequency of an output light. The frequency conversion laser head includes a dump means operative to guide an unconverted output light at the fundamental frequency outside the case of the frequency conversion laser head. The dump means is configured with a guide optics operative to couple the output light at the fundamental frequency to a fiber terminating outside the case of the frequency conversion laser head.03-03-2011
20080198880METHOD AND APPARATUS FOR INCREASING FIBER LASER OUTPUT POWER - A fiber laser with reduced stimulated Brillouin scattering includes a spool having a height and characterized by an induced temperature gradient with the height. The fiber laser also includes a fiber wrapped on the spool and characterized by a signal power increasing along the length of the fiber. The induced temperature gradient is a function of the signal power along the fiber.08-21-2008
20120147908SHORT-PULSE FIBER-LASER - A mode-locked fiber laser has a resonator including a gain-fiber, a mode-locking element, and a spectrally-selective dispersion compensating device. The resonator can be a standing-wave resonator or a traveling-wave resonator. The dispersion compensating device includes only one diffraction grating combined with a lens and a minor to provide a spatial spectral spread. The numerical aperture of the gain-fiber selects which portion of the spectral spread can oscillate in the resonator.06-14-2012
20110058577Thulium and/or holmium doped silicated glasses for two micron lasers - A laser glass fiber with a core of the fiber composition, comprising a silicate glass host, one or more glass network modifiers, one or more glass network intermediators, and Thulium ions, Holmium ions, or a combination of Thulium ions and Holmium ions. The fiber emits laser light from 1.7 micron to 2.2 micron.03-10-2011
20120307847LASER APPARATUS - The present invention relates to a laser apparatus having a structure for easily shortening a pulse. In the laser apparatus, as a result of a phase control unit adjusting a modulation period of an external modulator and an output period of pulsed light of a seed light source, it is possible to generate pulsed light which is outputted only during a period when the modulation period and the output period overlap each other.12-06-2012
20120307848OPTICAL FIBER LASER - An optical fiber laser including: a master oscillator; and a power amplifier, the power amplifier including: a plurality of excitation light sources; excitation ports each of which is connected to the excitation light sources and which an excitation light emitted from each of the excitation light source enters; a signal port which a laser beam emitted from the master oscillator enters; an optical coupler with an exit port that outputs the excitation lights from the excitation ports together with the laser beam from the signal port; and an optical fiber connected to the exit port, in which the optical fiber is a photonic bandgap fiber, and the optical fiber has a loss wavelength characteristic in that a photonic bandgap region is narrower than a gain wavelength band in a graph with an axis of abscissa representing a wavelength and an axis of ordinate representing a loss amount.12-06-2012
20090285247OPTICAL APPARATUS COMPRISING A PUMP-LIGHT-GUIDING FIBER - Optical apparatus including a pump-guiding fiber (11-19-2009
20110305250WAVELENGTH BEAM COMBINING BASED PULSED LASERS - A system for producing a laser pulse includes a laser driver capable of direct modulation of a laser source comprising a plurality of lasers, and a wavelength beam combining cavity, comprising the directly modulated laser source, for producing a wavelength beam combining output of light from the plurality of lasers. The wavelength beam combining cavity may comprise a fast axis wavelength beam combining cavity. The laser source may comprise a multidimensional array of diode lasers disposed in a stack spatially interleaved or optically aligned. Each of the plurality of diode lasers may produce a distinct wavelength.12-15-2011
20110305251MULTI-CLADDING OPTICAL FIBER, OPTICAL FIBER MODULE, FIBER LASER, AND FIBER AMPLIFIER - Provided is a multi-cladding optical fiber which includes: a core with an average refractive index n12-15-2011
20110305249Fiber Laser System with Controllably Alignable Optical Components Thereof - The present disclosure relates to a modular fiber laser system operative to controllably guide a beam which is launched from a feeding fiber into a process fiber so that the high-aperture component is coupled and guided in cladding of the process fiber, and a low-aperture component is coupled into the core of the fiber. The laser system further has a reflective element configured with light-reflecting and light-transmitting portions. The high-aperture component at least partially decouples from the cladding into the core so that the core radiates the high-aperture and low-aperture components. The high-aperture component is incident upon the light-reflecting portion and backreflected into the process fiber so that a sensor array, which is located between the feeding and process fibers, detects the reflected light. The laser system further includes an adjustment system operatively connected to the sensor array and configured to displace the fibers relative to one another to an alignment position after the sensor array detects a maximum signal of the reflected high-aperture component.12-15-2011
20110069725METHOD AND APPARATUS FOR GENERATION AND AMPLIFICATION OF LIGHT IN A SEMI-GUIDING HIGH ASPECT RATIO CORE FIBER - A planar laser gain medium and laser system. The novel laser gain medium includes an active core having a high aspect ratio cross-section with a fast-axis dimension and a slow-axis dimension, signal claddings adapted to form reflective boundaries at fast-axis boundaries of the core, and a material adapted to minimize reflections at slow-axis boundaries of the core. In an illustrative embodiment, the laser gain medium is an optical fiber. The core and claddings form a waveguide adapted to control modes propagating in the fast-axis direction. When the laser gain medium is employed as a laser oscillator, a high reflectivity mirror and an outcoupler are positioned at opposite ends of the core to form a laser resonator adapted to control modes in the slow-axis direction.03-24-2011
20120099609SINGLE MODE PROPAGATION IN FIBERS AND RODS WITH LARGE LEAKAGE CHANNELS - Various embodiments include large cores fibers that can propagate few modes or a single mode while introducing loss to higher order modes. Some of these fibers are holey fibers that comprising cladding features such as air-holes. Additional embodiments described herein include holey rods. The rods and fibers may be used in many optical systems including optical amplification systems, lasers, short pulse generators, Q-switched lasers, etc. and may be used for example for micromachining.04-26-2012
20130010819ALL-OPTICAL GENERATION OF 60 GHZ MILLIMETER WAVE USING MULTIPLE WAVELENGTH BRILLOUIN-ERBIUM FIBER LASER01-10-2013
20120039344GRAPHENE-BASED SATURABLE ABSORBER DEVICES AND METHODS - A graphene-based saturable absorber device suitable for use in a ring-cavity fiber laser or a linear-cavity fiber laser is disclosed. The saturable absorber device includes an optical element and a graphene-based saturable absorber material supported by the optical element and comprising at least one of graphene, a graphene derivative and functionalized graphene. An examplary optical element is an optical fiber having an end facet that supports the saturable absorber material. Various forms of the graphene-based saturable absorber materials and methods of forming same are also disclosed.02-16-2012
20100128744SPECTRALLY TAILORED PULSED FIBER LASER OSCILLATOR - High power optical pulses generating methods and laser oscillators are provided. A light generating module generates seed optical pulses having predetermined optical characteristics. A spectrum tailoring module is then used to tailor the spectral profile of the optical pulses. The spectral tailoring module includes a phase modulator which imposes a time-dependent phase variation on the optical pulses. The activation of the phase modulator is synchronized with the passage of the optical pulse therethough, thereby efficiently reducing the RF power necessary to operate the device.05-27-2010
20090092157Powerful fiber laser system - A powerful fiber laser system is configured with at least one large-area multi-clad rare-earth doped fiber, which is configured with a MM core capable of propagating a single mode laser emission at a first wavelength, and with at least one pumping assembly capable of generating an optical pump output at a wavelength shorter than the first wavelength of the rare-earth doped fiber. The pumping assembly has a plurality SM fiber lasers coupled to a SM-MM combiner which is operative to lunch the pump output into the cladding of the rare-earth doped fiber so that the powerful fiber laser system is operative to deliver a power of up to 20 kW.04-09-2009
