Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Resistive

Subclass of:

365 - Static information storage and retrieval

365129000 - SYSTEMS USING PARTICULAR ELEMENT

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20110176353Memristive Device Having a Porous Dopant Diffusion Element - A memristive device (07-21-2011
20110176350RESISTANCE-BASED MEMORY WITH REDUCED VOLTAGE INPUT/OUTPUT DEVICE - A resistance-based memory with a reduced voltage I/O device is disclosed. In a particular embodiment, a circuit includes a data path including a first resistive memory cell and a first load transistor. A reference path includes a second resistive memory cell and a second load transistor. The first load transistor and the second load transistor are input and output (I/O) transistors adapted to operate at a load supply voltage similar to a core supply voltage of a core transistor within the circuit.07-21-2011
20130044535REFERENCE CELL CIRCUIT AND VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE INCLUDING THE SAME - Included are reference cells each including a variable resistance element which reversibly changes between a predetermined low resistance state LR and a predetermined high resistance state HR according to an application of an electric signal, a comparator which compares resistance values of the reference cells, a pulse generation circuit which generates an electric signal for setting the reference cells to LR or HR, and a control circuit which controls operations where application of the generated electric signal to one of the reference cells corresponding to a comparison result of the comparator and application of a new electric signal generated by the pulse generation circuit to one of the reference cells corresponding to a new comparison result of the comparator are repeated, and then one of the reference cells corresponding to a final comparison result of the comparator is connected to an output terminal.02-21-2013
20130044534FORMING METHOD OF PERFORMING FORMING ON VARIABLE RESISTANCE NONVOLATILE MEMORY ELEMENT, AND VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE - A forming method of a variable resistance nonvolatile memory element capable of lowering a forming voltage and preventing variations of the forming voltage depending on variable resistance elements. The forming method is for initializing a variable resistance element, including a step (S02-21-2013
20130044533MEMORY ARRAY WITH CO-PLANAR WAVEGUIDE BASED MEMORY ELEMENT SELECTION - A memory array with co-planar waveguide based memory selection includes a first set of parallel conductive lines placed perpendicular to a second set of parallel conductive lines, memory elements disposed at intersections between the first set of conductive lines and the second set of conductive lines, and selection circuitry to apply an reading electrical condition to a selected one of the conductive lines and to ground conductive lines adjacent to the selected conductive line to form a co-planar waveguide.02-21-2013
20130044532LOW TEMPERATURE BEOL COMPATIBLE DIODE HAVING HIGH VOLTAGE MARGINS FOR USE IN LARGE ARRAYS OF ELECTRONIC COMPONENTS - A crystalline semiconductor Schottky barrier-like diode sandwiched between two conducting electrodes is in series with a memory element, a word line and a bit line, wherein the setup provides voltage margins greater than 1V and current densities greater than 5×1002-21-2013
20110182109VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE AND PROGRAMMING METHOD FOR SAME - A variable resistance nonvolatile memory device (07-28-2011
20110205780Semiconductor Integrated Circuit - In one embodiment, a semiconductor integrated circuit includes a first resistive-change element, a second resistive-change element and a first switching element. The first resistive-change element includes one end having a first polarity connected to a first power source. The first resistive-change element includes another end having a second polarity connected to an output node. The second resistive-change element includes one end having the second polarity connected to the output node. The first switching element includes a first terminal connected to another end of the second resistive-change element. The first switching element includes a second terminal connected to a second power source.08-25-2011
20100061142MEMORY ELEMENT AND MEMORY APPARATUS - Memory elements (03-11-2010
20090196087Non-volatile register - A non-volatile register is disclosed. The non-volatile register includes a memory element. The memory element comprises a first end and a second end. The non-volatile register includes a register logic connected with the first and second ends of the memory element. The register logic is positioned below the memory element. The memory element may be a two-terminal memory element configured to store data as a plurality of conductivity profiles that can be non-destructively determined by applying a read voltage across the two terminals. New data can be written to the two-terminal memory element by applying a write voltage of a predetermined magnitude and/or polarity across the two terminals. The two-terminal memory element retains stored data in the absence of power. A reference element including a structure that is identical or substantially identical to the two-terminal memory element may be used to generate a reference signal for comparisons during read operations.08-06-2009
20110310658Combined Memories In Integrated Circuits - Combined memories in integrated circuits are described, including determining a first requirement for logic blocks, determining a second requirement for memory blocks including a vertical configuration for the memory blocks, and compiling a design for the integrated circuit using the first requirement and the second requirement. The memory blocks may include non-volatile two-terminal cross-point memory arrays. The non-volatile two-terminal cross-point memory arrays can be formed on top of a logic plane. The logic plane can be fabricated in a substrate. The non-volatile two-terminal cross-point memory arrays may be vertically stacked upon one another to form a plurality of memory planes. The memory planes can be portioned into sub-planes. One or more different memory types such as Flash, SRAM, DRAM, and ROM can be emulated by the plurality of memory planes and/or sub-planes. The non-volatile two-terminal cross-point memory arrays can include a plurality of two-terminal memory elements.12-22-2011
20110310657RESISTIVE MEMORY DEVICES INCLUDING SELECTED REFERENCE MEMORY CELLS OPERATING RESPONSIVE TO READ OPERATIONS - A Resistance based Random Access Memory (ReRAM) can include a sense amplifier circuit that includes a first input coupled to a bit line of a reference cell in a first block of the ReRAM responsive to a read operation to a second block.12-22-2011
20110310656Memory Cell With Resistance-Switching Layers Including Breakdown Layer - A memory device in a 3-D read and write memory includes memory cells. Each memory cell includes a resistance-switching memory element (RSME) in series with a steering element. The RSME has a resistance-switching layer, a conductive intermediate layer, and first and second electrodes at either end of the RSME. A breakdown layer is electrically between, and in series with, the second electrode and the intermediate layer. The breakdown layer maintains a resistance of at least about 1-10 MΩ while in a conductive state. In a set or reset operation of the memory cell, an ionic current flows in the resistance-switching layers, contributing to a switching mechanism. An electron flow, which does not contribute to the switching mechanism, is reduced due to scattering by the conductive intermediate layer, to avoid damage to the steering element. Particular materials and combinations of materials for the different layers of the RSME are provided.12-22-2011
20110310655Composition Of Memory Cell With Resistance-Switching Layers - A memory device in a 3-D read and write memory includes memory cells. Each memory cell includes a resistance-switching memory element (RSME) in series with a steering element. The RSME has first and second resistance-switching layers on either side of a conductive intermediate layer, and first and second electrodes at either end of the RSME. The first and second resistance-switching layers can both have a bipolar or unipolar switching characteristic. In a set or reset operation of the memory cell, an ionic current flows in the resistance-switching layers, contributing to a switching mechanism. An electron flow, which does not contribute to the switching mechanism, is reduced due to scattering by the conductive intermediate layer, to avoid damage to the steering element. Particular materials and combinations of materials for the different layers of the RSME are provided.12-22-2011
20110310654Memory Cell With Resistance-Switching Layers And Lateral Arrangement - A memory device in a 3-D read and write memory includes memory cells. Each memory cell includes a resistance-switching memory element (RSME). The RSME has first and second resistance-switching layers on either side of a conductive intermediate layer, and first and second electrodes at either end of the RSME. The layers can be provided in a lateral arrangement, such as an end-to-end, face-to-face, L-shaped or U-shaped arrangement. In a set or reset operation of the memory cell, an electric field is applied across the first and second electrodes. An ionic current flows in the resistance-switching layers, contributing to a switching mechanism. An electron flow, which does not contribute to the switching mechanism, is reduced due to scattering by the conductive intermediate layer, to avoid damage to the steering element.12-22-2011
20110310653Memory Cell With Resistance-Switching Layers - A memory device in a 3-D read and write memory includes memory cells. Each memory cell includes a resistance-switching memory element (RSME) in series with a steering element. The RSME has first and second resistance-switching layers on either side of a conductive intermediate layer, and first and second electrodes at either end of the RSME. The first and second resistance-switching layers can both have a bipolar or unipolar switching characteristic. In a set or reset operation of the memory cell, an electric field is applied across the first and second electrodes. An ionic current flows in the resistance-switching layers, contributing to a switching mechanism. An electron flow, which does not contribute to the switching mechanism, is reduced due to scattering by the conductive intermediate layer, to avoid damage to the steering element. Particular materials and combinations of materials for the different layers of the RSME are provided.12-22-2011
20110194329MEMORY COMPONENT, MEMORY DEVICE, AND METHOD OF OPERATING MEMORY DEVICE - A memory component includes: a first electrode; a memory layer; and a second electrode which are provided in that order, wherein the memory layer includes an ion source layer containing aluminum (Al) together with at least one chalcogen element selected from the group consisting of tellurium (Te), sulfur (S), and selenium (Se), and a resistance variable layer provided between the ion source layer and the first electrode and containing an aluminum oxide and at least one of a transition metal oxide and a transition metal oxynitride having a lower resistance than the aluminum oxide.08-11-2011
20090122593Write driver circuit for phase-change memory, memory including the same, and associated methods - A write driver circuit for a memory that includes phase-change memory cells changeable between a RESET state resistance and a SET state resistance in response to an applied current pulse, the write driver circuit including a write current level adjusting unit configured to determine first to n-th SET state current levels in response to a SET state current level signal, where n is an integer greater than 1, and configured to determine a RESET state current level in response to a RESET state current level signal, and a write current output unit configured to generate one of a SET state current pulse and a RESET state current pulse corresponding to a SET state current level or a RESET state current level determined by the write current level adjusting unit.05-14-2009
20090122592NON-VOLATILE MEMORY DEVICE AND METHOD OF READING DATA THEREFROM - The present invention provides a method of reading data from a non-volatile memory device including word lines and bit lines that intersect each other and electrically rewritable memory cells that are arranged at intersections of the word lines and the bit lines and that respectively have variable resistive elements nonvolatily storing a resistances as data. The method includes: precharging a selected word line and unselected word lines to a first word line voltage and a selected bit line and unselected bit lines to a first bit line voltage; and reading data from a memory cell connected to the selected word line and the selected bit line by changing the voltage of the selected word line from the first word line voltage to a second word line voltage and changing the voltage of the selected bit line from the first bit line voltage to a second bit line voltage after the precharging.05-14-2009
20090122591Sense Amplifier Biasing Method and Apparatus - A memory device comprises sense amplifier circuitry, a current sink and a resistive element. The sense amplifier circuitry is operable to evaluate data read from a memory array included in the memory device responsive to a bias voltage applied to the sense amplifier circuitry. The current sink is operable to sink a bias current. The resistive element couples the current sink to the sense amplifier circuitry. The bias voltage applied to the sense amplifier circuitry corresponds to the voltage drop across the resistive element and current sink as induced by the bias current.05-14-2009
20090122590CONTROL OF A MEMORY MATRIX WITH RESISTANCE HYSTERESIS ELEMENTS - A control circuit (05-14-2009
20130077383Writing Circuit for a Resistive Memory Cell Arrangement and a Memory Cell Arrangement - A writing circuit for a resistive memory cell arrangement is provided, the resistive memory cell arrangement including a plurality of resistive memory cells. The writing circuit includes a controlled voltage source including a plurality of pass transistors, wherein each pass transistor includes a first source/drain terminal, a second source/drain terminal and a gate terminal, and wherein the first source/drain terminal is configured to be electrically coupled to a power supply line and the second source/drain terminal is configured to be electrically coupled to a bit line associated with a resistive memory cell of the plurality of resistive memory cells, and a plurality of switches, wherein each switch is configured to control the gate terminal of the pass transistor, wherein the controlled voltage source is configured to supply a voltage to the resistive memory cell for a write operation. Further embodiments provide a resistive memory cell arrangement.03-28-2013
20100027320RESISTANCE VARIABLE ELEMENT, RESISTANCE VARIABLE MEMORY APPARATUS, AND RESISTANCE VARIABLE APPARATUS - A resistance variable element (02-04-2010
20100118593VARIABLE RESISTANCE MEMORY DEVICE AND SYSTEM THEREOF - A phase-change random access memory device is provided. The phase-change random access memory device includes a global bit line connected to a write circuit and a read circuit, multiple local bit lines, each being connected to multiple phase-change memory cells, and multiple column select transistors selectively connecting the global bit line with each of the multiple local bit lines, each column select transistor having a resistance that varies depending on its distance from the write circuit and the read circuit.05-13-2010
20100118595RESISTANCE VARIABLE MEMORY DEVICES AND READ METHODS THEREOF - A resistance-variable memory device includes memory cells, a high voltage circuit, a precharging circuit, a bias circuit, and a sense amplifier. Each memory cell may, for example, include a resistance-variable material and a diode connected to a bitline. The high voltage circuit provides a high voltage from a power source. The precharging circuit raises the bitline up to the high voltage after charging the bitline up to the power source voltage. The bias circuit supplies a read current to the bitline using the high voltage. The sense amplifier compares a voltage of the bitline with a reference voltage by means of the high voltage.05-13-2010
20100118588VOLTAGE REFERENCE GENERATION FOR RESISTIVE SENSE MEMORY CELLS - Various embodiments of the present invention are generally directed to an apparatus and associated method for generating a reference voltage for a resistive sense memory (RSM) cell, such as an STRAM cell. A dummy reference cell used to generate a reference voltage to sense a resistive state of an adjacent RSM cell. The dummy reference cell comprises a switching device, a resistive sense element (RSE) programmed to a selected resistive state, and a dummy resistor coupled to the RSE. A magnitude of the reference voltage is set in relation to the selected resistive state of the RSE and the resistance of the dummy resistor.05-13-2010
20100073992SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a memory cell having a first resistance state and a second resistance state, a bit line connected to the memory cell, a reference cell fixed to the first resistance state, a reference bit line connected to the reference cell, and a generation circuit configured to generate a reading voltage and a reference voltage. The generation circuit includes a constant current source connected to a first node, a first replica cell connected between the first node and a second node and fixed to the first resistance state, a second replica cell connected between the second node and a third node and fixed to the second resistance state, a first resistance element connected between the first node and a fourth node, and a second resistance element connected between the fourth node and the third node.03-25-2010
20100073991STORAGE APPARATUS - According to one embodiment, a storage apparatus includes: a first inverter; a second inverter; a first storage element having a first state and a second state; and a second storage element having a third state and a fourth state, wherein the first storage element is brought into the first state when a current flows from the first storage element to the first storage element and is brought into the second state when the current flows from the first storage element to the first storage element, wherein the second storage element is brought into the fourth state when a current flows from the second storage element to the second storage element and is brought into the third state when the current flows from the second storage element to the second storage element.03-25-2010
20100073990Contemporaneous margin verification and memory access fr memory cells in cross point memory arrays - Circuitry and methods for restoring data values in non-volatile memory are disclosed. An integrated circuit includes a memory access circuit and a sensing circuit configured to sense a data signal during a read operation to at least one two-terminal non-volatile cross-point memory array. Each memory array includes a plurality of two-terminal memory cells. A plurality of the memory arrays can be fabricated over the substrate and vertically stacked on one another. Further, the integrated circuit can include a margin manager circuit configured to manage a read margin for the two-terminal memory cells substantially during the read operation, thereby providing for contemporaneous read and margin determination operations. Stored data read from the two-terminal memory cells may have a value of the stored data restored (e.g., re-written to the same cell or another cell) if the value is not associated with a read margin (e.g., a hard programmed or hard erased state).03-25-2010
20130077380NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device includes a memory cell array including cells provided at each of intersections of first and second lines and each having a variable resistance element and a first diode connected in series; a first line control circuit for supplying voltages to the first lines; and a second line control circuit for supplying voltages to the second lines, the cells each having one of the second lines connected to an anode side of the first diode and one of the first lines connected to a cathode side of the first diode, and the memory cell array including a second diode inserted in each of the second lines between the second line control circuit and the cells and each having a side of the second line control circuit as an anode and a side of the cells as a cathode.03-28-2013
20130077381HIGHLY INTEGRATED PROGRAMMABLE NON-VOLATILE MEMORY AND MANUFACTURING METHOD THEREOF - A highly integrated programmable non-volatile memory and a manufacturing method thereof are provided. More particularly, a memory device including an antifuse and a diode, or a variable resistor and a diode, an operation method thereof, and a manufacturing method of a plurality of memory cells capable of increasing the integration density by utilizing a vertical space are provided. The highly integrated programmable non-volatile memory includes first stepped cells and second stepped cells formed to have different heights. The first stepped cells are formed on a horizontal plane with a high height, and the second stepped cells are formed on a horizontal plane with a low height.03-28-2013
20130077382HYBRID MEMORY DEVICE, SYSTEM INCLUDING THE SAME, AND METHOD OF READING AND WRITING DATA IN THE HYBRID MEMORY DEVICE - A hybrid memory device is provided. The hybrid memory device includes a DRAM, a non-volatile memory and a control circuit. The control circuit selects one of output data of the DRAM and output data of the non-volatile memory according to a mode selecting signal and output the selected data. The control circuit outputs data requested to be output from the DRAM when the data requested to be output is in the DRAM, and may output the data requested to be output from the non-volatile memory when the data requested to be output is in the non-volatile memory. Accordingly, the hybrid memory device has a high speed in a read and write operation, and has low power consumption.03-28-2013
20130077384CROSS POINT VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE AND METHOD OF READING THEREBY - A cross point variable resistance nonvolatile memory device including: a cross point memory cell array having memory cells each of which is placed at a different one of cross points of bit lines and word lines; a word line decoder circuit that selects at least one of the memory cells from the memory cell array; a read circuit that reads data from the selected memory cell; an unselected word line current source that supplies a first constant current; and a control circuit that controls the reading of the data from the selected memory cell, wherein the control circuit controls the word line decoder circuit, the read circuit, and the unselected word line current source so that when the read circuit reads data, the first constant current is supplied to an unselected word line.03-28-2013
20130077379SEMICONDUCTOR MEMORY DEVICE, SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR MEMORY DEVICE - In a case where a DRAM and a ReRAM are mounted together, a manufacturing cost thereof is reduced while maintaining performance of a capacitance element and a variable resistance element. A semiconductor memory device includes a variable resistance element and a capacitance element. The variable resistance element has a cylinder type MIM structure with a first depth, and is designed for a variable resistance type memory. The capacitance element has a cylinder type MIM structure with a second depth deeper than the first depth, and is designed for a DRAM.03-28-2013
20130039119MEMORY CELL THAT INCLUDES MULTIPLE NON-VOLATILE MEMORIES - A system and method to read and write data at a memory cell that includes multiple non-volatile memories is disclosed. In a particular embodiment, a memory device includes a plurality of memory cells. At least one of the memory cells includes a first non-volatile memory including a first resistive memory element and a second multi-port non-volatile memory including a second resistive memory element. Each of the first non-volatile memory and the second non-volatile memory is accessible via multiple ports.02-14-2013
20130039118SEMICONDUCTOR MEMORY DEVICE HAVING DIODE CELL STRUCTURE - A semiconductor memory device comprises a memory cell, first and second voltage generating circuits generating first and second voltages, and a control circuit. A memory element and a diode included in the memory cell are connected in series between first and second lines. The first voltage has no temperature dependence, and the second voltage has a temperature dependence opposite to that of a forward voltage of the diode. The control circuit detects a resistance state of the memory element in accordance with a change in current flowing in the memory cell in a state where the first/second voltage is applied to the first/second in a read operation of the memory cell.02-14-2013
20130033923CIRCUIT FOR CONCURRENT READ OPERATION AND METHOD THEREFOR - A non-volatile memory device includes an array of memory units, each having resistive memory cells and a local word line. Each memory cell has a first and a second end, the second ends are coupled to the local word line of the corresponding memory unit. Bit lines are provided, each coupled to the first end of each resistive memory cell. A plurality of select transistors is provided, each associated with one memory unit and having a drain terminal coupled to the local word line of the associated memory unit. First and second global word lines are provided, each coupled to a control terminal of at least one select transistor. First and second source lines are provided, each coupled to a source terminal of at least one select transistor. The memory device is configured to concurrently read out all resistive memory cells in one selected memory unit in a read operation.02-07-2013
20130033922RESISTIVE-SWITCHING DEVICE CAPABLE OF IMPLEMENTING MULTIARY ADDITION OPERATION AND METHOD FOR MULTIARY ADDITION OPERATION - The present disclosure provides a resistive-switching device capable of implementing multiary addition operation and a method for implementing multiary addition operation using the resistive-switching device. The resistive-switching device has a plurality of resistance values each corresponding to a respective data value stored by the resistive-switching device and ranging from a high resistance value to a low resistance value. The data value stored by the resistive-switching device is increased by ‘1’ successively with a series of set pulses having a same pulse width and a same voltage amplitude being applied thereto. The data value stored by the resistive-switching device is set to ‘0’ with a reset pulse being applied thereto, and meanwhile a data value stored by a higher-bit resistive-switching device is increased by ‘1’ with a set pulse being applied thereto. In this way, multiary addition operation is implemented. The operation of the resistive-switching device can implement data storage and the multiary addition operation simultaneously, and thus substantially simplifies the circuit structure. As a result, the data storage can be integrated with calculation.02-07-2013
20130033921SEMICONDUCTOR DEVICE - A semiconductor device using resistive random access memory (ReRAM) elements and having improved tamper resistance is provided. The semiconductor device is provided with a unit cell which stores one bit of cell data and a control circuit. The unit cell includes n ReRAM elements (n being an integer of 2 or larger). At least one of the ReRAM elements is an effective element where the cell data is recorded. In reading the cell data, the control circuit at least selects the effective element and reads data recorded thereon as the cell data.02-07-2013
20130033920IONIC DEVICES CONTAINING A MEMBRANE BETWEEN LAYERS - A device contains a first layer (02-07-2013
20130033919NONVOLATILE MEMORY SYSTEM AND PROGRAM METHOD THEREOF - A nonvolatile memory system and a program method thereof are provided. The nonvolatile memory system includes a nonvolatile memory cell array, an input/output (I/O) control circuit configured to control a program or read operation for the nonvolatile memory cell array; and a controller configured to store an equation representing a resistance-current (R-I) curve for resistance states of memory cells included in the nonvolatile memory cell array, apply an initial program current calculated based on the equation, calculate the equation based in on a resistance of a memory cell subjected to the initial program current, predict a reprogram current based on the equation obtained from the calculation, and control the I/O control circuit.02-07-2013
20100046275NONVOLATILE SEMICONDUCTOR STORAGE APPARATUS AND DATA PROGRAMMING METHOD THEREOF - The semiconductor storage apparatus includes a memory cell array including memory cells each having a rectifying element and a variable resistive element connected in series, the memory cells being arranged in crossing portions of a plurality of first wires and a plurality of second wires, and a control circuit configured to control charging to the first wire. The control circuit charges the first wire connected to a selected memory cell up to a first potential, and then set the first wire in a floating state. Then it charges another first wire adjacent to the first wire connected to the selected memory cell to a second potential. The potential of the first wire connected to the selected memory cell is thereby caused to rise to a third potential by coupling.02-25-2010
20100046274RESISTANCE CHANGE MEMORY - A resistance change memory includes two memory cell arrays each including a plurality of memory cells, the memory cells including variable resistive elements, two reference cell arrays provided to correspond to the two memory cell arrays, respectively, and each including a plurality of reference cells, the reference cells having a reference value, and a sense amplifier shared by the two memory cell arrays and detecting data in an accessed memory cell by use of a reference cell array corresponding to a second memory cell array different from a first memory cell array including the accessed memory cell. In reading the data, a particular reference cell in one reference cell array is always activated for an address space based on one memory cell array as a unit.02-25-2010
20100046272SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprising a memory cell array of cross-point type having memory cells each composed of a variable resistive element for storing information in the form of variation of the electrical resistance. The operating current in the programming operation is reduced. Main data lines (GDL02-25-2010
20100046273RESISTANCE CHANGE NONVOLATILE MEMORY DEVICE - Memory cells (MC) are formed at intersections of bit lines (BL) extending in the X direction and word lines (WL) extending in the Y direction. A plurality of basic array planes sharing the word lines (WL), each formed for a group of bit lines (BL) aligned in the Z direction, are arranged side by side in the Y direction. In each basic array plane, bit lines in even layers and bit lines in odd layers are individually connected in common. Each of selection switch elements (02-25-2010
20090190388RESISTIVE MEMORY AND METHODS FOR FORMING SAME - A method of fabricating a resistive storage device is provided. The method generally comprises providing an electrode structure stack comprising a first electrode and an electrode structure mask arranged at the first electrode, forming a support structure at least partly at the electrode structure mask, removing the electrode structure mask to leave a storage region window in the support structure, and forming a resistive storage region in the storage region window at the first electrode.07-30-2009
20100103716Non-Volatile Memory with Metal-Polymer Bi-Layer - A resistive memory cell that includes a metal-polymer bi-layer proximate a CMOS gate. The memory cell has a substrate having a source contact connected to a source line and a drain contact connected to a drain line, a CMOS gate proximate the substrate electrically connecting the source contact and the drain contact, the bi-layer adjacent the CMOS gate, the bi-layer comprising a thin metal layer and a polymer layer, and a word line connected to the bi-layer.04-29-2010
20100110764PROGRAMMABLE METALLIZATION CELL SWITCH AND MEMORY UNITS CONTAINING THE SAME - An electronic device that includes a first programmable metallization cell (PMC) that includes an active electrode; an inert electrode; and a solid electrolyte layer disposed between the active electrode and the inert electrode; and a second PMC that includes an active electrode; an inert electrode; and a solid electrolyte layer disposed between the active electrode and the inert electrode, wherein the first and second PMCs are electrically connected in anti-parallel.05-06-2010
20100110766NONVOLATILE MEMORY APPARATUS AND METHOD FOR WRITING DATA IN NONVOLATILE MEMORY APPARATUS - A nonvolatile memory apparatus comprises a memory array (05-06-2010
20100110763Write Current Compensation Using Word Line Boosting Circuitry - Apparatus and method for write current compensation in a non-volatile memory cell, such as but not limited to spin-torque transfer random access memory (STRAM) or resistive random access memory (RRAM). In accordance with some embodiments, a non-volatile memory cell has a resistive sense element (RSE) coupled to a switching device, the RSE having a hard programming direction and an easy programming direction opposite the hard programming direction. A voltage boosting circuit includes a capacitor which adds charge to a nominal non-zero voltage supplied by a voltage source to a node to generate a temporarily boosted voltage. The boosted voltage is applied to the switching device when the RSE is programmed in the hard programming direction.05-06-2010
20130028005RESISTIVE MEMORY ARRAY AND METHOD FOR CONTROLLING OPERATIONS OF THE SAME - A resistive memory and a method for controlling operations of the resistive memory are provided. The resistive memory has a first memory layer, a second memory layer and a medium layer. Each of the first memory layer and the second memory layer is used to store data. The medium layer is formed between the first memory layer and the second memory layer. The method comprises at least a step of measuring a resistance between the first memory layer and the second memory layer, and determining which one of a first state, a second state and a third state is a state of the resistive memory according to the measured resistance. A resistive memory array including an array of the above resistive memory units, word lines and bit lines is also described, wherein the word (bit) lines are coupled to the first (second) memory layers.01-31-2013
20130028004REFRESHING MEMRISTIVE SYSTEMS - A method for operating a circuit (01-31-2013
20130028003NONVOLATILE MEMORY DEVICE HAVING A CURRENT LIMITING ELEMENT - Embodiments of the invention generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has an improved device switching performance and lifetime, due to the addition of a current limiting component disposed therein. In one embodiment, the current limiting component comprises at least one layer of resistive material that is configured to improve the switching performance and lifetime of the formed resistive switching memory element. The electrical properties of the formed current limiting layer, or resistive layer, are configured to lower the current flow through the variable resistance layer during the logic state programming steps (i.e., “set” and “reset” steps) by adding a fixed series resistance in the formed resistive switching memory element found in the nonvolatile memory device.01-31-2013
20100067283SENSE AMPLIFIER - A sense amplifier according to an example of the present invention has first, second, third and fourth FETs with a flip-flop connection. A drain of a fifth FET is connected to a first input node, and its source is connected to a power source node. A drain of a sixth FET is connected to a second input node, and its source is connected to the power source node. A sense operation is started by charging a first output node from the first input node with a first current and by charging a second output node from the second input node with a second current. The fifth and sixth FET are turned on after starting the sense operation.03-18-2010
20100067282MEMORY ARRAY WITH READ REFERENCE VOLTAGE CELLS - The present disclosure relates to memory arrays with read reference voltage cells. In particular the present disclosure relates to variable resistive memory cell apparatus and arrays that include a high resistance state reference memory cell and a low resistance state reference memory cell that provides a reliable average reference voltage on chip to compare to a read voltage of a selected memory cell and determine if the selected memory cell is in the high resistance state or low resistance state. These memory arrays are particularly suitable for use with spin-transfer torque memory cells and resolves many systematic issues related to generation of a reliable reference voltage.03-18-2010
20130135921SEMICONDUCTOR MEMORY DEVICE - A first ReRAM unit having a resistance change layer is provided between a first access transistor configuring the SRAM and a first bit line, and a second ReRAM unit having a resistance change layer is provided between a second access transistor and a second bit line. When a low potential (L=0V) is held at a first storage node and a high potential (H=1.5V) is held at a second storage node at the end of a normal operation period of the SRAM, the first ReRAM unit is set to ON state (ON), and the second ReRAM unit is set to OFF state (OFF); accordingly, the retained data of the SRAM is written in to the ReRAM units. When the SRAM returns to the normal operation again, data corresponding to the storage nodes are written back and the ReRAM units are both set to ON state (reset).05-30-2013
20120182787CROSS-POINT MEMORY DEVICES, ELECTRONIC SYSTEMS INCLUDING CROSS-POINT MEMORY DEVICES AND METHODS OF ACCESSING A PLURALITY OF MEMORY CELLS IN A CROSS-POINT MEMORY ARRAY - Memory devices comprise a plurality of memory cells, each memory cell including a memory element and a selection device. A plurality of first (e.g., row) address lines can be adjacent (e.g., under) a first side of at least some cells of the plurality. A plurality of second (e.g., column) address lines extend across the plurality of row address lines, each column address line being adjacent (e.g., over) a second, opposing side of at least some of the cells. Control circuitry can be configured to selectively apply a read voltage or a write voltage substantially simultaneously to the address lines. Systems including such memory devices and methods of accessing a plurality of cells at least substantially simultaneously are also disclosed.07-19-2012
20120182786BIDIRECTIONAL RESISTIVE MEMORY DEVICES USING SELECTIVE READ VOLTAGE POLARITY - A memory device includes a memory cell array including a plurality of memory cells, each including a bidirectional variable resistance element and an input/output circuit configured to determine a polarity for a read voltage to be applied to a selected memory cell among the plurality of memory cells and to apply the read voltage with the determined polarity to the selected memory cell. The input/output circuit may include a polarity determination circuit configured to determine the polarity responsive to a determination mode signal and a driver circuit configured to apply the read voltage with the determined polarity to the selected memory cell.07-19-2012
20120182785MEMORY UNIT AND METHOD OF OPERATING THE SAME - A memory unit includes memory cells each having a memory element and a transistor, word lines and first and second bit lines, and a drive section. In performing setting operation for a first memory element located on one word line and in performing resetting operation for a second memory element located on the one word line, the drive section applies a given word line electric potential to the one word line, and sets an electric potential of a bit line on a lower electric potential side out of the first and the second bit lines corresponding to the first memory element to a value higher than a value of an electric potential of a bit line on the lower electric potential side corresponding to the second memory element by an amount of given electric potential difference.07-19-2012
20120182784SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device according to an embodiment comprises a memory cell array configured from a plurality of row lines and column lines that intersect one another, and from a plurality of memory cells disposed at each of intersections of the row lines and column lines and each including a variable resistance element. Where a number of the row lines is assumed to be N, a number of the column lines is assumed to be M, and a ratio of a cell current flowing in the one of the memory cells when a voltage that is half of the select voltage is applied to the one of the memory cells to a cell current flowing in the one of the memory cells when the select voltage is applied to the one of the memory cells is assumed to be k, a relationship M07-19-2012
20120182783PROGRAMMING AN ARRAY OF RESISTANCE RANDOM ACCESS MEMORY CELLS USING UNIPOLAR PULSES - Subject matter disclosed herein relates to a memory device, and more particularly to programming a non-volatile memory device.07-19-2012
20130070516VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE AND DRIVING METHOD THEREOF - A highly-reliable variable resistance nonvolatile memory device capable of a stable operation and a driving method of the variable resistance nonvolatile memory device are provided.03-21-2013
20130070517Resistance Change Memory - A resistance change memory includes a first conductive line extending in a first direction, a second conductive line extending in a second direction which is crossed to the first direction, a cell unit including a memory element and a rectifying element connected in series between the first and second conductive lines, and a control circuit which is connected to both of the first and second conductive lines. The control circuit controls a voltage to change a resistance of the memory element between first and second values reversibly. The rectifying element is a diode including an anode layer, a cathode layer and an insulating layer therebetween.03-21-2013
20130070515METHOD AND APPARATUS FOR CONTROLLING STATE INFORMATION RETENTION IN AN APPARATUS - A method and apparatus for controlling state information retention determines at least a state information save or restore condition for at least one processing circuit such as one or more CPU or GPU cores or pipelines, in an integrated circuit. In response to determining the state information save or restore condition, the method and apparatus controls either or both of saving or restoring of state information for different virtual machines operating on the processing circuit, into corresponding on-die persistent passive variable resistance memory. The state information save or restore condition is a virtual machine level state information save or restore condition. State information for each of differing virtual machines is saved or restored from differing on-die passive variable resistance memory cells that are assigned on a per-virtual machine basis.03-21-2013
20130070512NON-VOLATILE MEMORY DEVICE - A non-volatile memory device includes a memory cell including a resistance variable device and a switching unit for controlling a current flowing through the resistance variable device; a read reference voltage generator configured to generate a reference voltage according to a skew occurring in the switching unit; and a sense amplifier configured to sense a voltage corresponding to the current that flows through the resistance variable device based on the reference voltage.03-21-2013
20130070511SELECT DEVICES FOR MEMORY CELL APPLICATIONS - Select devices for memory cell applications and methods of forming the same are described herein. As an example, one or more memory cells comprise a a select device structure including a two terminal select device having a current-voltage (I-V) profile associated therewith, and a non-ohmic device in series with the two terminal select device. The combined two terminal select device and non-ohmic device provide a composite I-V profile of the select device structure that includes a modified characteristic as compared to the I-V profile, and the modified characteristic is based on at least one operating voltage associated with the memory cell.03-21-2013
20130070514INTEGRATED CIRCUIT WITH ON-DIE DISTRIBUTED PROGRAMMABLE PASSIVE VARIABLE RESISTANCE FUSE ARRAY AND METHOD OF MAKING SAME - An integrated circuit employs a plurality of functional blocks, such as but not limited to, processors (e.g., cores), and an on-die distributed programmable passive variable resistance memory array configured to provide configuration information for each of the plurality of functional blocks. A corresponding sub-portion of the on-die distributed programmable passive variable resistance memory array is fabricated in layers above each respective plurality of functional blocks. The on-die distributed programmable passive variable resistance memory array is used as either non-volatile prepackage configuration information store, or a non-volatile post-package configuration information store that may allow dynamic changing of hardware configuration of the functional blocks both during normal operation and prior to die packaging. A method for making the same is also disclosed.03-21-2013
20130070513METHOD AND APPARATUS FOR DIRECT BACKUP OF MEMORY CIRCUITS - An integrated circuit employs at least one active memory circuit and at least one memory state backup circuit wherein the at least one memory state backup circuit includes at least one passive variable resistance memory cell and at least one passive variable resistance memory cell interface that are used to backup data from the active memory circuit to the PVRM cell. Data is then placed back into the active memory circuit from the PVRM cell during a restore operation. The PVRM cell interface is operative to read the PVRM cell in response to a restore signal. PVRM cell interface control logic is operative to remove power to the PVRM cell after backup of the data to the PVRM cell from the active memory circuit. A PVRM cell (e.g., a bit cell) is added to each memory circuit that stores state information on an integrated circuit.03-21-2013
20130088909CROSS-POINT MEMORY COMPENSATION - The apparatuses and methods described herein may operate to measure a voltage difference between a selected access line and a selected sense line associated with a selected cell of a plurality of memory cells of a memory array. The voltage difference may be compared with a reference voltage specified for a memory operation. A selection voltage(s) applied to the selected cell for the memory operation may be adjusted responsive to the comparison, such as to dynamically compensate for parasitic voltage drop.04-11-2013
20130051124Resistive Memory Device and Test Systems and Methods for Testing the Same - A resistive memory device and a system and method for testing the resistive memory device are provided. The resistive memory device includes a plurality of bit lines comprising at least one dummy bit line to which a plurality of resistive memory cells are connected, a conducting wire connected to the dummy bit line, a first switching element positioned between the dummy bit line and an external device outside the resistive memory device, and a second switching element positioned between the conducting wire and the external device. Accordingly, the operational reliability of the resistive memory device may be increased.02-28-2013
20130051125METHOD OF OPERATING SEMICONDUCTOR DEVICE INCLUDING VARIABLE RESISTANCE DEVICE - According to an example embodiment, a method of operating a semiconductor device having a variable resistance device includes: applying a first voltage to the variable resistance device to change a resistance value of the variable resistance device from a first resistance value to a second resistance value that is different from the first resistance value; sensing a first current flowing through the variable resistance device to which the first voltage is applied; determining a second voltage used for changing the variable resistance device from the second resistance value to the first resistance value, based on a dispersion of the sensed first current; and applying the determined second voltage to the variable resistance device.02-28-2013
20130051123RESISTANCE CHANGE MEMORY DEVICE AND CURRENT TRIMMING METHOD THEREOF - A resistance change memory device includes an array of resistance change memory cells, and a writing circuit configured to reset a selected memory cell to a high resistance state by supplying a RESET current to the selected memory cell in the array of resistance change memory cells in a program operation mode, wherein a level of the RESET current depends on a distribution of initial RESET currents for the array of resistance change memory cells.02-28-2013
20130051121SWITCHABLE TWO-TERMINAL DEVICES WITH DIFFUSION/DRIFT SPECIES - Various embodiments of the present invention are directed to nanoscale electronic devices that provide nonvolatile memristive switching. In one aspect, a two-terminal device (02-28-2013
20090154222OPERATION METHOD FOR MULTI-LEVEL SWITCHING OF METAL-OXIDE BASED RRAM - Memory devices and methods for operating such devices are described herein. A method as described herein for operating a memory device includes applying a sequence of bias arrangements across a selected metal-oxide memory element to change the resistance state from a first resistance state in a plurality of resistance states to a second resistance state in the plurality of resistance states. The sequence of bias arrangements comprise a first set of one or more pulses to change the resistance state of the selected metal-oxide memory element from the first resistance state to a third resistance state, and a second set of one or more pulses to change the resistance state of the selected metal-oxide memory element from the third resistance state to the second resistance state.06-18-2009
20130051122VARIABLE-RESISTANCE MEMORY DEVICE AND DRIVING METHOD THEREOF - A variable-resistance memory device includes a memory array section including a main memory cell employing a storage element having a resistance increasing and decreasing in a reversible manner in accordance with application of a signal set at one of different polarities to the opposite ends of the storage element, and a reference cell section including a reference cell provided with a storage element having a resistance increasing and decreasing in a reversible manner in accordance with application of a signal set at one of different polarities to the opposite ends of the storage element and generating a reference current used for recognizing data of the main memory cell. The direction of an applied current serving as the reference current is set in accordance with the resistance state of the reference cell.02-28-2013
20130088910NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - A non-volatile semiconductor memory device according to an embodiment includes a memory cell array including first lines, second lines, and memory cells each including a variable resistor and each connected between one of the first lines and one of the second lines, and a control circuit configured to perform a voltage application operation of applying a first voltage to a selected first line connected to a selected memory cell and applying a second voltage having a voltage value lower than the first voltage to a selected second line connected to the selected memory cell. The control circuit is configured to select the voltage value of the second voltage from among a plurality of different voltage values and output the second voltage.04-11-2013
20130088911SEMICONDUCTOR MEMORY DEVICE AND SEMICONDUCTOR DEVICE - A semiconductor memory device includes a writing circuit and a reading circuit. The writing circuit executes a setting action for converting a resistance of a variable resistance element to a low resistance by applying current from one end side to the other end side of a memory cell via the variable resistance element, and a resetting action for converting the resistance to a high resistance by applying current from the other end side to the one end side via the variable resistance element. The reading circuit executes a first reading action for reading a resistance state of the variable resistance element by applying current from one end side to the other end side of the memory cell via the variable resistance element, and a second reading action for reading the resistance state by applying current from the other end side to the one end side via the variable resistance element.04-11-2013
20090303773Multi-terminal reversibly switchable memory device - A memory using mixed valence conductive oxides is disclosed. The memory includes a mixed valence conductive oxide that is less conductive in its oxygen deficient state and a mixed electronic ionic conductor that is an electrolyte to oxygen and promotes an electric field effective to cause oxygen ionic motion.12-10-2009
20090303772Two-Terminal Reversibly Switchable Memory Device - A memory using mixed valence conductive oxides is disclosed. The memory includes a mixed valence conductive oxide that is less conductive in its oxygen deficient state and a mixed electronic ionic conductor that is an electrolyte to oxygen and promotes an electric field effective to cause oxygen ionic motion.12-10-2009
20100271862NONVOLATILE MEMORY DEVICE - A nonvolatile memory device includes resistive memory devices in a three-dimensional structure. A block select circuit generates a block select signal for selecting a memory block. In response to the block select signal, local word line selection units connected to each memory block connect global word lines connected to a word line decoder and local word lines, and local bit line selection units connected to each memory block connect global bit lines connected to a sense amplifier and local bit lines. Each memory block includes local word lines which extend in a first direction and are stacked in a second direction perpendicular to the first direction on a second plane perpendicular to a first plane. Local bit lines extend in the second direction to cross local word lines. Memory cells are formed at cross-points where local word lines and local bit lines cross one another.10-28-2010
20120218810Methods Of Reading And Using Memory Cells - Some embodiments include methods of reading memory cells. The memory cells have a write operation that occurs only if a voltage of sufficient absolute value is applied for a sufficient duration of time; and the reading is conducted with a pulse that is of too short of a time duration to be sufficient for the write operation. In some embodiments, the pulse utilized for the reading may have an absolute value of voltage that is greater than or equal to the voltage utilized for the write operation. In some embodiments, the memory cells may comprise non-ohmic devices; such as memristors and diodes.08-30-2012
20120218809STORAGE APPARATUS AND OPERATION METHOD FOR OPERATING THE SAME - A storage apparatus includes: a plurality of storage elements configured to have the resistance state thereof changed in accordance with an applied voltage; and a drive portion configured to perform a resistance change operation and a read operation, the resistance change operation involving writing or erasing information to or from the storage elements by changing the resistance state thereof, the read operation involving reading the information from the storage elements; wherein the drive portion includes an amplifier configured to output a read signal upon execution of the read operation, a constant current load, and a control portion configured to perform the resistance change operation and a direct verify operation on the storage elements, the direct verify operation involving carrying out, subsequent to the resistance change operation, the read operation for verifying whether the writing or erasing of the information to or from the storage elements has been normally accomplished.08-30-2012
20090091969RESISTANCE CHANGE MEMORY - A resistance change memory includes a memory cell which is connected to a first node, and programmed from a first resistance state to a second resistance state, a first replica cell which is connected to a second node, generates a write voltage for programming from the first resistance state to the second resistance state, and is fixed in the first resistance state, and a first constant-current source connected to the second node, wherein when writing the second resistance state in the memory cell, a voltage of the first node is held equal to that of the second node.04-09-2009
20090091968INTEGRATED CIRCUIT INCLUDING A MEMORY HAVING A DATA INVERSION CIRCUIT - An integrated circuit includes an array of resistivity changing memory cells. The integrated circuit includes a circuit configured to invert a data word to be written to the array in response to determining that writing the inverted data word would use less power than writing the non-inverted data word.04-09-2009
20110058405Memory Cell With Proportional Current Self-Reference Sensing - Various embodiments of the present invention are generally directed to a method and apparatus for sensing a programmed state of a memory cell, such as a spin-torque transfer random access memory (STRAM) cell. A first read current is applied to the memory cell to generate a first voltage. A second read current is subsequently applied to the memory cell to generate a second voltage, with the second read current being proportional in magnitude to the first read current. A comparison is made between the first and second voltages to determine the programmed state of the memory cell.03-10-2011
20130058154SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device includes a plurality of first memory cells, at least one of second memory cells, and a control circuit. The plurality of first memory cells are accessed during normal operation, wherein the first memory cell includes a first variable resistance element. The second memory cell is not accessed during the normal operation but accessed at a time of test operation. The second memory cell includes a second variable resistance element practically identical to the first variable resistance element. The control circuit performs forming on the second memory cell at the time of the test operation.03-07-2013
20130058153SEMICONDUCTOR DEVICES INCLUDING VARIABLE RESISTANCE ELEMENTS AND METHODS OF OPERATING SEMICONDUCTOR DEVICES - In a method of operating a semiconductor device, a resistance value of a variable resistance element is changed from a first resistance value to a second resistance value by applying a first voltage to the variable resistance element; and a first current that flows through the variable resistance element is sensed. A second voltage for changing the resistance value of the variable resistance element from the second resistance value to the first resistance value is modulated based on a dispersion of the first current, and the first voltage is re-applied to the variable resistance element based on a dispersion of the first current.03-07-2013
20130058152METHOD, SYSTEM, AND DEVICE FOR PHASE CHANGE MEMORY SWITCH WALL CELL WITH APPROXIMATELY HORIZONTAL ELECTRODE CONTACT - Embodiments disclosed herein may include depositing a storage component material over and/or in a trench in a dielectric material, including depositing the storage component material on approximately vertical walls of the trench and a bottom of the trench. Embodiments may also include etching the storage component material so that at least a portion of the storage component material remains on the approximately vertical walls and the bottom of the trench, wherein the trench is contacting an electrode and a selector such that storage component material on the bottom of the trench contacts the electrode.03-07-2013
20120307547RESISTIVE MEMORY DEVICES AND MEMORY SYSTEMS HAVING THE SAME - A nonvolatile memory device includes an array of resistive memory cells and a write driver, which is configured to drive a selected bit line in the array with a reset current pulse, which is responsive to a first external voltage input through a first terminal/pad of the memory device during a memory cell reset operation. The write driver is further configured to drive the selected bit line in sequence with a first set current pulse, which is responsive to the first external voltage, and a second set current pulse, which is responsive to a second external voltage input through a second terminal/pad of the memory device during a memory cell set operation.12-06-2012
20090296450Memory And Writing Method Thereof - A memory having a memory cell, a resistance estimator and a write current generator. The resistance estimator is coupled to the memory cell to estimate the resistance of the memory cell and outputs an estimated resistance level. According to the estimated resistance level, the write current generator generates a write current to flow through the memory cell and to change the resistance of the memory cell. The write current is in a pulse form, and the write current generator sets the pulse width, or magnitude, or both the pulse width and the magnitude of the write current according to the estimated resistance level.12-03-2009
20110013445Bias Temperature Instability-Influenced Storage Cell - In a method of using a memory cell employing a field effect transistor (FET), the FET is heated to a first temperature sufficient to support bias temperature instability in the FET. The bit line is driven to a high voltage state. The word line is driven to a predetermined voltage state that causes bias temperature instability in the FET. The temperature, the high voltage state on the bit line and the predetermined voltage state on the word line are maintained for an amount of time sufficient to change a threshold voltage of the FET to a state where a desired data value is stored on the FET. The FET is cooled to a second temperature that is cooler than the first temperature after the amount of time has expired.01-20-2011
20090268509NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises a memory cell array including first and second mutually crossing lines and electrically erasable programmable memory cells arranged at intersections of the first and second lines, each memory cell containing a variable resistor operative to nonvolatilely store the resistance thereof as data and a first non-ohmic element operative to switch the variable resistor; and a clamp voltage generator circuit operative to generate a clamp voltage required for access to the memory cell and applied to the first and second lines. The clamp voltage generator circuit has a temperature compensation function of compensating for the temperature characteristic of the first non-ohmic element.10-29-2009
20090268508Reverse leakage reduction and vertical height shrinking of diode with halo doping - One embodiment of the invention provides a semiconductor diode device including a first conductivity type region, a second conductivity type region, where the second conductivity type is different from the first conductivity type, an intrinsic region located between the first conductivity type region and the second conductivity type region; a first halo region of the first conductivity type located between the second conductivity type region and the intrinsic region, and optionally a second halo region of the second conductivity type located between the first conductivity type region and the intrinsic region.10-29-2009
20090268507PHASE CHANGE MEMORY DEVICE AND METHOD OF MANUFACTURE - A phase change memory control ring lower electrode is disclosed. The lower electrode includes an outer ring electrode in thermal contact with a phase change memory element, an inner seed layer disposed within the outer ring electrode and in contact with the phase change memory element, and an electrically conductive bottom layer coupled to the outer ring electrode.10-29-2009
20090268505Method of Operating an Integrated Circuit, and Integrated Circuit - According to one embodiment of the present invention, a method of operating an integrated circuit including a plurality of resistivity changing memory cells connected in parallel is provided. The method includes: choosing a resistivity changing memory cell having a first memory state out of the plurality of resistivity changing memory cells; measuring a first total resistance of the plurality of resistivity changing memory cells; setting the chosen resistivity changing memory cell to a second memory state, measuring a second total resistance of the plurality of resistivity changing memory cells; and determining the first memory state of the chosen resistivity changing memory cell in dependence on the first total resistance and the second total resistance.10-29-2009
20090268506STORAGE DEVICE INCLUDING A MEMORY CELL HAVING MULTIPLE MEMORY LAYERS - In a particular illustrative embodiment, a storage device includes a controller and a plurality of resistive elementary memory cells accessible via the controller. Each resistive elementary memory cell of the plurality of resistive elementary memory cells includes a plurality of memory layers selected to have hysteretic properties to store multiple data values.10-29-2009
20090067214Electric element, memory device, and semiconductor integrated circuit - An electric element includes a first terminal (03-12-2009
20120224413Non-Volatile Storage System Using Opposite Polarity Programming Signals For MIM Memory Cell - A reversible resistance-switching metal-insulator-metal (MIM) stack is provided which can be set to a low resistance state with a first polarity signal and reset to a higher resistance state with a second polarity signal. The first polarity signal is opposite in polarity than the second polarity signal. In one approach, the MIM stack includes a carbon-based reversible resistivity switching material such as a carbon nanotube material. The MIM stack can further include one or more additional reversible resistivity switching materials such as metal oxide above and/or below the carbon-based reversible resistivity switching material. In another approach, a metal oxide layer is between separate layers of carbon-based reversible resistivity switching material.09-06-2012
20120224412SEMICONDUCTOR STORAGE DEVICE AND TEST METHOD THEREOF - A memory includes memory cells each storing data according to a change in a resistance state, and reference cells referred to in order to detect data stored in the memory cells. Sense amplifiers compare reference data in the reference cells with data in the memory cells to detect the data in the memory cells. A counter counts a number N09-06-2012
20120224411NON-VOLATILE SEMICONDUCTOR STORAGE DEVICE AND FORMING METHOD - According to one embodiment, a control unit multiple-selects a first line for every N lines from a plurality of first lines. N is an integer greater than or equal to one. The control unit sets the multiple-selected first lines to a selection potential, and fixes potentials of non-selected first lines at least adjacent to the multiple-selected first lines at a first timing. The control unit causes the multiple-selected first lines to be in a floating state at a second timing after the first timing. The control unit selects one second line from the plurality of second lines and sets the one second line to a forming potential at a third timing after the second timing.09-06-2012
20120224410THREE DIMENSIONAL MEMORY SYSTEM WITH INTELLIGENT SELECT CIRCUIT - A three dimensional monolithic memory array of non-volatile storage elements includes a plurality of word lines and a plurality of bit lines. The plurality of bit lines are grouped into columns. Performing memory operation on the non-volatile storage elements includes selectively connecting bit lines to sense amplifiers using selection circuits that include a storage device, a select circuit connected to the storage device and one or more level shifters providing two or more interfaces to the respective selection circuit.09-06-2012
20120224409THREE DIMENSIONAL MEMORY SYSTEM WITH PAGE OF DATA ACROSS WORD LINES - A three dimensional monolithic memory array of non-volatile storage elements includes a plurality of word lines and a plurality of bit lines. The plurality of bit lines are grouped into columns. One page of data is stored across multiple word lines by programming non-volatile storage elements connected to one column of bit lines and multiple word lines while maintaining the selection of the one column of bit lines. In one embodiment, programming non-volatile storage elements includes selectively connecting bit lines to sense amplifiers using selection circuits that include a storage device, a select circuit connected to the storage device and one or more level shifters providing two or more interfaces to the respective selection circuit.09-06-2012
20120224408THREE DIMENSIONAL MEMORY SYSTEM WITH COLUMN PIPELINE - A monolithic three dimensional array of non-volatile storage elements is arranged in blocks. The non-volatile storage elements are connected to bit lines and word lines. The bit lines for each block are grouped into columns of bit lines. The columns of bit lines include top columns of bit lines that are connected to selection circuits on a top side of a respective block and bottom columns of bit lines that are connected to selection circuits on a bottom side of the respective block. Programming of data is pipelined between two or more columns of bit lines in order to increase programming speed. One embodiment of the programming process includes selectively connecting two columns of bit lines to a set of one or more selection circuits, using the one or more selection circuits to selectively connect one of the two columns of bit lines to one or more signal sources, programming non-volatile storage elements for the column of bit lines that is currently connected to the one or more signal sources, and changing one of the columns of bit lines connected to the set of one or more selection circuits while another column of bit lines is being programmed.09-06-2012
20130064002RESISTANCE CHANGE NONVOLATILE MEMORY DEVICE, SEMICONDUCTOR DEVICE, AND METHOD OF OPERATING RESISTANCE CHANGE NONVOLATILE MEMORY DEVICE - A resistance change nonvolatile memory device includes with a first electrode, a resistance change portion provided on the first electrode, and a second electrode provided on the resistance change portion. The resistance change portion is equipped with a resistance change layer provided on the first electrode and undergoing a change in resistance with an applied voltage and a stable layer provided on the resistance change layer and forming a filament. The resistance change layer and the stable layer are made of metal oxides different from each other. The oxide formation energy of the resistance change layer is higher than that of the stable layer. The resistance change layer has such a film thickness as to permit the resistance of the resistance change portion in an Off state to fall within a range determined by the film thickness.03-14-2013
20130064001RESISTANCE CHANGE NONVOLATILE MEMORY DEVICE, SEMICONDUCTOR DEVICE, AND METHOD OF MANUFACTURING RESISTANCE CHANGE NONVOLATILE MEMORY DEVICE - To provide a resistance change nonvolatile memory device performing a stable switching operation at a low cost. The resistance change nonvolatile memory device has a first wiring, an interlayer insulating layer formed thereon, a second wiring formed thereon, and a resistance change element formed between the first wiring and the second wiring. The interlayer insulating layer between the first wiring and the second wiring has a hole having a width not greater than that of the first wiring. The resistance change element is in contact with the first wiring and has a lower electrode at the bottom of the hole, a resistance change layer thereon, and an upper electrode thereon. They are formed inside the hole. The first wiring contains copper and the lower electrode contains at least one metal selected from the group consisting of ruthenium, tungsten, cobalt, platinum, gold, rhodium, iridium, and palladium.03-14-2013
20130064000SEMICONDUCTOR STORAGE DEVICE INCLUDING MEMORY CELLS CAPABLE OF HOLDING DATA - According to one embodiment, a semiconductor storage device includes first cells, first bit and first word, and first sense. The first cells are capable of holding 2-level or higher-level data. The first bit and first word are capable of selecting the first cells. The first sense detects a first current. The first sense includes a first supply unit, a first accumulation unit, a detector, and a counter. The first supply unit supplies a second current when the data is read. The first accumulation unit accumulates an amount of charge. The detector detects the potential the amount of charge. The counter counts output from the detector. The counter includes a second supply unit, a second accumulation unit, and a sensing unit. The second supply unit charges a first node. The second accumulation unit accumulates a charge. The sensing unit detects the amount of charge of the second accumulation unit.03-14-2013
20100277967GRADED METAL OXIDE RESISTANCE BASED SEMICONDUCTOR MEMORY DEVICE - Memory devices are described along with methods for manufacturing and methods for operating. A memory device as described herein includes a plurality of memory cells located between word lines and bit lines. Memory cells in the plurality of memory cells comprise a diode and a metal-oxide memory element programmable to a plurality of resistance states including a first and a second resistance state, the diode of the memory element arranged in electrical series along a current path between a corresponding word line and a corresponding bit line. The device further includes bias circuitry to apply bias arrangements across the series arrangement of the diode and the memory element of a selected memory cell in the plurality of memory cells.11-04-2010
20130163309SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a memory cell array configured of at least a first portion and a second portion each including a plurality of memory cells each with a variable resistor which stores an electrically rewritable resistance value as a data, and a control circuit which controls a first operation including selected one of operations to erase, write and read the data in the first portion and a second operation including selected one of operations to erase, write and read the data in the second portion, the first operation and the second operation being performed in temporally overlapped relation with each other.06-27-2013
20090257266Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same - A method of programming a nonvolatile memory cell includes applying at least one initialization pulse having a duration of at least 1 ms, followed by applying plural programming pulses having a duration of less than 1 ms. The cell includes a steering element located in series with a storage element, and the storage element includes a carbon material.10-15-2009
20090257264MEMORY AND METHOD OF EVALUATING A MEMORY STATE OF A RESISTIVE MEMORY CELL - An integrated circuit comprises a first signal line, a second signal line and a resistive memory cell. The resistive memory cell is actively connectable to the first signal line. The integrated circuit further comprises a coupling device configured to generate a difference of potential between the first and second signal line when the resistive memory cell is actively connected to the first signal line.10-15-2009
20090244953NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises a memory cell array including first and second mutually crossing lines and electrically erasable programmable memory cells arranged at intersections of the first and second lines, each memory cell containing a variable resistive element; a data write circuit operative to apply a voltage required for data write to the memory cell via the first and second lines; and a current limit circuit operative to limit the value of current flowing in the memory cell on the data write at a certain current limit value.10-01-2009
20090237979SEMICONDUCTOR MEMORY DEVICE AND SEMICONDUCTOR MEMORY SYSTEM - A semiconduct or memory device comprises a memory cell array including a plurality of memory cells arranged at intersections of word lines and bit lines; a read/write circuit operative to execute data read/write to the memory cell; and an operational circuit operative to compare certain length data read out by the read/write circuit from plural ones of the memory cells with certain length data to be written in the plural memory cells to make a decision, and create a flag representing the decision result. The read/write circuit inverts each bit in the certain length data to be written in the memory cells in accordance with the flag, and writes only rewrite-intended data of the certain length data and the flag. The read/write circuit reads the certain length data together with the flag corresponding thereto, and inverts each bit in the certain length data in accordance with the flag.09-24-2009
20090237978Semiconductor device having resistance based memory array, method of reading, and systems associated therewith - In one embodiment, the semiconductor device includes a non-volatile memory cell array. Memory cells of the non-volatile memory cell array are resistance based, and each memory cell has a resistance that changes over time after data is written into the memory cell. A write address buffer is configured to store write addresses associated with data being written into the non-volatile memory cell array, and a read unit is configured to perform a read operation to read data from the non-volatile memory cell array. The read unit is configured to control a read current applied to the non-volatile memory cell array during the read operation based on whether a read address matches one of the stored write addresses and at least one indication of settling time of the data being written into the non-volatile memory cell array.09-24-2009
20090237977SENSING RESISTANCE VARIABLE MEMORY - The present disclosure includes devices and methods for operating resistance variable memory. One device embodiment includes an array of memory cells wherein a number of the cells are commonly coupled to a select line, the number cells including a number of data cells programmable within a number of target threshold resistance (R09-24-2009
20090231905NONVOLATILE SEMICONDUCTOR MEMORY DEVICE, AND WRITING METHOD, READING METHOD AND ERASING METHOD OF NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device including a memory cell including a resistance memory element which changes from a low resistance state into a high resistance state by application of a voltage which is higher than a reset voltage and lower than a set voltage and changes from the high resistance state into the low resistance state by application of a voltage higher than the set voltage; a first transistor including a first source/drain diffused layer, and having one end of the first source/drain diffused layer coupled to one end of the resistance memory element; and a second transistor including a second source/drain diffused layer, and having one end of the second source/drain diffused layer coupled to said one end of the resistance memory element and the other end of the second source/drain diffused layer coupled to the other end of the resistance memory element.09-17-2009
20090046496NONVOLATILE MEMORY DEVICE - A variable resistance element (02-19-2009
20090046495NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises a memory cell selecting circuit which selects a selected memory cell (M02-19-2009
20090016094Selection device for Re-Writable memory - A memory cell including a memory element and a non-ohmic device (NOD) that are electrically in series with each other is disclosed. The NOD comprises a semiconductor based selection device operative to electrically isolate the memory element from a range of voltages applied across the memory cell that are not read voltages operative read stored data from the memory element or write voltages operative to write data to the memory element. The selection device may comprise a pair of diodes that are electrically in series with each other and disposed in a back-to-back configuration. The memory cell may be fabricated over a substrate (e.g., a silicon wafer) that includes active circuitry. The selection device and the semiconductor materials (e.g., poly-silicon) that form the selection device are fabricated above the substrate and are integrated with other thin film layers of material that form the memory cell.01-15-2009
20090010040RESISTANCE CHANGE MEMORY DEVICE - A resistance change memory device includes: a memory chip having memory cells of a resistance change type; and a heater so attached to the memory chip as to apply a temperature bias to the memory chip.01-08-2009
20090010039NON-VOLATILE MEMORY DEVICE - According to one embodiment, a nonvolatile memory device includes: a memory cell array including memory cells each having a variable resistance element for nonvolatilely storing data identified by an electrically rewritable resistance value; a first data latch storing write and erase data to be written on a given group of memory cells of the memory cell array for a write and erase operation; and a second data latch storing reference data for performing a compensation operation of the given group to compensate write and erase disturbance accompanied by the write or erase operation.01-08-2009
20080316792CIRCUIT FOR PROGRAMMING A MEMORY ELEMENT - An integrated circuit includes a memory element and a circuit. The circuit is configured to program the memory element by applying one or more pulses to the memory element until a sensed resistance of the memory element is within a range of a desired resistance. The one or more pulses have a parameter value that is modified for each subsequent pulse based on the parameter value for an immediately preceding pulse and on a difference between the sensed resistance of the memory element and the desired resistance.12-25-2008
20120236628VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE - In a nonvolatile memory device, basic array planes (09-20-2012
20100085795Asymmetric Write Current Compensation - An apparatus and method for compensating for asymmetric write current in a non-volatile unit cell. The unit cell comprises a switching device and an asymmetric resistive sense element (RSE), such as an asymmetric resistive random access memory (RRAM) element or an asymmetric spin-torque transfer random access memory (STRAM) element. The RSE is physically oriented within the unit cell relative to the switching device such that a hard direction for programming the RSE is aligned with an easy direction of programming the unit cell, and an easy direction for programming the RSE is aligned with a hard direction for programming the unit cell.04-08-2010
20110019462THREE DIMENSIONAL PROGRAMMABLE RESISTANCE MEMORY DEVICE WITH A READ/WRITE CIRCUIT STACKED UNDER A MEMORY CELL ARRAY - A programmable resistance memory device includes a semiconductor substrate, at least one cell array, in which memory cells are arranged formed above the semiconductor substrate. Each of the memory cells has a stack structure of a programmable resistance element and an access element, the programmable resistance element storing a high resistance state or a low resistance state determined due to the polarity of voltage application in a non-volatile manner. The access element has such a resistance value in an off-state in a certain voltage range that is ten time or more as high as that in a select state. A read/write circuit is formed on a semiconductor substrate as underlying the cell array for data reading and data writing in communication with the cell array.01-27-2011
20120236627MULTI-LEVEL MEMORY DEVICES AND METHODS OF OPERATING THE SAME - The present invention provides a multi-level memory device and method of operating the same. The device comprises a memory structure in which a distribution density of resistance levels around its minimum value is higher than that around its maximum value.09-20-2012
20120236626MEMORY CELL - The object of the present invention is a non-volatile memory cell (09-20-2012
20120236625MEMORY ELEMENT AND MEMORY DEVICE - There are provided a memory element and a memory device with improved writing and erasing characteristics during operations at a low voltage and a low current. The memory element includes a first electrode, a memory layer, and a second electrode in this order. The memory layer includes a resistance change layer provided on the first electrode side, an ion source layer provided on the second electrode side, an intermediate layer provided between the resistance change layer and the ion source layer, and a barrier layer provided at least either between the ion source layer and the intermediate layer, or between the intermediate layer and the resistance change layer, and the barrier layer containing a transition metal or a nitride thereof.09-20-2012
