Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Complementary

Subclass of:

365 - Static information storage and retrieval

365129000 - SYSTEMS USING PARTICULAR ELEMENT

365154000 - Flip-flop (electrical)

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20100027321Non-Volatile Single-Event Upset Tolerant Latch Circuit - A non-volatile single-event upset (SEU) tolerant latch is disclosed. The non-volatile SEU tolerant latch includes a first and second inverters connected to each other in a cross-coupled manner. The gates of transistors within the first inverter are connected to the drains of transistors within the second inverter via a first feedback resistor. Similarly, the gates of transistors within the second inverter are connected to the drains of transistors within the first inverter via a second feedback resistor. The non-volatile SEU tolerant latch also includes a pair of chalcogenide memory elements connected to the inverters for storing information.02-04-2010
20130083592SEMICONDUCTOR DEVICE WITH COMPLEMENTARY GLOBAL BIT LINES, OPERATING METHOD, AND MEMORY SYSTEM - A memory device includes sections arranged between a global bit line and a complementary global bit line, and having a section control unit disposed between first and second memory cell groups and connected between the global bit line and the complementary global bit line to provide a first read signal and a second read signal. A signal converter receives the first and second read signals and generates a stable controlled read signal indicative of a data value stored in the memory cell. A latch unit receives and latches the controlled read signal provided by the signal converter to generate a latched read signal.04-04-2013
20100046281SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a plurality of memory cells 02-25-2010
20100046280SRAM Yield Enhancement by Read Margin Improvement - A sense margin is improved for a read path in a memory array. Embodiments improve the sense margin by using gates with a lower threshold voltage in a read column multiplexer. A cross coupled keeper can further improve the sense margin by increasing a voltage level on a bit line storing a high value, thereby counteracting leakage on the “high” bit line.02-25-2010
20100097844Write-Assist SRAM Cell - An integrated circuit structure includes a word-line; a column select line; and a latch. The latch includes a first storage node and a second storage node complementary to each other; and an operation voltage node. A control circuit is coupled between the operation voltage node and the latch. The control circuit includes a first input coupled to the word-line; and a second input coupled to the column selection line. The control circuit is configured to interconnect the operation voltage node and the latch when both the word-line and the column select line are selected, and disconnect the operation voltage node and the latch when at least one of the word-line and the column select line is not selected.04-22-2010
20090129142SEMICONDUCTOR MEMORY - A SRAM memory is composed of FD-SOI transistors, and performance of the memory cell is improved by controlling an electric potential of a layer under a buried oxide film of a SOI transistor constituting a driver transistor. Performance of the SRAM circuit in the low power voltage state is improved. In the SRAM memory cell composed of the FD-SOI transistor, an electric potential of a well under a BOX layer is controlled to control a threshold voltage Vth, thereby increasing a current. Thus, the operations of the memory cell can be stabilized.05-21-2009
20100328990SRAM DEVICE - An SRAM device comprising a memory cell, the memory cell comprising two access transistors connected to a word line, and a flip-flop circuit having complementary transistors, the transistor being a field effect transistor having a standing semiconductor thin plate, a logic signal input gate and a bias voltage input gate, the gates sandwiching the semiconductor thin plate and being electrically separated from each other, and 12-30-2010
20120182793ASYMMETRIC SILICON-ON-INSULATOR SRAM CELL - A memory cell having N transistors including at least one pair of access transistors, one pair of pull-down transistors, and one pair of pull-up transistors to form a memory cell, wherein N is an integer at least equal to six, wherein each of the access transistors and each of the pull-down transistors is a same one of an n-type or a p-type transistor, and each of the pull-up transistors is the other of an n-type or a p-type transistor, wherein at least one of the pair of the pull down transistors and the pair of the pull up transistors are asymmetric.07-19-2012
20130088913CIRCUIT AND METHOD OF WORD LINE SUPPRESSION - A word line driver circuit for providing a suppressed word line voltage includes a switch configured to selectively load a word line to a suppressed word line voltage node and a word line charging circuit coupled between a high power supply node and the suppressed word line voltage node. The word line charging circuit includes a first transistor device responsive to a control pulse for charging the suppressed word line voltage node to a suppressed word line voltage and a second transistor device for maintaining the suppressed word line voltage.04-11-2013
20090067222SEMICONDUCTOR MEMORY DEVICE - SRAM cells are arranged in matrix along a first and a second bit line and a word line for single-ended reading of data from the second bit line. A first NMOS transistor and a first transfer transistor contained in the SRAM cell are formed in a first well with respective identical gate lengths and gate widths. A second NMOS transistor and a second transfer transistor contained in the SRAM cell are formed in a second well with respective identical gate lengths and gate widths. These gate widths are made wider than the gate widths of the first NMOS transistor and the first transfer transistor.03-12-2009
20120224415TRANSISTOR WITH REDUCED CHARGE CARRIER MOBILITY AND ASSOCIATED METHODS - One or more embodiments of the invention relate to a method comprising: treating a fin of a first n-channel access transistor in a static random access memory cell to have a lower charge carrier mobility than a fin of a first n-channel pull-down transistor in a first inverter in the memory cell, the first n-channel access transistor being coupled between a first bit line and a first node of the first inverter; and treating a fin of a second n-channel access transistor in the memory cell to have a lower charge carrier mobility than a fin of a second n-channel pull-down transistor in a second inverter in the memory cell, the second n-channel access transistor being coupled between a second bit line and a second node of the second inverter.09-06-2012
20120224414Solid-State Memory Cell with Improved Read Stability - A solid-state memory in which stability assist circuitry is implemented within each memory cell. Each memory cell includes a storage element, such as a pair of cross-coupled inverters, and an isolation gate connected between one of the storage nodes and the input of the opposite inverter. The isolation gate may be realized by complementary09-06-2012
20130064007DISTURB-FREE STATIC RANDOM ACCESS MEMORY CELL - A solid-state memory in which each memory cell includes a cross-point addressable write element. Each memory cell includes a storage element, such as a pair of cross-coupled inverters, and a read buffer for coupling one of the storage nodes to a read bit line for the column containing the cell. The write element of each memory cell includes one or a pair of write select transistors controlled by a write word line for the row containing the cell, and write pass transistors connected to corresponding storage nodes and connected in series with a write select transistor. The write pass transistors are gated by a write bit line for the column containing the cell. In operation, a write reference is coupled to one of the storage nodes of a memory cell in the selected column and the selected row, depending on the data state carried by the complementary write bit lines for that column.03-14-2013
20120195111In-Line Register File Bitcell - An SRAM bitcell architecture is described having a dedicated read port (N08-02-2012
20120113709Semiconductor Integrated Circuit Device with Reduced Leakage Current - The gate tunnel leakage current is increased in the up-to-date process, so that it is necessary to reduce the gate tunnel leakage current in the LSI which is driven by a battery for use in a cellular phone and which needs to be in a standby mode at a low leakage current. In a semiconductor integrated circuit device, the ground source electrode lines of logic and memory circuits are kept at a ground potential in an active mode, and are kept at a voltage higher than the ground potential in an unselected standby mode. The gate tunnel leakage current can be reduced without destroying data.05-10-2012
20130163312SRAM TIMING TRACKING CIRCUIT - A static random access memory (SRAM) test apparatus includes an array of SRAM test cells. The test cells are configured according to a layout with NMOS and PMOS transistors coupleable as inverters and responsive to a first passing gate transistor. At least one of the NMOS and PMOS transistors of a test cell at a predetermined location in the array is coupled to a fixed voltage to force a logic state of an associated inverter. A switching signal coupled to the associated inverter through a second passing gate transistor produces a detectable test current through one of the NMOS and PMOS transistors of the associated inverter of said test cell and through one of the NMOS and PMOS transistors of an associated inverter of an adjacent series-connected test cell.06-27-2013
20100165707Read/Write Margin Improvement in SRAM Design Using Dual-Gate Transistors - An integrated circuit structure includes a static random access memory (SRAM) cell. The SRAM cell includes a pull-up transistor and a pull-down transistor forming an inverter with the pull-up transistor. The pull-down transistor includes a front gate connected to a gate of the pull-up transistor, and a back-gate decoupled from the front gate.07-01-2010
20110299327FOUR-TRANSISTOR AND FIVE-TRANSISTOR BJT-CMOS ASYMMETRIC SRAM CELLS - A memory cell comprises asymmetric retention elements formed of bipolar junction transistors integrated with a CMOS transistor. The BJT transistors of the retention element may be vertically stacked. In one embodiment, the N region of two adjacent NPN BJT transistors may be connected to ground and may form a common emitter of the NPN BJT transistors while the P region of two adjacent PNP BJT transistors may be connected to high voltage and may form a common emitter of the PNP BJT transistors. For further compactness in one embodiment a base of one transistor doubles as a collector of another transistor. The retention element may have only a single bit line and a single write line, with no negative bit line. In some embodiments, a single inverter and only three transistors may form the retention element. Memory space may be cut approximately in half.12-08-2011
20110299325SRAM Devices And Methods Of Manufacturing The Same - Example embodiments relate to an SRAM device and a method of manufacturing the same. The SRAM device may include first transistors operating in a horizontal direction and second transistors that are disposed on the first transistors to operate in a vertical direction. In example embodiments, the second transistors may be vertically connected to the first transistors. In example embodiments, the second transistors may be vertical transistors that include vertical gates surrounding vertical channels.12-08-2011
20110299326TFET BASED 4T MEMORY DEVICES - A four transistor (4T) memory device is provided. The device includes a first cell transistor and a second cell transistor, the first and second cell transistors coupled to each other and defining latch circuitry having at least one multi-stable node. The device further includes a first access transistor and a second access transistor, the first and second access transistors coupling the at least one multi-stable node to at least one bit-line. In the device, each of the first and second cell transistors and each of the first and second access transistors is a unidirectional field effect transistor configured for conducting current in a first direction and to be insubstantially incapable of conducting current in a second direction.12-08-2011
