Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Transducer position control

Subclass of:

367 - Communications, electrical: acoustic wave systems and devices

367014000 - SEISMIC PROSPECTING

367015000 - Offshore prospecting

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
367017000 Hydromechanical 21
367018000 Fluid variation 2
20130028046METHOD AND SYSTEM OF DEPTH TRIGGERS FOR MARINE GEOPHYSICAL SURVEY CABLE RETRIEVER SYSTEMS - Depth triggers for marine geophysical survey cable retriever systems. At least some of the illustrative embodiments include causing a submerged geophysical survey cable to surface. In some cases, the causing the cable to surface may include: fracturing a frangible link wherein the frangible link, before the fracturing, affixes position of a piston within a cylinder bore of a housing coupled to the geophysical survey cable, and the fracturing of the frangible link responsive to pressure exerted on a face of the piston as the geophysical survey cable reaches or exceeds a predetermined depth; moving the piston within the cylinder bore; and deploying a mechanism that makes the geophysical survey cable more positively buoyant.01-31-2013
20120120759IMMERSION CONTROL METHOD AND APPARATUS FOR A STATIONARY SEISMIC STREAMER - A seismic streamer incorporates apparatus for controlling its depth of immersion for modifying and maintaining its degree of immersion, wherein, the streamer being designed for stationary use and including a power supply network, the immersion control apparatus comprises a plurality of variable buoyancy ballasts connected to the power supply network of the streamer and installed at regular intervals along the seismic streamer and each associated with a microcontroller for at least controlling buoyancy of the corresponding ballast, a plurality of pressure sensors also installed at regular intervals along the streamer, at least one receiver for one or more desired value instructions, a bus for distributing the one or more desired value instructions to the ballasts, the microcontroller associated with a given ballasts being adapted to receive at least signals originating from at least one pressure sensor located in the proximity of the ballast and instruction signals originating from the receiver for instructions, being adapted to calculate a control signal for modifying the buoyancy of the ballast as a function of at least the signals received and being adapted to send this control signal at least to the corresponding ballast.05-17-2012
Entries
DocumentTitleDate
20110176383METHOD AND APPARATUS FOR ACCURATE PLACEMENT OF OCEAN BOTTOM SEISMIC INSTRUMENTATION - Embodiments described herein relate to an apparatus and method for deployment and retrieval of one or more seismic devices in a deep water marine environment. In one embodiment, a method for deploying and positioning ocean bottom equipment is described. The method includes attaching at least one article having a negative buoyancy to a support cable, lowering the at least one article into the water column from two or more points of suspension on a surface of the water column, at least one of the two or more points of suspension being movable relative to the other point of suspension, and manipulating tension of the support cable, length of the support cable, position of the support cable, and distance between the two or more points of suspension to cause the at least one article to fall to a bottom of the water column at a predetermined location on the bottom.07-21-2011
20130028045SEISMIC SURVEY DESIGNS FOR ATTENUATING SEA-SURFACE GHOST WAVE EFFECTS IN SEISMIC DATA - A method for acquiring seismic data. The method may include towing an array of marine seismic streamers coupled to a vessel. The array includes a plurality of receivers and a plurality of steering devices. The method may further include steering the array of marine seismic streamers to be towed along two or more depths, and steering the array of marine seismic streamers to a slant from an inline direction while maintaining the array of marine seismic streamers at their respective two or more depths.01-31-2013
20090122640ACQUIRING AZIMUTH RICH SEISMIC DATA IN THE MARINE ENVIRONMENT USING A REGULAR SPARSE PATTERN OF CONTINUOUSLY CURVED SAIL LINES - A method for determining a sail plan for a towed-array marine seismic survey, includes: dividing a survey area into a regular grid of tiles; and identifying a subset of the tiles as nodes around which continuously curved sail lines are defined. The nodes define regular pattern further including: a first subpattern of nodes; and a second subpattern of nodes offset from the first subpattern. In alternative aspects, a computer-readable program storage medium may be encoded with instructions that, when executed by a processor, perform the method, or a computing apparatus may be programmed to perform the method. A method for conducting a towed array marine survey includes: traversing a plurality of continuously curved sail lines across a survey area, each sail line being relative to a node; and acquiring seismic data while traversing the continuously curved sail lines. The set of nodes defining a regular pattern further including: a first subpattern of nodes; and a second subpattern of nodes offset from the first subpattern.05-14-2009
20130033960METHOD AND SYSTEM OF A CONTROLLABLE TAIL BUOY - Controllable tail buoy. At least some of the illustrative embodiments are methods including: towing a sensor streamer and tail buoy through water, the sensor streamer defining a proximal end and a distal end with the tail buoy coupled to the distal end, and the towing with the sensor streamer and the tail buoy submerged; and during the towing controlling depth of the distal end of the sensor streamer at least in part by the tail buoy; and steering the distal end of the sensor streamer at least in part by the tail buoy.02-07-2013
20100020637Methods for Controlling Marine Seismic Equipment Orientation During Acquisition of Marine Seismic Data - Methods are described for actively steering a towed marine seismic component using one or more actively controllable control members; reducing the actively steering of the control members during duration of a time window of recording seismic reflections from a sub-surface geological feature of interest; and resuming the actively steering of the control members after the time window. The marine seismic component may be a streamer, a source, or both. Other methods allow measuring initial orientation of a streamer based on measuring static control surface angle of a control surface of an inline steerable bird. This abstract is provided to comply with the rules requiring an abstract, and allow a reader to ascertain the subject matter of the technical disclosure. It will not be used to interpret or limit the scope or meaning of the claims.01-28-2010
