Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


FORMAT OR DISPOSITION OF ELEMENTS

Subclass of:

365 - Static information storage and retrieval

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20110176345ELECTRONIC APPARATUS - An electronic apparatus is provided. A PCB has first and second signal paths therein. First and second fingers are disposed on the first and second signal paths, respectively. A controller is coupled to a first memory via the first finger and a second memory via the second finger, and accesses the first and second memories through the first and second signal paths, respectively. The first and second signal paths share a common segment between the controller and a branch point. First and second components are disposed between the first finger and the branch point and between the second finger and the branch point, respectively. The distances between the first component and the branch point and between the second component and the branch point are smaller than or equal to the distance between the first component and the first finger and between the second component and the second finger, respectively.07-21-2011
20090196085SRAM MEMORY CELL PROTECTED AGAINST CURRENT OR VOLTAGE SPIKES - A memory cell is protected against current or voltage spikes. The cell includes a group of redundant data storage nodes for the storage of information in at least one pair of complementary nodes. The cell further includes circuitry for restoring information to its initial state following a current or voltage spike which modifies the information in one of the nodes of the pair using the information stored in the other node. The data storage nodes of each pair in the cell are implanted on opposite sides of an opposite conductivity type well from one another within a region of a substrate defining the boundaries of the memory cell.08-06-2009
20090196084Memory chip array - Provided is a memory chip array comprising a plurality of cell arrays and at least one predecoder commonly connected to the plurality of cell arrays, wherein the memory chip array promotes an efficient arrangement structure of the memory chip array and is minimized in area.08-06-2009
20090196083Integrated circuits to control access to multiple layers of memory - Circuits to control access to memory; for example, third dimension memory are disclosed. An integrated circuit (IC) may be configured to control access to memory cells. For example, the IC may include a memory having memory cells that are vertically disposed in multiple layers of memory. The IC may include a memory access circuit configured to control access to a first subset of the memory cells in response to access control data in a second subset of the memory cells. Each memory cell may include a non-volatile two-terminal memory element that stores data as a plurality of conductivity profiles that can be non-destructively sensed by applying a read voltage across the two terminals of the memory element. New data can be written by applying a write voltage across the two terminals of the memory element. The two-terminal memory elements can be arranged in a two-terminal cross-point array configuration.08-06-2009
20100149849MEMORY ARRAY ON MORE THAN ONE DIE - For one disclosed embodiment, an apparatus may comprise a first die including a first plurality of memory cells for a memory array and a second die including a second plurality of memory cells for the memory array. The second die may include a shared line for the memory array to conduct digital signals for memory cells of both the first and second plurality of memory cells. Other embodiments are also disclosed.06-17-2010
20120170347MEMORY SYSTEM WITH SECTIONAL DATA LINES - The system includes multiple sets of local data lines in one or more routing metal layers below the three-dimensional memory array and multiple sets of global data lines in one or more top metal layers above the three-dimensional memory array. Each set of one or more blocks include one set of the local data lines. Each bay includes one set of global data lines that connect to the group of sense amplifiers associated with the blocks of the respective bay. Each block includes a subset of first selection circuits for selectively coupling a subset of array lines of the first type to respective local data lines. Each block includes a subset of second selection circuits for selectively coupling a subset of the respective local data lines to global data lines associated with a respective bay.07-05-2012
200802596713-DIMENSIONAL INTEGRATED CIRCUIT ARCHITECTURE, STRUCTURE AND METHOD FOR FABRICATION THEREOF - An integrated circuit design, structure and method for fabrication thereof includes at least one logic device layer and at least two additional separate memory array layers. Each of the logic device layer and the at least two memory array layers is independently optimized for a particular type of logic device or memory device disposed therein. Preferably also disposed within the logic device layer are array sense amplifiers, memory array output drivers and like higher performance circuitry otherwise generally disposed within memory array layer substrates. All layers may be independently powered to provide additional performance enhancement.10-23-2008
20080259670Memory Module - A memory module having a board and a plurality of memory elements on the board which belong to different memory ranks, each memory rank being addressable via a respective selection signal. The memory module additionally includes a memory buffer having a memory rank interface coupled to the memory elements of each memory rank, and a selection signal output for the selection signal of each memory rank, the memory elements being arranged in rows on the board and the memory elements of a memory rank extending only over half of the rows.10-23-2008
20080259669SEMICONDUCTOR MEMORY DEVICE CAPABLE OF OPTIMIZING SIGNAL TRANSMISSION POWER AND POWER INITIALIZING METHOD THEREOF - A semiconductor memory device can automatically control signal transmission power on-chip based on a wireless signal transmission. The semiconductor memory device can have a multi-chip stack structure. A power initializing method of the semiconductor memory device can comprise providing a test signal generated by a signal-providing chip to a first chip, checking whether the test signal provided to the first chip has an error, providing the checking result to the signal-providing chip, setting the power of a first signal provided to the first chip according to the checking result, and setting the power of a signal provided to a second chip adjacent to the first chip and close to the signal-providing chip using the power of the first signal.10-23-2008