20100165709ROBUST SRAM MEMORY CELL CAPACITOR PLATE VOLTAGE GENERATOR - An SRAM having two capacitors connected in series between respective bit storage nodes of each memory cell. The two inverters of the memory cell are powered by a positive voltage and a low voltage. The two capacitors are connected to each other at a common node. A leakage current generator is coupled to the common node. The leakage current generator supplies to the common node a leakage current to maintain a voltage which is approximately halfway between the voltages of the high and low SRAM supplies.07-01-2010
20100034013OPTICAL REFRESHING OF LOADLESS FOR TRANSISTOR SRAM CELLS - Loadless 4 transistor SRAM cell operation can be substantially improved yielding area saving and more stable operation by use of optical-light load. Parasitic photocurrents in PMOS anodes-substrate junctions act as load currents. Light can be introduced by either ambient light through transparent window on top of the chip or by cheap LED diode attached to chip surface.02-11-2010
20090168500SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a sub array including a plurality of memory cells each holding data arranged therein; a memory cell array including a plurality of the sub arrays arranged therein; paired bit lines including a first bit line and a second bit line connected to each of the sub arrays; and a write/read circuit arranged to correspond to each of the sub arrays, writing data to the sub array, and reading data from the sub array, wherein a pair of the sub array and the write/read circuit is repeatedly arranged along the paired bit lines, allowing the data to be transferred via the write/read circuit and the paired bit lines,07-02-2009
20080266937SEMICONDUCTOR DEVICE - A semiconductor device of the present invention has a memory cell array having plural CMOS static memory cells provided at intersecting portions of plural word lines and plural complementary bit lines. In the memory cell array, a switch MOSFET which is in an OFF state in a first operation mode and in an ON state in a second operation mode different from the first operation mode and first-conductivity-type and second-conductivity-type MOSFETs having a diode configuration are provided in parallel between a first source line to which sources of first-conductivity-type MOSFETs constituting first and second CMOS inverter circuits constituting the plural static memory cells are connected and a first power supply line corresponding to the first source line. A second source line to which sources of the second conductivity-type MOSFETs constituting the first and second CMOS inverter circuits are connected is connected to the second power supply line corresponding thereto.10-30-2008
20100277970Static random accee memory device - Additional transistors P11-04-2010
20090207650SYSTEM AND METHOD FOR INTEGRATING DYNAMIC LEAKAGE REDUCTION WITH WRITE-ASSISTED SRAM ARCHITECTURE - A system for integrating dynamic leakage reduction with a write-assisted SRAM architecture includes power line selection circuitry associated with each column of one or more SRAM sub arrays, controlled by a selection signal that selects the associated sub array for a read or write operation, and by a column write signal that selects one of the columns of the sub arrays. The power line selection circuitry locally converts a first voltage, corresponding to a cell supply voltage for a read operation, to a second lower voltage to be supplied to each cell selected for a write operation, as to facilitate a write function. The power line selection circuitry also locally converts the first voltage to a third voltage to be supplied to power lines in unselected sub arrays, the third voltage also being lower than the first voltage so as to facilitate dynamic leakage reduction.08-20-2009
20100080045ROBUST 8T SRAM CELL - This invention discloses a static random access memory (SRAM) cell which comprises a pair of cross-coupled inverters having a first storage node, a first NMOS transistor having a source and a drain connected between the first storage node and a bit-line, a second NMOS transistor having a source and a drain connected between a gate of the first NMOS transistor and a word-line, the second NMOS transistor having a gate connected to a first column select line, and a third NMOS transistor having a source and a drain connected between a ground (VSS) and the gate of the first NMOS transistor, and a gate connected to a second column select line, the second column select line being complementary to the first column select line.04-01-2010
20100080046SEMICONDUCTOR DEVICE - A logic circuit in a system LSI is provided with a power switch so as to cut off the switch at the time of standby, reducing leakage current. At the same time, an SRAM circuit of the system LSI controls a substrate bias to reduce leakage current.04-01-2010
20100124100DEVICE FOR CONTROLLING THE ACTIVITY OF MODULES OF AN ARRAY OF MEMORY MODULES - A memory device includes an array of memory modules, a global controller, and a local controller for each memory module in the array of memory modules being configured to deliver to the global controller an activity signal reflecting an activity of the respective memory module. The memory device includes a circuit configured to implement a NAND logic function based upon the activity signals and to output a control signal to the global controller based upon the NAND logic function.05-20-2010
20090201719Method and System for Semiconductor Memory - Methods and systems for embodiments of a 9T memory cell, memory devices which utilize such 9T memory cells and the creation of embodiments of such memory devices are disclosed. More specifically, an embodiment of a 9T memory cell may comprise a 6T memory cell portion and a 3T read port. Additionally, in one embodiment, a memory which utilizes 9T memory cells may be made by from a grid comprising columns and rows of transistors formed according to a layout for 6T memory cells.08-13-2009
20100177556ASYMMETRIC STATIC RANDOM ACCESS MEMORY - An asymmetric static random access memory (SRAM) device that includes at least one SRAM cell is provided. The SRAM cell includes the first inverter and the second inverter. The first inverter is coupled between a first power and a ground power, and includes a first output terminal coupled to a first node and a first input terminal coupled to a second node. The second inverter is coupled between the first power and the ground power, and includes a second input terminal coupled to the first node and a second output terminal coupled to the second node. When the first inverter and the second inverter receive current from the first power, the SRAM cell is programmed to a predetermined value in advance according to different conductance levels of the first inverter and the second inverter.07-15-2010
20080310212SRAM WITH ASYMMETRICAL PASS GATES - An SRAM having asymmetrical FET pass gates and a method of fabricating an SRAM having asymmetrical FET pass gates. The pass gates are asymmetrical with respect to current conduction from the drain to the source of the pass gate being different from current conduction from the source to the drain of the pass gate.12-18-2008
20090279348SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises a memory cell array, which includes a plurality of read word lines, a plurality of first and second read bit lines, and a plurality of memory cells arranged in array. The memory cell includes a first and a second cell node in complementary pair, a first drive transistor controlled by the second cell node, and a second drive transistor controlled by the first cell node. The read word line and the first read bit line are connected with each other via the first drive transistor. The read word line and the second read bit line are connected with each other via the second drive transistor.11-12-2009
20090285011STATIC RANDOM ACCESS MEMORY - A static random access memory (“SRAM”) comprising: a pair of inverters each having an input and an output; a cross-coupling path coupling the input of a first inverter to the output of a second inverter; and a transmission gate, wherein the transmission gate comprises a p-channel transistor coupling the input of the second inverter to the output of the first inverter; and an n-channel transistor coupling the input of the second inverter to the output of the first inverter in parallel with the p-channel transistor. In another embodiment, the SRAM comprises a first inverter having a supply voltage node connected to a supply voltage, and a ground node connected to ground; a second inverter cross-coupled with the first inverter and having a supply voltage node connected to a supply voltage, and a ground node; and a switch selectively connecting and disconnecting the ground node of the second inverter to ground.11-19-2009
20110170337TRANSISTOR WITH REDUCED CHARGE CARRIER MOBILITY AND ASSOCIATED METHODS - A device includes a first transistor including a fin and a second transistor including a fin, the fin of the first transistor having a lower charge carrier mobility than the fin of the second transistor. In a method, the fin of the first transistor is treated to have a lower charge carrier mobility than the fin of the second transistor.07-14-2011
20110199817ROBUST LOCAL BIT SELECT CIRCUITRY TO OVERCOME TIMING MISMATCH - An integrated circuit can include an SRAM array having cells arranged in columns, each column being connected to true and complementary read local bitlines RLBLT and RLBLC. A local bit-select circuit can be connected to the cells of a column of the SRAM array, which can include first and second pull-down devices for pulling down a respective one of RLBLT and RLBLC at a timing controlled by a write control signal WRT. The circuit can include cross-coupled p-type field effect transistors (“PFETs”) including a first PFET having a gate connected to RLBLT and having a drain connected to RLBLC, and a second PFET of the pair having a gate connected to RLBLC and having a drain connected to RLBLT. A first device can control a strength of the cross-coupled PFETs. A pair of cross-coupled n-type field effect transistors (“NFETs”) can have gates connected to gates of the first and second pull-down devices. A second device can control a strength of the cross-coupled NFETs. The operation of the first and second devices can be controlled by applying first and second signals having programmed levels thereto. The levels of the first and second signals may selectively activate either the first device or the second device, so as to activate either the cross-coupled PFETs or the cross-coupled NFETs at one time.08-18-2011
20080304313SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises a cell array having a plurality of SRAM cells arranged in a bit line direction and a word line direction orthogonal to said bit line direction in a matrix; and a peripheral circuit arranged adjacent to the cell array in the bit line direction. The cell array includes first P-well regions and first N-well regions shaped in stripes extending in the bit line direction and arranged alternately in the word line direction. The SRAM cell is formed point-symmetrically in the first P-well region and the first N-well regions located on both sides thereof. The peripheral circuit includes second P-well regions and second N-well regions extending in the bit line direction and arranged alternately in the word line direction.12-11-2008
20080278993Static random acess memory device - Additional transistors P11-13-2008
20090086528BACK GATED SRAM CELL - Methods, devices and systems for a back gated static random access memory (SRAM) cell are provided. One method embodiment for operating an SRAM cell includes applying a potential to a back gate of a pair of cross coupled p-type pull up transistors in the SRAM during a write operation. The method includes applying a ground to the back gate of the pair of cross coupled p-type pull up transistors during a read operation. The charge stored on a pair of cross coupled storage nodes of the SRAM is coupled to a front gate and a back gate of a pair of cross coupled n-type pull down transistors in the SRAM during the write operation and during a read operation.04-02-2009