20100074049MARINE SEISMIC ACQUISITION METHOD AND SYSTEM - An elongate body for parenteral injection at low velocity from a device is described. The body has at least one pointed end and comprises at least one active material. In addition, the body has a compressive strength of greater than or equal to 5 Newton and the pointed end has an included angle of between about 10-50°. A solid vaccine formulation for needle-free parenteral delivery, methods for making the body, packaging of the body and use of the body, packaging and suitable delivery device are also described.03-25-2010
20130077435METHODS AND APPARATUS FOR STREAMER POSITIONING DURING MARINE SEISMIC EXPLORATION - Disclosed are apparatus and methods for streamer positioning during marine seismic exploration. In one embodiment, a designated location for each of one or more transponders is determined based on a survey area, and each transponder is anchored to a sea floor at its own designated location. A marine seismic survey is then performed over the survey area with a marine-towed seismic sensor array, where multiple transceivers are moved along with the seismic sensor array during the marine seismic survey. Signals are communicated between the plurality of transceivers and each transponder so as to determine positions of the plurality of transceivers. Other embodiments, aspects, and features are also disclosed.03-28-2013
20130039148MARINE SEISMIC SURVEY SYSTEM AND METHOD FOR ACTIVE STEERING OF SOURCE ARRAYS IN SUCH A SYSTEM - A seismic survey array that includes one or more streamers adjustably fixed to a towing vessel by at least a first deflected lead-in and a second deflected lead-in and at least one group of source arrays having one or more devices for generating pulses in water vessel. The array is further provided with means for laterally and/or longitudinally changing the position of the source array(s) with respect to the vessel and/or its direction of motion, the means including a wire and winching system. The means for adjusting the position of the source arrays further includes a wire or rope with one end fixed to one front end of the units and extending from the unit to the adjacent lead-in and back to a capstan arranged on the front end of the unit.02-14-2013
20130070558MULTIPLE RECEIVER LINE DEPLOYMENT AND RECOVERY - Embodiments described herein relate to an apparatus and method of transferring seismic equipment to and from a marine vessel and subsurface location. In one embodiment, a marine vessel is provided. The marine vessel includes a deck having a plurality of seismic sensor devices stored thereon, two remotely operated vehicles, each comprising a seismic sensor storage compartment, and a seismic sensor transfer device comprising a container for transfer of one or more of the seismic sensor devices from the vessel to the sensor storage compartment of at least one of the two remotely operated vehicles.03-21-2013
20130070557STEERABLE SOURCE SYSTEMS AND METHOD - A marine acoustic source system for generating an acoustic wave in a body of water. The marine acoustic source system includes a first marine acoustic source array having first and second external source sub-arrays, each sub-array including one or more individual source elements; a first actuator device connected to the first external source sub-array; and a first rope connecting the first actuator device to a first lead-in that is configured to connect to a head of a streamer. The first actuator device is configured to control a length of the first rope in order to control a position of the first source array relative to the streamer.03-21-2013
20130051175Quality-Based Steering Methods and Systems for 4D Geophysical Surveys - A survey method includes towing one or more sources and one or more streamers behind a vessel to acquire geophysical survey data. Steering signals are determined for at least one of: the one or more sources, the one or more streamers, and the vessel. The steering signals minimize an error function having parameters that include a measure of a cross-line position error and a measure of data quality. The cross-line position error may be measured as an offset of the sources or the receivers from their desired paths, or in some embodiments as an offset between midpoints for base survey traces and subsequent survey traces. Some embodiments may employ a maximum spatial cross-correlation coefficient between a newly acquired trace and one or more base survey traces as a data quality measure, while others may employ a time shift, a phase rotation, or a normalized root mean square error. Data quality may indicate sensor noise levels.02-28-2013
20130088937METHOD AND SYSTEM OF MARINE SURVEY - Marine survey. The various embodiments includes both methods and systems. At least some of the illustrative embodiments are methods including: deploying a spreader structure from vessel into a body of water, wherein the spreader structure defines a deployed width of one kilometer or more; coupling a plurality of sensor streamers to the spreader structure; and towing the plurality of sensor streamers through the water, where the horizontal separation between the sensor streamers is at least partially maintained by the spreader structure. The spreader structure provides horizontal separation sensor streamers without the use of a tensioning force applied to the spreader structure.04-11-2013
20090092003CONTROLLING A SEISMIC SURVEY TO REDUCE THE EFFECTS OF VIBRATION NOISE - A technique includes towing a particle motion sensor in connection with a seismic survey and controlling the survey to cause a notch in a frequency response of the particle motion sensor to substantially coincide with a frequency band at which aliased vibration noise appears in a seismic signal acquisition space of the particle motion sensor.04-09-2009
20120224453METHOD AND DEVICE FOR ALTERNATING DEPTHS MARINE SEISMIC ACQUISITION - System and method for enriching a bandwidth of seismic data related to a subsurface of a body of water. The system includes streamers and sources that are towed at alternating depths during consecutive and/or adjacent line of sails or during the same line of sail.09-06-2012
20130188449BUOY BASED MARINE SEISMIC SURVEY SYSTEM AND METHOD - A seismic survey system for recording seismic data underwater in the presence of underwater currents. The system includes first plural buoys configured to descend in water at a predetermined depth (H07-25-2013
20130188450ACTIVELY CONTROLLED BUOY BASED MARINE SEISMIC SURVEY SYSTEM AND METHOD - A buoy for recording seismic signals while underwater. The buoy includes a body; a buoyancy system configured to control a buoyancy of the body to descend to a predetermined depth (H07-25-2013