20120236624Balanced Method for Programming Multi-Layer Cell Memories - Improved methods for programming multi-level metal oxide memory cells balance applied voltage and current to provide improved performance. Set programming, which transitions the memory cell to a lower resistance state, is accomplished by determining an appropriate programming voltage and current limit for the objective resistance state to be achieved in the programming and then applying a pulse having the determined set electrical characteristics. Reset programming, which transitions the memory cell to a higher resistance state, is accomplished by determining an appropriate programming voltage and optionally current limit for the state to be achieved in the programming and then applying a pulse having the determined electrical characteristics. The algorithm used to determine the appropriate set or reset programming voltage and current values provides for effective programming without stressing the memory element. The electrical characteristics for programming pulses may be stored in a data table used in a table look up algorithm.09-20-2012
20120236623SENSING RESISTIVE STATES - A memory device capable of being sensed with an oscillating signal includes a first terminal of a memristive element connected to an oscillating signal supply, and a second terminal of the memristive element connected to sensing circuitry, the sensing circuitry to determine an attenuation of an oscillating signal from the oscillating signal supply. A crossbar array includes a first set of parallel lines selectively connected to an oscillating signal supply, a second set of parallel lines intersecting the first set of parallel lines, the second set of parallel lines selectively connected to sensing circuitry, memristive memory elements being disposed at crosspoints between the first set of parallel lines and the second set of parallel lines, in which a memory controller of the crossbar array is to determine a resistive state of one of the memory elements by determining, with the sensing circuitry, an attenuation of an oscillating signal produced by the oscillating signal supply.09-20-2012
20130163308METHOD OF PROGRAMMING VARIABLE RESISTANCE ELEMENT, METHOD OF INITIALIZING VARIABLE RESISTANCE ELEMENT, AND NONVOLATILE STORAGE DEVICE - Programming a variable resistance element includes: a writing step of applying a writing voltage pulse to transition metal oxide comprising two stacked metal oxide layers to decrease resistance of the metal oxide, each metal oxide layer having different oxygen deficiency; and an erasing step of applying an erasing voltage pulse, of different polarity than the writing pulse, to the metal oxide to increase resistance of the metal oxide. |Vw06-27-2013
20130163310RESISTIVE MEMORY - A memory device includes an upper conductive layer, a lower conductive layer, and a resistive, optical or magnetic matrix positioned between the upper and lower conductive layers.06-27-2013
20120268981SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD - In a semiconductor device including a memory cell array formed of memory cells using a storage element by a variable resistor and a select transistor, a buffer cell is arranged between a sense amplifier and the memory cell array and between a word driver and the memory cell array. The resistive storage element in the memory cell is connected to a bit-line via a contact formed above the resistive storage element. Meanwhile, in the buffer cell, the contact is not formed above the resistive storage element, and a state of being covered with an insulator is kept upon processing the contact in the memory cell. By such a processing method, exposure and sublimation of a chalcogenide film used in the resistive storage element can be avoided.10-25-2012
20100214821CAPACITIVE DIVIDER SENSING OF MEMORY CELLS - The present disclosure includes devices and methods for sensing resistance variable memory cells. One device embodiment includes at least one resistance variable memory cell, and a capacitive divider configured to generate multiple reference levels in association with the at least one resistance variable memory cell.08-26-2010
20120075908Resistive Random Access Memory and Verifying Method Thereof - A resistive random access memory (RRAM) and a verifying method thereof are provided. The RRAM comprises at least one resistive memory cell. The resistive memory cell comprises a resistive memory element and a transistor, wherein one terminal of the resistive memory element is coupled to a first terminal of the transistor. The verifying method comprises the following steps: Whether the resistive memory cell passes verification is determined. During a first time period and under the circumstance that the resistive memory cell fails to pass verification, a reference voltage is applied to the other terminal of the resistive memory element and a voltage pulse is applied to a second terminal of the transistor according to a voltage signal to write a reverse voltage to the resistive memory cell.03-29-2012
20080273370Integrated Circuit, Method of Operating an Integrated Circuit, Memory Cell Array, and Memory Module - According to one embodiment of the present invention, an integrated circuit includes a memory cell that includes at least two resistivity changing layers being stacked above each other, each resistivity changing layer serving as a separate data storage layer and having individual data storing properties.11-06-2008
20090196089Phase change material, phase change memory device including the same, and methods of manufacturing and operating the phase change memory device - Disclosed may be a phase change material alloy, a phase change memory device including the same, and methods of manufacturing and operating the phase change memory device. The phase change material alloy may include Si and Sb. The alloy may be a Si—O—Sb alloy further including O. The Si—O—Sb alloy may be Si08-06-2009
20100232211MEMORY ARRAY WITH READ REFERENCE VOLTAGE CELLS - The present disclosure relates to memory arrays with read reference voltage cells. In particular the present disclosure relates to variable resistive memory cell apparatus and arrays that include a high resistance state reference memory cell and a low resistance state reference memory cell that provides a reliable average reference voltage on chip to compare to a read voltage of a selected memory cell and determine if the selected memory cell is in the high resistance state or low resistance state. These memory arrays are particularly suitable for use with spin-transfer torque memory cells and resolves many systematic issues related to generation of a reliable reference voltage.09-16-2010
20110280059ALTERNATING BIPOLAR FORMING VOLTAGE FOR RESISTIVITY-SWITCHING ELEMENTS - A method and system for forming reversible resistivity-switching elements is described herein. Forming refers to reducing the resistance of the reversible resistivity-switching element, and may refer to reducing the resistance for the first time. Prior to forming the reversible resistivity-switching element it may be in a high-resistance state. The method may comprise alternating between applying one or more first voltages having a first polarity to the memory cell and applying one or more second voltages having a second polarity that is opposite the first polarity to the memory cell until the reversible resistivity-switching memory element is formed. There may be a rest period between applying the voltages of opposite polarity.11-17-2011
20110280060WRITE BUFFERING SYSTEMS FOR ACCESSING MULTIPLE LAYERS OF MEMORY IN INTEGRATED CIRCUITS - Embodiments of the invention relate generally to data storage and computer memory, and more particularly, to systems, integrated circuits and methods for accessing memory in multiple layers of memory implementing, for example, third dimension memory technology. In a specific embodiment, an integrated circuit is configured to implement write buffers to access multiple layers of memory. For example, the integrated circuit can include memory cells disposed in multiple layers of memory. In one embodiment, the memory cells can be third dimension memory cells. The integrated circuit can also include read buffers that can be sized differently than the write buffers. In at least one embodiment, write buffers can be sized as a function of a write cycle. Each layer of memory can include a plurality of two-terminal memory elements that retain stored data in the absence of power and store data as a plurality of conductivity profiles.11-17-2011
20110280058NONVOLATILE MEMORY DEVICE - A memory device comprises an array of memory cells each capable of storing multiple bits of data. Each memory cell includes a programmable transistor in series with a resistance switching device. The transistor is switchable between a plurality of different threshold voltages associated with respective memory states. The resistance switching device is configured to be switchable between a plurality of different resistances associated with respective memory states.11-17-2011
20110280057Memory Device Having A Local Current Sink - A memory device having a local current sink is disclosed. In a particular embodiment, an electronic device is disclosed. The electronic device includes one or more write drivers. The electronic device includes at least one Magnetic Tunnel Junction (MTJ) coupled to a bit line and coupled to a source line. The electronic device also includes a current sink circuit comprising a single transistor, the single transistor coupled to the bit line and to the source line.11-17-2011
20100124097SEMICONDUCTOR STORAGE DEVICE - Plural memory cell arrays laminated on the semiconductor substrate each includes a plurality of first wirings and second wirings formed to intersect with each other. The control circuit provides, in a non-selected second memory cell array that shares the first wiring with a selected first memory cell array, and a non-selected third memory cell array located more distant from the first memory cell array than the second memory cell array, the first potential to all of the first wirings and all of the second wirings. It also provides, in a non-selected fourth memory cell array that shares the second wiring with the first memory cell array and a non-selected fifth memory cell array located more distant from the first memory cell array than the fourth memory cell array, the second potential to all of the first wirings and all of the second wirings.05-20-2010
20090168491MEMORY CELL THAT EMPLOYS A SELECTIVELY FABRICATED CARBON NANO-TUBE REVERSIBLE RESISTANCE-SWITCHING ELEMENT AND METHODS OF FORMING THE SAME - In some aspects, a method of fabricating a memory cell is provided that includes (1) fabricating a steering element above a substrate; and (2) fabricating a reversible-resistance switching element coupled to the steering element by selectively fabricating carbon nano-tube (CNT) material above the substrate. Numerous other aspects are provided.07-02-2009
20110128776NONVOLATILE MEMORY DEVICE AND METHOD OF WRITING DATA TO NONVOLATILE MEMORY DEVICE - A resistance variable layer has a characteristic in which the resistance variable layer changes to a second resistance state (RL) in such a manner that its resistance value stops decreasing when an interelectrode voltage reaches a first voltage (V06-02-2011
20110128775NONVOLATILE SEMICONDUCTOR STORAGE DEVICE AND DATA WRITING METHOD THEREFOR - A nonvolatile semiconductor storage device comprises: a first wire and a second wire intersecting each other; a memory cell which is disposed at each intersection of the first wire and the second wire and electrically rewritable and in which a variable resistor for memorizing a resistance value as data in a nonvolatile manner and a rectifying device are connected in series; and a control circuit which applies a voltage necessary for writing of data to the first and second wires. The control circuit precharges a non-selected second wire up to a standby voltage larger than a reference voltage prior to a set operation for programming only a variable resistor connected to selected first and second wires by supplying the reference voltage to a non-selected first wire and the selected second wire, applying a program voltage necessary for programming of the selected variable resistor based on the reference voltage to the selected first wire and applying a control voltage which prevents the rectifying device from turning ON based on the program voltage to the non-selected second wire.06-02-2011
20110128774NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises a memory cell array including first and second mutually crossing lines and electrically erasable programmable memory cells arranged at intersections of the first and second lines, each memory cell containing a variable resistor operative to nonvolatilely store the resistance thereof as data and a first non-ohmic element operative to switch the variable resistor; and a clamp voltage generator circuit operative to generate a clamp voltage required for access to the memory cell and applied to the first and second lines. The clamp voltage generator circuit has a temperature compensation function of compensating for the temperature characteristic of the first non-ohmic element.06-02-2011
20110128773NONVOLATILE VARIABLE RESISTANCE MEMORY ELEMENT WRITING METHOD, AND NONVOLATILE VARIABLE RESISTANCE MEMORY DEVICE - To provide a variable resistance element writing method that, even when a variable resistance element has a possibility of becoming a half LR state, can ensure a maximum resistance change window by correcting the variable resistance element to a normal low resistance state. In a method of writing data to a variable resistance element (06-02-2011
20110128772Nonvolatile memory cells and nonvolatile memory devices including the same - A nonvolatile memory cell may include a bidirectional switch having a first threshold voltage when a forward current is applied to the bidirectional switch and a second threshold voltage when a reverse current is applied to the bidirectional switch; and a variable resistor connected to the bidirectional switch in series. A state of resistance of the variable resistor may be controlled according to voltage applied to the variable resistor. A sum of a magnitude of the first threshold voltage and a magnitude of the second threshold voltage may be greater than a write voltage that is used to perform a write operation on the variable resistor.06-02-2011
20110128771Resistance Based Memory Circuit With Digital Sensing - A method of sensing a data value stored at a resistance based memory is disclosed. The method includes receiving a data signal from a data cell. The data cell includes a resistance based memory element. A reference signal is received from a reference circuit. The reference circuit includes a resistance based memory element. The data signal is converted to a data output signal having a first frequency. The reference signal is converted to a reference output signal having a second frequency. A first output signal is generated when the first frequency exceeds the second frequency. A second output signal is generated when the second frequency exceeds the first frequency.06-02-2011
20110128770STORED MULTI-BIT DATA CHARACTERIZED BY MULTIPLE-DIMENSIONAL MEMORY STATES - Subject matter disclosed herein relates to enhancing data storage density of a memory device.06-02-2011
20100195371MEMORY ELEMENT AND MEMORY DEVICE - The capability of retaining a resistance value of a stored state and an erased state is improved in a resistance variation-type memory device. A memory layer 08-05-2010
20090207646INTEGRATED CIRCUIT WITH RESISTIVE MEMORY CELLS AND METHOD FOR MANUFACTURING SAME - An integrated circuit including a resistive memory cell and a method of manufacturing the integrated circuit are described. The integrated circuit comprises a plurality of resistive memory cells and a plurality of voltage supply contacts, wherein at least four resistive memory cells are in signal connection with one voltage supply contact.08-20-2009
20110286260NONVOLATILE MEMORY DEVICE AND METHOD FOR DRIVING SAME - According to one embodiment, a nonvolatile memory device includes a memory unit and a control unit. The memory unit includes first and second interconnects, and a memory cell. The second interconnect is non-parallel to the first interconnect. The memory cell includes a resistance change layer provided at an intersection between the first and second interconnects. The control unit is connected to the first and second interconnects to supply voltage and current to the resistance change layer. The control unit increases an upper limit of a current supplied to the first interconnect based on a change of a potential of the first interconnect when applying a set operation voltage to the first interconnect in a set operation of changing the resistance change layer from a first state with a first resistance value to a second state with a second resistance value being less than the first resistance value.11-24-2011
20110286259Reading Memory Elements Within a Crossbar Array - A method for reading the state of a memory element within a crossbar memory array includes storing a first electric current sensed from a half-selected target memory element within the crossbar memory array; and outputting a final electric current based on the stored first electric current and a second electric current sensed from the target memory element when the target memory element is fully selected.11-24-2011
20110286258NONVOLATILE MEMORY DEVICE HAVING A TRANSISTOR CONNECTED IN PARALLEL WITH A RESISTANCE SWITCHING DEVICE - A memory device comprises an array of memory cells each capable of storing multiple bits of data. The memory cells are arranged in memory strings that are connected to a common source line. Each memory cell includes a programmable transistor connected in parallel with a resistance switching device. The transistor is switchable between a plurality of different threshold voltages associated with respective memory states. The resistance switching device is configured to be switchable between a plurality of different resistances associated with respective memory states.11-24-2011
20110299320NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device includes a memory cell array, the memory cell array including a plurality of first lines, a plurality of second lines configured to intersect the first lines, and a plurality of electrically rewritable memory cells disposed at each of intersections of the first lines and the second lines, each of the memory cells being configured from a variable resistor operative to store a resistance value of the variable resistor as data in a nonvolatile manner. A voltage supply circuit applies a certain voltage to the memory cells via the first lines and the second lines during writing data to the memory cells or forming of the memory cells. A detection circuit detects a change of the resistance value of the variable resistor in the memory cell during application of the certain voltage to the memory cells and outputs the detected change of the resistance value of the variable resistor as detection information. An output circuit outputs to external at least a portion of the detection information outputted from the detection circuit.12-08-2011
20120099365THREE DIMENSIONAL PROGRAMMABLE RESISTANCE MEMORY DEVICE WITH A READ/WRITE CIRCUIT STACKED UNDER A MEMORY CELL ARRAY - A programmable resistance memory device includes a semiconductor substrate, at least one cell array, in which memory cells are arranged formed above the semiconductor substrate. Each of the memory cells has a stack structure of a programmable resistance element and an access element, the programmable resistance element storing a high resistance state or a low resistance state determined due to the polarity of voltage application in a non-volatile manner. The access element has such a resistance value in an off-state in a certain voltage range that is ten time or more as high as that in a select state. A read/write circuit is formed on a semiconductor substrate as underlying the cell array for data reading and data writing in communication with the cell array.04-26-2012
20120099364RESISTIVE MEMORY DEVICES, INITIALIZATION METHODS, AND ELECTRONIC DEVICES INCORPORATING SAME - A resistive memory device and method of initialization are provided. The resistive memory device includes a first group of resistive memory cells connected between bit lines and a first plate and a second group connected between bit lines and a second plate. First and second initialization voltages are respectively applied to the first and second plates outside a normal path associated with a normal operation of the resistive memory cells.04-26-2012
20120099363RESISTANCE CHANGE TYPE MEMORY - According to one embodiment, a resistance change type memory includes a first bit line extending in a first direction, a first word line extending in a second direction, a first bipolar transistor which is a first drive type and has a first emitter, a first base, and a first collector, a second bipolar transistor which is a second drive type different from the first drive type and has a second emitter, a second base, and a second collector, and a first memory element which has first and second terminals and in which a change in resistance state thereof is associated with data. The first terminal is connected to the first and second emitters, the second terminal is connected to the first bit line, and the first and second bases are connected to the first word line.04-26-2012
20110299324WRITE CURRENT COMPENSATION USING WORD LINE BOOSTING CIRCUITRY - Apparatus and method for write current compensation in a non-volatile memory cell, such as but not limited to spin-torque transfer random access memory (STRAM) or resistive random access memory (RRAM). In accordance with some embodiments, a non-volatile memory cell has a resistive sense element (RSE) coupled to a switching device, the RSE having a hard programming direction and an easy programming direction opposite the hard programming direction. A voltage boosting circuit includes a capacitor which adds charge to a nominal non-zero voltage supplied by a voltage source to a node to generate a temporarily boosted voltage. The boosted voltage is applied to the switching device when the RSE is programmed in the hard programming direction.12-08-2011
20110299323Floating Source Line Architecture for Non-Volatile Memory - A method and apparatus for writing data to a non-volatile memory cell, such as an RRAM memory cell. In some embodiments, a semiconductor array of non-volatile memory cells comprises a resistive sense element (RSE) and a switching device. A RSE of a plurality of memory cells is connected to a bit line while the switching device of a plurality of memory cells is connected to a word line and operated to select a memory cell. A source line is connected to the switching device and connects a series of memory cells together. Further, a driver circuit is connected to the bit line and writes a selected RSE of a selected source line to a selected resistive state by passing a write current along a write current path that passes through the selected RSE and through at least a portion of the remaining RSE connected to the selected source line.12-08-2011
20110299321SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device in accordance with an embodiment includes a plurality of first word lines, a plurality of bit lines, a resistance varying material, a plurality of second word lines and an insulating film. The bit lines intersect the first word lines. The resistance varying material is disposed at respective intersections of the first word lines and the bit lines. The second word lines intersect the bit lines. The insulating film is disposed at respective intersections of the second word lines and the bit lines. One of the first word lines and one of the second word lines are disposed so as to sandwich the bit lines. The second word lines, the bit lines, and the insulating film configure a field-effect transistor at respective intersections of the second word lines and the bit lines. The field-effect transistor and the resistance varying material configure one memory cell.12-08-2011
20110299319NON-VOLATILE SEMICONDUCTOR STORAGE DEVICE - A non-volatile semiconductor storage device includes a memory cell array having plural electrically rewritable memory cells, each memory cell including a variable resistive element storing resistance values as data in a non-volatile manner, and a data writing unit having a voltage supply circuit which supplies a voltage needed to write data to the plural memory cells, and a resistance state detecting circuit which detects a resistance state of the variable resistive element at the time of writing the data. The data writing unit stops the supply of the voltage to the memory cell where a resistance state of the variable resistive element becomes a desired resistance state, among the plural memory cells, according to the detection result of the resistance state detecting circuit.12-08-2011
20120106234Semiconductor Memory Having Both Volatile and Non-Volatile Functionality Including Resistance Change Material and Method of Operating - Semiconductor memory is provided wherein a memory cell includes a capacitorless transistor having a floating body configured to store data as charge therein when power is applied to the cell. The cell further includes a nonvolatile memory comprising a resistance change element configured to store data stored in the floating body under any one of a plurality of predetermined conditions. A method of operating semiconductor memory to function as volatile memory, while having the ability to retain stored data when power is discontinued to the semiconductor memory is described.05-03-2012
20090201716Memory Element with Positive Temperature Coefficient Layer - An integrated circuit including a memory element and method for manufacturing the integrated circuit are described. In some embodiments, the memory element includes a switching layer that selectively switches between a low resistance state and a high resistance state, and a positive temperature coefficient layer in thermal contact with the switching layer, the positive temperature coefficient layer having a resistance that increases in response to an increase in temperature.08-13-2009
20090201715Carbon Diode Array for Resistivity Changing Memories - An integrated circuit and method for manufacturing an integrated circuit are described. In one embodiment, the integrated circuit includes a memory cell including a resistivity changing memory element and a carbon diode electrically coupled to the resistivity changing memory element.08-13-2009
20120155149SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device includes: a cell array including a plurality of first wirings, a plurality of second wirings intersecting the first wirings, and memory cells positioned at intersecting portions between the first wirings and the second wirings, each of the memory cells having a series circuit of a non-ohmic element and a variable resistance element; a control circuit configured to apply a control voltage, which is necessary for the variable resistance element to transit from a low resistance state to a high resistance state, to the memory cells through the first wirings and the second wirings; and a bias voltage application circuit configured to apply a bias voltage, which suppresses a potential variation caused by the transition of the variable resistance element from the low resistance state to the high resistance state, to one end of the variable resistance element.06-21-2012
20100271860DRIVING METHOD OF VARIABLE RESISTANCE ELEMENT, INITIALIZATION METHOD OF VARIABLE RESISTANCE ELEMENT, AND NONVOLATILE STORAGE DEVICE - A method of driving a variable resistance element includes: a writing step performed by applying a writing voltage pulse having a first polarity to a variable resistance layer to change a resistance state of the layer from high to low; and an erasing step performed by applying an erasing voltage pulse having a second polarity to the layer to change the state from low to high. Here, |Vw1|>|Vw2| where Vw1 represents a voltage value of the writing voltage pulse for first to N-th writing steps (N≧10-28-2010
20110292716Asymmetric Write Current Compensation Using Gate Overdrive for Resistive Sense Memory Cells - Apparatus and associated method for asymmetric write current compensation for resistive sense memory (RSM) cells, such as but not limited to spin-torque transfer random access memory (STRAM) or resistive random access memory (RRAM) cells. In accordance with some embodiments, an RSM cell includes an RSM element coupled to a switching device. The switching device has a plurality of terminals. A control circuit compensates for asymmetric write characteristics of the RSM cell by limiting a range of voltage differentials across the terminals so as to be equal to or less than a magnitude of a source voltage applied to the switching device, thereby providing bi-directional write currents of substantially equal magnitude through the RSM element.12-01-2011
20110292714STRUCTURES AND METHODS FOR A FIELD-RESET SPIN-TORQUE MRAM - An apparatus and method of programming a spin-torque magnetoresistive memory array includes a metal reset line positioned near each of a plurality of magnetoresistive bits and configured to set the plurality of magnetoresistive memory elements to a known state by generating a magnetic field when an electrical current flows through it. A spin torque transfer current is then applied to selected ones of the magnetoresistive bits to switch the selected bit to a programmed state. In another mode of operation, a resistance of the plurality of bits is sensed prior to generating the magnetic field. The resistance is again sensed after the magnetic field is generated and the data represented by the initial state of each bit is determined from the resistance change. A spin torque transfer current is then applied only to those magnetoresistive bits having a resistance different from prior to the magnetic field being applied.12-01-2011
20110292713Reading a Memory Element Within a Crossbar Array - A method for reading a memory element within a crossbar array includes switching a column line connected to a target memory element of the crossbar array to connected to an input of a current mirror; applying an error voltage to unselected rows of the crossbar array; applying a sense voltage to a row line connected to the target memory element; and measuring an output current of the current mirror.12-01-2011
20110299322METHOD OF PROGRAMMING VARIABLE RESISTANCE ELEMENT, METHOD OF INITIALIZING VARIABLE RESISTANCE ELEMENT, AND NONVOLATILE STORAGE DEVICE - A method of programming a variable resistance element includes: performing a writing step by applying a writing voltage pulse having a first polarity to a transition metal oxide comprising two metal oxide layers which are stacked, so as to change a resistance state of the transition metal oxide from high to low, each of the two metal oxide layers having a different degree of oxygen deficiency; and performing an erasing step by applying an erasing voltage pulse having a second polarity to the transition metal oxide so as to change the resistance state of the transition metal oxide from low to high, the second polarity being different from the first polarity, wherein |Vw12-08-2011
20090103350Method of Testing an Integrated Circuit, Method of Manufacturing an Integrated Circuit, and Integrated Circuit - According to one embodiment of the present invention, a method of testing a memory device including a memory cell array is provided, the method including: dividing the memory cell array into a plurality of memory cell array subunits, each memory cell array subunit including a plurality of resistivity changing memory cells; simultaneously testing all resistivity changing memory cells of a memory cell array subunit using a common testing signal; and repeating the testing for all further memory cell array subunits.04-23-2009
20100002492RESISTANCE CHANGE MEMORY - A resistance change type memory includes a first device region and first and second bit lines provided above the first device region and along a first direction. First and second resistance change elements are connected to the first and second bit lines, respectively. A first transistor is serially connected to both the first and second resistance change elements, formed in the first device region, and has a first gate electrode extending along a second direction which intersects with the first direction. The first gate electrode has a gate width equal to a width in the second direction of the first device region.01-07-2010
20110199813NON-VOLATILE MEMORY DEVICE HAVING 3D STRUCTURE AND METHOD FOR FABRICATING THE SAME - A non-volatile memory device having a three-dimensional (3D) structure includes a plurality of line-type horizontal electrode structures configured to include a plurality of interlayer dielectric layers and a plurality of horizontal electrodes that are alternately stacked over a substrate, a plurality of pillar-type vertical electrodes configured to protrude from the substrate while contacting sidewalls of the plurality of the horizontal electrode structures, and a memory layer interposed between the plurality of the horizontal electrode structures and the plurality of the vertical electrodes, and configured to have a resistance value that varies based on a bias applied to the plurality of the horizontal electrodes and the plurality of the vertical electrodes.08-18-2011
20100110762WRITE METHOD WITH VOLTAGE LINE TUNING - A method of writing to a resistive sense memory unit includes applying a first voltage across a resistive sense memory cell and a semiconductor transistor to write a first data state to the resistive sense memory cell. The first voltage forms a first write current for a first time duration through the resistive sense memory cell in a first direction. Then the method includes applying a second voltage across the resistive sense memory cell and the transistor to write a second data state to the resistive sense memory cell. The second voltage forms a second write current for a second duration through the resistive sense memory cell in a second direction. The second direction opposes the first direction, the first voltage has a different value than the second voltage, and the first duration is substantially the same as the second duration.05-06-2010
20110007549SHARED BIT LINE AND SOURCE LINE RESISTIVE SENSE MEMORY STRUCTURE - A resistive sense memory apparatus includes a first semiconductor transistor having a first contact electrically connected to a first source line and a second contact electrically connected to a first resistive sense memory element and a second semiconductor transistor having a first contact electrically connected to a second source line and a second contact electrically connected to a second resistive sense memory element. A bit line is electrically connected to the first resistive sense memory element and the second resistive sense memory element.01-13-2011
20110007546Anti-Parallel Diode Structure and Method of Fabrication - An anti-parallel diode structure and method of fabrication is presently disclosed. In some embodiments, an anti-parallel diode structure has a semiconductor region comprising a first insulator layer disposed between a first semiconductor layer and a second semiconductor layer. The semiconductor region can be bound on a first side by a first metal material and bound on a second side by a second metal material so that current below a predetermined value is prevented from passing through the semiconductor region and current above the predetermined value passes through the semiconductor region.01-13-2011
20100034009Asymmetric Write Current Compensation Using Gate Overdrive for Resistive Sense Memory Cells - Apparatus and associated method for asymmetric write current compensation for resistive sense memory (RSM) cells, such as but not limited to spin-torque transfer random access memory (STRAM) or resistive random access memory (RRAM) cells. In accordance with some embodiments, an RSM cell includes an RSM element coupled to a switching device. The switching device has a plurality of terminals. A control circuit compensates for asymmetric write characteristics of the RSM cell by limiting a range of voltage differentials across the terminals so as to be equal to or less than a magnitude of a source voltage applied to the switching device, thereby providing bi-directional write currents of substantially equal magnitude through the RSM element.02-11-2010
20080310211RESISTANCE CHANGE MEMORY DEVICE - A resistance change memory device including: a semiconductor substrate; at least one cell array formed above the semiconductor substrate, each memory cell having a stack structure of a variable resistance element and an access element, the access element having such an off-state resistance value in a certain voltage range that is ten times or more as high as that in a select state; and a read/write circuit formed on the semiconductor substrate as underlying the cell array, wherein the variable resistance element comprises a recording layer formed of a first composite compound expressed by A12-18-2008
20090196088RESISTANCE CONTROL IN CONDUCTIVE BRIDGING MEMORIES - An integrated circuit may comprise one or more resistive storage cells, wherein each resistive storage cell comprises a resistive storage medium that is switchable between at least a high resistive state and a low resistive state; and a resistance element communicatively coupled to the resistive storage medium in series.08-06-2009
20110267872RESISTANCE CHANGE MEMORY DEVICE - A resistance change memory device includes: a memory cell formed of a variable resistance element and a diode connected in series, the state of the variable resistance element being reversibly changed in accordance with applied voltage or current; and a stabilizing circuit so coupled in series to the current path of the memory cell as to serve for stabilizing the state change of the memory cell passively.11-03-2011
20100034010MEMORY DEVICES WITH CONCENTRATED ELECTRICAL FIELDS - Designs of resistance memory and phase change memory devices with memory cells having metallic inclusion at least in the area of electrode/medium layer interfaces. Such metallic inclusion is used to concentrate electric fields during writing. Consequently, resistance switching for the devices primarily occurs in the area of the metallic inclusion. As a result, better control of the resistance switching can be attained, thereby optimizing performance of the memory devices.02-11-2010
20120188813VERIFICATION ALGORITHM FOR METAL-OXIDE RESISTIVE MEMORY - Memory devices and methods for operating such devices are described which can effectively program the metal-oxide memory elements in an array, while also avoiding applying unnecessarily high voltage pulses. Programming operations described herein include applying a lower voltage pulse across a metal-oxide memory element to establish a desired resistance state, and only applying a higher voltage pulse when the lower voltage pulse is insufficient to program the memory element. In doing so, issues associated with applying unnecessarily high voltages across the memory element can be avoided.07-26-2012
20100008125SEMICONDUCTOR MEMORY DEVICE AND REDUNDANCY METHOD THEREFOR - A memory cell array is formed by arranging memory cells at intersections of plural first wirings and plural second wirings, and a rectifying element and a variable resistive element are connected in series in the memory cell. The variable resistive element has at least a first resistance value and a second resistance value that is higher than the first resistance value. The control circuit selectively drives the first wirings and the second wirings. The control circuit can perform a short-circuit failure countermeasure program operation. In the short-circuit failure countermeasure program operation, the variable resistive element of the memory cell whose rectifying element is in a short-circuit failure state is programmed from the first resistance value to the second resistance value.01-14-2010
20100008123Multiple series passive element matrix cell for three-dimensional arrays - A nonvolatile memory cell including at least two two-terminal non-linear steering elements arranged in series, and a resistivity switching storage element arranged in series with the at least two two-terminal non-linear steering elements. A memory array, comprising a plurality of the nonvolatile memory cells is also described. A method of forming a nonvolatile memory cell is also described.01-14-2010
20090323395SEMICONDUCTOR STORAGE DEVICE - A plurality of memory cells, each including a variable resistance element capable of having four or more values, are arranged at intersections of first wirings and second wirings. A control circuit selectively drives the first and second wirings. A sense amplifier circuit compares, with a reference voltage, a voltage generated by a current flowing through a selected memory cell. A reference voltage generation circuit includes: a resistance circuit including first and second resistive elements connected in parallel. Each of the first resistive elements has a resistance value substantially the same as a maximum resistance value in the variable resistance elements, and each of the second resistive elements has a resistance value substantially the same as a minimum resistance value in the variable resistance elements. A current regulator circuit averages currents flowing through the first and second resistive elements.12-31-2009
20130010525REACTIVE METAL IMPLATED OXIDE BASED MEMORY - Methods, devices, and systems associated with oxide based memory can include a method of forming an oxide based memory cell. Forming an oxide based memory cell can include forming a first conductive element, forming an oxide over the first conductive element, implanting a reactive metal into the oxide, and forming a second conductive element over the oxide.01-10-2013
20130010530METHOD FOR DRIVING NON-VOLATILE MEMORY ELEMENT, AND NON-VOLATILE MEMORY DEVICE - Provided is a method for driving a non-volatile memory element in which a variable resistance element including a first electrode, a second electrode, and a variable resistance layer capable of reversibly changing between a high resistance state and a low resistance state with application of electrical signals having different polarities is connected in series with a current steering element having bidirectional rectifying characteristics with respect to an applied voltage. After the non-volatile memory element is manufactured, the resistance value of the variable resistance layer is reduced from a resistance value in the initial resistance state higher than that in the high resistance state by applying, to the non-volatile memory element, a voltage pulse having the polarity identical to that of the voltage pulse for changing the variable resistance layer from the low resistance state to the high resistance state in the normal operations.01-10-2013
20110032745NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - A non-volatile semiconductor memory device according to an aspect of embodiments of the present invention includes a memory cell array including: multiple first wirings; multiple second wirings crossing the multiple first wirings; and multiple electrically rewritable memory cells respectively arranged at intersections of the first wirings and the second wirings, and each formed of a variable resistor which stores a resistance value as data in a non-volatile manner. The non-volatile semiconductor memory device according to an aspect of the embodiments of the present invention further includes a controller for selecting a given one of the memory cells, generating an erase pulse which is used for erasing data, and supplying the erase pulse to the selected memory cell. The erase pulse has a pulse width which is increased or decreased exponentially in accordance with an access path length to the selected memory cell.02-10-2011
20090147558VARIABLE RESISTANCE ELEMENT, METHOD FOR PRODUCING THE SAME, AND NONVOLATILE SEMICONDUCTOR STORAGE DEVICE - The variable resistance element of the present invention is a variable resistance element having an electrode, the other electrode, and a metal oxide material sandwiched between the electrodes and having an electrical resistance, between the electrodes, changing reversibly in response to a voltage applied between the electrodes. The variable resistance element further includes, inside the metal oxide material, a low resistance material having a lower electrical resistance than the metal oxide material and being out of contact with at least either one of the electrodes. This makes it possible to reduce a forming voltage for providing a conductive section inside the metal oxide material, without causing a leakage current to increase.06-11-2009
20120140547Multi-Bit Resistance-Switching Memory Cell - A non-volatile storage apparatus comprises a set of Y lines, a set of X lines and a plurality of memory cells in communication with the set of X lines and the set of Y lines. Each memory cell of the plurality of memory cells includes a resistance element in a static resistance condition and two or more reversible resistance-switching elements. The resistance element in the static resistance condition and the two or more reversible resistance-switching elements are connected to different Y lines of the set of Y lines. The resistance element in the low resistance state and the two or more reversible resistance-switching elements are connected to a common X line of the set of X lines. One or multiple bits of data are programmed into a particular memory cell of the plurality of memory cells by causing current flow between Y lines connected to the particular memory cell.06-07-2012
20110170332Methods of Driving Nonvolatile Memory Devices that Utilize Read/Write Merge Circuits - An integrated circuit memory device includes an array of nonvolatile memory cells (e.g., variable resistance cells) having a first plurality of lines electrically coupled to memory cells therein. A read/write control circuit is provided. The read/write control circuit includes a read/write merge circuit and a column selection circuit. The read/write control circuit, which is configured to drive a selected one of the first plurality of lines with unequal write and read voltages during respective write and read operations, includes a compensating unit. This compensating unit is configured to provide a read compensation current to the selected one of the first plurality of lines circuit during the read operation.07-14-2011
20080239788INTEGRATED CIRCUIT HAVING A RESISTIVELY SWITCHING MEMORY AND METHOD - An integrated circuit having a resistance-based or resistively switching memory cell, and a method for operating a resistively switching memory cell is disclosed. One embodiment is adapted to be put in a low-resistance state by applying a first threshold voltage and in a high-resistance state by applying a second threshold voltage, wherein reading out of the data content from the memory cell is performed by applying a voltage to the memory cell in the range of the first or second threshold voltage or a higher voltage.10-02-2008
20080266932CIRCUIT FOR PROGRAMMING A MEMORY ELEMENT - An integrated circuit includes a memory element configured to be programmed to any one of at least three resistance states and a circuit. The circuit is configured to program the memory element to a selected one of the at least three resistance states by applying a pulse to the memory element. The pulse includes one of at least three tail portions wherein each tail portion corresponds to one of the at least three resistance states.10-30-2008
20080266934NONVOLATILE MEMORY DEVICE AND METHOD TO CONTROL THE SAME - A nonvolatile memory device is disclosed. The nonvolatile memory device includes a source selector transistor connected at one end thereof to a source line, a plurality of cell selector transistors connected in series with each other and to the other end of said source selector transistor and a basic memory unit including a variable resistor element which is constituted as a memory element to store bit information and is provided for each of said cell selector transistors, being connected at one end thereof to the drain terminal of said cell selector transistor and connected at the other end thereof to the bit line. The source selector transistor and said cell selector transistor provided between one end of said variable resistor element to be accessed and said source line are controlled to turn on.10-30-2008
20080266933Method and Apparatus for Refreshing Programmable Resistive Memory - Nonvolatile memory cells with programmable resistive memory elements, such as chalcogenide material elements, undergo a refresh operation. A refresh operation includes a hot signal and a cold signal, where the hot signal has higher power than a reset signal, and a cold signal has a longer duration than a set signal.10-30-2008
20080266931Resistive memory device having enhanced resist ratio and method of manufacturing same - Disclosed herein are new resistive memory devices having one or more buffers layer surrounding a dielectric layer. By inserting one or more buffer layers around the dielectric layer of the device, the resistive ratio of the device is highly enhanced. For example, tests using this unique stack structure have revealed a resistance ratio of approximately 1000× over conventional electrode-dielectric-electrode stack structures found in resistive memory devices. This improvement in the resistance ratio of the resistive memory device is believed to be from the improved interface coherence, and thus smoother topography, between the buffer layer(s) and the dielectric layer.10-30-2008
20100118591SEMICONDUCTOR INTEGRATED CIRCUIT - A semiconductor integrated circuit includes: an oxide resistance change element, a constant current source circuit supplying a write current to the oxide resistance change element, and a voltage clamper clamping a voltage in a path in which a write current flows. The voltage clamper is arranged in parallel with the path between the constant current source circuit and the oxide resistance change element.05-13-2010
20100277968SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a memory cell array configured of at least a first portion and a second portion each including a plurality of memory cells each with a variable resistor which stores an electrically rewritable resistance value as a data, and a control circuit which controls a first operation including selected one of operations to erase, write and read the data in the first portion and a second operation including selected one of operations to erase, write and read the data in the second portion, the first operation and the second operation being performed in temporally overlapped relation with each other.11-04-2010
20100124095Floating Source Line Architecture for Non-Volatile Memory - A method and apparatus for writing data to a non-volatile memory cell, such as an RRAM memory cell. In some embodiments, a semiconductor array of non-volatile memory cells comprises a resistive sense element (RSE) and a switching device. A RSE of a plurality of memory cells is connected to a bit line while the switching device of a plurality of memory cells is connected to a word line and operated to select a memory cell. A source line is connected to the switching device and connects a series of memory cells together. Further, a driver circuit is connected to the bit line and writes a selected RSE of a selected source line to a selected resistive state by passing a write current along a write current path that passes through the selected RSE and through at least a portion of the remaining RSE connected to the selected source line.05-20-2010
20100118589Non-Volatile Memory Cell with Multiple Resistive Sense Elements Sharing a Common Switching Device - A non-volatile memory cell array and associated method of use are disclosed. In accordance with various embodiments, the array includes a plurality of programmable resistive sense elements (RSEs) coupled to a shared switching device. The switching device has a common source region and multiple drain regions, each drain region connected to an associated RSE from said plurality of RSEs.05-13-2010
20100118594METHOD AND APPARATUS PROVIDING A CROSS-POINT MEMORY ARRAY USING A VARIABLE RESISTANCE MEMORY CELL AND CAPACITANCE - The invention relates to a method and apparatus providing a memory cell array in which each resistance memory cell is connected in series to a capacitive element. Access transistors are not necessary to perform read and write operations on the memory cell. In one exemplary embodiment, the capacitive element is a capacitor.05-13-2010
20110194328VARIABLE RESISTANCE MEMORY DEVICE AND RELATED METHOD OF OPERATION - A variable resistance memory device comprises a variable resistance memory cell, a switch that selectively passes a write voltage to an input terminal of the variable resistance memory cell, and a trigger circuit that controls the switch to cut off the write voltage from the input terminal upon determining that the variable resistance memory cell is programmed to a target state by detecting voltage fluctuation of the one side of variable resistance memory cell.08-11-2011
20090316471RESISTANCE CHANGE MEMORY - A resistance change memory includes first and second memory cell arrays which are adjacent to each other in a first direction, first and second reference cell arrays paired with the first and second memory cell arrays, a first sense amplifier shared by the first and second memory cell arrays and arranged between the first and second memory cell arrays, a first data bus which transfers data of a first readout cell in the first memory cell array to the first sense amplifier, and a second data bus which transfers data of a first reference cell in the first reference cell array to the first sense amplifier. The first and second data buses run on both sides of the first sense amplifier in a second direction and cross each other while sandwiching the first sense amplifier.12-24-2009
20100085799METHOD OF DRIVING MULTI-LEVEL VARIABLE RESISTIVE MEMORY DEVICE AND MULTI-LEVEL VARIABLE RESISTIVE MEMORY DEVICE - Disclosed is a method of driving a multi-level variable resistive memory device. A method of driving a multi-level variable resistive memory device includes supplying a write current to a variable resistive memory cell so as to change resistance of the variable resistive memory cell, verifying whether or not changed resistance enters a predetermined resistance window, the intended resistance window depending on the resistance of reference cells, and supplying a write current having an increased or decreased amount from the write current supplied most recently on the basis of the verification result so as to change resistance of the variable resistive memory cell.04-08-2010
20080205119NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - In order to determine data stored in a memory cell of a resistive cross-point cell array, two reference cells having two different known resistance values (e.g., data “0” and data “1”) are provided, and a difference in current between a selected cell and the reference cell having data “0” and a difference in current between the selected cell and the reference cell having data “1” are compared. By comparison with a current of the reference cell which has a parasitic current as with the selected cell and has known data “0”/“1”, data can be determined while suppressing an influence of a parasitic current.08-28-2008
20100118592NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD OF CONTROLLING THE SAME - Provided is a nonvolatile semiconductor memory device capable of performing a writing action for a memory cell at high speed. The device comprises: a memory cell array having a first sub-bank and a second sub-bank each having a plurality of nonvolatile memory cells arranged in a form of a matrix; a row decoder shared by the first sub-bank and the second sub-bank; a first column decoder and a second column decoder provided in the first sub-bank and the second sub-bank, respectively; and a control circuit arranged to execute alternately a first action cycle to perform a programming action in the first sub-bank and a reading action for a programming verifying action in the second sub-bank and a second action cycle to perform the reading action for the programming verifying action in the first sub-bank and the programming action in the second sub-bank.05-13-2010
20100118590Bidirectional Non-Volatile Memory Array Architecture - A bidirectional memory array architecture for non-volatile memory is disclosed. In accordance with some embodiments, a plurality of memory cells are arranged into an M number of rows and an N number of columns with each memory cell having a resistive sense element (RSE) and a switching device. A total number of M+N+1 control lines extend adjacent to and are connected with the memory cells to facilitate bi-directional programming of resistive states to each memory cell.05-13-2010
20100118587RESISTIVE SENSE MEMORY ARRAY WITH PARTIAL BLOCK UPDATE CAPABILITY - Various embodiments of the present invention are generally directed to a method and apparatus for carrying out a partial block update operation upon a resistive sense memory (RSM) array, such as formed from STRAM or RRAM cells. The RSM array is arranged into multi-cell blocks (sectors), each block having a physical block address (PBA). A first set of user data is written to a selected block at a first PBA. A partial block update operation is performed by writing a second set of user data to a second block at a second PBA, the second set of user data updating a portion of the first set of user data in the first PBA. The first and second blocks are thereafter read to retrieve the second set of user data and a remaining portion of the first set of user data.05-13-2010
20120033482Bit Set Modes for a Resistive Sense Memory Cell Array - Various embodiments of the present invention are generally directed to a method and apparatus for providing different bit set modes for a resistive sense memory (RSM) array, such as a spin-torque transfer random access memory (STRAM) or resistive random access memory (RRAM) array. In accordance with some embodiments, a group of RSM cells in a non-volatile semiconductor memory array is identified for application of a bit set operation. A bit set value is selected from a plurality of bit set values each separately writable to the RSM cells to place said cells in a selected resistive state. The selected bit set value is thereafter written to at least a portion of the RSM cells in the identified group.02-09-2012
20120033480SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device according to the embodiment comprises a memory cell array including first line, second line crossing the first line, and memory cell containing variable resistance element provided on the intersection of the first and second lines; a data write unit operative to cause the variable resistance element to make a transition from a first resistance to a second resistance different from the first resistance; and a resistance state detection unit including an abnormality detection circuit operative to detect a transition of the resistance of the variable resistance element to a third resistance when the data write unit causes the variable resistance element to make the transition from the first resistance to the second resistance (where the third resistancethe first resistance>the second resistance).02-09-2012
20110199812Nonvolatile semiconductor memory device - A nonvolatile semiconductor memory device includes: a memory element in which a rate of charge discharge between two electrodes of the memory element differs according to a logical value of stored information; cell wiring connected to one electrode of the memory element; a sense amplifier having a sense node connected to the cell wiring, the sense amplifier reading the logical value of the information by comparing a potential of the sense node with a reference potential; and a readout control circuit capable of switching between a dynamic sense operation performing readout by precharging the cell wiring and discharging or charging the cell wiring via the memory element and a static sense operation performing readout in a state of a current load being connected to the sense node.08-18-2011
20090207647NONVOLATILE SEMICONDUCTOR STORAGE DEVICE AND DATA WRITING METHOD THEREFOR - A nonvolatile semiconductor storage device comprises: a first wire and a second wire intersecting each other; a memory cell which is disposed at each intersection of the first wire and the second wire and electrically rewritable and in which a variable resistor for memorizing a resistance value as data in a nonvolatile manner and a rectifying device are connected in series; and a control circuit which applies a voltage necessary for writing of data to the first and second wires. The control circuit precharges a non-selected second wire up to a standby voltage larger than a reference voltage prior to a set operation for programming only a variable resistor connected to selected first and second wires by supplying the reference voltage to a non-selected first wire and the selected second wire, applying a program voltage necessary for programming of the selected variable resistor based on the reference voltage to the selected first wire and applying a control voltage which prevents the rectifying device from turning ON based on the program voltage to the non-selected second wire.08-20-2009
20100085797DUAL STAGE SENSING FOR NON-VOLATILE MEMORY - A method and apparatus for accessing a non-volatile memory cell. In some embodiments, a memory block provides a plurality of memory cells arranged into rows and columns. A read circuit is configured to read a selected row of the memory block by concurrently applying a control voltage to each memory cell along the selected row and, for each column, using a respective local sense amplifier and a column sense amplifier to successively differentiate a voltage across the associated memory cell in said column to output a programmed content of the row.04-08-2010
20100085798SILICON-BASED NANOSCALE RESISTIVE DEVICE WITH ADJUSTABLE RESISTANCE - A non-volatile solid state resistive device that includes a first electrode, a p-type poly-silicon second electrode, and a non-crystalline silicon nanostructure electrically connected between the electrodes. The nanostructure has a resistance that is adjustable in response to a voltage being applied to the nanostructure via the electrodes. The nanostructure can be formed as a nanopillar embedded in an insulating layer located between the electrodes. The first electrode can be a silver or other electrically conductive metal electrode. A third (metal) electrode can be connected to the p-type poly-silicon second electrode at a location adjacent the nanostructure to permit connection of the two metal electrodes to other circuitry. The resistive device can be used as a unit memory cell of a digital non-volatile memory device to store one or more bits of digital data by varying its resistance between two or more values.04-08-2010
20100085796Enhancing Read and Write Sense Margins in a Resistive Sense Element - An apparatus and method for enhancing read and write sense margin in a memory cell having a resistive sense element (RSE), such as but not limited to a resistive random access memory (RRAM) element or a spin-torque transfer random access memory (STRAM) element. The RSE has a hard programming direction and an easy programming direction. A write current is applied in either the hard programming direction or the easy programming direction to set the RSE to a selected programmed state. A read circuit subsequently passes a read sense current through the cell in the hard programming direction to sense the selected programmed state of the cell.04-08-2010
20100080038SEMICONDUCTOR MEMORY DEVICE - An inexpensive nonvolatile memory having high performance which makes random write and readout possible an unlimited number of times is provided. A unit memory cell is formed of a MISFET having a channel body that is electrically isolated from a semiconductor substrate and a resistance change element having a two-terminal structure with one end electrically connected to a drain of the MISFET. The MISFET functions as a volatile memory element, and the resistance change element functions as a nonvolatile memory element, so that information stored in the MISFET is copied to the resistance change element before the power is turned OFF and information stored in the resistance change element is transferred to the MISFET when the power is turned ON, and thus, the MISFET is used as a volatile memory which makes random write and readout possible.04-01-2010
20100080042INTEGRATING NONVOLATILE MEMORY CAPABILITY WITHIN SRAM DEVICES - A nonvolatile static random access memory (SRAM) device includes a pair of cross-coupled, complementary metal oxide semiconductor (CMOS) inverters configured as a storage cell for a bit of data and a pair of magnetic spin transfer devices coupled to opposing sides of the storage cell. The magnetic spin transfer devices are configured to retain the storage cell data therein following removal of power to the SRAM device, and are further configured to initialize the storage cell with the retained data upon application of power to the SRAM device.04-01-2010
20100080040Nonvolatile memory device and method of driving the same - A nonvolatile memory and a method of driving the same are provided, which adopt an improved write verify operation. The method of driving a nonvolatile memory device having variable resistance memory cells, bit lines coupled to the variable resistance memory cells, and column selection transistors coupled between the variable resistance memory cells and the bit lines to receive a first control voltage being applied to their gates, includes making the first control voltage at a first level, and changing a resistance of the variable resistance memory cells by providing a write bias to the variable resistance cells; verifying and reading whether the changed resistance enters into a specified resistance window; and changing the first control voltage to a second level that is different from the first level, and changing the resistance of the variable resistance memory cells by providing the write bias to the variable resistance memory cells.04-01-2010
20100080039Nonvoltile memory device and method of driving the same - A nonvolatile memory device and a method of driving the same are provided, which adopt an improved write operation. The method of driving a nonvolatile memory device includes providing the nonvolatile memory device including a plurality of memory banks each having a plurality of local bit lines and a plurality of variable resistance memory cells; selectively connecting read global bit lines for reading data with the local bit lines, and firstly discharging the selectively connected local bit lines by turning on local bit line discharge transistors coupled to the read global bit lines; and selectively connecting write global bit lines for writing data with the local bit lines, and secondly discharging the selectively connected local bit lines by turning on global bit line discharge transistors.04-01-2010
20100080037NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - Provided is a nonvolatile semiconductor device capable of performing writing operations of different resistance changes for memory cells having variable resistive elements whose resistive characteristics are changed by voltage applications, individually and simultaneously. The device comprises: a load resistive characteristic variable circuit for each bit line connected commonly with the memory cells on the same column for selecting one of two load resistive characteristics according to a first writing operation where the resistive characteristics of the variable resistive element to be written transit from a low resistance state to a high resistance state or a second writing operation where they transit reversely; and a writing voltage pulse application circuit for applying a first voltage pulse in a first writing operation and a second voltage pulse in a second writing operation to the memory cells to be written through the load resistive characteristic variable circuits and the bit limes.04-01-2010
20090296452Semiconductor device - A semiconductor device has a plurality of memory cells including memory elements to store information by varying resistance values of the memory elements. The semiconductor device further has a reference system circuit enables measurement of distribution of the resistance values for the plurality of memory cells.12-03-2009
20120268980NONVOLATILE VARIABLE RESISTIVE ELEMENT AND NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A large-capacity and inexpensive nonvolatile semiconductor memory device that prevents a leak current and is operated at high speed is implemented with a nonvolatile variable resistive element. A memory cell array includes the nonvolatile variable resistive elements each including a variable resistor composed of a metal oxide film to cause a resistance change according to an oxygen concentration in the film, an insulation film formed on the variable resistor, first and second electrodes to sandwich the variable resistor, and a third electrode opposite to the variable resistor across the insulation film. A writing operation is performed by applying a voltage to the third electrode to induce an electric field having a threshold value or more, in a direction perpendicular to an interface between the variable resistor and the insulation film, and a resistance state of the variable resistor is read by applying a voltage between the first and second electrodes.10-25-2012
20120294065VARIABLE RESISTANCE MEMORY DEVICE AND METHOD OF FABRICATING THE SAME - According to an example embodiment, a variable resistance memory device includes a lower electrode that includes a spacer-shaped first sub lower electrode and a second sub lower electrode covering a curved sidewall of the first sub lower electrode. The second sub lower electrode extends upward to protrude above the top of the first sub lower electrode. The lower electrode includes an upward-tapered shape.11-22-2012
20120294063MEMORY ELEMENT AND MEMORY DEVICE - There are provided a memory element and a memory device excellently operating at a low current, and having the satisfactory retention characteristics. The memory element includes a first electrode, a memory layer, and a second electrode in this order. The memory layer includes a resistance change layer disposed on the first electrode side, and being in a single- or multi-layer structure including a layer containing a highest percentage of tellurium (Te) as an anionic component, and an ion source layer disposed on the second electrode side, and containing a metallic element and one or more chalcogen elements including tellurium (Te), sulfur (S), and selenium (Se) with aluminum (Al) of 27.7 atomic % or more but 47.4 atomic % or less.11-22-2012
20120294064VARIABLE-RESISTANCE MEMORY DEVICE AND ITS OPERATION METHOD - Disclosed herein is a variable-resistance memory device including a first common line; a second common line; a storage element connected between the first common line and the second common line to serve as a storage element whose resistance changes in accordance with a voltage applied to the storage element; and a driving control circuit.11-22-2012
20090052226Resistive random access memory device - Provided is a resistive random access memory device that includes a storage node connected to a switching device. The resistive random access memory device includes a first electrode, a resistance variable layer, and a second electrode which are sequentially stacked, wherein a diffusion blocking layer is formed between the first electrode and the resistance variable layer or between the resistance variable layer or/and the second electrode.02-26-2009
20110194330MEMORY ARRAY WITH READ REFERENCE VOLTAGE CELLS - The present disclosure relates to memory arrays with read reference voltage cells. In particular the present disclosure relates to variable resistive memory cell apparatus and arrays that include a high resistance state reference memory cell and a low resistance state reference memory cell that provides a reliable average reference voltage on chip to compare to a read voltage of a selected memory cell and determine if the selected memory cell is in the high resistance state or low resistance state. These memory arrays are particularly suitable for use with spin-transfer torque memory cells and resolves many systematic issues related to generation of a reliable reference voltage.08-11-2011
20090109730RESISTANCE MEMORY ELEMENT - A resistance memory element includes an elementary body and opposing electrodes separated by at least a portion of the elementary body. The elementary body is preferably made of a strontium titanate-based semiconductor ceramic expressed by the formula: (Sr04-30-2009
20110170335Vertical Non-Volatile Switch with Punchthrough Access and Method of Fabrication Therefor - A semiconductor device for accessing non-volatile memory cell is provided. In some embodiments, the semiconductor device has a vertical stack of semiconductor layers including a source, a drain, and a well. An application of a drain-source bias voltage to the semiconductor device generates a punchthrough mechanism across the well to initiate a flow of current between the source and the drain.07-14-2011
20110170334NONVOLATILE MEMORY, MEMORY SYSTEM, AND METHOD OF DRIVING - Provided are a nonvolatile memory and related method of programming same. The nonvolatile memory includes a memory cell array with a plurality of nonvolatile memory cells and a write circuit. The write circuit is configured to write first logic state data to a first group of memory cells during a first program operation using an internally generated step-up voltage, and second logic state data to a second group of memory cells during a second program operation using an externally supplied step-up voltage.07-14-2011
20110170331SEMICONDUCTOR DEVICES AND METHODS OF DRIVING THE SAME - Example embodiments disclose a semiconductor device using resistive memory material layers and a method of driving the semiconductor device. The semiconductor device includes a plurality of memory cells. At least one memory cell includes a uni-polar variable resistor and a bi-polar variable resistor connected in series and configured to switch between low resistance states and high resistance states, respectively, according to an applied voltage.07-14-2011
20090262569SEMICONDUCTOR MEMORY DEVICE WITH STACKED MEMORY CELL STRUCTURE - A semiconductor device including: a first memory cell including a non-volatile first variable resistance element that stores data by varying a resistance value and a selection transistor that selects the first variable resistance element; a first memory layer provided with more than one such first memory cell arranged in a plane; a second memory cell including a non-volatile second variable resistance element that stores data by varying a resistance value and a selection diode that selects the second variable resistance element; and a second memory layer provided with more than one such second memory cell arranged in a plane; wherein more than one such second memory layer is stacked over the first memory layer.10-22-2009
20090262568SEMICONDUCTOR MEMORY DEVICE - A resistance variable memory reduces the nonuniformity of resistance values after programming, so that a rewrite operation can be performed on a memory cell at high speed. A reference resistor is connected in series with the resistance variable memory cell, and a sensor amplifier detects whether the potential at an intermediate node between the memory cell and the reference resistor exceeds a given threshold voltage, so as to stop the write operation based on a detection result.10-22-2009
20090273964NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises: a two terminal structured variable resistive element, wherein resistive characteristics defined by current-voltage characteristics at both ends transit between low and high resistance states stably by applying a voltage satisfying predetermined conditions to the both ends, a transition from the low resistance state to the high resistance state occurs by applying a voltage of a first polarity whose absolute value is at or higher than a first threshold voltage, and the reverse transition occurs by applying a voltage of a second polarity whose absolute value is at or higher than a second threshold voltage; a load circuit connected to the variable resistive element in series having an adjustable load resistance; and a voltage generation circuit for applying a voltage to both ends of a serial circuit; wherein the variable resistive element can transit between the states by adjusting a resistance of the load circuit.11-05-2009
20090279344RESISTANCE CHANGE MEMORY DEVICE - A resistance change memory device includes: a memory cell formed of a variable resistance element and a diode connected in series, the state of the variable resistance element being reversibly changed in accordance with applied voltage or current; and a stabilizing circuit so coupled in series to the current path of the memory cell as to serve for stabilizing the state change of the memory cell passively.11-12-2009
20090279345RESISTIVE MEMORY ELEMENT SENSING USING AVERAGING - A system for determining the logic state of a resistive memory cell element, for example an MRAM resistive cell element. The system includes a controlled voltage supply, an electronic charge reservoir, a current source, and a pulse counter. The controlled voltage supply is connected to the resistive memory cell element to maintain a constant voltage across the resistive element. The charge reservoir is connected to the voltage supply to provide a current through the resistive element. The current source is connected to the charge reservoir to repeatedly supply a pulse of current to recharge the reservoir upon depletion of electronic charge from the reservoir, and the pulse counter provides a count of the number of pulses supplied by the current source over a predetermined time. The count represents a logic state of the memory cell element.11-12-2009
20090285009Nonvolatile memory devices using variable resistive elements - A nonvolatile memory device using a variable resistive element is provided. The nonvolatile memory device may include a memory cell array which includes an array of multiple nonvolatile memory cells having variable resistance levels depending on data stored. Word lines may be coupled with each column of the nonvolatile memory cells. Local bit lines may be coupled with each row of the nonvolatile memory cells. Global bit lines may be selectively coupled with the multiple local bit lines.11-19-2009
20090285007INTEGRATED CIRCUIT WITH AN ARRAY OF RESISTANCE CHANGING MEMORY CELLS - An integrated circuit includes an array of resistance changing memory cells, and a circuit configured to apply an initialization signal to a first one of the memory cells that is in a virgin resistance state. The initialization signal is configured to modify the first memory cell without switching an operation state of the first memory cell.11-19-2009
20090296451RESISTANCE CHANGE MEMORY, AND DATA WRITE AND ERASE METHODS THEREOF - A resistance change memory includes a first interconnection, a second interconnection, a first resistance change element which has a first electrode, a second electrode, and a first tunnel insulating film provided between the first electrode and the second electrode, the first tunnel insulating film including a first trap region formed by introducing defects to trap holes or electrons, and the second electrode being connected to the first interconnection, and a first transistor whose current path has one end connected to the first electrode and the other end connected to the second interconnection.12-03-2009
20090296449Integrated Circuit and Method of Operating an Integrated Circuit - According to one embodiment of the present invention, an integrated circuit is provided including a plurality of resistivity changing memory elements and a plurality of memory element select devices, wherein the select devices are floating body select devices.12-03-2009
20090168494Semiconductor device having resistance based memory array, method of operation, and systems associated therewith - In one embodiment, the semiconductor device includes a non-volatile memory cell array, a write circuit configured to write to the non-volatile memory cell array, and a control circuit. The control circuit is configured to store at least one erase indicator. The erase indicator is associated with at least a portion of the non-volatile memory cell array and indicates a logic state. The control circuit is configured to control the write circuit to write the logic state indicated by the erase indicator in the non-volatile memory cell array during an erase operation of the associated portion of the non-volatile memory cell array.07-02-2009
20090168495SEMICONDUCTOR MEMORY DEVICE AND METHOD OF WRITING INTO SEMICONDUCTOR MEMORY DEVICE - In the semiconductor memory device having a resistance memory element, a first transistor having a drain terminal connected to one end of the resistance memory element and a source terminal connected to a ground voltage, and a second transistor having source terminal connected to the resistance memory element, when a write voltage is applied to the resistance memory element via the second transistor to switch the resistance memory element from a low resistance state to a high resistance state, a voltage is controlled to be a value which is not less than a reset voltage and less than a set voltage by applying to a gate terminal of the second transistor a voltage which is not less than a total of the reset voltage and a threshold voltage of the second transistor and is less than a total of the set voltage and the threshold voltage.07-02-2009
20110205784NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises a cell array including plural MATs (unit cell arrays) arranged in matrix, each MAT containing a plurality of first lines, a plurality of second lines intersecting the plurality of first lines, and a plurality of memory cells connected at intersections of the first and second lines between both lines, each memory cell containing an electrically erasable programmable variable resistive element of which resistance is nonvolatilely stored as data; and a plurality of write/erase circuits connected to the MATs and operative to execute data write or erase to the memory cells inside the MATs in accordance with input data. A part of the plurality of write/erase circuits writes data to memory cells inside a corresponding MAT while another part of the plurality of write/erase circuits erases data from memory cells inside a corresponding MAT at the same time.08-25-2011
20110199811NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD OF CONTROLLING NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - According to an embodiment, there are provided a non-volatile semiconductor memory device includes: a memory cell array; a control circuit performing a series of operations to each memory cell and determining, as a defective memory cell, a memory cell whose data retention property does not satisfy a criteria, the series of operations including an operation applying a first bias to the memory cell in a forward direction, and including an operation thereafter applying a second bias to the memory cell in a reverse direction; a storage unit storing an address of the defective memory cell; and an address control unit performing a control to avoid storing data in the defective memory cell whose address is stored in the storage unit.08-18-2011
20080212359Memory Device and Semiconductor Integrated Circuit - First electrode layer includes a plurality of first electrode lines (W09-04-2008
20100110767RESISTANCE VARIABLE MEMORY APPARATUS - A resistance variable memory apparatus (05-06-2010
20100110768RESISTANCE VARIABLE MEMORY DEVICE AND SYSTEM - Disclosed is a resistance variable memory device including a memory cell connected with a bit line, a sense amplifier circuit sensing a voltage level on the bit line, and a pseudo-replica providing the sense amplifier circuit with a control signal that compensates for a drop in the sensing capacity of the sense amplifier circuit in relation to process, voltage and temperature (PVT) variations.05-06-2010
20100110765Non-Volatile Memory Cell with Programmable Unipolar Switching Element - A non-volatile memory cell with a programmable unipolar switching element, and a method of programming the memory element are disclosed. In some embodiments, the memory cell comprises a programmable bipolar resistive sense memory element connected in series with a programmable unipolar resistive sense switching element. The memory element is programmed to a selected resistance state by application of a selected write current in a selected direction through the cell, wherein a first resistance level is programmed by passage of a write current in a first direction and wherein a second resistance level is programmed by passage of a write current in an opposing second direction. The switching element is programmed to a selected resistance level to facilitate access to the selected resistance state of the memory element.05-06-2010