20120069637SEMICONDUCTOR MEMORY DEVICE AND SEMICONDUCTOR DEVICE - An object is to provide a semiconductor memory device which holds data of an SRAM or a flip-flop circuit and holds data in the SRAM while electric power is not supplied from a reader or electric power is not enough, without changing a battery for driving a power supply corresponding to deterioration of the battery with time, and a semiconductor device provided with the semiconductor memory device. An SRAM cell, a decoder connected to the SRAM cell through a word line, a read/write circuit connected to the SRAM cell through the data line, and a power storage unit connected to the SRAM cell are provided. The power storage unit is charged when data is written to or read from the SRAM cell through the data line.03-22-2012
20090027947SEMICONDUCTOR MEMORY DEVICE AND DRIVING METHOD THEREOF - In a reading operation, an off time and a reading time of a holding control transistor is controlled by a replica circuit, so that a read margin is enlarged. Furthermore, a high power source potential and a low power source potential of an SRAM memory cell are switched in reading and writing operations of the memory cell and in a data holding state by a power source potential switching portion. As a result, a write margin is enlarged, and a leakage current is reduced.01-29-2009
20090086529SEMICONDUCTOR STORAGE DEVICE - In a semiconductor storage device including a transistor for reading port, undesired voltage decrease may occur in a bit line in a reading operation due to a leak current from the transistor for reading port of a memory cell, which may cause a reading error. A semiconductor storage device according to one aspect of the present invention includes a third transistor having one of a source and a drain connected to a first bit line and switching supply of a ground voltage performed on the first bit line in accordance with a value held in a memory cell according to selection and non-selection of the memory cell, and a fixed voltage keeping circuit keeping a potential of the other of the source and the drain of the third transistor to a fixed potential in a memory cell non-selected state in a six-transistor SRAM.04-02-2009
20090097302SEMICONDUCTOR DEVICE - A logic circuit in a system LSI is provided with a power switch so as to cut off the switch at the time of standby, reducing leakage current. At the same time, an SRAM circuit of the system LSI controls a substrate bias to reduce leakage current.04-16-2009
20090244956Semiconductor memory device - In a memory cell, a margin for data preservation is provided while suppressing a current consumption associated with a low-power consumption mode. A MOS transistor has the same structure as NMOS transistors included in each of memory cells. When a low-power consumption mode is designated, a voltage developed at a node is stabilized by subtracting a margin voltage for data preservation across a first resistor from a voltage applied to a first node and by subtracting a threshold voltage of the MOS transistor from the resultant voltage is applied to a second node.10-01-2009
20100157661SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a first write bit line, a second write bit line, a write word line, a first read bit line, a read word line, and a memory cell array including a plurality of memory cells, and arranged the plurality of memory cells in a matrix fashion, wherein the memory cells including a first inverter including a first PMOS transistor and a first NMOS transistor, a second inverter including a second PMOS transistor, and a second NMOS transistor, and including an input terminal and an output terminal connected to an output terminal and an input terminal of the first inverter, respectively, a first write transfer transistor connected between a first write bit line and the output terminal of the first inverter, and including a gate connected to a write word line, a second write transfer transistor connected between a second write bit line and the output terminal of the second inverter, and including a gate connected to the write word line, a first read driver transistor including a gate connected to the input terminal of any one of the first inverter and the second inverter, and a first read transfer transistor connected to a first read bit line through the first read driver transistor, and including a gate connected to a read word line, the first read transfer transistor shared by at least two of the memory cells in the memory cell array.06-24-2010
20100182823Low Leakage High Performance Static Random Access Memory Cell Using Dual-Technology Transistors - A memory cell includes a storage element, a write circuit coupled to the storage element and a read circuit coupled to the storage element. At least a portion of the storage element and at least a portion of the write circuit are fabricated using a thicker functional gate oxide and at least a portion of the read circuit is fabricated using a thinner functional gate oxide.07-22-2010
20100188889BACK GATED SRAM CELL - Methods, devices and systems for a back gated static random access memory (SRAM) cell are provided. One method embodiment for operating an SRAM cell includes applying a potential to a back gate of a pair of cross coupled p-type pull up transistors in the SRAM during a write operation. The method includes applying a ground to the back gate of the pair of cross coupled p-type pull up transistors during a read operation. The charge stored on a pair of cross coupled storage nodes of the SRAM is coupled to a front gate and a back gate of a pair of cross coupled n-type pull down transistors in the SRAM during the write operation and during a read operation.07-29-2010
201002963368T SRAM Cell with Two Single Sided Ports - A dual port SRAM cell includes an auxiliary driver transistor on each data node. The SRAM cell is capable of single sided write to each data node. The auxiliary driver transistors in addressed cells may be biased independently of half-addressed cells. During write and read operations, the auxiliary driver transistors may be floated or biased. Auxiliary driver transistors in half-addressed SRAM cells may be biased. During standby modes, the auxiliary driver transistors may be floated. During sleep modes, the auxiliary driver transistors may be biased at reduced voltages. The auxiliary driver transistors in each cell may be independent or may have a common source node within each cell. Additional single sided write ports and read buffers may be added. A process of operating an integrated circuit that includes performing a single-sided write bit-side low, a single-sided write bit-side high, and a read bit-side operation.11-25-2010
20100195374Eight Transistor Soft Error Robust Storage Cell - A storage cell is provided with improved robustness to soft errors. The storage cell comprises complementary core storage nodes and complementary outer storage nodes. The outer storage nodes act to limit feedback between the core storage nodes and are capable of restoring the logical state of the core storage nodes in the event of a soft error. Similarly the core storage nodes act to limit feedback between the outer storage nodes with the same effect. This cell has advantages compared with other robust storage cells in that there are only two paths between the supply voltage and ground which limits the leakage power. An SRAM cell utilizing the proposed storage cell can be realized with two access transistors configured to selectively couple complementary storage nodes to a corresponding bitline. A flip-flop can be realized with a variety of transfer gates which selectively couple data into the proposed storage cell.08-05-2010
20100238716SEMICONDUCTOR MEMORY DEVICE AND SEMICONDUCTOR DEVICE GROUP - A semiconductor device includes a first CMOS inverter, a second CMOS inverter, a first transfer transistor and a second transfer transistor wherein the first and second transfer transistors are formed respectively in first and second device regions defined on a semiconductor device by a device isolation region so as to extend in parallel with each other, the first transfer transistor contacting with a first bit line at a first bit contact region on the first device region, the second transfer transistor contacting with a second bit line at a second bit contact region on the second device region, wherein the first bit contact region is formed in the first device region such that a center of said the bit contact region is offset toward the second device region, and wherein the second bit contact region is formed in the second device region such that a center of the second bit contact region is offset toward the first device region.09-23-2010
20100238714VOLATILE MEMORY ELEMENTS WITH SOFT ERROR UPSET IMMUNITY - Memory elements are provided that exhibit immunity to soft error upset events when subjected to high-energy atomic particle strikes. The memory elements may each have ten transistors including two address transistors and four transistor pairs that are interconnected to form a bistable element. Clear lines such as true and complement clear lines may be routed to positive power supply terminals and ground power supply terminals associated with certain transistor pairs. During clear operations, some or all of the transistor pairs can be selectively depowered using the clear lines. This facilitates clear operations in which logic zero values are driven through the address transistors and reduces cross-bar current surges.09-23-2010
20100238715VOLATILE MEMORY ELEMENTS WITH SOFT ERROR UPSET IMMUNITY - Memory elements are provided that exhibit immunity to soft error upset events when subjected to high-energy atomic particle strikes. The memory elements may each have ten transistors including two address transistors and four transistor pairs that are interconnected to form a bistable element. Clear lines such as true and complement clear lines may be routed to positive power supply terminals and ground power supply terminals associated with certain transistor pairs. During clear operations, some or all of the transistor pairs can be selectively depowered using the clear lines. This facilitates clear operations in which logic zero values are driven through the address transistors and reduces cross-bar current surges.09-23-2010
200903234018T LOW LEAKAGE SRAM CELL - This invention discloses a static random access memory (SRAM) cell comprising a pair of cross-coupled inverters connected between a positive supply voltage (Vcc) and a first node, a first NMOS transistor with a gate and drain connected to the first node and a source connected to a ground, and a second NMOS transistor with a drain and source connected to the first node and the ground, respectively, and a gate connected to a control-line.12-31-2009
20110032751SEMICONDUCTOR DEVICE - The present invention is directed to provide a semiconductor device having a dual-port memory circuit in which influence of placement of replica cells exerted on enlargement of chip area is reduced. A memory cell array of a dual-port memory circuit has: a first replica cell array used to respond to an instruction of reading operation from one of dual ports; and a second replica cell array used to respond to an instruction of reading operation from the other dual port. Each of the replica cell arrays has: replica bit lines obtained by mutually short-circuiting parallel lines having a length obtained by cutting, in half, an inversion bit line and a non-inversion bit line of complementary bit lines to which data input/output terminals of a memory cell are coupled; and replica cells coupled to the replica bit lines and having transistor placement equivalent to that of the memory cells.02-10-2011
