Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Light beam generation

Subclass of:

369 - Dynamic information storage or retrieval

369130010 - STORAGE OR RETRIEVAL BY SIMULTANEOUS APPLICATION OF DIVERSE TYPES OF ELECTROMAGNETIC RADIATION

369130020 - Magnetic field and light beam

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
369130320 Light beam transducer assembly 109
369130260 Setting light beam power level 8
369130290 Polarized light beam 3
20080212417Multivalued information reproducing Method and multivalued information reproducing apparatus - A multivalued information reproducing apparatus includes: a light source which emits linear polarized light having a prescribed polarization direction; a first optical system which generates first linear polarized light and second linear polarized light that have different polarization directions using the linear polarized light which is emitted from the light source and makes the two polarized lights input to an optical recording medium in which the polarization directions of recording light are recorded as multivalued information; a second optical system which has a transmission light selecting element that selectively transmits emission light generated when the light passes the first optical system is input to the optical recording medium and by which the emission light that passes the transmission light selecting element is directed to a photo detecting portion in a state where first emission light that has a same polarization direction as the first linear polarized light and second emission light that has a same polarization direction as the second linear polarized light are separated; and a polarization direction judging portion which judges the polarization direction that is recorded in the optical recording medium based on amount of light of the first emission light and amount of light of the second emission light that are obtained by the photo detecting portion.09-04-2008
20120257484OPTICAL ELEMENTS AND INFORMATION STORAGE DEVICES INCLUDING THE SAME - An optical element and an information storage device including the same. The optical element may include an optical waveguide structure for transforming circularly polarized light into plasmon and transmitting the plasmon. The optical waveguide structure may emit a circularly polarized plasmonic field. The optical element may be used in an information storage device. For example, the information storage device may include a recording medium and a recording element for recording information on the recording medium, and the recording element may include the optical element. The information may be recorded on the recording medium by using the circularly polarized plasmonic field generated by the optical element.10-11-2012
20120092972MAGNETO-OPTIC WRITE-HEAD CHARACTERIZATION USING THE RECORDING MEDIUM AS A TRANSDUCER LAYER - A magneto-optical transducer including a magnetic layer on a transparent, non-magnetic substrate is used to characterize the performance of a write head based on optically detected magnetization in the magnetic layer. The write head sample is held in contact with or near the magnetic layer, which is illuminated through the substrate with linearly polarized light. Magnetization in the write head produces a magnetization in the magnetic layer, which alters the polarization state in reflected light. The reflected light is analyzed and the intensity detected using an optical detector, such as one or more photo-detectors or a camera. The performance of the write head can then be characterized using the detected intensity.04-19-2012
369130280 Multiple light beams 2
20120106305Multilevel Recording Method and System Thereof - The present invention discloses a multilevel recording method and system thereof. The multilevel recording method applied to a recording media comprises the following steps. At First, a plurality of beams are provided to a recording layer of the recording media, and the recording layer has a first structure and a second structure. Then, a first polarized reflected light of the first structure and a second polarized reflected light of the second structure are detected by a detecting unit. Then, a corresponding table is stored by a storing unit. The corresponding table comprises a relationship between the different angle of the polarized reflected light and a level of multilevel recording. Finally, the processing unit looks up the corresponding table to process multilevel recording.05-03-2012
20120314548Head Gimbal Assembly With Heat Assist Laser - An apparatus and associated method for a head gimbal assembly for data transduction in a data storage device with a heat assist laser. Various embodiments of the present invention are generally directed to a slider supporting at least a transducing element on an air bearing surface (ABS) and a laser assembly directly attached to a top side of the slider opposite the ABS. The laser assembly is positioned on the top side with no portion of the laser assembly extending past a longitudinal centerline of the slider.12-13-2012
Entries
DocumentTitleDate
20130028060Laser Recess Head Gimbal Assembly - A slider may have a first surface on an air bearing surface (ABS) and a laser recess formed in a second surface of the slider, opposite the first surface. A laser can then be positioned in the laser recess with the laser extending from the slider to a top plane. A stud may be formed adjacent to and separated from the laser on the second surface of the slider with the stud extending from the second surface of the slider to the top plane.01-31-2013
20100091619NEAR- FIELD OPTICAL HEAD AND INFORMATION RECORDING / REPRODUCING DEVICE - A near-field optical head includes: a slider which has an opposedly-facing surface which faces a surface of a magnetic recording medium; an optical flux introducing means which introduces the optical flux toward the opposedly-facing surface; a first inclined surface 04-15-2010
20100157747RECORDING/REPRODUCTION APPARATUS AND RECORDING/REPRODUCTION SYSTEM - A recording/reproduction apparatus includes: a light source; and a near-field light production section that includes two conductor sections disposed opposite each other with a predetermined gap therebetween and that produces near-field light between the two conductor sections upon light irradiation from the light source, the two conductor sections being disposed such that when information is recorded on a recording medium using the near-field light, a direction from one of the two conductor sections to the other of the two conductor sections is generally perpendicular to a line direction of the recording medium.06-24-2010