20100110761Spatial Correlation of Reference Cells in Resistive Memory Array - The present disclosure relates to methods of selectively placing a reference column or reference row in a memory array. The method includes measuring a resistance state resistance value for a plurality of variable resistive memory cells within a memory array and mapping a location of each measured variable resistive memory cell to form a map of the resistance state resistance values for a plurality of variable resistive memory cells within a memory array. Then a column or row is selected to be a reference column or reference row based on the map of the resistance state resistance value for a plurality of variable resistive memory cells within a memory array, to minimize read operation errors, and forming a variable resistive memory cell memory array.05-06-2010
20100110759PROGRAMMABLE RESISTIVE MEMORY CELL WITH FILAMENT PLACEMENT STRUCTURE - Programmable metallization memory cells having a first metal contact and a second metal contact with an ion conductor solid electrolyte material between the metal contacts. The first metal contact has a filament placement structure thereon extending into the ion conductor material. In some embodiments, the second metal contact also has a filament placement structure thereon extending into the ion conductor material toward the first filament placement structure. The filament placement structure may have a height of at least about 2 nm.05-06-2010
20100110760Resistive Sense Memory Calibration for Self-Reference Read Method - Resistive memory calibration for self-reference read methods are described. One method of self-reference reading a resistive memory unit includes setting a plurality of resistive memory units to a first resistive data state. The resistive memory units forms a memory array. Reading a sensed resistive data state for each resistive memory unit by applying a first read current and a second read current through each resistive memory unit and then comparing voltages formed by the first read current and the second read current to determine the sensed resistive data state for each resistive memory unit. Then the method includes adjusting the first or the second read current, read voltages, or storage device capacitance for each resistive memory unit where the sensed resistive data state was not the same as the first resistive data state until the sensed resistive data state is the same as the first resistive data state.05-06-2010
20100103718SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes first and second bit line provided in the same level layer above a semiconductor substrate, a first variable-resistance element disposed under the first bit line, having one terminal connected to one end of a current path of a first MOSFET, a second variable-resistance element disposed under the second bit line, and having one terminal connected to one end of a current path of a second MOSFET, a first interconnect layer connecting the first bit line to the other terminal of the first variable-resistance element, and connecting the first bit line to the other end of the current path of the second MOSFET, and a second interconnect layer connecting the second bit line to the other terminal of the second variable-resistance element, and connecting the second bit line to the other end of the current path of the first MOSFET.04-29-2010
20100061141Non-volatile memory device and storage system including the same - A non-volatile memory device may include a plurality of data cells, each data cell of the plurality of data cells programmed to have a first resistance variation among a plurality of first resistance variations; and a plurality of reference cells, each reference cell of the plurality of reference cells programmed to have a second resistance variation among a plurality of second resistance variations. A change in a resistance of the data cells is used to identify a level of data programmed to memory. Because the resistance variation of the data cells may change with time or due to changes in temperature, a reference cell is also included in the non-volatile memory device. The reference cell is used for effective reading of the data value of a corresponding data cell. A storage system may include the non-volatile memory device.03-11-2010
20100061140INTEGRATED CIRCUIT INCLUDING DOPED SEMICONDUCTOR LINE HAVING CONDUCTIVE CLADDING - An integrated circuit includes an array of memory cells. Each memory cell includes a diode. The integrated circuit includes a doped semiconductor line formed in a semiconductor substrate. The doped semiconductor line is coupled to a row of diodes. The integrated circuit includes conductive cladding contacting the doped semiconductor line.03-11-2010
20090003033QUASI-DIFFERENTIAL READ OPERATION - A memory device includes an array portion of resistive memory cells comprising a plurality of bit line pairs. The device further includes a read circuit operably associated with a first charged line, wherein the read circuit comprises a precharge circuit configured to charge a first line at a first rate, and to charge a second line at a second rate, the first and second charge rates based on a state of a memory cell coupled between the respective lines. The read circuit may further include a ground circuit configured to pull the respective lines to a ground potential, and a sense circuit coupled to the line pair configured to sense a differential voltage between the line pair in response to the state of the memory cell.01-01-2009
20090003032INTEGRATED CIRCUIT INCLUDING RESISTIVITY CHANGING MATERIAL HAVING A PLANARIZED SURFACE - An integrated circuit includes a first electrode and a first resistivity changing material coupled to the first electrode. The first resistivity changing material has a planarized surface. The integrated circuit includes a second resistivity changing material contacting the planarized surface of the first resistivity changing material and a second electrode coupled to the second resistivity changing material. A cross-sectional width of the first resistivity changing material is less than a cross-sectional width of the second resistivity changing material.01-01-2009
20110205779SEMICONDUCTOR STORAGE DEVICE - According to one embodiment, a semiconductor storage device includes a memory cell array and a control circuit. The memory cell array has memory cells arranged therein at respective intersections between a plurality of first wirings and a plurality of second wirings. Each of the memory cells has a variable resistance element. The control circuit is configured to apply a voltage to a selected one of the first wirings and to a selected one of the second wirings. The control circuit includes a plurality of charge pump circuits and a plurality of clock oscillator circuits. The charge pump circuits generate a voltage applied to the first and second wirings. Each of the clock oscillator circuits is configured to supply a clock signal to a certain number of the charge pump circuits to control the timing of operation thereof. The clock oscillator circuits are configured to output clock signals at different frequencies.08-25-2011
20090168492Two terminal nonvolatile memory using gate controlled diode elements - A nonvolatile memory cell includes a gate controlled diode steering element and a resistivity switching element.07-02-2009
20080232154RESISTANCE MEMORY ELEMENT AND METHOD OF MANUFACTURING THE SAME, AND SEMICONDUCTOR MEMORY DEVICE - A resistance memory element memorizing a high resistance state or a low resistance state in a memory region and switched between the high resistance state and the low resistance state by an application of a voltage includes a resistance memory layer 09-25-2008
20080232153Non-volatile memory device - A non-volatile memory device 09-25-2008
20080273372Method of Programming Multi-Layer Chalcogenide Devices - A method of programming a multi-layer chalcogenide electronic device. The device includes an active region in electrical communication with two terminals, where the active region includes two or more layers. The method includes providing an electrical signal between the two terminals, where the electrical signal alters an electrical characteristic of a layer remote from one of the terminals. In one embodiment, the layer remote from the terminal is a chalcogenide material and the electrical characteristic is resistance. In another embodiment, an electrical characteristic of the layer in contact with the terminal is also altered. The alteration of an electrical characteristic may be caused by a transformation of a chalcogenide material from one structural state to another structural state.11-06-2008
20080273371MEMORY INCLUDING WRITE CIRCUIT FOR PROVIDING MULTIPLE RESET PULSES - An integrated circuit includes an array of resistive memory cells having varying critical dimensions and a write circuit. The write circuit is configured to reset a selected memory cell by applying a first pulse having a first amplitude and a second pulse having a second amplitude less than the first amplitude to the selected memory cell.11-06-2008
20080278990RESISTIVE-SWITCHING NONVOLATILE MEMORY ELEMENTS - Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed in one or more layers on an integrated circuit. Each memory element may have a first conductive layer, a metal oxide layer, and a second conductive layer. Electrical devices such as diodes may be coupled in series with the memory elements. The first conductive layer may be formed from a metal nitride. The metal oxide layer may contain the same metal as the first conductive layer. The metal oxide may form an ohmic contact or a Schottky contact with the first conductive layer. The second conductive layer may form an ohmic contact or a Schottky contact with the metal oxide layer. The first conductive layer, the metal oxide layer, and the second conductive layer may include sublayers. The second conductive layer may include an adhesion or barrier layer and a workfunction control layer.11-13-2008
20080278989Resistive memory device and method of manufacturing the same - Provided is a resistive memory device and a method of manufacturing the resistive memory device that includes a bottom electrode, an insulating layer that is formed on the bottom electrode and has a hole that exposes the bottom electrode, a resistance layer and an intermediate layer which are formed in the hole, a switch structure formed on a surface of the intermediate layer, and an upper electrode formed on the switch structure.11-13-2008
20080291715NONVOLATILE MEMORY DEVICE USING VARIABLE RESISTIVE MATERIALS - A nonvolatile memory device includes a nonvolatile memory cell, a read circuit and a control bias generating circuit. The nonvolatile memory cell has a resistance level that changes depending on stored data. The read circuit reads the resistance level of the nonvolatile memory cell by receiving a control bias and supplying the nonvolatile memory cell a read bias based on the control bias. The control bias generating circuit receives an input bias, generates the control bias based on the input bias and supplies the control bias to the read circuit. A slope of the control bias to the input bias is less than 1.11-27-2008
20080291716METHOD OF PROGRAMMING A NON-VOLATILE MEMORY DEVICE - A method of programming a non-volatile memory device with memory cells formed of variable resistance elements and disposed between word lines and bit lines, includes: previously charging a selected word line and a selected bit line together with a non-selected word line and a non-selected bit line up to a certain voltage; and further charging the selected word line and the non-selected bit line up to a program voltage higher than the certain voltage and a program-block voltage, respectively, and simultaneously discharging the selected bit line.11-27-2008
20080304311INTEGRATED CIRCUIT INCLUDING LOGIC PORTION AND MEMORY PORTION - An integrated circuit includes a logic portion including M conductive layers, a memory portion including N conductive layers, and at least one common top conductive layer over the logic portion and the memory portion. M is greater than N.12-11-2008
20080304312RESISTANCE MEMORY WITH TUNGSTEN COMPOUND AND MANUFACTURING - Memory devices based on tungsten-oxide memory regions are described, along with methods for manufacturing and methods for programming such devices. The tungsten-oxide memory region can be formed by oxidation of tungsten material using a non-critical mask, or even no mask at all in some embodiments. A memory device described herein includes a bottom electrode and a memory element on the bottom electrode. The memory element comprises at least one tungsten-oxygen compound and is programmable to at least two resistance states. A top electrode comprising a barrier material is on the memory element, the barrier material preventing movement of metal-ions from the top electrode into the memory element.12-11-2008
20080310208PROCESS FOR ERASING CHALCOGENIDE VARIABLE RESISTANCE MEMORY BITS - A method of erasing a chalcogenide variable resistance memory cell is provided. The chalcogenide variable resistance memory cell includes a p-doped substrate with an n-well and a chalcogenide variable resistance memory element. The method includes the step of applying to the variable resistance memory element a voltage that is less than a fixed voltage of the substrate. The applied voltage induces an erase current to flow from the p-doped substrate through the n-well and through the variable resistance memory element.12-18-2008
20080310210Semiconductor memory device and method of operation - A memory cell is disclosed. The memory cell comprises a storage element including a first terminal and a second terminal, and a select transistor including a first terminal, a second terminal and a control terminal. The voltage at the control terminal of the select transistor affects a current flowing between the first terminal and the second terminal. The first terminal of the select transistor is coupled to the second terminal of the storage element. A bit line is coupled to the first terminal of the storage element, a first word line is coupled to the control terminal of the select transistor, and a second word line is coupled to the second terminal of the select transistor.12-18-2008
20080285329RECORDABLE ELECTRICAL MEMORY - A memory device includes a plurality of memory cells each including a recordable layer between two metal layers, the recordable layer including a first sub-cell and a second sub-cell. Each memory cell is constructed and designed to change from an as-deposited state to an initialized state upon application of an initialization signal, from the initialized state to a first inscribed state upon application of a first write signal, and from the initialized state to a second inscribed state upon application of a second write signal. The memory cell has a resistor-like current-voltage (I-V) characteristic when in the as-deposited state, a diode-like I-V characteristic when in the initialized state, and resistor-like I-V characteristics when in the first and second inscribed states for voltages within a predetermined range.11-20-2008
20100277969STRUCTURES FOR RESISTIVE RANDOM ACCESS MEMORY CELLS - A resistive random access memory (RRAM) cell that includes a first electrode having a lower portion, a continuous side portion and an upper portion, the lower portion and the continuous side portion having an outer surface and an inner surface; a resistive layer having a lower portion, a continuous side portion and an upper portion, the lower portion and the continuous side portion having an outer surface and an inner surface; and a second electrode having a lower portion, an upper portion and an outer surface; wherein the outer surface of the resistive layer directly contacts the inner surface of the first electrode.11-04-2010
20120033481Memory Element With A Reactive Metal Layer - A memory cell including conductive oxide electrodes is disclosed. The memory cell includes a memory element operative to store data as a plurality of resistive states. The memory element includes a layer of a conductive metal oxide (CMO) (e.g., a perovskite) in contact with an electrode that may comprise one or more layers of material. At least one of those layers of material can be a conductive oxide (e.g., a perovskite such as LaSrCoO02-09-2012
20080316795Method of making nonvolatile memory device containing carbon or nitrogen doped diode - A method of making a nonvolatile memory device includes forming a first electrode, forming at least one nonvolatile memory cell comprising a silicon, germanium or silicon-germanium diode, doping the diode with at least one of nitrogen or carbon, and forming a second electrode over the at least one nonvolatile memory cell.12-25-2008
20080304310MEMORY HAVING SHARED STORAGE MATERIAL - An integrated circuit includes a bit line, a plurality of access devices coupled to the bit line, and a plate of phase change material. The integrated circuit includes a plurality of phase change elements contacting the plate of phase change material and a plurality of first contacts. Each first contact is coupled between an access device and a phase change element.12-11-2008
20120044747REVERSIBLE RESISTIVE MEMORY USING DIODES FORMED IN CMOS PROCESSES AS PROGRAM SELECTORS - Junction diodes fabricated in standard CMOS logic processes can be used as program selectors for reversible resistive memory cells that can be programmed based on magnitude, duration, voltage-limit, or current-limit of a supply voltage or current. These cells are PCM, RRAM, CBRAM, or other memory cells that have a reversible resistive element coupled to a diode. The diode can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diode. The memory cells can be used to construct a two-dimensional memory array with the N terminals of the diodes in a row connected as a wordline and the reversible resistive elements in a column connected as a bitline. By applying a voltage or a current to a selected bitline and to a selected wordline to turn on the diode, a selected cell can be programmed into different states reversibly based on magnitude, duration, voltage-limit, or current-limit. The data in the reversible resistive memory can also be read by turning on a selected wordline to couple a selected bitline to a sense amplifier. The wordlines may have high-resistivity local wordlines coupled to low-resistive global wordlines through conductive contact(s) or via(s).02-23-2012
20110007555RESISTANCE CHANGE ELEMENT, SEMICONDUCTOR MEMORY DEVICE, MANUFACTURING METHOD AND DRIVING METHOD THEREOF - To provide a resistance change element which can reduce the current required to switch the state to the high resistance state from the low resistance state.01-13-2011
20110007553NONVOLATILE STORAGE DEVICE AND METHOD FOR WRITING INTO MEMORY CELL OF THE SAME - Provided is a nonvolatile storage device (01-13-2011
20110007550Current Magnitude Compensation for Memory Cells in a Data Storage Array - A data storage device and associated method for providing current magnitude compensation for memory cells in a data storage array. In accordance with some embodiments, unit cells are connected between spaced apart first and second control lines of common length. An equalization circuit is configured to respectively apply a common current magnitude through each of the unit cells by adjusting a voltage applied to the cells in relation to a location of each of the cells along the first and second control lines.01-13-2011
20110007551Non-Volatile Memory Cell with Non-Ohmic Selection Layer - A non-volatile memory cell and associated method is disclosed that includes a non-ohmic selection layer. In accordance with some embodiments, a non-volatile memory cell consists of a resistive sense element (RSE) coupled to a non-ohmic selection layer. The selection layer is configured to transition from a first resistive state to a second resistive state in response to a current greater than or equal to a predetermined threshold.01-13-2011
20110007548Hierarchical Cross-Point Array of Non-Volatile Memory - A method and apparatus for reading data from a non-volatile memory cell. In some embodiments, a cross-point array of non-volatile memory cells is arranged into rows and columns. A selection circuit is provided that is capable of activating the first block of memory cells while deactivating the second block of memory cells. Further, a read circuit is provided that is capable of reading a logical state of a predetermined memory cell in the first block of memory cells with a reduced leak current by programming a first resistive state to the block selection elements corresponding to the first block of memory cells while programming a second resistive state to the block selection elements corresponding to the second block of memory cells.01-13-2011
20110007545Non-Volatile Memory Cell Stack with Dual Resistive Elements - A non-volatile memory cell and method of use thereof. In some embodiments, an individually programmable resistive sense memory (RSM) element is connected in series with a programmable metallization cell (PMC) switching element. In operation, while the switching element is programmed to a first resistive state, no current passes through the RSM element and while a second resistive state is programmed to the RSM element, current passes through the RSM element.01-13-2011
20110007547Vertical Non-Volatile Switch with Punchthrough Access and Method of Fabrication Therefor - A semiconductor device for accessing non-volatile memory cell is provided. In some embodiments, the semiconductor device has a vertical stack of semiconductor layers including a source, a drain, and a well. An application of a drain-source bias voltage to the semiconductor device generates a punchthrough mechanism across the well to initiate a flow of current between the source and the drain.01-13-2011
20110007543BIPOLAR SELECT DEVICE FOR RESISTIVE SENSE MEMORY - A resistive sense memory apparatus includes a bipolar select device having a semiconductor substrate, a plurality of collector contacts disposed in a first side of the of the semiconductor substrate, an emitter contact layer disposed in a second side of the semiconductor substrate, and a base layer separating the plurality of collector contacts from the emitter contact layer. Each collector contact is electrically isolated from each other. A resistive sense memory cells is electrically coupled to each collector contacts and a bit line. The base layer and the emitter contact layer provide an electrical path for the plurality of collector contacts.01-13-2011
20110007544Non-Volatile Memory with Active Ionic Interface Region - A non-volatile memory cell and method of use therefore are disclosed. In accordance with various embodiments, the memory cell comprises a tunneling region disposed between a conducting region and a metal region, wherein the tunneling region comprises an active interface region disposed between a first tunneling barrier and a second tunneling barrier. A high resistive film is formed in the active interface region with migration of ions from both the metal and conducting regions responsive to a write current to program the memory cell to a selected resistive state.01-13-2011
20100142255METHOD TO PROGRAM A MEMORY CELL COMPRISING A CARBON NANOTUBE FABRIC ELEMENT AND A STEERING ELEMENT - A method of programming a carbon nanotube memory cell is provided, wherein the memory cell comprises a first conductor, a steering element, a carbon nanotube fabric, and a second conductor, wherein the steering element and the carbon nanotube fabric are arranged electrically in series between the first conductor and the second conductor, and wherein the entire carbon nanotube memory cell is formed above a substrate, the carbon nanotube fabric having a first resistivity, the method including applying a first electrical set pulse between the first conductor and the second conductor, wherein, after application of the first electrical set pulse, the carbon nanotube fabric has a second resistivity, the second resistivity less than the first resistivity. Other aspects are also provided.06-10-2010
20110205783SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises a plurality of first row lines arranged in parallel; a plurality of column lines intersecting the first row lines; a plurality of storage elements arranged at intersections of the first row lines and the column lines; a plurality of second row lines arranged in parallel with the first row lines, from positions opposite to the first row lines via the column lines to a certain portion of the column line, and capacitively coupled with the column lines; and a sense amplifier including a field effect transistor having a lower layer control electrode composed of the certain portion of the column line, and an upper layer control electrode composed of the second row line capacitively coupled in the upper layer with the certain portion of the column line.08-25-2011
20090303774METHODS OF OPERATING A BISTABLE RESISTANCE RANDOM ACCESS MEMORY WITH MULTIPLE MEMORY LAYERS AND MULTILEVEL MEMORY STATES - A method is described for operating a bistable resistance random access memory having two memory layer stacks that are aligned in series is disclosed. The bistable resistance random access memory comprises two memory layer stacks per memory cell, the bistable resistance random access memory operates in four logic states, a logic “00” state, a logic “01” state, a logic “10” state and a logic “11” state. The relationship between the four different logic states can be represented mathematically by the two variables n and f and a resistance R. The logic “0” state is represented by a mathematical expression (1+f)R. The logic “1” state is represented by a mathematical expression (n+f)R. The logic “2” state is represented by a mathematical expression (1+nf)R. The logic “3” state is represented by a mathematical expression n(1+f)R.12-10-2009
20100142254Nonvolatile Memory Device Using Variable Resistive Element - A nonvolatile memory device using a variable resistive element is provided. The nonvolatile memory device includes first and second nonvolatile memory cells. Word lines are coupled to the first and second nonvolatile memory cells. First and second bit lines are coupled to the first and second nonvolatile memory cells, respectively. A read circuit reads resistance levels of the first and second nonvolatile memory cells by providing first and second read bias currents of different levels to the first and second bit lines, respectively.06-10-2010
20110267871Contemporaneous Margin Verification And Memory Access For Memory Cells In Cross-Point Memory Arrays - Circuitry for restoring data values in re-writable non-volatile memory is disclosed. An integrated circuit includes a memory access circuit and a sensing circuit configured to sense a data signal during a read operation to at least one two-terminal non-volatile cross-point memory array. Each memory array includes a plurality of two-terminal memory elements. A plurality of the memory arrays can be fabricated over the substrate and vertically stacked on one another. Further, the integrated circuit can include a margin manager circuit configured to manage a read margin for the two-terminal memory elements substantially during the read operation, thereby providing for contemporaneous read and margin determination operations. Stored data read from the two-terminal memory elements may have a value of the stored data restored (e.g., re-written to the same cell or another cell) if the value is not associated with a read margin (e.g., a hard programmed or hard erased state).11-03-2011
20090161408SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises a memory cell array including memory cells arranged in matrix each having a selective transistor and a variable resistance element having an electric resistance changed from a first state to a second state by applying a first write voltage and from the second state to the first state by applying a second write voltage. A first write current for a first writing operation to change the electric resistance from the first state to the second state is larger than a second write current for a second writing operation to change it from the second state to the first state. A second memory cell number of memory cells subjected to the second writing operation at a time is greater than a first memory cell number of memory cells subjected to the first writing operation at a time. At least the second memory cell number is plural.06-25-2009
20110205782STEP SOFT PROGRAM FOR REVERSIBLE RESISTIVITY-SWITCHING ELEMENTS - A method and system for forming, resetting, or setting memory cells is disclosed. One or more programming conditions to apply to a memory cell having a reversible resistivity-switching element may be determined based on its resistance. The determination of one or more programming conditions may also be based on a pre-determined algorithm that may be based on properties of the memory cell. The one or more programming conditions may include a programming voltage and a current limit. For example, the magnitude of the programming voltage may be based on the resistance. As another example, the width of a programming voltage pulse may be based on the resistance. In some embodiments, a current limit used during programming is determined based on the memory cell resistance.08-25-2011
20110205781NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a non-volatile semiconductor memory device includes: a first line; a second line intersecting with the first line; and a memory cell arranged at a position where the second line intersects with the first line, wherein, the memory cell includes: a variable resistance element; and a negative resistance element connected in series to the variable resistance element.08-25-2011
20120140544SEMICONDUCTOR MEMORY APPARATUS AND METHOD OF DRIVING THE SAME - A semiconductor memory apparatus includes a resistive memory cell configured to be applied with a command voltage pulse with a different voltage level, depending upon an input command, and a feedback unit coupled between one end and the other end of the resistive memory cell, and configured to detect whether an amount of current which passes through the resistive memory cell reaches a target level and selectively form a pull-down current path for limiting an amount of current which the resistive memory cell passes, wherein the feedback unit controls the target level according to the command voltage pulse.06-07-2012
20090161406NON-VOLATILE MEMORY AND METHOD FOR FABRICATING THE SAME - A non-volatile memory including a diode and a memory cell is described. The diode includes a doped region, a metal silicide layer, and a patterned doped semiconductor layer. The doped region of a first conductive type is formed in a substrate. The metal silicide layer is formed on the substrate. The patterned doped semiconductor layer of a second conductive type is formed on the metal silicide layer. The memory cell is formed on the substrate and coupled with the diode.06-25-2009
20090129140Nonvolatile Semiconductor Storage Device and Method for Operating Same - A nonvolatile semiconductor memory device for suppressing a current consumption caused by a transient current because of the potential change of the bit and word lines at the time of shifting between the programming, reading, and erasing actions in a highly integrated memory cell array is provided. A memory cell (05-21-2009
20090129141SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a memory cell array having a plurality of memory cells which are set into low-resistance states/high-resistance states according to “0” data/“1” data. An allocation of the “0” data/“1” data and the low-resistance state/high-resistance state is switched when a power source is turned on.05-21-2009
20080316793INTEGRATED CIRCUIT INCLUDING CONTACT CONTACTING BOTTOM AND SIDEWALL OF ELECTRODE - An integrated circuit includes a first electrode, a second electrode, and resistivity changing material between the first electrode and the second electrode. The integrated circuit includes a contact contacting a bottom and a first sidewall portion of the first electrode.12-25-2008
20120069633NONVOLATILE STORAGE DEVICE AND METHOD FOR WRITING INTO THE SAME - The nonvolatile storage device includes a variable resistance element (03-22-2012
20120069632CURRENT CONTROL, MEMORY ELEMENT, MEMORY DEVICE, AND PRODUCTION METHOD FOR CURRENT CONTROL ELEMENT - Provided is a current steering element that can prevent write didturb even when an electrical pulse with different polarities is applied and that can cause a large current to flow through a variable resistance element. The current steering element includes a first electrode (03-22-2012
20120069630WRITE VERIFY METHOD FOR RESISTIVE RANDOM ACCESS MEMORY - Write verify methods for resistance random access memory (RRAM) are provided. The methods include applying a reset operation voltage pulse across a RRAM cell to change a resistance of the RRAM cell from a low resistance state to a high resistance state and applying a forward resetting voltage pulse across the RRAM cell if the RRAM cell has a high resistance state resistance value less than a selected lower resistance limit value. The method also includes applying a reverse resetting voltage pulse across the RRAM cell if the RRAM cell has a high resistance state resistance values is greater than a selected upper resistance limit value. The reverse resetting voltage pulse has a second polarity being opposite the first polarity.03-22-2012
20120069629SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a semiconductor memory device includes a first reference cell being arranged in a first cell array, and a plurality of first fuse cells being arranged in the first cell array. The first reference cell and the plurality of first fuse cells are arranged on the same row or column.03-22-2012
20120069628NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD OF CONTROLLING THE SAME - According to one embodiment, a nonvolatile semiconductor memory device comprises a memory cell which includes a variable resistance element and a current-limiting element that has a nonlinear current-voltage characteristic and a driver which changes the resistance of the variable resistance element by causing a first current to flow in the memory cell. In addition, the nonvolatile semiconductor memory device further comprises a detection module which detects a change in the resistance of the memory cell based on the magnitude of the first current and a current supplying module which causes a second current to flow in the detection module in place of the first current.03-22-2012
20120069625RESISTANCE CHANGE ELEMENT AND RESISTANCE CHANGE MEMORY - According to one embodiment, a resistance change element includes a first film provided on a first electrode side, a second film provided on a second electrode side, a barrier film sandwiched between the first film and the second film, and metal impurities added in the first or second film, the metal impurities migrating between the first and second films bi-directionally according to a direction of a first electric field generated between the first and second electrodes. The resistance change element has a first resistance state when the metal impurities are present in the first film, and the resistance change element has a second resistance state different from the first resistance state when the metal impurities are present in the second film.03-22-2012
20120069624REACTIVE METAL IMPLATED OXIDE BASED MEMORY - Methods, devices, and systems associated with oxide based memory can include a method of forming an oxide based memory cell. Forming an oxide based memory cell can include forming a first conductive element, forming an oxide over the first conductive element, implanting a reactive metal into the oxide, and forming a second conductive element over the oxide.03-22-2012
20090003037INTEGRATED CIRCUIT WITH MEMORY HAVING A CURRENT LIMITING SWITCH - An integrated circuit with memory having a current limiting switch. One embodiment provides a memory cell having a programmable resistivity layer and a writing line. A switch is arranged between the resistivity layer and the writing line. The switch includes a control input connected to a select line. The switch is configured to limit a current through the resistivity layer for a write operation.01-01-2009
20090003036Method of making 3D R/W cell with reduced reverse leakage - A method of making a nonvolatile memory device includes forming a semiconductor diode steering element, and forming a semiconductor read/write switching element.01-01-2009
20090003035CONDITIONING OPERATIONS FOR MEMORY CELLS - One embodiment of the invention relates to a method for conditioning resistive memory cells of a memory array with a number of reliable resistance ranges, where each reliable resistance range corresponds to a different data state. In the method, group of at least one resistive memory cell is accessed, which group includes at least one unreliable cell. At least one pulse is applied to the at least one unreliable cell to shift at least one resistance respectively associated with the at least one unreliable cell to the highest of the reliable resistance ranges. Other methods and systems are also disclosed.01-01-2009
20090003034MULTIPLE WRITE CONFIGURATIONS FOR A MEMORY CELL - One embodiment of the present invention relates to a method of programming an array of memory cells. In this method, a selection is made between a first pulse configuration and a second pulse configuration, each of which can write at least two data states to the memory cells of the array. Other embodiments are also disclosed.01-01-2009
20080316794INTEGRATED CIRCUIT HAVING MULTILAYER ELECTRODE - An integrated circuit includes a first electrode including at least two electrode material layers and a resistivity changing material including a first portion and a second portion. The first portion contacts the first electrode and has a same cross-sectional width as the first electrode. The second portion has a greater cross-sectional width than the first portion. The integrated circuit includes a second electrode coupled to the resistivity changing material.12-25-2008
20110222331SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device in accordance with an embodiment includes: a memory cell array having memory cells disposed at respective intersections of first lines and second lines; and a control circuit configured to apply a first pulse voltage multiple times to selected one of the first lines and selected one of the second lines, such that a certain potential difference is applied to a selected memory cell thereby causing transition of a resistance state. The control circuit is configured to, when the selected memory cell is not caused to undergo transition of the resistance state even after application of the first pulse voltage a certain number of times, execute a rescue operation where a second pulse voltage is applied to the selected memory cell subsequent to application of the first pulse voltage, the second pulse voltage having a pulse width longer than that of the first pulse voltage.09-15-2011
20130121056APPARATUSES AND OPERATION METHODS ASSOCIATED WITH RESISTIVE MEMORY CELL ARRAYS WITH SEPARATE SELECT LINES - The present disclosure includes methods and apparatuses that include resistive memory. A number of embodiments include a first memory cell coupled to a data line and including a first resistive storage element and a first access device, a second memory cell coupled to the data line and including a second resistive storage element and a second access device, an isolation device formed between the first access device and the second access device, a first select line coupled to the first resistive storage element, and a second select line coupled to the second resistive storage element, wherein the second select line is separate from the first select line.05-16-2013
20130121057RESISTOR THIN FILM MTP MEMORY - An integrated circuit is formed having an array of memory cells located in the dielectric stack above a semiconductor substrate. Each memory cell has two adjustable resistors and two heating elements. A dielectric material separates the heating elements from the adjustable resistors. One heating element alters the resistance of one of the resistors by applying heat thereto to write data to the memory cell. The other heating element alters the resistance of the other resistor by applying heat thereto to erase data from the memory cell.05-16-2013
20130121058CIRCUIT AND METHOD FOR CONTROLLING WRITE TIMING OF A NON-VOLATILE MEMORY - A circuit and a method for controlling the write timing of a non-volatile memory are provided. The method includes the following steps. First, a resistance state switching of at least one memory cell of the non-volatile memory executing a writing operation is monitored to output a control signal. The memory cell stores data states with different resistance states. A write timing is input to the memory cell through a timing control line. Next, the write timing is generated based on a clock signal and the control signal. The write timing is enabled at the beginning of a cycle of the clock signal, and is disabled when the memory cell finishes the resistance state switching.05-16-2013
20130121059MULTI-VALUED LOGIC DEVICE HAVING NONVOLATILE MEMORY DEVICE - A multi-valued logic device having an improved reliability includes a conversion unit configured to convert a multi level signal into a plurality of partial signals; and a plurality of nonvolatile memory devices configured to individually store the plurality of partial signals, wherein a number of bits of each of the plurality of partial signals individually stored in the plurality of nonvolatile memory devices is less than the number of bits of the multi level signal.05-16-2013
20130121060NON-VOLATILE MEMORY ELEMENTS AND MEMORY DEVICES INCLUDING THE SAME - Non-volatile memory elements, memory devices including the same, and methods for operating and manufacturing the same may include a memory layer between a first electrode and a second electrode spaced apart from the first electrode. The memory layer may include a first material layer and a second material layer, and may have a resistance change characteristic due to movement of ionic species between the first material layer and the second material layer. At least the first material layer of the first and second material layers may be doped with a metal.05-16-2013
20130121062REWRITING A MEMORY ARRAY - A method for rewriting a memory array (05-16-2013
20090052228OPERATING PROCESS OF ORGANIC DEVICE - An operating process of an organic device includes performing a programming process and an erasing process. The programming process includes steps of applying a first positive bias from the first electrode to the second electrode on the organic device so that a conductive state of the organic device is switched to be a first turn-on state when the organic device is in a turn-off state and applying a negative bias from the first electrode to the second electrode on the organic device so that the conductive state of the organic device is switched to be a second turn-on state when the organic device is in the first turn-on state. The erasing process includes a step of applying a second positive bias from the first electrode to the second electrode on the organic device so that the conductive state of the organic device is switched to be the turn-off state.02-26-2009
20090052225Nonvolatile Semiconductor Memory Device - A nonvolatile semiconductor memory device capable of suppressing parasitic currents in unselected memory cells, in cross-point array including memory cells comprising a two-terminal circuit having a variable resistor storing information according to electric resistance change due to electric stress. The memory cell comprises a series circuit of the variable resistive element holding a variable resistor between an upper and lower electrodes, and the two-terminal element having non-linear current-voltage characteristics making currents flow bi-directionally. The two-terminal element has a switching characteristic that currents bi-directionally flow according to polarity of a voltage applied to both ends when an absolute voltage value exceeds a certain value, and currents larger than predetermined minute currents do not flow when the absolute value is the certain value or less, and can make currents whose current density is 30 kA/cm02-26-2009
20090052227NON-VOLATILE MEMORY DEVICE AND METHOD FOR WRITING DATA THERETO - The present invention provides a method for writing data to a non-volatile memory device having first wirings and second wirings intersecting one another and memory cells arranged at each intersection therebetween, each of the memory cells having a variable resistive element and a rectifying element connected in series. According to the method, the second wirings are charged to a certain voltage not less than a rectifying-element threshold value, prior to a rise in a selected first wiring. Then, a selected first wiring is charged to a voltage required for writing or erasing, after which a selected second wiring is discharged.02-26-2009
20090097300VARIABLE RESISTANCE ELEMENT, ITS MANUFACTURING METHOD AND SEMICONDUCTOR MEMORY DEVICE COMPRISING THE SAME - Provided is a variable resistance element capable of performing a stable resistance switching operation and having a favorable resistance value retention characteristics, comprising a variable resistor 04-16-2009
20130215667Circuits And Techniques To Compensate Data Signals For Variations Of Parameters Affecting Memory Cells In Cross-Point Arrays - Embodiments of the invention relate generally to semiconductors and memory technology, and more particularly, to systems, integrated circuits, and methods to implement circuits configured to compensate for parameter variations that affect the operation of memory elements, such as memory elements based on third dimensional memory technology. In at least some embodiments, an integrated circuit includes a cross-point array comprising memory elements disposed among word lines and bit lines, where a parameter can affect the operating characteristics of a memory element. The integrated circuit further includes a data signal adjuster configured to modify the operating characteristic to compensate for a deviation from a target value for the operating characteristic based on the parameter. In some embodiments, the memory element, such as a resistive memory element, is configured to generate a data signal having a magnitude substantially at the target value independent of variation in the parameter.08-22-2013
20090067216RESISTIVE MEMORY DEVICES INCLUDING SELECTED REFERENCE MEMORY CELLS - A magnetic memory cell array device can include a first current source line extending between pluralities of first and second memory cells configured for respective simultaneous programming and configured to conduct adequate programming current for writing one of the pluralities of first and second memory cells, a first current source transistor coupled to the first current source line and to a word line, a programming conductor coupled to the first current source transistor and extending across bit lines coupled to the one of the pluralities of first and second memory cells, configured to conduct the programming current across the bit lines, a second current source transistor coupled to the programming conductor and configured to switch the programming current from the programming conductor to a second current source transistor output, a second current source line extending adjacent the one of the pluralities of first and second memory cells opposite the first current source line, a first bias circuit configured to apply a first bias voltage to the first or second memory cells selected for accessed during a read operation, and a second bias circuit configured to apply a second bias voltage to the first or second memory cells unselected for access during the read operation.03-12-2009
20110228589RESISTANCE CHANGE MEMORY - A memory includes memory cells each includes a resistance change element and a diode. The diode comprises areas which is provided in order of a first semiconductor area with a first conductivity type, a second semiconductor area with the first conductivity type, and a third semiconductor area with a second conductivity type, from the column lines to the row lines. An atom density of impurities with the first conductivity type in the second semiconductor area is lower than that in the first semiconductor area. The diode comprises a fourth semiconductor area with the first conductivity type at an end portion in a third direction of the second semiconductor area, the third direction is perpendicular to a direction from the column lines to the row lines, and an atom density of impurities with the first conductivity type in the fourth semiconductor area is higher than that in the second semiconductor area.09-22-2011
20110141794SEMICONDUCTOR MEMORY DEVICE AND INSPECTING METHOD OF THE SAME - According to one embodiment, a semiconductor memory device includes a memory cell array includes memory cells, lines provided to correspond to the memory cells, a first decoder configured to select a first line as an inspection target from the lines, a second decoder configured to select a second line for generating a reference voltage from the lines, a driver configured to charge the first and second lines, a discharging circuit configured to simultaneously discharge the first and second lines, and a sense amplifier configured to compare a voltage of the first line with a voltage of the second line to detect a defect of the first line while the first line is discharged.06-16-2011
20100124096ELECTRIC ELEMENT, SWITCHING ELEMENT, MEMORY ELEMENT, SWITCHING METHOD AND MEMORY METHOD - An electric element includes a pair of electrodes; and a plurality of carbon nanotubes of three-dimensional network structure which are located between the pair of electrodes. The electric element can be applied for a memory element and the like.05-20-2010
20110228591SEMICONDUCTOR MEMORY HAVING BOTH VOLATILE AND NON-VOLATILE FUNCTIONALITY INCLUDING RESISTANCE CHANGE MATERIAL AND METHOD OF OPERATING - Semiconductor memory is provided wherein a memory cell includes a capacitorless transistor having a floating body configured to store data as charge therein when power is applied to the cell. The cell further includes a nonvolatile memory comprising a resistance change element configured to store data stored in the floating body under any one of a plurality of predetermined conditions. A method of operating semiconductor memory to function as volatile memory, while having the ability to retain stored data when power is discontinued to the semiconductor memory is described.09-22-2011
20110228587NONVOLATILE SEMICONDUCTOR MEMORY AND MANUFACTURING METHOD OF NONVOLATILE SEMICONDUCTOR MEMORY - According to one embodiment, a nonvolatile semiconductor memory includes word lines, bit lines, memory cells, a dummy word line, a dummy bit line and dummy cells. The word lines and the bit lines cross. The memory cells are provided for each intersection of the word lines and bit lines. Each memory cell includes a first diode and a resistance change memory element. The dummy word line crosses the bit lines. The dummy bit line crosses the word lines. The dummy cells are provided at each intersection of the dummy word line and the bit lines, and at each intersection of the dummy bit line and the word lines. Each dummy cell includes a second diode.09-22-2011
20110228586NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device includes a bit voltage adjusting circuit which, for each bit line, fixes potentials of a selected bit line and a non-selected bit line to a predetermined potential to perform a memory operation and a data voltage adjusting circuit which, for each data line, fixes potentials of a selected data line and a non-selected data line to a predetermined potential to perform a memory operation. Each of the voltage adjusting circuits includes an operational amplifier and a transistor, a voltage required for a memory operation is input to the non-inverted input terminal of the operational amplifier, and the inverted input terminal of the operational amplifier is connected to the bit line or the data line, so that the potential of the bit line or the data line is fixed to a potential of the non-inverted input terminal of the operational amplifier.09-22-2011
20110228585VARIABLE RESISTANCE MEMORY DEVICE AND RELATED METHOD OF OPERATION - A variable resistance memory device comprises a memory cell comprising a variable resistance device and a select transistor connected in series to the variable resistance device. The variable resistance memory device further comprises a write driver for supplying a write voltage to opposite sides of the memory cell, and a feedback circuit for detecting a resistance change of the variable resistance device and controlling a gate voltage of the select transistor according to the detected resistance change.09-22-2011
20090161407Drive Method of Nanogap Switching Element and Storage Apparatus Equipped with Nanogap Switching Element - A nanogap switching element is equipped with an inter-electrode gap portion including a gap of a nanometer order between a first electrode and a second electrode. A switching phenomenon is caused in the inter-electrode gap portion by applying a voltage between the first and second electrodes. The nanogap switching element is shifted from its low resistance state to its high resistance state by receiving a voltage pulse application of a first voltage value, and shifted from its high resistance state to its low resistance state by receiving a voltage pulse application of a second voltage value lower than the first voltage value. When the nanogap switching element is shifted from the high resistance state to the low resistance state, a voltage pulse of an intermediate voltage value between the first and second voltage values is applied thereto before the voltage pulse application of the second voltage value thereto.06-25-2009
20080316796Method of making high forward current diodes for reverse write 3D cell - A method of making a nonvolatile memory device includes forming a first electrode, forming at least one nonvolatile memory cell including a diode and a metal oxide antifuse dielectric layer over the first electrode, and forming a second electrode over the at least one nonvolatile memory cell. In use, the diode acts as a read/write element of the nonvolatile memory cell by switching from a first resistivity state to a second resistivity state different from the first resistivity state in response to an applied bias.12-25-2008
20090201714RESISTIVE MEMORY CELL AND METHOD FOR OPERATING SAME - An integrated circuit comprising at least one resistive memory cell, comprising a resistive memory element and a selection device, said resistive memory element having at least two resistive OFF-states, each OFF-state defining a predefined resistance value is described. Moreover, a memory, a computing system and method of operating a memory are described.08-13-2009
20110228592Programmable Bipolar Electronic Device - A configurable memristive device (09-22-2011
20100014344Switchable two terminal multi-layer perovskite thin film resistive device and methods thereof - A switchable resistive device has a multi-layer thin film structure interposed between an upper conductive electrode and a lower conductive electrode. The multi-layer thin film structure comprises a perovskite layer with one buffer layer on one side of the perovskite layer, or a perovskite layer with buffer layers on both sides of the perovskite layer. Reversible resistance changes are induced in the device under applied electrical pulses. The resistance changes of the device are retained after applied electric pulses. The functions of the buffer layer(s) added to the device include magnification of the resistance switching region, reduction of the pulse voltage needed to switch the device, protection of the device from being damaged by a large pulse shock, improvement of the temperature and radiation properties, and increased stability of the device allowing for multivalued memory applications.01-21-2010
20090219751PHASE CHANGE MEMORY - A PCRAM cell has a high resistivity bottom electrode cap to provide partial heating near the interface between the cell and the bottom electrode, preventing separation of the amorphous GST region from the bottom electrode, and reducing the programming current requirements.09-03-2009
20090219750NONVOLATILE MEMORY DEVICE AND METHOD OF CONTROLLING THE SAME - A nonvolatile memory device comprises a memory cell array including first and second mutually crossing lines and electrically erasable programmable memory cells arranged at intersections of the first and second lines, each memory cell containing a variable resistive element; a line selector circuit operative to decode an address signal to select the first and second lines; and a control circuit operative to execute control on at least one of data erase, write and read for the memory cell connected between the first and second lines selected at the line selector circuit. The control circuit executes control based on one parameter selected among a plurality of parameters. The line selector circuit specifies the parameter based on a first address portion in the address signal and selects the first and second lines based on a second address portion in the address signal.09-03-2009
20090219749METHOD AND APPARATUS FOR IMPLEMENTING CONCURRENT MULTIPLE LEVEL SENSING OPERATION FOR RESISTIVE MEMORY DEVICES - An apparatus for sensing the data state of a multiple level, programmable resistive memory device includes an active clamping device connected to a data leg that is selectively coupled a programmable resistive memory element, the clamping device configured to clamp a fixed voltage, at a first node of the data leg, across the memory element, thereby establishing a fixed current sinking capability thereof; and a plurality of differential amplifiers, each of the differential amplifiers configured to compare a first voltage input, taken at a second node of the data leg, with a second voltage input; wherein the second voltage input for each differential amplifier comprises different reference voltages with respect to one another so as to enable each differential amplifier to detect a different resistance threshold, thereby determining a specific resistance state of the programmable resistive memory element.09-03-2009
20090257270DAMASCENE INTEGRATION METHODS FOR GRAPHITIC FILMS IN THREE-DIMENSIONAL MEMORIES AND MEMORIES FORMED THEREFROM - In some aspects, a microelectronic structure is provided that includes (1) a first conducting layer; (2) a first dielectric layer formed above the first conducting layer and having a feature that exposes a portion of the first conducting layer; (3) a graphitic carbon film disposed on a sidewall of the feature defined by the first dielectric layer and in contact with the first conducting layer at a bottom of the feature; and (4) a second conducting layer disposed above and in contact with the graphitic carbon film. Numerous other aspects are provided.10-15-2009
20090251945SYSTEM AND METHOD OF OPERATION FOR RESISTIVE CHANGE MEMORY - The present invention provides a semiconductor device and a method for manufacturing thereof. The semiconductor device includes a data storage element which includes a variable resistance and an electrode, and a controller which selects a first mode that stores data by the resistance value of the variable resistance and a second mode that stores data by the amount of electrical charges stored in the electrode. By selectively using the data storage element in the first mode and the second mode, a plurality of storage modes can be implemented with a single data storage element. Thus, miniaturization and cost reduction of the semiconductor device can be achieved.10-08-2009
20090251944MEMORY CELL HAVING IMPROVED MECHANICAL STABILITY - Memory cells are described along with methods for manufacturing. A memory cell described herein includes a bottom electrode comprising a base portion and a pillar portion on the base portion, the pillar portion and the base portion having respective outer surfaces and the pillar portion having a width less than that of the base portion. A memory element is on a top surface of the pillar portion of the bottom electrode, and a top electrode is on the memory element. A dielectric spacer contacts the outer surface of the pillar portion, the outer surface of the base portion of the bottom electrode self-aligned with an outer surface of the dielectric spacer.10-08-2009
20090257269Low-Complexity Electronic Circuits and Methods of Forming the Same - An electronic circuit such as a latch or a sequencer includes a plurality of transistors, all of the transistors being either NMOS transistors or PMOS transistors, and dissipates less than or approximately the same amount of power as an equivalent CMOS circuit.10-15-2009
20090257268Semiconductor device having single-ended sensing amplifier - A sense amplifier in a semiconductor storage device includes a memory cell for storing information on the basis of the size of the resistance value between a signal input/output terminal and a power supply terminal, the semiconductor storage device having a structure in which the bit line capacitance during signal reading from the memory cell is reduced, wherein the amplifier amplifies a signal outputted from an input/output terminal through the use of a single MOS transistor that has a single-ended structure.10-15-2009
20100149852CHARGE RETENTION STRUCTURES AND TECHNIQUES FOR IMPLEMENTING CHARGE CONTROLLED RESISTORS IN MEMORY CELLS AND ARRAYS OF MEMORY - Embodiments of the invention relate generally to semiconductors and semiconductor fabrication techniques, and more particularly, to devices, integrated circuits, memory cells and arrays, and methods to use silicon carbide structures to retain amounts of charge indicative of a resistive state in, for example, a charge-controlled resistor of a memory cell. In some embodiments, a memory cell comprises a silicon carbide structure including a charge reservoir configured to store an amount of charge carriers constituting a charge cloud. The amount of charge carriers in the charge cloud can represent a data value. Further, the memory cell includes a resistive element in communication with the charge reservoir and is configured to provide a resistance as a function of the amount of charge carriers in the charge reservoir. The charge reservoir is configured to modulate the size of the charge cloud to change the data value.06-17-2010
20110228588NONVOLATILE MEMORY DEVICE AND METHOD OF PROGRAMMING THE SAME - A nonvolatile memory device includes a memory cell array having multiple memory cells, a data input/output buffer for temporarily storing data to be stored in the memory cells, and a data scanner for scanning the data stored temporarily in the data input/output buffer. The nonvolatile memory device further includes control logic for reading address information of a memory cell in which at least a portion of the data is to be stored and selectively performing a data scan operation according to the read address information.09-22-2011
20100265757RESISTANCE CHANGE MEMORY DEVICE AND OPERATION METHOD OF THE SAME - A resistance change memory device includes: memory cells each having a current path in which a storage element, whose resistance changes according to the voltage applied, and an access transistor are connected in series; first wirings each connected to one end of the current path; second wirings each connected to the other end of the current path; a well which is a semiconductor region in which the access transistors are formed; and a drive circuit.10-21-2010
20100157658Conductive metal oxide structures in non-volatile re-writable memory devices - A memory cell including a memory element comprising an electrolytic insulator in contact with a conductive metal oxide (CMO) is disclosed. The CMO includes a crystalline structure and can comprise a pyrochlore oxide, a conductive binary oxide, a multiple B-site perovskite, and a Ruddlesden-Popper structure. The CMO includes mobile ions that can be transported to/from the electrolytic insulator in response to an electric field of appropriate magnitude and direction generated by a write voltage applied across the electrolytic insulator and CMO. The memory cell can include a non-ohmic device (NOD) that is electrically in series with the memory element. The memory cell can be positioned between a cross-point of conductive array lines in a two-terminal cross-point memory array in a single layer of memory or multiple vertically stacked layers of memory that are fabricated over a substrate that includes active circuitry for data operations on the array layer(s).06-24-2010
20100157651Method of programming a nonvolatile memory device containing a carbon storage material - A nonvolatile memory cell includes a steering element located in series with a storage element, where the storage element comprises a carbon material. A method of programming the cell includes applying a reset pulse to change a resistivity state of the carbon material from a first state to a second state which is higher than the first state, and applying a set pulse to change a resistivity state of the carbon material from the second state to a third state which is lower than the second state. A fall time of the reset pulse is shorter than a fall time of the set pulse.06-24-2010
20100002491RESISTANCE RAM HAVING OXIDE LAYER AND SOLID ELECTROLYTE LAYER, AND METHOD FOR OPERATING THE SAME - A resistance RAM that is provided with an oxide layer and a solid electrolyte layer, and a method for operating the same are provided. The resistance RAM comprises a first electrode, an oxide layer that is formed on the first electrode, a solid electrolyte layer that is disposed on the oxide layer, and a second electrode that is disposed on the solid electrolyte layer. The method comprises the step of forming a conductive tip in the oxide layer by applying reference voltage to any one of the electrodes of the resistance RAM, applying foaming voltage to the remain one, such that the oxide layer is electrically broken. A conductive filament is formed in the solid electrolyte layer by applying a positive voltage to the second electrode on the basis of the voltage that is applied to the first electrode. The conductive filament that is formed in the solid electrolyte layer is removed by applying a negative voltage to the second electrode on the basis of the voltage that is applied to the first electrode.01-07-2010
20100177552TABLE-BASED REFERENCE VOLTAGE CHARACTERIZATION SCHEME - Method and apparatus for reading data from a non-volatile memory cell, such as a modified STRAM cell. In some embodiments, at least a first and second memory cell are read for a plurality of resistance values that are used to select and store a voltage reference for each memory cell.07-15-2010
20100157656RESISTANCE CHANGE MEMORY - A resistance change memory of an aspect of the present invention including memory cells including resistance change memory element, word lines connected to the memory cells, a row decoder which activates the word lines, redundant cells used instead of defective cells, a redundant word line connected to redundant cells, a redundant row decoder which activates the redundant word line, a control circuit in which defect address information indicating the word line connected to the defective cell is stored and which remedies the defective cell, and regions provided in a memory cell array and a redundant cell array and identified based on column address information, wherein the control circuit replaces a part of the word line connected to the defective cell with a part of the redundant word line in accordance with each of the regions, and allows the redundant row decoder to activate the replaced redundant word line.06-24-2010
20100157659Digital potentiometer using third dimensional memory - A digital potentiometer using third dimensional memory includes a switch configured to electrically couple one or more resistive elements with a first pin and a second pin, and a non-volatile register configured to control the switch. In one example, the non-volatile register can include a BEOL non-volatile memory element, such as a third dimensional memory element. The non-volatile register can include a FEOL active circuitry portion that is electrically coupled with the BEOL non-volatile memory element to implement the non-volatile register. The resistive elements can be BEOL resistive elements that can be fabricated on the same plane or a different plane than the BEOL non-volatile memory elements. The BEOL non-volatile memory elements and the BEOL resistive elements can retain stored data in the absence of power and the stored data can be non-destructively determined by application of a read voltage.06-24-2010
20100157657Multi-resistive state memory device with conductive oxide electrodes - A memory cell including conductive oxide electrodes is disclosed. The memory cell includes a memory element operative to store data as a plurality of resistive states. The memory element includes a layer of a conductive metal oxide (CMO) (e.g., a perovskite) in contact with an electrode that may comprise one or more layers of material. At least one of those layers of material can be a conductive oxide (e.g., a perovskite such as LaSrCoO06-24-2010
20100157653Quad memory cell and method of making same - A non-volatile memory device includes a first electrode, a diode steering element, at least three resistivity switching storage elements, and a second electrode. The diode steering element electrically contacts the first electrode and the at least three resistivity switching storage elements. The second electrode electrically contacts only one of the at least three resistivity switching storage elements.06-24-2010
20100157654Balancing A Signal Margin Of A Resistance Based Memory Circuit - A resistance based memory circuit is disclosed. The circuit includes a first transistor load of a data cell and a bit line adapted to detect a first logic state. The bit line is coupled to the first transistor load and coupled to a data cell having a magnetic tunnel junction (MTJ) structure. The bit line is adapted to detect data having a logic one value when the bit line has a first voltage value, and to detect data having a logic zero value when the bit line has a second voltage value. The circuit further includes a second transistor load of a reference cell. The second transistor load is coupled to the first transistor load, and the second transistor load has an associated reference voltage value. A characteristic of the first transistor load, such as transistor width, is adjustable to modify the first voltage value and the second voltage value without substantially changing the reference voltage value.06-24-2010
20100157652Programming a memory cell with a diode in series by applying reverse bias - A method of programming a memory cell comprises applying a reverse bias to the memory cell using a temporary resistor in series with the memory cell. The memory cell comprises a diode and a resistivity switching material element in series. The state of the resistivity switching material element changes from a first initial state to a second state different from the first state.06-24-2010
20100165701RESISTIVE MEMORY - A resistive memory includes a plurality of memory cells, a plurality of reference cells having mutually different resistance values, at least one sense amplifier having a first input terminal connected to one selected memory cell which is selected from the plurality of memory cells at a time of read, and a second input terminal connected to one selected reference cell which is selected from the plurality of reference cells at the time of read, and one latch circuit which holds offset information of the at least one sense amplifier. The resistive memory further includes a decoder which selects, in accordance with the offset information, the one selected reference cell from the plurality of reference cells, and connects the one selected reference cell to the second input terminal of the at least one sense amplifier.07-01-2010
20120140545SEMICONDUCTOR DEVICE AND METHOD OF SENSING DATA OF THE SEMICONDUCTOR DEVICE - In one example embodiment, the semiconductor device includes a memory cell array having at least one memory cell disposed in a region at which at least one bit line and at least one word line cross. A sensing unit senses data stored in the at least one memory cell. The sensing unit includes a connection control unit configured to control a connection between the at least one bit line and a sensing line based on a control signal, the control signal having a voltage level that varies based on a value of data being sensed by the sensing unit.06-07-2012
20100002490ELECTRIC ELEMENT, MEMORY DEVICE, AND SEMICONDUCTOR INTEGRATED CIRCUIT - An electric element includes: a first electrode; a second electrode; and a variable-resistance film connected between the first electrode and the second electrode. The variable-resistance film includes Fe01-07-2010
20100188883Simultaneously Writing Multiple Addressable Blocks of User Data to a Resistive Sense Memory Cell Array - Method and apparatus are disclosed for storing data to non-volatile resistive sense memory (RSM) memory cells of a semiconductor memory array, including but not limited to resistive random access memory (RRAM) and spin-torque transfer random access memory (STTRAM or STRAM) cells. In accordance with various embodiments, a plurality of addressable data blocks from a host device are stored in a buffer. At least a portion of each of the addressable data blocks are serially transferred to a separate register of a plurality of registers. The transferred portions of said addressable data blocks are thereafter simultaneously transferred from the registers to selected RSM cells of the array.07-29-2010
20100165703SEMICONDUCTOR DEVICE FOR SUPPLYING STABLE VOLTAGE TO CONTROL ELECTRODE OF TRANSISTOR - A semiconductor device comprises an internal voltage generator circuit which includes a first transistor having a first and a second main electrode and a control electrode, a control circuit controlling a voltage between the second main electrode and the control electrode of the first transistor such that a voltage at the first main electrode of the first transistor remains at a predetermined voltage, and a second transistor having a first and a second main electrode and a control electrode. A voltage between the second main electrode and the control electrode of the first transistor is applied between the second main electrode and the control electrode of the second transistor.07-01-2010
20120243293NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a nonvolatile semiconductor memory device includes a memory cell includes a variable resistance element and a capacitor connected in series between first and second conductive lines, and a control circuit applying one of first and second voltage pulses to the memory cell. The capacitor is charged by a leading edge of one of the first and second voltage pulses, and discharged a trailing edge of one of the first and second voltage pulses. The control circuit makes waveforms of the trailing edges of the first and second voltage pulses be different, changes a resistance value of the variable resistance element from a first resistance value to a second resistance value by using the first voltage pulse, and changes the resistance value of the variable resistance element from the second resistance value to the first resistance value by using the second voltage pulse.09-27-2012
20120243292MEMORY DEVICE - According to one embodiment, a memory device includes a first electrode including a crystallized Si09-27-2012
20100259967MEMORY CELL - A memory cell is provided, in which a resistance value is appropriately controlled, thereby a variable resistance element may be applied with a voltage necessary for changing the element into a high or low resistance state. A storage element 10-14-2010
20100182820Variable resistance memory device - A variable resistance memory device includes: a first common line; a second common line; plural memory cells each formed by serially connecting a memory element, resistance of which changes according to applied voltage, and an access transistor between the second common line and the first common line; a common line pass transistor connected between the first common line and a supply node for predetermined voltage; and a driving circuit that controls voltage of the second common line, the predetermined voltage, and voltage of a control node of the common line pass transistor and drives the memory cells.07-22-2010
20100182821MEMORY DEVICE, MEMORY CIRCUIT AND SEMICONDUCTOR INTEGRATED CIRCUIT HAVING VARIABLE RESISTANCE - A first variable resistor (07-22-2010
20100259968STORAGE DEVICE AND INFORMATION RERECORDING METHOD - A storage device that improves ability of adjusting a resistance value level in recording and enables stable verification control is provided. VWL supplied from a second power source to a control terminal of a transistor is increased (increase portion: ΔVWL) for every rerecording by verification control by a WL adjustment circuit. In the case where a variable resistive element is able to record multiple values, ΔVWL is a value variable for every resistance value level of multiple value information. That is, ΔVWL is a value variable according to magnitude relation of a variation range of recording resistance of the variable resistive element due to a current. In the region where the variation range of the recording resistance is large (source-gate voltage VGS of the transistor is small), ΔVWL is small, while in the region where the variation range of the recording resistance is small (VGS is large), ΔVWL is large.10-14-2010
20100188885RESISTANCE CHANGE MEMORY DEVICE AND PROGRAMMING METHOD THEREOF - A method of programming a resistance change memory device includes: applying program voltage pulses to a memory cell for programming a target resistance value; setting thermal relaxation times between the respective program voltage pulses; and controlling the shape of each the program voltage pulse in accordance with the present cell's resistance value determined by the preceding program voltage pulse application.07-29-2010
20110110144WRITING METHOD FOR VARIABLE RESISTANCE NONVOLATILE MEMORY ELEMENT, AND VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE - A writing method optimum for a variable resistance element which can maximize an operation window of the variable resistance element is provided. The writing method is performed for a variable resistance element that reversibly changes between a high resistance state and a low resistance state depending on a polarity of an applied voltage pulse. The writing method includes a preparation step (S05-12-2011
20100177554BIPOLAR CMOS SELECT DEVICE FOR RESISTIVE SENSE MEMORY - A resistive sense memory apparatus includes a bipolar select device having a semiconductor substrate and a plurality of transistors disposed in the semiconductor substrate and forming a row or transistors. Each transistor includes an emitter contact and a collector contact. Each collector contact is electrically isolated from each other and each emitter contact is electrically isolated from each other. A gate contact extends along a channel region between the emitter contact and a collector contact. A base contact is disposed within the semiconductor substrate such that the emitter contact and a collector contact is between the gate contact and the base contact. A resistive sense memory cells is electrically coupled to each collector contact or emitter contact and a bit line.07-15-2010
20100177555VARIABLE RESISTANCE NONVOLATILE STORAGE DEVICE - The variable resistance nonvolatile storage device includes a memory cell (07-15-2010
20100226165RESISTIVE MEMORY DEVICES HAVING A STACKED STRUCTURE AND METHODS OF OPERATION THEREOF - A memory device includes a stacked resistive memory cell array comprising a plurality of resistive memory cell layers stacked on a semiconductor substrate, wherein respective memory cell layers are configured to store data according to respective program modes comprising a number of bits per cell. The memory device further includes a control circuit configured to identify a program mode of a selected memory cell layer responsive to an address signal and to access the selected memory cell layer responsive to the address signal according to the identified program mode. The program modes may include a single-level cell mode and at least one multi-level cell mode.09-09-2010
20100226163Method of resistive memory programming and associated devices and materials - A pulse coupled with a microwave field is used for programming a resistive memory into one of non-volatile states. As the result, the programming becomes faster and more energy efficient. Related devices and materials are also described.09-09-2010
20130215666VARIABLE RESISTANCE MEMORY DEVICE AND RELATED METHOD OF OPERATION - A method of operating a variable resistance memory device comprises determining a level of an access voltage based on a number of rows or columns of a cell array, and supplying the access voltage having the determined level to the cell array.08-22-2013
20130215668MULTILEVEL PHASE CHANGE MEMORY OPERATION - Methods, devices, and systems associated with multilevel phase change memory cells are described herein. One or more embodiments of the present disclosure include operating a phase change memory device by placing a phase change memory cell in a reset state and applying a selected programming pulse to the phase change memory cell in order to program the cell to one of a number of intermediate states between the reset state and a set state associated with the cell. The selected programming pulse includes an uppermost magnitude applied for a particular duration, the particular duration depending on to which one of the number of intermediate states the memory cell is to be programmed.08-22-2013
20130215669RESISTANCE CHANGE MEMORY CELL CIRCUITS AND METHODS - The gate of the access transistor of a 1 transistor 1 resistor (1T1R) type RRAM cell is biased relative to the source of the access transistor using a current mirror. Under the influence of a voltage applied across the 1T1R cell (e.g., via the bit line), the RRAM memory element switches from a higher resistance to a lower resistance. As the RRAM memory element switches from the higher resistance to the lower resistance, the current through the RRAM cell switches from being substantially determined by the higher resistance of the RRAM device (while the access transistor is operating in the linear region) to being substantially determined by the saturation region operating point of the access transistor.08-22-2013
20100238711RESISTANCE-CHANGE MEMORY - A resistance-change memory of an aspect of the present invention including a first bit line, second and third bit lines extending in a direction intersecting with the first bit line, first and second word lines, a first select transistor in which a control terminal thereof is connected to the first word line and in which one end of a current path thereof is connected to the second bit line, a second select transistor in which a control terminal thereof is connected to the second word line and in which one end of a current path thereof is connected to the third bit line and in which the end of a current path thereof forms a node together with the other end of the first select transistor, and a resistance-change storage element which has one end connected to the first bit line and the other end connected to the node.09-23-2010
20100238710NONVOLATILE MEMORY DEVICE - A nonvolatile memory device, includes: a memory layer having a resistance changeable by performing at least one selected from applying an electric field and providing a current, the storage layer having a first major surface; a plurality of first electrodes provided on the first major surface; a plurality of probe electrodes disposed to face the plurality of first electrodes, the plurality of probe electrodes having a changeable relative positional relationship with the first electrodes; a drive unit connected to the plurality of probe electrodes to record information in the memory layer by causing at least the one selected from the electric field and the current between at least two of the plurality of first electrodes via the plurality of probe electrodes, the electric field having a component parallel to the first major surface, the current flowing in a direction having a component parallel to the first major surface.09-23-2010
20100238708NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprising: a memory cell array including memory cells each provided at individual intersection between a first wiring and a second wiring, the memory cell comprising a variable resistive element, and predetermined numbers of the memory cells shearing the same first wiring to configure a page; a first control circuit configured to select a page subjected to data-writing, and to supply a constant voltage to the first wiring belonging to the selected page; a writing-voltage generating circuit configured to generate plural kinds of writing voltages for programming a resistance of the variable resistive element to one of three or more values based on a write-in data specifying three or more values; and a second control circuit configured to select the page subjected to data-writing, and to supply the writing voltages to predetermined numbers of the respective second wirings belonging to the selected page.09-23-2010