20090168499SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises a plurality of cell arrays, each cell array containing a plurality of word lines, a plurality of bit lines crossing the word lines, and memory cells connected at intersections of the word lines and bit lines, the cell arrays arranged along the bit line; a plurality of bit line gates provided between the cell arrays and each operative to establish a connection between the bit lines in adjacent cell arrays; and a controlling circuit operative to form a data transfer path via the connection between the bit lines formed through the bit line gate when the controlling circuit accesses to the memory cell.07-02-2009
20090147561SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device includes a memory cell array having a plurality of SRAM cells arranged along a pair of bit lines that extend along a first direction. A read circuit is arranged for each column at one side of the memory cell array and detects a potential of any one of the pair of bit lines. A write circuit is arranged, separately from the read circuit, at the other side of the memory cell array. The write circuit provides written data to the pair of bit lines to write data to the SRAM cells.06-11-2009
20090067223COMPUTER-READABLE MEDIUM ENCODING A BACK-GATE CONTROLLED ASYMMETRICAL MEMORY CELL AND MEMORY USING THE CELL - Techniques are provided for back-gate control in an asymmetrical memory cell. In one aspect, the cell includes five transistors and can be employed for static random access memory (SRAM) applications. An inventive memory circuit can include a plurality of bit line structures, a plurality of word line structures that intersect the plurality of bit line structures to form a plurality of cell locations, and a plurality of cells located at the plurality of cell locations. Each cell can be selectively coupled to a corresponding one of the bit line structures under control of a corresponding one of the word line structures. Each cell can include a first inverter having first and second field effect transistors (FETS) and a second inverter with third and fourth FETS that is cross-coupled to the first inverter to form a storage flip-flop. One of the FETS in the first inverter can be configured with independent front and back gates and can function as both an access transistor and part of one of the inverters.03-12-2009
20110026314Static Memory Device with Five Transistors and Operating Method - At the bottom of a column (COLi) of memory cells (CEL) of the SRAM type with five portless transistors, there is placed an additional cell (CLS), with a structure identical to the cells (CEL), which makes it possible to write and read a datum in a memory cell (CEL) of the column without using a read amplifier.02-03-2011
20110026313TRANSISTOR-BASED MEMORY CELL AND RELATED OPERATING METHODS - A loadless static random access memory cell is provided. The memory cell includes four transistors. The first transistor has a gate terminal corresponding to a word line of the memory cell, a source/drain terminal corresponding to a first bit line of the memory cell, and a drain/source terminal corresponding to a first storage node of the memory cell. The second transistor has a gate terminal corresponding to the word line, a source/drain terminal corresponding to a second bit line of the memory cell, and a drain/source terminal corresponding to a second storage node of the memory cell. The third transistor has a gate terminal coupled to the second storage node, a drain terminal coupled to the first storage node, a source terminal corresponding to a reference voltage, and a body terminal directly connected to the third gate terminal. The fourth transistor has a gate terminal coupled to the first storage node, a drain terminal coupled to the second storage node, a source terminal corresponding to the reference voltage, and a body terminal directly connected to the fourth gate terminal.02-03-2011
20110026315Single-Event Upset Immune Static Random Access Memory Cell Circuit, System, And Method - A circuit and method are provided in which a six-transistor (6-T) SRAM memory cell is hardened to single-event upsets by adding isolation-field effect transistors (“iso-fets”) connected between the reference voltage Vdd and the field-effect transistors (“fets”) respectively corresponding to first and second inverters of the memory cell. According to certain embodiments, the control gates of first and second P-iso-fets are respectively tied to the control gates of first and second pull-up P-fets. According to certain embodiments, first and second N-iso-fets are connected between the output nodes of the memory cell and the pull-down N-fets respectively corresponding to the first and second inverters. The control gates of the first and second N-iso-fets are respectively tied to the control gates of the first and second pull-down N-fets. Again according to certain embodiments, one or more of the iso-fets are physically removed from the proximity of other transistors which comprise the memory cell.02-03-2011
20110085372NON-VOLATILE SRAM CELL THAT INCORPORATES PHASE-CHANGE MEMORY INTO A CMOS PROCESS - A SRAM cell having two cross-coupled inverters formed by CMOS technology and first and second chalcogenic elements integrated with the SRAM cell to add nonvolatile properties to the storage cell. The PCM resistors are programmed to the SET state and the RESET state, and upon power-up the SRAM cell takes on the data contained in the PCM cells.04-14-2011
20110211386Low Leakage High Performance Static Random Access Memory Cell Using Dual-Technology Transistors - A memory cell includes a storage element, a write circuit coupled to the storage element and a read circuit coupled to the storage element. At least a portion of the storage element and at least a portion of the write circuit are fabricated using a thicker functional gate oxide and at least a portion of the read circuit is fabricated using a thinner functional gate oxide.09-01-2011
20100188888Implementing Enhanced Dual Mode SRAM Performance Screen Ring Oscillator - A method and circuit for implementing an enhanced dual-mode static random access memory (SRAM) performance screen ring oscillator (PSRO), and a design structure on which the subject circuit resides are provided. The dual-mode SRAM PSRO includes a plurality of SRAM base blocks connected together in a chain. Each of the plurality of SRAM base blocks includes an eight-transistor (8T) SRAM cell, a local evaluation circuit and a logic function coupled to the SRAM cell. The eight-transistor (8T) static random access memory (SRAM) cell is an unmodified 8T SRAM cell. The dual-mode SRAM PSRO includes one mode of operation, where the output frequency is determined by write-through performance of the 8T SRAM cell; and another mode of operation, where the output frequency is determined by read performance of the 8T SRAM cell.07-29-2010
20110085371APPARATUS OF LOW POWER DUAL WORD LINE SIX-TRANSISTOR SRAMS - A six-transistor SRAM cell with dual word line and dual bit line is provided. Each word line is used to separately control an access transistor of the SRAM cell. A six-transistor SRAM cell with dual word line and a single bit line is also provided. The dual word line SRAM cells reduce word line and bit line switching power, and thus reduces the overall power consumption.04-14-2011
20100039854Structure, Structure and Method of Using Asymmetric Junction Engineered SRAM Pass Gates - A design structure, structure and method of using and/or manufacturing structures having asymmetric junction engineered SRAM pass gates is provided. The structure includes an SRAM cell having asymmetric junction-engineered SRAM pass gates with a high leakage junction and a low leakage junction. The asymmetric junction-engineered SRAM pass gates are connected between an internal node and a bit-line node. The high leakage junction is from a body to the internal node and the low leakage junction is from the body to the bit-line node.02-18-2010
20110249489Nanowire Circuits in Matched Devices - An inverter device includes a first nanowire connected to a voltage source node and a ground node, a first p-type field effect transistor (pFET) device having a gate disposed on the first nanowire, and a first n-type field effect transistor (nFET) device having a gate disposed on the first nanowire.10-13-2011
20100039853Design Structure, Structure and Method of Using Asymmetric Junction Engineered SRAM Pass Gates - A design structure, structure and method of using and/or manufacturing structures having asymmetric junction engineered SRAM pass gates is provided. The method includes applying a voltage through asymmetric pull-down nFETs with high junction leakage from their body to their source and low junction leakage from the body to their drain; applying a voltage through asymmetric pull-up pFETs with high junction leakage from their body to their source and low junction leakage from the body to their drain; and applying a voltage through asymmetrical pass gates which provide low leakage SOI logic.02-18-2010
20110157964Memory Cell Using Leakage Current Storage Mechanism - A memory cell comprises a storage element including a transistor and an inverter. The inverter has an input coupled to a first source/drain of the transistor at a first node and has an output coupled to a gate of the transistor at a second node. The transistor has a second source/drain coupled to a voltage supply of the memory circuit. The memory cell further includes a switching element coupled to the storage element at the first node and being operative to selectively access the storage element as a function of a control signal supplied to a control input of the switching element. The storage element is operative to store at least first and second data states. The first data state is retained in the storage element by maintaining the first node at a first voltage level by leakage current and by maintaining the second node at a second voltage level by active current. The second data state is retained in the storage element by maintaining the first node at the second voltage level and the second node at the first voltage level by respective active currents.06-30-2011
20110019464Smart Well Assisted SRAM Read and Write - An integrated circuit containing an array of SRAM cells with NMOS drivers and passgates, and an n-well bias control circuit which biases n-wells in each SRAM column independently. An integrated circuit containing an array of SRAM cells with PMOS drivers and passgates, and a p-well bias control circuit which biases p-wells in each SRAM column independently. A process of operating an integrated circuit containing an array of SRAM cells with NMOS drivers and passgates, and an n-well bias control circuit which biases n-wells in each SRAM column independently.01-27-2011
20100214824Converting SRAM cells to ROM Cells - A method of converting a static random access memory cell to a read only memory cell and the cell thus converted is disclosed. The cell to be converted comprises a data retention portion powered by a higher and lower voltage supply line and four transistors arranged as two cross coupled inverters. It is converted to a read only memory cell by severing a connection between at least one of said transistors within a first of said two inverters and one of said voltage supply lines such that when powered said first inverter outputs a predetermined value.08-26-2010
20100195375FULL CMOS SRAM - A full complementary metal-oxide semiconductor (CMOS) static random access memory (SRAM) may have a reduced cell size by arranging a word line of a pair of transistors arranged on the uppermost layer of the SRAM. First and second transistors may be arranged on first and second active regions. Third and fourth transistors may be arranged on first and second semiconductor layers formed over the first and second active regions. Fifth and sixth transistors may be arranged on the third and fourth semiconductor layers over the first and second semiconductor layers. A word line may be arranged in a straight line between the first and second gates of the first and second transistors and between the third and fourth gates of the third and fourth transistors.08-05-2010