20120113746Noise Suppression by Adaptive Speed Regulations of Towed Marine Geophysical Streamer - A method for towing marine geophysical sensor streamers in a body of water includes moving a towing vessel at a selected speed along the surface of the body of water. At least one geophysical sensor streamer is towed by the vessel at a selected depth in the water. A velocity of the streamer in the water is measured at at least one position along the streamer. The selected speed of the towing vessel is adjusted if the measured velocity is outside of a selected range.05-10-2012
20110280100METHOD FOR SEISMIC ACQUISITION ON THE SEABED, GUIDING EQUIPMENT, SEISMIC ACQUISITION EQUIPMENT AND SEISMIC ACQUISITION SYSTEM FOR THE IMPLEMENTATION OF THIS METHOD - The invention relates to a method for acquiring seismic data at a plurality of positions spread out over a zone on the seabed which includes transmitting acoustic waves in the water layer above the zone by a plurality of sources, for each of the acquisition positions, dropping from the surface a seismic acquisition equipment, the equipment comprising a seismic acquisition unit and autonomous guiding equipment adapted to receive whilst descending acoustic signals from the sources and to control its trajectory according to the received acoustic signals so as to direct said equipment towards said position, performing the seismic acquisition, causing the acquisition equipments to move up to the surface, and retrieving the acquisition equipments on the surface.11-17-2011
20120087206Apparatus for Deployment of Ocean Bottom Seismometers - A deployment and retrieval apparatus for ocean bottom seismic receivers, the apparatus being a remotely operated vehicle (ROV) having a carrier attached thereto and carrying a plurality of receivers. The carrier includes a frame in which is mounted a structure for seating and releasing the receivers. The structure includes one or more movable conveyors disposed to move receivers along a linear path relative to the frame in order to discharge and retrieve ocean bottom seismic receivers.04-12-2012
20110286301Seismic Streamer Shape Estimation - A seismic streamer system and associated methods for estimating the shape of a laterally steered seismic streamer. The streamer is divided into a series of contiguous streamer segments by lateral-steering devices. Heading sensors positioned in forward and aft portions of each segment produce heading readings. Each segment is modeled as having a linear shape in the forward portion and a curved shape in the aft portion. The shape of the segment is estimated according to the model from the heading readings on the segment.11-24-2011
20130021872SEISMIC EXPLORATION NOISE REDUCTION DEVICE - A marine seismic exploration device includes a vessel; a sensor device on the vessel that senses movement of the vessel; a connection device that comprises an electric motor; a controller that communicates with the sensor device and the motor; and a seismic sensor connected with the connection device. The connection device has at least a first position where the connection device extends a first length and a second position where the connection device extends a second length, wherein the second length is longer than the first length. The controller is programmed to compensate for the movement of the vessel detected by the sensor by moving the connection device between positions to control the length that the connection device extends.01-24-2013
20110317514Method and system for streamer depth control - Depth and tilt control systems for geophysical sensor streamers and methods of use are discussed. Such systems may include a plurality of tilt sensors disposed at spaced apart locations along the geophysical sensor streamer, each tilt sensor having a first tilt sensing element arranged to measure tilt of the geophysical sensor streamer proximate the associated spaced apart location, a plurality of LFD control devices, each disposed proximate one of the tilt sensors along the geophysical sensor streamer, and a plurality of microcontrollers, each microcontroller in signal communication with at least one of the LFD control devices and its associated tilt sensor, wherein each microcontroller is capable of utilizing the tilt measured by the associated tilt sensor to selectively operate the associated LFD control device to cause the geophysical sensor streamer to align with a selected depth profile.12-29-2011
20100118644METHOD AND SYSTEM FOR CONTROLLING STREAMERS - A method and system for controlling the shape and separation of an arrangement of streamers towed behind a survey vessel. Each streamer is steered laterally by lateral steering devices positioned along its length at specific nodes. Each streamer is driven by its lateral steering devices to achieve a specified separation from a neighboring streamer. One of these actual streamers, used as a reference by the other actual streamers, is steered to achieve a specified separation from an imaginary, or ghost, streamer virtually towed with the actual streamers.05-13-2010
20120195162Devices and Methods for Positioning Tows in Marine Seismic Systems - A method and system for deploying seismic tows, such as seismic streamers, from a common carrier rope for conducting marine seismic surveys. The deployment system generally comprises a carrier rope having at least one deflector urging the carrier rope laterally relative to the towing vessel and seismic tows that are independently moveable along the deployed carrier rope to desired locations from which to be deployed. The carrier rope may be deployed from the tow vessel into the water prior to deploying the seismic streamer(s) into the water.08-02-2012
20090003129Single foil lateral force and depth control device for marine seismic sensor array - A lateral force and depth control device for a marine streamer includes a housing configured to be coupled within the streamer. A control surface is mounted to the housing such that a rotary orientation and an angle of attack of the control surface with respect to the housing are changeable. The device includes means for moving the control surface to a selected rotary orientation with respect to the housing. The device includes means for moving the control surface to a selected angle of attack with respect to the housing. A removable coupling is provided to couple the control surface to the means for moving to a selected rotary orientation and means for moving to a selected angle of attack.01-01-2009
20100128561SEAFLOOR-FOLLOWING STREAMER - Seismic exploration techniques and the seismic imaging of subsurface layers, particularly apparatus for seismic exploration near the seafloor, are disclosed. The apparatus enables controlled depth towing of detectors to be carried out a short distance above the seafloor. The apparatus includes a streamer depth controller and at least one altitude keeper device, attached at intervals along the length of a towed streamer. The streamer carries detectors for measuring, for example, P- and S-waves in the seafloor.05-27-2010