20130083637LIGHT DELIVERY GUIDE - A waveguide that includes a first cladding layer, the first cladding layer having an index of refraction, n04-04-2013
20100329085Near-field light generating device including near-field light generating element disposed over waveguide with buffer layer and adhesion layer therebetween - A near-field light generating device includes: a waveguide; a buffer layer disposed on the top surface of the waveguide; an adhesion layer that is formed by incompletely oxidizing a metal layer and disposed on the buffer layer; and a near-field light generating element disposed on the adhesion layer. The adhesion layer has a resistance-area product higher than that of the metal layer unoxidized and lower than that of a layer that is formed by completely oxidizing the metal layer. A layered structure consisting of the buffer layer, the adhesion layer and the near-field light generating element has a peel-test adhesive strength higher than that of a layered structure consisting of the buffer layer and the near-field light generating element.12-30-2010
20110013497Heat-assisted magnetic recording head with laser diode fixed to slider - A heat-assisted magnetic recording head includes a slider, an edge-emitting laser diode fixed to the slider, and an external mirror provided outside the slider. The slider includes a magnetic pole, a waveguide, a near-field light generating element, and a substrate. The substrate has a top surface facing toward the magnetic pole, the near-field light generating element and the waveguide. The slider has a top surface that lies above the top surface of the substrate, at an end of the slider farther from the top surface of the substrate. The laser diode includes: an active layer; an emitting end face that lies at an end in a direction parallel to the plane of the active layer and includes an emission part for emitting laser light; and a bottom surface that lies at an end in a direction perpendicular to the plane of the active layer. The laser diode is arranged so that the bottom surface faces the top surface of the slider. The external mirror reflects the laser light emitted from the emission part toward the waveguide.01-20-2011
20130215726SUSPENSION BOARD WITH CIRCUIT - A suspension board with circuit for mounting a slider unit including an electron device, the electron device being mounted so as to form, when projected in the thickness direction with respect to the slider provided with a magnetic head, an overlapping portion that overlaps with the slider, and a protruding portion that protrudes from the slider. The suspension board with circuit is formed with a first opening penetrating in the thickness direction and accommodates the overlapping portion, and a second opening that communicates with the first opening and accommodates the protruding portion.08-22-2013
20110199867ALL-OPTICAL MAGNETIC RECORDING SYSTEM USING CIRCULARLY POLARIZED LIGHT AND BIT-PATTERNED MEDIA - A perpendicular magnetic recording system uses bit-patterned media (BPM) and circularly polarized light to switch the magnetization of the discrete magnetic bits by the inverse Faraday effect. Circularly polarized light generates an external rotating electric field in a plane orthogonal to the light propagation direction, which induces a magnetic field parallel to the light propagation direction in a magnetic material exposed to the electric field. The BPM is a generally planar substrate with discrete spaced-apart metal or metal alloy magnetic islands that are magnetizable in a perpendicular direction and are separated by nonmagnetic spaces of non-metallic material on the substrate. A near-field metal transducer is patterned into at least three tips, with the tips surrounding and defining a transducer active region. The circularly polarized light is incident on the tips, which produce a strong in-plane rotating electric field. A magnetic island exposed to the rotating electric field will experience an induced perpendicular magnetic field that switches the magnetization of the magnetic island.08-18-2011
20090103401MAGNETIC RECORDING MEDIUM, PRODUCTION METHOD FOR THE SAME, AND RECORDING/REPRODUCING METHOD FOR MAGNETIC MEDIUM - A magnetic recording medium with excellent signal characteristics is provided in which the stability of recorded information is ensured even when recording is performed in high density or even when magnetic recording and reproduction are performed while the temperature of a recording film is increased by irradiation with light. The present invention provides a magneto-optical recording medium comprising at least a memory layer on a disk substrate, in which the memory layer is separated into magnetic grains to form magnetically isolated recorded domains, or in which a fine structure is formed by an aggregate of mutually isolated magnetic grains in the memory layer, and the memory layer has a large specific resistance. A production method thereof is also provided.04-23-2009
20090296536MAGNETIC DISK DEVICE - The magnetic disk device is capable of securely removing contaminations from an outer face of a magnetic head, maintaining superior recording and reproducing characteristics and improving reliability. The magnetic disk device comprises: a ramp for holding a magnetic head at an evacuating position, the ramp being located outside of a region in which a magnetic recording medium is provided; and a laser emitting section for emitting a laser beam toward the magnetic head so as to heat the magnetic head, the laser emitting section being located in a moving track of the magnetic head, which is moved between the evacuating position and a loading position, without interfering with the magnetic head. An air stream generated by rotation of the magnetic recording medium removes contaminations from the magnetic head when the magnetic head is loaded.12-03-2009
20100128578Near-field optical head having tapered hole for guiding light beam - A near-field optical head has a planar substrate having a first surface, a second surface disposed opposite to the first surface, and an inverted conical or pyramidal hole extending through the first and second surfaces. The inverted conical or pyramidal hole has at least one fine aperture formed at an apex thereof and disposed in the first surface and having at least one curved slant surface. An optical waveguide extends into the inverted conical or pyramidal hole of the planar substrate for propagating light along an optical path. A mirror is disposed in the optical waveguide for bending in the direction of the fine aperture the optical path of the light propagated through the optical waveguide.05-27-2010