20100027322SEMICONDUCTOR INTEGRATED CIRCUIT AND MANUFACTURING METHOD THEREFOR - In this invention, high manufacturing yield is realized and variations in threshold voltage of each MOS transistor in a CMOS•SRAM is compensated. Body bias voltages are applied to wells for MOS transistors of each SRAM memory cell in any active mode of an information holding operation, a write operation and a read operation of an SRAM. The threshold voltages of PMOS and NMOS transistors of the SRAM are first measured. Control information is respectively programmed into control memories according to the results of determination. The levels of the body bias voltages are adjusted based on the programs so that variations in the threshold voltages of the MOS transistors of the CMOS•SRAM are controlled to a predetermined error span. A body bias voltage corresponding to a reverse body bias or an extremely shallow forward body bias is applied to a substrate for the MOS transistors with an operating voltage applied to the source of each MOS transistor.02-04-2010
20090310398LOW POWER, SMALL SIZE SRAM ARCHITECTURE - A memory cell for driving a complementary pair of electrodes associated with a micro-mirror of a spatial light modulator includes two PMOS transistors coupled to a voltage source providing a source voltage. The two PMOS transistors are characterized by a first size. The memory cell also includes two NMOS transistors coupled to ground. Each of the two NMOS transistors are coupled to one of the two PMOS transistors and are characterized by a second size substantially equal to the first size. The memory cell further includes two word line transistors coupled to a word line and characterized by a third size substantially equal to the first size. Power savings associated with the precharge circuit on the order of (Vdh/Vdl)12-17-2009
201002963378T SRAM Cell with Four Load Transistors - An integrated circuit containing SRAM cells with auxiliary load transistors on each data node. The integrated circuit also contains circuitry so that auxiliary load transistors in addressed SRAM cells may be biased independently of half-addressed cells. A process of operating an integrated circuit containing SRAM cells with auxiliary load transistors on each data node. The process includes biasing the auxiliary load transistors in addressed SRAM cells independently of half-addressed cells.11-25-2010
20120307550Asymmetric Static Random Access Memory Cell with Dual Stress Liner - A solid-state memory in which each memory cell is constructed of complementary metal-oxide-semiconductor (CMOS) inverters implemented with dual stress liner (DSL) technology. Each memory cell includes a pair of cross-coupled CMOS inverters, and corresponding pass gates for coupling the cross-coupled storage nodes to first and second bit lines. Asymmetry is incorporated into each memory cell by constructing one of the inverter transistors or the pass-gate transistor using the stress liner with opposite stress characteristics from its opposing counterpart. For example, both of the p-channel load transistors and one of the n-channel driver transistors in each memory cell may be constructed with a compressive nitride liner layer while the other driver transistor is constructed with a tensile nitride liner layer. In another implementation, one of the n-channel pass-gate transistors is constructed with a compressive nitride liner layer while the other pass-gate transistor is constructed with a tensile nitride liner layer. Improved cell stability due to the resulting asymmetric behavior is implemented in a cost-free manner.12-06-2012
20120307551SEMICONDUCTOR DEVICE - The present invention is directed to provide a semiconductor device having a dual-port memory circuit in which influence of placement of replica cells exerted on enlargement of chip area is reduced. A memory cell array of a dual-port memory circuit has : a first replica cell array used to respond to an instruction of reading operation from one of dual ports; and a second replica cell array used to respond to an instruction of reading operation from the other dual port. Each of the replica cell arrays has : replica bit lines obtained by mutually short-circuiting parallel lines having a length obtained by cutting, in half, an inversion bit line and a non-inversion bit line of complementary bit lines to which data input/output terminals of a memory cell are coupled; and replica cells coupled to the replica bit lines and having transistor placement equivalent to that of the memory cells.12-06-2012
20110305073SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device according to an aspect of the invention includes plural writing word lines; first and second writing bit lines that intersect with the writing word lines; and plural memory cells that are provided at portions in which the plural writing word lines and the first and second writing bit lines intersect with each other. In the semiconductor memory device, the memory cell includes a flip-flop circuit that includes first and second nodes of a complementary pair; a first transfer transistor that is connected between the first writing bit line and the first node, a gate of the first transfer transistor being connected to the writing word line; and a second transfer transistor that is connected between the second writing bit line and the second node, a gate of the second transfer transistor being connected to the writing word line. The first and second writing bit lines are in a floating state whenever data is not written in the memory cell.12-15-2011
20120147662Semiconductor Integrated Circuit and Manufacturing Method Thereof - High manufacturing yield is realized and variation in threshold voltage of each MOS transistor in a CMOS·SRAM is compensated. Body bias voltages are applied to wells for MOS transistors of each SRAM memory cell in any active mode of an information holding operation, a write operation and a read operation of an SRAM. Threshold voltages of PMOS and NMOS transistors of the SRAM are first measured. Control information is programmed into control memories according to results of determination. Levels of the body bias voltages are adjusted based on the programs so that variations in the threshold voltages of the MOS transistors of the CMOS·SRAM are controlled to a predetermined error span. Body bias voltage corresponding to a reverse body bias or an extremely shallow forward body bias is applied to a substrate for the MOS transistors with an operating voltage applied to the source of each MOS transistor.06-14-2012
20100165708MEMORY CONTROLLER AND DECODER - A memory controller and a decoder are provided. The decoder is adapted to the memory controller. The decoder includes a first transistor to a fourth transistor. Gates of the first to the fourth transistor are coupled to a first to a fourth control signal respectively. A first terminal and a second terminal of the first transistor are coupled to a first voltage and a first terminal of the second transistor respectively. First terminals and second terminals of the third transistor and the fourth transistor are coupled to a second terminal of the second transistor and a second voltage respectively. When the first transistor and the second transistor are turned off, a voltage of the second control signal is lower than a voltage of the first control signal. Thereby, a gate-induced drain leakage (GIDL) current of the transistors is reduced.07-01-2010
20090027946METHOD AND APPARATUS FOR IMPLEMENTING ENHANCED SRAM READ PERFORMANCE SORT RING OSCILLATOR (PSRO) - A method and apparatus including a static random access memory (SRAM) cell implement an enhanced SRAM read performance sort ring oscillator (PSRO). A pair of parallel reverse polarity connected inverters defines a static latch or cross-coupled memory cell. The SRAM cell includes independent left and right wordlines providing a respective gate input to a pair of access transistors used to access to the memory cell. The SRAM cell includes a voltage supply connection to one side of the static latch. For example, a complement side of the static latch is connected to the voltage supply. A plurality of the SRAM cells is assembled together to form a SRAM base block. A plurality of the SRAM base blocks is connected together to form the SRAM read PSRO.01-29-2009
20110063896Semiconductor memory device - A semiconductor device according to the present invention includes a first memory cell array in which a plurality of first memory cells are arranged as a matrix, data being read from or written to the first memory cells, and a second memory cell array in which a plurality of second memory cells amplifying and storing the data of one of the plurality of the first memory cells arranged in a corresponding column are arranged as a matrix. The first memory cell array and the second memory cell array are arranged face to face in the column direction. An area of the second memory cell is larger than that of the first memory cell. An area of the first memory cell array is twice or more as large as that of the second memory cell array.03-17-2011
20110063895SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE AND SYSTEM - A semiconductor integrated circuit which can respond to changes of the amount of retained data at the time of standby is provided. The semiconductor integrated circuit comprises a logic circuit (logic) and plural SRAM modules. The plural SRAM modules perform power control independently of the logic circuit, and an independent power control is performed among the plural SRAM modules. Specifically, one terminal and the other terminal of a potential control circuit of each SRAM module are coupled to a cell array and a local power line, respectively. The local power line of one SRAM module and the local power line of the other SRAM module share a shared local power line. A power switch of one SRAM module and a power switch of the other SRAM module are coupled in common to the shared local power line.03-17-2011
20120120717SRAM CELL - The present invention provides an SRAM cell which does not have the constraints on the size of transistors in order to realize stabilized write and read operations, which has a fewer number of control signal lines per port, and which can be easily multi-ported in the read operation as well as the write operation so that the write and read operations can be performed through a single bit line. The SRAM cell includes a feedback control transistor for controlling connection or disconnection of a positive feedback circuit between particularly two inverters, a write control transistor and a read control transistor connected to a single bit line, and a read buffer transistor connected to the read control transistor.05-17-2012
20110317477CELL STRUCTURE FOR DUAL-PORT SRAM - The present disclosure provides a dual port static random access memory (SRAM) cell. The dual-port SRAM cell includes a first and second inverters cross-coupled for data storage, each inverter includes a pull-up device (PU) and a plurality of pull-down devices (PDs); a plurality of pass gate devices configured with the two cross-coupled inverters; and at least two ports coupled with the plurality of pass gate devices (PGs) for reading and writing, wherein each of PU, PDs and PGs includes a fin field-effect transistor (FinFET), a ratio between a number of PDs in the SRAM cell and a number of PGs in the SRAM cell is greater than 1, and a number of FinFETs in the SRAM cell is equal to or greater than 12.12-29-2011
20110317476Bit-by-Bit Write Assist for Solid-State Memory - A solid-state memory in which write assist circuitry is implemented within each memory cell. Each memory cell includes a storage element, such as a pair of cross-coupled inverters, that is connected in series with a pair of power switch transistors between a power supply node and ground. One of the power switch transistors is gated by a word line indicating selection of the row containing the cell, and the other is gated by a column select signal indicating selection of the column containing the cell in a write cycle. Upon a write to the cell, both power switch transistors are turned off, removing bias from the inverter that assists its change of state in a write operation. In other embodiments, a single power switch transistor gated by either a word line or a column select signal may be used.12-29-2011