20090323736High brightness laser module - A powerful high-brightness laser pump modules is configured with a plurality of spaced laser diodes each generating a light beam at a pump wavelength, and respective groups of optical components guiding the light beams along parallel light paths. The groups of the optical components each include a lens assembly and a bending mirror configured to couple the beam light into an output fiber which is common to all groups of the optical component. At least one optical component of each group is provided with a dielectric layer capable of preventing propagation of a backreflected light toward laser diodes at a wavelength different from the pump wavelength.12-31-2009
20110064096Mid-IR laser employing Tm fiber laser and optical parametric oscillator - A laser system that generates light in the mid-infrared (mid-IR) wavelength range is disclosed. The laser system includes an optical fiber laser having a thulium-doped optical fiber gain medium and that is configured to generate pump light having an optical power of greater than 50 W. The laser system also includes an optical parametric oscillator (OPO) arranged to receive the pump light and configured to generate therefrom, via spontaneous parametric downconversion, mid-IR-wavelength output light. A phase-matching tuning curve is used to select the pump wavelength that provides desired signal and idler wavelengths for the outputted signal and idler light. The laser system is capable of generating high-mode-quality 100 ns optical pulses with about 400 μJ energy at an average power greater than 5 W, in some cases up to several tens of Watts, and in some cases greater than 50 W at the pump wavelength.03-17-2011
20110064097Single-mode high power multimode fiber laser system - A high power single mode fiber laser system is configured with an active fiber including coextending multimode core (MM) and cladding around the MM core. The MM core is doped with one or more ions selected from rare earth and transitional metals and has a bottleneck cross in accordance with one aspect of the disclosure. The bottleneck cross-section includes a relatively small uniformly dimensioned input end region, a frustoconical region and a relatively large uniformly dimensioned amplifying region. The refractive step index of the MM core is configured with a central dip shaped and dimensioned along the input region so as not to disturb a Gaussian field profile of fundamental mode, gradually transform the Gaussian field profile into the ring profile of the fundamental mode and support the latter along the amplifying region. In accordance with a further aspect, the core is further provided with an output transforming region with the dip which gradually shapes the ring field profile in the Gaussian field profile further distortlessly supported by the output end region. A variety of end and side pumping arrangements are employed with the structures configured in accordance with the first and second aspects.03-17-2011
20110064095Single Mode High Power Fiber Laser System - A monolithic fiber is configured with a double bottleneck-shaped multimode (MM) core capable of supporting substantially only a fundamental mode at a given wavelength and having opposite end regions, frustoconically shaped transformer regions, which run inwards from the respective end regions, and a central uniformly dimensioned region, which bridges the transformer regions. The MM core has a refractive step-index profile which is configured with a centrally positioned dip having a variable width along the length of the fiber. The width of the dip is relatively small at the end regions of the MM core so as to support only the fundamental mode with a Gaussian profile. As the dip becomes larger along the input transformer region, it gradually shapes the Gaussian profile into the ring profile of the fundamental mode, which is guided along the central region of the MM core. The dip gradually becomes smaller along the output transition region so as to shape the ring profile back into the substantially Gaussian profile of the fundamental mode radiated from the output end region of the MM core. The refractive index profile has a ring area doped with one or more rare-earth elements and configured to amplify substantially only the fundamental mode.03-17-2011
20100303102OPTICAL FIBER COMPONENT AND OPTICAL MODULE USING THE SAME - An optical fiber component comprises an optical fiber that transmits light; and a coreless fiber that is connected to the end surface of the optical fiber and prevents foreign matter from adhering to the end surface of the optical fiber. The optical fiber and the coreless fiber are connected by fusing one end surface of the coreless fiber to the end surface of the optical fiber. The core section on the end surface of the optical fiber is no longer exposed to the air. Moreover, the power density of light that is input at the core of the optical fiber is greatly reduced more than when there is no coreless fiber, so it is possible to prevent compounds of C, H and O from adhering to the core of the optical fiber.12-02-2010
20100296527Passively modelocked fiber laser using carbon nanotubes - A passively modelocked fiber laser utilizes a rare-earth-doped fiber section as the gain medium, which exhibits a relatively high absorption (e.g., peak pump absorption >50 dB/m) and relatively low dispersion (e.g., −20 ps/km-nm11-25-2010
20090067454Power Stabilization Of Semiconductor Laser Harmonic Frequency Conversion Modules - The invention relates to a fiber laser and harmonic frequency conversion module incorporating a 90 degree Polarization Maintaining (PM) fiber fusion splice therebetween for providing temperature insensitive power stabilization. The present invention has found that incorporating at least one 90 degree splice of the transmission axes of the PM fiber, coupling a fast axis to a slow axis, to create substantially equal optical path lengths of the two transmission axes of the fiber coupling can nearly eliminate output amplitude fluctuation within a practical operating temperature range.03-12-2009
20120008648High Power Processing Fiber Cable with Integrated Beam Expander and Method of Use - The present disclosure is a system for the protection of a fiber within a laser system. The system has a water-cooled housing supporting a termination block, which is operative to shield a protective layer of a delivery fiber from back-reflected beams of light. The termination block is manufactured from quartz and is frustconical in configuration and fuseable to the delivery fiber. The delivery fiber has a polymeric protective layer with an acceptance end and a delivery end, and passes through a washer contained within the housing; the washer has a dielectric reflective coating. The system has at least one terminal block connector which further comprises a cone termination block, a reflector, and a set of light guards. The cone termination block is spliced to an output end of the delivery fiber and produces an angle λ so as to reduce propagation of back-reflected light. The reflector is positioned so as to block additional back-reflected light from the protective layer of the delivery fiber.01-12-2012
20120027033MULTI-SEGMENT ALL-FIBER LASER - A multi-segment all-fiber laser is provided. The device includes a first active fiber laser segment, a first grating, a second grating, and a gain-phase coupling fiber segment arranged between the first and second gratings, said gain-phase coupling segment providing coupling of gain and phase between said first and second gratings.02-02-2012
20120027032DECOHERED LASER LIGHT PRODUCTION SYSTEM - A decohered laser light production system is provided. The decohered laser light system comprises a laser source. The system further comprises a multi-mode fiber having an input face, an output face and a body for propagating light from the input face to the output face, the input face arranged to accept laser light from the laser source, the body comprising a length such that laser light is generally decohered when exiting the output face.02-02-2012
20100220752810 nm Ultra-Short Pulsed Fiber Laser - Methods and systems for generating ultra-short fiber laser pulses are disclosed, including generating a signal laser pulse from a seed fiber laser; using a pulse stretcher comprising an input and an output, wherein the signal laser pulse is coupled into the input of the pulse stretcher; using a Tm:ZBLAN fiber comprising an input and an output, wherein the stretched signal laser pulse from the output of the pulse stretcher is coupled into the input of the Tm:ZBLAN fiber; using a pump laser coupled to either the output or the input of the Tm:ZBLAN fiber to amplify the stretched signal laser pulse; and using a compressor comprising an input and an output, wherein the output of the Tm:ZBLAN fiber is coupled to the input of the compressor and the output of the compressor emits the amplified signal laser pulse. Other embodiments are described and claimed.09-02-2010
20110019700MODE-LOCKED TWO MICRON FIBER LASERS - A mode-locked fiber laser comprising a multicomponent glass fiber doped with a trivalent rare-earth ion of thulium and/or holmium.01-27-2011
20110007760Source of Femtosecond Laser Pulses - A source of femtosecond laser pulses (01-13-2011