20100238702SEMICONDUCTOR MEMORY DEVICE - A memory array includes a memory cell, the memory cell being disposed between a first line and a second line and being configured by a variable resistor and a rectifier connected in series. The variable resistor is a mixture of silicon oxide (SiO2) and a transition metal oxide, a proportion of the transition metal oxide being set to 55˜80%.09-23-2010
20100226164NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises a memory cell array of electrically erasable programmable nonvolatile memory cells arranged in matrix, each memory cell using a variable resistor. A pulse generator generates plural types of write pulses for varying the resistance of the variable resistor based on write data. A selection circuit applies write pulses generated by the pulse generator to the memory cell. A sense amplifier executes verify read to the memory cell. A status decision circuit decides the verify result based on the output from the sense amplifier. A control circuit executes additional write to the memory cell based on the verify result from the status decision circuit.09-09-2010
20100238706NONVOLATILE SEMICONDUCTOR STORAGE DEVICE - A nonvolatile semiconductor storage device includes a memory core that includes plural banks, the bank including plural memory cells and a data write circuit that supplies a bias voltage to the memory cell, the memory core being logically divided into plural pages, the page including a predetermined number of memory cells belonging to a predetermined number of banks; and a control circuit that controls the data write circuit to perform page write in each write unit including a predetermined number of memory cells, pieces of data being written in the page in the page write, the control circuit performing the page write by repeating a step including a program operation and a verify operation, the control circuit performing the program operation and the verify operation in a next step or later only to the write unit in which the data write is not completed in the verify operation.09-23-2010
20100238704SEMICONDUCTOR MEMORY DEVICE, METHOD OF MANUFACTURING THE SAME, AND METHOD OF SCREENING THE SAME - A memory cell comprises a variable resistance film; a first conductive film having one surface contacted with one surface of the variable resistance film; and a second conductive film having one surface contacted with another surface of the variable resistance film. A width of the first conductive film or the second conductive film in a direction orthogonal to a direction that a current flows in the first conductive film or the second conductive film is smaller than a width of the variable resistance film in a direction orthogonal to a direction that a current flows in the variable resistance film. The width of the first conductive film and the second conductive film is smaller than a width of the first line and the second line in a direction orthogonal to a direction that a current flows in the first line and the second line.09-23-2010
20100238709MEMORY DEVICES INCLUDING DECODERS HAVING DIFFERENT TRANSISTOR CHANNEL DIMENSIONS AND RELATED DEVICES - An integrated circuit memory device includes a memory cell array comprising memory cells having respective data storage regions therein, a plurality of pass transistors having different channel widths and/or channel lengths, and a plurality of conductive lines. Each of the conductive lines electrically couple a respective one of the pass transistors to ones of the memory cells. Each of the memory cells has a line resistance defined by a portion of the corresponding one of the conductive lines extending between the memory cell and the pass transistor coupled thereto. Ones of the memory cells having greater line resistances are coupled to ones of the pass transistors having greater channel widths and/or shorter channel lengths than ones of the memory cells having smaller line resistances. Each of the memory cells may also include a diode therein, and ones of the memory cells having greater line resistances may include diodes having lower resistances. Related devices are also discussed.09-23-2010
20110110142Memory device and method of reading memory device - A memory device includes: a memory unit in which an electric charge discharging rate between two electrodes is different in accordance with logic of stored information; a sense amplifier that detects the logic of the information by comparing a discharge electric potential of a wiring to which one electrode of the memory unit is connected with a reference electric potential; and a replica circuit that has a replica unit emulating the memory unit and controls a sense timing of the sense amplifier in accordance with a discharge rate of the replica unit.05-12-2011
20120195101RESISTANCE-CHANGING MEMORY DEVICE - A resistance-changing memory device has a cell array having memory cells, each of which stores as data a reversibly settable resistance value, a sense amplifier for reading data from a selected memory cell in the cell array, and a voltage generator circuit which generates, after having read data of the selected memory cell, a voltage pulse for convergence of a resistive state of this selected memory cell in accordance with the read data.08-02-2012
20120195100SEMICONDUCTOR DEVICE AND METHOD OF CONTROLLING SEMICONDUCTOR DEVICE - Provided is a semiconductor device including: a memory cell having a variable resistance device; and a control unit that controls a voltage applied to the memory cell, wherein the variable resistance device includes a lower electrode contains a first metal material, an upper electrode containing a second metal material, and an insulating film containing oxygen, the first metal material has a normalized oxide formation energy higher than that of the second metal material, and the control unit applies a positive voltage to the upper electrode at the time of an operation of increasing a resistance value of the insulating film and an operation of decreasing the resistance value thereof, and applies a positive voltage to the lower electrode at the time of an operation of reading out the resistance value of the insulating film.08-02-2012
20100238703INFORMATION RECORDING/REPRODUCING DEVICE - An information recording/reproducing device includes a first electrode layer, a second electrode layer, a recording layer as a variable resistance between the first and second electrode layer, and a circuit which supplies a voltage to the recording layer to change a resistance of the recording layer. Each of the first and second electrode layers is comprised of IV or III-V semiconductor doped with p-type carrier or n-type carrier.09-23-2010
20120195099CHANGING A MEMRISTOR STATE - A method of changing a state of a memristor having a first intermediate layer, a second intermediate layer, and a third intermediate layer positioned between a first electrode and a second electrode includes applying a first pulse having a first bias voltage across the memristor, wherein the first pulse causes mobile species to flow in a first direction within the memristor and collect in the first intermediate layer thereby causing the memristor to enter into an intermediate state and applying a second pulse having a second bias voltage across the memristor, in which the second pulse causes the mobile species from the first intermediate layer to flow in a second direction within the memristor and collect in the third intermediate layer, wherein the flow of the mobile species in the second direction causes the memristor to enter into a fully changed state.08-02-2012
20100238700Quiescent Testing of Non-Volatile Memory Array - A method and apparatus for testing an array of non-volatile memory cells, such as a spin-torque transfer random access memory (STRAM). In some embodiments, an array of memory cells having a plurality of unit cells with a resistive sense element and a switching device has a row decoder and a column decoder connected to the plurality of unit cells. A test circuitry sends a non-operational test pattern through the array via the row and column decoders with a quiescent supply current to identify defects in the array of memory cells.09-23-2010
20100238713Non-volatile register - A non-volatile register is disclosed. The non-volatile register includes a memory element. The memory element comprises a first end and a second end. The non-volatile register includes a register logic connected with the first and second ends of the memory element. The register logic is positioned below the memory element. The memory element may be a two-terminal memory element configured to store data as a plurality of conductivity profiles that can be non-destructively determined by applying a read voltage across the two terminals. New data can be written to the two-terminal memory element by applying a write voltage of a predetermined magnitude and/or polarity across the two terminals. The two-terminal memory element retains stored data in the absence of power. A reference element including a structure that is identical or substantially identical to the two-terminal memory element may be used to generate a reference signal for comparisons during read operations.09-23-2010
20100238705NONVOLATILE MEMORY DEVICE AND METHOD SYSTEM INCLUDING THE SAME - A nonvolatile memory device performs interleaving of data to be stored in each wordline (memory page), or of data to be stored in multiple wordlines (memory pages). The NVM includes a memory cell array, a storage circuit of a de-interleaving circuit, and a read/write circuit. The storage circuit of the de-interleaving circuit is configured to store program data to be written interleaved into the memory cell array. The read/write circuit is configured to control the interleaved/deinterleaved data input/output between the memory cell array and the storage circuit. The write operation unit size may be the same or different from the read operation unit size. The storage circuit stores the program data of integer k times of a common divisor of a read operation unit size and a write operation unit size of the read/write circuit, wherein k may equal ‘m’ (the number of bits stored in each memory cell of the NVM).09-23-2010
20100238712VARIABLE WRITE AND READ METHODS FOR RESISTIVE RANDOM ACCESS MEMORY - Variable write and read methods for resistance random access memory (RRAM) are disclosed. The methods include initializing a write sequence and verifying the resistance state of the RRAM cell. If a write pulse is needed, then two or more write pulses are applied through the RRAM cell to write the desired data state to the RRAM cell. Each subsequent write pulse has substantially the same or greater write pulse duration. Subsequent write pulses are applied to the RRAM cell until the RRAM cell is in the desired data state or until a predetermined number of write pulses have been applied to the RRAM cell. A read method is also disclosed where subsequent read pulses are applied through the RRAM cell until the read is successful or until a predetermined number of read pulses have been applied to the RRAM cell.09-23-2010
20100254174Resistive Sense Memory with Complementary Programmable Recording Layers - A resistive sense memory and method of writing data thereto. In accordance with various embodiments, the resistive sense memory comprises a first reference layer with a fixed magnetic orientation in a selected direction coupled to a first tunneling barrier, a second reference layer with a fixed magnetic orientation in the selected direction coupled to a second tunneling barrier, and a recording structure disposed between the first and second tunneling barriers comprising first and second free layers. A selected logic state is written to the resistive sense memory by applying a programming input to impart complementary first and second programmed magnetic orientations to the respective first and second free layers.10-07-2010
20100254177Programming Non-Volatile Storage Element Using Current From Other Element - A non-volatile storage apparatus includes a set of Y lines, a common X line, multiple data storage elements each of which is connected to the common X line, a dummy storage element connected to the common X line and a particular Y line, and control circuitry in communication with the common X line and the set of Y lines. The multiple data storage elements are capable of being in a first state or a second state. The dummy storage element is in a conductive state. The control circuitry provides control signals to the common X line and the set of Y lines to change a first data storage element of the multiple data storage elements from the first state to the second state by passing a current into the first data storage element from the particular Y line through the dummy storage element. The control circuitry provides control signals to the common X line and the set of Y lines to sequentially change additional data storage elements of the multiple data storage elements from the first state to the second state by passing currents into the additional data storage elements from data storage elements of the multiple data storage elements that were previously changed to the second state and their associated different Y lines.10-07-2010
20100254178STORAGE DEVICE AND INFORMATION RE-RECORDING METHOD - A storage device capable of reducing a number of cycles necessary for a verify at a time of multi-value recording is provided. An initial value of a potential difference VCG between a gate and a source of a switching transistor at the time of the verify is set to a value varied in accordance with a resistance value level of multi-value information. In the case where a writing side performs a 3-value recording, when “01” is the information, an initial value VGS10-07-2010
20110058406RESISTIVE MEMORY - The present disclosure includes resistive memory devices and systems having resistive memory cells, as well as methods for operating the resistive memory cells. One memory device embodiment includes at least one resistive memory element, a programming circuit, and a sensing circuit. For example, the programming circuit can include a switch configured to select one of N programming currents for programming the at least one resistive memory element, where each of the N programming currents has a unique combination of current direction and magnitude, with N corresponding to the number of resistance states of the at least one memory element. In one or more embodiments, the sensing circuit can be arranged for sensing of the N resistance states.03-10-2011
20110058404VARIABLE RESISTIVE MEMORY PUNCHTHROUGH ACCESS METHOD - Variable resistive punchthrough access methods are described. The methods include switching a variable resistive data cell from a high resistance state to a low resistance state by passing a write current through the magnetic tunnel junction data cell in a first direction. The write current is provided by a transistor being electrically coupled to the variable resistive data cell and a source line. The write current passes through the transistor in punchthrough mode.03-10-2011
20100142256METHOD OF PROGRAMMING A NONVOLATILE MEMORY CELL BY REVERSE BIASING A DIODE STEERING ELEMENT TO SET A STORAGE ELEMENT - A method of programming a nonvolatile memory cell. The nonvolatile memory cell includes a diode steering element in series with a carbon storage element The method includes providing a first voltage to the nonvolatile memory cell. The first voltage reverse biases the diode steering element. The carbon storage element sets to a lower resistivity state.06-10-2010
20110235394SEMICONDUCTOR MEMORY DEVICE - A control circuit applies a first voltage to selected one of first lines and applies a second voltage having a voltage value smaller than that of the first voltage to selected one of second lines, such that a certain potential difference is applied across a memory cell disposed at an intersection of the selected one of the first lines and the selected one of the second lines. A current limiting circuit sets a compliance current defining an upper limit of a cell current flowing in the memory cell, and controls such that the cell current flowing in the memory cell does not exceed the compliance current. The current limiting circuit comprises a current generating circuit and a first current mirror circuit. The current generating circuit generates a first current having a current value equal to a current value of the cell current at a certain timing multiplied by a certain constant. The first current mirror circuit mirrors the first current to a current path supplying the first voltage to the first lines.09-29-2011
20100157655RESISTIVE MEMORY AND DATA WRITE-IN METHOD - An ReRAM of the present invention includes a high speed write-in region and a main memory region, only memory cells designated to have the storage state out of the memory cells corresponded to data are set to the storage state in the high speed write-in region. The data written in the memory cell array are transferred to the main memory region, the memory cells of the memory cell array corresponded to the data transferred from the high speed write-in region are reset to the no-storage state in the main memory region, only the memory cells designated to have the storage state out of the memory cells are set, and all memory cells are reset to the no-storage state, or the initial state, in the high speed write-in region.06-24-2010
20090285008MEMORY DEVICES WITH SELECTIVE PRE-WRITE VERIFICATION AND METHODS OF OPERATION THEREOF - A number of read cycles applied to a selected memory location of a memory device, such as a variable-resistance memory device, is monitored. Write data to be written to the selected memory location is received. Selective pre-write verifying and writing of the received write data to the selected memory location occurs based on the monitored number of read cycles. Selectively pre-write verifying and writing of the received write data may include, for example, writing received write data to the selected memory cell region without pre-write verification responsive to the monitored number of read cycles being greater than a predetermined number of read cycles11-19-2009
20100195370Nonvolatile semiconductor memory device and method for performing verify write operation on the same - Disclosed herein is a nonvolatile semiconductor memory device including a plurality of memory cells; and a driver circuit configured to perform a verify write operation in a cycle including selecting from an array of the plurality of memory cells a predetermined number of memory cells constituting a write cell unit, writing data collectively to the predetermined number of memory cells, and verifying the written data, the driver circuit further performing the verify write operation repeatedly until all memory cells within the write cell unit are found to have passed the verification.08-05-2010
20090257267NON-VOLATILE MULTI-LEVEL RE-WRITABLE MEMORY CELL INCORPORATING A DIODE IN SERIES WITH MULTIPLE RESISTORS AND METHOD FOR WRITING SAME - A very dense cross-point memory array of multi-level read/write two-terminal memory cells, and methods for its programming, are described. Multiple states are achieved using two or more films that each have bi-stable resistivity states, rather than “tuning” the resistance of a single resistive element. An exemplary memory cell includes a vertical pillar diode in series with two different bi-stable resistance films. Each bi-stable resistance film has both a high resistance and low resistance state that can be switched with appropriate application of a suitable bias voltage and current. Such a cross-point array is adaptable for two-dimensional rewritable memory arrays, and also particularly well-suited for three-dimensional rewritable (3D R/W) memory arrays.10-15-2009
20090040809STORAGE DEVICE - A storage device includes: a wiring including a first conductor with a first conductivity; and first, second and third contacts, each including a second conductor with a second conductivity and contacting the wiring. The storage device also includes: a write switching circuit controlling current for writing information that flows through the first contact, the wiring, and the second contact, and changing resistance values of the first contact to write information; and a read switching circuit controlling current for reading information that flows through the first contact, the wiring, and the third contact.02-12-2009
20090323397NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND READING METHOD OF NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device includes a memory cell including a resistance memory element which memorizes a high resistance state or a low resistance state, switches the high resistance state and the low resistance state by voltage application, one end of the resistance memory element being coupled to a bit line, the other end of the resistance memory element being coupled to a source line via the first transistor; and a resistor whose resistance value is higher than a resistance value of the resistance memory element in the low resistance state and lower than a resistance value of the resistance memory element in the high resistance state, one end of the resistor being coupled to said one end of the resistance memory element and the bit line, the other end of the resistor being coupled to the source line via the second transistor.12-31-2009
20090073742SEMICONDUCTOR STORAGE DEVICE AND OPERATING METHOD OF THE SAME - A semiconductor storage device includes: reading blocks; third wirings; reading switches; a control circuit; and evaluating circuits. The reading blocks includes first and second wirings extended in a first and second direction, respectively, and resistive storage elements arranged at points where the first and second wirings intersect. The third wirings is extended in the second direction and provided correspondingly to the second wirings. The reading switches are arranged between the third and second wirings. The control circuit controls the reading switches and supplies currents or the like to the first wirings. The evaluating circuits are connected to the third wirings and evaluate the currents or the like. When data is read out, the control circuit selects a selection reading block and a selection first wiring and supplies the currents or the like, and the evaluating circuits execute the evaluations of the currents or the like in the third wirings.03-19-2009
20090073741NAND-STRUCTURED SERIES VARIABLE-RESISTANCE MATERIAL MEMORIES, PROCESSES OF FORMING SAME, AND METHODS OF USING SAME - A variable-resistance material memory array includes a series of variable-resistance material memory cells. The series of variable-resistance material memory cells is in parallel with a corresponding series of control gates. A select gate is also in series with the variable-resistance material memory cells. Writing/reading/erasing to a given variable-resistance material memory cell includes turning off the corresponding control gate, while turning on all other control gates. Devices include the variable-resistance material memory array.03-19-2009
20110032747VARIABLE RESISTANCE MEMORY DEVICES AND METHODS OF PROGRAMMING VARIABLE RESISTANCE MEMORY DEVICES - A variable resistance memory device includes a variable resistance memory cell, and a by-pass circuit configured to electrically by-pass a programming pulse supplied to the variable resistance memory cell after a resistive state of the variable resistance memory cell has changed in response to the programming pulse.02-10-2011
20110032749NAND Based Resistive Sense Memory Cell Architecture - Various embodiments are directed to an apparatus comprising a semiconductor memory array with non-volatile memory unit cells arranged into a NAND block. Each of the unit cells comprises a resistive sense element connected in parallel with a switching element. The resistive sense elements are connected in series to form a first serial path, and the switching elements are connected in series to form a second serial path parallel to the first serial path. Each resistive sense element is serially connected to an adjacent resistive sense element in the block by a tortuous conductive path having a portion that extends substantially vertically between said elements to provide operational isolation therefor.02-10-2011
20110032746NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device according to an embodiment includes a memory cell array including: a plurality of first lines; a plurality of second lines intersecting the first lines; and a plurality of memory cells each including a variable resistance element disposed at the intersection of the first and second lines and configured to store an electrically rewritable resistance value as data in a nonvolatile manner, and a control unit configured to detect an amount of a current flowing through the first line when a memory cell is accessed, and adjust the voltage of the first or second line based on the amount of the current.02-10-2011
20110032748POLARITY DEPENDENT SWITCH FOR RESISTIVE SENSE MEMORY - A memory unit includes a resistive sense memory cell configured to switch between a high resistance state and a low resistance state upon passing a current through the resistive sense memory cell and a semiconductor transistor in electrical connection with the resistive sense memory cell. The semiconductor transistor includes a gate element formed on a substrate. The semiconductor transistor includes a source contact and a bit contact. The gate element electrically connects the source contact and the bit contact. The resistive sense memory cell electrically is connected to the bit contact. The source contact is more heavily implanted with dopant material then the bit contact.02-10-2011
20130128652Device for Storing a Frequency and Method for Storing and Reading Out a Frequency - The disclosure relates to a device for storing a frequency, wherein the device comprises (i) a comparator having an input, an output, a supply voltage input, and a supply voltage output, and (ii) a memristor connected between the input and the comparator and the output of the comparator.05-23-2013
20090109727Erase, programming and leakage characteristics of a resistive memory device - The present method provides annealing of a resistive memory device so as to provide that the device in its erased state has a greatly increased resistance as compared to a prior art approach. The annealing also provides that the device may be erased by application of any of a plurality of electrical potentials within an increased range of electrical potentials as compared to the prior art.04-30-2009
20100220513Bi-Directional Resistive Memory Devices and Related Memory Systems and Methods of Writing Data - A bi-directional resistive memory device includes a memory cell array including a plurality of memory cells and an input/output (I/O) circuit. The I/O circuit is configured to generate a first voltage having a positive polarity and a second voltage having a negative polarity, provide one of the first voltage and the second voltage to the memory cell array through a bitline responsive to a logic state of input data, and adjust magnitudes of the first and second voltage when data written in the memory cell array has an offset. Related memory systems and methods are also provided.09-02-2010
20080310209Circuit, biasing scheme and fabrication method for diode accesed cross-point resistive memory array - Methods, systems, structures and arrays are disclosed, such as a resistive memory array which includes access devices, for example, back-to-back Zener diodes, that only allow current to pass through a coupled resistive memory cell when a voltage drop applied to the access device is greater than a critical voltage. The array may be biased to reduce standby currents and improve delay times between programming and read operations.12-18-2008
20100220512PROGRAMMABLE POWER SOURCE USING ARRAY OF RESISTIVE SENSE MEMORY CELLS - Various embodiments of the present invention are generally directed to an apparatus comprising a programmable power source which uses an array of resistive sense memory cells, such as but not limited to STRAM or RRAM cells, to provide a controlled power bias to a load, such as but not limited to a micro-oscillator. In some embodiments, the programmable power source incorporates an array of serially connected resistive sense memory cells. A selectively controllable power level is applied by the programmable power source to a load in relation to a control input which selectively programs at least selected ones of the memory cells to a selected resistance state.09-02-2010
20090109729RESISTANCE CHANGE MEMORY DEVICE AND METHOD FOR ERASING THE SAME - A resistance change memory device including a cell array with memory cells arranged therein to store a resistance value as data in a non-volatile manner, and an erase circuit configured to set the memory cells in the cell array in a reset state prior to data writing, wherein the erase circuit includes: an erase current generating circuit configured to output erase current of the cell array; multiple switch devices so disposed on current paths between the erase current generating circuit and the respective divided areas defined in the cell array as to supply the erase current to the divided areas; and a control circuit configured to sequentially turn on the switch devices.04-30-2009
20090109728RESISTANCE CHANGE MEMORY DEVICE - A resistance change memory device including memory cells arranged, the memory cell having a stable state with a high resistance value and storing in a non-volatile manner such multi-level data that at least three resistance values, R04-30-2009
20110235403METHOD AND APPARATUS MANAGING WORN CELLS IN RESISTIVE MEMORIES - A method and apparatus for management worn resistive memory cells are presented. A normal read mode or worn memory cell detecting mode are used depending on the wear state of a resistive memory cell. A detection reference point is changed upon wear indication to detect the resistance of the resistive memory cell. The resistance of the resistive memory cell is detected using the changed detection reference point to determine whether or not the resistive memory cell is worn by comparing the detected resistance to a wear reference level.09-29-2011
20110235392NONVOLATILE SEMICONDUCTOR STORAGE DEVICE - According to one embodiment, a nonvolatile semiconductor storage device having a plurality of operation modes, includes: a plurality of first lines; a plurality of second lines; a plurality of memory cells; a first selection unit that charges the first line to a first selection voltage; and a second selection unit that charges a second line to an unselection voltage and discharges the second line to a second selection voltage after the first line is charged to the first selection voltage by the first selection unit, wherein the second selection unit adjusts at least one of a level of the second selection voltage to which the second line to be selected is to be discharged and a time constant when discharging the second line to be selected, in accordance with an operation mode in which the nonvolatile semiconductor storage device operates among the plurality of operation modes.09-29-2011
20100302836NONVOLATILE MEMORY CELL COMPRISING A DIODE AND A RESISTANCE-SWITCHING MATERIAL - In a novel nonvolatile memory cell formed above a substrate, a diode is paired with a reversible resistance-switching material, preferably a metal oxide or nitride such as, for example, Ni12-02-2010
20130135919SEMICONDUCTOR STORAGE DEVICE - According to one embodiment, a semiconductor storage device includes a stripe, a sense amplifier, a global signal line, and a controller. Blocks are in the stripe. The blocks are formed in a first direction. Each of blocks is made a read unit of data and includes a memory cell capable of holding the data provided along a row and a column. The sense amplifier is provided just under each of the blocks, and reads the data. The global signal line is formed so as to penetrate through the stripe in the first direction, and transfers the data read from the block to the sense amplifier. The controller controls a value of a reference current applied to the sense amplifier according to positional relationship between each area in which the sense amplifier is arranged and the block, which is made a read target of the data, out of the blocks.05-30-2013
20110122680VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE - A nonvolatile resistance variable memory device (05-26-2011
20110122679Resistive Sense Memory Calibration for Self-Reference Read Method - Resistive memory calibration for self-reference read methods are described. One method of self-reference reading a resistive memory unit includes setting a plurality of resistive memory units to a first resistive data state. The resistive memory units forms a memory array. Reading a sensed resistive data state for each resistive memory unit by applying a first read current and a second read current through each resistive memory unit and then comparing voltages formed by the first read current and the second read current to determine the sensed resistive data state for each resistive memory unit. Then the method includes adjusting the first or the second read current, read voltages, or storage device capacitance for each resistive memory unit where the sensed resistive data state was not the same as the first resistive data state until the sensed resistive data state is the same as the first resistive data state.05-26-2011
20110122678Anti-Parallel Diode Structure and Method of Fabrication - An anti-parallel diode structure and method of fabrication is presently disclosed. In some embodiments, an anti-parallel diode structure has a semiconductor region comprising a first insulator layer disposed between a first semiconductor layer and a second semiconductor layer. The semiconductor region can be bound on a first side by a first metal material and bound on a second side by a second metal material so that current below a predetermined value is prevented from passing through the semiconductor region and current above the predetermined value passes through the semiconductor region.05-26-2011
20110122676SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a semiconductor memory device includes: word lines; bit lines; an insulating film; an interlayer insulating film; and a resistance varying material. The word lines, the bit lines and the insulating film configure a field-effect transistor at each of the intersections of the word lines and the bit lines. The field-effect transistor has one of the word lines as a control electrode and one of the bit lines as a channel region. The field-effect transistor and the resistance varying material configure a memory cell having the field-effect transistor and the resistance varying material connected in parallel. Each of the bit lines includes a first surface opposing the word lines, and a second surface on an opposite side to the first surface. The resistance varying material is disposed in contact with the second surface and has a portion thereof in contact with the interlayer insulating film.05-26-2011
20100321980SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a semiconductor memory device includes a variable resistance element configured to store data “0” and data “1” in accordance with a change in resistance value, a current generator configured to generate a reference current for determining data of the variable resistance element, and having an admittance middle between an admittance of a variable resistance element storing data “0” and an admittance of a variable resistance element storing data “1”, and a sense amplifier includes a first input terminal connected to the variable resistance element and a second input terminal connected to the current generator, and configured to compare currents of the first input terminal and the second input terminal.12-23-2010
20100321976Split Path Sensing Circuit - A sensing circuit is disclosed. The sensing circuit includes a first path including a first resistive memory device and a second path including a reference resistive memory device. The first path is coupled to a first split path including a first load transistor and to a second split path including a second load transistor. The second path is coupled to a third split path including a third load transistor and to a fourth split path including a fourth load transistor.12-23-2010
20100321977PROGRAMMING REVERSIBLE RESISTANCE SWITCHING ELEMENTS - A storage system and method for operating the storage system that uses reversible resistance-switching elements is described. Techniques are disclosed herein for varying programming conditions to account for different resistances that memory cells have. These techniques can program memory cells in fewer attempts, which can save time and/or power. Techniques are disclosed herein for achieving a high programming bandwidth while reducing the worst case current and/or power consumption. In one embodiment, a page mapping scheme is provided that programs multiple memory cells in parallel in a way that reduces the worst case current and/or power consumption.12-23-2010
20100321982NONVOLATILE STORAGE DEVICE AND METHOD FOR WRITING INTO THE SAME - To provide a nonvolatile storage device (12-23-2010
20100321978SEMICONDUCTOR MEMORY DEVICE AND MEMORY CELL VOLTAGE APPLICATION METHOD - A semiconductor memory device comprises a plurality of parallel word lines, a plurality of parallel bit lines formed crossing the plurality of word lines, and a plurality of memory cells arranged at intersections of the word lines and the bit lines. Each memory cell has one end connected to the word line and the other end connected to the bit line. The device also comprises a drive circuit operative to selectively apply a voltage for data read/write across the word line and the bit line. It further comprises a sense amplifier circuit connected to the plurality of bit lines and operative to read/write data stored in the memory cell. The device also comprises a bit-line drive auxiliary circuit operative to selectively adjust the potentials on the plurality of bit lines based on data read out of the memory cell by the sense amplifier circuit.12-23-2010
20110002158METHOD OF PROGRAMMING VARIABLE RESISTANCE ELEMENT AND VARIABLE RESISTANCE MEMORY DEVICE USING THE SAME - A method of programming a variable resistance element to be operated with stability and at a high speed is provided. The method programs a nonvolatile variable resistance element (01-06-2011
20110007552Active Protection Device for Resistive Random Access Memory (RRAM) Formation - Apparatus and method for providing overcurrent protection to a resistive random access memory (RRAM) cell during an RRAM formation process used to prepare the cell for normal read and write operations. In accordance with various embodiments, the RRAM cell is connected between a first control line and a second control line, and an active protection device (APD) is connected between the second control line and an electrical ground terminal. A formation current is applied through the RRAM cell, and an activation voltage is concurrently applied to the APD to maintain a maximum magnitude of the formation current below a predetermined threshold level01-13-2011
20110002155CURRENT CONTROL ELEMENT, MEMORY ELEMENT, AND FABRICATION METHOD THEREOF - A memory element (01-06-2011
20110242876Buffering systems for accessing multiple layers of memory in integrated circuits - Embodiments of the invention relate generally to data storage and computer memory, and more particularly, to systems, integrated circuits and methods for accessing memory in multiple layers of memory implementing, for example, third dimension memory technology. In a specific embodiment, an integrated circuit is configured to implement write buffers to access multiple layers of memory. For example, the integrated circuit can include memory cells disposed in multiple layers of memory. In one embodiment, the memory cells can be third dimension memory cells. The integrated circuit can also include read buffers that can be sized differently than the write buffers. In at least one embodiment, write buffers can be sized as a function of a write cycle. Each layer of memory can include a plurality of two-terminal memory elements that retain stored data in the absence of power and store data as a plurality of conductivity profiles.10-06-2011
20110242877METHOD AND APPARATUS PROVIDING A CROSS-POINT MEMORY ARRAY USING A VARIABLE RESISTANCE MEMORY CELL AND CAPACITANCE - The invention relates to a method and apparatus providing a memory cell array in which each resistance memory cell is connected in series to a capacitive element. Access transistors are not necessary to perform read and write operations on the memory cell. In one exemplary embodiment, the capacitive element is a capacitor.10-06-2011
20100188884NONVOLATILE MEMORY ELEMENT, NONVOLATILE MEMORY APPARATUS, AND METHOD OF WRITING DATA TO NONVOLATILE MEMORY ELEMENT - A nonvolatile memory element comprises a first electrode (07-29-2010
20110026303VARIABLE RESISTANCE MEMORY DEVICE AND SYSTEM THEREOF - A nonvolatile memory device comprising: a plurality of memory banks, each of which operates independently and includes a plurality of resistance memory cells, each cell including a variable resistive element having a resistance varying depending on stored data; a plurality of global bit lines, each global bit line being shared by the plurality of memory banks; a temperature compensation circuit including one or more reference cells; and a data read circuit which is electrically connected to the plurality of global bit lines and performs a read operation by supplying at least one of the resistance memory cells with a current varying according to resistances of the reference cells.02-03-2011
20090067215Electric element, memory device, and semiconductor integrated circuit - An electric element comprises: a first electrode (03-12-2009
20090067213Method of forming controllably conductive oxide - In fabricating a memory device, a first electrode is provided. An alloy is formed thereon, and the alloy is oxidized to provide an oxide layer. A second electrode is provided on the oxide layer. In a further method of fabricating a memory device, a first electrode is provided. Oxide is provided on the first electrode, and an implantation step in undertaken to implant material in the oxide to form a layer including oxide and implanted material having an oxygen deficiency and/or defects therein. A second electrode is then formed on the layer.03-12-2009
20090067212MAGNETIC RANDOM ACCESS MEMORY AND DATA READ METHOD OF THE SAME - A magnetic random access memory includes a memory element having a first fixed layer, a first recording layer, and a first nonmagnetic layer, a first reference element having a second fixed layer, a second recording layer, and a second nonmagnetic layer, antiparallel data being written in the first reference element, a second reference element making a pair with the first reference element, and having a third fixed layer, a third recording layer, and a third nonmagnetic layer, parallel data being written in the second reference element, and a current source which, when a read operation is performed, supplies a current from the second fixed layer to the second recording layer in the first reference element, and supplies the current from the third recording layer to the third fixed layer in the second reference element.03-12-2009
20110002156SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a plurality of first wirings; a plurality of second wirings; a plurality of memory cells positioned at respective intersections of the first wirings and the second wirings, each of the memory cells having a variable resistance element and a selective element connected to the variable resistance element in series; a first selection portion selecting the first wiring; a second selection portion selecting the second wiring; and a power source portion applying predetermined selected-wiring-voltages to a selected first wiring being selected by the first selection portion and a selected second wiring being selected by the second selection portion, respectively, and applying predetermined unselected-wiring-voltages to unselected first wirings other than the selected first wiring and unselected second wirings other than the selected second wiring, respectively. A resistance element having a predetermined resistance value is provided between the power source portion and the unselected first and second wirings.01-06-2011
20110026304MEMORY CELL - Methods, and circuits, are disclosed for operating a programmable memory device. One method embodiment includes storing a value as a state in a first memory cell and as a complementary state in a second memory cell. Such a method further includes determining the state of the first memory cell using a first self-biased sensing circuit and the complementary state of the second memory cell using a second self-biased sensing circuit, and comparing in a differential manner an indication of the state of the first memory cell to a reference indication of the complementary state of the second memory cell to determine the value.02-03-2011
20110026301SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a semiconductor memory device includes first select line groups laminated in a vertical direction, and each including first select lines extending in a first direction, second select line groups alternately laminated with the first select line groups, and each including second select lines extending in a second direction that intersects with the first direction, and memory cells arranged between the first select lines and the second select lines. Even-numbered layers and odd-numbered layers of the first select line groups are arranged to be shifted in the second direction.02-03-2011
20110110140REFERENCE CURRENT GENERATOR FOR RESISTANCE TYPE MEMORY AND METHOD THEREOF - A reference current generator for a resistance type memory and a method thereof is disclosed. The reference current generator comprises N parallel circuit sets. Each of the N parallel circuit sets is formed with at least one first reference element and second reference elements connected in parallel. The number of the first reference elements plus the number of the second reference elements is N. The resistance value of first reference elements (a first resistance value) is not equal to the resistance value of the second reference elements (a second resistance value). An equivalent resistance provided with a equivalent resistance value between the first and second resistance value is formed by connecting the N parallel circuit sets in series between an input terminal and output terminal. A reference current is outputted from the output terminal by applying an operation voltage to the input terminal.05-12-2011
20110026300Resistive memory device and operating method thereof - A resistive memory device includes: a storage element; a first line and a second line; a first drive controller; and a second drive controller.02-03-2011
20110026307VARIABLE RESISTIVE MEMORY PUNCHTHROUGH ACCESS METHOD - Variable resistive punchthrough access methods are described. The methods include switching a variable resistive data cell from a high resistance state to a low resistance state by passing a write current through the magnetic tunnel junction data cell in a first direction. The write current is provided by a transistor being electrically coupled to the variable resistive data cell and a source line. The write current passes through the transistor in punchthrough mode.02-03-2011
20110026306RESISTANCE VARIABLE MEMORY DEVICE REDUCING WORD LINE VOLTAGE - A resistance variable memory device includes a memory cell array, a sense amplifier circuit, and a column selection circuit. The memory cell array includes a plurality of block units and a plurality of word line drivers, where each of the block units is connected between adjacent word line drivers and includes a plurality of memory blocks. The sense amplifier circuit includes a plurality of sense amplifier units, where each of the sense amplifier units provides a read current to a corresponding block unit and includes a plurality of sense amplifiers. The column selection circuit is connected between the memory cell array and the sense amplifier circuit and selects at least one of the plurality of memory blocks in response to a column selection signal to apply the read current from the sense amplifier circuit to the selected memory block.02-03-2011
20110026302WRITE VERIFY METHOD FOR RESISTIVE RANDOM ACCESS MEMORY - Write verify methods for resistance random access memory (RRAM) are provided. The methods include applying a reset operation voltage pulse across a RRAM cell to change a resistance of the RRAM cell from a low resistance state to a high resistance state. Then the method includes applying a forward resetting voltage pulse across the RRAM cell if the RRAM cell has a high resistance state resistance value less than a selected lower resistance limit value. This step is repeated until the high resistance state resistance value is greater than the lower resistance limit value. The method also includes applying a reverse resetting voltage pulse across the RRAM cell if the RRAM cell has a high resistance state resistance values is greater than a selected upper resistance limit value. The reverse resetting voltage pulse has a second polarity being opposite the first polarity. This step is repeated until all the high resistance state resistance value is less than the upper resistance limit value.02-03-2011
20110026305Non-Volatile Memory Array With Resistive Sense Element Block Erase and Uni-Directional Write - A non-volatile memory cell and associated method of use are disclosed. In accordance with various embodiments, the memory cell includes a switching device and a resistive sense element (RSE) connected in series between first and second control lines. The first control line is supplied with a variable voltage and the second control line is maintained at a fixed reference voltage. A first resistive state of the RSE is programmed by lowering the variable voltage of the first control line below the fixed reference voltage of the second control line to flow a body-drain current through the switching device. A different, second resistive state of the RSE is programmed by raising the variable voltage of the first control line above the fixed reference voltage to flow a drain-source current through the switching device.02-03-2011
20110026299NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD OF DATA WRITE/DATA ERASE THEREIN - A nonvolatile semiconductor memory device comprises: a plurality of first lines; a plurality of second lines; a plurality of memory cells each disposed at each of crossing-points of the first lines and the second lines and each comprising a variable resistor and a bi-directional diode; and a voltage control circuit configured to control a voltage of selected one of the first lines, unselected ones of the first lines, selected one of the second lines, and unselected ones of the second lines, respectively. The variable resistor is configured to change its resistance value depending on a polarity of a voltage applied thereto. The voltage control circuit is configured to apply a voltage pulse to the selected one of the first lines and to connect a capacitor of a certain capacitance to one end of the selected one of the second lines.02-03-2011
20100177551BIT SET MODES FOR A RESISTIVE SENSE MEMORY CELL ARRAY - Various embodiments of the present invention are generally directed to a method and apparatus for providing different bit set modes for a resistive sense memory (RSM) array, such as a spin-torque transfer random access memory (STRAM) or resistive random access memory (RRAM) array. In accordance with some embodiments, a group of RSM cells in a non-volatile semiconductor memory array is identified for application of a bit set operation. A bit set value is selected from a plurality of bit set values each separately writable to the RSM cells to place said cells in a selected resistive state. The selected bit set value is thereafter written to at least a portion of the RSM cells in the identified group.07-15-2010
20110110143METHOD OF PROGRAMMING NONVOLATILE MEMORY ELEMENT - Provided is a programming method for improving the retention characteristics of information in a variable resistance nonvolatile memory element. The method includes: a first writing process of applying a first voltage V05-12-2011
20090034320RESISTANCE CHANGE MEMORY AND WRITE METHOD OF THE SAME - A resistance change memory includes a resistance change element having a high-resistance state and a low-resistance state in accordance with write information, and a write circuit configured to supply a write current that the write current flowing through the resistance change element is held constant before and after the resistance change element is changed from the high-resistance state to the low-resistance state, and apply a write voltage that the write voltage applied to the resistance change element is held constant before and after the resistance change element is changed from the low-resistance state to the high-resistance state.02-05-2009
20110044093NON-VOLATILE MEMORY DEVICES INCLUDING STACKED NAND-TYPE RESISTIVE MEMORY CELL STRINGS - A non-volatile memory device includes a substrate, an insulating layer on the substrate, and a plurality of serially connected resistive memory cells stacked in the insulating layer such that a first one of the plurality of resistive memory cells is on the substrate and a next one of the plurality of resistive memory cells is on the first one of the plurality of resistive memory cells to define a NAND-type resistive memory cell string. A bit line on the insulating layer is electrically connected to a last one of the plurality of resistive memory cells. At least one of the plurality of resistive memory cells may include a switching device and a data storage element including a variable resistor connected in parallel with the switching device. Related devices and fabrication methods are also discussed.02-24-2011
20110044088VARIABLE RESISTANCE NONVOLATILE STORAGE DEVICE AND METHOD OF FORMING MEMORY CELL - A variable resistance nonvolatile storage device which includes (i) a semiconductor substrate (02-24-2011
20110116302Asymmetric Write Current Compensation Using Gate Overdrive for Resistive Sense Memory Cells - Apparatus and associated method for asymmetric write current compensation for resistive sense memory (RSM) cells, such as but not limited to spin-torque transfer random access memory (STRAM) or resistive random access memory (RRAM) cells. In accordance with some embodiments, an RSM cell includes an RSM element coupled to a switching device. The switching device has a plurality of terminals. A control circuit compensates for asymmetric write characteristics of the RSM cell by limiting a range of voltage differentials across the terminals so as to be equal to or less than a magnitude of a source voltage applied to the switching device, thereby providing bi-directional write currents of substantially equal magnitude through the RSM element.05-19-2011
20110211383INTEGRATED CIRCUIT HAVING VARIABLE MEMORY ARRAY POWER SUPPLY VOLTAGE - An integrated circuit comprises a memory array and a bias circuit. The memory array comprises a plurality of memory cells arranged in a grid of rows and columns. A first conductor is coupled to a power supply voltage terminal of each of the plurality of memory cells. A second conductor is coupled to receive a power supply voltage. The memory array also includes a plurality of dummy cells. A transistor of one or more of the plurality of dummy cells has a first current electrode coupled to the first conductor, a second current electrode coupled to the second conductor, and a control electrode. The bias circuit is coupled to the control electrode of the transistor.09-01-2011
20090323391REVERSE SET WITH CURRENT LIMIT FOR NON-VOLATILE STORAGE - A storage system includes a substrate, control circuitry on the substrate, a three dimensional memory array (above the substrate) that includes a plurality of reversible resistance-switching elements, and circuits for limiting the SET current for the reversible resistance-switching elements. The memory cell is SET in a reverse biased fashion.12-31-2009
20090323392SMART DETECTION CIRCUIT FOR WRITING TO NON-VOLATILE STORAGE - A memory system includes a substrate, control circuitry on the substrate, a three dimensional memory array (above the substrate) that includes a plurality of memory cells with reversible resistance-switching elements, and a circuit for detecting the setting and resetting of the reversible resistance-switching elements.12-31-2009
20110242874RESISTIVE MEMORY AND METHOD FOR CONTROLLING OPERATIONS OF THE SAME - A resistive memory and a method for controlling operations of the resistive memory are provided. The resistive memory has a first memory layer, a second memory layer and a medium layer. Each of the first memory layer and the second memory layer is used to store data. The medium layer is formed between the first memory layer and the second memory layer. The method comprises at least a step of measuring a resistance between the first memory layer and the second memory layer, and determining which one of a first state, a second state and a third state is a state of the resistive memory according to the measured resistance.10-06-2011
20110096589NANOWIRE-BASED MEMRISTOR DEVICES - Embodiments of the present invention are directed to memristor devices that provide nonvolatile memristive switching. In one embodiment, a memristor device includes a first electrode, a second electrode, and a nanowire disposed between the first electrode and the second electrode. The nanowire is configured with an inner region surrounded by an outer layer. The memristor device may also include a mobile dopant confined to the inner region by repulsive electrostatic forces between the outer layer and the mobile dopant. The resistance of the nanowire is determined by the distribution of the mobile dopant in the inner region.04-28-2011
20100259966NONVOLATILE MEMORY ELEMENT, NONVOLATILE MEMORY APPARATUS, AND NONVOLATILE SEMICONDUCTOR APPARATUS - A nonvolatile memory element comprises a first electrode (10-14-2010
20090257271RESISTANCE CHANGE ELEMENT AND METHOD OF MANUFACTURING THE SAME - In a resistance change memory (ReRAM) storing data by utilizing change in resistance of a resistance change element, a lower electrode (ground-side electrode) of the resistance change element is formed of a transition metal such as Ni, and an upper electrode (positive polarity-side electrode) is configured of a noble metal such as Pt. In addition, a transition metal oxide film between the lower electrode and the upper electrode is formed of an oxide film (NiOx film) of a transition metal that is of the same kind as the transition metal constituting the lower electrode, for example.10-15-2009
20110242875NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises a cell array including a plurality of first lines, a plurality of second lines intersecting the plurality of first lines, and a plurality of memory cells arranged in matrix and connected at intersections of the first and second lines between both lines, each memory cell containing a serial circuit of an electrically erasable programmable variable resistive element of which resistance is nonvolatilely stored as data and a non-ohmic element; and a plurality of access circuits operative to simultaneously access the memory cells physically separated from each other in the cell array.10-06-2011
20110242878METHODS FOR OPERATING MEMORY ELEMENTS - Methods for measuring the resistance of multiple memory elements are disclosed. The memory elements may be multi-bit memory and through precise measurement of resistance of the multi-bit memory elements, determination of how many and which memory elements fall into specific memory ranges can be accomplished. Furthermore, storage and/or display of this information may allow for the creation of resistance distribution histograms for modeling of one or more memory arrays.10-06-2011
20090323393CAPACITIVE DISCHARGE METHOD FOR WRITING TO NON-VOLATILE MEMORY - A memory system includes a substrate, control circuitry on the substrate, a three dimensional memory array (above the substrate) that includes a plurality of memory cells with reversible resistance-switching elements, and circuits for limiting the SET current for the reversible resistance-switching elements. The circuits for limiting the SET current provide a charge on one or more bit lines that is not sufficient to SET the memory cells, and then discharge the bit lines through the memory cells in order to SET the memory cells.12-31-2009
20090323396SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory according to an aspect of the invention including first and second bit lines, a word line, a resistive memory element which has one end and the other end, the one end being connected with the first bit line, a selective switch element which has a current path and a control terminal, one end of the current path being connected with the other end of the resistive memory element, the other end of the current path being connected with the second bit line, the control terminal being connected with the word line, a first column switch connected with the first bit line, a second column switch connected with the second bit line, wherein the first and second bit lines is activated and then the word line is activated when starting writing or reading data with respect to the resistive memory element.12-31-2009
20100014343NONVOLATILE MEMORY APPARATUS AND NONVOLATILE DATA STORAGE MEDIUM - [Objective] A nonvolatile memory apparatus and a nonvolatile data storage medium of the present invention, including nonvolatile memory elements each of which changes its resistance in response to electric pulses applied, comprises a first write circuit (01-21-2010
20100073993MULTI-RESISTIVE INTEGRATED CIRCUIT MEMORY - A capacitor for use in integrated circuits comprises a layer of conductive material. The layer of conductive material including at least a first portion and a second portion, wherein the first portion and the second portion are arranged in a predetermined pattern relative to one another to provide a maximum amount of capacitance per semiconductor die area.03-25-2010
20100054017SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprising: a plurality of cell arrays having a plurality of first wirings and a plurality of second wirings intersecting each other and memory cells disposed at intersections between said first wirings and said second wirings, each containing a variable resistive element that is electrically rewritable and stores a resistance value as data; and a control circuit for selectively driving said first wirings and said second wirings; wherein said control circuit performs a first operation of applying a voltage required for one operation selected from the data write, read and erase operations to said one memory cell via one combination of said first and second wirings and a second operation of applying a voltage required for an operation selected from the data write, read and erase operations and different from the first operation to said other memory cell via another combination of said first and second wirings.03-04-2010
20100054018SEMICONDUCTOR MEMORY DEVICE AND INFORMATION PROCESSING SYSTEM - A semiconductor memory device comprises a memory cell array and a forming controller. The memory cell array includes a plurality of first memory cells each having a structure in which dielectric material is sandwiched between two electrodes, and the memory cell array is divided into a plurality of areas capable of being designated. The forming controller controls to perform “forming” for the first memory cells in an area selectively designated from the plurality of areas of the memory cell array, and as a result of the forming, the first memory cells are changed to non-volatile second memory cells.03-04-2010
20100054019RESISTANCE CHANGE MEMORY DEVICE - A resistance change memory device includes a cell array having multiple layers of mats laminated thereon, each of the mats having word lines and bit lines intersecting each other as well as resistance change type memory cells arranged at intersections thereof, each of the mats further having therein a reference cell and a reference bit line connected to the reference cell, the reference cell set to a state of a certain resistance value; a selection circuit configured to select a word line in each mat of the cell array, and select a bit line intersecting a selected word line and the reference bit line at the same time; and a sense amplifier configured to sense data by comparing respective cell currents of a selected memory cell on the selected bit line and the reference cell on the reference bit line.03-04-2010
20110249485RESISTANCE-CHANGE MEMORY - According to one embodiment, a resistance-change memory includes bit lines running in a first direction, word lines running in a second direction, and a memory cell array includes memory cells each includes a selection transistor and a variable resistance element. In a layout of first to fourth variable resistance elements arranged in order in the first direction, the first variable resistance element and the second variable resistance element sandwich one word line therebetween, the third variable resistance element and the fourth variable resistance element sandwich one word line therebetween, a first pair includes the first and second variable resistance elements and a second pair includes the third and fourth variable resistance elements sandwich two word lines therebetween, and a column is constructed by repeating the layout in the first direction.10-13-2011
20100054014HIGH DENSITY RESISTANCE BASED SEMICONDUCTOR DEVICE - Memory devices are described along with methods for manufacturing. A memory device as described herein includes a plurality of memory cells located between word lines and bit lines. Each memory cell comprises a diode and a plurality of memory elements each comprising one or more metal-oxygen compounds, the diode and the plurality of memory elements arranged in electrical series along a current path between a corresponding word line and a corresponding bit line.03-04-2010
20100054020SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a memory cell having a resistance which differs based on stored data, a bit line connected to the memory cell, a first MOSFET which clamps the bit line to a read voltage when reading data, a sense amplifier which detects the stored data in the memory cell based on a current flowing through the bit line, a first switch element which connects the sense amplifier to a drain of the first MOSFET, a second switch element which connects a source of the first MOSFET to the bit line, a third switch element which connects the drain of the first MOSFET to a ground terminal, and a fourth switch element which connects the source of the first MOSFET to a ground terminal.03-04-2010
20100054015Non-volatile memory device and method of operating the same - Provided is a non-volatile memory device that may include a plurality of variable resistors, each of the variable resistors having first and second terminals, the plurality of variable resistors arranged as a first layer of a plurality of layers and having data storage capability, at least one common bit plane arranged as a second layer of the plurality of layers and coupled to the first terminal of each of the variable resistors of the first layer, and a plurality of bit lines coupled to the second terminal of each of the variable resistors of the first layer.03-04-2010
20100054016Semiconductor memory device having floating body type NMOS transistor - A semiconductor memory device comprises a memory cell array and a sense amplifier circuit. The memory cell array includes a first NMOS transistor which has a gate electrode connected to a word line and has one source/drain region connected to a bit line. The sense amplifier circuit includes a second NMOS transistor which has a gate electrode connected to the bit line and has one source/drain region connected to a predetermined voltage. In the semiconductor memory device, each of the first and second MOS transistors is a floating body type NMOS transistor, and the predetermined voltage is supplied to the bit line at least in a precharge operation, thereby preventing characteristic deterioration due to accumulation of holes in the floating body.03-04-2010
20110096588NON-VOLATILE MEMORY ARRAY ARCHITECTURE INCORPORATING 1T-1R NEAR 4F2 MEMORY CELL - A nonvolatile memory array architecture includes a resistive element between each common source/drain (intermediate) node and data line (or bit line), in an otherwise virtual ground-like memory array having serially-connected transistors coupled to the same word line. However, every N+1 transistors the corresponding resistive element is omitted (or generally kept in a low resistance state) to form transistor strings. This achieves an array density of 4F04-28-2011
20090154221Non-Volatile memory device using variable resistance element with an improved write performance - A non-volatile memory device using a variable resistive element is provided. The non-volatile memory device includes a memory cell array having a plurality of non-volatile memory cells, a first voltage generator generating a first voltage, a voltage pad receiving an external voltage that has a level higher than the first voltage, a sense amplifier supplied with the first voltage and reading data from the non-volatile memory cells selected from the memory cell array, and a write driver supplied with the external voltage and writing data to the non-volatile memory cells selected from the memory cell array.06-18-2009
20100238701SEMICONDUCTOR MEMORY DEVICE - A memory cell arranged between first and second wirings includes a variable-resistor element. A controller controls a voltage applied between the first and second wirings. The controller performs a first operation that applies a first voltage between the first and second wirings to switch the variable-resistor element from a first state with a resistance value not less than a first resistance value, to a second state with a resistance value not more than a second resistance value smaller than the first resistance value. The second operation applies a second voltage smaller than the first voltage between the first and second wirings to switch the variable-resistor element from the second state to the first state. In the first operation, a verify voltage is applied between the first and second wirings. Based on the obtained signal, a third voltage smaller than the first voltage is applied between the first and second wirings.09-23-2010
20090027943RESISTIVE MEMORY INCLUDING BIDIRECTIONAL WRITE OPERATION - A memory includes a first electrode, a second electrode, and a resistive memory element coupled between the first electrode and the second electrode. The memory includes a circuit configured to write a data value to the resistive memory element by sequentially applying a first signal from the first electrode to the second electrode and a second signal from the second electrode to the first electrode.01-29-2009
20090027944Increased Switching Cycle Resistive Memory Element - An integrated circuit including a resistive memory element and a method of manufacturing the integrated circuit are described. The method of manufacturing the integrated circuit includes depositing a switching layer material and intentionally forming inhomogeneously distributed defects within the switching layer material to increase a number of switching cycles of the resistive memory element. The resistive memory element includes a switching layer that selectively switches between a low resistance state and a high resistance state. The switching layer contains intentionally formed defects that increase the number of switching cycles of the switching layer.01-29-2009
20110069528ELECTRONIC DEVICE WITH A PROGRAMMABLE RESISTIVE ELEMENT AND A METHOD FOR BLOCKING A DEVICE - One or more embodiments relate to an electronic device comprising a circuitry and a programmable resistive element. The programmable resistive element comprises a first and a second state, wherein the programmable resistive element is configured to allow switching from the second state into the first state in response to a signal comprising at least a predefined level. The circuitry is configured to provide signals up the predefined level, wherein the circuitry is configured to provide a switch signal to the programmable resistive element, wherein the switch signal causes switching from the first into the second state.03-24-2011
20110069531NONVOLATILE SEMICONDUCTOR STORAGE DEVICE AND METHOD OF MANUFACTURING THE SAME - According to one embodiment, a method of manufacturing a nonvolatile semiconductor storage device includes a memory-cell forming step, a first wire forming step, and a second wire forming step. The memory-cell forming step is forming dummy memory cells arranged at a predetermined space apart from an end memory cell located at an end of a group of memory cells set in contact with the same first or second wire among the memory cells, the dummy memory cells having a laminated structure same as that of the memory cells and being set in contact with no second wire.03-24-2011
20090213640CURRENT DRIVEN MEMORY CELLS HAVING ENHANCED CURRENT AND ENHANCED CURRENT SYMMETRY - A method and system for providing and using a magnetic memory is described. The method and system include providing a plurality of magnetic storage cells. Each magnetic storage cell includes a magnetic element and a selection device coupled with the magnetic element. The magnetic element is programmed by write currents driven through the magnetic element in a first or second direction. In one aspect, the method and system include providing a voltage supply and a voltage pump coupled with the magnetic storage cells and the voltage supply. The voltage supply provides a supply voltage. The voltage pump provides to the selection device a bias voltage having a magnitude greater than the supply voltage. Another aspect includes providing a silicon on oxide transistor as the selection device. Another aspect includes providing to the body of the transistor a body bias voltage that is a first voltage when the transistor is off and a second voltage when the transistor is on.08-27-2009
20090213639RESISTANCE CHANGE MEMORY DEVICE - A resistance change memory device including a memory cell array with first wirings, second wirings, and memory cells, the memory cell including a diode and a variable resistance element, anode of diodes being located on the first wiring side, wherein the memory cell array is sequentially set in the following three states after power-on: a waiting state defined by that both the first and second wirings are set at a first voltage; a standby state defined by that the first wirings are kept at the first voltage and the second wirings are set at a second voltage higher than the first voltage; and an access state defined by that a selected first wiring and a selected second wiring are set at a third voltage higher than the first voltage and the first voltage, respectively.08-27-2009
20120120714MEMORY RESISTOR HAVING MULTI-LAYER ELECTRODES - Methods and means related to memory resistors are provided. A memristor includes two multi-layer electrodes and an active material layer. One multi-layer electrode forms an Ohmic contact region with the active material layer. The other multi-layer electrode forms a Schottky barrier layer with the active material layer. The active material layer is subject to oxygen vacancy profile reconfiguration under the influence of an applied electric field. An electrical resistance of the memristor is thus adjustable by way of applied programming voltages and is non-volatile between programming events.05-17-2012
20120120713Asymmetric Write Current Compensation Using Gate Overdrive for Resistive Sense Memory Cells - Apparatus and associated method for asymmetric write current compensation for resistive sense memory (RSM) cells, such as but not limited to spin-torque transfer random access memory (STRAM) or resistive random access memory (RRAM) cells. In accordance with some embodiments, an RSM cell includes an RSM element coupled to a switching device. The switching device has a plurality of terminals. A control circuit compensates for asymmetric write characteristics of the RSM cell by limiting a range of voltage differentials across the terminals so as to be equal to or less than a magnitude of a source voltage applied to the switching device, thereby providing bi-directional write currents of substantially equal magnitude through the RSM element.05-17-2012
20120120712FORMING METHOD FOR VARIABLE RESISTANCE NONVOLATILE MEMORY ELEMENT, AND VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE - An optimum forming method of performing a forming for a variable resistance element to maximize an operation window of the variable resistance element is provided. The forming method is used to initialize a variable resistance element (05-17-2012
20120120710MEMORY SYSTEM WITH REVERSIBLE RESISTIVITY-SWITCHING USING PULSES OF ALTERNATRIE POLARITY - A memory system includes a plurality of non-volatile storage elements that each comprise a diode (or other steering device) in series with reversible resistance-switching material. One or more circuits in the memory system program the non-volatile storage elements by changing the reversible resistance-switching material of one or more non-volatile storage elements to a first resistance state. The memory system can also change the reversible resistance-switching material of one or more of the non-volatile storage elements from the first resistance state to a second resistance state by applying one or more pairs of opposite polarity voltage conditions (e.g., pulses) to the respective diodes (or other steering devices) such that current flows in the diodes (or other steering devices) without operating the diodes (or other steering devices) in breakdown condition.05-17-2012
20110069529Methods Of Reading And Using Memory Cells - Some embodiments include methods of reading memory cells. The memory cells have a write operation that occurs only if a voltage of sufficient absolute value is applied for a sufficient duration of time; and the reading is conducted with a pulse that is of too short of a time duration to be sufficient for the write operation. In some embodiments, the pulse utilized for the reading may have an absolute value of voltage that is greater than or equal to the voltage utilized for the write operation. In some embodiments, the memory cells may comprise non-ohmic devices; such as memristors and diodes.03-24-2011
20110069533RESISTANCE CHANGE MEMORY AND CONTROL METHOD THEREOF - According to one embodiment, a resistance change memory includes a memory cell array in which a plurality of blocks are provided, resistance change storage elements which are provided in blocks and which store data in accordance with a change in resistance state, first and second wirings in the blocks, each of the first and second wirings being connected to each of resistance change storage elements, and a control circuit which controls the state of a selected block targeted for operation and the state of unselected blocks except the selected block among the blocks. The control circuit respectively applies first and second unselect potentials to the first and second wirings in at least one of the unselected blocks during a period in which the selected block is in operation.03-24-2011
20110069532NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a nonvolatile semiconductor memory device includes a memory cell array and a control circuit. The memory cell array includes a plurality of first wirings, a plurality of second wirings intersecting the plurality of first wirings, and a plurality of memory cells provided at the intersections of the plurality of first and second wirings and each including a non-ohmic element and a variable resistance element connected in series. The control circuit selects one of the plurality of memory cells, generates an erasing pulse for erasing data from the selected memory cell, and supplies the erasing pulse to the selected memory cell. The control circuit executes data erase by applying a voltage of the erasing pulse to the non-ohmic element in the reverse bias direction.03-24-2011
20110069530NONVOLATILE MEMORY DEVICE AND METHOD OF MANUFACTURING THE SAME - According to one embodiment, there is provided a method of manufacturing a nonvolatile memory device. In this method, a first voltage may be applied to a variable resistive element having a resistance value which is electrically rewritable in a high resistance and in a low resistance. In this method, a second voltage may be applied to the variable resistive element in a case where the resistance value of the variable resistive element to which the first voltage has been applied is greater than a resistance value of the low resistance and is not greater than a resistance value of the high resistance. Further, in this method, the applying of the second voltage to the variable resistive element may be repeated until the resistance value of the variable resistive element to which the second voltage has been applied falls within a range of the resistance value of the low resistance.03-24-2011
20120147655NON-VOLATILE MEMORY DEVICE AND METHOD FOR PROGRAMMING THE SAME - A non-volatile memory device and a method for programming the same are disclosed. The method for programming the non-volatile memory device includes generating a simultaneous write current based on a program address in such a manner that bit line write cells corresponding to memory cells coupled to the same bit line from among memory cells to be programmed can be simultaneously programmed, and providing the simultaneous write current to the bit line write cells by simultaneously enabling the bit line write cells.06-14-2012
20110044089Method for Manufacturing a Resistive Switching Memory Cell Comprising a Nickel Oxide Layer Operable at Low-Power and Memory Cells Obtained Thereof - A resistive switching non-volatile memory element is disclosed comprising a resistive switching metal-oxide layer sandwiched between and in contact with a top electrode and a bottom electrode, the resistive switching metal oxide layer having a substantial isotropic non-stoichiometric metal-to-oxygen ratio. For example, the memory element may comprise a nickel oxide resistive switching layer sandwiched between and in contact with a nickel top electrode and a nickel bottom electrode whereby the ratio oxygen-to-nickel of the nickel oxide layer is between 0 and 0.85.02-24-2011
20110026297VARIABLE AND REVERSIBLE RESISTIVE ELEMENT, NON-VOLATILE MEMORY DEVICE AND METHODS FOR OPERATING AND MANUFACTURING THE NON-VOLATILE MEMORY DEVICE - A variable and reversible resistive element includes a transition metal oxide layer, a bottom electrode and at least one conductive plug module. The bottom electrode is disposed under the transition metal oxide layer. The conductive plug module is disposed on the transition metal oxide layer. The conductive plug module includes a metal plug and a barrier layer. The conductive plug is electrically connected with the transition metal oxide layer. The barrier layer surrounds the metal plug, wherein the transition metal oxide layer is made by reacting a portion of a dielectric layer being directly below the metal plug and a portion of the barrier layer contacting the portion of the dielectric layer, wherein the dielectric layer is formed on the bottom electrode. Moreover, a non-volatile memory device and methods for operating and manufacturing the same is disclosed in specification.02-03-2011
20100246240SEMICONDUCTOR DEVICE CONFIGURATION METHOD - A plurality of three-terminal variable resistance switching elements each having a source electrode, a drain electrode, and a gate electrode are connected to each other in series. The source electrode of each of the three-terminal variable resistance switching elements and the drain electrode of its adjacent three-terminal variable resistance switching element are connected to each other through a wiring segment to form a lane. A potential holding section for holding a predetermined potential level is connected to the wiring segment. A column group is configured by selecting one of the three-terminal variable resistance elements in each lane. A common gate line is connected to each of the gate electrodes of the three-terminal variable resistance elements belonging to the column group.09-30-2010
20100246241SEMICONDUCTOR DEVICE WITH SOURCE LINES EXTENDING IN A DIFFERENT DIRECTION - A semiconductor device includes a plurality of word lines extending in a first direction, a plurality of bit lines extending in a second direction, a plurality of source lines formed along a third direction which is different from the first and the second directions, and a source line control circuit serving as a driving arrangement selectively driving the plurality of source lines.09-30-2010
20110044091TWO-TERMINAL NANOTUBE DEVICES AND SYSTEMS AND METHODS OF MAKING SAME - A two terminal memory device includes first and second conductive terminals and a nanotube article. The article has at least one nanotube, and overlaps at least a portion of each of the first and second terminals. The device also includes stimulus circuitry in electrical communication with at least one of the first and second terminals. The circuit is capable of applying first and second electrical stimuli to at least one of the first and second terminal(s) to change the relative resistance of the device between the first and second terminals between a relatively high resistance and a relatively low resistance. The relatively high resistance between the first and second terminals corresponds to a first state of the device, and the relatively low resistance between the first and second terminals corresponds to a second state of the device.02-24-2011