20080304357APPARATUS AND METHODS FOR CONTROLLING POSITION OF MARINE SEISMIC SOURCES - Apparatus and methods are described for remotely controlling position of marine seismic equipment. One apparatus comprises a source connected to a tow member; and an adjustment mechanism connected to the source and the tow member, the adjustment mechanism adapted to actively manipulate an angle of attack of the source. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.12-11-2008
20110007602ACCURACY OF A COMPASS PROVIDED WITH A CARRIER STRUCTURE FOR USE IN SUBTERRANEAN SURVEYING - Techniques or mechanisms are provided to improve accuracy in determining headings and/or shapes of carrier structures based on measurements made by one or more compasses that are attached to or provided with the carrier structures. The carrier structures are used to carry survey receivers that detect survey signals affected by a subterranean structure.01-13-2011
20110007603Method for Positioning the Front End of a Seismic Spread - Systems and methods for determining the position of a buoyancy element in a marine survey are described in which a passive reflecting material is disposed on the buoyancy element to enable a radar on the vessel to detect the position of the buoyancy element. The radar may emit a frequency modulated continuous wave or a sequence of frequency modulated or phase modulated sinusoidal waves.01-13-2011
20110228635Self-positioning nodal geophysical recorder - A nodal geophysical recorder includes a housing, at least one geophysical sensor disposed within the housing and a recording device for recording signals detected by the at least one geophysical sensor. A navigation device is configured to determine a path between an initial geodetic position of the housing and a selected geodetic position on the bottom of a body of water. At least one deflector is in signal communication with the navigation device and is configured to cause the housing to move along the determined path after the housing is released into the body of water from the initial position.09-22-2011
20090262601Methods for controlling towed marine sensor array geometry - A method for towing a streamer array includes moving a vessel along a body of water. Streamers are towed by vessel. A relative position is determined at selected points along each streamer with respect to the vessel. At least one of the streamers is deflected at at least one longitudinal position along the streamer in response to the determined positions to maintain the streamers in a selected geometry. The selected geometry is related to one of survey vessel heading, energy source trajectory, previously plotted sensor trajectory and a lateral separation related to distance from the towing vessel.10-22-2009
20100002536MARINE SEISMIC ACQUISITION WITH CONTROLLED STREAMER FLARING - Marine seismic data is acquired with a system of steerable seismic streamers that are intentionally maintained in a flared configuration while the streamers are towed through a body of water.01-07-2010
20090316524Flexible seismic data acquisition system for use in a marine environment - Systems and methods for marine seismic surveying of strata beneath a seafloor are disclosed, including, in certain aspects, locating an under water sensor cable with sensing apparatus on a seafloor beneath water; the cable having a first end connected to a first unmanned powered vehicle and a second end connected to a second unmanned powered vehicle; and, with the two vehicles, locating, moving, re-locating, raising, and/or maintaining tension on the cable. This abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure and is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims, 37 C.F.R. 1.72(12-24-2009
20110211422Method to Acquire Simultaneously Seismic Data With Source Arrays Designed for Specific Targets - A method for acquiring seismic data. The method may include towing one or more seismic streamers in the water, towing a first air gun array and a second air gun array in the water at a first depth, and towing a third air gun array and a fourth air gun array in the water at a second depth greater than the first depth. While towing the air gun arrays, the first and second air gun arrays and the third and fourth air gun arrays may be separated by a cross line distance that depends on a separation between the seismic streamers. The method may also include firing seismic energy, by the first, second, third and fourth air gun arrays, through the water into the earth. After firing the seismic energy, the method may record seismic signals reflected from strata in the earth beneath the water.09-01-2011
20110002193ACTIVE STEERING SYSTEMS AND METHODS FOR MARINE SEISMIC SOURCES - Systems and methods for automatic steering of marine seismic sources are described. One system comprises a marine seismic spread comprising a towing vessel and a seismic source, the seismic source comprising one or more source arrays each having a center of source array, each source array having one or more source strings; a seismic source deployment sub-system on the towing vessel, the sub-system controlled by a controller including a software module, the software module and the deployment sub-system adapted to control an inline distance between one of the centers of source array and a target coordinate. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, allowing a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).01-06-2011
20110044127REMOVING FREE-SURFACE EFFECTS FROM SEISMIC DATA ACQUIRED IN A TOWED SURVEY - A technique includes towing a spread of at least one streamer to acquire seismic data in response to energy produced by a seismic source. The technique includes towing the seismic source at least 100 meters behind a front end of the spread to configure the spread to acquire a split spread gather record.02-24-2011
20100226204MARINE SEISMIC SURVEYING IN ICY OR OBSTRUCTED WATERS - A skeg mounts from the stern of a towing vessel and extends below the waterline. A channel in the skeg protects cables for steamers and a source of a seismic system deployed from the vessel. Tow points on the skeg lie below the water's surface and connect to towlines to support the steamers and source. A floatation device supports the source and tows below the water's surface to avoid ice floes. The streamers can have vehicles deployed thereon for controlling a position on the streamer. To facilitate locating the streamers, these vehicles on the streamers can be brought to the surface when clear of ice floes so that GPS readings can be obtained and communicated to a control system. After obtaining readings, the vehicles can be floated back under the surface. Deploying, using, and retrieving the system accounts for ice at the surface in icy regions. In addition, handling the seismic record can account for noise generated by ice impact events.09-09-2010