20090129212Optically assisted magnetic recording device with semiconductor laser, optically assisted magnetic recording head and magnetic disk device - The present invention provides a magnetooptic device, a magnetooptic head, and a magnetic disk drive each capable of performing optically assisted magnetic recording and each having a small size, improved recording density, and a higher transfer rate. In a magnetooptic device, a magnetic circuit including a magnetic gap and a thin film magnetic transducer having a coil portion are stacked on the surface of a semiconductor laser. By the arrangement, optically assisted magnetic recording can be performed, small size and light weight are achieved, and higher transfer rate can be implemented.05-21-2009
20110205860HEAT-ASSISTED MAGNETIC RECORDING HEAD INCLUDING PLASMON GENERATOR - A plasmon generator has an outer surface including a surface plasmon exciting surface, and has a near-field light generating part located in a medium facing surface. The surface plasmon exciting surface is a flat surface that faces an evanescent light generating surface of a waveguide with a predetermined distance therebetween. The surface plasmon exciting surface includes a width changing portion. The width of the width changing portion in a direction parallel to the medium facing surface and the evanescent light generating surface decreases with decreasing distance to the medium facing surface. A magnetic pole is located at such a position that the plasmon generator is interposed between the magnetic pole and the waveguide. The outer surface of the plasmon generator includes a pole contact surface that is in contact with the magnetic pole.08-25-2011
20080316872OPTICAL DEVICE INTEGRATED HEAD - An optical device integrated head having high light utilizing efficiency by decreasing the propagation loss caused from an optical source to a recording medium, conducting by mounting according to compact active alignment method for efficiently guiding a light generated from a laser device to the top end of a head, in which a light source device mounted on a submount has a mirror portion having an inclinated surface to at least a portion of one edge thereof for reflecting an output light from the optical source device at the inclinated surface, a structural member including a lens structure for further allowing a light to pass through the submount, and an optical waveguide disposed passing through a slider for mounting the submount, and the optical source and the slider are positioned by using active alignment of light in a chip-on carrier structure having the optical source device mounted on the submount.12-25-2008
20110228651Slider For Heat Assisted Magnetic Recording Including A Thermal Sensor For Monitoring Laser Power - An apparatus includes a light source, a slider including a sensor having a resistance or voltage that varies with the temperature of the sensor, the sensor being mounted to be heated by a portion of light emitted by the light source, and a controller controlling the light source power in response to the resistance or voltage of the sensor.09-22-2011
20110228649METHOD FOR MANUFACTURING THERMALLY-ASSISTED MAGNETIC RECORDING HEAD COMPRISING LIGHT SOURCE UNIT AND SLIDER - A method for manufacturing a thermally-assisted magnetic recording head is provided, in which a light source unit including a light source and a slider including an optical system are bonded. A unit substrate is made of a material transmitting light having a predetermined wavelength, and an adhesion material layer is formed on the light source unit and/or the slider. The manufacturing method includes: aligning the light source unit and the slider in such a way that a light from the light source can enter the optical system and the adhesion material layer is sandwiched therebetween; irradiating the adhesion material layer with a light including the predetermined wavelength through the unit substrate; and bonding them. The adhesion material layer melted by the light including the predetermined wavelength and transmitted through the unit substrate can ensure high alignment accuracy as well as higher bonding strength and less change with time.09-22-2011
20100157746RECORDING/REPRODUCING APPARATUS AND RECORDING/REPRODUCING SYSTEM - A recording/reproducing apparatus includes an optical source and a near-field light generating unit. The near-field light generating unit includes two conductors facing to each other at a predetermined distance and generating near-field light between the two conductors by irradiation of light from the optical source. These two conductors are arranged so that a direction along which the two conductors face to each other is substantially in parallel with the longitudinal direction of a recording mark region. Here, the recording mark region is prepared from a predetermined recording material and having shape anisotropy when information is recorded on a recording medium on which the recording mark is independently formed.06-24-2010
20110058458MAGNETO--OPTICAL SWITCHING DEVICE AND METHOD FOR SWITCHING A MAGNETIZABLE MEDIUM - The invention relates to a magneto-optical switching device for switching magnetization in a medium, comprising a magnetizable medium. According to the invention, a radiation system suited for imparting angular momentum to the magnetic spin system of said magnetizable medium, so as to selectively orient the magnetization of said medium. In addition, the invention relates to a method of switching a magnetizable medium, comprising providing a magnetizable medium; providing a radiation beam of a selectively chosen angular momentum; and targeting said radiation beam to said medium so as to transfer said angular momentum to a magnetic spin system of said magnetizable medium. Accordingly, spin states in magnetic materials can be manipulated using radiation of a suitable angular momentum. An effective magnetic field is generated for orienting the magnetization of the domains and can simultaneously be used to locally heat the material.03-10-2011