20110317478Method and Circuit Arrangement for Performing a Write Through Operation, and SRAM Array With Write Through Capability - An improved method for performing a write through operation during a write operation of a SRAM cell (12-29-2011
20110157965SEMICONDUCTOR DEVICE - To improve reliability of a semiconductor device having an SRAM.06-30-2011
20120002460DYNAMICALLY CONFIGURABLE SRAM CELL FOR LOW VOLTAGE OPERATION - An embodiment of a memory device of SRAM type is proposed. The memory device includes a plurality of memory cells each for storing a first logic value represented by a first reference voltage or a second logic value represented by a second reference voltage. Each memory cell includes a bistable latch—having a main terminal, a complementary terminal, a set of main storage transistors for maintaining the main terminal at the reference voltage corresponding to the stored logic value, and a set of complementary storage transistors to maintain the complementary terminal at the reference voltage corresponding to the complement of the stored logic value—a main access transistor and a complementary access transistor for accessing the main terminal and the complementary terminal, respectively. The memory device may further include biasing means for modifying a value of a threshold voltage of at least one of the main transistors to a first threshold voltage value or to a second threshold voltage value and for modifying a threshold voltage value of at least one of the complementary transistors to the second threshold voltage value or to the first threshold voltage value during a write operation of the first logic value or of the second logic value, respectively, in the memory cell.01-05-2012
20120155152STATIC RANDOM ACCESS MEMORY - In a random access memory, one of a first conductivity type well constituting a first bit in one column group and another first conductivity type well constituting a second bit selected simultaneously to the first bit in an adjacent column group, is isolated from a common well of the first conductivity type by providing a deep well of a second conductivity type, such that the area of the deep well of the second conductivity type does not exceed the area of one column group.06-21-2012
20120063213SEMICONDUCTOR STORAGE DEVICE AND METHOD OF FABRICATING THE SAME - A semiconductor storage device includes a memory cell array, a plurality of word lines, a plurality of bit lines, a first gate wiring element 03-15-2012
20120063212SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - According to one embodiment, a semiconductor device includes a first transistor and a second transistor having a conductivity type which is different from a conductivity type of the first transistor, the first transistor and the second transistor being disposed on a semiconductor substrate such that a gate electrode of the first transistor and a gate electrode of the second transistor are connected to each other. The gate electrode of the first transistor includes first impurities and second impurities which suppress diffusion of the first impurities, and a concentration peak of the first impurities is formed at a shallower position than a concentration peak of the second impurities.03-15-2012
20120057399ASYMMETRIC VIRTUAL-GROUND SINGLE-ENDED SRAM AND SYSTEM THEREOF - The present invention discloses an asymmetric virtual-ground single-ended SRAM and a system thereof, wherein a first inverter is coupled to a high potential and a virtual ground, and wherein the first inverter and a second inverter form a latch loop, and wherein a third inverter is electrically connected with the second inverter, and wherein the third inverter and the second inverter are jointly coupled to the high potential and a ground. A write word line and a read word line control an access transistor and a pass transistor to undertake writing and reading of signals. A plurality of asymmetric virtual-ground single-ended SRAMs forms a memory system.03-08-2012
20120014173Disturb-Free Static Random Access Memory Cell - A solid-state memory in which each memory cell includes a cross-point addressable write element. Each memory cell includes a storage element, such as a pair of cross-coupled inverters, and a read buffer for coupling one of the storage nodes to a read bit line for the column containing the cell. The write element of each memory cell includes one or a pair of write select transistors controlled by a write word line for the row containing the cell, and write pass transistors connected to corresponding storage nodes and connected in series with a write select transistor. The write pass transistors are gated by a write bit line for the column containing the cell. In operation, a write reference is coupled to one of the storage nodes of a memory cell in the selected column and the selected row, depending on the data state carried by the complementary write bit lines for that column.01-19-2012
20090135643SEU HARDENING CIRCUIT AND METHOD - An SEU hardening circuit and method is disclosed. In one embodiment, a method includes providing a semiconductor memory component having a pair of pMOS transistors and a pair of nMOS transistors, tying a first pMOS body terminal of a first pMOS transistor of the pair of pMOS transistors to a second pMOS gate terminal of a second pMOS transistor of the pair of pMOS transistors, and tying at least a first pre-designated body terminal of at least one transistor selected from the group including essentially of a pair of pMOS transistors and a pair of nMOS transistors to at least a second pre-designated terminal of at least one pre-designated transistor selected from the group including essentially of the pair of pMOS transistors and the pair of nMOS transistors.05-28-2009
20130010531MEMORY CIRCUIT AND WORD LINE CONTROL CIRCUIT - The invention provides a memory circuit. In one embodiment, the memory circuit comprises a first PMOS transistor, a second PMOS transistor, a first NMOS transistor, a second PMOS transistor, and a memory cell array. The first PMOS transistor is coupled between a first voltage terminal and a first node. The second PMOS transistor is coupled between the first voltage terminal and a second node. The first NMOS transistor is coupled between a third node and a second voltage terminal. The second NMOS transistor is coupled between a fourth node and the second voltage terminal. The memory cell array comprises a plurality of memory cells, at least one comprising a first inverter and a second inverter. A positive power terminal of the first inverter is coupled to the first node, a negative power terminal of the first inverter is coupled to the third node, a positive power terminal of the second inverter is coupled to the second node, and a negative power terminal of the second inverter is coupled to the fourth node.01-10-2013
20120127784SEMICONDUCTOR STORAGE DEVICE - According to one embodiment, a dummy cell simulates an operation of a memory cell. A main dummy bit line transmits a signal read out from the dummy cell. An inverter makes a sense amplifier circuit to operate based on a potential of the main dummy bit line. n (n is a positive integer) number of auxiliary dummy bit lines are provided. A switching element connects at least one of the n number of auxiliary dummy bit lines to the main dummy bit line.05-24-2012
20090067221HIGH DENSITY 45NM SRAM USING SMALL-SIGNAL NON-STROBED REGENERATIVE SENSING - A memory device includes a plurality of cells comprising CMOS structures. A non-strobed regenerative sense-amplifier (NSR-SA) is coupled to the cells and employs offset compensation and avoids strobe timing uncertainty to increase read-access speeds.03-12-2009
20110103137SOURCE CONTROLLED SRAM - Disclosed is a cmos sram cell including two cross-coupled inverters, each having a pmos and an nmos transistor, a first signal line connected to the sources of each of the nmos transistors, a second signal line, parallel to the first signal line, and connected to the source of one of said pmos transistors, and a third signal line connected to the source of the other of said pmos transistors. The third signal line may be orthogonal to the first and second signal lines. Also disclosed is a cmos sram cell including two cross-coupled inverters, a pair of bitlines for writing data to the cell, and at least one further bitline for reading data from the cell.05-05-2011
20100246243SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device in accordance with an exemplary aspect of the present invention includes a plurality of memory cells arranged in a matrix pattern, a plurality of word lines each provided so as to correspond to each line of the memory cells, a plurality of bit lines each connected to respective one of the memory cells, and a row selection circuit that, in a read operation, drives the word line to a set potential at a drive speed slower than a discharge speed of the bit line exhibited when the word line is raised roughly vertically to VDD.09-30-2010
2012016306810T SRAM Cell with Near Dual Port Functionality - An integrated circuit including an array of SRAM cells containing a write port with a write word line and two read buffers with read word lines. The write port includes passgate transistors connected to each data node of the SRAM cell. A process of operating the integrated circuit in which source nodes of read buffer driver transistors are biased during a read operation. A process of operating the integrated circuit in which source nodes of read buffer driver transistors are floated during a read operation. A process of operating the integrated circuit in which the write port and the read ports share data lines and the source nodes of read buffer driver transistors are floated during a write operation.06-28-2012
2011018211210T SRAM Cell with Near Dual Port Functionality - An integrated circuit including an array of SRAM cells containing a write port with a write word line and two read buffers with read word lines. The write port includes passgate transistors connected to each data node of the SRAM cell. A process of operating the integrated circuit in which source nodes of read buffer driver transistors are biased during a read operation. A process of operating the integrated circuit in which source nodes of read buffer driver transistors are floated during a read operation. A process of operating the integrated circuit in which the write port and the read ports share data lines and the source nodes of read buffer driver transistors are floated during a write operation.07-28-2011
20120314485COMPLEMENTARY SOI LATERAL BIPOLAR FOR SRAM IN A LOW-VOLTAGE CMOS PLATFORM - An example embodiment is a memory cell including a SOI substrate. A first and second set of lateral bipolar transistors are fabricated on the SOI substrate. The first and second set of lateral bipolar transistors are electrically coupled to form two inverters. The inverters are cross coupled to form a memory element.12-13-2012
20120257443SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE WITH REDUCED LEAKAGE CURRENT - The gate tunnel leakage current is increased in the up-to-date process, so that it is necessary to reduce the gate tunnel leakage current in the LSI which is driven by a battery for use in a cellular phone and which needs to be in a standby mode at a low leakage current. In a semiconductor integrated circuit device, the ground source electrode lines of logic and memory circuits are kept at a ground potential in an active mode, and are kept at a voltage higher than the ground potential in an unselected standby mode. The gate tunnel leakage current can be reduced without destroying data.10-11-2012
20100271865Semiconductor Memory and Program - A memory wherein the bit reliability of the memory cells can be dynamically varied depending on the application or the memory status, the operation stability is ensured, and thereby a low power consumption and a high reliability are realized. Either a mode (a 1-bit/1-cell mode) in which one bit is composed of one memory cell or a mode (a 1-bit/n-cell mode) in which 10-28-2010