20100135112Methods and Apparatus for Acquisition of Marine Seismic Data - Methods and apparatus for acquiring marine seismic data are described. One method comprises selecting tow depth of one or more marine seismic streamers based at least in part on lack of or presence of currents at different depths, and allowing the current to contribute to steering the streamers to desired lateral positions at the selected tow depth. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.06-03-2010
20080291778STABILIZED STREAMER CONNECTION SYSTEM - A connection system for connecting external devices to a streamer. The connection system comprises three outer collars maintained collinearly aligned by a stabilizing member, such as a lightweight, rigid tube, attached to each outer collar. The tube extends parallel to the bores of the outer collars. The forward and aft outer collars ride on races formed on the periphery of inner collars clamped around mounting structure in the interior of the streamer. An external device is attached to the forward collar and to the intermediate collar, which does not ride on an inner collar. The spacing between the forward and intermediate collars is fixed by the standard spacing of the two attachment points in standard external devices. The spacing between the forward and aft collars is set by the specified spacing of mounting structures in the interior of the streamer.11-27-2008
20080267010Methods and Systems for Efficiently Acquiring Towed Streamer Seismic Surveys - Methods and systems for efficiently acquiring towed streamer marine seismic data are described. One method and system comprises positioning a plurality of source-only tow vessels and one or more source-streamer tow vessels to acquire a wide- and/or full-azimuth seismic survey without need for the spread to repeat a path once traversed. Another method and system allows surveying a sub-sea geologic feature using a marine seismic spread, the spread smartly negotiating at least one turn during the surveying, and shooting and recording during the turn. This abstract is provided to comply with the rules requiring an abstract, allowing a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.10-30-2008
20090175124Method and Apparatus for Positioning a Center of a Seismic Source - The present invention provides a method and apparatus for positioning a center of a seismic source. The method includes determining a desired center-of-source of the seismic source and selecting one of a first and a second plurality of guns to form the seismic source based upon the desired center-of-source, a center-of-source of the first plurality being different than a center-of-source of the second plurality.07-09-2009
20100027374Methods and Systems for Efficiently Acquiring Towed Streamer Seismic Surveys - Methods and systems for efficiently acquiring towed streamer marine seismic data are described. One method and system comprises positioning a plurality of source-only tow vessels and one or more source-streamer tow vessels to acquire a wide- and/or full-azimuth seismic survey without need for the spread to repeat a path once traversed. Another method and system allows surveying a sub-sea geologic feature using a marine seismic spread, the spread smartly negotiating at least one turn during the surveying, and shooting and recording during the turn. This abstract is provided to comply with the rules requiring an abstract, allowing a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).02-04-2010
20090141587MARINE SEISMIC SURVEY METHOD AND SYSTEM - An inventive method provides for control of a seismic survey spread while conducting a seismic survey, the spread having a vessel, a plurality of spread control elements, a plurality of navigation nodes, and a plurality of sources and receivers. The method includes the step of collecting input data, including navigation data for the navigation nodes, operating states from sensors associated with the spread control elements, environmental data for the survey, and survey design data. The positions of the sources and receivers are estimated using the navigation data, the operating states, and the environmental data. Optimum tracks for the sources and receivers are determined using the position estimates and a portion of the input data that includes at least the survey design data. Drive commands are calculated for at least two of the spread control elements using the determined optimum tracks. The inventive method is complemented by an inventive system.06-04-2009
20120300581CATENARY FRONT-END GEAR AND METHOD - Method and catenary front-end gear for towing streamers under water. The catenary front-end gear includes a main cable configured to be attached to a vessel and a device; a connecting system configured to connect streamers to the main cable; and plural streamers. The main cable takes a catenary shape when towed by the first vessel underwater.11-29-2012
20110158043ELECTROMAGNETIC AND SEISMIC STREAMER CABLE AND METHOD FOR USING SUCH A STREAMER CABLE - A geophysical sensor cable has one or more sensor cable sections. Each of the sensor cable sections is provided with seismic and electromagnetic sensors arranged along said cable. The seismic sensors include a hydrophone and a seismic component receiver for seismic vector measurements while the sensor cable is at the sea-floor. The electromagnetic sensors include both E-field sensors and H-field sensors. The E-field sensors include pairs of first and second electrodes arranged with different positions along the cable and connected to a voltage amplifier. The H-field sensors include three mutually orthogonally arranged H-field component sensors.06-30-2011
20100014381OPTIMIZING A SEISMIC SURVEY FOR SOURCE SEPARATION - A technique includes determining at least one parameter that characterizes a seismic survey in which multiple interfering seismic sources are fired and seismic sensors sense energy that is produced by the seismic sources. The determination of the parameter(s) includes optimizing the seismic survey for separation of the sensed energy according to the seismic sources.01-21-2010
20120113745ACTIVE STEERING CURVED AND FLARED SEISMIC STREAMERS - The invention relates to seismic data acquisition in a marine environment with long streamers of hydrophone receivers towed by a boat. In the present invention, the streamers are steered to follow a course that is related to the navigated path of the boat. Hydrophones at the far ends of the long streamers are arranged to follow a course even though the boat may have made a significant turn that would otherwise pull the streamers off the desired course. Using this invention, seismic acquisition is more efficient by allowing the vessel to spend less time outside the survey area and making tighter turns to get back on productive seismic data acquisition.05-10-2012
20100172206ENHANCED WIDE AREA SEABED ANALYSIS - A seabed region (07-08-2010