20110044090NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device according to an embodiment includes: a memory cell array including a plurality of first lines and second lines intersecting each other and a plurality of memory cells connected at intersections of the plurality of first lines and second lines; and a first line control circuit and a second line control circuit configured to select the first lines and the second lines respectively to supply a voltage or current necessary for a resetting operation or a setting operation on the memory cells. The first line control circuit supplies unselected ones of the first lines with an unselecting voltage corresponding to the distance between the unselected first lines and the second line control circuit.02-24-2011
20110026298METHOD OF DRIVING STORAGE DEVICE - Provided is a method of driving a storage device capable of improving reliability of data write in the storage device including a variable resistance element. At the time of data write operation, a plurality of write pulses having shapes different from each other are applied between electrodes 02-03-2011
20080253166Integrated Circuit, Method for Manufacturing an Integrated Circuit, Memory Cell Array, Memory Module, and Device - According to one embodiment of the present invention, a memory cell array comprises a plurality of voids, the spatial positions and dimensions of the voids being chosen such that mechanical stress occurring within the memory cell array is at least partly compensated by the voids.10-16-2008
20100321979RESISTANCE CHANGE MEMORY - A resistance change memory includes a first conductive line extending in a first direction, a second conductive line extending in a second direction which is crossed to the first direction, a cell unit including a memory element and a rectification connected in series between the first and second conductive lines, and a control circuit which is connected to both of the first and second conductive lines. The control circuit controls a value of voltage which is applied to the memory element to change a resistance of the memory element reversibly between first and second values. The rectification includes a p-type semiconductor layer, an n-type semiconductor layer and an intrinsic semiconductor layer therebetween. The rectification has a first diffusion prevention area in the intrinsic semiconductor layer.12-23-2010
20110255330NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device according to one embodiment of the present invention includes a memory cell array configured by memory cells each provided between a first line and a second line and each including a variable resistor. A control circuit applies to any one of the memory cells through the first and second lines a voltage necessary for an operation of any one of the memory cells. A current limiting circuit is connected to the first line and limits a current flowing across the memory cell during an operation to a certain limit value. During an operation, the control circuit supplies a first voltage to the first line while supplying to the second line a second voltage. The second voltage lowers over time.10-20-2011
20100302835LIMITED CHARGE DELIVERY FOR PROGRAMMING NON-VOLATILE STORAGE ELEMENTS - A memory system includes a substrate, control circuitry on the substrate, a three dimensional memory array (above the substrate) that includes a plurality of memory cells with reversible resistance-switching elements, and a circuit for detecting the setting and resetting of the reversible resistance-switching elements. In one aspect a circuit that has one or more clock inputs is run for a predetermined number of clock cycles. The circuit generates an amount of charge over the predetermined number of clock cycles. At most the amount of charge is provided to non-volatile storage element to program the non-volatile storage element. It is determined whether the non-volatile storage element is programmed to a desired state as a result of providing at most the amount of charge to the non-volatile storage element. Techniques disclosed herein can be applied to program memory cells other than memory cells with reversible resistance-switching elements.12-02-2010
20100259969Preservation circuit and methods to maintain values representing data in one or more layers of memory - Circuitry and methods for restoring data in memory are disclosed. The memory may include at least one layer of a non-volatile two-terminal cross-point array that includes a plurality of two-terminal memory elements that store data as a plurality of conductivity profiles and retain stored data in the absence of power. Over a period of time, logic values indicative of the stored data may drift such that if the logic values are not restored, the stored data may become corrupted. At least a portion of each memory may have data rewritten or restored by circuitry electrically coupled with the memory. Other circuitry may be used to determine a schedule for performing restore operations to the memory and the restore operations may be triggered by an internal or an external signal or event. The circuitry may be positioned in a logic layer and the memory may be fabricated over the logic layer.10-14-2010
20100254175CROSS POINT NON-VOLATILE MEMORY CELL - A memory system includes an X line, a first Y line, a second Y line, a semiconductor region of a first type running along the X line, first switching material and a first semiconductor region of a second type between the first Y line and the semiconductor region of the first type, second switching material and a second semiconductor region of the second type between the second Y line and the semiconductor region of the first type, and control circuitry. The control circuitry is in communication with the X line, the first Y line and the second Y line. The control circuitry changes the programming state of the first switching material to a first state by causing a first current to flow from the second Y line to the first Y line through the first switching material, the second switching material, the semiconductor region of the first type, the first semiconductor region of the second type and the second semiconductor region of the second type.10-07-2010
20110176352NONVOLATILE MEMORY CELL OPERATING BY INCREASING ORDER IN POLYCRYSTALLINE SEMICONDUCTOR MATERIAL - A nonvolatile memory cell is described, the memory cell comprising a semiconductor diode. The semiconductor material making up the diode is formed with significant defect density, and allows very low current flow at a typical read voltage. Application of a programming voltage permanently changes the nature of the semiconductor material, resulting in an improved diode. The programmed diode allows much higher current flow, in some embodiments one, two or three orders of magnitude higher, at the same read voltage. The difference in current allows a programmed memory cell to be distinguished from an unprogrammed memory cell. Fabrication techniques to generate an advantageous unprogrammed defect density are described. The memory cell of the present invention can be formed in a monolithic three dimensional memory array, having multiple stacked memory levels formed above a single substrate.07-21-2011
20110176351NONVOLATILE MEMORY DEVICE AND METHOD FOR MANUFACTURING SAME - According to one embodiment, a nonvolatile memory device includes a memory layer and a control unit. The memory layer includes a first conductive layer, a second conductive layer and a resistance change layer. The resistance change layer is provided between the first and second conductive layers and transits between a high resistance state and a low resistance state by at least one of an applied electric field and an applied current. The control unit is electrically connected to the first and second conductive layers and configured to apply a first signal with a first polarity between the first and second conductive layers prior to applying a second signal with a second polarity different from the first polarity between the first and second conductive layers to cause the resistance change layer to transit from the high resistance state to the low resistance state.07-21-2011
20080316798NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A path routing from a write current source supplying a write current through an internal data line, a bit line and a source line to a reference potential except a memory cell is configured to have a constant resistance independent of a memory cell position selected in a memory array, and each of the resistance value of the current path between the memory cell and the write current source and the resistance value of the current path between the selected memory cell and the reference potential node is set to 500Ω or lower. A nonvolatile semiconductor memory device having improved reliability of data read/write is achieved.12-25-2008
20100097841Multi-Stage Parallel Data Transfer - Apparatus and associated method for transferring data to memory, such as resistive sense memory (RSM). In accordance with some embodiments, input data comprising a sequence of logical states are transferred to a block of memory by concurrently writing a first logical state from the sequence to each of a first plurality of unit cells during a first write step, and concurrently writing a second logical state from the sequence to each of a second non-overlapping plurality of unit cells during a second write step.04-22-2010
20100080041Semiconductor device - A semiconductor device includes a comparison unit for comparing a resistance value of a memory element selectively connected to an input terminal with a resistance value of a reference resistance, and a resistance reference unit capable of selecting one of a plurality of resistance values and capable of being selectively connected to the input terminal.04-01-2010
20090323398SEMICONDUCTOR MEMORY DEVICE COMPRISING A PLURALITY OF STATIC MEMORY CELLS - A driver power supply circuit stepping down a power supply voltage is arranged at a power supply node of a word line driver. The driver power supply circuit includes a non-silicide resistance element of N+ doped polycrystalline silicon, and a pull-down circuit lowering a voltage level of the driver power supply node. The pull-down circuit includes a pull-down transistor having the same threshold voltage characteristics as a memory cell transistor pulling down a voltage level of the driver power supply node, and a gate control circuit adjusting at least a gate voltage of the pull-down transistor. The gate control circuit corrects the gate potential of the pull-down transistor in a manner linked to variations in threshold voltage of the memory cell transistor.12-31-2009
20120033479MODIFICATION OF LOGIC BY MORPHOLOGICAL MANIPULATION OF A SEMICONDUCTOR RESISTIVE ELEMENT - An electronic device includes a substrate with a resistive element located thereover. The resistive element includes a semiconductor region. A read module is configured to determine a resistance of the resistive element. A programming module is configured to cause a current to flow through the semiconductor region. The current is sufficient to induce a change of morphology of at least a portion of the semiconductor region.02-09-2012
20120201070NONVOLATILE SEMICONDUCTOR STORAGE DEVICE AND DATA WRITING METHOD THEREFOR - A nonvolatile semiconductor storage device includes first and second intersecting wires; a electrically rewritable memory cell disposed at each intersection of the first second wires, including a variable resistor for memorizing a resistance value as data in a nonvolatile manner and a rectifying device are connected in series; and a control circuit which applies a voltage necessary for writing of data to the first and second wires. The control circuit precharges a non-selected second wire to a standby voltage larger than a reference voltage prior to programming a variable resistor connected to selected first and second wires by supplying the reference voltage to a non-selected first wire and the selected second wire, applying to the selected first wire a program voltage for programming of the selected variable resistor and applying to the non-selected second wire a control voltage which prevents the rectifying device from turning ON.08-09-2012
20120201069MEMORY UNIT AND METHOD OF OPERATING THE SAME - A memory unit includes memory elements and a drive section. In executing a first operation out of the first operation for changing resistance state of the memory element from one resistance state out of low resistance state and high resistance state to the other resistance state and a second operation for changing the resistance state of the memory element from the other resistance state to the one resistance state, the drive section performs stepwise operation, in which the drive section repeatedly performs, at least one time, a step in which strong stress application step for applying a stress for performing the first operation to the memory element as the drive target relatively strongly is performed and subsequently weak stress application step for applying a stress for performing the second operation to the memory element as the drive target relatively weakly is performed, and subsequently performs the strong stress application step.08-09-2012
20090257265Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same - A nonvolatile memory cell includes a steering element located in series with a storage element. The storage element includes a carbon material and the memory cell includes a rewritable cell having multiple memory levels.10-15-2009
20080247216METHOD AND APPARATUS FOR IMPLEMENTING IMPROVED WRITE PERFORMANCE FOR PCRAM DEVICES - A method of implementing a write operation for a programmable resistive random access memory array includes coupling a current source to a bit line associated with a programmable resistive memory element; prior to activating a word line associated with the memory element, precharging the bit line by passing current the bit line and through a dummy path selectively coupled to the bit line; and upon achieving a desired operating point of bit line current and bit line voltage, decoupling the dummy path from the bit line and activating the word line associated with the memory element so as to cause current from the bit line to flow for a period of time selected to program the memory element to one of a low resistance state and a high resistance state.10-09-2008
20080247214INTEGRATED MEMORY - In one aspect, a resistive memory device may be implemented in an embedded system. A resistive memory may comprise a resistive switchable medium that may be electrically connected to a first and a second electrode. In one aspect the first and the second electrode may comprise a via conductor and an interconnection line of an embedded structure.10-09-2008
20080247218DESIGN STRUCTURE FOR IMPLEMENTING IMPROVED WRITE PERFORMANCE FOR PCRAM DEVICES - A design structure embodied in a machine readable medium used in a design process includes a circuit for implementing a write operation for a programmable resistive random access memory array, the circuit including a current source coupled to a bit line associated with a programmable resistive memory element; a dummy path configured for selective coupling to the bit line prior to activation of a word line associated with the memory element, wherein the passage of current through the bit line and dummy path precharges the bit line; and control circuitry for decoupling the dummy path from the bit line and for activating the word line associated with the memory element upon achieving a desired operating point of bit line current and bit line voltage, so as to cause current from the bit line to flow for a period of time selected to program the memory element to one of a low resistance state and a high resistance state.10-09-2008
20080247217Integrated circuit, memory cell array, memory module, method of operating an integrated circuit, and computing system - An integrated circuit includes a plurality of resistivity changing memory cells and a plurality of resistivity changing reference cells. The integrated circuit is arranged such that each memory cell is switchable between N resistance levels, N being an integer greater than or equal to 2. To each of at least two possible resistance levels of a memory cell an individual reference cell as assigned. A resistance level of a memory cell is determined or set depending on the resistance level of the reference cell which is assigned to the resistance level of the memory cell.10-09-2008
20090021976Method of Operating an Integrated Circuit, Integrated Circuit, and Memory Module - A method of operating an integrated circuit is provided. The integrated circuit includes a plurality of resistivity changing memory cells and at least one resistivity changing reference cell; a voltage comparator including a first input terminal and a second input terminal; a signal line being connected to the plurality of resistivity changing memory cells, the at least one resistivity changing reference cell, and the second input terminal; and a switching element connecting the first input terminal to the second input terminal. The method includes: closing the switching element; supplying a first voltage to the first input terminal via the signal line and the switching element; opening the switching element; supplying a second voltage to the second input terminal via the signal line; and comparing the first voltage and the second voltage using the voltage comparator, wherein the first voltage represents a memory state of a resistivity changing memory cell, and the second voltage is a reference voltage which represents a memory state of a resistivity changing reference cell, or vice versa.01-22-2009
20080285328Phase Change Memory - A phase change memory is provided. The method includes forming contact plugs in a first dielectric layer. A second dielectric layer is formed overlying the first dielectric layer and a trench formed therein exposing portions of the contact plugs. A metal layer is formed over surfaces of the trench. One or more heaters are formed from the metal layer such that each heater is formed along one or more sidewalls and a portion of the bottom of the trench, wherein the portion of the heater along the sidewalls does not include a corner region of adjacent sidewalls. The trench is filled with a third dielectric layer, and a fourth dielectric layer is formed over the third dielectric layer. Trenches are formed in the fourth dielectric layer and filled with a phase change material. An electrode is formed over the phase change material.11-20-2008
20080285330METHODS OF OPERATING A BISTABLE RESISTANCE RANDOM ACCESS MEMORY WITH MULTIPLE MEMORY LAYERS AND MULTILEVEL MEMORY STATES - A method is described for operating a bistable resistance random access memory having two memory layer stacks that are aligned in series is disclosed. The bistable resistance random access memory comprises two memory layer stacks per memory cell, the bistable resistance random access memory operates in four logic states, a logic “00” state, a logic “01” state, a logic “10” state and a logic “11” state. The relationship between the four different logic states can be represented mathematically by the two variables n and f and a resistance R. The logic “0” state is represented by a mathematical expression (1+f) R. The logic “1” state is represented by a mathematical expression (n+f) R. The logic “2” state is represented by a mathematical expression (1+nf) R. The logic “3” state is represented by a mathematical expression n(1+f) R.11-20-2008
20120170353NONVOLATILE MEMORY DEVICE AND METHOD FOR PROGRAMMING THE SAME - A method for programming a nonvolatile memory device according to the present invention includes a step of detecting an excessively low resistance cell from among a plurality of memory cells (07-05-2012
20080198646NONVOLATILE MEMORY DEVICE USING RESISTANCE MATERIAL - The present invention provides a nonvolatile memory device that uses a resistance material. The nonvolatile memory device includes: a stacked memory cell array having a plurality of memory cell layers stacked in a vertical direction, the stacked memory cell array having at least one memory cell group and at least one redundancy memory cell group; and a repair control circuit coupled to the stacked memory cell array, the repair control circuit configured to repair a defective one of the at least one memory cell group with a selected one of the at least one redundancy memory cell group. The features that enable repair improve the fabrication yield of the nonvolatile memory device.08-21-2008
200802596724F2 SELF ALIGN SIDE WALL ACTIVE PHASE CHANGE MEMORY - Arrays of memory cells are described along with devices thereof and method for manufacturing. Memory cells described herein include self-aligned side wall memory members comprising an active programmable resistive material. In preferred embodiments the area of the memory cell is 4F10-23-2008
20110255329NONVOLATILE SEMICONDUCTOR MEMORY DEVICE, METHOD OF SUPPLYING VOLTAGE IN THE SAME, AND SEMICONDUCTOR DEVICE - A memory cell array is configured as an arrangement of memory cells. A first voltage generating circuit is configured to, during a write operation on the memory cells, generate and supply to the memory cell array a first voltage from a constant voltage, and to, during a read operation on the memory cells, generate and supply to the memory cell array a second voltage from a power supply voltage. A second voltage generating circuit is configured to generate the constant voltage. A selector circuit is configured to, during the write operation, drive the second voltage generating circuit to supply to the first voltage generating circuit the constant voltage, and to, during the read operation, stop the second voltage generating circuit and supply to the first voltage generating circuit the power supply voltage.10-20-2011
20100321981VARIABLE RESISTANCE MEMORY DEVICES COMPENSATING FOR WORD LINE RESISTANCE - Memory devices include a row decoder, a first variable resistance memory cell connected to a first bit line and connected to the row decoder by a word line and a second variable resistance memory cell connected to a second bit line and connected to the row decoder by the word line. The memory devices further include a bit line select circuit coupled to the first and second bit lines and configured to compensate for a difference in word line resistance between the row decoder and the respective first and second memory cells. In some embodiments, the bit line select circuit includes first and second transistors configured to selective respective ones of the first and second bit lines and the first and second transistors have different resistances that compensate for the difference in word line resistance.12-23-2010
20080247215RESISTIVE SWITCHING ELEMENT - According to one aspect, a switching element may comprise a first electrode, a second electrode, and a resistive switching region extending from the first electrode to the second electrode and comprising transition metal oxinitride.10-09-2008
20080253167Integrated Circuit, Method of Operating an Integrated Circuit, Method of Manufacturing an Integrated Circuit, Active Element, Memory Module, and Computing System - According to one embodiment of the present invention, an active element includes a reactive electrode, an inert electrode and a solid electrolyte disposed between the reactive electrode and the inert electrode. The solid electrolyte has a negative differential resistance.10-16-2008
20080253169Semiconductor memory device and writing method thereof - A semiconductor memory device includes a phase-change memory and has high compatibility with DRAM interface. The memory cell array comprises a memory cell that includes a phase-change element provided at the intersection of a bit line and word line. A write address and data accompanying a write request are temporarily held in a write address register and a data register respectively, and a write operation is not performed on the memory cell array in this cycle of write request. And when a next write request occurs, the held data is written to the memory cell array. At this time, two write cycles—RESET cycle and SET cycle—are provided. Then the written contents of the memory cell and the rewrite data are compared, and after only SET cells are temporarily RESET (amorphization, increasing the resistance), it is operated so as to write only SET data (crystallization, lowering the resistance).10-16-2008
20080253168Integrated circuit, resistivity changing memory device, memory module, and method of fabricating an integrated circuit - According to one embodiment of the present invention, a memory device includes a composite structure including a resistivity changing layer and an electrode layer being arranged on or above the resistivity changing layer. The resistivity changing memory device further includes a protection layer being arranged on or above the composite structure, the protection layer protecting the electrode layer against electromagnetic waves.10-16-2008
20080253165Method of Manufacturing a Memory Device, Memory Device, Cell, Integrated Circuit, Memory Module, and Computing System - In one embodiment of the present invention, a method of fabricating a memory device includes: providing a composite structure including a resistivity changing layer and a first conductive layer disposed on or above the resistivity changing layer, forming a second conductive layer on or above the first conductive layer, and patterning the second conductive layer such that at least a part of the patterned second conductive layer is usable as a via for contacting the first conductive layer.10-16-2008
20080205118INTEGRATED CIRCUIT HAVING A RESISTIVE SWITCHING DEVICE - An integrated circuit, a memory cell, memory device and method of operating the memory device is disclosed. In one embodiment, an integrated circuit having a resistively switching memory cell includes a bitline electrode and a second electrode having a lower voltage potential than the bitline electrode; a switching active volume and a selection transistor connected in series between the bitline electrode and the second electrode. The second electrode is connected, via a connection transistor, to a third electrode having the same or a lower voltage potential than the second electrode; wherein the second electrode includes a buried electrode at least partially positioned below the bitline electrode and the third electrode.08-28-2008
20110164447CURRENT STEERING ELEMENT, STORAGE ELEMENT, STORAGE DEVICE, AND METHOD FOR MANUFACTURING CURRENT STEERING ELEMENT - A current steering element which can prevent occurrence of write disturb even when electric pulses having different polarities are applied and can cause large current to flow through a variable resistance element, and with which data can be written without problem. In a storage element (07-07-2011
20110116300NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device according to an embodiment comprises a memory cell array including plural mutually crossing first and second lines and memory cells arranged at intersections of the first and second lines, each memory cell containing a variable resistance element and a rectifier element connected in series; and a data write/erase circuit operative to apply a voltage required for data write/erase to the memory cell via the first and second lines. The data write/erase circuit includes a first current limit circuit operative to limit the current flowing in the cathode-side line provided on the cathode side of the rectifier element, of the first and second lines, at the time of data write/erase.05-19-2011
20110080769Spatial Correlation of Reference Cells in Resistive Memory Array - The present disclosure relates to methods of selectively placing a reference column or reference row in a memory array. The method includes measuring a resistance state resistance value for a plurality of variable resistive memory cells within a memory array and mapping a location of each measured variable resistive memory cell to form a map of the resistance state resistance values for a plurality of variable resistive memory cells within a memory array. Then a column or row is selected to be a reference column or reference row based on the map of the resistance state resistance value for a plurality of variable resistive memory cells within a memory array, to minimize read operation errors, and forming a variable resistive memory cell memory array.04-07-2011
20110080770METHOD OF PROGRAMMING VARIABLE RESISTANCE ELEMENT AND NONVOLATILE STORAGE DEVICE - Applying a writing voltage pulse having a first polarity to a metal oxide layer (04-07-2011
20110080766Resistive Memory Device and Manufacturing Method Thereof and Operating Method Thereof - A method of manufacturing resistive memory includes the steps: forming a first implanted stacked structure having a first impurity diffusion layer, a second impurity diffusion layer, and a third impurity diffusion layer in a substrate; etching at least the first implanted stacked structure to form a plurality of second implanted stacked structures, wherein the first impurity diffusion layers are first signal lines; forming a plurality of first insulating layers between the second implanted stacked structures; etching the second implanted stacked structures to form a plurality of third implanted stacked structures, wherein the first signal lines are not etched; forming a plurality of second insulating layers between the third implanted stacked structures; forming a plurality of memory material layers electrically coupled to the third impurity diffusion layers; and forming a plurality of second signal lines perpendicular to the first signal lines and electrically coupled to the memory material layers.04-07-2011
20110085370SOFT FORMING REVERSIBLE RESISTIVITY-SWITCHING ELEMENT FOR BIPOLAR SWITCHING - A method and system for forming reversible resistivity-switching elements is described herein. Forming refers to reducing the resistance of the reversible resistivity-switching element, and is generally understood to refer to reducing the resistance for the first time. Prior to forming the reversible resistivity-switching element it may be in a high-resistance state. A first voltage is applied to “partially form” the reversible resistivity-switching element. The first voltage has a first polarity. Partially forming the reversible resistivity-switching element lowers the resistance of the reversible resistivity-switching element. A second voltage that has the opposite polarity as the first is then applied to the reversible resistivity-switching element. Application of the second voltage may further lower the resistance of the reversible resistivity-switching element. Therefore, the second voltage could be considered as completing the forming of the reversible resistivity-switching element.04-14-2011
20110002154NONVOLATILE MEMORY ELEMENT, MANUFACTURING METHOD THEREOF, AND NONVOLATILE SEMICONDUCTOR DEVICE INCORPORATING NONVOLATILE MEMORY ELEMENT - A nonvolatile memory element of the present invention comprises a first electrode (01-06-2011
20100177553REWRITABLE MEMORY DEVICE - Memory devices described herein are programmed and erased by physical segregation of an electrically insulating layer out of a memory material to establish a high resistance state, and by re-absorption of at least a portion of the electrically insulating layer into the memory material to establish a low resistance state. The physical mechanism of programming and erasing includes movement of structure vacancies to form voids, and/or segregation of doping material and bulk material, to create the electrically insulating layer consisting of voids and/or dielectric doping material along an inter-electrode current path between electrodes.07-15-2010
20110255331MEMORY CELLS WITH RECTIFYING DEVICE - Memory devices and methods described are shown that provide improvements, including improved cell isolation for operations such as read and write. Further, methods and devices for addressing and accessing cells are shown that provide a simple and efficient way to manage devices with multiple cells associated with each access transistor. Examples of multiple cell devices include phase change memory devices with multiple cells associated with each access transistor.10-20-2011
20120147659Bidirectional Non-Volatile Memory Array Architecture - Method and apparatus for transferring data in a memory. A semiconductor memory includes a plurality of memory cells each having a resistive sense element (RSE) in series with a switching device. A conductive word line extends in a first direction adjacent the memory cells and is connected to a gate structure of each of the switching devices. A plurality of conductive bit lines extend in a second direction adjacent the memory cells, each bit line providing a connection node that interconnects a respective pair of the memory cells. A control circuit senses a programmed state of a selected memory cell by setting each of the bit lines on a first side of the selected memory cell to a first voltage level, setting each of the remaining bit lines on an opposing second side of the selected memory cell to a second voltage level, and setting the word line to a third voltage level.06-14-2012
20120147657PROGRAMMING REVERSIBLE RESISTANCE SWITCHING ELEMENTS - A storage system and method for operating the storage system that uses reversible resistance-switching elements is described. Techniques are disclosed herein for varying programming conditions to account for different resistances that memory cells have. These techniques can program memory cells in fewer attempts, which can save time and/or power. Techniques are disclosed herein for achieving a high programming bandwidth while reducing the worst case current and/or power consumption.06-14-2012
20110134681SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises a plurality of memory layers arranged in multi layer, each memory layer including a cell array, the cell array containing a plurality of first parallel lines, a plurality of second parallel lines arranged crossing the first lines, and a plurality of memory cells connected at intersections of the first lines and the second lines; a pulse generator operative to generate pulses required for data access to the memory cell; and a control means operative to control the pulse generator such that the pulse output from the pulse generator has energy in accordance with the memory layer to which the access target memory cell belongs.06-09-2011
20090201717RESISTANCE-CHANGE MEMORY - A resistance-change memory includes first and second bit lines running in the same direction, a third bit line running parallel to the first and second bit lines, fourth and fifth bit lines running in the same direction, a sixth bit line running parallel to the fourth and fifth bit lines, a first memory element which has one and the other terminals connected to the first and third bit lines, and changes to one of first and second resistance states, a first reference element having one and the other terminals connected to the fourth and sixth bit lines, and set in the first resistance state, a second reference element having one and the other terminals connected to the fifth and sixth bit lines, and set in the second resistance state, and a sense amplifier having first and second input terminals connected to the first and fourth bit lines.08-13-2009
20110075469RESISTANCE VARIABLE NONVOLATILE MEMORY DEVICE - Each of memory cells (MC) includes one transistor and one resistance variable element. The transistor includes a first main terminal, a second main terminal and a control terminal. The resistance variable element includes a first electrode, a second electrode and a resistance variable layer provided between the first electrode and the second electrode. A first main terminal of one of two adjacent memory cells is connected to a second main terminal of the other memory cell, to form a series path (SP) sequentially connecting main terminals of the plurality of memory cells in series. Each of the memory cells is configured such that the control terminal is a part of a first wire (WL) associated with the memory cell or is connected to the first wire associated with the memory cell, the second electrode is a part of a second wire (SL) associated with the memory cell or is connected to the second wire associated with the memory cell; and the first electrode is a part of a series path (SP) associated with the memory cell or is connected to the series path associated with the memory cell.03-31-2011
20110075468REVERSE SET WITH CURRENT LIMIT FOR NON-VOLATILE STORAGE - A storage system includes a substrate, control circuitry on the substrate, a three dimensional memory array (above the substrate) that includes a plurality of reversible resistance-switching elements, and circuits for limiting the SET current for the reversible resistance-switching elements. The memory cell is SET in a reverse biased fashion.03-31-2011
20100110756VARIABLE RESISTIVE MEMORY PUNCHTHROUGH ACCESS METHOD - Variable resistive punchthrough access methods are described. The methods include switching a variable resistive data cell from a high resistance state to a low resistance state by passing a write current through the magnetic tunnel junction data cell in a first direction. The write current is provided by a transistor being electrically coupled to the variable resistive data cell and a source line. The write current passes through the transistor in punchthrough mode.05-06-2010
20100110771VARIABLE RESISTIVE MEMORY - A variable resistive memory device includes memory sectors, memory cells in each of the memory sectors, sub-wordlines including a first in signal communication with at least a first pair of the memory cells in a first sector and a second in signal communication with at least a second pair of the memory cells in a second sector, local bitlines where each is in signal communication a memory cell, a local bitline selecting signal generator in signal communication with local bitline selecting signal paths, a first local bitline selecting signal path in signal communication with a first pair of the local bitlines, and a second local bitline selecting signal path in signal communication with a second pair of the plurality of local bitlines, where a first of the first pair of local bitlines is in signal communication with a first of the first pair of the memory cells in the first sector and a second of the first pair of local bitlines is in signal communication with a second of the second pair of the memory cells in the second sector, and a first of the second pair of local bitlines is in signal communication with a second of the first pair of the memory cells in the first sector and a second of the second pair of local bitlines is in signal communication with a first of the second pair of the memory cells in the second sector.05-06-2010
20100110770Variable Resistance Memory Devices Including Arrays of Different Sizes - A variable resistance memory device may include a first array of first variable resistance memory cells and a second array of second variable resistance memory cells on an integrated circuit chip. Each of the first variable resistance memory cells may be configured to store a first data value by maintaining a first electrical resistance and to store a second data value by maintaining a second electrical resistance. The first and second data values are different, and the second resistance is greater than the first resistance. Each of the second variable resistance memory cells may be configured to store the first data value by maintaining a third electrical resistance and to store the second data value by maintaining a fourth electrical resistance. The fourth resistance may be greater than the third resistance, and the third resistance may be less than the first resistance.05-06-2010
20100110769CONTROLLING A VARIABLE RESISTIVE MEMORY WORDLINE SWITCH - A method of controlling the voltage of a sub-wordline in a variable resistive memory device includes switchably passing a voltage from a main wordline to the sub-wordline, and substantially blocking forward current flow from the sub-wordline to a variable resistive memory cell of the device.05-06-2010
20100110758STRUCTURES FOR RESISTIVE RANDOM ACCESS MEMORY CELLS - A resistive random access memory (RRAM) cell that includes a first electrode having a lower portion, a continuous side portion and an upper portion, the lower portion and the continuous side portion having an outer surface and an inner surface; a resistive layer having a lower portion, a continuous side portion and an upper portion, the lower portion and the continuous side portion having an outer surface and an inner surface; and a second electrode having a lower portion, an upper portion and an outer surface; wherein the outer surface of the resistive layer directly contacts the inner surface of the first electrode.05-06-2010
20100110757RESISTIVE MEMORY - The present disclosure includes resistive memory devices and systems having resistive memory cells, as well as methods for operating the resistive memory cells. One memory device embodiment includes at least one resistive memory element, a programming circuit, and a sensing circuit. For example, the programming circuit can include a switch configured to select one of N programming currents for programming the at least one resistive memory element, where each of the N programming currents has a unique combination of current direction and magnitude, with N corresponding to the number of resistance states of the at least one memory element. In one or more embodiments, the sensing circuit can be arranged for sensing of the N resistance states.05-06-2010
20110096590NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises a cell array having plural memory cells arranged in matrix, each memory cell including a variable resistor having a resistance reversibly variable to store data corresponding to the resistance of the variable resistor; a selection circuit operative to select a memory cell from the cell array; and a write circuit operative to execute certain voltage or current supply to the memory cell selected by the selection circuit to vary the resistance of a variable resistor in the selected memory cell to erase or write data. The write circuit terminates the voltage or current supply to the selected memory cell in accordance with resistance variation situation of the variable resistor in the selected memory cell when current flowing in the selected memory cell reaches a certain level appeared after the data erase or write.04-28-2011
20110096587DYNAMIC SENSE CURRENT SUPPLY CIRCUIT AND ASSOCIATED METHOD FOR READING AND CHARACTERIZING A RESISTIVE MEMORY ARRAY - A dynamic sense current supply circuit and an associated method for rapidly characterizing a resistive memory array is disclosed. In one embodiment, the disclosed circuit comprises a first and second dynamically programmable current mirror sub-circuit. Responsive to a bank of control signals, each dynamically programmable current mirror sub-circuit provides a dynamically adjustable current scaling factor. These scaling factors are used to scale a supplied reference current to generate a plurality of sense currents which can be used within a plurality of read operations on a resistive memory array. A digital circuit is also provided to sense and store the result of each read operation.04-28-2011
20100097843EXTRACTION OF A BINARY CODE BASED ON PHYSICAL PARAMETERS OF AN INTEGRATED CIRCUIT - An integrated cell and method for extracting a binary value based on a value difference between two resistors values, including connection circuitry for a binary reading of the sign of the difference between the resistors, and connection circuitry for a modification of the value of one of the resistors to make the sign of the difference invariable.04-22-2010
20100097842RESISTANCE VARIABLE MEMORY DEVICE PROGRAMMING MULTI-BIT DATA - A phase change memory device is provided to simultaneously program multi-bit data. The phase change memory device includes a memory cell array in which multi-bit data is stored, a buffer circuit storing a lower bit and an upper bit of the multi-bit data, a write driver applying program current to the memory cell array, and a control logic controlling the write driver to simultaneously program the multi-bit data.04-22-2010
20100238707RESISTANCE CHANGE MEMORY DEVICE - A resistance change memory device includes memory cells including two transistors connected in parallel between a first node and a connecting node and a variable resistance element whose one end is connected to the connecting node. The first node of each memory cell and a second node, which is the other end of the variable resistance element of the memory cell, are connected to different bit lines. The first node of a one memory cell and the first node of another memory cell which is adjacent on a first side along the second axis to the one memory are connected to the same bit line. The second node of the one memory cell and the second node of still another memory cell which is adjacent on a second side along the second axis to the one memory cell are connected to the same bit line.09-23-2010
20100214820SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises: a memory cell array having memory cells disposed at a crossing-point of a plurality of first lines and a plurality of second lines and a control circuit configured to apply a first voltage to selected one or more of the first lines, and to apply a second voltage having a value smaller than the first voltage to selected one of the second lines, such that a certain potential difference is applied to selected one or more of the memory cells. The control circuit adjusts the second voltage based on a position of the selected one or more of the memory cells within the memory cell array and a number of the selected one or more of the memory cells on which an operation is simultaneously executed, during application of the potential difference to the selected one or more of the memory cells.08-26-2010
20100214819RESISTIVE MEMORY DEVICES, MEMORY SYSTEMS AND METHODS OF CONTROLLING INPUT AND OUTPUT OPERATIONS OF THE SAME - A resistive memory device includes a resistive memory cell array, an output circuit and an input circuit. The resistive memory cell array includes a plurality of memory cells that are coupled to bitlines. The output circuit generates a sensing output signal during a write operation by sensing a bitline voltage, and generates output data during a read operation by sensing the bitline voltage. The input circuit controls the bitline voltage based on input data for the write operation, and limits the bitline voltage in response to the sensing output signal during the write operation. The memory cells are protected by effectually limiting bitline voltage08-26-2010
20100214818Memory device and operation method of the same - Disclosed herein is a memory device including: first and second wires; memory cells including a variable-resistance storage element having a data storage state making a transition by a change of a voltage applied and an access transistor connected in series between the first and second wires; driving control sections controlling a direct verify sub-operation by applying a write/erase pulse between the first and second wires in a data write/erase operation respectively for causing a cell current to flow between the first and second wires through the memory cell for a transition of the data storage state; sense amplifiers sensing an electric-potential change occurring on the first wire in accordance with control on the direct verify sub-operation; and inhibit control sections determining whether or not to inhibit a sense node of the sense amplifier from electrically changing at the next sensing time on the basis of an electric potential appearing at the sense node at the present sensing time.08-26-2010
20100165702THREE DIMENSIONAL PROGRAMMABLE RESISTANCE MEMORY DEVICE WITH A READ/WRITE CIRCUIT STACKED UNDER A MEMORY CELL ARRAY - A programmable resistance memory device includes a semiconductor substrate, at least one cell array, in which memory cells are arranged formed above the semiconductor substrate. Each of the memory cells has a stack structure of a programmable resistance element and an access element, the programmable resistance element storing a high resistance state or a low resistance state determined due to the polarity of voltage application in a non-volatile manner. The access element has such a resistance value in an off-state in a certain voltage range that is ten time or more as high as that in a select state. A read/write circuit is formed on a semiconductor substrate as underlying the cell array for data reading and data writing in communication with the cell array.07-01-2010
20100067281VARIABLE WRITE AND READ METHODS FOR RESISTIVE RANDOM ACCESS MEMORY - Variable write and read methods for resistance random access memory (RRAM) are disclosed. The methods include initializing a write sequence and verifying the resistance state of the RRAM cell. If a write pulse is needed, then two or more write pulses are applied through the RRAM cell to write the desired data state to the RRAM cell. Each subsequent write pulse has substantially the same or greater write pulse duration. Subsequent write pulses are applied to the RRAM cell until the RRAM cell is in the desired data state or until a predetermined number of write pulses have been applied to the RRAM cell. A read method is also disclosed where subsequent read pulses are applied through the RRAM cell until the read is successful or until a predetermined number of read pulses have been applied to the RRAM cell.03-18-2010
20100195372RESISTANCE-CHANGING MEMORY DEVICE - A resistance-changing memory device has a cell array having memory cells, each of which stores as data a reversibly settable resistance value, a sense amplifier for reading data from a selected memory cell in the cell array, and a voltage generator circuit which generates, after having read data of the selected memory cell, a voltage pulse for convergence of a resistive state of this selected memory cell in accordance with the read data.08-05-2010
20110188292VARIABLE RESISTANCE MEMORY, OPERATING METHOD AND SYSTEM - Provided is an operating method of a variable resistance memory device. The operating method applies a set pulse to a plurality of memory cells to be written in a set state, and applies a reset pulse to a plurality of memory cells to be written in a reset state. The width of the set pulse is narrower than the width of the reset pulse.08-04-2011
20110188294Multiplexer/de-multiplexer Memristive Device - A multiplexing/de-multiplexing memristive device (08-04-2011
20110188293Non-Volatile Memory Cell With Non-Ohmic Selection Layer - A non-volatile memory cell and associated method is disclosed that includes a non-ohmic selection layer. In accordance with some embodiments, a non-volatile memory cell consists of a resistive sense element (RSE) coupled to a non-ohmic selection layer. The selection layer is configured to transition from a first resistive state to a second resistive state in response to a current greater than or equal to a predetermined threshold.08-04-2011
20110188291Preservation circuit and methods to maintain values representing data in one or more layers of memory - Circuitry and methods for restoring data in memory are disclosed. The memory may include at least one layer of a non-volatile two-terminal cross-point array that includes a plurality of two-terminal memory elements that store data as a plurality of conductivity profiles and retain stored data in the absence of power. Over a period of time, logic values indicative of the stored data may drift such that if the logic values are not restored, the stored data may become corrupted. At least a portion of each memory may have data rewritten or restored by circuitry electrically coupled with the memory. Other circuitry may be used to determine a schedule for performing restore operations to the memory and the restore operations may be triggered by an internal or an external signal or event. The circuitry may be positioned in a logic layer and the memory may be fabricated over the logic layer.08-04-2011
20110188290Semiconductor devices including variable resistance materials and methods of operating the same - Semiconductor devices including variable resistance materials and methods of operating the semiconductor devices. The semiconductor devices use variable resistance materials with resistances that vary according to applied voltages as channel layers.08-04-2011
20110188289Access signal adjustment circuits and methods for memory cells in a cross-point array - Embodiments of the invention relate generally to semiconductors and memory technology, and more particularly, to systems, integrated circuits, and methods to generate access signals to facilitate memory operations in scaled arrays of memory elements, such as memory implemented in third dimensional memory technology formed BEOL directly on top of a FEOL substrate that includes data access circuitry. In at least some embodiments, a non-volatile memory device can include a cross-point array having resistive memory elements disposed among word lines and subsets of bit lines, and an access signal generator. The access signal generator can be configured to modify a magnitude of a signal to generate a modified magnitude for the signal to access a resistive memory element associated with a word line and a subset of bit lines. The modified magnitude can be a function of the position of the resistive memory element in the cross-point array.08-04-2011
20110149638NONVOLATILE MEMORY DEVICE AND INFORMATION RECORDING METHOD - According to one embodiment, a nonvolatile memory device includes a memory layer and a driver section. The memory layer has a first state having a first resistance under application of a first voltage, a second state having a second resistance higher than the first resistance under application of a second voltage higher than the first voltage, and a third state having a third resistance between the first resistance and the second resistance under application of a third voltage between the first voltage and the second voltage. The driver section is configured to apply at least one of the first voltage, the second voltage and the third voltage to the memory layer to record information in the memory layer.06-23-2011
20110149637METHOD AND APPARATUS PROVIDING HIGH DENSITY CHALCOGENIDE-BASED DATA STORAGE - A data storage device and methods for storing and reading data are provided. The data storage device includes a data storage medium and second device. The data storage medium has an insulating layer, a first electrode layer over the insulating layer and at least one layer of resistance variable material over the first electrode layer. The second device includes a substrate and at least one conductive point configured to electrically contact the data storage medium.06-23-2011
20110149636Ion barrier cap - An ion barrier layer made from a dielectric material in contact with an electronically insulating layer is operative to prevent mobile ions transported into the electronically insulating layer from passing through the ion barrier layer and into adjacent layers during data operations on a non-volatile memory cell. A conductive oxide layer in contact with the electronically insulating layer is the source of the mobile ions. A programming data operation is operative to transport a portion of the mobile ions into the electronically insulating layer and an erase data operation is operative to transport the mobile ions back into the conductive oxide layer. When the portion is positioned in the electronically insulating layer the memory cell stores data as a programmed conductivity profile and when a substantial majority of the mobile ions are positioned in the conductive oxide layer the memory cell stores data as an erased conductivity profile.06-23-2011
20110149639Non-Volatile Memory Cell with Multiple Resistive Sense Elements Sharing a Common Switching Device - A non-volatile memory cell array and associated method of use. In accordance with various embodiments, the array includes a plurality of programmable resistive sense elements (RSEs) coupled to a shared switching device. The switching device has a common source region and multiple drain regions, each drain region connected to an associated RSE from said plurality of RSEs.06-23-2011
20100034011Multi-Terminal Resistance Device - Embodiments of the invention provide a multi-terminal resistance device with first and second electrodes, a shared third electrode, and a resistance layer providing first and second current paths between the shared third electrode and the first and second electrodes, respectively. A current state of the device may be programmed by applying one or more electrical signals along the first and/or second current paths to change a resistance of the device. In some embodiments, applying an electrical signal may switch a junction resistance of the first and/or second electrodes and the resistance layer between two or more resistance values. The device may include a shared fourth electrode to provide extra programming capability. In some embodiments, the device may be used to store a data state, to determine a count of multiple electrical signals, or to perform a logic operation between two electrical signals.02-11-2010
20100027314Preservation circuit and methods to maintain values representing data in one or more layers of memory - Circuitry and methods for restoring data in memory are disclosed. The memory may include at least one layer of a non-volatile two-terminal cross-point array that includes a plurality of two-terminal memory elements that store data as a plurality of conductivity profiles and retain stored data in the absence of power. Over a period of time, logic values indicative of the stored data may drift such that if the logic values are not restored, the stored data may become corrupted. At least a portion of each memory may have data rewritten or restored by circuitry electrically coupled with the memory. Other circuitry may be used to determine a schedule for performing restore operations to the memory and the restore operations may be triggered by an internal or an external signal or event. The circuitry may be positioned in a logic layer and the memory may be fabricated over the logic layer.02-04-2010
20100027319RESISTANCE CHANGE ELEMENT, METHOD FOR MANUFACTURING THE SAME, AND SEMICONDUCTOR MEMORY - A resistance change element including a first electrode; a second electrode; and an oxide film, including an oxide of the first electrode, formed at sides of the first electrode and sandwiched between the first electrode and the second electrode in a plurality of regions, wherein at least one of the regions includes a resistance part whose resistance value changes in accordance with a voltage applied to the first and second electrodes.02-04-2010
20100027318NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises a cell array including plural MATs (unit cell arrays) arranged in matrix, each MAT containing a plurality of first lines, a plurality of second lines intersecting the plurality of first lines, and a plurality of memory cells connected at intersections of the first and second lines between both lines, each memory cell containing an electrically erasable programmable variable resistive element of which resistance is nonvolatilely stored as data; and a plurality of write/erase circuits connected to the MATs and operative to execute data write or erase to the memory cells inside the MATs in accordance with input data. A part of the plurality of write/erase circuits writes data to memory cells inside a corresponding MAT while another part of the plurality of write/erase circuits erases data from memory cells inside a corresponding MAT at the same time.02-04-2010
20100027317SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprising: a memory cell array in which memory cells each containing a variable resistive element and a rectifier element connected in series are arranged at intersections of a plurality of first wirings and a plurality of second wirings; and a control circuit for selectively driving said first wirings and said second wirings; wherein said control circuit applies a first voltage to said selected first wiring, and changes said first voltage based on the position of said selected memory cell within said memory cell array to apply a second voltage to said selected second wiring, so that a predetermined potential difference is applied to a selected memory cell arranged at the intersection between said selected first wiring and said selected second wiring.02-04-2010
20100027316NON-VOLATILE MEMORY DEVICE AND METHOD OF OPERATING THE SAME - A non-volatile memory device having a stack structure, and a method of operating the non-volatile memory device In which the non-volatile memory device includes a plurality of variable resistors arranged in at least one layer. At least one layer selection bit line and a plurality of bit lines coupled to the plurality of the variable resistors are provided. A plurality of selection transistors coupled between the plurality of the bit lines and the plurality of the variable resistors are provided.02-04-2010
20100027315Resistive memory device and writing method thereof - A resistive memory device operates to sequentially activate bit lines, which are divided into plural groups, after precharging all of word and bit lines in a writing operation. The device is able to write a large amount of data therein at a high frequency, with a reduced the chip size.02-04-2010
20110216577VARIABLE RESISTANCE NONVOLATILE STORAGE DEVICE - The variable resistance nonvolatile storage device reduces variations in a resistance value of a variable resistance element (09-08-2011
20110216576INFORMATION RECORDING/REPRODUCING DEVICE - According to one embodiment, an information recording/reproducing device includes a recording layer and a driver section. The recording layer has a first layer including a first compound. The first compound includes a mixed crystal of a first oxide containing a first metallic element and a second oxide. The second oxide has a crystal structure being same as the first oxide and contains a second metallic element different from the first metallic element. The driver section is configured to produce state change in the recording layer to record information by at least one of application of voltage to the recording layer and passage of current to the recording layer. Composition ratio of an element having a smaller ionic radius of the first and second metallic elements is not less than percolation threshold of a lattice formed of ions of the first and second metallic elements based on the crystal structure.09-08-2011
20110216574NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device in accordance with an embodiment comprises a plurality of first, second lines, a plurality of memory cells, and a control circuit. The plurality of second lines extend so as to intersect the first lines. The plurality of memory cells are disposed at intersections of the first, second lines, and each includes a variable resistor. The control circuit is configured to control a voltage applied to the memory cells. The control circuit applies a first pulse voltage to the variable resistor during a forming operation. In addition, the control circuit applies a second pulse voltage to the variable resistor during a setting operation, the second pulse voltage having a polarity opposite to the first pulse voltage. Furthermore, the control circuit applies a third pulse voltage to the variable resistor during a resetting operation, the third pulse voltage having a polarity identical to the first pulse voltage.09-08-2011
20110051500NONVOLATILE MEMORY ELEMENT AND NONVOLATILE MEMORY DEVICE - Provided is a nonvolatile memory element which is capable of performing a stable resistance change operation at a low breakdown voltage.03-03-2011
20110051499METHOD FOR ADJUSTING A RESISTIVE CHANGE ELEMENT USING A REFERENCE - A method of adjusting a resistive change element using a reference is disclosed. The method comprises inspecting a resistive change element to determine a first state; comparing the first state to a reference wherein said reference provides stimulus parameters corresponding to a transition from the first state to a second state; and applying the stimulus parameters to the resistive change element. A resistive change memory cell array is also disclosed.03-03-2011
20110051498SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a semiconductor memory device includes a memory cell, a power supply circuit, an interconnection and a discharging circuit. The memory cell includes a variable resistance element whose resistance varies by application of a voltage. The power supply circuit outputs the voltage to be applied to the memory cell. The interconnection is formed between the power supply circuit and the memory cell and supplies the voltage output from the power supply circuit to the memory cell. The discharging circuit is connected to the interconnection. The discharging circuit discharges electric charge accumulated in the interconnection after a first operation of applying the voltage to the memory cell is ended and before a second operation of applying the voltage to the memory cell next is started.03-03-2011
20110051497METHOD OF MEASURING A RESISTANCE OF A RESISTIVE MEMORY DEVICE - A method of measuring a resistance of a memory cell in a resistive memory device can be provided by applying a data write pulse to a selected cell of the resistive memory device, applying a resistance read pulse to the selected cell after a delay time measured from a time of applying the data write pulse, measuring a drop voltage at the cell responsive to a pulse waveform output when applying the resistance read pulse to the selected cell, measuring a total current through the cell using the drop voltage and an internal resistance of a test device coupled to the cell, and determining a resistance of the resistive memory device using the total current and a voltage of the resistance read pulse.03-03-2011
20110051496Resistive Random Access Memory and the Method of Operating the Same - A resistive random access memory utilizing gate induced drain leakage current as the read operation current and the write operation current and a method of operation the same, wherein the resistive random access memory including a plurality of arrayed memory cells, a plurality of bit-lines and a plurality word-lines, each memory cell including: a switching resistor having a first terminal and a second terminal, the first terminal of the switching resistor being connected to one bit-line; and a MOSFET being connected to the second terminal and having a gate, a source, a drain and a substrate, the gate being connected to one word-line, the read operation current and the write operation current of the memory cell being gate induced drain leakage current of the MOSFET. The RRAM array presented in this invention has superior scalability for resistors as well as transistors, which leads to a memory array with higher density.03-03-2011
20110051495NONVOLATILE SEMICONDUCTOR MEMORY DEVICE WITH NO DECREASE IN READ MARGIN AND METHOD OF READING THE SAME - According to one embodiment, a plurality of memory cells, each composed of a variable-resistance element and a diode, are arranged at the intersections of a plurality of word lines and a plurality of bit lines. The sense amplifier compares a voltage corresponding to current in a memory cell selected from the plurality of memory cells with a reference voltage to detect data read from the selected memory cell. The controller generates the reference voltage according to the logical value of a signal output from the sense amplifier. The controller, before detecting data in the memory cell, adjusts the reference voltage on the basis of current flowing in one of a plurality of bit lines connected to a plurality of memory cells in a half-selected state detected by the sense amplifier.03-03-2011
20110051494MEMORY HAVING TUNNEL BARRIER AND METHOD FOR WRITING AND READING INFORMATION TO AND FROM THIS MEMORY - A resistive memory comprises a tunnel barrier. The tunnel barrier is in contact with a memory material which has a memory property that can be changed by a write signal. Because of the exponential dependence of the tunnel resistance on the parameters of the tunnel barrier, a change in the memory property has a powerful effect on the tunnel resistance, whereby the information stored in the memory material can be read. A solid electrolyte (ion conductor), for example, is suitable as a memory layer, wherein the ions thereof can be moved relative to the interface with the tunnel barrier by the write signal. The memory layer, however, can also be, for example, a further tunnel barrier, the tunnel resistance of which can be changed by the write signal, for example by displacement of a metal layer present in this tunnel barrier. The invention further provides a method for storing and reading information to and from a memory.03-03-2011
20110051493NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a memory cell array configured as an arrangement of memory cells each arranged between a first line and a second line and each including a variable resistor. A control circuit controls a voltage applied to the first line or the second line. A current limiting circuit limits a current flowing through the first line or the second line to a certain upper limit or lower. In a case where a writing operation or an erasing operation to a memory cell is implemented a plural number of times repeatedly, the current limiting circuit sets the upper limit in the writing operation or erasing operation of the p-th time higher than the upper limit in the writing operation or erasing operation of the q-th time (q03-03-2011
20110051492RESISTANCE CHANGE MEMORY DEVICE - A resistance change memory device including: a cell array with memory cells arranged therein, the memory cell storing a resistance state as data in a non-volatile manner; a write buffer configured to supply voltage and current to a selected memory cell in accordance with data to be written in it; and a write control circuit configured to make a part of current supplied to the selected memory cell flow out in accordance with the selected memory cell's state change in a write mode.03-03-2011
20090279343OPERATING METHOD OF ELECTRICAL PULSE VOLTAGE FOR RRAM APPLICATION - Metal-oxide based memory devices and methods for operating and manufacturing such devices are described herein. A method for manufacturing a memory device as described herein comprises forming a metal-oxide memory element, and applying an activating energy to the metal-oxide memory element. In embodiments the activating energy can be applied by applying electrical and/or thermal energy to the metal-oxide material.11-12-2009
20120147658SYSTEM OF MEASURING A RESISTANCE OF A RESISTIVE MEMORY DEVICE - A system for measuring a resistance of a memory cell in a resistive memory device can include a pulse generator configured to apply a data write pulse and a resistance read pulse to the resistive memory device with a delay time. A connecting member can be connected between the pulse generator and the resistive memory device. A test measurement device can be connected to the resistive memory device outputting a pulse waveform and a data-processing member can be configured to determine the resistance of the resistive memory device using the pulse waveform and an internal resistance of the test measurement device.06-14-2012
20120307546NON-VOLATILE MEMORY CELL INCLUDING A RESISTIVITY CHANGE MATERIAL - A non-volatile memory cell including a resistivity change material configured to reversibly change state between at least two stable states having different electrical resistances and conformed such that transformation from one state to another is obtained by controlling the temperature increase or decrease of the resistivity change material, wherein the resistivity change material has an ohmic component R12-06-2012
20110103129VARIABLE-RESISTANCE MATERIAL MEMORIES, PROCESSES OF FORMING SAME, AND METHODS OF USING SAME - A variable-resistance material memory array includes a series of variable-resistance material memory cells. The series of variable-resistance material memory cells can be arranged in parallel with a corresponding series of control gates. A select gate can also be disposed in series with the variable-resistance material memory cells. Writing/reading/erasing to a given variable-resistance material memory cell can include turning off the corresponding control gate, while turning on all other control gates. Various devices can include such a variable-resistance material memory array.05-05-2011
20110116301STATE MACHINE SENSING OF MEMORY CELLS - The present disclosure includes methods, devices, modules, and systems for sensing memory cells using a state machine. One method embodiment includes generating a first sensing reference according to a first output of a state machine. The method includes bifurcating a range of possible programmed levels to which a memory cell can be programmed with the first sensing reference. The method also includes generating a second sensing reference according to a second output of the state machine. The method further includes determining a programmed level of the memory cell with the second generated sensing reference.05-19-2011
20110134682VARIABLE WRITE AND READ METHODS FOR RESISTIVE RANDOM ACCESS MEMORY - Variable write and read methods for resistance random access memory (RRAM) are disclosed. The methods include initializing a write sequence and verifying the resistance state of the RRAM cell. If a write pulse is needed, then two or more write pulses are applied through the RRAM cell to write the desired data state to the RRAM cell. Each subsequent write pulse has substantially the same or greater write pulse duration. Subsequent write pulses are applied to the RRAM cell until the RRAM cell is in the desired data state or until a predetermined number of write pulses have been applied to the RRAM cell. A read method is also disclosed where subsequent read pulses are applied through the RRAM cell until the read is successful or until a predetermined number of read pulses have been applied to the RRAM cell.06-09-2011
20110149634Non-volatile memory device ion barrier - An ion barrier layer made from a dielectric material in contact with an electronically insulating layer is operative to prevent mobile ions transported into the electronically insulating layer from passing through the ion barrier layer and into adjacent layers during data operations on a non-volatile memory cell. A conductive oxide layer in contact with the electronically insulating layer is the source of the mobile ions. A programming data operation is operative to transport a portion of the mobile ions into the electronically insulating layer and an erase data operation is operative to transport the mobile ions back into the conductive oxide layer. When the portion is positioned in the electronically insulating layer the memory cell stores data as a programmed conductivity profile and when a substantial majority of the mobile ions are positioned in the conductive oxide layer the memory cell stores data as an erased conductivity profile.06-23-2011
20110305068RESISTANCE RANDOM ACCESS CHANGE MEMORY DEVICE - A resistance random access change memory device includes: a memory cell array in which plural memory cells having current paths with series-connected access transistors and variable resistive elements are two-dimensionally arranged; plural bit lines that connect one ends of the current paths; plural source lines that connect the other ends of the current paths; and plural word lines that control conduction and non-conduction of the access transistors, wherein bit line contacts are shared between two memory cells to which the word lines are adjacently provided, and pairs of memory cells are formed, all of the pairs of memory cells connected to the adjacent two bit lines are connected to the corresponding source lines via individual source line contacts, and the source lines are formed by a wiring layer upper than that of the bit lines with a larger pitch than that of the bit lines.12-15-2011
20110305071CONTINUOUS PROGRAMMING OF NON-VOLATILE MEMORY - A non-volatile storage system connects a signal driver to a first control line that is connected to a first non-volatile storage element, charges the first control line using the signal driver while the signal driver is connected to the first control line, disconnects the signal driver from the first control line while the first control line remains charged from the signal driver, connects the signal driver to a second control line that is connected to a second non-volatile storage element, charges the second control line using the signal driver while the signal driver is connected to the second control line, and disconnects the signal driver from the second control line. Charging the control lines causes the respective non-volatile storage elements to experience a program operation. The disconnecting of the signal driver from the first control line, the connecting the signal driver to the second control line and the charging of the second control line are performed without waiting for the first non-volatile storage element's program operation to complete.12-15-2011
20110305070RESISTANCE CONTROL METHOD FOR NONVOLATILE VARIABLE RESISTIVE ELEMENT - A resistance control method for a nonvolatile variable resistive element in a nonvolatile semiconductor memory device is provided. The device includes a memory cell array in which unit memory cells having nonvolatile variable resistive elements and transistors are arranged in a matrix. The memory cells that are targets of a memory operation are selected by first selection lines (word lines), second selection lines (bit lines) and third selection lines (source lines). The method includes steps of selecting one or more first selection lines, selecting a plurality of second selection lines, and applying a compensated voltage in which a change in potential of the third selection lines caused by current flowing into the third selection lines through the second selection lines is compensated in a voltage that is necessary for the memory operation, such that the voltage necessary for the memory operation is applied to all of the selected memory cells.12-15-2011
20110305064INTERFACE CONTROL FOR IMPROVED SWITCHING IN RRAM - A memory device has a crossbar array including a first array of first electrodes extending along a first direction. A second array of second electrodes extends along a second direction. A non-crystalline silicon structure provided between the first electrode and the second electrode at an intersection defined by the first array and the second array. The non-crystalline silicon structure has a first layer having a first defect density and a second layer having a second defect density different from the first defect density. Each intersection of the first array and the second array defines a two-terminal memory cell.12-15-2011
20110305067SEMICONDUCTOR MEMORY DEVICE IN WHICH RESISTANCE STATE OF MEMORY CELL IS CONTROLLABLE - According to one embodiment, a semiconductor memory device includes memory cells and sense amplifiers. One end of the memory cell is connected to each of bit lines. The other end of the memory cell is connected to a source line. The sense amplifiers are connected to the bit lines. First writing changes the resistance of the memory cells connected to a first state by a current running from the source line to the bit lines. Second writing changes the resistance of the memory cells to a second state by a current running from the bit lines to the source line on the basis of data retained by the sense amplifiers after the first writing. Before the first writing, data is read from the memory cells, and the read data is retained in the sense amplifiers, and the data retained by the sense amplifiers is overwritten in accordance with write data.12-15-2011
20110305066WRITE AND ERASE SCHEME FOR RESISTIVE MEMORY DEVICE - A method for programming a two terminal resistive memory device, the method includes applying a bias voltage to a first electrode of a resistive memory cell of the device; measuring a current flowing through the cell; and stopping the applying of the bias voltage if the measured current is equal to or greater than a predetermined value.12-15-2011
20110305065NON-VOLATILE VARIABLE CAPACITIVE DEVICE INCLUDING RESISTIVE MEMORY CELL - A non-volatile variable capacitive device includes a capacitor defined over a substrate, the capacitor having an upper electrode and a resistive memory cell having a first electrode, a second electrode, and a switching layer provided between the first and second electrodes. The resistive memory cell is configured to be placed in a plurality of resistive states according to an electrical signal received. The upper electrode of the capacitive device is coupled to the second electrode of the resistive memory cell. The resistive memory cell is a two-terminal device.12-15-2011
20110305063SENSE AMPLIFIER FOR READING A CROSSBAR MEMORY ARRAY - A sense amplifier for reading the data stored in a crossbar array includes a storage transistor to store a first voltage resulting from an electric current from a column line connected to a target memory element while the target memory element is half-selected, the first voltage resulting from bias voltages applied to row lines not connected to the target memory element; a mirror transistor to store a second voltage resulting from an electric current from the column line while the target memory element is fully selected; a cross-coupled inverter circuit having a first branch connected to the storage transistor and a second branch connected to the mirror transistor; and an output node to output a signal from the first branch of the cross-coupled inverter circuit, the signal based on a comparison between the first voltage stored in the storage transistor and the second voltage across the mirror transistor.12-15-2011
20100135063SEMICONDUCTOR DEVICE INCLUDING BIT LINE GROUPS - A semiconductor device includes: a first read/write amplifier; a second read/write amplifier; a first group of bit lines belonging to the first read/write amplifier; a second group of bit lines belonging to the second read/write amplifier and mixed with the first group of bit lines. One of the first group of bit lines and one of the second group of bit lines are selected in parallel. A reference potential is supplied to at least one of the first non-selected bit lines adjacent to the first selected bit line selected from the first group of bit lines, and to at least one of the second non-selected bit lines adjacent to the second selected bit line selected from the first group of bit lines. At least one of remaining ones of the first and second non-selected bit lines is set into a floating state.06-03-2010
20120099362MEMORY ARRAY WITH METAL-INSULATOR TRANSITION SWITCHING DEVICES - A memory array with Metal-Insulator Transition (MIT) switching devices includes a set of row lines intersecting a set of column lines and a memory element disposed at an intersection between one of the row lines and one of the column lines. The memory element includes a switching layer in series with an MIT material. A method of accessing a target memory element within a memory array includes applying half of an access voltage to a row line connected to the target memory element, the target memory element comprising a switching layer in series with an MIT material, and applying an inverted half of the access voltage to a column line connected to the target memory element.04-26-2012
20110141793SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, semiconductor memory device includes: semiconductor substrate; parallel first lines stacked on substrate; parallel second lines intersecting first lines; memory cell array including memory cells at intersections of first and second lines and each including variable resistance element and selecting element series-connected together; first control circuit provided in second region of substrate adjoining first region immediately under array; second control circuit provided in first region of substrate; and dummy lines formed in same layer as second lines, such that they intersect first lines in region above first control circuit. First control circuit applies first voltage to selected first line. Second control circuit applies second voltage lower than first voltage to selected second line, and to dummy lines, third voltage by which potential difference applied to memory cells at intersections of selected first line and dummy lines becomes lower than on-voltage of selecting element.06-16-2011
20120039109Memory Cells, Non-Volatile Memory Arrays, Methods Of Operating Memory Cells, Methods Of Reading To And Writing From A Memory Cell, And Methods Of Programming A Memory Cell - In one aspect, a method of operating a memory cell includes using different electrodes to change a programmed state of the memory cell than are used to read the programmed state of the memory cell. In one aspect, a memory cell includes first and second opposing electrodes having material received there-between. The material has first and second lateral regions of different composition relative one another. One of the first and second lateral regions is received along one of two laterally opposing edges of the material. Another of the first and second lateral regions is received along the other of said two laterally opposing edges of the material. At least one of the first and second lateral regions is capable of being repeatedly programmed to at least two different resistance states. Other aspects and implementations are disclosed.02-16-2012