20120314486Semiconductor Memory Device for Reducing Charge/Discharge Power of Write Bitlines - It is aimed to provide a semiconductor memory device capable of solving a half-select problem in 8Tr SRAMs and, simultaneously, achieving a reduction in charge/discharge power in a half-selected column, which has been a problem with the conventional write-back scheme. An 8Tr SRAM includes 1) a bitline half driver circuit which is capable of reading retention data from read bitline (RBL) of each memory cell of a memory cell group in a column direction and drives the write bitlines only for the memory cells of a half-selected column according to the read data, 2) a selection signal circuit to which an enable signal and a column selection signal of the bitline half driver circuit are input and which activates the bitline half driver circuit, and 3) an equalizer circuit which equalizes the write bitlines of the memory cell group in the column direction and does not precharge the write bitlines.12-13-2012
20100296335Asymmetric SRAM Cell with Split Transistors on the Strong Side - An integrated circuit containing an SRAM cell array in which each SRAM cell includes an auxiliary NMOS driver or PMOS load transistor plus a bit-side passgate transistor and a bit-bar-side passgate transistor. An integrated circuit containing an SRAM cell array in which each SRAM cell includes an auxiliary PMOS driver or NMOS load transistor plus a bit-side passgate transistor and a bit-bar-side passgate transistor. A process of operating an integrated circuit containing an SRAM cell array in which each SRAM cell includes an auxiliary NMOS driver or PMOS load transistor plus a bit-side passgate transistor and a bit-bar-side passgate transistor. A process of operating an integrated circuit containing an SRAM cell array in which each SRAM cell includes an auxiliary PMOS driver or NMOS load transistor plus a bit-side passgate transistor and a bit-bar-side passgate transistor.11-25-2010
201002963346T SRAM Cell with Single Sided Write - An SRAM cell containing an auxiliary driver transistor is configured for a single sided write operation. The auxiliary driver transistor may be added to a 5-transistor single-sided-write SRAM cell or to a 7-transistor single-sided-write SRAM cell. The SRAM cell may also include a read buffer. During read operations, the auxiliary drivers are biased. During write operations, the auxiliary drivers in half-addressed SRAM cells are biased and the auxiliary drivers in the addressed SRAM cells may be floated or biased.11-25-2010
20120081949Active Bit Line Droop for Read Assist - A static random access memory (SRAM) includes an SRAM cell to store a bit of data. A word line accesses the SRAM cell, which, responsively, during a read, drives either a bit line true (BLT) or a bit line complement (BLC) low. Both BLT and BLC are precharged to a supply voltage, then, subsequently are discharged to a reference voltage, lower than the supply voltage, prior to the word line being activated. Because the bit lines are at a voltage lower than the supply voltage when the SRAM cell is activated, the SRAM cell stability is improved.04-05-2012
20120257442SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device having a read word line, a write word line and a sub-word driver operable to select the read word line using a main word signal and an inverse read block signal. The sub-word line selects the write word line using the main word signal and an inverse write block signal. The sub-word driver has a first inverter circuit using the main word signal as an input and outputting the read word line. The sub-word driver has a first transistor having a drain, a source, and a gate connected to the read word line, a low potential power source, and the inverse write block signal, respectively, and a second transistor having a drain, a source, and a gate connected to a power source terminal of the first inverter circuit, a power source, and the inverse write block signal, respectively, and can select the write word line.10-11-2012
20100328991SEMICONDUCTOR MEMORY DEVICE - A memory to which a bit line potential step-down technique is applied is provided. The memory includes an IO block including first transistors which control potentials of first bit lines provided with respect to columns of memory cells, and first logic gates which control the first transistors. The drain or source of each first transistor is connected to an input of the corresponding first logic gate, and the gate of each first transistor is connected to an output of the corresponding first logic gate. The first transistors are driven by pulses.12-30-2010
20080298117SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE - A semiconductor integrated circuit device, has a first variable resistor element and a second variable resistor element whose resistances are changed complementarily depending on a current; and a current path switching circuit that supplies said current from a power supply by switching between current paths according to whether a normal operation mode or a read mode is input externally, wherein said power supply is turned off and then turned on again in said normal operation mode, and in this state, data corresponding to the relationship between the magnitudes of the resistances of said first variable resistor element and said second variable resistor element is read in said read mode.12-04-2008
20080298118Asymmetrical SRAM cell with 4 double-gate transistors - The random access memory cell of SRAM type comprises an access transistor provided with a gate electrode connected to a word line. The access transistor is connected between a bit line and a gate electrode of a first load transistor itself connected to a gate electrode of a driver transistor and to a first source/drain electrode of a second load transistor. The first load transistor and the driver transistor, in series, form an inverter at the supply voltage terminals. At least the transistors not comprised in the inverter comprise two electrically independent gate electrodes. The second gate electrode of the access transistor is connected to the first gate electrode of the second load transistor and the second gate electrode of the latter is connected to the supply voltage.12-04-2008
20130170289LOW VOLTAGE WRITE TIME ENHANCED SRAM CELL AND CIRCUIT EXTENSIONS - A memory cell is formed by storage latch coupled between a true bit line node and a complement bit line node. The latch has an internal true node and an internal complement node. The cell additionally includes a first transistor that is source-drain coupled between the internal true node and a word line node. A control terminal of the first transistor is coupled to receive a signal from the complement bit line node and functions to source current into the true node during write mode. The cell further includes a second transistor that is source-drain coupled between the internal complement node and the word line node. A control terminal of the second transistor is coupled to receive a signal from the true bit line node and functions to source current into the complement node during write mode.07-04-2013
20110235406Low-Power 5T SRAM with Improved Stability and Reduced Bitcell Size - A 5 Transistor Static Random Access Memory (5T SRAM) is designed for reduced cell size and immunity to process variation. The 5T SRAM includes a storage element for storing data, wherein the storage element is coupled to a first voltage and a ground voltage. The storage element can include symmetrically sized cross-coupled inverters. A single access transistor controls read and write operations on the storage element. Control logic is configured to generate a value of the first voltage a write operation that is different from the value of the first voltage for a read operation.09-29-2011
20120327704SEMICONDUCTOR MEMORIES - A semiconductor memory includes a bit cell having first and inverters forming a latch. First and second transistors are respectively coupled to first and second storage nodes of the latch and to first and second write bit lines. Each of the first and second transistors has a respective gate coupled to a first node. Third and fourth transistors are coupled together in series at the first node and are disposed between a write word line and a first voltage source. Each of the first and second transistors has a respective gate coupled to a first control line. A fifth transistor has a source coupled to a second voltage source, a drain coupled to at least one of the inverters of the latch, and a gate coupled to the first node. A read port is coupled to a first read bit line and to the second storage node of the latch.12-27-2012
20120327705Data-Aware SRAM Systems and Methods Forming Same - Exemplary embodiments for SRAM cells, new control units for SRAM systems, and embodiments of SRAM systems are described herein. An SRAM cell is configured to receive a first input voltage signal and a second input voltage signal with a different value from the first input voltage signal, and to maintain a first stored value signal and a second stored value signal. A control circuit is configured to receive a first input voltage signal and a second input voltage signal, and controlled by a sleep signal, a selection signal, and a data input signal, so that the output of the control circuit is data sensitive to the data input signal. An SRAM system comprises a plurality of SRAM cells, controlled the disclosed control circuit wherein an SRAM cell has two input voltage signals controlled by a data input signal and its complement signal respectively.12-27-2012
20120140552WRITE ASSIST STATIC RANDOM ACCESS MEMORY CELL - Static random access memory (SRAM) cells are disclosed. In one example embodiment the SRAM cell includes a latch having a first node and a second node for storing bit information at the first node and a complement of the bit at the second node. The SRAM cell further includes a first switch controlled by a write operation signal, connected between a supply voltage and a first pull-up transistor of the latch and a third switch controlled the write operation signal, connected between the second node and a ground. The SRAM cell further includes a second switch controlled by the write operation signal, connected between the supply voltage and a second pull-up transistor and a fourth switch controlled by the write operation signal, connected between the second node and the ground. The write operation signals are generated by a first complex gate and a second complex gate.06-07-2012
20110157963SRAM WORD-LINE COUPLING NOISE RESTRICTION - A DC mode word-line coupling noise restriction circuit for multiple-port Random Access Memory cells. This circuit may comprise a Static Random Access Memory array. The SRAM array contains a plurality of columns and a plurality of rows with an SRAM cell formed at a cross-point of the columns and rows. Each SRAM cell has a first word-line conductor and a second word-line conductor. The first word-line conductor is connected to a first coupling noise restriction circuit. The first coupling noise restriction circuit comprises an inverter and a NMOSFET. The inverter has another NMOSFET and a PMOSFET.06-30-2011
20130021840SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - In an n-channel HK/MG transistor including: a gate insulating film made of a first high dielectric film containing La and Hf; and a gate electrode which is formed of a stacked film of a metal film and a polycrystalline Si film and which is formed in an active region in a main surface of a semiconductor substrate and surrounded by an element separation portion formed of an insulating film containing oxygen atoms, a second high dielectric film which contains Hf but whose La content is smaller than a La content of the first high dielectric film is formed below the gate electrode which rides on the element separation portion, instead of the first high dielectric film.01-24-2013