20100246323SYSTEM AND METHOD FOR TOWING ACOUSTIC SOURCE ARRAYS - A technique facilitates the production of acoustic pulses used in marine seismic surveys. A source array system comprises a plurality of acoustic sources suspended from a float in a plurality of layers positioned at different vertical levels. A bridle is coupled to the plurality of layers to enable towing of the source array system. The bridle is constructed and connected in a manner such that the arrangement of acoustic sources substantially retains its nominal shape during towing.09-30-2010
20110182138Method and system for streamer depth control - A depth and level control system for a geophysical streamer according to one aspect of the invention includes a plurality of tilt sensors disposed at spaced apart locations along the streamer. The tilt sensors each have a first tilt sensing element arranged to measure tilt of the streamer along a longitudinal dimension thereof. A controller is in signal communication with each tilt sensor. A depth control device is in signal communication with each controller. The controller is programmed to operate the depth control device to cause the streamer to be level as measured by the tilt sensor.07-28-2011
20100195434Heterodyned Seismic Source - The invention relates to an apparatus for generating heterodyned seismic signals as well as methods of using the heterodyned signals and a system for generating the heterodyned seismic signals. The heterodyned signals can be used near sensitive marine animals because the source frequencies are ultrasonic and the heterodyned seismic signal is generated in a narrow beam.08-05-2010
20090161485FORWARD LOOKING SYSTEMS AND METHODS FOR POSITIONING MARINE SEISMIC EQUPMENT - Systems and methods for positioning one or more spread elements of a marine seismic spread are described. One system comprises a seismic vessel-mounted acoustic Doppler current meter adapted to ascertain at least the horizontal component of the current velocity vector at a point ahead of the seismic vessel, and one or more controllers adapted to use the ascertained current velocity vector to control position of one or more seismic spread elements. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(06-25-2009
20120257474Method for seismic surveying using wider lateral spacing between sources to improve efficiency - A method for towing a marine seismic acquisition array in a body of water includes towing a plurality of laterally spaced apart sensor streamers behind a survey vessel in the water. A lateral spacing between adjacent streamers is represented by L. At least two laterally spaced apart seismic energy sources are towed behind the survey vessel. A lateral spacing between the at least two sources is represented by kL, wherein k is a constant and wherein k is at most equal to the number of streamers.10-11-2012
20120081995COMBINED ELECTROMAGNETIC AND SEISMIC ACQUISITION SYSTEM AND METHOD - A method for marine geophysical surveying according to one aspect of the invention includes towing at least one geophysical sensor streamer in a body of water. The streamer includes a plurality of spaced apart electromagnetic field receivers disposed at spaced apart locations along the streamer. The streamer also includes a plurality of seismic sensors disposed at spaced apart locations. The seismic sensors each include at least one pressure responsive receiver and at least one particle motion responsive receiver. At selected times, a seismic energy source is actuated in the water. Particle motion and pressure seismic signals, and electromagnetic field signals are detected at the respective receivers.04-05-2012
20080279042ACTIVE STEERING FOR MARINE SOURCES - A seismic survey system includes a winch having a winch cable coupleable to a source array towable between two deflected lead-ins, a positioning system for determining a current position of the source array and a controller for adjusting the winch to modify the current position of the source array to a desired crossline position. The winches may be attached to the deflected lead-ins or mounted on a tow vessel. The winches exert lateral forces on the source array, derived from the deflected lead-ins, to control the inline position of the source array. A method includes positioning a seismic source array in tow behind a vessel comprises determining a current position of the source array and adjusting a lateral force applied to the source array to move the source array to a desired crossline position. Optionally, by adjusting the gun cable winch, the inline position may be controlled.11-13-2008
20080298173Wide area seabed analysis - A seabed region (12-04-2008
20120320711METHOD AND DEVICE FOR MARINE SEISMIC ACQUISITION - Method and system for improving azimuth distribution. The system includes plural streamers towed by a streamer vessel; a central source towed by the streamer vessel; first and second front sources located in front of the plural streamers along a traveling direction of the streamer vessel; and first and second tail sources located behind of the plural streamers along the traveling direction. The offset distance between the first and second tail sources, along a cross-line direction, is larger than an offset distance between the first and second front sources.12-20-2012
20120281498METHOD AND SYSTEM FOR CONTROLLING STREAMERS - A method and system for controlling the shape and separation of an arrangement of streamers towed behind a survey vessel. Each streamer is steered laterally by lateral steering devices positioned along its length at specific nodes. Each streamer is driven by its lateral steering devices to achieve a specified separation from a neighboring streamer. One of these actual streamers, used as a reference by the other actual streamers, is steered to achieve a specified separation from an imaginary, or ghost, streamer virtually towed with the actual streamers.11-08-2012
20120287752COMPACT BROADBAND SOURCE AND METHOD - Method and marine acoustic source array for generating an acoustic wave in a body of water. The marine acoustic source array includes a first depth sub-array set of first acoustic source points configured to be provided at a first depth (z11-15-2012
20130010571Towing Methods and Systems for Geophysical Surveys - Disclosed are methods and systems for controlling spread and/or depth in a geophysical survey. An embodiment discloses a submersible deflector, comprising: an upper portion comprising an upper fin section and upper foils disposed below the upper fin section, wherein at least one slot is defined between the upper foils; and a lower portion coupled to the upper portion and disposed below the upper portion, wherein the lower portion comprises a lower fin section and lower foils disposed above the lower fin section, wherein at least one slot is defined between the lower foils. Also disclosed are marine geophysical survey systems and methods of performing geophysical surveys.01-10-2013