20120099367CROSS POINT VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE - A cross point variable resistance nonvolatile memory device includes memory cells having the same orientation for stable characteristics of all layers. Each memory cell (04-26-2012
20120099366MULTI-RESISTIVE INTEGRATED CIRCUIT MEMORY - A capacitor for use in integrated circuits comprises a layer of conductive material. The layer of conductive material including at least a first portion and a second portion, wherein the first portion and the second portion are arranged in a predetermined pattern relative to one another to provide a maximum amount of capacitance per semiconductor die area.04-26-2012
20110110141RESISTIVE MEMORY - A memory device includes an array of memory structures disposed in rows and columns and constructed over a substrate, each memory structure comprising a first signal electrode, a second signal electrode, and a resistive layer coupled to the first signal electrode and the second signal electrode; a plurality of word lines connected to the first signal electrodes of a row of memory cells; and a plurality of bit lines connected to the second signal electrodes of a column of memory cells.05-12-2011
20120039113THREE DIMENSIONALLY STACKED NON VOLATILE MEMORY UNITS - A memory unit including a first transistor spanning a first transistor region in a first layer of the memory unit; a second transistor spanning a second transistor region in a second layer of the memory unit; a first resistive sense memory (RSM) cell spanning a first memory region in a third layer of the memory unit; and a second RSM cell spanning a second memory region in the third layer of the memory unit, wherein the first transistor is electrically coupled to the first RSM cell, and the second transistor is electrically coupled to the second RSM cell, wherein the second layer is between the first and third layers, wherein the first and second transistor have an transistor overlap region, and wherein the first memory region and the second memory region do not extend beyond the first transistor region and the second transistor region.02-16-2012
20120039112Hierarchical Cross-Point Array of Non-Volatile Memory - A method and apparatus for reading data from a non-volatile memory cell. In some embodiments, a cross-point array of non-volatile memory cells is arranged into rows and columns. A selection circuit is provided that is capable of activating the first block of memory cells while deactivating the second block of memory cells. Further, a read circuit is provided that is capable of reading a logical state of a predetermined memory cell in the first block of memory cells with a reduced leak current by programming a first resistive state to the block selection elements corresponding to the first block of memory cells while programming a second resistive state to the block selection elements corresponding to the second block of memory cells.02-16-2012
20120039111POLARITY DEPENDENT SWITCH FOR RESISTIVE SENSE MEMORY - A memory unit includes a resistive sense memory cell configured to switch between a high resistance state and a low resistance state upon passing a current through the resistive sense memory cell and a semiconductor transistor in electrical connection with the resistive sense memory cell. The semiconductor transistor includes a gate element formed on a substrate. The semiconductor transistor includes a source contact and a bit contact. The gate element electrically connects the source contact and the bit contact. The resistive sense memory cell electrically is connected to the bit contact. The source contact is more heavily implanted with dopant material then the bit contact.02-16-2012
20120147656MEMORY ELEMENT AND MEMORY DEVICE - A memory element and a memory device having the stable switching characteristics with the characteristics of data retention remaining favorable are provided. The memory element includes a first electrode, a memory layer, and a second electrode in this order. The memory layer includes an ion source layer provided on the second electrode side, a resistance change layer provided between the ion source layer and the first electrode, and a barrier layer provided between the resistance change layer and the first electrode, and having conductivity higher than that of the resistance change layer.06-14-2012
20120147660Preservation Circuit And Methods To Maintain Values Representing Data In One Or More Layers Of Memory - Circuitry and methods for restoring data in memory are disclosed. The memory may include at least one layer of a non-volatile two-terminal cross-point array that includes a plurality of two-terminal memory elements that store data as a plurality of conductivity profiles and retain stored data in the absence of power. Over a period of time, logic values indicative of the stored data may drift such that if the logic values are not restored, the stored data may become corrupted. At least a portion of each memory may have data rewritten or restored by circuitry electrically coupled with the memory. Other circuitry may be used to determine a schedule for performing restore operations to the memory and the restore operations may be triggered by an internal or an external signal or event. The circuitry may be positioned in a logic layer and the memory may be fabricated over the logic layer.06-14-2012
20130170279Current Writing Circuit for a Resistive Memory Cell Arrangement - A current writing circuit for a resistive memory cell arrangement is provided. The current writing circuit comprises a first current source; a first reference potential terminal; a first switch configured to switch between the first current source and the first reference potential terminal during a write operation; a second current source; a second reference potential terminal; and a second switch configured to switch between the second reference potential terminal when the first switch is switched to the first current source, and the second current source when the first switch is switched to the first reference potential terminal, during the write operation, wherein the first current source and the second current source are of the same polarity. Further embodiments relate to a memory cell arrangement and a method of writing into a target resistive memory cell of a resistive memory cell arrangement.07-04-2013
20130170283LOW FORMING VOLTAGE NON-VOLATILE STORAGE DEVICE - A three-dimensional array of memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are provided across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes. The memory elements can be set to a low resistance state and reset to a high resistance state during standard operation by biasing appropriate voltages on the word lines and bit lines. Prior to standard operation, the memory elements undergo a forming operation, during which current through the bit lines is limited. A forming voltage is applied to the memory elements during forming with a polarity such that the bit line acts as a cathode and the word line acts as an anode, with the cathode having a lower electron injection energy barrier to the switching material than the anode.07-04-2013
20130170280SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device according to the embodiment comprises memory cells each having asymmetrical voltage-current characteristics, wherein the memory cell has a first state, and a second state and a third state of higher resistances than that in the first state, wherein the memory cell, (1) in the second state, makes a transition to the first state on application of a first voltage of the first polarity, (2) in the first state, makes a transition to the second state on application of a second voltage of the second polarity, (3) in the first state, makes a transition to the third state on application of a third voltage of the second polarity (the third voltage07-04-2013
20120039110SEMICONDUCTOR MEMORY DEVICE - A memory-cell array that includes a first line, a second line intersecting the first line, and a memory cell including a variable resistive element provided in the intersection of the first and the second lines; a data-write unit configured to apply a voltage pulse to the memory cell through the first and the second lines, the voltage pulse to set and/or reset data; and a detector unit configured to compare a cell current that flows through the memory cell by the voltage pulse at the time of setting and/or resetting the data with a reference current generated from the initial value of the cell current, and to control the data-write unit in accordance with a result of comparison.02-16-2012
20110044092SEMICONDUCTOR MEMORY DEVICE - A resistance variable memory reduces the nonuniformity of resistance values after programming, so that a rewrite operation can be performed on a memory cell at high speed. A reference resistor is connected in series with the resistance variable memory cell, and a sensor amplifier detects whether the potential at an intermediate node between the memory cell and the reference resistor exceeds a given threshold voltage, so as to stop the write operation based on a detection result.02-24-2011
20100103717TUNING A VARIABLE RESISTANCE OF A RESISTIVE SENSE ELEMENT - Method and apparatus for tuning a variable resistance resistive sense element of an electronic device. In some embodiments, a value indicative of a selected number of consecutive pulses is stored in a memory location and a resistive sense element (RSE) is set to a baseline RSE resistance. A tuning operation is performed by applying the selected number of consecutive pulses to the RSE to tune the baseline RSE resistance to a final adjusted resistance.04-29-2010
20110317473SYSTEM AND METHOD FOR MITIGATING REVERSE BIAS LEAKAGE - The present disclosure includes devices, methods, and systems for programming memory, such as resistance variable memory. One embodiment can include an array of resistance variable memory cells, wherein the resistance variable memory cells are coupled to one or more data lines, a row decoder connected to a first side of the array, a column decoder connected to a second side of the array, wherein the second side is adjacent to the first side, a gap located adjacent to the row decoder and the column decoder, and clamp circuitry configured to control a reverse bias voltage associated with one or more unselected memory cells during a programming operation, wherein the clamp circuitry is located in the gap and is selectively coupled to the one or more data lines.12-29-2011
20110063890SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises: a phase change element (RP) and a memory cell transistor (MN03-17-2011
20110063888Green Transistor for Resistive Random Access Memory and Method of Operating the Same - A random access memory includes a plurality of memory cells arrayed in bit-lines and word-lines. Each memory cell comprises a green transistor (gFET) including a gate, a source, and a drain; a switching resistor including a first terminal and a second terminal; and a reference resistor including a third terminal and a fourth terminal. The first terminal of the switching resistor and the third terminal is connected to a bit-line, the second terminal of the switching resistor is connected to the first source of the gFET, the fourth terminal of the reference resistor is connected to the second source of the gFET, and the gate of the gFET is connected to a word-line. The method of operating the RRAM includes a write operation and a read operation The write operation comprises steps of: applying a first voltage to the bit-line to perform a large voltage difference across the bit-line and the drain of the gFET, applying a second voltage to the gate of the gFET to turn on the gFET transiently, and a large current pulse flowing through the switching resistor for changing the resistance state. The read operation comprises steps of: applying a third voltage to the bit-line to perform a small voltage difference across the bit-line and the drain of the gFET, applying a second voltage to the word-line to turn on the gFET, and comparing the current through the switching resistor with the current through the reference resistor so as to read the data stored in the memory cell.03-17-2011
20110063887NONVOLATILE SEMICONDUCTOR MEMORY DEVICE CAPABLE OF TESTING DIODES AND MANUFACTURING METHOD THEREOF - According to one embodiment, a nonvolatile semiconductor memory device includes a memory cell array, and a control circuit. The memory cell array includes plural memory cells arranged in rows and columns and each including a diode and resistance-change element. The control circuit tests the diodes for the respective memory cells. The control circuit tests the diode at least at one of times before and after one of a write operation, erase operation and read operation with respect to the memory cell is performed.03-17-2011
20110063889SEMICONDUCTOR STORAGE DEVICE - According to one embodiment, a semiconductor storage device includes memory cells including serially-connected variable-resistance layer and diode. A memory cell array includes the memory cells arranged on a plane including a first and second axes and has a first region lying along an edge of the array and a second region lying opposite to the edge with respect to the first region. A first wiring is continuous along the first axis between both ends of the array, partly lies in the second region, and is connected to the first ends of the memory cells. A second wiring lies along the first axis only in the first region, is connected to the first ends of the memory cells, and is divided between adjacent memory cells. A third wiring is continuous along the second axis between both ends of the array, and connected to the second ends of the memory cells.03-17-2011
20110170333DATA READ/WRITE DEVICE - A data read/write device according to an example of the present invention includes a recording layer, and means for applying a voltage to the recording layer, generating a resistance change in the recording layer, and recording data. The recording layer is composed of a composite compound having at least two types of cation elements, at least one type of the cation element is a transition element having a “d” orbit in which electrons have been incompletely filled, and the shortest distance between the adjacent cation elements is 0.32 nm or less.07-14-2011
20110317471Nonvolatile stacked nand memory - A memory cell is arranged to enhance the electrical field of the memory element. The memory cell has a metal-oxide memory element, a nonconductive element, and a conductive element. The metal-oxide memory element is in a current path between a first electrode at a first voltage and a second electrode at a second voltage. The nonconductive element is adjacent to the metal-oxide memory element.12-29-2011
20110317469NON-VOLATILE SAMPLER - A non-volatile sampler including a row line for receiving an input signal to be sampled, the row line intersecting a number of column lines, non-volatile storage elements being disposed at intersections between the row line and the column lines; a bias voltage source connected to the column lines, the bias voltage source for selectively applying a bias voltage to at least one of the non-volatile storage elements to cause the at least one of the storage elements to store a sample of the input signal at the instance the bias voltage is applied.12-29-2011
20110317472NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A memory cell array having a 1R structure is composed of nonvolatile variable resistive elements each including a variable resistor formed of a metal oxide film whose resistance changes depending on an oxygen concentration in the film, and first and second electrodes sandwiching the variable resistor. The first electrode and the variable resistor form a rectifier junction through a rectifier junction layer composed of an oxide layer and a layer (oxygen depletion layer) of the metal oxide film having an oxygen concentration lower than a stoichiometric composition. The oxygen moves between the first electrode and the metal oxide film when a voltage is applied, and a thickness of the oxygen depletion layer changes, so that the resistance of the metal oxide film changes and the rectifying properties are provided. A thickness of the oxygen depletion layer is set to allow the variable resistive element to show the sufficient rectifying properties.12-29-2011
20110317470RECTIFICATION ELEMENT AND METHOD FOR RESISTIVE SWITCHING FOR NON VOLATILE MEMORY DEVICE - A method of suppressing propagation of leakage current in an array of switching devices. The method includes providing a dielectric breakdown element integrally and serially connected to a switching element within each of the switching device. A read voltage (for example) is applied to a selected cell. The propagation of leakage current is suppressed by each of the dielectric breakdown element in unselected cells in the array. The read voltage is sufficient to cause breakdown in the selected cells but insufficient to cause breakdown in the serially connected, unselected cells in a specific embodiment. Methods to fabricate of such devices and to program, to erase and to read the device are provided.12-29-2011
20100202188Low read current architecture for memory - A low read current architecture for memory. Bit lines of a cross point memory array are allowed to be charged by a selected word line until a minimum voltage differential between a memory state and a reference level is assured.08-12-2010
20120044750SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a cell array having a plurality of first wirings and a plurality of second wirings intersecting each other and memory cells disposed at intersections between the plurality of first wirings and the plurality of second wirings. The semiconductor memory device further includes a control circuit for selectively driving the plurality of first wirings and the plurality of second wirings. The control circuit applies a first voltage for a first operation to a first select wiring and applies a second voltage for a second operation different from the first operation to a second select wiring and applies a third voltage for the first and second operation to a third select wiring. The first operation is completed before the second operation is completed. The control circuit applies a fourth voltage for a third operation to a forth select wiring before the second operation is completed.02-23-2012
20120044744PROGRAMMABLY REVERSIBLE RESISTIVE DEVICE CELLS USING POLYSILICON DIODES - Polysilicon diodes fabricated in standard CMOS logic processes can be used as program selectors for reversible resistive devices such as PCRAM, RRAM, CBRAM, or other memory cells. The reversible resistive devices have a reversible resistive element coupled to a diode. The diode can be constructed by P+/N+ implants on a polysilicon as a program selector. By applying a voltage or a current between a reversible resistive element and the N-terminal of a diode, the reversible resistive device can be programmed into different states based on magnitude, duration, voltage-limit, or current-limit in a reversible manner. On the polysilicon diode, the spacing and doping level of a gap between the P- and N-implants can be controlled for different breakdown voltages and leakage currents. The Silicide Block Layer (SBL) can be used to block silicide formation on the top of polysilicon to prevent shorting.02-23-2012
20120044751BIPOLAR RESISTIVE-SWITCHING MEMORY WITH A SINGLE DIODE PER MEMORY CELL - According to various embodiments, a resistive-switching memory element and memory element array that uses a bipolar switching includes a select element comprising only a single diode that is not a Zener diode. The resistive-switching memory elements described herein can switch even when a switching voltage less than the breakdown voltage of the diode is applied in the reverse-bias direction of the diode. The memory elements are able to switch during the very brief period when a transient pulse voltage is visible to the memory element, and therefore can use a single diode per memory cell.02-23-2012
20120044749VARIABLE RESISTANCE NONVOLATILE STORAGE DEVICE AND METHOD OF FORMING MEMORY CELL - A variable resistance nonvolatile storage device which includes (i) a semiconductor substrate (02-23-2012
20120044748Sensing Circuit For Programmable Resistive Device Using Diode as Program Selector - A sensing circuit for programmable resistive device using diode as program selector is disclosed. The sensing circuit can have a reference and a sensing branch. In one embodiment, each branch can have a first type of MOS with the source coupled to a first supply voltage, the drain coupled to the drain of a second type of MOS, which can have the gate coupled to a bias supply voltage. The sources of the second type of MOS in the reference and sensing branches can be coupled to a reference resistor and a programmable resistance element, respectively, and they are further coupled to a second supply voltage through their diodes. The gate of the first type of MOS in the sensing branch can be coupled to the gate of the first type of MOS in the reference branch, which can have the drain coupled to the gate. The resistance difference between the reference resistor and the programmable resistive element can be sensed through the drain of the first type of MOS in the sensing branch into a logic level.02-23-2012
20120044746CIRCUIT AND SYSTEM OF USING A JUNCTION DIODE AS PROGRAM SELECTOR FOR RESISTIVE DEVICES - Junction diodes fabricated in standard CMOS logic technologies can be used as program selectors for a programmable resistive device, such as electrical fuse, contact/via fuse, anti-fuse, or emerging nonvolatile memory such as MRAM, PCM, CBRAM, or RRAM. The diode can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diode. By applying a high voltage to the P terminal of a diode and switching the N terminal of a diode to a low voltage for proper duration of time, a current flows through a resistive element in series with the program selector may change the resistance state. The P+ active region of the diode can be isolated from the N+ active region in the N well by using dummy MOS gate, SBL, or STI isolations. If the resistive element is an interconnect fuse based on CMOS gate material, the resistive element can be coupled to the P+ active region by an abutted contact such that the element, active region, and metal can be connected in a single rectangular contact.02-23-2012
20120044745REVERSIBLE RESISTIVE MEMORY USING POLYSILICON DIODES AS PROGRAM SELECTORS - Embodiments of reversible resistive memory cells using polysilicon diodes are disclosed. The programmable resistive devices can be fabricated using standard CMOS logic processes to reduce cell size and cost. In one embodiment, polysilicon diodes can be used as program selectors for reversible resistive memory cells that can be programmed based on magnitude, duration, voltage-limit, or current-limit of a supply voltage or current. These cells are PCRAM, RRAM, CBRAM, or other memory cells that have a reversible resistive element coupled to a polysilicon diode. The polysilicon diode can be constructed by P+/N+ implants on a polysilicon substrate as a program selector. The memory cells can be used to construct a two-dimensional memory array with the N-terminals of the diodes in a row connected as a wordline and the reversible resistive elements in a column connected as a bitline. By applying a voltage or a current to a selected bitline and to a selected wordline to turn on the diode, a selected cell can be programmed into different states reversibly based on magnitude, duration, voltage-limit, or current-limit. The data in the reversible resistive memory can also be read by turning on a selected wordline to couple a selected bitline to a sense amplifier. The wordlines may have high-resistivity local wordlines coupled to low-resistivity global wordlines through conductive contact(s) or via(s).02-23-2012
20120044742VARIABLE RESISTANCE MEMORY ARRAY ARCHITECTURE - Memory devices, memory arrays, and methods of operation of memory arrays are disclosed. In one such memory device, a parallel selection architecture includes a control element, such as a selection transistor, in parallel with a variable resistance memory cell. Biasing of the selection transistor enables access to the memory cell for reading, programming, and/or erasing. Programming and erasing of the memory cell is accomplished through a change of resistance of the memory cell.02-23-2012
20120002457SEMICONDUCTOR MEMORY DEVICE AND CONTROL METHOD OF THE SAME - According to one embodiment, a semiconductor memory device includes a plurality of memory cell arrays each includes a plurality of memory cells, the plurality of memory cell arrays being stacked on a semiconductor substrate to form a three-dimensional structure, and a data input/output circuit includes a first address buffer and a second address buffer configured to store a first address and a second address of the plurality of memory cells, and a controller configured to perform control to time-divisionally output the first address and the second address to a first address bus and a second address bus in data input/output.01-05-2012
20120008374Data Storage Using Read-Mask-Write Operation - Method and apparatus for writing data to a storage array, such as but not limited to an STRAM or RRAM memory array, using a read-mask-write operation. In accordance with various embodiments, a first bit pattern stored in a plurality of memory cells is read. A second bit pattern is stored to the plurality of memory cells by applying a mask to selectively write only those cells of said plurality corresponding to different bit values between the first and second bit patterns.01-12-2012
20080273369Integrated Circuit, Memory Module, Method of Operating an Integrated Circuit, and Computing System - According to one embodiment of the present invention, a memory device includes a plurality of resistivity changing memory cells including a current path input terminal and a current path output terminal, respectively, and a plurality of select devices. Each current path output terminal is connected to at least one different current path output terminal via at least one select device.11-06-2008
20120044743CIRCUIT AND SYSTEM OF USING A POLYSILICON DIODE AS PROGRAM SELECTOR FOR RESISTIVE DEVICES IN CMOS LOGIC PROCESSES - Polysilicon diodes fabricated in standard CMOS logic technologies can be used as program selectors for a programmable resistive device, such as electrical fuse, contact/via fuse, anti-fuse, or emerging nonvolatile memory such as MRAM, PCM, CBRAM, or RRAM. The diode can be constructed by P+/N+ implants on a polysilicon as a program selector. By applying a high voltage to a resistive element coupled to the P terminal of a diode and switching the N terminal of a diode to a low voltage for proper time, a current flows through a resistive element may change the resistance state. On the polysilicon diode, the spacing and doping level of a gap between the P+ and N+ implants can be controlled for different breakdown voltages and leakage currents. The Silicide Block Layer (SBL) can be used to block silicide formation on the top of polysilicon to prevent shorting. If the resistive element is a polysilicon electrical fuse, the fuse element can be merged with the polysilicon diode in one piece to save area.02-23-2012
20120155148RESISTANCE CHANGE MEMORY DEVICE - A resistance change memory device including: a cell array having a resistance change type of memory cells disposed at the cross-points of word lines and bit lines, the resistance value of the memory cell being reversibly settable; a word line driver circuit configured to apply a selecting drive voltage to one selected in the word lines; and a bit line driver circuit configured to drive multiple bit lines in such a manner that a set mode and a reset mode are set simultaneously for multiple memory cells selected by the selected word line, the set mode being for changing a selected memory cell from a first resistance state into a second resistance state while the reset mode is for changing a selected memory cell from the second resistance state into the first resistance state.06-21-2012
20120155147NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device includes a memory cell array including memory cells each provided at individual intersection between a first wiring and a second wiring, the memory cell comprising a variable resistive element, and predetermined numbers of the memory cells shearing the same first wiring to configure a page; a first control circuit configured to select a page subjected to data-writing, and to supply a constant voltage to the first wiring belonging to the selected page; a writing-voltage generating circuit configured to generate plural kinds of writing voltages for programming a resistance of the variable resistive element to one of three or more values based on a write-in data specifying three or more values; and a second control circuit configured to select the page subjected to data-writing, and to supply the writing voltages to predetermined numbers of the respective second wirings belonging to the selected page.06-21-2012
20120155146RESISTANCE-CHANGE MEMORY - According to one embodiment, a resistance-change memory includes memory cells between a bit line and a source line, each of the memory cells including a memory element and a cell transistor having a gate connected to a word line, an n-channel transistor having a gate to which a first control voltage is applied, and a current path connected to the bit line, and a p-channel transistor having a gate to which a second control voltage is applied, and a current path connected to the source line. When the memory cell is read, the potential of the bit line is controlled by the first control voltage, and the potential of the source line is controlled by the second control voltage.06-21-2012
20120008371SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device includes: a memory cell array having memory cells positioned at respective intersections between a plurality of first wirings and a plurality of second wirings, each of the memory cells having a rectifier element and a variable resistance element connected in series; and a control circuit selectively driving the first and second wirings. The plurality of first wirings that are specified and selectively driven at the same time by one of a plurality of address signals are separately arranged with other first wirings interposed therebetween within the memory cell array when a certain potential difference is applied to a selected memory cell positioned at an intersection between the first and second wirings by the control circuit.01-12-2012
20120008372RESISTANCE CHANGE MEMORY DEVICE - A resistance change memory device includes: a memory cell array with memory cells arranged therein, the memory cell having a variable resistance element for storing a rewritable resistance value; a reference cell formed of the same memory cells as those set in a high resistance state in the memory cell array, the reference cell being trimmed with selection of the number of parallel-connected memory cells to have a reference current value used for detecting data in the memory cell array; and a sense amplifier configured to compare a cell current value of a memory cell selected in the memory cell array with the reference current value of the reference cell.01-12-2012
20120008373CAPACITIVE DISCHARGE METHOD FOR WRITING TO NON-VOLATILE MEMORY - A memory system includes a substrate, control circuitry on the substrate, a three dimensional memory array (above the substrate) that includes a plurality of memory cells with reversible resistance-switching elements, and circuits for limiting the SET current for the reversible resistance-switching elements. The circuits for limiting the SET current provide a charge on one or more bit lines that is not sufficient to SET the memory cells, and then discharge the bit lines through the memory cells in order to SET the memory cells.01-12-2012
20120008370MEMORY ELEMENT AND MEMORY DEVICE - A memory element and a memory device with improved controllability over resistance change by applied voltage are provided. The memory element includes a first electrode, a memory layer, and a second electrode in this order. The memory layer includes a resistance change layer provided on the first electrode side, and an ion source layer provided on the second electrode side and is higher in resistance value than the resistance change layer. A resistance value of the resistance change layer is changeable in response to a composition change by applied voltage to the first and second electrodes01-12-2012
20120008368Semiconductor device having single-ended sensing amplifier - A semiconductor device includes a bit line, a memory cell coupled to the bit line, the memory cell being configured such that a current flowing there the memory cell is varied in accordance with information stored M the memory cell, a first transistor coupled at a control electrode thereof to the bit line, a second transistor coupled to the bit line and supplied at a control electrode thereof with a first control signal, a global bit line, and a third transistor coupled in series with the first sistor between a node and the global bit line, the third transistor supplied at a control electrode thereof with a second control signal.01-12-2012
20120008366RESTIVE MEMORY USING SiGe MATERIAL - A resistive memory device includes a first electrode; a second electrode having a polycrystalline semiconductor layer that includes silicon; a non-crystalline silicon structure provided between the first electrode and the second electrode. The first electrode, second electrode and non-crystalline silicon structure define a two-terminal resistive memory cell.01-12-2012
20120057391Memory Cells, Memory Cell Programming Methods, Memory Cell Reading Methods, Memory Cell Operating Methods, and Memory Devices - Embodiments disclosed include memory cell operating methods, memory cell programming methods, memory cell reading methods, memory cells, and memory devices. In one embodiment, a memory cell includes a wordline, a first bitline, a second bitline, and a memory element. The memory element is electrically connected to the wordline and selectively electrically connected to the first bitline and the second bitline. The memory element stores information via a resistive state of the memory element. The memory cell is configured to convey the resistive state of the memory element via either a first current flowing from the first bitline through the memory element to the wordline or a second current flowing from the wordline through the memory element to the second bitline.03-08-2012
20120063192THREE-DEVICE NON-VOLATILE MEMORY CELL - A three-device non-volatile memory cell includes a first resistive device, a second resistive device connected to the first resistive device in a mutual complementary manner, and a third resistive device connected to both said first resistive device and said second resistive device in a mutual complementary manner. A memory array includes a set of read lines intersecting a set of bit lines, a set of program lines intersecting said bit lines, memory cells disposed at intersections between the intersecting set of bit lines. Each of the memory cells includes a program resistive device connected to one of the program lines, a read resistive device connected to one of the read lines, and a bit resistive device connected to one of the bit lines and connected to the program device and the read device in a mutual complementary manner.03-15-2012
20120014169NON-VOLATILE DATA-STORAGE LATCH - One embodiments of the present invention is directed to a single-bit memory cell comprising transistor-based bit latch having a data state and a memristor, coupled to the transistor-based bit latch, in which the data state of the transistor-based bit latch is stored by a store operation and from which a previously-stored data state is retrieved and restored into the transistor-based bit latch by a restore operation. Another embodiment of the present invention is directed to a single-bit memory cell comprising a master-slave flip flop and a slave flip flop, and a power input, a memristor, a memory-cell power input, a first memory-cell clock input, a second memory-cell clock input, a memory-cell data input, a memory-cell data output, and two or more memory-cell control inputs.01-19-2012
20120014166RESISTIVE MEMORY - The present disclosure includes resistive memory devices and systems having resistive memory cells, as well as methods for operating the resistive memory cells. One memory device embodiment includes at least one resistive memory element, a programming circuit, and a sensing circuit. For example, the programming circuit can include a switch configured to select one of N programming currents for programming the at least one resistive memory element, where each of the N programming currents has a unique combination of current direction and magnitude, with N corresponding to the number of resistance states of the at least one memory element. In one or more embodiments, the sensing circuit can be arranged for sensing of the N resistance states.01-19-2012
20120014160Non-Volatile Re-Programmable Memory Device - A memory device including a non-volatile re-programmable memory cell is provided. In connection with various example embodiments, the memory cell is a single resistor located between a first and second node. The resistor stores different resistance states corresponding to different resistance values set by SiCr-facilitated migration. The SiCr-facilitated migration occurs in response to energy presented between the first and second nodes. The application of a signal to a first node of the memory cell resistor forces the migration of elements along the memory cell resistor to set the resistance value of the memory cell resistor. The application of a second signal of approximately equal strength to the second node reverses the change and resistance and returns the memory cell to the previous resistance level. In some implementations the resistor is made of SiCr.01-19-2012
20120014168Dual Stage Sensing for Non-Volatile Memory - A method and apparatus for accessing a non-volatile memory cell. In some embodiments, a memory block provides a plurality of memory cells arranged into rows and columns. A read circuit is configured to read a selected row of the memory block by concurrently applying a control voltage to each memory cell along the selected row and, for each column, using a respective local sense amplifier and a column sense amplifier to successively differentiate a voltage across the associated memory cell in said column to output a programmed content of the row.01-19-2012
20120014167SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprising: a memory cell array in which memory cells each containing a variable resistive element and a rectifier element connected in series are arranged at intersections of a plurality of first wirings and a plurality of second wirings; and a control circuit for selectively driving said first wirings and said second wirings; wherein said control circuit applies a first voltage to said selected first wiring, and changes said first voltage based on the position of said selected memory cell within said memory cell array to apply a second voltage to said selected second wiring, so that a predetermined potential difference is applied to a selected memory cell arranged at the intersection between said selected first wiring and said selected second wiring.01-19-2012
20120014165OPTIMIZED SOLID ELECTROLYTE FOR PROGRAMMABLE METALLIZATION CELL DEVICES AND STRUCTURES - A microelectronic programmable structure suitable for storing information and array including the structure and methods of forming and programming the structure are disclosed. The programmable structure generally includes an ion conductor and a plurality of electrodes. Electrical properties of the structure may be altered by applying energy to the structure, and thus information may be stored using the structure.01-19-2012
20120014163SEMICONDUCTOR MEMORY DEVICE AND METHOD OF DRIVING THE SAME - A semiconductor memory device includes a memory cell array where a plurality of memory cells are arranged in a matrix, each of the memory cells serially connecting a two-terminal type memory element and a transistor for selection, a first voltage applying circuit that applies a write voltage pulse to a bit line, and a second voltage applying circuit that applies a precharge voltage to a bit line and a common line. In writing the memory cell, after the second voltage applying circuit has both terminals of the memory cell previously precharged to the same voltage, the first voltage applying circuit applies the write voltage pulse to one terminal of the writing target memory cell via the bit line, and while the write voltage pulse is applied, the second voltage applying circuit maintains the application of the precharge voltage to the other terminal of the memory cell via the common line.01-19-2012
20120014162SEMICONDUCTOR MEMORY DEVICE FEATURING SELECTIVE DATA STORAGE IN A STACKED MEMORY CELL STRUCTURE - A semiconductor device including: a first memory cell including a non-volatile first variable resistance element that stores data by varying a resistance value and a selection transistor that selects the first variable resistance element; a first memory layer provided with more than one such first memory cell arranged in a plane; a second memory cell including a non-volatile second variable resistance element that stores data by varying a resistance value and a selection diode that selects the second variable resistance element; and a second memory layer provided with more than one such second memory cell arranged in a plane; wherein more than one such second memory layer is stacked over the first memory layer.01-19-2012
20120014161Memristive Negative Differential Resistance Device - A memristive Negative Differential Resistance (NDR) device includes a first electrode adjacent to a memristive matrix, the memristive matrix including an intrinsic semiconducting region and a highly doped secondary region, a Metal-Insulator-Transition (MIT) material in series with the memristive matrix, and a second electrode adjacent to the MIT material.01-19-2012
20120057390MEMORY ARRAY WITH WRITE FEEDBACK - A memory array with write feedback includes a number of row lines intersecting a number of column lines, a memory element connected between one of the row lines and one of the column lines, an electrical condition supply to be selectively applied to one of the row lines; and a feedback control loop to control an electrical condition supplied by the electrical condition supply. A method for setting the state of a memory element within a memory array includes applying an electrical condition to the memory element within the memory array, sensing a resistive state of the memory element, and controlling the electrical condition based on the sensed resistive state to cause the memory element to reach a target resistance.03-08-2012
20120057394Securing Non Volatile Data In An Embedded Memory Device - The various embodiments of the invention relate generally to semiconductors and memory technology. More specifically, the various embodiment and examples of the invention relate to memory devices, systems, and methods that protect data stored in one or more memory devices from unauthorized access. The memory device may include third dimension memory that is positioned on top of a logic layer that includes active circuitry in communication with the third dimension memory. The third dimension memory may include multiple layers of memory that are vertically stacked upon each other. Each layer of memory may include a plurality of two-terminal memory elements and the two-terminal memory elements can be arranged in a two-terminal cross-point array configuration. At least a portion of one or more of the multiple layers of memory may include an obfuscation layer configured to conceal data stored in one or more of the multiple layers of memory.03-08-2012
20120057393Reading A Phase Change Memory - A phase change memory cell may be read by driving a current through the cell higher than its threshold current. A voltage derived from the selected column may be utilized to read a selected bit of a phase change memory. The read window or margin may be improved in some embodiments. A refresh cycle may be included at periodic intervals.03-08-2012
20120014164RESISTANCE-CHANGE MEMORY AND METHOD OF OPERATING THE SAME - According to one embodiment, a resistance-change memory includes a memory element in which its variable resistance state corresponds to data to be stored therein, a pulse generation circuit which generates a first pulse, a second pulse, a third pulse, and a fourth pulse, the first pulse having a first amplitude which changes the resistance state of the memory element from a high- to a low-resistance state, the third pulse having a third amplitude smaller than the first amplitude to read data in the memory element, the fourth pulse having a fourth amplitude between the first amplitude and the third amplitude, and a control circuit which controls the operations of the memory element and the pulse generation circuit. The control circuit supplies the fourth pulse to the memory element after supplying the first pulse to the memory element.01-19-2012
20090034319PHASE CHANGE MEMORY DEVICE HAVING SCHOTTKY DIODE AND METHOD OF FABRICATING THE SAME - A phase change memory device includes wordlines extending along a direction on a semiconductor substrate. Low concentration semiconductor patterns are disposed on the wordlines. Node electrodes are disposed on the low concentration semiconductor patterns. Schottky diodes are disposed between the low concentration semiconductor patterns and the node electrodes. Phase change resistors are disposed on the node electrodes.02-05-2009
20120113706MEMRISTORS BASED ON MIXED-METAL-VALENCE COMPOUNDS - A memristor (05-10-2012
20110080767Integrated circuit including four layers of vertically stackedembedded re-writeable non-volatile two-terminal memory - A multi-layer non-volatile memory integrally formed on top of a substrate including active circuitry is disclosed. Each layer of memory includes memory cells (e.g., a two-terminal memory cell) having a multi-resistive state material layer that changes its resistive state between a low resistive state and a high resistive state upon application of a write voltage across the memory cell. Data stored in the memory cells can be non-destructively determined by applying a read voltage across the memory cells. Data storage capacity can be tailored to a specific application by increasing or decreasing the number of memory layers that are integrally fabricated on top of the substrate (e.g., more than four layers or less than four layers). The memory cells can include a non-ohmic device for allowing access to the memory cell only during read and write operations. Each memory layer can comprise a cross point array.04-07-2011
20120026781RESISTIVE MEMORY AND METHOD - A memory device includes a multi gate field effect transistor (MuGFET) having a fin with a contact area. A programmable memory element abuts the fin contact area.02-02-2012
20120026780Conductive Metal Oxide Structures In Non Volatile Re Writable Memory Devices - A memory cell including a memory element comprising an electrolytic insulator in contact with a conductive metal oxide (CMO) is disclosed. The CMO includes a crystalline structure and can comprise a pyrochlore oxide, a conductive binary oxide, a multiple B-site perovskite, and a Ruddlesden-Popper structure. The CMO includes mobile ions that can be transported to/from the electrolytic insulator in response to an electric field of appropriate magnitude and direction generated by a write voltage applied across the electrolytic insulator and CMO. The memory cell can include a non-ohmic device (NOD) that is electrically in series with the memory element. The memory cell can be positioned between a cross-point of conductive array lines in a two-terminal cross-point memory array in a single layer of memory or multiple vertically stacked layers of memory that are fabricated over a substrate that includes active circuitry for data operations on the array layer(s).02-02-2012
20120026779NONVOLATILE MEMORIES AND RECONFIGURABLE CIRCUITS - A nonvolatile memory according to an embodiment includes at least one memory cell including: a variable resistance memory comprising one end connected to a first terminal, and the other end connected to a second terminal, a drive voltage being applied to the first terminal; and a diode comprising a cathode connected to the second terminal, and an anode connected to a third terminal, a ground potential being applied to the third terminal. An output of the memory cell is output from the second terminal, the output of the memory cell depends on a resistance state of the variable resistance memory.02-02-2012
20120026778SEMICONDUCTOR STORAGE DEVICE - A semiconductor memory device includes: a memory cell array including multiple first lines, multiple second lines crossing the first lines, and memory cells arranged at intersections between the first lines and the second lines and including variable resistive elements; and a control circuit which controls resistance values of the variable resistive elements in a way that a cell voltage is applied to the memory cell arranged at an intersection between a selected first line and a selected second line by applying first and second voltages to the selected first and second lines, respectively. The control circuit applies a voltage gradually raised or lowered from a first initial voltage as the first voltage to the selected first line, and a pulsing voltage as the second voltage to the selected second line. The second voltage includes a voltage pulse which is raised from a second initial voltage to turn the memory cell into a non-selected state to a voltage to turn the memory cell into a selected state, is kept at the raised voltage to thereby cause a cell current to flow into the memory cell, and is lowered to the second initial voltage when the cell current that increases while the voltage of the memory cell is rising with a change in the first voltage reaches a predetermined compliance current.02-02-2012
20120026776MEMORY RESISTOR HAVING PLURAL DIFFERENT ACTIVE MATERIALS - Methods and means related to memory resistors are provided. A memristor includes at least two different active materials disposed between a pair of electrodes. The active materials are selected to exhibit respective and opposite changes in electrical resistance in response to changes in oxygen ion content. The active materials are subject to oxygen ion reconfiguration under the influence of an applied electric field. An electrical resistance of the memristor is thus adjustable by way of applied programming voltages and is non-volatile between programming events.02-02-2012
20120300534HIGH DENSITY MEMORY DEVICE - A method of operating a memory device having a dielectric material layer, a transition metal oxide layer and a set of electrodes each formed over a substrate, includes applying a voltage across the set of electrodes producing an electric field across the transition metal oxide layer enabling the transition metal oxide layer to undergo a metal-insulation transition (MIT) to perform a read or write operation on memory device.11-29-2012
20120300533NONVOLATILE MEMORY CELL OPERATING BY INCREASING ORDER IN POLYCRYSTALLINE SEMICONDUCTOR MATERIAL - A memory cell is provided that includes a first conductor, a second conductor, and a semiconductor junction diode between the first and second conductors. The semiconductor junction diode is not in contact with a material having a lattice mismatch of less than 12 percent with the semiconductor junction diode. In addition, no resistance-switching element having its resistance changed by application of a programming voltage by more than a factor of two is disposed between the semiconductor junction diode and the first conductor or between the semiconductor junction diode and the second conductor. Numerous other aspects are provided.11-29-2012
20120300532METHOD OF FORMING PROCESS FOR VARIABLE RESISTIVE ELEMENT AND NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - A method of a forming process for a variable resistive element, which is performed in short time comparable to the pulse forming and a writing current in a switching action is the same level as that of the DC forming, is provided. In the forming process, a variable resistive element is changed by voltage pulse application from an initial high resistance state just after produced to a variable resistance state where the switching action is performed. The forming process includes a first step of applying a first pulse having a voltage amplitude lower than a threshold voltage at which the resistance of the variable resistive element is lowered, to between both electrodes of the variable resistive element, and a second step of applying a second pulse having a voltage amplitude having the same polarity as the first pulse and not lower than the threshold voltage, thereto after the first step.11-29-2012
20120300531Current Writing Circuit for a Resistive Memory Cell Arrangement - A current writing circuit for a resistive memory cell arrangement is provided. The current writing circuit comprises a first current source; a first reference potential terminal; a first switch configured to switch between the first current source and the first reference potential terminal during a write operation; a second current source; a second reference potential terminal; and a second switch configured to switch between the second reference potential terminal when the first switch is switched to the first current source, and the second current source when the first switch is switched to the first reference potential terminal, during the write operation, wherein the first current source and the second current source are of the same polarity. Further embodiments relate to a memory cell arrangement and a method of writing into a target resistive memory cell of a resistive memory cell arrangement.11-29-2012
20120300530MEMORY CELL OPERATION - Methods, devices, and systems associated with memory cell operation are described. One or more methods of operating a memory cell include charging a capacitor coupled to the memory cell to a particular voltage level and programming the memory cell from a first state to a second state by controlling discharge of the capacitor through a resistive switching element of the memory cell.11-29-2012
20120026777Variable-resistance memory device - Disclosed herein is a variable-resistance memory device including: a memory-cell array employing a plurality of memory cells each including a storage element having a resistance varying in accordance with the direction of a voltage applied to the storage element and including an access transistor connected in series to the storage element between a bit line and a source line; and a voltage supplying circuit for setting a read voltage used for reading out the resistance of the storage element on a selected bit line connected to the memory cell serving as a read object in an operation to supply the read voltage to the selected bit line.02-02-2012
20120063199SEMICONDUCTOR DEVICE - A semiconductor device having a nonvolatile variable resistor, includes: a resistance value conversion circuit unit configured to convert a resistance value of the nonvolatile variable resistor into a potential or a current and which outputs the converted potential or current; a comparison circuit unit configured to compare the output from the resistance value conversion circuit unit and a potential or current at a node of a portion within the semiconductor device; and a resistance value changing circuit unit configured to change the resistance value of the nonvolatile variable resistor based on the comparison results from the comparison circuit unit.03-15-2012
20120063197SWITCHABLE JUNCTION WITH AN INTRINSIC DIODE FORMED WITH A VOLTAGE DEPENDENT RESISTOR - A switchable junction (03-15-2012
20120063195Reconfigurable Multi-level Sensing Scheme for Semiconductor Memories - A method for sensing at least one parameter indicative of a logical state of a multi-level memory cell includes the steps of: measuring the parameter of the multi-level memory cell; comparing the measured parameter of the multi-level memory cell with a prescribed reference signal, the reference signal having a value which varies as a function of time; and storing a time value corresponding to a point in time at which the reference signal is substantially equal to the measured parameter of the multi-level memory cell, the stored time value being indicative of a sensed logical state of the multi-level memory cell.03-15-2012
20120063198Methods Of Forming Memory Cells And Methods Of Forming Programmed Memory Cells - In some embodiments, a memory cell includes a transistor gate spaced from a channel region by gate dielectric; a source region on one side of the channel region; and a drain region on an opposing side of the channel region from the source region. The channel region has phase change material adjacent the drain region. In some embodiments, the phase change material may be adjacent both the source region and the drain region. Some embodiments include methods of programming a memory cell that has phase change material adjacent a drain region. An inversion layer is formed within the channel region adjacent the gate dielectric, with the inversion layer having a pinch-off region within the phase change material adjacent the drain region. Hot carriers (for instance, electrons) within the pinch-off region are utilized to change a phase within the phase change material.03-15-2012
20120063194SEMICONDUCTOR MEMORY DEVICE HAVING STACKED STRUCTURE INCLUDING RESISTOR-SWITCHED BASED LOGIC CIRCUIT AND METHOD OF MANUFACTURING THE SAME - Semiconductor memory device having a stacking structure including resistor switch based logic circuits. The semiconductor memory device includes a first conductive line that includes a first line portion and a second line portion, wherein the first line portion and the second line portion are electrically separated from each other by an intermediate region disposed between the first and second line portions, a first variable resistance material film that is connected to the first line portion and stores data, and a second variable resistance material film that controls an electrical connection between the first line portion and the second line portion.03-15-2012
20120063201NONVOLATILE MEMORY ELEMENT, PRODUCTION METHOD THEREFOR, DESIGN SUPPORT METHOD THEREFOR, AND NONVOLATILE MEMORY DEVICE - A nonvolatile memory element which can be initialized at low voltage includes a variable resistance layer (03-15-2012
20120063200Dual Ported Non Volatile FIFO With Third Dimension Memory - A FIFO with data storage implemented with non-volatile third dimension memory cells is disclosed. The non-volatile third dimension memory cells can be fabricated BEOL on top of a substrate that includes FEOL fabricated active circuitry configured for data operations on the BEOL memory cells. Other components of the FIFO that require non-volatile data storage can also be implemented as registers or the like using the BEOL non-volatile third dimension memory cells so that power to the FIFO can be cycled and data is retained. The BEOL non-volatile third dimension memory cells can be configured in a single layer of memory or in multiple layers of memory. An IC that includes the FIFO can also include one or more other memory types that are emulated using the BEOL non-volatile third dimension memory cells and associated FEOL circuitry configured for data operations on those memory cells.03-15-2012
20120063193MULTI-LEVEL RESISTANCE CHANGE MEMORY - According to one embodiment, a multi-level resistance change memory includes a memory cell includes first and second resistance change films connected in series, and a capacitor connected in parallel to the first resistance change film, a voltage pulse generating circuit generating a first voltage pulse with a first pulse width to divide a voltage of the first voltage pulse into the first and second resistance change films based on a resistance ratio thereof, and generating a second voltage pulse with a second pulse width shorter than the first pulse width to apply a voltage of the second voltage pulse to the second resistance change film by a transient response of the capacitor, and a control circuit which is stored multi-level data to the memory cell by using the first and second voltage pulses in a writing.03-15-2012
20090135642RESISTIVE MEMORY DEVICES INCLUDING SELECTED REFERENCE MEMORY CELLS OPERATING RESPONSIVE TO READ OPERATIONS - A Resistance based Random Access Memory (ReRAM) can include a sense amplifier circuit that includes a first input coupled to a bit line of a reference cell in a first block of the ReRAM responsive to a read operation to a second block.05-28-2009
20090135641Semiconductor memory device - A semiconductor memory device (05-28-2009
20120069626SEMICONDUCTOR MEMORY DEVICE - The invention provides a semiconductor memory device including a variable resistance element capable of decreasing a variation of a resistance value of stored data due to a large number of times of switching operations and capable of performing a stable writing operation. The device has a circuit that applies a reforming voltage pulse to a memory cell including a variable resistance element of a degraded switching characteristic and a small read margin due to a large number of times of application of a write voltage pulse, to return each resistance state of the variable resistance element to an initial resistance state. By applying the reforming voltage pulse, the variable resistance element can recover at least one resistance state from a variation from the initial resistance state, and can recover the switching characteristic. Accordingly, there is obtained a semiconductor memory device in which a reduction of a read margin is suppressed.03-22-2012
20110080768WRITE CURRENT COMPENSATION USING WORD LINE BOOSTING CIRCUITRY - Apparatus and method for write current compensation in a non-volatile memory cell, such as but not limited to spin-torque transfer random access memory (STRAM) or resistive random access memory (RRAM). In accordance with some embodiments, a non-volatile memory cell has a resistive sense element (RSE) coupled to a switching device, the RSE having a hard programming direction and an easy programming direction opposite the hard programming direction. A voltage boosting circuit includes a capacitor which adds charge to a nominal non-zero voltage supplied by a voltage source to a node to generate a temporarily boosted voltage. The boosted voltage is applied to the switching device when the RSE is programmed in the hard programming direction.04-07-2011
20130010528SENSING RESISTANCE VARIABLE MEMORY - The present disclosure includes devices and methods for operating resistance variable memory. One device embodiment includes an array of memory cells wherein a number of the cells are commonly coupled to a select line, the number cells including a number of data cells programmable within a number of target threshold resistance (R01-10-2013
20130010521SYSTEMS AND METHODS FOR ROW-WIRE VOLTAGE-LOSS COMPENSATION IN CROSSBAR ARRAYS - Embodiments of the present invention are directed systems and methods for reading the resistance states of crossbar junctions of a crossbar array. In one aspect, a system includes one or more sense amplifiers (01-10-2013
20130010520MEMORY DEVICE AND FABRICATING METHOD THEREOF - According to one embodiment, a memory device includes first interconnects, second interconnects, and a first memory cell. The first memory cell is located in an intersection of one of the first interconnects and one of the second interconnects. The first memory cell includes a first multilayer structure and a first variable resistance layer, the first multilayer structure including a first electrode, a first selector, and a first insulator which are stacked. The first selector and the first variable resistance layer are electrically connected in series between the one of the first interconnect and the one of the second interconnect. The first variable resistance layer is formed on a portion of a side surface of the first insulator to cover the portion without covering a residual portion.01-10-2013
20120127780MEMORY RESISTOR ADJUSTMENT USING FEEDBACK CONTROL - Apparatus and methods related to memory resistors are provided. A feedback controller applies adjustment signals to a memristor. A non-volatile electrical resistance of the memristor is sensed by the feedback controller during the adjustment. The memristor is adjusted to particular values lying between first and second limiting values with minimal overshoot. Increased memristor service life, faster operation, lower power consumption, and higher operational integrity are achieved by the present teachings.05-24-2012
20090168493SEMICONDUCTOR MEMORY DEVICE WITH STACKED MEMORY CELL AND METHOD OF MANUFACTURING THE STACKED MEMORY CELL - In a semiconductor memory device and method, resistive-change memory cells are provided, each including a plurality of control transistors formed on different layers and variable resistance devices comprising a resistive-change memory. Each resistive-change memory cell includes a plurality of control transistors formed on different layers, and a variable resistance device formed of a resistive-change memory. In one example, the number of the control transistors is two. The semiconductor memory device includes a global bit line; a plurality of local bit lines connected to or disconnected from the global bit line via local bit line selection circuits which correspond to the local bit lines, respectively; and a plurality of resistive-change memory cell groups storing data while being connected to the local bit lines, respectively. Each of the resistive-change memory cells of each of the resistive-change memory cell groups comprises a plurality of control transistors formed on different layers, and a variable resistance device formed of a resistive-change memory. In addition, the semiconductor memory device has a hierarchical bit line structure that uses a global bit line and local bit lines. Accordingly, it is possible to increase both the integration density of the semiconductor memory device and the amount of current flowing through each of the resistive-change memory cells.07-02-2009
20100172172SEMICONDUCTOR DEVICE, SEMICONDUCTOR SYSTEM INCLUDING THE SAME, AND VOLTAGE SUPPLY METHOD OF SEMICONDUCTOR DEVICE - A semiconductor device, a semiconductor system including the same, and a voltage supply method of the semiconductor device are provided. The semiconductor device includes at least two semiconductor memory devices and a voltage supply controller configured to selectively supply a voltage to each of the at least two semiconductor memory devices.07-08-2010
20100172171RESISTANCE VARIABLE MEMORY APPARATUS - A resistance variable memory apparatus (07-08-2010
20100172170VARIABLE RESISTIVE ELEMENT, MANUFACTURING METHOD FOR SAME, AND NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - Provided is a variable resistive element which performs high speed and low power consumption operation. The variable resistive element comprises a metal oxide layer between first and second electrodes wherein electrical resistance between the first and second electrodes reversibly changes in accordance with application of electrical stress across the first and second electrodes. The metal oxide layer has a filament, which is a current path where the density of a current flowing between the first and second electrodes locally increases. A portion including at least the vicinity of an interface between the certain electrode, which is one or both of the first and second electrodes, and the filament, on an interface between the certain electrode and the metal oxide layer is provided with an interface oxide which is an oxide of at least one element included in the certain electrode and different from the oxide of the metal oxide layer.07-08-2010
20110103134RESISTANCE RANDOM ACCESS MEMORY HAVING COMMON SOURCE LINE - A method writes data to a resistance random access memory (RRAM) memory cell through first and second write paths, and includes; applying a positive source voltage to a selected source line, applying a word line drive voltage to a selected word line, and applying a voltage at least twice the level of the positive source voltage to a selected bit line via the first write path when writing data having the first state in the memory cell, and applying a ground voltage to the selected bit line via the second write path when writing data having the second state in the memory cell.05-05-2011
20110103133MEMORY CELL ARRAY, NONVOLATILE STORAGE DEVICE, MEMORY CELL, AND METHOD OF MANUFACTURING MEMORY CELL ARRAY - A method of manufacturing a memory cell array in which first conductive layers (05-05-2011
20110103131NONVOLATILE MEMORY ELEMENT AND NONVOLATILE MEMORY DEVICE - Provided is a nonvolatile memory element which has a small variation in operation and allow stable operation. The nonvolatile memory element includes: a first electrode (05-05-2011
20110103130RESISTANCE CHANGE MEMORY DEVICE - A resistance change memory device including: a cell array having a resistance change type of memory cells disposed at the cross-points of word lines and bit lines, the resistance value of the memory cell being reversibly settable; a word line driver circuit configured to apply a selecting drive voltage to one selected in the word lines; and a bit line driver circuit configured to drive multiple bit lines in such a manner that a set mode and a reset mode are set simultaneously for multiple memory cells selected by the selected word line, the set mode being for changing a selected memory cell from a first resistance state into a second resistance state while the reset mode is for changing a selected memory cell from the second resistance state into the first resistance state.05-05-2011
20110103128NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - Nonvolatile semiconductor memory device of an embodiment includes: a memory cell array including a plurality of first and second lines intersecting each other and plural memory cells provided at intersections of the first and second lines and having data written and erased upon application of voltages of the same polarity; and a writing circuit configured to select first and second lines and supply a set or reset pulse to the memory cell through the selected first and second lines. In an erase operation, the writing circuit repeatedly supplies the reset pulse to a selected memory cell until data is erased, by increasing or decreasing voltage level and voltage application time of the reset pulse within a reset region. The reset region, or an aggregate of combinations of voltage level and voltage application time of the reset pulse, is a region where voltage level and voltage application time are negatively correlated.05-05-2011
20110103132NONVOLATILE MEMORY ELEMENT AND SEMICONDUCTOR MEMORY DEVICE INCLUDING NONVOLATILE MEMORY ELEMENT - Provided are a nonvolatile memory element which is capable of effectively preventing an event that when a failure occurs in a certain nonvolatile memory element, data cannot be written to and read from another nonvolatile memory element belonging to the same column or row as that to which the nonvolatile memory element in a failed state belongs, and a semiconductor memory device including the nonvolatile memory element.05-05-2011
20120314481CELL-STATE MEASUREMENT IN RESISTIVE MEMORY - Apparatus and method for measuring the state of a resistive memory cell. A bias voltage controller applies a bias voltage to the cell and controls the level of the bias voltage. A feedback signal generator senses cell current due to the bias voltage and generates a feedback signal (S12-13-2012
20120120709Transistor Driven 3D Memory - A nonvolatile memory device with a first conductor extending in a first direction and a semiconductor element above the first conductor. The semiconductor element includes a source, a drain and a channel of a field effect transistor (JFET or MOSFET). The nonvolatile memory device also includes a second conductor above the semiconductor element, the second conductor extending in a second direction. The nonvolatile memory device also includes a resistivity switching material disposed between the first conductor and the semiconductor element or between the second conductor and the semiconductor element. The JFET or MOSFET includes a gate adjacent to the channel, and the MOSFET gate being self-aligned with the first conductor.05-17-2012
20120314478RESISTIVE MEMORY DEVICE AND SENSING MARGIN TRIMMING METHOD THEREOF - A resistive memory device and a sensing margin trimming method are provided. The resistive memory device includes a memory cell array and a trimming circuit. The memory cell array has a plurality of resistive memory cells. The trimming circuit generates a trimming signal according to a characteristic distribution shift value of the resistive memory cells. With the inventive concept, although a characteristic distribution of memory cells is varied, an erroneous read operation is minimized or reduced by securing a sensing margin stably. Accordingly, a fabrication yield of the resistive memory device is bettered.12-13-2012
20120120711MEMORY SYSTEM WITH REVERSIBLE RESISTIVITY-SWITCHING USING PULSES OF ALTERNATRIE POLARITY - A memory system includes a plurality of non-volatile storage elements that each comprise a diode (or other steering device) in series with reversible resistance-switching material. One or more circuits in the memory system program the non-volatile storage elements by changing the reversible resistance-switching material of one or more non-volatile storage elements to a first resistance state. The memory system can also change the reversible resistance-switching material of one or more of the non-volatile storage elements from the first resistance state to a second resistance state by applying one or more pairs of opposite polarity voltage conditions (e.g., pulses) to the respective diodes (or other steering devices) such that current flows in the diodes (or other steering devices) without operating the diodes (or other steering devices) in breakdown condition.05-17-2012
20100091550Voltage Reference Generation with Selectable Dummy Regions - Various embodiments of the present invention are generally directed to an apparatus and associated method for generating a reference voltage with dummy resistive sense element regions. A first resistance distribution is obtained for a first dummy region of resistance sense elements and a second resistance distribution is obtained for a second dummy region of resistive sense elements. A user resistive sense element from a user region is assigned to a selected resistive sense element of one of the first or second dummy regions in relation to the first and second resistance distributions.04-15-2010
20100091549Non-Volatile Memory Cell with Complementary Resistive Memory Elements - A non-volatile memory cell and method of writing data thereto. In accordance with some embodiments, the memory cell includes first and second resistive memory elements (RMEs) configured to concurrently store complementary programmed resistive states. The first RME is programmed to a first resistive state and the second RME is concurrently programmed to a second resistive state by application of a common write current in a selected direction through the memory cell.04-15-2010
20100091548Non-Volatile Memory Array with Resistive Sense Element Block Erase and Uni-Directional Write - A non-volatile memory cell and associated method of use are disclosed. In accordance with various embodiments, the memory cell includes a switching device and a resistive sense element (RSE) connected in series between first and second control lines. The first control line is supplied with a variable voltage and the second control line is maintained at a fixed reference voltage. A first resistive state of the RSE is programmed by lowering the variable voltage of the first control line below the fixed reference voltage of the second control line to flow a body-drain current through the switching device. A different, second resistive state of the RSE is programmed by raising the variable voltage of the first control line above the fixed reference voltage to flow a drain-source current through the switching device.04-15-2010
20100290266COMMAND PROCESSING CIRCUIT AND PHASE CHANGE MEMORY DEVICE USING THE SAME - A command processing circuit for generating internal command signals corresponding to a plurality of unit internal command signals sequentially applied during a plurality of command cycles, the command processing circuit includes a first command latching unit configured to latch a first unit internal command signal applied in a first command cycle and a second command latching unit configured to latch a second unit internal command signal in response to the first unit internal command signal latched in the first command latching unit in a second command cycle after the first command cycle, and output an internal command signal corresponding to the first unit internal command signal and the second unit internal command signal.11-18-2010
20100254176Multi-Bit Resistance-Switching Memory Cell - A non-volatile storage apparatus comprises a set of Y lines, a set of X lines and a plurality of memory cells in communication with the set of X lines and the set of Y lines. Each memory cell of the plurality of memory cells includes a resistance element in a static resistance condition and two or more reversible resistance-switching elements. The resistance element in the static resistance condition and the two or more reversible resistance-switching elements are connected to different Y lines of the set of Y lines. The resistance element in the low resistance state and the two or more reversible resistance-switching elements are connected to a common X line of the set of X lines. One or multiple bits of data are programmed into a particular memory cell of the plurality of memory cells by causing current flow between Y lines connected to the particular memory cell.10-07-2010
20110002157RESISTANCE CHANGE TYPE MEMORY - A resistance change type memory includes first, second and third drive lines, a resistance change element having one end connected to the third drive line, a first diode having an anode connected to the first drive line and a cathode connected to other end of the first resistance change element, a second diode having an anode connected to other end of the first resistance change element and a cathode connected to the second drive line, and a driver/sinker which supplies a write current to the resistance change element. A write control circuit is arranged such that when first data is written, the write current is caused to flow in a direction from the first drive line to the third drive line, and when second data is written, the write current is caused to flow in a direction from the third drive line to the second drive line.01-06-2011
20120127779Re-writable Resistance-Switching Memory With Balanced Series Stack - A re-writable resistance-switching memory cell includes first and second capacitors in series. The first and second capacitors may have balanced electrical characteristics to allow nearly concurrent, same-direction switching. The first capacitor has a first bipolar resistance switching layer between first and second conductive layers, and the second capacitor has a second bipolar resistance switching layer between third and fourth conductive layers. The first and third conductive layers are made of a common material, and the second and fourth conductive layers are made of a common material. In one approach, the first and second bipolar resistance switching layers are made of a common material and have common thickness. In another approach, the first and second bipolar resistance switching layers are made of materials having different dielectric constants, but their thickness differs in proportion to the difference in the dielectric constants, to provide a common capacitance per unit area.05-24-2012
20120127778MEMORY DEVICE - A memory device includes: a transistor array having transistors; and memory elements provided, one for each of the transistors. The transistor array includes a substrate having diffusion layers on a surface thereof, parallel word lines on the substrate, parallel first bit lines provided in a direction perpendicular to the word lines, bit contact electrodes between the adjacent two word lines and connecting the first bit lines and the diffusion layers, and node contact electrodes at an opposite side to the bit contact electrodes with the two word lines in between and connected to the diffusion layers. The memory elements have lower electrodes connected to the node contact electrodes, memory layers on the lower electrodes and having resistance values reversibly changing by voltage application, and parallel second bit lines extending in the same direction as that of the first bit lines on the memory layers.05-24-2012
20120163066SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device includes: a memory cell array including memory cells, each of the memory cells having a variable resistance element; and a control circuit configured to apply a control voltage, which is necessary for the variable resistance element to transit a resistance state, to a selected memory cell. When applying the control voltage plural times, the control circuit operates to set a value of the control voltage applied in a first control voltage application operation to be substantially equal to a minimum value of distribution of the voltage values of all the memory cells in the memory cell array required to transit the resistance state of the variable resistance element from a high resistance state to a low resistance state. The control circuit operates to perform a plurality of control voltage application operations by increasing the value of the control voltage by a certain value.06-28-2012
20120163065Spatial Correlation of Reference Cells in Resistive Memory Array - The present disclosure relates to methods of selectively placing a reference column or reference row in a memory array. The method includes measuring a resistance state resistance value for a plurality of variable resistive memory cells within a memory array and mapping a location of each measured variable resistive memory cell to form a map of the resistance state resistance values for a plurality of variable resistive memory cells within a memory array. Then a column or row is selected to be a reference column or reference row based on the map of the resistance state resistance value for a plurality of variable resistive memory cells within a memory array, to minimize read operation errors, and forming a variable resistive memory cell memory array.06-28-2012
20100208512SEMICONDUCTOR MEMORY DEVICE PROVIDED WITH RESISTANCE CHANGE ELEMENT - A latch circuit is connected to a first common node, a first, second output node, and a first, second connection node. A first resistance change element is connected to the first connection node, and a second common node. A second resistance change element is connected to the second connection node, and the second common node. When a first data is stored, voltages of the first common node, second common node, and first output node are set at a first reference voltage, and a voltage of the second output node is set at a second reference voltage. When a second data is stored, voltages of the first common node, second common node, and second output node are set at the first reference voltage, and a voltage of the first output node is set at the second reference voltage.08-19-2010
20100208510SEMICONDUCTOR MEMORY DEVICE AND METHOD OF OPERATING THE SAME - A semiconductor memory device comprises: a memory cell array having memory cells disposed at a crossing-point of a plurality of first lines and a plurality of second lines; and a control circuit configured to apply a first voltage to selected one of the first lines, and to apply a second voltage to selected one of the second lines. The control circuit comprises: a first isolation latch circuit configured to set the first lines to a floating state; and a second isolation latch circuit configured to set the second lines to the floating state. During a forming operation, the first and second isolation latch circuits set one of the first lines and one of the second lines to which a defective memory cell is connected to the floating state, the defective memory cell being one of the memory cells that allows a current to flow due to application of a voltage.08-19-2010
20100208511Memory Devices and Wireless Devices Including the Same - A memory device includes a plurality of memory bit lines connected to a plurality of memory cells, a plurality of reference bit lines connected to a plurality of reference cells and a reference bit line selection circuit. The memory bit lines has a first pattern and a second pattern, and the first pattern has a first critical dimension (CD) distribution, and the second pattern has a second CD distribution. The reference bit lines have the first pattern and the second pattern. The reference bit line selection circuit provides a reference signal by selecting a reference bit line having a same pattern as a selected memory bit line connected to a memory cell to be read.08-19-2010