20100128577NEAR-FIELD LIGHT GENERATING DEVICE AND OPTICALLY-ASSISTED MAGNETIC RECORDING DEVICE - A near-field light generating device includes a substrate, a semiconductor laser device, a light absorbing device, and a near-field light generator. The semiconductor laser device is formed on the substrate and emits the laser light polarized in a first direction. The light absorbing device is formed on the substrate to be close to a light emission part of the semiconductor laser device and absorbs light polarized in a second direction orthogonal to the first direction. The near-field light generator is formed on the substrate to be close to a light emission part of the light absorbing device.05-27-2010
20110002199Near-Field Light Generator Comprising Waveguide With Inclined End Surface - Provided is a near-field light generator capable of avoiding a noise to the generated near-field light. The generator comprises a waveguide and a plasmon antenna comprising a propagation surface or edge, for propagating surface plasmon, extending to a near-field light generating end. A portion of one side surface of the waveguide is opposed to a portion of the propagation surface or edge, so as for the waveguide light to be coupled with the plasmon antenna. And an end surface of the waveguide is inclined in such a way as to become away from the plasmon antenna toward the near-field light generating end side. The light that propagates through the waveguide and is not transformed into surface plasmon is refracted or totally reflected in the inclined end surface, does not come close to the generated near-field light, thus does not become a noise for the generated near-field light.01-06-2011
20090028008HIGH PERFORMANCE DVD WRITING CURRENT CIRCUIT - A writing current circuit (01-29-2009
20110075526Optical Element, Arm Mechanism, and Information Recording Device - Proposed is a technique of guiding light to a waveguide, by which the light use efficiency is increased. In order to achieve the above object, adopted is an optical element comprising, at an outer edge portion thereof, an incident surface on which light from a light source is incident, a diffraction grating surface, and an internal reflection surface which guides light incident from the incident surface to the diffraction grating surface.03-31-2011
20110075525Hard disk apparatus and driving method therefor - Disclosed herein is a hard disk apparatus, including: a magnetic recording medium; a recording head adapted to record information on the magnetic recording medium; a semiconductor laser adapted to be controlled for light emission in a cycle of a recording clock to irradiate a light spot upon the magnetic recording medium to carry out thermal assistance in magnetic recording by the recording head; a laser driving circuit adapted to drive the semiconductor laser at a timing and with optical power in accordance with a light emission timing signal and a laser power controlling signal; and a controller adapted to set laser power in accordance with at least one of characteristics of the magnetic recording medium, semiconductor laser and recording head and output the laser power controlling signal to the laser driving circuit so that the laser power is adaptively varied.03-31-2011
20110026377Thermally-Assisted Magnetic Recording Head Comprising Light Source with Photonic-Band Layer - A thermally-assisted magnetic recording head is provided, in which a light source having sufficiently high output power for performing thermal-assist is disposed in the element-integration surface of the substrate to achieve improved mass-productivity. The head includes: a light source having a multilayered structure including a photonic-band layer and having a light-emitting surface opposed to the element-integration surface; a diffraction optical element that converges the emitted light; a light-path changer that changes the direction of the converged light; a waveguide that propagates the direction-changed light toward the opposed-to-medium surface; and a magnetic pole that generates write field. The surface-emitting type light source includes a photonic-band layer having a periodic structure in which a light from an active region resonates, and thus emits laser light on a quite different principle from a VCSEL. Therefore, the light source can be disposed in the element-integration surface, even though having sufficiently high output power.02-03-2011
20120201107Laser-In-Slider Light Delivery For Heat Assisted Magnetic Recording - An apparatus includes a light source for producing a beam of light, a coupler for coupling the light into a slider waveguide, a beam expander for expanding the beam of light from the waveguide to produce an expanded beam, a collimator for collimating the expanded beam, and a focusing device for concentrating the collimated beam to a focal point. A method of delivering light to a focal point is also described.08-09-2012
20100195450MAGNETIC DISK DRIVE - A magnetic disk drive, comprising: a slider, which is provided at a position facing to a disk surface; an arm, which is configured to conduct rocking motion around a pivot; a base, which is configured to support a motor thereon, which rotates the disk; a semiconductor laser module, which is configured to be fixed on the arm and stores a semiconductor laser element therein; a light irradiation portion upon the disk surface; and a wave guide, which is configured to build up an optical path between the light irradiation portion and the semiconductor laser module, wherein the semiconductor laser module and a portion of the base are connected therebetween by a flexible heat-conductive member having a predetermined curvature.08-05-2010
20100061199NEAR FIELD LIGHT GENERATING ELEMENT NEAR FIELD OPTICAL HEAD, AND INFORMATION RECORDING AND REPRODUCING APPARATUS - There is provided a near field light generating element 03-11-2010
20110188353ELECTRON BEAM LITHOGRAPHY METHOD, ELECTRON BEAM LITHOGRAPHY APPARATUS, METHOD FOR PRODUCING A MOLD, AND METHOD FOR PRODUCING A MAGNETIC DISK MEDIUM - Irradiation of an electron beam onto a base plate having resist coated thereon is controlled by ON/OFF signals output to a blanking element. Beam deflecting operations are controlled by deflecting signals output to a deflecting element. Patterns of servo areas and data areas are scanned and drawn on the base plate over a plurality of rotations. The electron beam is scanned in two directions so as to fill the shapes of patterns in the servo areas during a specific rotation, patterns in the data area are drawn as a continuous line or broken line with a single electron beam emission. The patterns of the data area are not drawn during other rotations, by shielding irradiation of the electron beam.08-04-2011