20130010570Towing Methods and Systems for Geophysical Surveys - Disclosed are methods and systems for controlling spread and/or depth in a geophysical survey. An embodiment discloses a method for geophysical surveying, comprising: towing two streamers laterally spaced apart through a body of water at a depth of at least about 25 meters, each of the streamers comprising geophysical sensors disposed thereon at spaced apart locations; maintaining lateral separation of at least about 150 meters between the two streamers using at least two submersible deflectors, the two submersible deflectors being individually coupled to one of the two streamers; and detecting signals using the two geophysical sensors while the two streamers are towed at the depth of at least about 25 meters.01-10-2013
20130170316METHOD AND DEVICE FOR MARINE SEISMIC ACQUISITION - Methods and systems for improving azimuth distribution in a seismic acquisition system are described. A survey acquisition system includes a plurality of streamers towed by a plurality of streamer vessels, including a first streamer vessel and a second streamer vessel and a plurality of sources towed by a plurality of source vessels. The plurality of streamer vessels and plurality of source vessels are configured relative to one another such that the plurality of source vessels are positioned at one or more predetermined inline distances behind a portion of the first streamer vessel and are also positioned at one or more predetermined inline distances in front of a portion of the second streamer vessel. The plurality of streamer vessels and plurality of source vessels are also spaced apart from one another in a cross-line direction.07-04-2013
20080219093Sensing System - The present invention relates to a sensing system, in particular to sensing system for sensing undersea seismic events. A vibration sensor is provided for sensing seismic vibrations on the sea bed is provided. The vibration sensor is electrically coupled to a transmitter unit, the transmitter unit being arranged to transmit, in use, an acoustic wave from which the presence of a seismic vibration can be inferred. The acoustic wave modulates light travelling along a nearby optical cable, the modulation being recovered at a distant monitoring station. A flotation arrangement is provide for retaining the transmitter unit in a raised position relative to the sea bed to facilitate the coupling of the acoustic wave to the optical cable.09-11-2008
20130114373METHOD AND DEVICE FOR MARINE SEISMIC ACQUISITION - Method and system for improving offset/azimuth distribution. The system includes plural streamers towed by a streamer vessel; a central source towed by the streamer vessel; first and second front sources located in front of the plural streamers along a traveling direction of the streamer vessel; and first and second large offset front sources located in front of the first and second front sources along the traveling direction. The offset distance between the first and second large offset front sources, along a cross-line direction, is larger than an offset distance between the first and second front sources.05-09-2013
20130100763Seismic Data Acquisition and Source-Side Derivatives Generation and Application - The technologies described herein include systems and methods for performing a first seismic survey and performing a second seismic survey after a predetermined amount of time has lapsed between the first seismic survey and the second seismic survey. The shot times and the shot positions of the second seismic survey may be substantially the same as the shot times and the shot positions of the first seismic survey. After performing the seismic surveys, seismic data generated by the first seismic survey may be processed to generate a first image, and seismic data generated by the second seismic survey may be processed to generate a second image. After generating the first and second images, a difference between the first image and the second image may be computed to generate a time lapse difference image.04-25-2013
20100278010Method and system for passive acoustic monitoring in seismic survey operations - A system for passive acoustic monitoring in connection with seismic surveying includes a survey vessel having a recording system thereon. At least one seismic energy source is coupled to the vessel by a first towing cable. The towing cable includes at least one conductor therein. At least one seismic sensor streamer is coupled to the vessel by a lead in cable. At least one acoustic sensor is coupled to the at least one source by a second towing cable. The second towing cable includes at least one signal conductor configured to transmit signals from the acoustic sensor to the at least one conductor in the first towing cable. The at least one acoustic sensor is configured to detect marine mammal vocalization.11-04-2010
20120275264REMOVING FREE-SURFACE EFFECTS FROM SEISMIC DATA ACQUIRED IN A TOWED SURVEY - A technique includes towing a spread of at least one streamer to acquire seismic data in response to energy produced by a seismic source. The technique includes towing the seismic source at least 100 meters behind a front end of the spread to configure the spread to acquire a split spread gather record.11-01-2012
20130155805CONTROLLER AND METHOD FOR STEERING SOURCES - A marine acoustic source system and method for steering a seismic source array in a body of water during a seismic survey. The method includes measuring an actual position of the seismic source array; calculating a virtual position of the seismic source array, wherein the virtual position corresponds to a position of the seismic source array when towed with no adjustment from a source steering device; retrieving a pre-plot path that includes desired positions of the seismic source array for the seismic survey; and steering the vessel based on the virtual position so that the virtual position lies on the pre-plot path.06-20-2013
20130155806METHOD AND SYSTEM FOR MARINE SEISMIC SURVEY - A buoy is configured to record seismic signals while underwater. The buoy includes a body; a buoyancy system configured to control a buoyancy of the body to descend multiple times to a predetermined depth (H) and then resurface with a controlled speed; and a seismic sensor located in the body and configured to record the seismic signals. The seismic sensor is instructed to record the seismic signals as the buoy travels up and down between the water surface and the predetermined depth.06-20-2013