20120300798INEXPENSIVE VARIABLE REP-RATE SOURCE FOR HIGH-ENERGY, ULTRAFAST LASERS - System for converting relatively long pulses from rep-rate variable ultrafast optical sources to shorter, high-energy pulses suitable for sources in high-energy ultrafast lasers. Fibers with positive group velocity dispersion (GVD) and self phase modulation are advantageously employed with the optical sources. These systems take advantage of the need for higher pulse energies at lower repetition rates so that such sources can be cost effective.11-29-2012
20120300797LASER APPARATUS - Laser apparatus (11-29-2012
20120300796HYBRID LASERS - Embodiments of the invention provide electrically pumped hybrid semiconductor lasers that are capable of being integrated into and with silicon-based CMOS (complementary metal-oxide semiconductor) devices. Hybrid laser active regions are comprised of multiple quantum wells or quantum dots. Devices according to embodiments of the invention are capable of being used to transfer data in and around personal computers, servers, and data centers as well as for longer-range data transmission.11-29-2012
20120269211PULSED LASER SOURCES - Modelocked fiber laser resonators may be coupled with optical amplifiers. An isolator optionally may separate the resonator from the amplifier. A reflective optical element on one end of the resonator having a relatively low reflectivity may be employed to couple light from the resonator to the amplifier. Enhanced pulse-width control may be provided with concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers may also be included in the laser cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth may be obtained by matching the dispersion value of the grating to the inverse of the dispersion of the intra-cavity fiber. Frequency comb sources may be constructed from such modelocked fiber oscillators. Low dispersion and an in-line interferometer that provides feedback may assist in controlling the frequency components output from the comb source.10-25-2012
20120269209Single Mode High Power Fiber Laser System - A high power single mode fiber laser system has a monolithic active fiber configured with a double bottleneck-shaped multimode (MM) core which is capable of supporting substantially only a fundamental mode at a given wavelength. The core has opposite uniformly configured end regions, frustoconical transformer regions running inwards from the respective end regions, and a central uniformly-dimensioned region which bridges the transformer regions. The MM core is configured with a refractive step-index profile which includes a continuous dip configured to shape an intensity field of the fundamental mode from a Gaussian or dome-shaped field profile to a two-peak-shaped profile and back to the Gaussian filed profile.10-25-2012
20120263197Power Selective Optical Filter Devices and Optical Systems Using Same - In an embodiment, a power selective optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes at least one substantially zero-order, zero-wave plate. The zero-order, zero-wave plate is configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. The zero-order, zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.10-18-2012
20110103408BEAM STABILIZED FIBER LASER - A laser head generating ultrashort pulses is integrated with an active beam steering device in the head. Direct linkage with an application system by means of an adequate interface protocol enables the active device to be controlled directly by the application system.05-05-2011
20110103409System and Method for Generating Intense Laser Light from Laser Diode Arrays - Laser modules using two-dimensional laser diode arrays are combined to provide an intense laser beam. The laser diodes in a two-dimensional array are formed into rows and columns, and an optical assembly images light generated by laser diodes in a column into an optical fiber. The laser light outputs of the laser modules are combined by a spectral combiner into an optical fiber to form an intense laser beam.05-05-2011
20120250705FIBER LASERS WITH DEVICES CAPABLE OF SUPPRESSING HIGH-ORDER MODE MIXING AND GENERATING HIGH QUALITY AND LOW NOISE LASER LIGHT - Techniques and devices for generating laser light that use large mode area fiber amplifiers and curved fiber sections to achieve desired operations in a fundamental fiber mode with high pulse quality and optical beam quality while reducing presence of high order fiber modes in continuous wave and pulsed laser devices.10-04-2012
20120128013Thulium and/or Holmium Doped Silicate Glasses for Two Micron Lasers - A laser glass fiber with a core of the fiber comprising a silicate glass host, one or more glass network modifiers, one or more glass network intermediators, and Thulium ions, Holmium ions, or a combination of Thulium ions and Holmium ions. The fiber emits laser light from 1.7 micron to 2.2 micron.05-24-2012
20120134376Radiation-Insensitive Optical Fiber Doped with Rare Earths - An optical fiber includes a central core for transmitting and amplifying an optical signal, an optical cladding to confine the optical signal transmitted by the central core, and an outer cladding. The central core is formed of a core matrix and nanoparticles. The nanoparticles are formed of a nanoparticle matrix and rare earth dopants (i.e., a nanoparticle matrix surrounding the rare earth dopants). The optical cladding has a plurality of holes separated by a pitch and extending along the length of the optical fiber.05-31-2012
20120163402FIBER LASER DEVICE - The invention relates to a fiber laser device 06-28-2012
20090059966System and method for transferring much more information in optic fiber cables by significantly increasing the number of fibers per cable - The present invention enables putting much more optic fibers per cable, such as for example even 1,000 or 10,000 times more than the prior art, with an increase in cost that is orders of magnitude smaller. One of the most important variations is using multi-fiber flexible flat jackets that can move freely within the cable's pipe, preferably only in one direction. Preferably at certain intervals (for example every few dozen centimeters or more or 1 or 2 meters or more) the flat jackets are preferably stitched together to each other and/or for example glued and/or otherwise coupled to each other in a way that preferably does not apply pressure to the optic fibers, and preferably are also coupled, preferably at the stitch position, also to the cable, in order to prevent undesired sliding movement of the jackets against each other and/or against the pipe and/or rotating out of orientation.03-05-2009
20120170600Fiber Ring Laser System and the Operation Method thereof - A wavelength-tunable directly modulated fiber ring laser is provided. Generally speaking, the wavelength-tunable directly modulated fiber ring laser employs an RSOA (reflective semiconductor optical amplifier) and an OTF (optical tunable filter) to construct a novel ring resonant cavity. Additionally, a signal generator can be further employed to transmit modulated signals to the RSOA, whereby generating light wave with the modulated signals, so as to provide tunable wave-length and direct modulation at the same time.07-05-2012
20120213235OPTICAL COUPLERS AND ACTIVE OPTICAL MODULES USING THE SAME - Provided are an optical coupler and an active optical module including the same. The optical coupler includes at least one first optical fiber, a second optical fiber, and a hollow optical block. The at least one first optical fiber transfers pump light. The second optical fiber includes a cladding with a facet enlarged from a first outer diameter to a second outer diameter, and passes the pump light which is transferred through the first optical fiber. The hollow optical block includes a through hole, an incident surface, and a coupling surface. The through hole passes the cladding with the first outer diameter. The incident surface is connected to the first optical fiber at a side end of the through hole. The coupling surface is joined to the facet of the second optical fiber at the other side end of the through hole facing the incident surface.08-23-2012
20100195678APPARATUS FOR COUPLING LIGHT INTO AN OPTICAL WAVE GUIDE, A LASER SYSTEM WITH SUCH AN APPARATUS, AND A PREFORM TO MANUFACTURE THE APPARATUS - The invention relates to an apparatus for coupling light into an optical wave guide, a laser system with such an apparatus, and a preform to manufacture the apparatus for coupling light into an optical wave guide with the aid of a pumping fiber to guide the light, whereby the optical wave guide comprises a core with a cladding and an initial length segment with a second length segment immediately connected to it, whose cross section increases in tapered form with respect to the first length segment. In order to make a powerful apparatus and thereby a powerful laser system available, including the corresponding preform, it is recommended that the core and cladding of the optical wave guide run continuously through the first length segment and the second length segment, that the end of the pumping fiber embedded in the cladding of the second length segment runs along the cladding and emerges from the forward face out of the end of the second length segment, and that the cross section of the cladding increases in tapered form. Preferably, the cross section of the pumping fiber increases together with the cross section of the second cladding.08-05-2010