20110216634HEAT-ASSISTED MAGNETIC RECORDING HEAD INCLUDING PLASMON GENERATOR - A plasmon generator has a near-field light generating part located in a medium facing surface. The plasmon generator has an outer surface including a plasmon exciting surface and a plasmon propagating surface that face toward opposite directions. The plasmon exciting surface is substantially in contact with an evanescent light generating surface of a waveguide's core. The plasmon propagating surface is in contact with a dielectric layer that has a refractive index lower than that of the core. The plasmon exciting surface includes a first width changing portion. The plasmon propagating surface includes a second width changing portion. Each of the first and second width changing portions has a width that decreases with decreasing distance to the medium facing surface, the width being in a direction parallel to the medium facing surface and the evanescent light generating surface.09-08-2011
20100128576INTEGRATED MAGNETIC RECORDING HEAD AND NEAR FIELD LASER - Apparatuses and methods for making and using laser-assisted magnetic recording devices. A slider for use in a magnetic recording apparatus in accordance with one or more embodiments of the present invention comprises a magnetic recording element having a first pole and a second pole, a magnetic reader, and a laser resonator integrally formed on said slider, having an optical emission point of said resonator positioned between the first pole and the second pole of the magnetic recording element; wherein the laser resonator comprises a semiconductor gain media positioned between a first reflector and a near field optical element having a nonzero optical reflection to the semiconductor gain media.05-27-2010
20120033534MICROWAVE ASSISTED MAGNETIC HEAD - A microwave assisted magnetic head is formed to include a main pole magnetic layer including a main pole; a shielded magnetic layer including a shielded pole; a recording coil that is formed to generate a writing magnetic field from a tip of the main pole; and a microwave radiation waveguide made of a conductive nonmagnetic material that is disposed in a recording gap, the recording gap being a gap between the main pole and the shielded pole. The main pole magnetic layer and the shielded magnetic layer have an intermediate connection part that connects the layers at a depth-side, and an electrical insulation magnetic film is disposed in the intermediate connection part, and the main pole and the shielded pole are electrically connected with the microwave radiation waveguide that is disposed in the recording gap, which is the gap between the main pole and the shielded pole so that a simple configuration, with a relatively easy and efficient manufacturing process, is realized that overlaps AC magnetic fields in an in-plane direction of a microwave band, which is the same as, or close to, a ferromagnetic resonant frequency of a medium recording layer.02-09-2012
20110063954Near-field optical recording apparatus, method and medium - An apparatus, a method and a recording medium for optical near-field recording are proposed. The apparatus includes a light source for generating a reading light beam, which is illuminated onto a near-field optical recording medium. The apparatus further includes a detector for generating a gap error signal from a light beam returning from the near-field optical recording medium. A data signal is derived from an output signal of the detector by a signal processor.03-17-2011
20110317528THERMALLY-ASSISTED MAGNETIC RECORDING HEAD INCLUDING PLASMON GENERATOR - An outer surface of a plasmon generator includes: a plasmon exciting part that faces an evanescent light generating surface with a predetermined distance therebetween; and a front end face located in a medium facing surface. The plasmon generator has: first and second sidewall parts that are connected to the plasmon exciting part and increase in distance from each other with increasing distance from the plasmon exciting part; and at least one extended portion connected to an edge of at least one of the first and second sidewall parts opposite from the plasmon exciting part. A magnetic pole has a portion interposed between the first and second sidewall parts. The front end face includes first and second portions lying at ends of the first and second sidewall parts and connected to each other into a V-shape. An end face of the magnetic pole has a portion interposed between the first and second portions of the front end face.12-29-2011
20120300599CHANNEL-SOURCE LASER-PULSING SYSTEM ARCHITECTURE FOR THERMAL-ASSISTED RECORDING - A method and apparatus for generating a laser signal for driving a laser used in thermal-assisted recording. A channel of a hard drive generates a high-frequency component of the laser signal—e.g., a periodic wave or series of pulses—and synchronizes the phase of the laser signal with a corresponding write data signal which controls the magnetization of data bits within the magnetic disk of the hard drive. The channel may be connected to a read/write integrated circuit via a channel interconnect. The read/write circuit may include a second phase control to compensate for any phase shift and an adder circuit to combine the transmitted high-frequency laser with a DC bias. Further, the read/write circuit may include a feedback loop for adjusting the DC bias based on environmental parameters of the hard drive such as temperature.11-29-2012
20120008470MAGNETIC RECORDING HEAD CAPABLE OF MONITORING LIGHT FOR THERMAL ASSIST - Provided is a thermally-assisted magnetic recording head in which a slider including an optical system is joined with a light source unit. The light source unit comprises: a unit substrate including a joining surface joined with the slider and a source-installation surface adjacent to the joining surface; a light source provided in the source-installation surface and emits light for thermal assist; and a photodetector section formed inside the unit substrate, a light-receiving portion of the photodetector section for receiving light emitted from a rear light-emission center being located on the source-installation surface side. The light source unit includes the photodetector section that enables constant monitoring of light output from the light source. Accordingly, feedback adjustment of the light output can be accomplished. Further, since the rear light-emission center and the light-receiving portion can be located sufficiently close to each other, the light output can be monitored with a higher efficiency.01-12-2012