20130182531Marine Seismic Surveying with Towed Components Below Water Surface - A skeg mounts from the stern of a towing vessel and extends below the waterline. A channel in the skeg protects cables for steamers and a source (e.g., air gun array) of a seismic system deployed from the vessel. Tow points on the skeg lie below the water's surface and connect to towlines to support the steamers and the source. A floatation device supports the source and tows below the water's surface to avoid ice floes or other issues encountered at the water's surface. The floatation device has a depth controlled float and one or more adjustable buoyancy floats. The controlled float has its buoyancy controlled with pressurized gas used for the air gun source and actively controls the depth of air gun source in the water. Each of the adjustable float connects in line with the controlled float with flexible connections. Each adjustable float has its buoyancy preconfigured to counterbalance the weight in water of the air gun or portion of the source that the float supports.07-18-2013
20110286302Marine Seismic Survey Method and System - An inventive method provides for control of a seismic survey spread while conducting a seismic survey, the spread having a vessel, a plurality of spread control elements, a plurality of navigation nodes, and a plurality of sources and receivers. The method includes the step of collecting input data, including navigation data for the navigation nodes, operating states from sensors associated with the spread control elements, environmental data for the survey, and survey design data. The positions of the sources and receivers are estimated using the navigation data, the operating states, and the environmental data. Optimum tracks for the sources and receivers are determined using the position estimates and a portion of the input data that includes at least the survey design data. Drive commands are calculated for at least two of the spread control elements using the determined optimum tracks. The inventive method is complemented by an inventive system.11-24-2011
20120287751METHOD AND SYSTEM OF A COMPOUND BUOY - A compound buoy. At least some of the illustrative embodiments are buoy systems that include: a surface buoy; a subsurface buoy comprising an elongated outer body; a connector disposed on the lower surface; and a winch having a line, the line coupled between the surface buoy and the subsurface buoy. The buoy system has first configuration in which the upper surface of the subsurface buoy abuts the surface buoy, the abutting relationship held by tension in the line, and the buoy system has a second configuration where a distance between the surface buoy and the subsurface is limited by a length of the line spooled off the winch. In operation, the subsurface buoy supports more of the subsurface load than the surface buoy.11-15-2012
20130114372OSCILLATING FLARED STREAMERS - The invention relates to a seismic acquisition process where the streamers are intentionally directed to follow an oscillating sweep pattern behind a tow vessel to counteract the effect of the large gaps between the streamers while acquire a wide sweep of data through each pass over the survey area.05-09-2013
20120020185Collision Avoidance for Instrumented Probes Deployed From a Seismic Vessel - One embodiment of the invention concerns a probe that couples to a seismic vessel via a tow cable. When deploying probes from a seismic vessel that is towing source arrays and streamers, the probe and its tow cable can tangle with elements of the towed seismic spread. However, a cable guide may be used to lessen the risk for such entanglement by guiding the tow cable into the water at a distance removed from the seismic spread. Also, the probe may be steerable to steer the probe and tow cable away from the seismic spread. Other embodiments are described herein.01-26-2012
20120020184USING A DISTRIBUTED OPTICAL ACOUSTIC SENSOR TO POSITION AN OBJECT - A distributed optical acoustic sensor is provided along a structure in a body of water. The distributed optical acoustic sensor is used to detect acoustic waves generated by at least one acoustic source for positioning of at least one object in relation to the structure.01-26-2012
20130201790METHOD OF DEPLOYMENT, METHOD AND DEVICE FOR SEISMIC PROSPECTING IN AN AQUATIC MEDIUM - A method for seismic prospecting in an aquatic medium using a device having at least one seismic cable provided with sensors and at least one moving seismic source. The method includes the following steps: 1) moving the cable in the water using two drones each placed at one end of the cable and which maintain tension in the cable, the movement of the cable minimizing the deviation of the cable with respect to a desired route in the terrestrial reference frame where the movement of the cable is also being restricted by a maximum track curvature value in the water, and, at the same time; and 2) moving the seismic source in a reference frame connected to the cable, emitting waves via the seismic source, and sensing reflections of the waves by the cable.08-08-2013
20120081994Seismic Streamer Connection Unit - An apparatus includes a streamer cable section and a unit. The streamer cable section includes an associated group of seismic sensors. The unit connects to an end of the streamer cable section and includes a steering device, a controller, a network repeater and a router. The steering device is controllable to position the streamer section; the controller gathers seismic data provided by the associated group of seismic sensors and introduces the seismic data to a telemetry network of a streamer; the network repeater repeats a signal communicated along the telemetry network; and the router is disposed between the controller and the telemetry network.04-05-2012
20120092956METHOD AND DEVICE TO ACQUIRE SEISMIC DATA - Streamer and method for deploying the streamer for seismic data acquisition related to a subsurface of a body of water. The method includes a step of releasing into the body of water, from a vessel, a body having a predetermined length together with plural detectors provided along the body; a step of towing the body and the plural detectors such that the plural detectors are submerged; and a step of configuring plural birds provided along the body, to float at a predetermined depth from a surface of the water such that a first portion of the body has a curved profile while being towed underwater.04-19-2012
20130208564CATENARY SOURCE STEERING GEAR AND METHOD - A method and a catenary seismic source steering gear for towing seismic sources underwater. The catenary gear includes plural seismic sources configured to generate seismic waves underwater; a main rope configured to span between first and second vessels; and a connecting system configured to connect the plural seismic sources to the main rope. The main rope takes a substantially catenary shape when towed by the first and second vessels underwater.08-15-2013

Patent applications in class Transducer position control

Patent applications in all subclasses Transducer position control