20120076159METHOD AND APPARATUS FOR GENERATION AND AMPLIFICATION OF LIGHT IN A SEMI-GUIDING HIGH ASPECT RATIO CORE FIBER - A planar laser gain medium and laser system. The novel laser gain medium includes an active core having a high aspect ratio cross-section with a fast-axis dimension and a slow-axis dimension, signal claddings adapted to form reflective boundaries at fast-axis boundaries of the core, and a material adapted to minimize reflections at slow-axis boundaries of the core. In an illustrative embodiment, the laser gain medium is an optical fiber. The core and claddings for a waveguide adapted to control modes propagating in the fast-axis direction. When the laser gain medium is employed as a laser oscillator, a high reflectivity mirror and an outcoupler are positioned at opposite ends of the core to form a laser resonator adapted to control modes in the slow-axis direction.03-29-2012
20100272129YB: AND ND: MODE-LOCKED OSCILLATORS AND FIBER SYSTEMS INCORPORATED IN SOLID-STATE SHORT PULSE LASER SYSTEMS - The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.10-28-2010
20100272128LASER DEVICE - [Object] An object of the invention is to provide a laser device having high optical amplification efficiency.10-28-2010
20100284428FIBER LASER LIGHT SOURCE - A fiber laser light source is provided with a laser resonator including a pair of fiber gratings optically connected to a fiber in a state that the fiber is interposed between the paired fiber gratings. The reflection center wavelength of a laser-exit side fiber grating, out of the paired fiber gratings, lies in a wavelength range where the reflectance of a fiber grating, out of the paired fiber gratings, closer to the pump laser light source is not smaller than 80% but not larger than 98%.11-11-2010
20090310627LASER FOR PROVIDING PULSED LIGHT AND REFLECTOMETRIC APPARATUS INCORPORATING SUCH A LASER - A laser for generating laser light pulses comprises a cavity containing an active optical gain medium (12-17-2009
20120257644LASER LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME, AND FIBER LASER APPARATUS USING THE SAME - The laser light emitting device includes a glass rod having an input end and an output end. The glass rod has a core provided along the central axis thereof and a cladding covering the core. The refractive index of the core on the side of the input end is higher than the refractive index of the cladding. A value given through subtraction of the refractive index of the cladding from the refractive index of the core on the side of the output end is smaller than a value given through subtraction of the refractive index of the cladding from the refractive index of the core on the side of the input end.10-11-2012
20120082175LARGE DIAMETER OPTICAL WAVEGUIDE, GRATING AND LASER - A large diameter optical waveguide, grating, and laser includes a waveguide having at least one core surrounded by a cladding, the core propagating light in substantially a few transverse spatial modes; and having an outer waveguide dimension of said waveguide being greater than about 0.3 mm. At least one Bragg grating may be impressed in the waveguide. The waveguide may be axially compressed which causes the length of the waveguide to decrease without buckling. The waveguide may be used for any application where a waveguide needs to be compression tuned. Also, the waveguide exhibits lower mode coupling from the core to the cladding and allows for higher optical power to be used when writing gratings without damaging the waveguide. The waveguide may resemble a short “block” or a longer “cane” type, depending on the application and dimensions used.04-05-2012
20120327959COMPACT OPTICAL FREQUENCY COMB SYSTEMS - Compact optical frequency sources are described. The comb source may include an intra-cavity optical element having a multi-material integrated structure with an electrically controllable active region. The active region may comprise a thin film. By way of example, the thin film and an insulating dielectric material disposed between two electrodes can provide for rapid loss modulation. In some embodiments the thin film may comprise graphene. In various embodiments of a frequency comb laser, rapid modulation of the CEO frequency can be implemented via electric modulation of the transmission or reflection loss of an additional optical element, which can be the saturable absorber itself. In another embodiment, the thin film can also be used as a saturable absorber in order to facilitate passive modelocking. In some implementations the optical element may be formed on a cleaved or polished end of an optical fiber.12-27-2012
20120327960MODE-LOCKED FIBER LASER BASED ON NARROWBAND OPTICAL SPECTRAL FILTERING AND AMPLIFIER SIMILARITONS - Implementations and examples of mode-locked fiber lasers based on fiber laser cavity designs that produce self-similar pulses (“similaritons”) with parabolic pulse profiles with respect to time at the output of the fiber gain media to effectuate the desired mode locking operation. An intra-cavity narrowband optical spectral filter is included in such fiber lasers to ensure the proper similariton conditions.12-27-2012
20120230354Wavelength-Tunable Light Source - In at least one embodiment, a wavelength-tunable light source includes at least one fiber-based partial section and at least one delay section. For a wavelength λ of at least one portion of a radiation emitted by the light source as a function of time t, the relationship λ(t)=λ(t−τ) holds true. In this case, τ is a specific period of time. Furthermore, the delay section includes one or more oligomode fibers.09-13-2012
20120230352HIGH-POWER CW FIBER-LASER - A CW fiber-laser includes a gain fiber having a reflector proximity-coupled to one end, with the other end left uncoated. A laser resonator is defined by the reflector and the uncoated end of the gain-fiber. Pump-radiation from two fast-axis diode-laser bar stacks is combined and focused into the uncoated end of the gain-fiber for energizing the fiber. Laser radiation resulting from the energizing is delivered from the uncoated end of the gain-fiber and separated from the pump-radiation by a dichroic minor.09-13-2012
20110002348ADJUSTABLE PULSEWIDTH PICOSECOND FIBER LASER - A pulsed fiber laser generating light pulses in the picosecond range has an adjustable pulsewidth. The fiber laser includes a figure-of-eight type laser cavity, preferably of polarization-maintaining optical fiber, defining reciprocal and non-reciprocal loops. A gain medium is disposed asymmetrically in the reciprocal loop, at a position therealong favoring coupling of light in the propagation direction of the non-reciprocal loop. A pump source is coupled to the reciprocal loop to inject pump light into the gain medium. The laser cavity is designed so that changing the pump power will directly affect the pulsewidth of the generated light pulses, providing a useful control mechanism of the pulsewidth.01-06-2011
20120263198FIBER LASER DEVICE - When an output instruction is input to the control unit, the control unit controls the seed laser light source and the pumping light source to be either in a pre-pumped state or in an output state. In the pre-pumped state, laser light is not output from the seed laser light source, and pumping light with a predetermined intensity based on a laser light intensity set by the output setting unit is output from the pumping light source for a certain period of time. In the output state, laser light is output from the seed laser light source, and pumping light is output from the pumping light source, so that laser light with the intensity set by the output setting unit is output.10-18-2012
20090003391Low-repetition-rate ring-cavity passively mode-locked fiber laser - A ring-cavity, passively mode locked fiber laser capable of producing short-pulse-width optical pulses at a relatively low repetition rate. The fiber laser uses a one-way ring-cavity geometry with a chirped fiber Bragg grating (CFBG) at its reflecting member. The CFBG is part of a dispersion compensator that includes an optical circulator that defines a one-way optical path through the ring cavity. A doped optical fiber section is arranged in the optical path and serves as the gain medium. A pump light source provides the pump light to excite the dopants and cause the gain medium to lase. A saturable absorber is operable to effectuate passive mode-locking of the multiple modes supported by the ring cavity. The ring cavity geometry allows to achieve mode locking with single pulse operation in a longer cavity length than conventional linear cavities. Furthermore, the longer cavity length reduces the constraints on the chirp rate of the CFBG. This, in turn, allows the CFBG to have a relatively high reflectivity, which provides the necessary dispersion compensation and cavity loss for generating short optical pulses at a low repetition rate.01-01-2009
20120269210Thulium and/or Holmium Doped Germanosilicate Glasses for Two Micron Lasers - A laser glass fiber with a core of the fiber comprising a germanosilicate glass host, one or more glass network modifiers, one or more glass network intermediators, and Thulium ions, Holmium ions, or a combination of Thulium ions and Holmium ions. The fiber emits laser light from 1.7 micron to 2.2 micron.10-25-2012