20100208509NONVOLATILE SEMICONDUCTOR MEMORY DEVICE, AND PRODUCTION METHOD THEREOF - A nonvolatile semiconductor memory device according to the present invention includes a memory cell array layer including a first line; a plurality of second and third lines that are formed below or above the first line and cross each other; and a plurality of memory cells arranged at each intersection of the second and third lines, the memory cell including a variable resistor and a transistor, which are connected to each other in series between the first line and the third line, the variable resistor being electrically rewritable and storing a resistance value as data in a nonvolatile manner, and the transistor being a columnar transistor having the second line arranged at its side face as a gate.08-19-2010
20110182106Current Cancellation for Non-Volatile Memory - A method and apparatus for reading data from a non-volatile memory cell. In some embodiments, a cross-point array of non-volatile memory cells is arranged into rows and columns that are each controlled by a line driver. A read circuit is provided that is capable of reading a logical state of a predetermined memory cell by differentiating a non-integrated first reference value from a non-integrated second reference value. Further, each reference value is measured immediately after configuring the column corresponding to the predetermined memory cell to produce a first and second amount of current.07-28-2011
20110182108Memristive Device and Methods of Making and Using the Same - A memristive device is disclosed herein. The device includes a first electrode, a second electrode, and an active region disposed between the first and second electrodes. At least two mobile species are present in the active region. Each of the at least two mobile species is configured to define a separate state variable of the memristive device.07-28-2011
20110182107MEMRISTIVE DEVICE - A memristive routing device (07-28-2011
20110182105MEMORY SYSTEM WITH SECTIONAL DATA LINES - A storage system includes a three-dimensional memory array that has multiple layers of non-volatile storage elements grouped into blocks. The blocks are grouped into bays. The storage system includes array lines of a first type in communication with storage elements, array lines of a second type in communication with storage elements, and sense amplifiers. Each block is geographically associated with two sense amplifiers and all blocks of a particular bay share a group of sense amplifiers associated with the blocks of the particular bay. The system includes multiple sets of local data lines in one or more routing metal layers below the three-dimensional memory array and multiple sets of global data lines in one or more top metal layers above the three-dimensional memory array. Each set of one or more blocks include one set of the local data lines. Each bay includes one set of global data lines that connect to the group of sense amplifiers associated with the blocks of the respective bay. Each block includes a subset of first selection circuits for selectively coupling a subset of array lines of the first type to respective local data lines. Each block includes a subset of second selection circuits for selectively coupling a subset of the respective local data lines to global data lines associated with a respective bay.07-28-2011
20110182104METHOD OF IMPLEMENTING MEMRISTOR-BASED MULTILEVEL MEMORY USING REFERENCE RESISTOR ARRAY - The present invention relates to a memristor, and more particularly, to a method of implementing a memristor-based multilevel memory using a reference resistor array and a write-in circuit and a read-out/restoration circuit for the memristor-based multilevel memory, in which a memristor can be used as a multilevel memory. In the present invention, a reference resistance value is written in a selected memristor of a memristor array by applying repeatedly the current pulses of which widths are proportional to the difference between the resistances of the selected memristor and the selected node of the reference resistor array.07-28-2011
20110182103GCIB-TREATED RESISTIVE DEVICE - The present disclosure includes GCIB-treated resistive devices, devices utilizing GCIB-treated resistive devices (e.g., as switches, memory cells), and methods for forming the GCIB-treated resistive devices. One method of forming a GCIB-treated resistive device includes forming a lower electrode, and forming an oxide material on the lower electrode. The oxide material is exposed to a gas cluster ion beam (GCIB) until a change in resistance of a first portion of the oxide material relative to the resistance of a second portion of the oxide material. An upper electrode is formed on the first portion.07-28-2011
20090059652Resistive memory cell array with common plate - In the present method of changing the state of a resistive memory device which is capable of adopting an erased, relatively higher resistance state and a programmed, relatively lower resistance state, the resistive memory device having first and second electrodes and an active layer between the first and second electrodes, an electrical potential is applied across the electrodes and current through the resistive memory device is limited by means of a first current limiting structure to change the resistive memory device from the erased, higher resistance state to the programmed, lower resistance state. Furthermore, an electrical potential is applied across the electrodes and current through the resistive memory device is limited by means of a second current limiting structure to change the resistive memory device from the programmed, lower resistance state to the erased, higher resistance state.03-05-2009
20090059651SEMICONDUCTOR MEMORY DEVICE AND METHOD OF WRITING INTO THE SAME - A method of writing into a semiconductor memory device, which includes a resistance memory element 03-05-2009
20090059650Memory Device, Semiconductor Device, and Electronic Device - To provide a memory device which can maintain data accurately even when memory characteristics of a memory element deteriorate over time. The memory device includes a memory cell 03-05-2009
20120250395SELECTOR TYPE ELECTRONIC DEVICE - An electronic device includes a first electrode, a second electrode and a solid electrolyte having a base of an ion conducting material. The device remains in the highly resistive state for as long as a first threshold voltage between the first electrode and the second electrode is not reached. The device switches from the state of high resistance to the state of low resistance when the potential difference between the first electrode and the second electrode is equal to or greater than the first threshold voltage. The device switches from the state of low resistance to the state of high resistance when the potential difference between the first electrode and the second electrode equal to or greater than this first threshold voltage is removed and as it decreases it reaches a second positive voltage threshold strictly lower than the first threshold voltage.10-04-2012
20120250396VERTICALLY STACKED FIELD PROGRAMMABLE NONVOLATILE MEMORY AND METHOD OF FABRICATION - A memory cell is provided that includes a steering element, and a non-volatile state change element coupled in series with the steering element. The steering element and state change element are disposed in a vertically-oriented pillar. Other aspects are also provided.10-04-2012
20120170352THERMO PROGRAMMABLE RESISTOR BASED ROM - An integrated circuit is formed having an array of memory cells located in the dielectric stack above a semiconductor substrate. Each memory cell has an adjustable resistor and a heating element. A dielectric material separates the heating element from the adjustable resistor. The heating element alters the resistance of the resistor by applying heat thereto. The magnitude of the resistance of the adjustable resistor represents the value of data stored in the memory cell.07-05-2012
20120212994MEMORY APPARATUS - A memory apparatus includes: a plurality of memory cells which includes a first resistance change element; and a read-out circuit which determines the size of a resistance value of the first resistance change element by comparing the resistance state of a memory cell selected among the plurality of memory cells to the resistance state of a reference memory cell, wherein the reference memory cell includes a second resistance change element, a resistance value of the second resistance change element with respect to an applied voltage is smaller than that in a high resistance state of the first resistance change element, and the second resistance change element shows the same resistance change characteristic as the first resistance change element.08-23-2012
20120075906Resistance Based Memory Having Two-Diode Access Device - A resistance-based memory has a two-diode access device. In a particular embodiment, a method includes biasing a bit line and a sense line to generate a current through a resistance-based memory element via a first diode or a second diode. A cathode of the first diode is coupled to the bit line and an anode of the second diode is coupled to the sense line.03-29-2012
20120075913NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device includes: a memory cell array which has a plurality of first lines, a plurality of second lines intersecting the plurality of first lines and a plurality of memory cells which store an electrically rewritable resistance value as data in a non-volatile manner; a first decoder which is connected to one ends of the plurality of first lines and selects the first lines; a second decoder which is connected to the plurality of second lines and selects the second lines; and a voltage applying circuit which is connected to one of the first and second decoders and which applies a predetermined voltage between the first and second lines selected by the first and second decoders. The second decoder sequentially selects the second lines in a direction from the other ends to the one ends of the first lines.03-29-2012
20120075916NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile-semiconductor-memory-device including a cell array having a plurality of MATs (unit-cell-array) disposed in a matrix, the MATs each include a plurality of first lines, a plurality of second lines crossing the first lines, and memory cells being connected between the first and second lines. The device further includes a first and second drive circuit selecting the first and second lines connected to the memory cells of each MAT that are accessed, and driving the selected first and second lines to write or read data. The memory cells form a page by being connected to each first line selected from the MATs. The device also includes a data latch latching the write or the read data in units of pages, where the first and second drive circuit drive the first and second lines multiple times to write or read data for one page in and out of the cell array.03-29-2012
20120075915SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device includes a memory cell array having memory cells positioned at respective intersections between a plurality of first wirings and a plurality of second wirings, each of the memory cells having a rectifier element and a variable resistance element connected in series, and a control circuit selectively driving the first and second wirings. The control circuit applies a first voltage to the selected first wiring and applies a second voltage to the selected second wiring to apply a certain potential difference to a selected memory cell positioned at a intersection between the selected first and second wirings, and brings at least one of nonselected first wirings into a floating state.03-29-2012
20120075914Low Read Current Architecture For Memory - A low read current architecture for memory. Bit lines of a cross point memory array are allowed to be charged by a selected word line until a minimum voltage differential between a memory state and a reference level is assured.03-29-2012
20120075912NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises a three-dimensional cell array block in which a plurality of cell array layers are stacked, each of the cell array layers including a plurality of first lines, a plurality of second lines configured to intersect the first lines, and a plurality of memory cells disposed at each of intersections of the first and second lines and each including a variable resistance element configured to store an electrically rewritable resistance value as data in a nonvolatile manner, and a reading control circuit for reading data from the memory cells under a condition set in respective groups to which one or more cell array layers having a common electric property of the memory cells belong.03-29-2012
20120075911SEMICONDUCTOR MEMORY DEVICE - Regardless of a resistance state of a variable resistance element of a memory cell that is a target of a writing action (erasing and programming actions), an erasing voltage pulse for bringing the resistance state of the variable resistance element to an erased state having a lowest resistance value is applied. Thereafter, a programming voltage pulse for bringing the resistance state of the variable resistance element to a desired programmed state is applied to the variable resistance element of the programming action target memory cell. By always applying the programming voltage pulse after having applied the erasing voltage pulse, a plurality of programming voltage pulses being sequentially applied can be avoided. Further, the memory cell array is constituted of even-numbers of subbanks, and the application of the erasing voltage pulse in one subbank and the application of the programming voltage pulse in the other subbank are alternately performed.03-29-2012
20120075910SEMICONDUCTOR INTEGRATED CIRCUIT - According to one embodiment, a semiconductor integrated circuit includes first and second resistance change type memory element and first and second switches. The first resistance change type memory element includes a first terminal connected to a first power supply and a second terminal connected to a first node. The second resistance change type memory element includes a third terminal connected to the first node and a fourth terminal connected to a second power supply. The first switch includes one end of a first current path connected to a first program power supply and the other end of the first current path connected to the first node. The second switch includes one end of a second current path connected to the first node and the other end of the second current path connected to a second program power supply.03-29-2012
20120075909SEMICONDUCTOR MEMORY DEVICE - Provided is a semiconductor memory device that is capable of stably programming with desirable controllability to a desired electric resistance state in a random access programming action and is provided with a variable resistance element. Regardless of a resistance state of a variable resistance element of a memory cell that is a target of a writing action (erasing and programming actions), an erasing voltage pulse for bringing the resistance state of the variable resistance element to an erased state having a lowest resistance value is applied. Thereafter, a programming voltage pulse for bringing the resistance state of the variable resistance element to a desired programmed state is applied to the variable resistance element of the programming action target memory cell. By always applying the programming voltage pulse after having applied the erasing voltage pulse, a plurality of programming voltage pulses being sequentially applied can be avoided.03-29-2012
20120075907RESISTOR STRUCTURE FOR A NON-VOLATILE MEMORY DEVICE AND METHOD - A non-volatile resistive switching memory device. The device includes a first electrode, a second electrode, a switching material in direct contact with a metal region of the second electrode, and a resistive material disposed between the second electrode and the switching material. The resistive material has an ohmic characteristic and a resistance substantially the same as an on state resistance of the switching device. The resistive material allows for a change in a resistance of the switching material upon application of voltage pulse without time delay and free of a reverse bias after the voltage pulse. The first voltage pulse causes a programming current to flow from the second electrode to the first electrode. The resistive material further causes the programming current to be no greater than a predetermined value.03-29-2012
20120176833ELECTRONIC DEVICE WITH A PROGRAMMABLE RESISTIVE ELEMENT AND A METHOD FOR BLOCKING A DEVICE - One or more embodiments relate to an electronic device comprising a circuitry and a programmable resistive element. The programmable resistive element comprises a first and a second state, wherein the programmable resistive element is configured to allow switching from the second state into the first state in response to a signal comprising at least a predefined level. The circuitry is configured to provide signals up the predefined level, wherein the circuitry is configured to provide a switch signal to the programmable resistive element, wherein the switch signal causes switching from the first into the second state.07-12-2012
20120176834VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE - Each of basic array planes has a first via group that interconnects only even-layer bit lines in the basic array plane, and a second via group that interconnects only odd-layer bit lines in the basic array plane, the first via group in a first basic array plane and the second via group in a second basic array plane adjacent to the first basic array in a Y direction are adjacent to each other in the Y direction, and the second via group in the first basic array plane and the first via group in the second basic array plane are adjacent to each other in the Y direction, and the second via group in the second basic array plane is disconnected from a second global line when connecting the first via group in the first basic array plane to a first global line.07-12-2012
20120176831Resistive Random Access Memory With Low Current Operation - A memory cell in a 3-D read and write memory device has two bipolar resistance-switching layers with different respective switching currents. A low current resistance-switching layer can be switched in set and reset processes while a high current resistance-switching layer remains in a reset state and acts as a protection resistor to prevent excessively high currents on the low current resistance-switching layer. The low and high current resistance-switching layers can be of the same material such as a metal oxide, where the layers differ in terms of thickness, doping, leakiness, metal richness or other variables. Or, the low and high current resistance-switching layers can be of different materials, having one or more layers each. The high current resistance-switching layer can have a switching current which is greater than a switching current of the low current resistance-switching layer by a factor of at least 1.5 or 2.0, for instance.07-12-2012
20120176832Access Signal Adjustment Circuits and Methods for Memory Cells In a Cross-Point Array - Embodiments of the invention relate generally to semiconductors and memory technology, and more particularly, to systems, integrated circuits, and methods to generate access signals to facilitate memory operations in scaled arrays of memory elements, such as memory implemented in third dimensional memory technology formed BEOL directly on top of a FEOL substrate that includes data access circuitry. In at least some embodiments, a non-volatile memory device can include a cross-point array having resistive memory elements disposed among word lines and subsets of bit lines, and an access signal generator. The access signal generator can be configured to modify a magnitude of a signal to generate a modified magnitude for the signal to access a resistive memory element associated with a word line and a subset of bit lines. The modified magnitude can be a function of the position of the resistive memory element in the cross-point array.07-12-2012
20120176830VARIABLE RESISTANCE MEMORY DEVICES USING READ MIRROR CURRENTS - A nonvolatile memory device includes a variable resistance memory element and a read circuit coupled to the variable resistance memory element at a first signal node and configured to provide a read current to the variable resistance memory element via the first signal node, to a provide a mirror current at a second signal node responsive to the cell current and to generate an output signal indicative of a state of the variable resistance memory element responsive to a voltage at the second signal node.07-12-2012
20110103135NON-VOLATILE MEMORY DEVICE AND METHOD FOR WRITING DATA THERETO - The present invention provides a method for writing data to a non-volatile memory device having first wirings and second wirings intersecting one another and memory cells arranged at each intersection therebetween, each of the memory cells having a variable resistive element and a rectifying element connected in series. According to the method, the second wirings are charged to a certain voltage not less than a rectifying-element threshold value, prior to a rise in a selected first wiring. Then, a selected first wiring is charged to a voltage required for writing or erasing, after which a selected second wiring is discharged.05-05-2011
20100271863Memory Cells, Memory Cell Programming Methods, Memory Cell Reading Methods, Memory Cell Operating Methods, and Memory Devices - Embodiments disclosed include memory cell operating methods, memory cell programming methods, memory cell reading methods, memory cells, and memory devices. In one embodiment, a memory cell includes a wordline, a first bitline, a second bitline, and a memory element. The memory element is electrically connected to the wordline and selectively electrically connected to the first bitline and the second bitline. The memory element stores information via a resistive state of the memory element. The memory cell is configured to convey the resistive state of the memory element via either a first current flowing from the first bitline through the memory element to the wordline or a second current flowing from the wordline through the memory element to the second bitline.10-28-2010
20100271861VARIABLE-RESISTANCE MEMORY DEVICE AND ITS OPERATION METHOD - A variable-resistance memory device includes: memory cells; first wires; a second wire; a drive/control section; and a sense amplifier.10-28-2010
20100271859NONVOLATILE MEMORY ELEMENT, NONVOLATILE SEMICONDUCTOR MEMORY APPARATUS, AND READING METHOD AND WRITING METHOD THEREFOR - A nonvolatile memory element (10-28-2010
20100034012SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device having a plurality of unit cell arrays having memory cells each containing a first wiring and a second wiring intersecting each other, and a variable resistive element arranged at each intersection of said first wiring and said second wiring and electrically rewritable to nonvolatilely store a resistance value as data, characterized by comprising: a control circuit for applying a predetermined voltage to said memory cell in selectively accessing said memory cell; wherein said control circuit accumulates a predetermined electric charge in a parasitic capacitance of said memory cell included in a first unit cell array that is said specific unit cell array and not accessed at the first time, while on the other hand, accumulates a predetermined electric charge in a parasitic capacitance of said memory cell included in a second unit cell array that is said specific unit cell array other than said first unit cell array and not accessed at the second time after the passage of a predetermined time from said first time.02-11-2010
20100008128RESISTIVE NONVOLATILE MEMORY ELEMENT, AND PRODUCTION METHOD OF THE SAME - An object of the present invention is to provide a resistive nonvolatile memory element having an electric current path which can be realized by a simple and convenient process, and capable of allowing for micro-fabrication.01-14-2010
20100008127RESISTANCE VARIABLE ELEMENT AND RESISTANCE VARIABLE MEMORY APPARATUS - A resistance variable element of the present invention and a resistance variable memory apparatus using the resistance variable element are a resistance variable element (01-14-2010
20100008126THREE-DIMENSIONAL MEMORY DEVICE - A three-dimensional memory device includes: a plurality of mats laminated therein, each having memory cells arranged in a two-dimensional manner; and access signal lines and data lines to select memory cells in each mat being shared between respective adjacent mats. Laminated mats are divided into three or more groups. When selecting one of these groups, memory cells in some of the remaining groups are biased so that a leakage current flows therethrough, while memory cells in the rest of the remaining groups are biased so that a leakage current does not flow therethrough.01-14-2010
20100008124Cross point memory cell with distributed diodes and method of making same - A cross point memory cell includes a portion of a first distributed diode, a portion of a second distributed diode, a memory layer located between the portion of the first distributed diode and the portion of a second distributed diode, a bit line electrically connected to the first distributed diode, and a word line electrically connected to the second distributed diode.01-14-2010
20100008122Memory Device And Method For Making Same - An embodiment relates to a memory cell comprising a programmable resistance memory element electrically coupled to a heterojunction bipolar transistor.01-14-2010
20120218808MEMORY ELEMENT AND MEMORY DEVICE - There are provided a memory element and a memory device with improved repetition characteristics during operations at a low voltage and current. The memory element includes a first electrode, a memory layer, and a second electrode in this order. The memory layer includes a resistance change layer disposed on the first electrode side, and an ion source layer disposed on the second electrode side, and having a resistivity of 2.8 mΩcm or higher but lower than 1 Ωcm.08-30-2012
20120218807RESISTIVE MEMORY SENSING METHODS AND DEVICES - The present disclosure includes resistive memory sensing methods and devices. One such method includes performing a voltage based multiple pass sensing operation on a group of cells coupled to a selected conductive line of an array of resistive memory cells. The voltage based multiple pass sensing operation can include providing an indication of those cells of the group that conduct at least a threshold amount of current responsive to one of a number of different sense voltages successively applied to the selected conductive line during each of a corresponding number of the multiple passes, and for each successive pass of the multiple passes, disabling data lines corresponding to those cells determined to have conducted the threshold amount of current in association with a previous one of the multiple passes.08-30-2012
20120218806Memory Cells, Methods of Forming Memory Cells, and Methods of Programming Memory Cells - Some embodiments include methods in which a memory cell is formed to have programmable material between first and second access lines, with the programmable material having two compositionally different regions. A concentration of ions and/or ion-vacancies may be altered in at least one of the regions to change a memory state of the memory cell and to simultaneously form a pn diode. Some embodiments include memory cells having programmable material with two compositionally different regions, and having ions and/or ion-vacancies diffusible into at least one of the regions. The memory cell has a memory state in which the first and second regions are of opposite conductivity type relative to one another.08-30-2012
20120314480SEMICONDUCTOR MEMORY DEVICE - In a semiconductor memory device using a variable resistive element made of a metal oxide for storing information, a voltage amplitude of a writing voltage pulse for changing the variable resistive element to a high resistance state is set within a voltage range in which the resistance value of the high resistance state after the change increases with time. The voltage amplitude is set within the voltage range in which the resistance value of the high resistance state after the change increases toward a predetermined peak with increase in voltage amplitude. When a data error is detected by the ECC circuit, it is estimated that the data that should be in the low resistance state changes to the high resistance state, and the variable resistive elements of all memory cells from which the error is detected are written to the low resistance state to correct the error bit.12-13-2012
20120314479MEMORY ELEMENT AND MEMORY DEVICE - A memory element includes: a memory layer disposed between a first electrode and a second electrode. The memory layer includes: an ion source layer containing one or more metallic elements, and one or more chalcogen elements of tellurium (Te), sulfur (S), and selenium (Se); and a resistance change layer disposed between the ion source layer and the first electrode, the resistance change layer including a layer which includes tellurium and nitrogen (N) and is in contact with the ion source layer.12-13-2012
20120314477Array voltage regulating technique to enable data operations on large cross-point memory arrays with resistive memory elements - Embodiments of the invention relate generally to semiconductors and memory technology, and more particularly, to systems, integrated circuits, and methods to preserve states of memory elements in association with data operations using variable access signal magnitudes for other memory elements, such as implemented in third dimensional memory technology. In some embodiments, a memory device can include a cross-point array with resistive memory elements. An access signal generator can modify a magnitude of a signal to generate a modified magnitude for the signal to access a resistive memory element associated with a word line and a subset of bit lines. A tracking signal generator is configured to track the modified magnitude of the signal and to apply a tracking signal to other resistive memory elements associated with other subsets of bit lines, the tracking signal having a magnitude at a differential amount from the modified magnitude of the signal.12-13-2012
20090323394PULSE RESET FOR NON-VOLATILE STORAGE - A non-volatile storage system includes a substrate, control circuitry on the substrate, a three dimensional memory array (above the substrate) that includes a plurality of memory cells with reversible resistance-switching elements, and circuits to SET and RESET the resistance-switching elements. The circuits that RESET the resistance-switching elements provide a pulse to the memory cells that is large enough in magnitude to SET and RESET the memory cells, and long enough to potentially RESET the memory cell but not long enough to SET the memory cells.12-31-2009
20100296331SENSING RESISTANCE VARIABLE MEMORY - The present disclosure includes devices and methods for operating resistance variable memory. One device embodiment includes an array of memory cells wherein a number of the cells are commonly coupled to a select line, the number cells including a number of data cells programmable within a number of target threshold resistance (R11-25-2010
20100296330SEMICONDUCTOR MEMORY DEVICE - There is provided a semiconductor memory device capable of suppressing writing disturbances without increasing the cell array area. A semiconductor memory device has a memory cell array where a number of memory cells having a two-terminal type memory element and a transistor for selection connected in series are aligned in a matrix shape, a first voltage applying circuit for applying a writing voltage pulse to a first bit line, and a second voltage applying circuit for applying a pre-charge voltage to a first and second bit line, such that at the time of the writing of a memory cell, the first voltage applying circuit pre-charges the two ends of the memory cell to the same voltage in advance, and after that, the second voltage applying circuit applies a writing voltage pulse via the first bit line directly connected to the transistor for selection.11-25-2010
20120257437SEMICONDUCTOR DEVICE - A semiconductor device includes first and second interconnects, a variable resistance element that may assume a first resistance value or a second resistance value in response to the current flowing therein, and second transistors connected between the first and second interconnects in series with each other on both sides of the variable resistance element, and a power supply circuit unit that delivers the power supply to a control electrode of the first transistor. The power supply circuit unit supplies the power of a first power supply when the variable resistance element is to make transition to the first resistance value and the power supply circuit unit supplies the power of a second power supply when the variable resistance element is to make transition to the second resistance value, thereby allowing transitioning of the resistance values of the variable resistance element10-11-2012
20120257438CONTEMPORANEOUS MARGIN VERIFICATION AND MEMORY ACCESS FOR MEMORY CELLS IN CROSS POINT MEMORY ARRAYS - Circuitry for restoring data values in re-writable non-volatile memory is disclosed. An integrated circuit includes a memory access circuit and a sensing circuit configured to sense a data signal during a read operation to at least one two-terminal non-volatile cross-point memory array. Each memory array includes a plurality of two-terminal memory elements. A plurality of the memory arrays can be fabricated over the substrate and vertically stacked on one another. Further, the integrated circuit can include a margin manager circuit configured to manage a read margin for the two-terminal memory elements substantially during the read operation, thereby providing for contemporaneous read and margin determination operations. Stored data read from the two-terminal memory elements may have a value of the stored data restored (e.g., re-written to the same cell or another cell) if the value is not associated with a read margin (e.g., a hard programmed or hard erased state).10-11-2012
20120262981DATA RETENTION STRUCTURE FOR NON-VOLATILE MEMORY - A data retention structure in a memory element that stores data as a plurality of conductivity profiles is disclosed. The memory element can be used in a variety of electrical systems and includes a conductive oxide layer, an ion impeding layer, and an electrolytic tunnel barrier layer. A write voltage applied across the memory element causes a portion of the mobile ions to move from the conductive oxide layer, through the ion impeding layer, and into the electrolytic tunnel barrier layer thereby changing a conductivity of the memory element, or the write voltage causes a quantity of the mobile ions to move from the electrolytic tunnel barrier layer, through the ion impeding layer, and back into the conductive oxide layer. The ion impeding layer is operative to substantially stop mobile ion movement when a voltage that is less than the write voltage is applied across the memory element.10-18-2012
20120262980RANDOM ACCESS MEMORY WITH CMOS-COMPATIBLE NONVOLATILE STORAGE ELEMENT AND PARALLEL STORAGE CAPACITOR - Systems, methods, and memory device with row lines and column lines arranged in a matrix configuration with a memory cell coupled to one of the column lines and one of the row lines. The memory cell includes a storage capacitor with a first plate coupled to a storage node, a CMOS-compatible non-volatile storage element having a node coupled to the storage node and configured to hold a charge corresponding to a binary value, and an access transistor coupled to the storage node. The access transistor includes a word line gate, a first node, and a second node, the word line gate being coupled to the one of the plurality of row lines, the first node being coupled to the one of the plurality of column lines, the second node being coupled to the storage node and to said node of the CMOS-compatible non-volatile storage element.10-18-2012
20100259970RESISTANCE CHANGE MEMORY DEVICE - A resistance change memory device including a substrate, first and second wiring lines formed above the substrate to be insulated from each other, and memory cells disposed between the first and second wiring lines, wherein the memory cell includes: a variable resistance element for storing as information a resistance value; and a Schottky diode connected in series to the variable resistance element. The variable resistance element has: a recording layer formed of a composite compound containing at least one transition element and a cavity site for housing a cation ion; and electrodes formed on the opposite sides of the recording layer, one of which serves as a cation source in a write or erase mode for supplying a cation to the recording layer to be housed in the cavity site therein.10-14-2010
20120081947METAL-INSULATOR-METAL-INSULATOR-METAL (MIMIM) MEMORY DEVICE - The present memory device includes first and second electrodes, first and second insulating layers between the electrodes, the first insulating layer being in contact with the first electrode, the second insulating layer being in contact with the second electrode, and a metal layer between the first and second insulating layers. Further included may be a first oxide layer between and in contact with the first insulating layer and the metal layer, and a second oxide layer between and in contact with the second insulating layer and the metal layer.04-05-2012
20120081945MEMORY ARRAY WITH GRADED RESISTANCE LINES - A memory array with graded resistance lines includes a first set of lines intersecting a second set of lines. A line from one of the sets of lines includes a graded resistance along a length of the line.04-05-2012
20120081944CROSSBAR ARRAY MEMORY ELEMENTS AND RELATED READ METHODS - Apparatus and related fabrication and read methods are provided for crossbar memory elements. An exemplary crossbar memory element includes a crossbar array structure including a set of access lines, unswitched resistance elements coupled electrically in series between the set of access lines and a reference voltage node, and switched resistance elements coupled electrically in series between the first set of access lines and the reference voltage node. To read from a selected access line, the switched resistance element associated with that access line is enabled while the remaining switched resistance elements are disabled.04-05-2012
20120230085FORMING METHOD OF PERFORMING FORMING ON VARIABLE RESISTANCE NONVOLATILE MEMORY ELEMENT, AND VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE - In forming, an automatic forming circuit (09-13-2012
20120230084APPARATUS FOR VARIABLE RESISTIVE MEMORY PUNCHTHROUGH ACCESS METHOD - Variable resistive punchthrough access methods are described. The methods include switching a variable resistive data cell from a high resistance state to a low resistance state by passing a write current through the magnetic tunnel junction data cell in a first direction. The write current is provided by a transistor being electrically coupled to the variable resistive data cell and a source line. The write current passes through the transistor in punchthrough mode.09-13-2012
20120230083SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprising: a memory cell array in which memory cells each containing a variable resistive element and a rectifier element connected in series are arranged at intersections of a plurality of first wirings and a plurality of second wirings; and a control circuit for selectively driving said first wirings and said second wirings; wherein said control circuit applies a first voltage to said selected first wiring, and changes said first voltage based on the position of said selected memory cell within said memory cell array to apply a second voltage to said selected second wiring, so that a predetermined potential difference is applied to a selected memory cell arranged at the intersection between said selected first wiring and said selected second wiring.09-13-2012
20120230080Variable Resistance Device, Semiconductor Device Including The Variable Resistance Device, And Method Of Operating The Semiconductor Device - According to an example embodiment, a method of operating a semiconductor device includes applying a first voltage to the variable resistance device so as to change a resistance value of the variable resistance device from a first resistance value to a second resistance value that is different from the first resistance value, sensing first current flowing through the variable resistance device to which the first voltage is applied, determining a second voltage used to change the resistance value of the variable resistance device from the second resistance value to the first resistance value based on a distribution of the sensed first current, and applying the determined second voltage to the variable resistance device.09-13-2012
20120230081CELL-STATE MEASUREMENT IN RESISTIVE MEMORY - Apparatus and method for measuring the state of a resistive memory cell. A bias voltage controller applies a bias voltage to the cell and controls the level of the bias voltage. A feedback signal generator senses cell current due to the bias voltage and generates a feedback signal (S09-13-2012
20120230082NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD OF RESETTING THE SAME - A nonvolatile semiconductor memory device includes: a plurality of memory cell arrays stacked on a semiconductor substrate and including a plurality of first wires, a plurality of second wires and memory cells disposed at intersections of the first wires and the second wires and having a rectifier element and a variable resistive element are connected in series; and a control circuit configured to selectively drive the first wires and the second wires. The control circuit executes a resetting operation to change a state of the variable resistive element from a low resistance state to a high resistance state. At a time of executing the resetting operation, the control circuit increases a pulse voltage to be applied to the variable resistive element to a first voltage, and then decreases the pulse voltage to a second voltage lower than the first voltage and higher than the ground voltage.09-13-2012
20110122677SEMICONDUCTOR MEMORY DEVICE - First main bit lines correspond to at least one first memory cell. Second main bit lines correspond to at least one second memory cell. At least one sense amplifier outputs read data according to a difference between a voltage of any one of the first main bit lines and a voltage of any one of the second main bit lines. A voltage supply switching section supplies a predetermined reference voltage to one of the first main bit lines corresponding to one of the second main bit lines in which a current according to a threshold voltage of the at least one second memory cell is generated. A resistance switching section forms electrical connection between a ground node and the one of the second main bit lines in which the current according to the threshold voltage of the at least one second memory cell is generated with a predetermined resistance value.05-26-2011
20110122675Programmable Resistance Memory - A nonvolatile memory includes write circuitry that writes to a selected memory element and, in parallel, to a data latch. The memory is configured to compare the current memory address to the previous memory address and to enable a read operation from the data latch rather than a selected memory element if the current and previous memory addresses are the same.05-26-2011
20100328988NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises a memory cell array of electrically erasable programmable nonvolatile memory cells arranged in matrix, each memory cell using a variable resistor. A pulse generator is operative to generate plural types of write pulses for varying the resistance of the variable resistor in three or more stages based on ternary or higher write data. A selection circuit is operative to select a write target memory cell from the memory cell array based on a write address and supply the write pulse generated from the pulse generator to the selected memory cell.12-30-2010
20080298113Resistive memory architectures with multiple memory cells per access device - A resistive memory structure, for example, phase change memory structure, includes one access device and two or more resistive memory cells. Each memory cell is coupled to a rectifying device to prevent parallel leak current from flowing through non-selected memory cells. In an array of resistive memory bit structures, resistive memory cells from different memory bit structures are stacked and share rectifying devices.12-04-2008
20080298115Memory cell array with low resistance common source and high current drivability - In the present resistive memory array, included are a substrate, a plurality of source regions in the substrate, and a conductor connecting the plurality of source regions, the conductor being positioned adjacent to the substrate to form, with the plurality of source regions, a common source. In one embodiment, the conductor is an elongated metal body of T-shaped cross-section. In another embodiment, the conductor is a plate-like metal body.12-04-2008
20080298114Phase change memory structure with multiple resistance states and methods of programming an sensing same - A phase change memory structure with multiple resistance states and methods of forming, programming, and sensing the same. The memory structure includes two or more phrase change elements provided between electrodes. Each phase change element has a respective resistance curve as a function of programming voltage which is shifted relative to the resistance curves of other phase change elements. In one example structure using two phase change elements, the memory structure is capable of switching among four resistance states.12-04-2008
20120320662NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device in accordance with an embodiment comprises a plurality of first, second lines, a plurality of memory cells, and a control circuit. The plurality of second lines extend so as to intersect the first lines. The plurality of memory cells are disposed at intersections of the first, second lines, and each includes a variable resistor. The control circuit is configured to control a voltage applied to the memory cells. The control circuit applies a first pulse voltage to the variable resistor during a forming operation. In addition, the control circuit applies a second pulse voltage to the variable resistor during a setting operation, the second pulse voltage having a polarity opposite to the first pulse voltage. Furthermore, the control circuit applies a third pulse voltage to the variable resistor during a resetting operation, the third pulse voltage having a polarity identical to the first pulse voltage.12-20-2012
20120320661METHOD OF PROGRAMMING VARIABLE RESISTANCE ELEMENT AND NONVOLATILE STORAGE DEVICE - A method includes applying a first polarity writing voltage pulse to a metal oxide layer to change its resistance state from high to low into a write state, applying a second polarity erasing voltage pulse different from the first polarity to the metal oxide layer to change its resistance state from low to high into an erase state, and applying an initial voltage pulse having the second polarity to the metal oxide layer before first application of the writing voltage pulse, to change an initial resistance value of the metal oxide layer. R12-20-2012
20120320660WRITE AND ERASE SCHEME FOR RESISTIVE MEMORY DEVICE - A method for programming a two terminal resistive memory device, the method includes applying a bias voltage to a first electrode of a resistive memory cell of the device; measuring a current flowing through the cell; and stopping the applying of the bias voltage if the measured current is equal to or greater than a predetermined value.12-20-2012
20120320659RESISTANCE-CHANGE MEMORY DEVICE AND METHOD OF OPERATING THE SAME - Disclosed herein is a resistance-change memory device including a bit line; a voltage supplying layer; a memory element connected between the bit line and the voltage supplying layer, a resistance value of the memory element being changed in accordance with an applied voltage; and a drive controlling circuit causing a first current to flow through the bit line and causing a second current smaller than the first current to flow through the bit line, thereby controlling a resistance decreasing operation in which the memory element is made to transit from a high resistance state to a low resistance state by using the second current.12-20-2012
20120320658NONVOLATILE STATIC RANDOM ACCESS MEMORY CELL AND MEMORY CIRCUIT - A non-volatile static random access memory (NVSRAM) cell including a static random access circuit, first storage device, a second storage device, and a switch unit is provided. The static random access circuit has a first terminal and a second terminal respectively having a first voltage and a second voltage. Stored data in the first storage device and the second storage device are determined by the first voltage and the second voltage. The first storage device and the second storage device respectively have a first connection terminal and a second connection terminal. The switch unit is respectively coupled to the second connection terminals of the first storage device and the second storage device, and is controlled by a switching signal of a switch line to conduct the first storage device and the second storage device to a same bit line or a same complementary bit line.12-20-2012
20110007554SEMICONDUCTOR DEVICE - A programmable semiconductor device has a switch element in an interconnection layer, wherein in at least one of the inside of a via, interconnecting a wire of a first interconnection layer and a wire of a second interconnection layer, a contact part of the via with the wire of the first interconnection layer and a contact part of the via with the wire of the second interconnection layer, there is provided a variable electrical conductivity member, such as a member of an electrolyte material. The via is used as a variable electrical conductivity type switch element or as a variable resistance device having a contact part with the wire of the first interconnection layer as a first terminal and having a contact part with the wire of the second interconnection layer as a second terminal.01-13-2011
20130170281VARIABLE RESISTANCE MEMORY DEVICE AND METHOD FOR FABRICATING THE SAME - A variable resistance memory device includes a semiconductor substrate having an active area defined by an isolation layer extending in one direction, a gate line extending in another direction crossing the isolation layer through the isolation layer and the active area, a protective layer located over the gate line, a contact plug positioned in a partially removed space of the active area between the protective layers, and a variable resistance pattern coupled to a part of the contact plug.07-04-2013
20110038197VARIABLE RESISTANCE MEMORY AND MEMORY SYSTEM INCLUDING THE SAME - A variable resistance memory array includes at least one variable resistance memory cell, wherein each variable resistance memory cell includes a well having a first type; and a cell structure on the well, the cell structure including a structure having a second type different from the first type and a variable resistance layer on the structure.02-17-2011
20110038196Electronic Devices Containing Switchably Conductive Silicon Oxides as a Switching Element and Methods for Production and Use Thereof - In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.02-17-2011
20110038195METHOD FOR RESETTING A RESISTIVE CHANGE MEMORY ELEMENT - A method of resetting a resistive change memory element is disclosed. The method comprises performing a series of programming operations—for example, a programming pulse of a predetermined voltage level and pulse width—on a resistive change memory element in order to incrementally increase the resistance of the memory element above some predefined threshold. Prior to each programming operation, the resistive state of the memory element is measured and used to determine the parameters used in that programming operation. If this measured resistance value is above a first threshold value, the memory element is determined to already be in a reset state and no further programming operation is performed. If this measured resistance value is below a second threshold value, this second threshold value being less than the first threshold value, a first set of programming parameters are used within the programming operation. If this initial value is above the second threshold value but below the first threshold value, a second set of programming parameters are used within the programming operation.02-17-2011
20110216575NONVOLATILE MEMORY DEVICE AND NONVOLATILE MEMORY APPARATUS - According to one embodiment, a nonvolatile memory device includes a recording layer and a conductive first layer. The recording layer includes a main group element, a transition element, and oxygen. The recording layer is capable of recording information by changing reversibly between a high resistance state and a low resistance state. The first layer is made of at least one selected from a metal, a metal oxide, a metal nitride, and a metal carbide. The first layer is provided adjacent to the recording layer. The first layer includes the main group element with a concentration lower than a concentration of the main group element of the recording layer.09-08-2011
20100246239Memory device using a variable resistive element - A memory device includes a memory cell array including a plurality of memory blocks, each memory block including a plurality of memory cells, a plurality of word lines coupled to rows of the plurality of memory cells, a plurality of bit lines coupled to columns of the plurality of memory cells, and a control unit controlling an erase operation so that erase data is simultaneously written in the plurality of memory cells corresponding to an erase unit. A first erase mode may include a first erase unit and a first erase data pattern. A second erase mode may include a second erase unit and a second erase pattern. At least one of the first and second erase units and the first and second erase data patterns are different.09-30-2010
20110235405PROGRAMMING NON-VOLATILE STORAGE ELEMENT USING CURRENT FROM OTHER ELEMENT - A non-volatile storage apparatus includes a set of Y lines, a common X line, multiple storage elements each of which is connected to the common X line, and control circuitry in communication with the common X line and the set of Y lines. The multiple data storage elements are capable of being in a first state or a second state. The control circuitry provides control signals to the common X line and the set of Y lines to change a first data storage element of the multiple data storage elements from the first state to the second state by passing a current into the first data storage element from a different Y line through a different storage element. The control circuitry provides control signals to the common X line and the set of Y lines to sequentially change additional data storage elements of the multiple data storage elements from the first state to the second state by passing currents into the additional data storage elements from data storage elements of the multiple data storage elements that were previously changed to the second state and their associated different Y lines.09-29-2011
20110235404PULSE RESET FOR NON-VOLATILE STORAGE - A non-volatile storage system includes a substrate, control circuitry on the substrate, a three dimensional memory array (above the substrate) that includes a plurality of memory cells with reversible resistance-switching elements, and circuits to SET and RESET the resistance-switching elements. The circuits that RESET the resistance-switching elements provide a pulse to the memory cells that is large enough in magnitude to SET and RESET the memory cells, and long enough to potentially RESET the memory cell but not long enough to SET the memory cells.09-29-2011
20110235402SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a semiconductor memory device includes a first cell array includes memory cells and reference cells, a second cell array located adjacent to the first cell array in a first direction, a third cell array located adjacent to the first cell array in a second direction crossing the first direction, a fourth cell array located adjacent to the second cell array in the second direction, and a sense amplifier connected to the first to fourth cell array and configured to compare a current through a memory cell with a current through a reference cell to determine the data of the memory cell. A reference cell is selected from a cell array which is diagonally opposite to a cell array as a read target.09-29-2011
20110235401NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device according to an embodiment herein includes a memory cell array. The memory cell array includes memory cells each provided between a first line and a second line and each including a variable resistor. A control circuit applies through the first and second lines a voltage necessary for a forming operation of the memory cell. A current limiting circuit limits a value of a current flowing across the memory cell during the forming operation to a certain limit value. The control circuit repeats an operation of applying the voltage by setting the limit value to a certain value and an operation of changing the limit value from the certain value, until forming of the memory cell is achieved.09-29-2011
20110235398SEMICONDUCTOR MEMORY DEVICE AND OPERATION METHOD THEREOF - A semiconductor memory device in accordance with an embodiment includes: a memory cell array having memory cells disposed at an intersection of first lines and second lines; and a control circuit configured to execute a read operation, thereby determining a resistance state of the selected one of the memory cells. The read operation is an operation configured to execute a sensing operation multiple times and aggregate determination results thereof. The sensing operation is configured such that a first voltage is applied to selected ones of the first lines and a second voltage lower than the first voltage is applied to a single selected one of the second lines. The control circuit suspends application of the first voltage to the first line connected to the selected one of the memory cells determined to be in a first resistance state in one of the sensing operations, and executes the next sensing operation.09-29-2011
20110235397NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - A memory cell array includes a memory cell having a variable resistance element and disposed between first and second wirings. A control circuit provides a selected first wiring with a first voltage and provide a selected second wiring with a second voltage having a lower voltage value than the first voltage. A current limitation circuit controls a cell current below a first current. It includes a first current generation circuit for storing a cell current at a first point of time and generating a first current of α times the stored cell current. It also includes a second current generation circuit for generating a second current of (β/α) times the cell current at a second point of time. A determination circuit outputs a control signal when the second current exceeds the stored current. The first current generation circuit newly stores a stored current according to the control signal.09-29-2011
20110235396SEMICONDUCTOR MEMORY DEVICE AND SEMICONDUCTOR DEVICE - A semiconductor memory device includes a memory cell array, a first control circuit, and a second control circuit. The first control circuit is configured to apply a first voltage to a selected first line. The second control circuit is configured to apply a second voltage having a voltage value higher than that of the first voltage to a selected second line. The first control circuit includes a detecting circuit. The detecting circuit is configured to detect a leak current to flow from the second line to the first line through a memory cell during a forming operation for bringing the memory cell into a state that allows the memory cell to shift between a high resistance state and a low resistance state. The second control circuit includes a current supply circuit, and a compensating circuit. The current supply circuit is configured to supply a constant current to the second line during the forming operation. The compensating circuit is configured to supply a compensating current having the same current value as that of the leak current to the second line during the forming operation based on the leak current detected by the detecting circuit.09-29-2011
20110235393Nonvolatile storage device - A nonvolatile storage device includes: a plurality of memory mats each including a plurality of memory cells; a plurality of plate electrodes each provided for every individual one of the memory mats and each used for applying a voltage to the memory cells; a power-supply section configured to apply a voltage to each of the plate electrodes; a switch circuit having a plurality of switches provided between the power-supply section and each of the plate electrodes and between the plate electrodes; and a control section configured to control the switch circuit in order to disconnect the plate electrodes from the power-supply section and to connect the plate electrodes to each other in order to carry out electrical charging and discharging operations among the plate electrodes.09-29-2011
20110235391Reference Cell Write Operations At A Memory - A method of selecting a reference circuit for a write operation is disclosed. The method comprises selecting a reference circuit for a write operation based on an output of a row decode circuit and a column decode circuit. The reference circuit is programmed concurrently with a write operation of at least one of a plurality of memory cells in a memory array without requiring an external reference circuit write command.09-29-2011
20110235390HIGH DENSITY MEMORY DEVICE - A memory device and a method of forming the same are provided. The memory device includes a substrate; a set of electrodes disposed on the substrate; a dielectric layer formed between the set of electrodes; and a transition metal oxide layer formed between the set of electrodes, the transition metal oxide layer configured to undergo a metal-insulator transition (MIT) to perform a read or write operation.09-29-2011
20100232210SEMICONDUCTOR MEMORY DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor memory device includes variable resistance elements arranged in a memory area and configured to store data according to a resistance variation, each of the variable resistance elements having a first terminal electrically connected to a first line and a second terminal electrically connected to a second line, and dummy elements arranged in the memory area, formed of the same material as the variable resistance element and electrically isolated.09-16-2010
20100232209CONTROL CIRCUIT FOR FORMING PROCESS ON NONVOLATILE VARIABLE RESISTIVE ELEMENT AND CONTROL METHOD FOR FORMING PROCESS - A nonvolatile semiconductor memory device can carry out a forming process simultaneously on the nonvolatile variable resistive elements of memory cells and make the forming time shorter. The nonvolatile semiconductor memory device has a forming detection circuit provided between the memory cell array and the second selection line (bit line) decoder. The forming detection circuit detects the completion of the forming process for memory cells by measuring the fluctuation in the potential of second selection lines or the current flowing through the second selection lines when applying a voltage pulse for a forming process through the second selection lines simultaneously to the memory cells on which a forming process is to be carried out connected to the same first selection line (word line), and prevents a voltage from being applied to the second selection lines connected to the memory cells where the completion of the forming process is detected.09-16-2010
20100232208METHOD OF EXECUTING A FORMING OPERATION TO VARIABLE RESISTANCE ELEMENT - A method of executing a forming operation to a variable resistance element to render a resistance value of the variable resistance element capable of transition, the variable resistance element being included in a memory cell connected between a first wiring and a second wiring and changing the resistance value by electrical control, comprises applying a voltage required to execute the forming operation to the variable resistance element between the first and second wirings and changing the first wiring to a floating state.09-16-2010
20100232207NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD OF RESETTING THE SAME - A nonvolatile semiconductor memory device includes: a plurality of memory cell arrays stacked on a semiconductor substrate and including a plurality of first wires, a plurality of second wires and memory cells disposed at intersections of the first wires and the second wires and having a rectifier element and a variable resistive element are connected in series; and a control circuit configured to selectively drive the first wires and the second wires. The control circuit executes a resetting operation to change a state of the variable resistive element from a low resistance state to a high resistance state. At a time of executing the resetting operation, the control circuit increases a pulse voltage to be applied to the variable resistive element to a first voltage, and then decreases the pulse voltage to a second voltage lower than the first voltage and higher than the ground voltage.09-16-2010
20100232206NON-VOLATILE MEMORY READ/WRITE VERIFY - An apparatus and associated method for writing data to a non-volatile memory cell, such as a resistive random access memory (RRAM) cell. In some embodiments, a control circuitry is configured to write a logic state to a resistive sense element while simultaneously verifying the logic state of the resistive sense element.09-16-2010
20100232205Programmable resistance memory - A memory includes an interface through which it provides access to memory cells, such as phase change memory cells. Such access permits circuitry located on a separate integrated circuit to provide access signals, including read and write signals suitable for binary or multi-level accesses.09-16-2010
20100232204RESISTANCE VARIABLE ELEMENT, NONVOLATILE SWITCHING ELEMENT, AND RESISTANCE VARIABLE MEMORY APPARATUS - A resistance variable element comprises a first electrode (09-16-2010
20110249486RESISTANCE VARIABLE MEMORY APPARATUS - A resistance variable memory apparatus (10-13-2011
20120087175Asymmetric Write Current Compensation - An apparatus and method for compensating for asymmetric write current in a non-volatile unit cell. The unit cell comprises a switching device and an asymmetric resistive sense element (RSE), such as an asymmetric resistive random access memory (RRAM) element or an asymmetric spin-torque transfer random access memory (STRAM) element. The RSE is physically oriented within the unit cell relative to the switching device such that a hard direction for programming the RSE is aligned with an easy direction of programming the unit cell, and an easy direction for programming the RSE is aligned with a hard direction for programming the unit cell.04-12-2012
20120087174Two Terminal Re Writeable Non Volatile Ion Transport Memory Device - A memory using mixed valence conductive oxides is disclosed. The memory includes a mixed valence conductive oxide that is less conductive in its oxygen deficient state and a mixed electronic ionic conductor that is an electrolyte to oxygen and promotes an electric field effective to cause oxygen ionic motion.04-12-2012
20120087173MEMORY ELEMENT, STACKING, MEMORY MATRIX AND METHOD FOR OPERATION - Disclosed is a memory element, a stack, and a memory matrix in which the memory element can be used. Also disclosed is a method for operating the memory matrix, and to a method for determining the true value of a logic operation in an array comprising memory elements. The memory element has at least a first stable state 0 and a second stable state 1. By applying a first write voltage V04-12-2012
20120087172SEMICONDUCTOR MEMORY AND SYSTEM - A semiconductor memory includes a real memory cell including a selection transistor and a resistance variable element which are connected in series between a first voltage line and a second voltage line through a connection node, a real amplification transistor having a gate connected to the connection node, a source connected to a reference voltage line, and a drain connected to a real read line, and a sense amplifier to determine a logic held in the real memory cell by receiving a voltage of the real read line varied with a voltage generated in the connection node by resistance dividing between a source/drain resistance of the selection transistor, and the resistance variable element, the selection transistor receiving a read control voltage at the gate thereof.04-12-2012
20120087171SEMICONDUCTOR MEMORY DEVICE INCLUDING VARIABLE RESISTANCE ELEMENTS AND MANUFACTURING METHOD THEREOF - A semiconductor memory device with a variable resistance element includes a plurality of active areas isolated from one another by an isolation layer formed in a substrate, a plurality of word lines crossing over the plurality of active areas, an auxiliary source line disposed between two selected word lines and commonly connected to at least two active areas among the plurality of active areas between the two selected word lines, and a plurality of contact plugs each connected to a corresponding active area.04-12-2012
20120092920Resistive Memory Element and Use Thereof - A resistive memory element that includes an element body and at least a pair of electrodes opposed to each other with at least a portion of the element body interposed therebetween. The element body is made of an oxide semiconductor which has a composition represented by the general formula: (Ba04-19-2012
20120092919Resistive Memory Element and Use Thereof - A resistive memory element that includes an element body and at least a pair of electrodes opposed to each other with at least a portion of the element body interposed therebetween. The element body is made of an oxide semiconductor as a polycrystalline body, which has a composition represented by the general formula: Ti04-19-2012
20120327702NONVOLATILE MEMORY ELEMENT AND NONVOLATILE MEMORY DEVICE - A nonvolatile memory element includes: a first electrode layer; a second electrode layer; and a variable resistance layer which is placed between the electrode layers, and whose resistance state reversibly changes between a high resistance state and a low resistance state based on a polarity of a voltage applied between the electrode layers. The variable resistance layer is formed by stacking a first oxide layer including an oxide of a first transition metal and a second oxide layer including an oxide of a second transition metal which is different from the first transition metal. At least one of the following conditions is satisfied: (1) a dielectric constant of the second oxide layer is larger than a dielectric constant of the first oxide layer; and (2) a band gap of the second oxide layer is smaller than a band gap of the first oxide layer.12-27-2012
20120327701MEMORY ARRAY ARCHITECTURE WITH TWO-TERMINAL MEMORY CELLS - A non-volatile memory device includes a word line extending along a first direction; a bit line extending along a second direction; a memory unit having a read transistor coupled to the bit line, at least one two-terminal memory cell, and a select transistor, the two-terminal memory cell having a first end coupled to the word line and a second end coupled to a gate of the read transistor. The second end of the two-terminal memory cell is coupled to a common node shared by a drain of the select transistor and the gate of the read transistor.12-27-2012
20120287697SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device crystallizes variable resistive element material layers arranged on side surfaces of multiple semiconductor layers in a stacked structure concurrently by applying a first current to any one of semiconductor layers in the stacked structure, and thereafter applies a second current to semiconductor layers other than a semiconductor layer to which the first current was applied.11-15-2012
20120287698Using a Bit Specific Reference Level to Read a Memory - A voltage derived from accessing a selected bit using one read current may be utilized to read a selected bit of an untriggered phase change memory after the read current is changed. As a result, different reference voltages may be used to sense the state of more resistive versus a less resistive selected cells. The resulting read. window or margin may be improved in some embodiments.11-15-2012
20100208508Multi-level nonvolatile memory devices using variable resistive elements - Multi-level nonvolatile memory devices using variable resistive elements, the multi-level nonvolatile memory devices including a word line, a bit line, and a multi-level memory cell coupled between the word line and the bit line, the multi-level memory cell having first resistance level and a second resistance level higher than the first resistance level when the first and second write biases having the same polarity are applied thereto, and a third resistance level and a fourth resistance level ranging between the first and second resistance levels, when third and fourth write biases having different polarities from each other are applied thereto.08-19-2010
20080316797Memory Element Array - Disclosed is a memory element array comprising a plurality of memory elements arranged in an array, wherein the memory elements are switching elements each including a gap of nanometer order in which a switching phenomenon of resistance is caused by applying a predetermined voltage between electrodes, and the memory element array is provided with tunnel elements respectively connected to the switching elements in series, each of the tunnel elements preventing generation of a sneak path current flowing to another switching element at a time of applying the predetermined voltage.12-25-2008
20100202187DATA READ/ WRITE DEVICE - A data read/write device according to an example of the present invention includes a recording layer, and means for applying a voltage to the recording layer, generating a resistance change in the recording layer, and recording data. The recording layer is composed of a composite compound having at least two types of cation elements, at least one type of the cation element is a transition element having a “d” orbit in which electrons have been incompletely filled, and the shortest distance between the adjacent cation elements is 0.32 nm or less.08-12-2010
20100202186SEMICONDUCTOR MEMORY DEVICE, METHOD OF MANUFACTURING THE SAME, AND METHOD OF SCREENING THE SAME - A semiconductor memory device includes first and second memory cells each including a variable resistance element and a diode and having a pillar shape, and an insulating layer provided between the first memory cell and the second memory cell and including a void. A central portion of the diode has a smaller width than widths of upper and lower portions of the diode.08-12-2010
20100202185NONVOLATILE MEMORY DEVICE AND METHOD OF WRITING DATA TO NONVOLATILE MEMORY DEVICE - A nonvolatile memory device (08-12-2010
20120140549NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises a memory cell array including first and second mutually crossing lines and electrically erasable programmable memory cells arranged at intersections of the first and second lines, each memory cell containing a variable resistor operative to nonvolatilely store the resistance thereof as data and a first non-ohmic element operative to switch the variable resistor; and a clamp voltage generator circuit operative to generate a clamp voltage required for access to the memory cell and applied to the first and second lines. The clamp voltage generator circuit has a temperature compensation function of compensating for the temperature characteristic of the first non-ohmic element.06-07-2012
20120140548SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, semiconductor memory device includes: semiconductor substrate; parallel first lines stacked on substrate; parallel second lines intersecting first lines; memory cell array including memory cells at intersections of first and second lines and each including variable resistance element and selecting element series-connected together; first control circuit provided in second region of substrate adjoining first region immediately under array; second control circuit provided in first region of substrate; and dummy lines formed in same layer as second lines, such that they intersect first lines in region above first control circuit. First control circuit applies first voltage to selected first line. Second control circuit applies second voltage lower than first voltage to selected second line, and to dummy lines, third voltage by which potential difference applied to memory cells at intersections of selected first line and dummy lines becomes lower than on-voltage of selecting element.06-07-2012
20120140546Multi-Bit Resistance-Switching Memory Cell - A non-volatile storage apparatus comprises a set of Y lines, a set of X lines and a plurality of memory cells in communication with the set of X lines and the set of Y lines. Each memory cell of the plurality of memory cells includes a resistance element in a static resistance condition and two or more reversible resistance-switching elements. The resistance element in the static resistance condition and the two or more reversible resistance-switching elements are connected to different Y lines of the set of Y lines. The resistance element in the low resistance state and the two or more reversible resistance-switching elements are connected to a common X line of the set of X lines. One or multiple bits of data are programmed into a particular memory cell of the plurality of memory cells by causing current flow between Y lines connected to the particular memory cell.06-07-2012
20130010523MEMORY SYSTEM WITH DATA LINE SWITCHING SCHEME - A storage system includes a three-dimensional memory array that has multiple layers of non-volatile storage elements grouped into blocks. Each block includes a subset of first selection circuits for selectively coupling a subset of array lines (e.g. bit lines) of a first type to respective local data lines. Each block includes a subset of second selection circuits for selectively coupling a subset of the respective local data lines to global data lines that are connected to control circuitry. To increase the performance of memory operations, the second selection circuits can change their selections independently of each other.01-10-2013
20130010527RESISTIVE MEMORY - The present disclosure includes resistive memory devices and systems having resistive memory cells, as well as methods for operating the resistive memory cells. One memory device embodiment includes at least one resistive memory element, a programming circuit, and a sensing circuit. For example, the programming circuit can include a switch configured to select one of N programming currents for programming the at least one resistive memory element, where each of the N programming currents has a unique combination of current direction and magnitude, with N corresponding to the number of resistance states of the at least one memory element. In one or more embodiments, the sensing circuit can be arranged for sensing of the N resistance states.01-10-2013
20130010524MEMORY CELL - Methods, and circuits, are disclosed for operating a programmable memory device. One method embodiment includes storing a value as a state in a first memory cell and as a complementary state in a second memory cell. Such a method further includes determining the state of the first memory cell using a first self-biased sensing circuit and the complementary state of the second memory cell using a second self-biased sensing circuit, and comparing in a differential manner an indication of the state of the first memory cell to a reference indication of the complementary state of the second memory cell to determine the value.01-10-2013
20130010526MULTI-LEVEL MEMORY CELL - Some embodiments include a memory device and methods of forming the same. The memory device can include an electrode coupled to a memory element. The electrode can include different materials located at different portions of the electrode. The materials can create different dielectrics contacting the memory elements at different locations. Various states of the materials in the memory device can be used to represent stored information. Other embodiments are described.01-10-2013
20130010522NONVOLATILE MEMORY DEVICE AND METHOD FOR PROGRAMMING NONVOLATILE MEMORY ELEMENT - A nonvolatile memory device (01-10-2013
20130010529NONVOLATILE MEMORY ELEMENT, MANUFACTURING METHOD THEREOF, NONVOLATILE MEMORY DEVICE, AND DESIGN SUPPORT METHOD FOR NONVOLATILE MEMORY ELEMENT - A nonvolatile memory element includes a variable resistance layer located between a lower electrode and an upper electrode and having a resistance value that reversibly changes based on electrical signals applied between these electrodes. The variable resistance layer includes at least two layers: a first variable resistance layer including a first transition metal oxide; and a second variable resistance layer including a second transition metal oxide and a transition metal compound. The second transition metal oxide has an oxygen content atomic percentage lower than an oxygen content atomic percentage of the first transition metal oxide, the transition metal compound contains either oxygen and nitrogen or oxygen and fluorine, and the second transition metal oxide and the transition metal compound are in contact with the first variable resistance layer.01-10-2013
20130016552SEMICONDUCTOR MEMORY DEVICE FEATURING SELECTIVE DATA STORAGE IN A STACKED MEMORY CELL STRUCTURE - A semiconductor device including: a first memory cell including a non-volatile first variable resistance element that stores data by varying a resistance value and a selection transistor that selects the first variable resistance element; a first memory layer provided with more than one such first memory cell arranged in a plane; a second memory cell including a non-volatile second variable resistance element that stores data by varying a resistance value and a selection diode that selects the second variable resistance element; and a second memory layer provided with more than one such second memory cell arranged in a plane; wherein more than one such second memory layer is stacked over the first memory layer.01-17-2013
20110149635STORAGE DEVICE AND INFORMATION RERECORDING METHOD - A storage device capable of decreasing the number of voltages necessitating control and decreasing peripheral circuit size is provided. A first pulse voltage (VBLR) is supplied from a first power source through a bit line BLR to an electrode of a variable resistive element. A second pulse voltage (VWL) for selecting a cell is supplied from a second power source through a word line WL to a control terminal of a transistor. A third pulse voltage (VBLT) is supplied from a third power source though a bit line BLT to a second input/output terminal of the transistor. At the time of rewriting information, the voltage value (VBLT) of the third power source is adjusted by an adjustment circuit. Thereby, a cell voltage and a cell current are changed (decreased or increased).06-23-2011
20110157960Nonvolatile Memory Devices and Related Methods and Systems - Nonvolatile memory devices are provided including a memory cell array having a plurality of stacked memory layers and a rectifier configured to select memory cells constituting each memory layer sharing a word line or a bit line with another adjacent memory layer. The nonvolatile memory devices including a word line driving unit configured to drive a first word line, connected to a first memory cell of a first memory layer to be read, at a first voltage level and drive a second word line, connected to a second memory cell of a second memory layer sharing a first bit line connected to the first memory cell, at a second voltage level. The nonvolatile memory device further includes a bit line biasing unit configured to bias the first bit line at the second voltage level and bias a second bit line, connected to a third memory cell of a third memory layer sharing the first word line, at the first voltage level. Related methods and systems are also provided herein.06-30-2011
20110157959SEMICONDUCTOR STORAGE DEVICE, MEMORY CELL ARRAY, AND A FABRICATION METHOD AND DRIVE METHOD OF A SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device is provided for solving the problem of the inability to simultaneously realize high reliability and decreased cell area. A selection electrode (06-30-2011