20120113768HEAT-ASSISTED MAGNETIC RECORDING MEDIUM AND MAGNETIC STORAGE DEVICE - A heat-assisted magnetic recording medium that includes a substrate 05-10-2012
20110090770THERMAL-ASSISTED-MAGNETIC-RECORDING HEAD AND MAGNETIC RECORDING SYSTEM USING THE THERMAL-ASSISTED-MAGNETIC-RECORING HEAD - Provided is a thermal-assisted-magnetic-recording head capable of directing, to a magnetic recording medium, light in which the spot size is reduced to submicron order with high total optical propagation efficiency. A light coupling unit that guides light emitted from the light source into a magnetic head and a high-refractive-index core that couples with the light guided by the light coupling unit to lead the light to an air bearing surface are arranged in the magnetic head. The light coupling unit includes a plurality of thin-film-like cores that are separated from each other by a clad material. An upper part of the high-refractive-index core is placed between two thin-film-like cores.04-21-2011
20110103201LIGHT DELIVERY WAVEGUIDE - A light source and a waveguide are mounted on a recording head slider. Light rays are emitted from the light source into the waveguide. The waveguide may include two core layers for light ray transmission. The first core layer enhances light coupling efficiency from the light source to the second core layer. The second core layer transforms a profile of the light. The waveguide may include a tapered portion with a narrow opening near the light source and a wider opening near the tapered portion exit. The light rays passing through the waveguide may be directed toward a collimating mirror. The collimating mirror makes the light rays parallel or nearly parallel and re-directs the light rays to a focusing mirror. The focusing mirror focuses the collimated light rays to a spot on a magnetic media disc.05-05-2011
20100290323Near-field light generating device including near-field light generating element with edge part opposed to waveguide - A near-field light generating device includes: a waveguide having a groove that opens in the top surface; a clad layer disposed on the top surface of the waveguide and having an opening that is contiguous to the groove; a near-field light generating element accommodated in the opening; and a buffer layer interposed between the near-field light generating element and each of the waveguide and the clad layer in the groove and the opening. The near-field light generating element includes: first and second side surfaces that decrease in distance from each other toward the groove; an edge part that connects the first and second side surfaces to each other and is opposed to the groove with the buffer layer therebetween; and a near-field light generating part that lies at one end of the edge part and generates near-field light.11-18-2010
20120134245MAGNETIC RECORDING DEVICE, CONTROLLER THEREOF, AND MAGNETIC RECORDING METHOD - According to one embodiment, a magnetic recording device includes: a magnetic recording medium provided with data regions for data recording; a light output module which outputs an optical signal to be applied to a recording position where recording data is recorded of the data regions; a write head which records the recoding data at the recording position magnetically; a light quantity setting module which sets a light quantity value of the optical signal output from the light output module; a heat-assisted recording controller which performs a control so that the recording data is recorded by the write head at the recording position which is heat-assisted by applying an optical signal with the set light quantity value; and a controller which adjusts the light quantity value of the optical signal set by the light quantity setting module using the recording position being a part of the data regions.05-31-2012
20120257483Magneto-Optical Switching Device And Method For Switching A Magnetizable Medium - The invention relates to a magneto-optical switching device for switching magnetization in a medium, comprising a magnetizable medium. According to the invention, a radiation system suited for imparting angular momentum to the magnetic spin system of said magnetizable medium, so as to selectively orient the magnetization of said medium. In addition, the invention relates to a method of switching a magnetizable medium, comprising providing a magnetizable medium; providing a radiation beam of a selectively chosen angular momentum; and targeting said radiation beam to said medium so as to transfer said angular momentum to a magnetic spin system of said magnetizable medium. Accordingly, spin states in magnetic materials can be manipulated using radiation of a suitable angular momentum. An effective magnetic field is generated for orienting the magnetization of the domains and can simultaneously be used to locally heat the material.10-11-2012
20120082015THERMALLY-ASSISTED RECORDING (TAR) PATTERNED-MEDIA DISK DRIVE WITH OPTICAL DETECTION OF WRITE SYNCHRONIZATION AND SERVO FIELDS - A thermally-assisted recording (TAR) bit-patterned-media (BPM) magnetic recording disk drive uses optical detection of synchronization fields for write synchronization and optical detection of servo sectors for read/write head positioning. The synchronization fields and servo sectors extend generally radially across the data tracks and are patterned into discrete nondata blocks separated by gaps in the along-the-track direction. A near-field transducer (NFT) directs laser radiation to the disk and generates a power absorption profile on the disk that has a characteristic along-the-track spot size less than the along-the-track length of the gaps between the nondata blocks in the synchronization fields and servo sectors. A sensor provides an output signal in response to radiation from the nondata blocks and gaps in the synchronization fields and servo sectors as the disk rotates to control the timing of the magnetic write field applied to the data islands and to control the positioning of the read/write head on the data tracks.04-05-2012