20110211598Fiber-Based Ultrafast Laser - An ultrafast laser system includes a seed laser that provides a signal laser pulse and a fiber-based first chirped reflective Bragg grating that reflects the signal laser pulse propagating along a first path and produce a stretched laser pulse longer than the signal laser pulse. A grating frequency of the first chirped reflective Bragg grating varies along the first path. An amplifier can amplify the stretched laser pulse and output an amplified laser pulse. A second chirped reflective Bragg grating can reflect the amplified laser pulse and produce a compressed laser pulse shorter than the amplified laser pulse. The amplified laser pulse propagates along a second path in the second chirped reflective Bragg grating. A grating frequency of the second chirped reflective Bragg grating varies in an opposite direction along the second path as the grating frequency of the first chirped reflective Bragg grating varies along the first path.09-01-2011
20120320936MEMS BASED SWEPT LASER SOURCE - A MEMS-based swept laser source is formed from two coupled cavities. The first cavity includes a first mirror and a fully reflective moveable mirror and operates to tune the output wavelength of the laser. The second cavity is optically coupled to the first cavity and includes an active gain medium, the first mirror and a second mirror. The second cavity further has a length substantially greater than the first cavity such that there are multiple longitudinal modes of the second cavity within a transmission bandwidth of the first cavity output.12-20-2012
20120320935LASER AND OPTICAL AMPLIFIER - An optical fibre laser or amplifier comprising an optical fibre and a pump radiation source configured to generate pump radiation which is received through an input end of the optical fibre. The optical fibre may include a doped core which is configured to guide the pump radiation and to generate or amplify and guide signal radiation when pump radiation passes through it. The optical fibre laser or amplifier may include a first reflector configured to reflect pump radiation and further comprises a second reflector configured to selectively reflect a portion of pump radiation. The selection of the portion of pump radiation to be reflected by the second reflector depends upon one or more of: the spatial position of the pump radiation, the direction of the pump radiation, and the polarisation of the pump radiation.12-20-2012
20120320934ENVIRONMENTALLY STABLE OPTICAL FIBER MODE-LOCKED LASER GENERATING DEVICE HAVING AN ACHROMATIC QUARTER WAVE PLATE - An Environmentally stable optical fiber mode-locked laser generating device having an achromatic quarter wave plate is disclosed. An optical fiber unit is formed of a polarization maintaining (PM) optical fiber, and a Bragg grating is formed on a first region from one end in direction to the other end, a gain material is doped on a core of a remaining second region. An optical coupling unit provides a pump laser input to one end of the optical fiber unit, and outputs a laser input from the optical fiber unit. A lens unit converts a laser output from the other end of the optical fiber unit and focuses the laser on a certain regime. A polarization control unit includes an achromatic quarter wave plate (AQWP) which is disposed between the lenses constituting the lens unit and made by laminating two quarter wave plates (QWPs) such that fast-axes of the QWPs are orthogonal to each other, and controls mode-locking of the laser and spectral bandwidth by adjusting an angle of the AQWP with respect to a fast-axis or a slow-axis of the optical fiber unit. A saturable absorbing unit saturably absorbs and reflects the laser passed through the second lens, resulting in mode-locking.12-20-2012
20120287951HYBRID FIBER-ROD LASER - Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.11-15-2012
20100183037FIBER CUTTING MECHANISM AND LASER LIGHT SOURCE APPLICATION APPARATUS COMPRISING THE MECHANISM - Provided is a fiber cutting mechanism that prevents secondary utilization of a fiber laser light source incorporated in a device that uses a laser light. With a characteristic fiber cutting mechanism, when a laser device is separated from a laser light source application apparatus, at least a fiber 07-22-2010
20100034221Narrow linewidth injection seeded Q-Switched fiber ring laser based on a low-SBS fiber - A narrow linewidth injection-seeded Q-switched fiber ring laser based on a low-SBS optical fiber. High peak powers are achieved through the use of a single-clad erbium doped fiber with an acoustic waveguide. 12.5 μJ per pulse (250 ns pulse width) is achieved before a weakened form of stimulated Brillouin scattering appears. This laser has the potential to scale to very high power in a low-SBS dual clad fiber.02-11-2010
20130010817FIBER FUSE TERMINATOR - A fiber fuse terminator which is used to terminate a fiber fuse, comprising: an optical fiber which includes a core and a cladding having holes extending in a longitudinal direction thereof, in which: a refractive index of the core of the optical fiber is higher than a refractive index of a portion of the cladding excepting portions of the holes; when it is assumed that a mode field diameter at a used wavelength of the optical fiber is MFD, and a distance in a cross section perpendicular to the longitudinal direction of the optical fiber between a center of the core and a position, closest to the center of the core, of the hole that is closest to the core is Rmin, a value expressed by 2×Rmin/MFD is no less than 1.2 and no more than 2.1; when it is assumed that a width, in a diameter direction, of a region where the holes present in the cladding is W, a value expressed by W/MFD is no less than 0.3; and when it is assumed that a diameter of the cladding of the optical fiber is D01-10-2013
20130010818SCANNING TEMPORAL ULTRAFAST DELAY AND METHODS AND APPARATUSES THEREFOR - Methods and apparatuses for performing temporal scanning using ultra-short pulse width lasers in which only minimal (micro-scale) mechanical movement is required, and related methods for obtaining high-accuracy timing calibration, on the order of femtoseconds, are disclosed. A dual laser system is disclosed in which the cavity of one or more of the lasers is dithered using a piezoelectric element. A Fabry-Perot etalon generates a sequence of timing pulses used in conjunction with a laser beam produced by the laser having the dithered laser cavity. A correlator correlates a laser pulse from one of the lasers with the sequence of timing pulses to produce a calibrated time scale. The invention is applicable to applications requiring rapid scanning and time calibration, including metrology, characterization of charge dynamics in semiconductors, electro-optic testing of ultrafast electronic and optoelectronic devices, optical time domain reflectometry, and electro-optic sampling oscilloscopes.01-10-2013
20130016742OPTICAL FIBER-TYPE OPTICAL ELEMENT, LASER DIODE MODULE, AND FIBER LASER - There are provided: a core section provided so as to extend in a light-guiding direction in which incident light propagates; a photosensitive layer provided so as to extend in the light-guiding direction and peripherally enclose the core section, the photosensitive layer including a grating formed therein by irradiation of ultraviolet light having a predetermined wavelength; and a first cladding section provided between the core section and the photosensitive layer, the first cladding section having a lower refractive index than the core section and a lower photosensitivity than the photosensitive layer, the photosensitivity being a property in which a refractive index changes in response to irradiation with the ultraviolet light.01-17-2013
20130016743HOLEY FIBER, AND LASER DEVICE USING THE SAME - The invention aims to provide a holey fiber that can release leak light propagating through the clad at a desired location, and a laser device using the holey fiber. A holey fiber includes: one end and the other end; a core; an inner clad coating the core; a hole layer having a large number of holes formed therein and coating the inner clad; and an outer clad coating the hole layer. In this holey fiber, a collapse region is formed, and the holes in the collapse region are squashed by a predetermined length in the length direction of the fiber.01-17-2013
20130016740Fiber cladding light stripperAANM Saracco; MatthieuAACI PortlandAAST ORAACO USAAGP Saracco; Matthieu Portland OR US - A high power cladding light stripper and high power laser systems using the same are described. A cladding light stripper includes a housing, a section of fiber disposed in relation to the housing wherein a portion of the section of fiber has an exposed cladding region, a plurality of glue regions sequentially arranged adjacent to each other along the section of fiber and covering the exposed cladding region, and wherein at least one glue region between a first glue region and a last glue region of the plurality of glue regions has a refractive index higher or lower than both an adjacent previous glue region and an adjacent subsequent glue region.01-17-2013