20080232157RANDOM ACCESS MEMORIES WITH AN INCREASED STABILITY OF THE MOS MEMORY CELL - In deep submicron memory arrays there is noted a relatively steady on current value and, therefore, threshold values of the transistors comprising the memory cell are reduced. This, in turn, results in an increase in the leakage current of the memory cell. With the use of an ever increasing number of memory cells leakage current must be controlled. Random access memories with a dynamic threshold voltage control scheme implemented with no more than minor changes to the existing MOS process technology is disclosed. The disclosed invention controls the threshold voltage of MOS transistors. Methods for enhancing the impact of the dynamic threshold control technology using this apparatus are also included. The invention is particularly useful for SRAM, DRAM and NVM devices.09-25-2008
20080225574MEMORY CELL WITH INDEPENDENT-GATE CONTROLLED ACCESS DEVICES AND MEMORY USING THE CELL - A memory cell includes double-gate first and second access devices configured to selectively interconnect cross-coupled inverters with true and complementary bit lines. Each access device has a first gate connected to a READ word line and a second gate connected to a WRITE word line. During a READ operation, the first and second access devices are configured to operate in a single-gate mode with the READ word line “ON” and the WRITE word line “OFF” while the double-gate pull-down devices are configured to operate in a double gate mode. During a WRITE operation, the first and second access devices are configured to operate in a double-gate mode with the READ word line “ON” and the WRITE word line also “ON.”09-18-2008
20130170288DUAL PORT REGISTER FILE MEMORY CELL WITH REDUCED SUSCEPTIBILITY TO NOISE DURING SAME ROW ACCESS - A memory cell is formed by storage latch having a true node and a complement node. The cell includes a write port operable in response to a write signal on a write word line to write data from write bit lines into the latch, and a separate read port operable in response to a read signal on a read word line to read data from the latch to a read bit line. The circuitry of the memory cell is configured to address voltage bounce at the complement node during reading of the memory (where the voltage bounce arises from a simultaneous write to another memory cell in a same row).07-04-2013
20130141963Methods and Apparatus for FinFET SRAM Cells - Methods and apparatus for providing finFET SRAM cells. An SRAM cell structure is provided including a central N-well region and a first and a second P-well region on opposing sides of the central N-well region, having an area ratio of the N-well region to the P-well regions between 80-120%, the SRAM cell structure further includes at least one p-type transistor formed in the N-well region and having a gate electrode comprising a gate and a gate dielectric over a p-type transistor active area in the N-well region; and at least one n-type transistor formed in each of the first and second P-well regions and each n-type transistor having a gate electrode comprising a gate and a gate dielectric over an n-type transistor active area in the respective P-well region. Methods for operating the SRAM cell structures are disclosed.06-06-2013
20110222332Fully Balanced Dual-Port Memory Cell - The present disclosure provides a dual port static random access memory (SRAM) cell. The dual-port SRAM cell includes four sets of cascaded n-type metal-oxide-semiconductor field-effect transistors (NMOSFETs), each set of cascaded NMOSFETs having a pull-down device and a pass-gate device; and a first and second pull-up devices (PU09-15-2011
20110235407SEMICONDUCTOR MEMORY DEVICE AND A METHOD OF MANUFACTURING THE SAME - A semiconductor memory device including a substrate, wherein the substrate includes first, second and third well regions, the first well region is disposed between the second and third well regions, the first well region includes a first type conductor and the second and third well regions each include a second type conductor. The semiconductor memory device includes first and second pull-up devices disposed in a line in the first well region and sharing a power supply voltage terminal, a first pull-down device disposed in the second well region, wherein the first pull-down device is adjacent to the first pull-up device, a second pull-down device disposed in the third well region, wherein the second pull-down device is adjacent to the second pull-up device, a first access device disposed in the second well region, wherein the first access device is adjacent to the second pull-up device, and a second access device disposed in the third well region, wherein the second access device is adjacent to the first pull-up device.09-29-2011
20100290269STATIC RANDOM ACCESS MEMORY - Included are a memory cell, a first metal interconnection, a variable capacitance circuit and a connection switch. The memory cell includes cross-coupled first and second inverters which are connected to a power supply node. The first metal interconnection is connected to the power supply node. The variable capacitance circuit includes: second and third metal interconnections electrically connected to a connection node; and a controller capable of controlling electrical connection between the third metal interconnection and the connection node. The connection switch is connected between the first metal interconnection and the connection node of the variable capacitance circuit. The connection switch is configured to electrically connect the first metal interconnection and the connection node in a write operation of the memory cell.11-18-2010
20100315862Stable SRAM Cell - SRAM cells and SRAM cell arrays are described. In one embodiment, an SRAM cell includes a first inverter and a second inverter cross-coupled with the first inverter to form a first data storage node and a complimentary second data storage node for latching a value. The SRAM cell further includes a first pass-gate transistor and a switch transistor. A first source/drain of the first pass-gate transistor is coupled to the first data storage node, and a second source/drain of the first pass-gate transistor is coupled to a first bit line. The first source/drain of the switch transistor is coupled to the gate of the first pass-gate transistor.12-16-2010
20100315861SRAM CELL AND SRAM DEVICE - In an SRAM cell including a first to a fourth semiconductor thin plates which stand on a substrate and are arranged in parallel to each other, on each of the four semiconductor thin plates being formed a first four-terminal double-gate FET with a first conductivity type; a second and a third four-terminal double-gate FETs which are connected in series with each other and have a second conductivity type; a fourth and a fifth four-terminal double-gate FETs which are connected in series with each other and have the second conductivity type; a sixth four-terminal double-gate FET with the first conductivity type, wherein the third and the fourth four-terminal double-gate FETs form select transistors, and the first, the second, the fifth and the sixth four-terminal double-gate FETs form a CMOS inverter, logic signal input gates of the first and the sixth four-terminal double-gate FETs are arranged on the side facing the second and the third semiconductor thin plates, respectively, while threshold voltage control gates of the second to the fifth four-terminal double-gate FETs are arranged on the sides facing each other and are commonly connected to a first bias line. Threshold voltage control gates of the first and the sixth four-terminal double-gate FETs are commonly connected to a second bias line. A word line, the first bias line and the second bias line are arranged orthogonally to the direction of arrangement of the first to the fourth semiconductor thin plates.12-16-2010
20090141539RADIATION TOLERANT SRAM BIT - In an integrated circuit, a radiation tolerant static random access memory device comprising a first inverter having an input and an output, a second inverter having an input and an output. A first resistor is coupled between the output of the first inverter and the input of the second inverter. A second resistor is coupled between the output of the second inverter and the input of the first inverter. A first write transistor is coupled to the output of the first inverter and has a gate coupled to a source of a first set of write-control signals and a second write transistor is coupled to the output of the second inverter and has a gate coupled to said source of a second set of write-control signals. Finally, a pass transistor has a gate coupled to the output of on of the first and second inverters.06-04-2009
20120281459ULTRA LOW POWER MEMORY CELL WITH A SUPPLY FEEDBACK LOOP CONFIGURED FOR MINIMAL LEAKAGE OPERATION - A memory cell with an internal supply feedback loop is provided herein. The memory cell includes a latch having two storage nodes Q and QB, and a supply node. A gating device couples the supply node of the latch to the supply voltage. The gating device is controlled by a feedback loop coming from storage node QB. Due to the aforementioned asymmetric topology, the writing of logic “1” and the writing of logic “0” are carried out differently. Contrary to standard SRAM cells, in the hold states, only the QB storage node presents a valid value of stored data. The feedback loop cuts off the supply voltage for the latch such that the latch is no longer an inverting latch. By cutting off the supply voltage at the stable hold states, while maintaining readability of the memory cell, leakage currents associated with the hold states are eliminated altogether.11-08-2012
20120281458ULTRA LOW POWER SRAM CELL CIRCUIT WITH A SUPPLY FEEDBACK LOOP FOR NEAR AND SUB THRESHOLD OPERATION - An SRAM memory cell with an internal supply feedback loop is provided herein. The memory cell includes a latch that has a storage node Q, a storage node QB, a supply node, and a ground node. The supply node is coupled via a gating device to a supply voltage and ground node is connected to ground. In addition, storage node Q is fed back via feedback loop into a control node of the gating device. In operation, writing into the memory cell may be carried out in a similar manner to dual port SRAM cells, utilizing one or two write circuitries and for writing into storage node Q and storage node QB respectively. Differently from standard SRAM cells, the feedback loop, by controlling the gating device is configured to weaken the write contention.11-08-2012
20130182495Efficient Static Random-Access Memory Layout - A complementary metal-oxide-semiconductor (CMOS) static random access memory (SRAM) with no well contacts within the memory array. Modern sub-micron CMOS structures have been observed to have reduced vulnerability to latchup. Chip area is reduced by providing no well contacts within the array. Wells of either or both conductivity types may electrically float during operation of the memory. In other implementations, extensions of the array wells into peripheral circuitry may be provided, with well contacts provided in those extended portions.07-18-2013
20130182494SKEWED SRAM CELL - A memory cell including a cross-coupled latch with corresponding storage nodes, and further including first and second write pass gate transistors and first and second read pass gate transistors. The write pass gate transistors are controlled by a write word line and the read pass transistors are controlled by a read word line. Each read and write pass gate transistor is coupled between a storage node and either a bit line or a complementary bit line. The write pass gate transistors are implemented at a first strength level and the read pass gate transistors are implemented at a second strength level which is less than the first strength level. In this manner, the read and write margins are independently configurable without negatively impacting each other.07-18-2013
20120026782SEMICONDUCTOR MEMORY DEVICE - In two inverters included in a latch in a memory cell, the source or drain of a PMOS load transistor connected to a memory node is cut off, and the source or drain of an NMOS drive transistor connected to another memory node is cut off, whereby internal data is fixed or permanently stored in the memory cell while ensuring a resistance to damage to the gate of the transistor and without impairing the regularity of the layout.02-02-2012

Patent applications in class Complementary