20110157958SEMICONDUCTOR MEMORY DEVICE AND METHOD OF OPERATING THE SAME - According to one embodiment, a semiconductor memory device comprises a memory cell array and a control circuit. The control circuit applies a certain potential difference to a selected one of the memory cells. The control circuit comprises a current mirror circuit, a reference current generating circuit, and a detecting circuit. The current mirror circuit produces a mirror current having a current value identical to that of a cell current flowing in the selected one of the memory cells. The reference current generating circuit produces a reference current, the reference current having a current value that differs from the current value of the mirror current by a certain current value. The detecting circuit detects transition of a resistance state of the selected one of the memory cells based on a magnitude relation of the mirror current and the reference current.06-30-2011
20110157957NONVOLATILE SEMICONDUCTOR INTEGRATED CIRCUIT FOR CONTROLLING SENSING VOLTAGE - A nonvolatile semiconductor integrated circuit includes a memory cell array configured to include each of memory cells having a variable resistor; a current sensing unit configured to convert a current which depends on the variable resistor of a corresponding memory cell, into a sensing voltage; and a voltage control unit configured to receive the sensing voltage for a predetermined time in response to a sensing control signal, regulate the received sensing voltage, and provide a sensing output voltage.06-30-2011
20130021838METHOD OF INSPECTING VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE AND VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE - A method of inspecting a variable resistance nonvolatile memory device detecting a faulty memory cell of a memory cell array employing a current steering element, and a variable resistance nonvolatile memory device are provided. The method of inspecting a variable resistance nonvolatile memory device having a memory cell array, a memory cell selection circuit, and a read circuit includes: determining that a current steering element has a short-circuit fault when a variable resistance element is in a low resistance state and a current higher than or equal to a predetermined current passes through the current steering element, when the resistance state of the memory cell is read using a second voltage; and determining whether the variable resistance element is in the low or high resistance state, when the resistance state of the memory cell is read using a first voltage.01-24-2013
20130021834MEMORY DEVICE AND METHOD OF MANUFACTURING THE SAME - A memory device includes a plurality of memory elements, each having a first electrode, a second electrode, and a memory layer between the first electrode and the second electrode. The plurality of memory layers are in a dotlike pattern. Two adjacent first electrodes share a same memory layer.01-24-2013
20130021835RESISTIVE RAM, METHOD FOR FABRICATING THE SAME, AND METHOD FOR DRIVING THE SAME - A resistive random access memory (ReRAM) includes a first electrode, a threshold switching layer formed over the first electrode and configured to perform a switching operation according to an applied voltage, a resistance change layer formed over the threshold switching layer, and configured to perform a resistance change operation, and a second electrode formed over the resistance change layer, wherein the threshold switching layer comprises a stoichiometric transition oxide while the resistance change layer comprises a non-stoichiometric transition metal oxide.01-24-2013
20130021837CROSS POINT NON-VOLATILE MEMORY CELL - A memory system includes an X line, a first Y line, a second Y line, a semiconductor region of a first type running along the X line, first switching material and a first semiconductor region of a second type between the first Y line and the semiconductor region of the first type, second switching material and a second semiconductor region of the second type between the second Y line and the semiconductor region of the first type, and control circuitry. The control circuitry changes the programming state of the first switching material to a first state by causing a first current to flow from the second Y line to the first Y line through the first switching material, the second switching material, the semiconductor region of the first type, the first semiconductor region of the second type and the second semiconductor region of the second type.01-24-2013
20130021836MEMORY ARCHITECTURE AND CELL DESIGN EMPLOYING TWO ACCESS TRANSISTORS - An improved memory array architecture and cell design is disclosed. In one embodiment, a memory array for an integrated circuit may comprise a plurality of memory cells. Each of the memory cells may comprise a material capable of holding a logic state and two access transistors coupled to the material. The two access transistors may be configured to access the logic state of the material, and may be independently selectable by two word lines of a plurality of word lines parallel to a first dimension.01-24-2013
20130170282VARIABLE RESISTANCE MEMORY DEVICE - A variable resistance memory device includes: first and second structures that each include a first electrode, a second electrode, and a variable resistance material layer interposed between the first and second electrodes and configured to switch between different resistance states depending on a voltage applied across the variable resistance material layer; and a material layer interposed between the first and second structures and configured to pass a bidirectional current according to a voltage applied across the material layer. The first and second structures are symmetrical with respect to the material layer.07-04-2013
20120243298METHOD AND APPARATUS PROVIDING A CROSS-POINT MEMORY ARRAY USING A VARIABLE RESISTANCE MEMORY CELL AND CAPACITANCE - The invention relates to a method and apparatus providing a memory cell array in which each resistance memory cell is connected in series to a capacitive element. Access transistors are not necessary to perform read and write operations on the memory cell. In one exemplary embodiment, the capacitive element is a capacitor.09-27-2012
20120243297RESISTANCE CHANGE TYPE MEMORY - According to one embodiment, a resistance change type memory includes first to third bit lines, a word line and a memory cell connected to the first to third bit lines and the word line. The memory cell includes a first transistor and a first memory element between the first and third bit lines, a second transistor and a second memory element between the second and third bit lines. Control terminals of the first and second transistors are connected to the word line. The resistance states of the first and second memory elements change to the first or second resistance state in accordance with a write pulse.09-27-2012
20120243296SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes: plural word lines extending in a first direction; first to third bit lines extending in a second direction that intersects with the first direction; plural variable resistance elements each having a first terminal connected to either one of the first and third bit lines; plural active areas extending in a direction oblique to the first direction while intersecting with the first to third bit lines; plural select transistors provided on the active areas and each having a gate connected to a corresponding one of the word lines, and a current path whose one end is connected to a second terminal of a corresponding one of the variable resistance elements; and plural contact plugs each connecting the other end of the current path of a corresponding one of the select transistors to the second bit line.09-27-2012
20120243295NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD OF CONTROL THEREIN - A nonvolatile semiconductor memory device comprises a memory cell array, a control circuit, a current limiting circuit and a current suppression circuit. The memory cell array has a first line, a second line, and a memory cell arranged therein, the memory cell being connected between the first line and the second line and including a variable resistance element. The control circuit is configured to apply, via the first line and the second line, a voltage required in operation of the memory cell. The current limiting circuit is connected to the first line and configured to limit a current flowing in the memory cell to a certain limit value. The current suppression circuit is configured connectable to the second line and configured to suppress a current flowing in the second line according to a kind of operation on the memory cell.09-27-2012
20120243294RESISTANCE-CHANGE MEMORY - According to one embodiment, a resistance-change memory includes bit lines, word lines, a memory cell array including memory cells arranged at intersections between the bit lines and the word lines, each of the memory cells including a variable-resistance element and a diode, a control circuit configured to apply a reverse bias to the diode, and to write data to a selected memory cell, and a current limiting circuit configured to limit a current flowing to the selected memory cell in a write. The current limiting circuit controls the current flowing to the selected memory cell not to exceed a second compliance current obtained by adding a leakage current from an unselected memory cell to a predetermined first compliance current.09-27-2012
20080253164Integrated Circuit, Resistivity Changing Memory Device, Memory Module and Method of Fabricating an Integrated Circuit - According to one embodiment of the present invention, an integrated circuit includes a plurality of resistivity changing memory cells, and a plurality of conductive elements being electrically connected to the resistivity changing memory cells, at least some of the conductive elements comprising copper.10-16-2008
20080247219Resistive Random Access Memory Devices Including Sidewall Resistive Layers and Related Methods - A resistive random access memory (RRAM) device may include a first metal pattern on a substrate, a first insulating layer on the first metal pattern and on the substrate, an electrode, a second insulating layer on the first insulating layer, a resistive memory layer, and a second metal pattern. Portions of the first metal pattern may be between the substrate and the first insulating layer, and the first insulating layer may have a first opening therein exposing a portion of the first metal pattern. The electrode may be in the opening with the electrode being electrically coupled with the exposed portion of the first metal pattern. The first insulating layer may be between the second insulating layer and the substrate, and the second insulating layer may have a second opening therein exposing a portion of the electrode. The resistive memory layer may be on side faces of the second opening and on portions of the electrode, and the second metal pattern may be in the second opening with the resistive memory layer between the second metal pattern and the side faces of the second opening and between the second metal pattern and the electrode. Related methods are also discussed.10-09-2008
20100091551SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device includes: a memory cell array having memory cells; and a control circuit configured to apply a first voltage to a selected one of first wirings as well as a second voltage to a selected one of second wirings. The control circuit includes: a signal output circuit configured to output a first signal based on a first current flowing through a selected memory cell and a reference current; and a current retaining circuit configured to retain a second current flowing through the first wirings or a wiring electrically connected to the first wirings during a certain period of time. The signal output circuit is configured to determine the first current based on the second current retained by the current retaining circuit. The control circuit is configured to stop application of the first voltage to the first wirings based on the first signal.04-15-2010
20100091553SEMICONDUCTOR DEVICE HAVING RESISTANCE BASED MEMORY ARRAY AND METHOD OF OPERATION ASSOCIATED THEREWITH - In one embodiment, the semiconductor device includes a non-volatile memory cell array, a write circuit configured to write to the non-volatile memory cell array, and a control circuit. The control circuit is configured to store at least one erase indicator. The erase indicator is associated with at least a portion of the non-volatile memory cell array and indicates a logic state. The control circuit is configured to control the write circuit to write the logic state indicated by the erase indicator in the non-volatile memory cell array during an erase operation of the associated portion of the non-volatile memory cell array.04-15-2010
20100091552NONVOLATILE MEMORY DEVICE USING VARIABLE RESISTIVE ELEMENT - A nonvolatile memory device, using a resistance material, includes a memory cell array having nonvolatile memory cells arranged in a matrix, multiple bit lines, a column selection circuit and column drivers. The bit lines are coupled to columns of the nonvolatile memory cells in the memory cell array. The column selection circuit selects at least one bit line in response to column selection signals. Each column driver supplies a column selection signal, and includes a first charge unit that charges an output port of the column driver to a first voltage level in response to a first charge signal, a second charge unit that charges the output port of the column driver to a second voltage level from the first voltage level in response to a second charge signal, and a current controller that controls a current path from the second charge unit to the first charge unit.04-15-2010
20080239787LARGE ARRAY OF UPWARD POINTING P-I-N DIODES HAVING LARGE AND UNIFORM CURRENT - An upward-pointing p-i-n diode formed of deposited silicon, germanium, or silicon-germanium is disclosed. The diode has a bottom heavily doped p-type region, a middle intrinsic or lightly doped region, and a top heavily doped n-type region. The top heavily doped p-type region is doped with arsenic, and the semiconductor material of the diode is crystallized in contact with an appropriate silicide, germanide, or silicide-germanide. A large array of such upward-pointing diodes can be formed with excellent uniformity of current across the array when a voltage above the turn-on voltage of the diodes is applied. This diode is advantageously used in a monolithic three dimensional memory array.10-02-2008
20100085794SET AND RESET DETECTION CIRCUITS FOR REVERSIBLE RESISTANCE SWITCHING MEMORY MATERIAL - Circuitry for performing a set or reset process for a reversible resistance-switching memory element in a memory device. A ramped voltage is applied to the memory cell and its state is constantly monitored so that the voltage can be discharged as soon as the set or reset process is completed, avoiding possible disturbs to the memory cell. One set circuit ramps the voltage using a current source, while detecting a current peak using an op-amp loop. One reset circuit ramps the voltage using an op-amp loop, while detecting a current peak by continuing to draw current at the peak current to maintain the output signal stable. Another set circuit ramps the voltage using an op-amp loop and a source-follower configuration. Another reset circuit ramps the voltage using an op-amp loop and a source-follower configuration with level shifting to reduce power consumption. Faster detection and shutoff, and stable operation, are achieved.04-08-2010
20080225571Complementary bit PCRAM sense amplifier and method of operation - A method and apparatus is disclosed for sensing the resistance state of a Programmable Conductor Random Access Memory (PCRAM) element using complementary PCRAM elements, one holding the resistance state being sensed and the other holding a complementary resistance state. A sense amplifier detects voltages discharging through the high and low resistance elements to determine the resistance state of an element being read.09-18-2008
20110261608Self-Repairing Memristor and Method - A self-repairing memristor (10-27-2011
20110261607Arrays Of Vertically Stacked Tiers Of Non-Volatile Cross Point Memory Cells, Methods Of Forming Arrays Of Vertically Stacked Tiers Of Non-Volatile Cross Point Memory Cells, And Methods Of Reading A Data Value Stored By An Array Of Vertically Stacked Tiers Of Non-Volatile Cross Point Memory Cells - An array of vertically stacked tiers of non-volatile cross point memory cells includes a plurality of horizontally oriented word lines within individual tiers of memory cells. A plurality of horizontally oriented global bit lines having local vertical bit line extensions extend through multiple of the tiers. Individual of the memory cells comprise multi-resistive state material received between one of the horizontally oriented word lines and one of the local vertical bit line extensions where such cross, with such ones comprising opposing conductive electrodes of individual memory cells where such cross. A plurality of bit line select circuits individually electrically and physically connects to individual of the local vertical bit line extensions and are configured to supply a voltage potential to an individual of the global horizontal bit lines. Other embodiments and aspects are disclosed.10-27-2011
20110261606Arrays Of Vertically Stacked Tiers Of Non-Volatile Cross Point Memory Cells, Methods Of Forming Arrays Of Vertically Stacked Tiers Of Non-Volatile Cross Point Memory Cells, And Methods Of Reading A Data Value Stored By An Array Of Vertically Stacked Tiers Of Non-Volatile Cross Point Memory Cells - An array of vertically stacked tiers of non-volatile cross point memory cells includes a plurality of horizontally oriented word lines within individual tiers of memory cells. A plurality of horizontally oriented global bit lines having local vertical bit line extensions extend through multiple of the tiers. Individual of the memory cells comprise multi-resistive state material received between one of the horizontally oriented word lines and one of the local vertical bit line extensions where such cross, with such ones comprising opposing conductive electrodes of individual memory cells where such cross. A plurality of bit line select circuits individually electrically and physically connects to individual of the local vertical bit line extensions and are configured to supply a voltage potential to an individual of the global horizontal bit lines. Other embodiments and aspects are disclosed.10-27-2011
20130176766STATEFUL NEGATIVE DIFFERENTIAL RESISTANCE DEVICES - A stateful negative differential resistance device includes a first conductive electrode and a second conductive electrode. The device also includes a first material with a reversible, nonvolatile resistance that changes based on applied electrical energy and a second material comprising a differential resistance that is negative in a locally active region. The first material and second material are sandwiched between the first conductive electrode and second conductive electrode. A method for using a stateful NDR device includes applying programming energy to the stateful NDR device to set a state of the stateful NDR device to a predetermined state and removing electrical power from the stateful NDR device. Power-up energy is applied to the stateful NDR device such that the stateful NDR device returns to the predetermined state.07-11-2013
20130176767STORAGE ELEMENT READING USING RING OSCILLATOR - Methods and apparatus are provided for use with data storage elements. A ring oscillator is coupled to a selected element within an array such that a feedback loop is defined. A period at oscillation for the ring oscillator is compared to a reference value. A data value stored within the selected element is determined accordingly. Stored data values remain essentially unaltered when accessed and read by way of the ring oscillator. Memory arrays having memristor or other storage elements can be used according to the present teachings.07-11-2013
20130170278RESISTIVE RANDOM ACCESS MEMORY CELL AND RESISTIVE RANDOM ACCESS MEMORY MODULE - A resistive random access memory (RRAM) cell including a first electrode, a second electrode, and a plurality of repeated sets of layers is provided. Each of the sets of layers includes a resistance-changing layer, a barrier layer, and an ionic exchange layer between the resistance-changing layer and the barrier layer, wherein a thickness of each of the resistance-changing layer, the barrier layer and the ionic exchange layer exceeds a Fermi wavelength, and the thickness each of the resistance-changing layer and ionic exchange layer are less than an electron mean free path. Further, a RRAM module including the aforesaid RRAM cell and a switch is also provided.07-04-2013
20130170285Drive Method for Memory Element and Storage Device Using Memory Element - In a drive method for a memory element that includes an insulating substrate, a first electrode and a second electrode provided on the insulating substrate, and an inter-electrode gap portion provided between the first electrode and the second electrode and having a gap of the order of nanometers where a phenomenon of a change in resistance value between the first and second electrodes occurs, and that can perform a transition from a predetermined low-resistance state to a predetermined high-resistance state and a transition from the high-resistance state to the low-resistance state, a current pulse is applied to the memory element by a constant current circuit upon the transition from the high-resistance state to the low-resistance state.07-04-2013
20080219040Method to prevent overreset - A method of addressing a memory cell includes applying a plurality of pulses to the memory cell, wherein a subsequent pulse has an amplitude greater than an initial pulse. In addition, a memory includes a memory cell and a control circuit configured to address the memory cell by applying a plurality of pulses to the memory cell, wherein a subsequent pulse has an amplitude greater than an initial pulse.09-11-2008
20080219039Nonvolatile memory elements with metal-deficient resistive-switching metal oxides - Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed by depositing a metal-containing material on a silicon-containing material. The metal-containing material may be oxidized to form a resistive-switching metal oxide. The silicon in the silicon-containing material reacts with the metal in the metal-containing material when heat is applied. This forms a metal silicide lower electrode for the nonvolatile memory element. An upper electrode may be deposited on top of the metal oxide. Because the silicon in the silicon-containing layer reacts with some of the metal in the metal-containing layer, the resistive-switching metal oxide that is formed is metal deficient when compared to a stoichiometric metal oxide formed from the same metal.09-11-2008
20120250394RESISTANCE CHANGE MEMORY - According to one embodiment, a resistance change memory includes a memory cell including a resistance change element and a stacked layer structure which are connected in series, a control circuit configured to control a first operation of changing the resistance change element from a first resistance value to a second resistance value lower than the first resistance value, and a voltage pulse generating circuit configured to generate a first voltage pulse to be applied to the memory cell in the first operation. The stacked layer structure includes two conductive layers and an insulating layer formed between the two conductive layers. Amplitude of the first voltage pulse is in a first voltage area in which the stacked layer structure functions as a capacitor. The first voltage pulse satisfies Ron×C10-04-2012
20120250393SEMICONDUCTOR MEMORY DEVICE AND CONTROLLING METHOD THEREOF - According to one embodiment, a semiconductor memory device includes a memory cell array in which memory cells each including at least a rectification element and a variable resistance element, which are connected in series, a peripheral circuit, a sense amplifier configured to sense the memory cells via the peripheral circuit, and a control circuit configured to control operations of the memory cell array and the sense amplifier. The control circuit is configured to boost a potential of a selected bit line, which is one of a first even bit line and a first odd bit line of a first side, by charge sharing of a second even bit line and a second odd bit line which are nonselected bit lines and physically neighbor the first even bit line or the first odd bit line of the first side, which is connected to a selected one of the memory cells.10-04-2012
20130170284Arrays Of Vertically Stacked Tiers Of Non-Volatile Cross Point Memory Cells, Methods Of Forming Arrays Of Vertically Stacked Tiers Of Non-Volatile Cross Point Memory Cells, And Methods Of Reading A Data Value Stored By An Array Of Vertically Stacked Tiers Of Non-Volatile Cross Point Memory Cells - An array of vertically stacked tiers of non-volatile cross point memory cells includes a plurality of horizontally oriented word lines within individual tiers of memory cells. A plurality of horizontally oriented global bit lines having local vertical bit line extensions extend through multiple of the tiers. Individual of the memory cells comprise multi-resistive state material received between one of the horizontally oriented word lines and one of the local vertical bit line extensions where such cross, with such ones comprising opposing conductive electrodes of individual memory cells where such cross. A plurality of bit line select circuits individually electrically and physically connects to individual of the local vertical bit line extensions and are configured to supply a voltage potential to an individual of the global horizontal bit lines. Other embodiments and aspects are disclosed.07-04-2013
20130135922Floating Source Line Architecture for Non-Volatile Memory - A method and apparatus for writing data to a non-volatile memory cell, such as an STRAM memory cell or an RRAM memory cell. In some embodiments, a plurality of N non-volatile memory cells, where N is a greater than two, are connected to a common floating source line. A write circuit is adapted to program a selected memory cell of the plurality to a selected data state by passing a write current of selected magnitude through the selected memory cell and concurrently passing a portion of the write current in parallel through each of the remaining N−1 memory cells of the plurality via the common floating source line.05-30-2013
20130094280Semiconductor Memory Having Both Volatile and Non-Volatile Functionality Comprising Resistive Change Material and Method of Operating - A semiconductor memory cell including a capacitorless transistor having a floating body configured to store data as charge therein when power is applied to the cell, and a non-volatile memory comprising a bipolar resistive change element, and methods of operating.04-18-2013
20130094279SEMICONDUCTOR DEVICE - A semiconductor device is provided with a lower-layer circuit including a transistor formed over a semiconductor substrate, and a memory cell array formed in an interconnection layer above the semiconductor substrate. Respective memory cells of the memory cell array are provided with a variable resistor element formed in the interconnection layer serving as a memory element. The memory cell array includes a first region directly underneath the memory cells, the first region being a region where a via for electrical coupling with the memory cell is not formed. The lower-layer circuit is disposed in such a way as to overlap at least a part of the first region.04-18-2013
20130094275STABILIZATION OF RESISTIVE MEMORY - The present disclosure includes apparatuses and methods including stabilization of resistive memory. A number of embodiments include applying a programming signal to a resistive memory cell, wherein the programming signal includes a first portion having a first polarity and a second portion having a second polarity, wherein the second polarity is opposite the first polarity.04-18-2013
20130094278Non-Volatile Memory Cell Containing an In-Cell Resistor - A non-volatile memory cell includes a first electrode, a steering element, a metal oxide storage element located in series with the steering element, a dielectric resistor located in series with the steering element and the metal oxide storage element, and a second electrode.04-18-2013
20130094277RESISTIVE MEMORY APPARATUS, LAYOUT STRUCTURE, AND SENSING CIRCUIT THEREOF - Provided is a resistive memory apparatus including a plurality of memory areas each including a main memory cell array coupled to a plurality of word lines and a reference cell array coupled to a plurality of reference word lines. Each of the memory areas shares a bit line driver/sinker with an adjacent memory area.04-18-2013
20130094276APPARATUSES AND METHODS FOR DETERMINING STABILITY OF A MEMORY CELL - Examples described include apparatuses and methods for determining stability of memory cells. Resistance variable memory cells may be used. Once a memory cell is placed in a low or high resistance state responsive to set or reset pulses, the stability of the state may be determined, such as by providing another pulse to the memory cell or otherwise stressing the cell. The another pulse may be of an opposite polarity to the set or reset pulses already applied. If the memory cell is no longer in the target state after providing the another pulse, additional set or reset pulses may be applied to achieve a stable state.04-18-2013
20130114325NON-VOLATILE RANDOM ACCESS MEMORY COUPLED TO A FIRST, SECOND AND THIRD VOLTAGE AND OPERATION METHOD THEREOF - A non-volatile random access memory (NV-RAM) and an operation method thereof are provided. The NV-RAM includes a latch unit, a switch, and a first to fourth non-volatile memory elements. First terminals of the first and the third non-volatile memory elements respectively couple to a first voltage and a second voltage. A second terminal of the first non-volatile memory element and a first terminal of the second non-volatile memory element are coupled to a first terminal of the latch unit. A second terminal of the third non-volatile memory element and a first terminal of the fourth non-volatile memory element are coupled to a second terminal of the latch unit. Second terminals of the second and the fourth non-volatile memory element are coupled to a first terminal of the switch. A second terminal of the switch is coupled to a third voltage.05-09-2013
20130114326SEMICONDUCTOR MEMORY APPARATUS AND TEST CIRCUIT THEREFOR - Disclosed is a semiconductor memory apparatus, including: a memory cell array configured to include a plurality of memory cells; a switching unit configured to be coupled to data input and output pads and control a data transfer path of data applied to the data input and output pads in response to a test mode signal; a write driver configured to drive data transferred from the switching unit and write the data in the memory cell array at a normal mode; and a controller configured to transfer the data from the switching unit to the memory cell at a test mode.05-09-2013
20130100725SYSTEM AND METHOD FOR MRAM HAVING CONTROLLED AVERAGABLE AND ISOLATABLE VOLTAGE REFERENCE - A memory has a plurality of non-volatile resistive (NVR) memory arrays, each with an associated reference voltage generating circuit coupled by a reference circuit coupling link to a reference line, the reference coupled to a sense amplifier for that NVR memory array. Reference line coupling links couple the reference lines of different NVR memory arrays. Optionally, different ones of the reference coupling links are removed or opened, obtaining respective different average and isolated reference voltages on the different reference lines. Optionally, different ones of the reference circuit coupling links are removed or opened, obtaining respective different averaged voltages on the reference lines, and uncoupling and isolating different reference circuits.04-25-2013
20130100727OVERWRITING A MEMORY ARRAY - A data storage system including a memory array including a plurality of memory devices programmable in greater than two states. A read/write control module may overwrite data in the memory array without violating a constraint during the overwrite process. The memory array may be an m×n memory array.04-25-2013
20130100726MULTI-LEVEL MEMORY CELL WITH CONTINUOUSLY TUNABLE SWITCHING - The present disclosure provides a data storage device that includes multi-level memory cells. The data storage device may include circuitry configured to write data to the multi-level memory cell. The write circuitry may include compliance circuitry configured to implement continuously tunable switching. The write circuitry may be configured to select a compliance mode for the switching, the compliance mode being selected from the group comprising current compliance and voltage compliance.04-25-2013
20130114327VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE - A variable resistance nonvolatile memory device including memory cells provided at cross-points of first signal lines and second signal lines, each memory cell including a variable resistance element and a current steering element connected to the variable resistance element in series, the variable resistance nonvolatile memory device including a write circuit, a row selection circuit, and a column selection circuit, wherein the write circuit: sequentially selects blocks in an order starting from a block farthest from at least one of the row selection circuit and the column selection circuit and finishing with a block closest to the at least one of the row selection circuit and the column selection circuit; and performs, for each of the selected blocks, initial breakdown on each memory cell included in the selected block.05-09-2013
20130114329Multilayer Memory Array - A multilayer crossbar memory array includes a number of layers. Each layer includes a top set of parallel lines, a bottom set of parallel lines intersecting the top set of parallel lines, and memory elements disposed at intersections between the top set of parallel lines and the bottom set of parallel lines. A top set of parallel lines from one of the layers is a bottom set of parallel lines for an adjacent one of the layers.05-09-2013
20130114328Low-Complexity Electronic Circuit and Methods of Forming the Same - An electronic circuit such as a latch or a sequencer includes a plurality of transistors, all of the transistors being either NMOS transistors or PMOS transistors, and dissipates less than or approximately the same amount of power as an equivalent CMOS circuit.05-09-2013
20110267870Decoders Using Memristive Switches - A decoding structure employs a main terminal (11-03-2011
20130121063MEMORY DEVICE, SEMICONDUCTOR STORAGE DEVICE, METHOD FOR MANUFACTURING MEMORY DEVICE, AND READING METHOD FOR SEMICONDUCTOR STORAGE DEVICE - A memory device that can prevent degradation in characteristics of a diode and the destruction due to the miniaturization includes: a substrate; first electrodes, a second electrode, and a third electrode that are stacked above the substrate; a variable resistance layer between the first and second electrodes; and a non-conductive layer between the second and third electrodes. The variable resistance layer includes a high-concentration variable resistance layer closer to the first electrodes, and a low-concentration variable resistance layer closer to the second electrode and having an oxygen concentration lower than that of the high-concentration variable resistance layer. The second and third electrodes and the non-conductive layer comprise the diode, and the first and second electrodes and the variable resistance layer comprise variable resistance elements, a total number of which is equal to that of the first electrodes.05-16-2013
20130128654NONVOLATILE MEMORY ELEMENT, METHOD OF MANUFACTURING NONVOLATILE MEMORY ELEMENT, METHOD OF INITIAL BREAKDOWN OF NONVOLATILE MEMORY ELEMENT, AND NONVOLATILE MEMORY DEVICE - A nonvolatile memory element includes a current steering element which bidirectionally rectifies current in response to applied voltage and a variable resistance element connected in series with the current steering element. The current steering element includes an MSM diode and an MSM diode which are connected in series and each of which bidirectionally rectifies current in response to applied voltage. The MSM diode and the MSM diode include a lower electrode, a first current steering layer, a first metal layer, a second current steering layer, and an upper electrode which are stacked in this order. The current steering element has a breakdown current which is larger than an initial breakdown current which flows in the variable resistance element at the time of initial breakdown.05-23-2013
20130128649MEMORY CELLS, SEMICONDUCTOR DEVICES INCLUDING SUCH CELLS, AND METHODS OF FABRICATION - Memory cells are disclosed, which cells include a cell material and an ion-source material over the cell material. A discontinuous interfacial material is included between the cell material and the ion-source material. Also disclosed are fabrication methods and semiconductor devices including the disclosed memory cells.05-23-2013
20130128651NONVOLATILE MEMORY DEVICE - According to one embodiment, a nonvolatile memory device includes a first conductive unit, a second conductive unit, and a memory layer. The memory layer is provided between the first conductive unit and the second conductive unit. The memory layer is capable of reversibly transitioning between a first state with a low resistance and a second state with a higher resistance than the first state due to a current supplied via the first conductive unit and the second conductive unit. The memory layer has a chalcopyrite structure.05-23-2013
20130128650DATA-MASKED ANALOG AND DIGITAL READ FOR RESISTIVE MEMORIES - An analog read circuit measures the resistance of each of a plurality of bits in an array of resistive memory elements. Data stored within a latch determines whether to selectively enable the analog read circuit. In an alternate embodiment, a sense amplifier is coupled to the latch and the array, and the data stored in the latch determines whether to selectively enable the sense amplifier.05-23-2013
20130135920ACCESS SIGNAL ADJUSTMENT CIRCUITS AND METHODS FOR MEMORY CELLS IN A CROSS-POINT ARRAY - Embodiments of the invention relate generally to semiconductors and memory technology, and more particularly, to systems, integrated circuits, and methods to generate access signals to facilitate memory operations in scaled arrays of memory elements, such as memory implemented in third dimensional memory technology formed BEOL directly on top of a FEOL substrate that includes data access circuitry. In at least some embodiments, a non-volatile memory device can include a cross-point array having resistive memory elements disposed among word lines and subsets of bit lines, and an access signal generator. The access signal generator can be configured to modify a magnitude of a signal to generate a modified magnitude for the signal to access a resistive memory element associated with a word line and a subset of bit lines. The modified magnitude can be a function of the position of the resistive memory element in the cross-point array.05-30-2013
20130141960METHODS AND SYSTEMS FOR OPERATING MEMORY ELEMENTS - Methods and systems for measuring the resistance of multiple memory elements are disclosed. The memory elements may be multi-bit memory and through precise measurement of resistance of the multi-bit memory elements, determination of how many and which memory elements fall into specific memory ranges can be accomplished. Furthermore, storage and/or display of this information may allow for the creation of resistance distribution histograms for modeling of one or more memory arrays.06-06-2013
20130128653RESISTIVE RADOM ACCESS MEMORY DEVICE, METHOD FOR MANUFACTURING THE SAME, AND METHOD FOR OPERATING THE SAME - A resistive random access memory device, a method for manufacturing the resistive random access memory device, and a method for operating the resistive random access memory device are disclosed. The resistive random access memory device includes a resistive switching memory element including two electrodes and a layer of variable-resistance material between the two electrodes, wherein the layer of variable-resistance material exhibits bipolar resistive switching behavior; and a Schottky diode including a metal layer and a p-doped semiconductor layer which contact each other, wherein the metal layer of the Schottky diode is coupled to one of the two electrodes of the resistive switching memory element. The present disclosure provides the resistive random access memory device operating in bipolar resistive switching scheme.05-23-2013
20080278988RESISTIVE SWITCHING ELEMENT - According to one aspect, an integrated circuit may comprise a first electrode, a second electrode, and a resistive switching rod extending from the first electrode to the second electrode and being at least partly embedded in a thermal barrier matrix.11-13-2008
20110216573SEMICONDUCTOR INTEGRATED CIRCUIT - According to one embodiment, a semiconductor integrated circuit includes first and second inverters, a first transistor which has a gate connected to a word line, a source connected to a first bit line, and a drain connected to an input terminal of the second inverter, a second transistor which has a gate connected to the word line, a source connected to a second bit line, and a drain connected to an input terminal of the first inverter, a first variable resistive element which has a first terminal connected to the drain of the first transistor, and a second terminal connected to an output terminal of the first inverter, and a second variable resistive element which has a first terminal connected to the drain of the second transistor, and a second terminal connected to an output terminal of the second inverter.09-08-2011
20080198645NONVOLATILE MEMORY DEVICE HAVING MEMORY AND REFERENCE CELLS - A nonvolatile memory device includes a stack-type memory cell array, a selection circuit and a read circuit. The memory cell array includes multiple memory cell layers and a reference cell layer, which are vertically laminated. Each of the memory cell layers includes multiple nonvolatile memory cells for storing data, and the reference cell layer includes multiple reference cells for storing reference data. The selection circuit selects a nonvolatile memory cell from the memory cell layers and at least one reference cell, corresponding to the selected nonvolatile memory cell, from the reference cell layer. The read circuit supplies a read bias to the selected nonvolatile memory cell and the selected reference cell corresponding to the selected nonvolatile memory cell, and reads data from the selected nonvolatile memory cell.08-21-2008
20110228593Memristive Device Based on Current Modulation by Trapped Charges - A memristive device (09-22-2011
20110228590RESISTANCE CHANGE MEMORY - A memory includes memory cells each includes a resistance change element and a diode, and each memory cell between one of row lines and one of column lines, a first decoder which selects one of the row lines as a selected row line, a second decoder which selects one of the column lines as a selected column line, a voltage pulse generating circuit which generates a voltage pulse, a voltage pulse shaping circuit which makes a rise time and a fall time of the voltage pulse longer, and a control circuit which applies the voltage pulse outputting from the voltage pulse shaping circuit to unselected column lines except the selected column line, and which applies a fixed potential to unselected row lines except the selected row line, in a data writing to a memory cell which is provided between the selected row line and the selected column line.09-22-2011
20110235400SEMICONDUCTOR MEMORY DEVICE AND METHOD FOR CONTROLLING THE SAME - According to one embodiment, a method for controlling a semiconductor device comprises determining a select bit number for a group of memory cells each includes a variable-resistance element, setting a first voltage corresponding to the select bit number, applying the set first voltage to the memory cell group, and performing verify read on the memory cell group to which the first voltage has been applied and determining whether or not the memory cell group passes the verify read. If the memory cell group is determined not to pass the verify read, the number of bits corresponding to passed memory cells is subtracted from the select bit number, and the first voltage corresponding to the decreased select bit number is set again.09-29-2011
20110235399NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device according to an embodiment includes a memory cell array configured by plural memory cells each including a variable resistor and each provided between first and second lines. A control circuit applies to a memory cell through the first and second lines a writing voltage for writing data or a reading voltage for reading data. A sense amplifier circuit senses data retained in a memory cell based on a current flowing through the first line. In a data writing operation, the control circuit applies a writing voltage to each of n number of memory cells configuring one unit such that the memory cells may be supplied with different resistance values. In a data reading operation, the sense amplifier circuit compares level relationship of the resistance values of n number of memory cells configuring one unit and reads out n! patterns of data from the one unit.09-29-2011
20110235395SEMICONDUCTOR MEMORY DEVICE AND WRITING METHOD THEREOF - A memory cell array includes memory transistors each including a gate insulating film formed on a semiconductor substrate, a gate electrode formed on the gate insulating film, and a variable resistance film formed on the gate electrode and made of a variable resistance material having variable resistance and is configured by plural memory strings disposed with longer direction extending in a first direction and including plural series-connected memory transistors. Word lines are disposed with a longer direction extending in a second direction orthogonal to the first direction, and connected commonly to the gate electrodes of the plural memory transistors lined up in the second direction. A plate line is disposed to sandwich the variable resistance film with the gate electrode. First voltage terminals supply a certain voltage to first ends of the plural memory strings. Second voltage terminals supply a certain voltage to second ends of the plural memory strings.09-29-2011
20130148405SEMICONDUCTOR MEMORY DEVICE AND METHOD OF PERFORMING BURN-IN TEST ON THE SAME - A semiconductor memory device includes a cell array having a plurality of memory cells, each memory cell including a resistive element and a cell transistor between a bit line and a source line, and a source line voltage supply unit configured to supply, in a normal mode, a reference source line voltage to the source line, and in a test mode, a first source line voltage to the source line when data in a first state is recorded and a second source line voltage to the source line when data in a second state is recorded, the first source line voltage being lower than the reference source line voltage, and the second source line voltage being higher than the reference source line voltage.06-13-2013
20130148409CIRCUIT AND SYSTEM OF USING FINFET FOR BUILDING PROGRAMMABLE RESISTIVE DEVICES - Junction diodes or MOS devices fabricated in standard FinFET technologies can be used as program selectors or One-Time Programmable (OTP) element in a programmable resistive device, such as interconnect fuse, contact/via fuse, anti-fuse, or emerging nonvolatile memory such as MRAM, PCRAM, CBRAM, or RRAM. The MOS or diode can be built on at least one fin structure or at least one active region that has at least one first active region and a second active region. The first and the second active regions can be isolated by a dummy MOS gate or silicide block layer (SBL) to construct a diode.06-13-2013
20130148410NON-VOLATILE VARIABLE CAPACITIVE DEVICE INCLUDING RESISTIVE MEMORY CELL - A non-volatile variable capacitive device includes a capacitor defined over a substrate, the capacitor having an upper electrode and a resistive memory cell having a first electrode, a second electrode, and a switching layer provided between the first and second electrodes. The resistive memory cell is configured to be placed in a plurality of resistive states according to an electrical signal received. The upper electrode of the capacitive device is coupled to the second electrode of the resistive memory cell. The resistive memory cell is a two-terminal device.06-13-2013
20130148408METHOD OF PROGRAMMING VARIABLE RESISTANCE NONVOLATILE MEMORY ELEMENT - A method of programming a variable resistance nonvolatile memory element that removes a defect in a resistance change, ensures an operation widow, and stably sustains a resistance change operation, the method including: applying, when the detect in the resistance change occurs in the variable resistance nonvolatile memory element, a recovery voltage pulse at least once to the variable resistance nonvolatile memory element, the recovery voltage pulse including: a first recovery voltage pulse that has an amplitude greater than amplitudes of a normal high resistance writing voltage pulse and a low resistance writing voltage pulse; and a second recovery voltage pulse that is the low resistance writing voltage pulse following the first recovery voltage pulse.06-13-2013
20130148407NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND READ METHOD FOR THE SAME - A nonvolatile semiconductor memory device includes: word lines; bit lines formed so as to three-dimensionally cross the word lines; and a cross-point cell array including cells each provided at a corresponding one of three-dimensional cross-points of the word lines and the bit lines. The cells include: a memory cell including a memory element that operates as a memory by reversibly changing in resistance value between at least two states based on an electrical signal; and an offset detection cell having a constant resistance value that is higher than the resistance value of the memory element in a high resistance state which is a state of the memory element when operating as the memory.06-13-2013
20130148406NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND READ METHOD FOR THE SAME - A cross point nonvolatile memory device capable of suppressing sneak-current-caused reduction in sensitivity of detection of a resistance value of a memory element is provided. The device includes perpendicular bit and word lines; a cross-point cell array including memory cells each having a resistance value reversibly changing between at least two resistance states according to electrical signals, arranged on cross-points of the word and bit lines; an offset detection cell array including an offset detection cell having a resistance higher than that of the memory cell in a high resistance state, the word lines being shared by the offset detection cell array; a read circuit (a sense amplifier) that determines a resistance state of a selected memory cell based on a current through the selected bit line; and a current source which supplies current to the offset detection cell array in a read operation period.06-13-2013
20130094281METHOD FOR MEASURING DATA RETENTION CHARACTERISTIC OF RESISTIVE RANDOM ACCESS MEMORY DEVICE - A method for measuring data retention characteristic of an RRAM device includes: a) controlling a temperature of a sample stage to maintain the RRAM device at a predetermined temperature; b) setting the RRAM device to a high-resistance state or a low-resistance state; c) measuring data retention time by applying a predetermined voltage to the RRAM device so that a resistive state failure of the RRAM device occurs; d) repeating the steps a)-c) to perform a plurality of measurements; e) calculating a resistive state failure probability F(t) of the RRAM device from the data retention time in the plurality of measurements; and f) fitting the resistive state failure probability F(t), and calculating predicted data retention time t04-18-2013
20120257436SEMICONDUCTOR INTERGRATED CIRCUIT AND OPERATING METHOD THEREOF - A semiconductor integrated circuit includes a variable resistive element, a current supply unit and a control signal generating unit. The resistance of the variable resistive element is changed depending on current flowing therethrough. The current supply unit controls the current in response to a control signal. The control signal generating unit generates the control signal by sensing the change in the resistance of the variable resistive element.10-11-2012
20120275212Self-Body Biasing Sensing Circuit for Resistance-Based Memories - A resistance based memory sensing circuit has reference current transistors feeding a reference node and a read current transistor feeding a sense node, each transistor has a substrate body at a regular substrate voltage during a stand-by mode and biased during a sensing mode at a body bias voltage lower than the regular substrate voltage. In one option the body bias voltage is determined by a reference voltage on the reference node. The substrate body at the regular substrate voltage causes the transistors to have a regular threshold voltage, and the substrate body at the body bias voltage causes the transistors to have a sense mode threshold voltage, lower than the regular threshold voltage.11-01-2012
20120275211Reconfigurable Crossbar Memory Array - A two-dimensional array of switching devices comprises a plurality of crossbar tiles. Each crossbar tile has a plurality of row wire segments intersecting a plurality of column wire segments, and a plurality of switching devices each formed at an intersection of a row wire segment and a column wire segment. The array has a plurality of lateral latches disposed in a plane of the switching devices. Each lateral latch is linked to a first wire segment of a first crossbar tile and a second wire segment of a second crossbar tile opposing the first wire segment. The lateral latch is operable to close or open to form or break an electric connection between the first and second wire segments.11-01-2012
20120275210NON-VOLATILE STORAGE SYSTEM WITH DUAL BLOCK PROGRAMMING - A non-volatile storage system is disclosed that includes a plurality of blocks of non-volatile storage elements, a plurality of word lines connected to the blocks of non-volatile storage elements such that each word line is connected to adjacent blocks of non-volatile storage elements, a plurality of bit lines connected to the blocks of non-volatile storage elements, multiple sets of word lines drivers such that each set of word line drivers is positioned between two adjacent blocks for driving word lines connected to the two adjacent blocks, global data lines, local data lines in selective communication with the bit lines, one or more selection circuits that selectively connect the global data lines to selected local data lines and connect unselected local data lines to one or more unselected bit line signals and control circuitry in communication with the one or more selection circuits and the global data lines. The control circuitry concurrently programs non-volatile storage elements of two adjacent blocks by applying programming signals on word lines connected to the two adjacent blocks and applying programming signals on appropriate bit lines via the global data lines and the one or more selection circuits.11-01-2012
20100315857RESISTANCE CHANGE MEMORY - A resistance change memory includes a first conductive line extending in a first direction, a second conductive line extending in a second direction which is crossed to the first direction, a cell unit including a memory element and a rectifying element connected in series between the first and second conductive lines, and a control circuit which is connected to both of the first and second conductive lines. The control circuit controls a voltage to change a resistance of the memory element between first and second values reversibly. The rectifying element is a diode including an anode layer, a cathode layer and an insulating layer therebetween.12-16-2010
20130155755RESISTIVE MEMORY APPARATUS - A resistive memory apparatus includes a sensing voltage generation unit and a memory cell. The sensing voltage generation unit configured to drive a sensing node to a voltage with a predetermined level in response to a reference voltage and a voltage of the sensing node. The memory cell is connected with the sensing node and configured to change a magnitude of current flowing through the sensing node according to a resistance value thereof.06-20-2013
20130155756NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises a cell array including plural MATs (unit cell arrays) arranged in matrix, each MAT containing a plurality of first lines, a plurality of second lines intersecting the plurality of first lines, and a plurality of memory cells connected at intersections of the first and second lines between both lines, each memory cell containing an electrically erasable programmable variable resistive element of which resistance is nonvolatilely stored as data; and a plurality of write/erase circuits connected to the MATs and operative to execute data write or erase to the memory cells inside the MATs in accordance with input data. A part of the plurality of write/erase circuits writes data to memory cells inside a corresponding MAT while another part of the plurality of write/erase circuits erases data from memory cells inside a corresponding MAT at the same time.06-20-2013
20130155757Drive Method for Memory Element, and Storage Device Using Memory Element - A memory element includes an insulating substrate; a first electrode and a second electrode on the insulating substrate; and an inter-electrode gap portion that causes a change in resistance value between the first and second electrodes. Applied to the memory element from a pulse generating source is a first voltage pulse for shifting from a predetermined low-resistance state to a predetermined high-resistance state, and a second voltage pulse for shifting from the high-resistance state to the low-resistance state through a series-connected resistor, by which current flowing to the memory element after the change to a low resistance value is reduced. When shifting from the high to the low-resistance state, a voltage pulse is applied such that an electrical resistance between the pulse generating source and the memory element becomes higher than the electrical resistance shifting from the low to the high-resistance state.06-20-2013
20130182486MEMORY CELLS HAVING A COMMON GATE TERMINAL - Arrays of memory cells having a common gate terminal and methods of operating and forming the same are described herein. As an example, an array of memory cells may include a group of memory cells each having a resistive storage element coupled to a select device. Each select device includes a first terminal, a second terminal, and a gate terminal, where the gate terminal is common to each memory cell of the group.07-18-2013
20130182487PROGRAMMABLE METALLIZATION CELL WITH TWO DIELECTRIC LAYERS - A programmable metallization device comprises a first electrode and a second electrode, and a first dielectric layer, a second dielectric layer, and an ion-supplying layer in series between the first and second electrodes. In operation, a conductive bridge is formed or destructed in the first dielectric layer to represent a data value. During read, a read bias is applied that is sufficient to cause formation of a transient bridge in the second dielectric layer, and make a conductive path through the cell if the bridge is present in the first dielectric layer. If the bridge is not present in the first dielectric layer during the read, then the conductive path is not formed. Upon removal of the read bias voltage any the conductive bridge formed in the second dielectric layer is destructed while the conductive bridge in the corresponding other first dielectric layer, if any, remains.07-18-2013
20130182488NON-VOLATILE SEMICONDUCTOR MEMORY AND DATA PROCESSING METHOD IN NON-VOLATILE SEMICONDUCTOR MEMORY - A non-volatile semiconductor memory according to an embodiment includes: a data storage unit including a memory cell array and a writing circuit; an encoder that directs the writing circuit to write write data to the memory cell array; a writing determining circuit that determines whether the writing of the write data to the memory cell array within a predetermined number of writing operations fails or succeeds, inverts the write data to generate new write data when the writing of the write data fails, and directs the writing circuit to write the new write data to the memory cell array; a switching circuit that inverts read data which is read from the memory cell to generate new read data when the writing determining circuit determines that the writing of the write data fails; and a decoder that decodes the read data into the information data.07-18-2013
20120281454Method and Apparatus for Decoding Memory - A thin-film memory may include a thin-film transistor-free address decoder in conjunction with thin-film memory elements to yield an all-thin-film memory. Such a thin-film memory excludes all single-crystal electronic devices and may be formed, for example, on a low-cost substrate, such as fiberglass, glass or ceramic. The memory may be configured for operation with an external memory controller.11-08-2012
20120281453VARIABLE RESISTANCE NONVOLATILE STORAGE DEVICE - The variable resistance nonvolatile storage device includes a memory cell (11-08-2012
20120281452RESISTIVE RANDOM MEMORY CELL AND MEMORY - The present disclosure provides a resistive random memory cell and a resistive random memory. The resistive random memory cell comprises an upper electrode, a resistive layer, an intermediate electrode, an asymmetric tunneling barrier layer, and a lower electrode. The upper electrode, the resistive layer, and the intermediate electrode constitute a resistive storage portion. The intermediate electrode, the asymmetric tunneling barrier layer, and the lower electrode constitute a selection portion. The resistive storage portion and the selection portion share the intermediate electrode. The selection portion may be disposed above or under the resistive storage portion. The asymmetric tunneling barrier layer comprises at least two materials having different barrier heights, and is configured for rectifying forward tunneling current and reverse tunneling current flowing through the resistive random memory cell. The present disclosure uses the asymmetric tunneling barrier layer for rectifying, so as to enable selection of the resistive random memory cell. The method for manufacturing the asymmetric tunneling barrier layer does not involve doping or high-temperature annealing processes, and the thickness of the asymmetric tunneling barrier layer is relatively small, which helps 3D high-density integration of the resistive random memory.11-08-2012
20110286261RESISTANCE CHANGE MEMORY - According to one embodiment, a resistance change memory includes a memory cell array area and a resistive element area on a substrate. A first memory cell array in the memory cell array area includes a first control line, a second control line above first control line, and a first cell unit between the first and second control lines. A second memory cell array on the first memory cell array includes the second control line, a third control line above the second control line, and a second cell unit between the second and the third control lines. And a resistive element in the resistive element area includes resistance lines, and a resistor connected to the resistance lines. The resistor includes the same member as one of a member of the cell unit and a member of a contact plug.11-24-2011
20110292715SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a memory cell array in which a plurality of memory cells is aligned in a matrix shape, each memory cell including a two-terminal memory element and a transistor for selection connected in series; a first voltage applying circuit that applies a writing voltage pulse to first bit lines; and a second voltage applying circuit that applies a pre-charge voltage to the first bit lines and second bit lines, wherein in a writing of a memory cell, after the second voltage applying circuit has pre-charged both ends of the memory cell to a same voltage, the first voltage applying circuit applies the writing voltage pulse via the first bit line that is directly connected to the transistor for selection, and the second voltage applying circuit applies the pre-charge voltage to the second bit line directly connected to the memory element.12-01-2011
20110292712READING A MEMORY ELEMENT WITHIN A CROSSBAR ARRAY - A method for reading a memory element within a crossbar array, the method including selecting a column line connected to a target memory element of the crossbar array by applying a supply voltage to a source follower, a gate terminal of the source follower connected to the column line; applying bias voltages to row lines of the crossbar array; storing an output voltage of the source follower in a storage element; applying a sense voltage to a row line connected to the target memory element; and outputting a difference between the voltage stored in the storage element and an output voltage of the source follower while the sense voltage is applied to the row line.12-01-2011
20130121061NONVOLATILE MEMORY CELL COMPRISING A DIODE AND A RESISTANCE-SWITCHING MATERIAL - A method is provided for programming a memory cell in a memory array. The memory cell includes a resistivity-switching layer of a metal oxide or nitride compound, and the metal oxide or nitride compound includes exactly one metal. The method includes programming the memory cell by changing the resistivity-switching layer from a first resistivity state to a second programmed resistivity state, wherein the second programmed resistivity state stores a data state of the memory cell. Numerous other aspects are provided.05-16-2013
20110305069NONVOLATILE MEMORY DEVICE USING RESISTANCE MATERIAL AND MEMORY SYSTEM INCLUDING THE NONVOLATILE MEMORY DEVICE - A nonvolatile memory device includes: a memory array including a plurality of memory banks which are arranged in a first direction; a write global bit line and a read global bit line extending in the first direction to be shared by the memory banks; a write circuit connected to the write global bit line and disposed on a first side of the memory array; and a read circuit connected to the read global bit line and disposed on a second side of the memory array opposite the first side of the memory array, wherein each of the memory banks extends in a second direction different from the first direction and comprises a plurality of nonvolatile memory cells, each of the nonvolatile memory cells having a variable resistive element whose resistance value varies according to data stored therein.12-15-2011
20110310652Variable resistance devices, semiconductor devices including the variable resistance devices, and methods of operating the semiconductor devices - Methods of operating semiconductor devices that include variable resistance devices, the methods including writing first data to a semiconductor device by applying a reset pulse voltage to the variable resistance device so that the variable resistance device is switched from a first resistance state to a second resistance state, and writing second data to the semiconductor device by applying a set pulse voltage to the variable resistance device so that the variable resistance device is switched from the second resistance state to the first resistance state to the second resistance state. The reset pulse voltage is higher than the set pulse voltage, and a resistance in the second resistance state is greater than in the first resistance state12-22-2011
20130188413APPARATUSES AND METHODS FOR READING AND/OR PROGRAMMING DATA IN MEMORY ARRAYS HAVING VARYING AVAILABLE STORAGE RANGES - Apparatuses and methods are disclosed, including methods for reading data from and programming data to an array of memory cells having varying available storage ranges. One such method involves determining a position of a determined value of a parameter within an available storage range of a selected memory cell of an array of memory cells.07-25-2013
20130188414VARIABLE RESISTANCE NONVOLATILE MEMORY ELEMENT WRITING METHOD AND VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE - A variable resistance nonvolatile memory element writing method of, by applying a voltage pulse to a memory cell including a variable resistance element, reversibly changing the variable resistance element between a first resistance state and a second resistance state according to a polarity of the applied voltage pulse is provided. The variable resistance nonvolatile memory element writing method includes applying a first preliminary voltage pulse and subsequently applying the first voltage pulse to the variable resistance element to change the variable resistance element from the second resistance state to the first resistance state, the first preliminary voltage pulse being smaller in voltage absolute value than the second threshold voltage and different in polarity from the first voltage pulse.07-25-2013
20130188415Discrete Three-Dimensional Memory Comprising Off-Die Read/Write-Voltage Generator - The present invention discloses a discrete three-dimensional memory (3D-M). Its 3D-M arrays are located on at least one 3D-array die, while its read/write-voltage generator (V07-25-2013
20120002458RESISTANCE CHANGE MEMORY DEVICE - A resistance change memory device includes: a cell array having multiple layers of mats laminated thereon, each of the mats having word lines and bit lines intersecting each other as well as resistance change type memory cells arranged at intersections thereof, each of the mats further having therein a reference cell and a reference bit line connected to the reference cell, the reference cell set to a state of a certain resistance value; a selection circuit configured to select a word line in each mat of the cell array, and select a bit line intersecting a selected word line and the reference bit line at the same time; and a sense amplifier configured to sense data by comparing respective cell currents of a selected memory cell on the selected bit line and the reference cell on the reference bit line.01-05-2012
20120008369MEMORY ELEMENT AND DRIVE METHOD FOR THE SAME, AND MEMORY DEVICE - A memory element capable of increasing capacity with an improvement of distribution of resistance in the high-resistance state, a drive method therefor, and a memory device are provided. The memory element includes first and second electrodes, and a plurality of resistance change elements electrically connected in series between the first and second electrodes, whose resistance values are reversibly changeable in response to application of a voltage to the first and second electrodes, and changeable to the same resistance state relative to the voltage application.01-12-2012
20120008367RESISTANCE CHANGE TYPE MEMORY - According to one embodiment, a resistance change type memory includes a memory cell and a capacitor which are provided on a semiconductor substrate. The memory cell includes a resistance change type memory and a select transistor. The resistance change type storage element changes in resistance value in accordance with data to be stored. The select transistor includes a first semiconductor region provided in the semiconductor substrate, and a gate electrode facing the side surface of the first semiconductor region via a gate insulating film. The capacitor includes a second semiconductor region provided in the semiconductor substrate, a capacitor electrode facing the side surface of the second semiconductor region, and a first capacitor insulating film provided between the second semiconductor region and the capacitor electrode.01-12-2012
20120020143Array Operation Using A Schottky Diode As A Non Ohmic Selection Device - A two-terminal memory cell including a Schottky metal-semiconductor contact as a selection device (SD) allows selection of two-terminal cross-point memory array operating voltages that eliminate “half-select leakage current” problems present when other types of non-ohmic devices are used. The SD structure can comprise a “metal/oxide semiconductor/metal” or a “metal/lightly-doped single layer polycrystalline silicon.” The memory cell can include a two-terminal memory element including at least one conductive oxide layer (e.g., a conductive metal oxide—CMO, such as a perovskite or a conductive binary oxide) and an electronically insulating layer (e.g., yttria-stabilized zirconia—YSZ) in contact with the CMO. The SD can be included in the memory cell and configured electrically in series with the memory element. The memory cell can be positioned in a two-terminal cross-point array between a pair of conductive array lines (e.g., a bit line and a word line) across which voltages for data operations are applied.01-26-2012
20120020142RESISTIVE MEMORY - Provided is a semiconductor resistive memory device. The resistive memory device includes a plurality of unit cells. A source line and a data input/output line of the unit cells may be selectively connected to have a substantially same voltage level for equalization when the unit cells are in inactive or unselected state. The equalization may decrease current consumption and protect write error, and protect leakage current.01-26-2012
20120020141Variable-resistance memory device and its driving method - A variable-resistance memory device includes: a memory cell including a memory element being variable in resistance in accordance with a polarity of an application voltage applied to the memory element in a set or reset operation and an access transistor connected to the memory element in series between first and second common lines; and a driving circuit including a first path transistor connected between a first supply line for supplying a first voltage and the first common line as well as a second path transistor connected between a second supply line for supplying a second voltage and the first common line.01-26-2012
20120020140RESISTIVE MEMORY CELL AND OPERATION THEREOF, AND RESISTIVE MEMORY AND OPERATION AND FABRICATION THEREOF - A resistive memory cell is described, including a first electrode, a high-resistance ferroelectric material layer and a second electrode. The ferroelectric material layer has a first interface with the first electrode and has a second interface with the second electrode, wherein the second interface is not parallel with the first interface. A method of operating the resistive memory cell is also described, including applying between the first electrode and the second electrode a series of voltages, which has positive polarity and negative polarity alternately and has descending absolute values, to form in the ferroelectric material layer at least one domain wall with low resistance.01-26-2012
20120057392High Density Non-Volatile Information StorageHigh Density Non-Volatile information Storage - The present invention provides for a composition comprising a nanostructure comprising a semiconductor component and a metallic component, with the proviso that when the semiconductor component is Ge the metallic component is not Te. The nanostructure can be in one of two types of structures: (1) a segregated structure, and (2) a mixed structure. In the segregated structure, the semiconductor component and the metallic component are spatially separate, such as in a lobe-lobe structure, poly-lobe structure, or a core-shell structure. In some embodiments, the lobe-lobe structure comprises a metallic component lobe and a semiconductor component lobe. The composition can be used in a memory device.03-08-2012
20130201750VARIABLE RESISTANCE MEMORY DEVICE AND RELATED METHOD OF OPERATION - A variable resistance memory device comprises a variable resistance memory cells and a read/write circuit configured to provide a program voltage to the variable resistance memory cell, and further configured to adjust a compliance current flowing through the variable resistance memory cell in successive loops of a program operation.08-08-2013
20120063196RESISTIVE MEMORY DEVICE AND METHOD OF CONTROLLING REFRESH OPERATION OF RESISTIVE MEMORY DEVICE - A resistive memory device comprises a memory cell array comprising a plurality of memory units. The memory device performs a refresh read operation to check a condition of each of the memory units. Then, it determines whether to refresh each memory unit based on data read by performing the refresh read operation, and refreshes the memory unit according to a result of the determination. The refresh read operation uses a reference resistance with a smaller margin from a resistance distribution than a normal read operation.03-15-2012
20120069631MEMORY ELEMENT AND MEMORY DEVICE - A memory device of a resistance variation type, in which data retaining characteristic at the time of writing is improved, is provided. The memory device includes: a plurality of memory elements in which a memory layer is provided between a first electrode and a second electrode so that data is written or erased in accordance with a variation in electrical characteristics of the memory layer; and pulse applying means applying a voltage pulse or a current pulse selectively to the plurality of memory elements. The memory layer includes an ion source layer including an ionic-conduction material and at least one kind of metallic element, and the ion source layer further contains oxygen.03-22-2012
20120069627NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device includes: a memory cell array including plural first lines, plural second lines, and plural memory cells each including a variable resistance element; a first decoder connected to at least one ends of the plurality of first lines and configured to select at least one of the first lines; at least one pair of second decoders connected to both ends of the plurality of second lines and configured such that one of the pair of second decoders is selected for selecting the second lines according to a distance between the one of the first lines selected by the first decoder and the both ends of the second lines; and a voltage application circuit configured to apply a certain voltage between the first line and the second line selected by the first decoder and the second decoder.03-22-2012
20120300535NON-VOLATILE MEMORY DEVICE ION BARRIER - An ion barrier layer made from a dielectric material in contact with an electronically insulating layer is operative to prevent mobile ions transported into the electronically insulating layer from passing through the ion barrier layer and into adjacent layers during data operations on a non-volatile memory cell. A conductive oxide layer in contact with the electronically insulating layer is the source of the mobile ions. A programming data operation is operative to transport a portion of the mobile ions into the electronically insulating layer and an erase data operation is operative to transport the mobile ions back into the conductive oxide layer. When the portion is positioned in the electronically insulating layer the memory cell stores data as a programmed conductivity profile and when a substantial majority of the mobile ions are positioned in the conductive oxide layer the memory cell stores data as an erased conductivity profile.11-29-2012
20120081946NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device includes a memory cell array for storing user data provided by arranging memory cells each having a variable resistive element having a first electrode, a second electrode, and a variable resistor made of a metal oxide sandwiched between the first and second electrodes. The first and second electrodes are formed of a conductive material forming ohmic junction with the variable resistor and a conductive material forming non-ohmic junction with the variable resistor, respectively. The variable resistor changes between two or more different resistance states by applying a voltage between the electrodes. The resistance state after being changed is maintained in a nonvolatile manner. The variable resistive elements of all memory cells in the memory cell array are set to the highest of the two or more different resistance states in an unused state before the memory cell array is used to store the user data.04-05-2012
20120092921SEMICONDUCTOR DEVICE - A technique for increasing rewriting current without increasing a power supply voltage and also reducing location dependency inside a memory array of a resistive state after the rewriting is provided in a resistance change memory in which the resistance value of a memory cell changes between logical values “1” and “0”. In the resistance change memory, bit lines are formed into a layered structure, the bit line select switches for connecting to the global bit line are provided at both ends of the local bit line, and a control method of the bit line select switches is changed in the writing and the reading, thereby realizing the optimum array configurations for each of them. More specifically, in the writing and the reading, two current paths are provided in parallel by turning ON the bit line select switches simultaneously.04-19-2012
20130208527MEMORY CELL, A METHOD FOR FORMING A MEMORY CELL, AND A METHOD FOR OPERATING A MEMORY CELL - A memory cell is provided, the memory cell including a first two-terminal memory element; a second two-terminal memory element; a controller circuit configured to program the first two-terminal memory element to one or more states and the second two-terminal memory element to one or more states, wherein a state of the first two-terminal memory element and a state of the second two-terminal memory element are interdependent; and a measuring circuit configured to measure a difference signal between a first two-terminal memory element signal associated with the state of the first two-terminal memory element and a second two-terminal memory element signal associated with the state of the second two-terminal memory element.08-15-2013
20130208528RESISTIVE MEMORY AND RELATED METHOD OF OPERATION - A resistive memory device comprises a memory cell array comprising a plurality of memory cells connected to a plurality of word lines and a plurality of bit lines, a row selector connected to the plurality of word lines, and a column selector connected to the plurality of bit lines. In a program or erase operation, the row selector provides a selected word line with program or erase pulse and a verification pulse in each of multiple program loops, wherein the verification pulse has a substantially fixed level through the program loops and the program or erase pulse has a negative value that decreases incrementally between successive program loops.08-15-2013
20130208529VARIABLE RESISTANCE NONVOLATILE MEMORY DEVICE AND DRIVING METHOD THEREOF - A highly-reliable variable resistance nonvolatile memory device capable of a stable operation and a driving method of the variable resistance nonvolatile memory device are provided. A variable resistance nonvolatile memory device includes a memory cell array, a memory cell selection circuit, a write circuit, and a read circuit. The write circuit sets a variable resistance element of another memory cell different from a faulty memory cell and located on at least one of a bit line and a word line that includes the faulty memory cell to a second high resistance state where a resistance value is higher than a resistance value in a first low resistance state, by applying a second high-resistance write pulse to the other memory cell.08-15-2013
20130208530RESISTIVE MEMORY DEVICE, OPERATING METHOD, AND MEMORY SYSTEM - A resistive memory device includes a plurality of first switches that connect word lines to a ground line in response a first switch control signal and a plurality of second switches that connect a plurality of global bit lines to a plurality of local bit lines corresponding to the plurality of global bit lines in response to a second switch control signal.08-15-2013
20130208531NONVOLATILE MEMORY DEVICE AND METHOD OF WRITING DATA TO NONVOLATILE MEMORY DEVICE - A resistance variable layer changes: to a second resistance state in such a manner that its resistance value stops decreasing when an interelectrode voltage reaches a negative first voltage; to a first resistance state in such a manner that its resistance value starts increasing when the interelectrode voltage reaches a positive second voltage which is equal in absolute value to the first voltage; to the first resistance state in such a manner that the resistance variable layer flows an interelectrode current such that the interelectrode voltage is maintained at a third voltage higher than the second voltage, when the interelectrode voltage reaches the third voltage; and to the first resistance state in such a manner that its resistance value stops increasing when the interelectrode current reaches a first current in a state where the interelectrode voltage is not lower than the second voltage and lower than the third voltage.08-15-2013