20110158266PASSIVE COHERENT ARRAY USING DISTRIBUTED FIBER LASERS - In some embodiments, an apparatus includes a first laser cavity including a set of high-reflector gratings coupled in series and a second laser cavity including a set of high-reflector gratings coupled in series. Each high-reflector grating has an associated spectral bandwidth. The first laser cavity is configured to receive at a first end optical energy having a first spectral bandwidth and the second laser cavity is configured to receive at a first end optical energy having a second spectral bandwidth. A fiber coupler is coupled to a second end of the first laser cavity and to a second end of the second laser cavity. The fiber coupler is configured to receive optical energy from the first laser cavity having a third spectral bandwidth greater than the first spectral bandwidth, and receive optical energy from the second laser cavity having a fourth spectral bandwidth greater than the second spectral bandwidth.06-30-2011
20110158265RING OR LINEAR CAVITY OF ALL-FIBER-BASED ULTRA SHORT PULSE LASER SYSTEM AND METHOD OF OPERATING THE SAME - A ring-cavity or linear-cavity all-fiber-based ultra short pulse laser system and method of operating the same are provided. The all-fiber-based ultra short pulse laser system includes a pulse pump light source, a gain fiber, a first fiber signal pump combining unit, a broadband optical isolator, a fiber saturable absorber, an assistant light source, a second fiber signal pump combining unit, and a light coupling output. The first fiber signal pump combining unit is respectively connected to the pulse pump light source and the gain fiber to emit broadband amplified spontaneous emission, then the broadband amplified spontaneous emission passes through the broadband optical isolator. The second fiber signal pump combining unit is respectively connected to the assistant light source and the fiber saturable absorber. An ASE signal actively provides passive mode locking of the cavity, and the light coupling output partially outputs the laser. A dispersion fiber controls the temporal width.06-30-2011
20130022061FIBER LASER DEVICE - A laser diode driving device (01-24-2013
20130022060DEVICE FOR TRANSMITTING LIGHT ENERGY AND ASSOCIATED TRANSMISSION METHOD - A device is provided that includes an optical fiber and an assembly illuminating the optical fiber capable of illuminating the optical fiber at an upstream end. The optical fiber includes a hollow core and an anti-resonant annular cladding arranged around the hollow core. The illuminating assembly generates a focused beam of Airy spot shape for injection into the input of the optical fiber.01-24-2013
20090110009OPTICAL FIBER GRATING TUNING DEVICE AND OPTICAL SYSTEMS EMPLOYING SAME - A tuning device for an optical fiber grating includes a multi-part confinement member. The confinement member includes a feature such as a channel in which the fiber grating is disposed. Movement of the different parts of the confinement member relative to one another causes compression or tension of the fiber grating. The confinement member may include first and second slides. One end of the fiber is bonded to the first slide, the other end of the fiber is bonded to the second slide. The grating section of the fiber is confined in a channel formed by adjacent surfaces of the slides. The dimensions of the channel are selected such that the fiber grating is maintained in a relatively straight orientation without buckling when compression strain is applied to the fiber. An actuator may be employed to control the strain applied to the fiber, i.e., to axially compress or stretch the fiber grating by driving one or both of the slides in a controlled manner. The resonance wavelength of the fiber grating can be tuned as a function of the strain applied to the fiber. The confinement member may alternatively include deformable slides which axially deform, i.e., extend and retract so as to change in length. Each end of the fiber is affixed to both of the deformable slides so that axial compression or stretching of the fiber grating is achieved through deformation of the deformable slides. The fiber grating tuning device can be deployed in components such as tunable fiber lasers and tunable fiber filters.04-30-2009
20080232407UTILIZATION OF YB: AND ND: MODE-LOCKED OSCILLATORS IN SOLID-STATE SHORT PULSE LASER SYSTEM - An optimized Yb: doped fiber mode-locked oscillator and fiber amplifier system for seeding Nd: or Yb: doped regenerative amplifiers. The pulses are generated in the Yb: or Nd: doped fiber mode-locked oscillator, and may undergo spectral narrowing or broadening, wavelength converting, temporal pulse compression or stretching, pulse attenuation and/or lowering the repetition rate of the pulse train. The conditioned pulses are subsequently coupled into an Yb: or Nd: fiber amplifier. The amplified pulses are stretched before amplification in the regenerative amplifier that is based on an Nd: or Yb: doped solid-state laser material, and then recompressed for output.09-25-2008
20130177031Tunable Pulse Width Laser - A method of tuning the time duration of laser output pulses, the method including spectrally dispersing optical pulses and further comprising providing an optical pulse having a time duration and a spectral bandwidth; spectrally dispersing (07-11-2013
20110274125OPTICAL MULTIPLEXER AND FIBER LASER - An object of the present invention is to provide an optical multiplexer and a fiber laser for obtaining high-output light of a single wavelength. The optical multiplexer according to the present invention is provided with input units 11-10-2011
20080219299OPTICAL FIBRE LASER - A fibre laser is disclosed comprising a single mode or low-order-mode cladding pumped fibre laser oscillator or preamplifier, a cladding pumped fibre laser power amplifier to guide multiple transverse modes, wherein an output from the oscillator or preamplifier is applied through a mode mixing means to the power amplifier. The laser power amplifier is of greater core and cladding diameter than the oscillator or preamplifier, thus enabling lower brightness pump sources to be employed.09-11-2008
20130100972PUMP ABSORPTION AND EFFICIENCY FOR FIBER LASERS/AMPLIFIERS - Techniques are disclosed for improving pump absorption and efficiency for fiber lasers and amplifiers, for instance. In some embodiments, the techniques are implemented by applying a partially reflective coating on a fiber end-face to double-pass any unabsorbed or otherwise excess pump light in the cladding of a fiber. While being reflective to pump wavelengths, the coating can be non-reflective at the lasing wavelength, so as to avoid unwanted feedback into the system. The benefits of this approach include that excess pump power can be effectively utilized to add more power to the laser output. In addition, the double-pass technique allows for the use of a shorter fiber length, which in turn allows for more compact system designs, saves on material costs, and facilitates manufacturability.04-25-2013
20090296746FIBER LASER COIL FORM AND RELATED MANUFACTURING TECHNIQUES - A fiber laser thermal coil form and related manufacturing techniques that are substantially suitable for automation. The fiber laser thermal coil form including a thermally conductive substrate to support a fiber placed thereon and to dissipate a heat of the fiber, and a fiber guide groove defined in a surface of the substrate to guide the fiber and dimensioned to partially enclose the fiber and to enhance a thermal contact of the fiber and the substrate.12-03-2009
20110268141OPTICAL DEVICE, LASER IRRADIATION DEVICE, AND LASER TREATMENT APPARATUS - An optical device that allows laser beams to be incident to one end of an image fiber and receives a two-dimensional image of a laser irradiation target transmitted through the image fiber. The optical device includes: a mirror that is arranged on the one end side of the image fiber, reflects the laser beams, and transmits the two-dimensional image; a laser beam source that allows the laser beams to be incident to the one end of the image fiber through reflection of the mirror; an imaging device that receives the two-dimensional image from the one end of the image fiber through transmission of the mirror; and an incidence control device that allows the laser beams to be incident to some cores out of the plurality of cores in the one end of the image fiber and changes cores to which the laser beams are incident.11-03-2011
20110222562Mode-Locked Two-Micron Fiber Lasers - A mode-locked fiber laser comprising a multicomponent glass fiber doped with a trivalent rare-earth ion of thulium and/or holmium and including a fiber-optic based passive saturable absorber that contains an adhesive material mixed with a saturable absorbing components and is disposed along the length of an optical fiber such as to assure that a mode propagating within the fiber spatially overlaps with the volume occupied by the saturable absorbing components.09-15-2011