20110122737Thermally-Assisted Magnetic Recording Head with Light Detector in Element-Integration Surface - A thermally-assisted magnetic recording head is provided, in which the light-source output can be adjusted according to its variation by environmental influences and over time. The head comprises: a light source; a write head element provided in a element-integration surface; an optical system provided in the element-integration surface and configured to guide a light emitted from the light source to the vicinity of one end of the write head element; and a light detector for monitoring the light-source output, provided in the element-integration surface and comprising a light-receiving surface covering an area directly above at least a portion of the optical system. This light detector with such a light-receiving surface can detect a leakage light emitted from the optical system as a monitoring light. Therefore, feedback adjustment of the light-source output can be realized to stabilize the intensity of light for thermal-assist applied to a magnetic recording medium.05-26-2011
20110038236Near-Field Light Transducer Comprising Propagation Edge With Predetermined Curvature Radius - Provided is a near-field light transducer with a propagation edge in which the generation of defects is suppressed. The transducer is formed of a Ag alloy and comprises an edge, the edge comprising a portion to be coupled with a light in a surface plasmon mode, the edge extending from the portion to a near-field light generating end surface, and the edge being configured to propagate surface plasmon excited by the light. Further, a curvature radius of the rounded edge is set in the range from 6.25 nm to 20 nm. In the edge and its vicinity, the generation of defects such as cracking and chipping is suppressed. Thereby improved are a propagation efficiency of surface plasmon and a light use efficiency of the transducer. The Ag alloy preferably contains at least one element selected from a group of Pd, Au, Cu, Ru, Rh and Ir.02-17-2011
20120269047METHOD FOR PERFORMING BURN-IN TEST - A method of the invention for performing burn-in test includes assembling, on a fixture stand, a plurality of light source elements and a plurality of light detectors for monitoring a light output from a corresponding one of the plurality of light source elements; and electrifying the plurality of light source elements in a state where at least the plurality of light source elements and the plurality of light detectors are immersed in an insulation liquid. Thereby, it is realized to hold a stable temperature in a short period of time, to maintain a temperature that does not deviate from normal load conditions, and to perform a sorting test between defect parts and good part for light source unit chips without causing damage to the elements.10-25-2012
20100177605MEDIA FOR HEAT ASSISTED MAGNETIC RECORDING - A method for fabricating a patterned recording medium includes providing a workpiece with a non-magnetic substrate and at least one overlying magnetic layer, laminating a thermal insulation barrier partially in a soft under layer of one of the at least one magnetic layers and forming a topographical pattern including a plurality of trenches in the soft under layer. Blocks of track triplets are formed between adjacent trenches that are magnetically and thermally insulated from other adjacent blocks of track triplets.07-15-2010
20120243390Heat Source Management in Data Storage Device - An apparatus and associated method is presently disclosed for a control circuitry capable of managing a heat source used in data storage applications. Various embodiments of the present invention are generally directed to a heat source directed at a data storage medium with a synchronization signal and a serial interface that are each selectively activated via a demultiplexed write gate signal. The selective activation allows for pulsed operation of the heat source resulting in reduced duty cycle and temperature during a write operation.09-27-2012
20130176837MAGNETIC RECORDING HEAD AND MAGNETIC RECORDING AND REPRODUCING SAME - According to one embodiment, there is provided a magnetic recording head which records information on a magnetic recording medium, including an ABS surface, a near-field light generating unit, a heat conducting unit, and a heat absorbing unit. The ABS surface is opposed to the magnetic recording medium. The near-field light generating unit is disposed on the ABS surface. The heat conducting unit is formed by a heat conductor disposed in contact with the near-field light generating unit. The heat absorbing unit is disposed in contact with the heat conducting unit adjacently to the near-field light generating unit in a direction along the ABS surface.07-11-2013
20130176838PATTERNED MEDIA FOR HEAT ASSISTED MAGNETIC RECORDING - A patterned magnetic recording medium for use in heat assisted magnetic recording comprises an electrically conductive heat sink layer and a plurality of discrete magnetic recording elements positioned adjacent to a first surface of the heat sink layer. Disc drives that include the patterned medium and a method of magnetic recording using the patterned media are also included.07-11-2013
20110228650METHOD FOR MANUFACTURING THERMALLY-ASSISTED MAGNETIC RECORDING HEAD COMPRISING LIGHT SOURCE UNIT AND SLIDER - A method for manufacturing a thermally-assisted magnetic recording head is provided, in which a light source unit including a light source and a slider including an optical system are bonded. A unit substrate is made of a material transmitting light having a predetermined wavelength, and a unit adhesion material layer that contains Sn, Sn alloy, Pb alloy or Bi alloy is formed on the light source unit and/or the slider. The manufacturing method includes: aligning the light source unit and the slider in such a way that a light from the light source can enter the optical system and the unit adhesion material layer is sandwiched therebetween; and causing a light including the predetermined wavelength to enter the unit substrate to melt the unit adhesion material layer. The unit adhesion material layer melted by the light including the predetermined wavelength can ensure high alignment accuracy as well as higher bonding strength and less change with time.09-22-2011