20080198879Hybrid Gain Guiding In Laser Resonators - Methods and systems for hybrid gain guiding in laser resonators that combines the features of gain guiding and fiber or other types of lasers into a single system. Hybrid gain guiding in laser resonators is not limited to conventional fiber lasers. Any type of gain guided fiber, index guided or anti-guided, is used as an intracavity element to induce loss on high order modes in an otherwise multimode laser system. The gain guided element contributes little gain to the laser oscillator but allows only the lowest order mode to transmit without loss. When the gain guiding fiber length is selected so the loss for a particular cavity mode is greater than the gain, the cavity mode does not lase. Since the gain guiding fiber induces loss for all laser modes other than the lowest order mode it makes sure that the mode one higher than the lowest order mode does not lase and as a result, no other cavity modes lase.08-21-2008
20110235658High-Power Laser Fibre System - The invention relates a power fiber laser system including at least one single-mode fiber laser, emitting at a signal wavelength, the fiber including at least one outer cladding and a core, in which the core of the fiber has a radially graded index. The fiber includes, at least over a part of its length, a geometrical section having a graded fiber-core radius that decreases between an input end of the section and an output end of the section, the core radius and the index variation between the cladding and the fiber at the input end being such that the normalized frequency at the signal wavelength is less than the normalized cutoff frequency at which the fiber becomes unimodal.09-29-2011
20130148673METHOD FOR BEAM COMBINATION BY SEEDING STIMULATED BRILLOUIN SCATTERING IN OPTICAL FIBER - A system and method for efficiently combining multiple laser beams into a single frequency by invoking stimulated Brillouin scattering (SBS) in a dual core optical fiber is disclosed. The method and apparatus essentially becomes a brightness converter for the input laser beams. An SRS seed is generated in a long length of fiber or by a diode and is launched into the back-end of the SBS combining optical fiber. Various single-frequency pump beams are launched into the front-end of the same fiber. The seed acts to lower a threshold for SBS in the fiber, thus invoking the nonlinearity. Provided the various pump beams are close in frequency and seed/pump modes overlap, each acts to amplify the seed through the nonlinear SBS process, providing an output signal which is brighter than the combined pump beams.06-13-2013
20120275475METHOD AND APPARATUS FOR GENERATION AND AMPLIFICATION OF LIGHT IN A SEMI-GUIDING HIGH ASPECT RATIO CORE FIBER - A planar laser gain medium and laser system. The novel laser gain medium includes an active core having a high aspect ratio cross-section with a fast-axis dimension and a slow-axis dimension, signal claddings adapted to form reflective boundaries at fast-axis boundaries of the core, and a material adapted to minimize reflections at slow-axis boundaries of the core. In an illustrative embodiment, the laser gain medium is an optical fiber. The core and claddings form a waveguide adapted to control modes propagating in the fast-axis direction. When the laser gain medium is employed as a laser oscillator, a high reflectivity mirror and an outcoupler are positioned at opposite ends of the core to form a laser resonator adapted to control modes in the slow-axis direction.11-01-2012
20100316070Asymmetrically perturbed optical fibers for mode transformers - Utilization efficiency of cladding pump light in a cladding pumped optical device is improved by converting higher order modes travelling in the cladding to lower order modes that enter the core region and participate more effectively in the energy exchange process. The mode conversion is achieved by asymmetric perturbations in the optical fiber. The perturbations are preferably produced by making the optical fiber in the gain section of the device cylindrically asymmetric. The asymmetric perturbations can be chosen so that they have negligible effect on the lower mode signal light in the core of the optical fiber.12-16-2010
20120281719Method and Apparatus for Controlling Mode Coupling in High Power Laser System - A high power fiber laser is configured with a multimode active fiber and input and output single mode passive fibers butt-spliced to respective opposite ends of the active fiber. If the input passive and active fibers do not have substantially matched diameters, a SM radiation coupled into the active fiber may excite fundamental and high order modes which, while interfering with one another, create a non-uniform distribution of refractive index in each of forward and backward light propagation directions along the resonator of the laser. The variable longitudinal perturbation components of the refractive index in respective forward and backward directions along an optical path in the active fiber are distributed in accordance with respective cosine functions. The length of the optical path is set so that the cosine functions of the respective perturbation components are shifted in a counter-phase position in which a cross-coupling coefficient between fundamental and high-order modes is substantially minimized. The optimal length of the optical path is maintained by controlling by either an ambient temperature or an electric field of piezo-element coupled to the MM active fiber. As a consequence, the disclosed high power fiber laser emits radiation in a fundamental mode having minimum power losses.11-08-2012
20120281720BROADBAND GENERATION OF COHERENT CONTINUA WITH OPTICAL FIBERS - Coherent and compact supercontinuum light sources for the mid IR spectral regime and exemplary applications are disclosed based on the use highly nonlinear fibers or waveguides. In at least one embodiment the coherence of the supercontinuum sources is increased using nonlinear material with an elevated vibrational contribution to the nonlinear response function. Compact supercontinuum light sources can be constructed with the use of passively mode locked fiber or diode lasers. Wavelength tunable sources can be constructed using appropriate optical filters or frequency conversion sections.11-08-2012
20130182725High power laser system - A laser system capable of producing a stable and accurate high-power output beam from one or more input beams of corresponding laser sources comprises one or more optical elements configured to receive the input beams wherein at least one of said one or more optical elements is made of high purity fused silica.07-18-2013
20130182726PRODUCES VARIOUS TYPES OF PULSES BY CONTROLLING THE DISTANCE BETWEEN THE SATURABLE ABSORBER CONNECTORS - Provided is a device of generating various types of pulses by controlling a distance between saturable absorber connectors, and more particularly, a device of generating various types of pulses by controlling a distance between saturable absorber connectors, capable of actively controlling a distance between saturable absorbers to completely overcome a disadvantage that an opened space is present in a cavity or a disadvantage that a fiber component should be changed and implementing a simple design of the entire fiber laser cavity since only a saturable absorber part, which is a portion of a fiber laser cavity, should be designed, as a carbon nanotube saturable absorber part in a passively mode-locked fiber laser generating apparatus using the saturable absorber.07-18-2013
20130182727LASER PROCESSING APPARATUS - A laser marking apparatus is provided with a laser emission unit that emits laser beam and a laser radiation unit that is detachably connected to the laser emission unit. The laser radiation unit radiates the laser beam emitted from the laser emission unit toward an object to be processed. A projection, which projects rearward, is formed on a part of the laser radiation unit that is connected with the laser emission unit. A recess is provided in a part of the laser emission unit that is connected with the laser radiation unit. The projection can fit into the recess. The recess is opened forward, backward, to lateral sides, and downward.07-18-2013
20110286475FIBER LASER DEVICE - A fiber laser device capable of performing processing and measurement stably even when the temperature of the use environment changes is provided.11-24-2011
20110292952LASER DEVICE WITH HIGH AVERAGE POWER FIBER - The disclosure relates to a laser device having a fibre emitting a single-mode transverse radiation controlled at a given wavelength, which includes: at least one laser diode capable of emitting a pump wave and a sheathed amplifying optic-fibre segment having two ends, the amplifying optic fibre including a core and a pumping sheath, the fibre being doped with a rare-earth dopant, wherein the core of the fibre has a diameter of between 12 μm and 200 μm, and in that the device includes: a coupling means for coupling the pump wave in the pumping sheath to at least one end of the fibre, and a resonator capable of re-injecting a laser beam at the given wavelength at the two ends of said segment, said resonator including an intra-cavity wavelength selective means capable of interaction with the injection means so as to perform a filtration on the given wavelength and re-inject into the fibre the pump wave which has not been absorbed after passing in the fibre.12-01-2011
20110292951FIBER LIGHT SOURCE WITH HIGH MEAN WAVELENGTH STABILITY AND RELIABILITY - A broadband light source configured to emit a stable broadband optical beam is provided. The broadband light source includes at least one optical pump source, an optical system including a polarization beam combiner, and a solid state laser medium. The optical system is configured to receive at least one optical pump beam from a respective one of the at least one optical pump source. The solid state laser medium receives a substantially unpolarized pump beam from a first output of the optical system. Stable broadband amplified spontaneous emission is output from a second output of the optical system.12-01-2011
20110310913OPTICAL FIBER LASER, AND COMPONENTS FOR AN OPTICAL FIBER LASER, HAVING REDUCED SUSCEPTIBILITY TO CATASTROPHIC FAILURE UNDER HIGH POWER OPERATION - Optical fiber lasers and components for optical fiber laser. An optical fiber laser can comprise a fiber laser cavity having a wavelength of operation at which the cavity provides output light, the cavity including optical fiber that guides light having the wavelength of operation, the fiber having first and second lengths, the first length having a core having a V-number at the wavelength of operation and a numerical aperture, the second length having a core that is multimode at the wavelength of operation and that has a V-number that is greater than the V-number of the core of the first length optical fiber at the wavelength of operation and a numerical aperture that is less than the numerical aperture of the core of the first length of optical fiber. At least one of the lengths comprises an active material that can provide light having the wavelength of operation via stimulated emission responsive to the optical fiber receiving pump light. Components include a mode field adapter and optical fiber interconnection apparatus, which can be used to couple the first and second lengths of optical fiber, or can couple the fiber laser to an optical fiber power amplifier, which can be a multimode or single mode amplifier.12-22-2011
20120020377SEMICONDUCTOR LASER DEVICE - A semiconductor laser device includes a lower cladding layer; an active layer disposed on the lower cladding layer; all upper cladding layer disposed on the active layer; a diffraction-grating layer disposed on the upper cladding layer, the diffraction-grating layer including periodic projections and recesses; and a buried layer disposed on the periodic projections and recesses in the diffraction-grating layer. In addition, the diffraction-grating layer and the buried layer constitute a diffraction grating. The lower cladding layer, the active layer, and the upper cladding layer constitute a first optical waveguide, the active layer constituting a first core region in the first optical waveguide. The upper cladding layer, the diffraction-grating layer, and the buried layer constitute a second optical waveguide, the diffraction-grating layer constituting a second core region in the second optical waveguide. Furthermore, the first optical waveguide and the second optical waveguide are optically coupled through the upper cladding layer.01-26-2012
20130195126High Power Single Mode Ytterbium Fiber Laser System with Single Mode Neodymium Fiber Pump Source - A high power fiber laser system emitting a substantially diffraction limited beam with a Gaussian intensity profile includes a single mode (“SM”) neodymium fiber pump source outputting a SM pump light; a seed laser operative to emit a SM signal light at a wavelength greater than that of the pump light; a SM DWM receiving and multiplexing the SM pump and signal lights. The disclosed system further includes a booster fiber amplifier which is configured with a frustoconically-shaped ytterbium (“Yb”) doped core receiving the pump and signal lights and configured with a small diameter input end which supports only a SM and a large diameter output end which is capable of supporting the SM and high order modes (:HOM”). The booster further has a cladding surrounding and coextending with the core, the core being configured for having intensity profiles of respective SMs of pump and signal lights overlap one another so that an overlap integral substantially equals to one (1) along an entire length of the core. The SM of the light signal extracts substantially the entire energy from the pump mode leaving the HOMs without amplification necessary to affect a quality of the diffraction limited beam of the system in a MW peak power range and hundreds of watt average power range.08-01-2013
20130195127LASER LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME, AND FIBER LASER APPARATUS USING THE SAME - The laser light emitting device includes a glass rod having an input end and an output end. The glass rod has a core provided along the central axis thereof and a cladding covering the core. The refractive index of the core on the side of the input end is higher than the refractive index of the cladding. A value given through subtraction of the refractive index of the cladding from the refractive index of the core on the side of the output end is smaller than a value given through subtraction of the refractive index of the cladding from the refractive index of the core on the side of the input end.08-01-2013
20080267228Fiber Lasers - Fiber lasers for producing Band I wavelengths include a laser cavity having an optical fiber with specific parameters in length and thickness and doping concentration, and having high reflectivities. Examples show the feasibility of producing such fiber lasers. Fiber lasers for producing Band IV wavelengths include a depolarized laser oscillator, at least one amplifier and a polarizer. Depolarized laser oscillator is an inherently depolarized CW laser, or a depolarized laser diode, which is depolarized by a depolarizer. Additional fiber lasers in accordance with embodiments of the present invention include a double clad active optical fiber having a pump power entry point for sending pump energy through the active optical fiber in a first direction, and a loop portion at a second end of the fiber for sending pump energy through the active optical fiber in a second direction which is opposite to the first direction. A system for coupling light into a fiber in accordance with embodiments of the present invention include a first fiber, a second double clad fiber, and a bulk optic component positioned between the first and second fibers. A mode stripper included within the second fiber allows for removal of high power light which is propagated through the outer clad rather than launched into the core of the second fiber.10-30-2008
20120027031Amplified Broadband Fiber Laser Source - Methods and systems for generating a supercontinuum light source, including generating electromagnetic radiation from a seed laser; coupling the seed laser electromagnetic radiation to a fiber amplifier comprising: a pump laser, a fiber coupler comprising an input and an output, and a nonlinear gain fiber comprising an input and an output, wherein the nonlinear gain fiber is configured to amplify and broaden the electromagnetic radiation from the seed laser; generating electromagnetic radiation from the pump laser; coupling the pump laser electromagnetic radiation and the seed laser electromagnetic radiation into the input of the fiber coupler; coupling the output of the fiber coupler into the input of the nonlinear gain fiber; and coupling out the amplified and broadened electromagnetic radiation from the nonlinear gain fiber. Other embodiments are described and claimed.02-02-2012
20120057607BROAD AREA LASER PUMP COMBINER - Multiple broad area lasers are coupled to a planar lightwave circuit, where the waveguides come together to form a single wide emitting aperture. A tapered lens is used at the output of the planar lightwave circuit to transform the highly asymmetric mode into a conventional round mode. This configuration allows much higher “brightness”, allowing 10 or more 100 um wide broad area lasers to be coupled into a single 100 um core multimode fiber. This is considerably more efficient than the standard method of combining a single 100 um wide broad area laser to a 100 um core multimode fiber.03-08-2012
20090262761PULSED LINEARLY POLARIZED OPTICAL FIBER LASER USING UNPOLARIZED Q-SWITCHED SEED LASER AND HAVING GOOD OUTPUT POWER STABILITY - Optical fiber source for providing polarized optical pulses, comprising a Q-switched fiber laser for providing substantially unpolarized seed pulses of optical energy, where the Q-switched fiber laser can comprise a laser cavity having a Q-switch and an optical fiber comprising a gain medium, where the optical fiber need not be a polarizing or polarization maintaining optical fiber; a passive polarizing element arranged to receive and substantially polarize the substantially unpolarized seed pulses; and a polarization maintaining fiber amplifier arranged for receiving the polarized seed pulses. The polarization maintaining fiber amplifier can comprise a selected polarizing or polarization maintaining fiber having a core comprising a gain medium for amplifying the substantially polarized seed pulses, where the core can be normally multimode at a an operating wavelength of the optical fiber source. The fiber amplifier can provide substantially polarized output pulses. In one practice of the invention, the pulse power instability, over at least 100 consecutive pulses, is no greater than 10%.10-22-2009

Patent applications in class OPTICAL FIBER LASER