20110235478WAVE GUIDE THAT ATTENUATES EVANESCENT LIGHT OF HIGHER ORDER TM MODE - A waveguide has a core through which laser light can propagate in a TM mode, that has a rectangular cross section perpendicular to a propagative direction of the laser light, and through which the laser light can propagate in a fundamental mode in which only one portion exists on the cross section of the core where a light intensity of the laser light becomes maximal, and a higher order mode in which two or more portions exist where the light intensity becomes maximal, a clad surrounding the core, and a light absorbing element in the clad, and wherein a distance between the light absorbing element and the core is shorter than a penetration length of evanescent light in the higher order mode, but is longer than a penetration length of evanescent light in the fundamental mode.09-29-2011
20120275279Systems and Methods for Laser Write Control - Various embodiments of the present invention provide systems and methods for data writing. As an example, a heat assisted data write circuit is discussed that includes a heat write output, a magnetic write output, and a variable phase shift circuit operable to modify a relative phase of the heat write output to the magnetic write output.11-01-2012
20120275278Systems and Methods for Data Write Loopback Based Timing Control - Various embodiments of the present invention provide systems and methods for data writing. As an example, a heat assisted loopback circuit is discussed that includes: a read circuit, a magnetic write circuit, a heat write circuit, and a loopback circuit. The read circuit is operable to sense data from a storage medium, and to provide the sensed data as a read output. The magnetic write circuit is operable to provide a write output corresponding to an excitation signal of a write head. The heat write circuit is operable to provide a heat output corresponding to an excitation signal of a heat source. The loopback circuit is operable to selectively couple a derivative of the heat output to the read output and to selectively couple a derivative of the write output to the read output.11-01-2012
20120281512BINARY ANISOTROPY MEDIA - A method of writing binary data comprising (i) heating a magnetic microstructure from an initial temperature to an above-ambient temperature that is not less than a transition temperature for the magnetic microstructure, which causes a phase transition interlayer of the magnetic microstructure to transition from an antiferromagnetic phase to a ferromagnetic phase; and (ii) reversing an orientation of magnetization of a magnetic storage layer of the magnetic microstructure with a magnetic field while the phase transition interlayer is in the ferromagnetic phase.11-08-2012
20110310713THERMALLY ASSISTED HEAD HAVING REFLECTION MIRROR FOR PROPAGATING LIGHT - A magnetic head includes a magnetic head slider; and a laser diode that is positioned on a surface of a side opposite to a substrate of the magnetic head slider and that generates laser light; the magnetic head slider including: a core through which the laser light emitted from the laser diode propagates as propagating light; a cladding that covers the core and that has a refractive index that is smaller than that of the core; a near field light generating means that generates near field light from the propagating light on an air bearing surface; and a main pole for recording that is disposed adjacent to the near field light generating means and of which an edge part is positioned on the air bearing surface. The core includes a reflection layer and a seed layer, the reflection layer has a refractive index smaller than that of the core, and has a reflection surface on which laser light emitted from the laser diode reflects so as to enter the core as the propagating light, and the seed layer is positioned on a back surface of the reflection surface of the reflection layer and suppresses plasmon generation on the reflection surface.12-22-2011
20130194901HEAT-ASSISTED MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDING AND READING APPARATUS - The heat-assisted magnetic recording medium of the present invention has a substrate, an under layer formed on the substrate, and a magnetic layer formed on the under layer, in which the magnetic layer includes an alloy having a L108-01-2013
20130201805Active Media for Heat Assisted Magnetic Recording (HAMR) - An apparatus includes a magnetic recording layer and a thermally active material adjacent to and/or embedded in the magnetic recording layer, wherein the thermally active material has a thermal property that changes when the temperature of the thermally active material changes, or undergoes a phase transition in a predetermined temperature range, to reduce a peak temperature or increase a thermal gradient of a heated portion of the magnetic recording layer.08-08-2013
20120087217THERMALLY ASSISTED MAGNETIC HEAD, HEAD GIMBAL ASSEMBLY, AND HARD DISK DRIVE - A thermally assisted magnetic head is formed by performing a head forming process, a mounting part forming process and a light source mounting process in that order. In the head forming process, a planned area is secured on a light source placing surface of a slider substrate, then a magnetic head part is formed on a head area other than the planned area and a spacer for securing a mounting space for the laser diode is formed on the planned area. In the mounting part forming process, a light source mounting part is formed by removing the spacer. In the light source mounting process, a laser diode is mounted on the light source mounting part formed by the mounting part forming step.04-12-2012
20120092971Cross-track alignment waveguides and alignment scheme using alignment waveguides - A waveguide structure for aligning a light source to a center waveguide (CWG) in a TAMR head is disclosed and includes two alignment waveguides (AWVG) symmetrically formed about a plane that bisects the CWG lengthwise dimension. Each AWVG has a light coupling section formed parallel to a side of the CWG and captures 0.5% to 10% of the light in the CWG. Each AWVG has an outlet that directs light to a photo detector or camera so that light intensity measurements l04-19-2012
20130208578MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDING AND REPRODUCING APPARATUS - Disclosed is a magnetic recording medium having a structure in which at least an underlayer, a first magnetic layer and a second magnetic layer are sequentially stacked on a substrate, wherein the first magnetic layer includes an alloy having an L108-15-2013

Patent applications in class Light beam generation

Patent applications in all subclasses Light beam generation