20080259668Layout structure of bit line sense amplifiers for a semiconductor memory device - A layout structure of bit line sense amplifiers for use in a semiconductor memory device includes first and second bit line sense amplifiers arranged to share and be electrically controlled by a first column selection line signal, and each including a plurality of transistors. In this layout structure, each of the plurality of transistors forming the first bit line sense amplifier is arranged so as not to share an active region with any transistors forming the second bit line sense amplifier.10-23-2008
20110194326MEMORY DIES, STACKED MEMORIES, MEMORY DEVICES AND METHODS - Memory die, stacks of memory dies, memory devices and methods, such as those to construct and operate such die, stacks and/or memory devices are provided. One such memory die includes an identification configured to be selectively coupled to an external select connection node depending on how the die is arranged in a stack. The identification circuit can determine an identification of its respective memory die responsive to how, if coupled, the identification circuit is coupled to the external select connection node.08-11-2011
20090122586METHOD AND APPARATUS FOR AN INTEGRATED CIRCUIT WITH PROGRAMMABLE MEMORY CELLS, DATA SYSTEM - A method and apparatus for an integrated circuit with programmable memory cells which are arranged between a first and a second conductor for supplying first and second voltage is provided. A control circuit is arranged between the memory cells and the second conductor. The control circuit controls a change time during which at least one of the memory cells is supplied with a changing current from the second supply changing a state of the memory cell. The control circuit senses the state of the memory cell and stops the erasing current when the memory cell is in a changed state. Furthermore an embodiment refers to a data system with a programmable memory and a method of operating an integrated circuit. Another embodiment refers to a method of operating an integrated circuit.05-14-2009
20100118581MAGNETIC MEMORY DEVICE - The present invention provides a magnetic memory device capable of providing high-speed access without increasing an array area. Gate word lines are respectively linearly disposed between source impurity regions and drain impurity regions within a memory cell array area. Gate word line protrusions are respectively provided at boundary regions of memory cell forming regions. Contacts relative to the gate word line protrusions are respectively provided at boundary regions of memory cells at adjacent columns. The drain impurity regions are respectively disposed with being shifted from the centers of the memory cell forming regions in such a manner that spaces between the drain impurity regions become large in the regions in which the protrusions are disposed.05-13-2010
20090016092SEMICONDUCTOR MEMORY DEVICE AND LOCAL INPUT/OUTPUT DIVISION METHOD - A semiconductor memory device includes: a memory cell array that is arrayed on a plurality of mats; an even number of redundancy Y-switch (YS) signal lines that are provided in three mat units and arranged in the bit line direction on the mat that is positioned in the middle among the three mats disposed continuously in the word line direction; a local input/output (LIO) line that is connected to a sense amplifier portion of the three mats, extends in the word line direction, and is divided in two in a redundancy area that is a part of the even number of redundancy Y switch signal lines; and a plurality of bit line selecting Y switch signal lines that connect bit line output of the memory cell array on the three mats to the local input/output line; wherein 8-bit data prefetch is performed from the three mats by selecting the plurality of bit line selecting Y switch signal lines and turning them ON simultaneously so as to connect the selected bit line output to each local input/output line divided in two.01-15-2009
20100073983NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND WRITING METHOD OF THE SAME - A nonvolatile semiconductor memory device comprises a memory cell array composed of a plurality of memory cells each including a variable resistance element in which a resistance characteristic is changed by applying a voltage to the both ends, and information related to the resistance characteristic can be stored; a load circuit connected to one terminal of the variable resistance element in series; and a voltage generation circuit for applying a voltage to both ends of a series circuit. The variable resistance element selectively transits to one resistance characteristic selected from at least three different resistance characteristics when the voltage generated from the voltage generation circuit is applied under the transition condition set by changing any one or both of the load resistance characteristic of the load circuit and the voltage generation condition from the voltage generation circuit, and can store information having at least three values.03-25-2010
20100073982Semiconductor device and method for designing the same - Disclosed herewith is a semiconductor device having an SRAM cell array capable of easily evaluating the performance of transistors and the systematic fluctuation of wiring capacity/resistance. In order to form an inversion circuit required to form a ring oscillator, a test cell is disposed at each of the four corners of the SRAM cell array and the ring oscillator is operated while charging/discharging the subject bit line. Concretely, the ring oscillator is formed on a memory cell array and the ring oscillator includes test cells disposed at least at the four corners of the memory cell array respectively. At this time, a wiring that is equivalent to a bit line is used to connect the test cells to each another.03-25-2010
20100039847METHOD OF MANUFACTURING A SINGLE CHIP SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE INCLUDING A MASK ROM IN A SHORT TIME - In a state of a first semiconductor integrated circuit device on which a first semiconductor integrated circuit board including a first mask ROM and a programmable ROM are mounted, an ultimate program determined by using the programmable ROM is stored in a second ROM of a second semiconductor integrated circuit board which is substantially similar in structure to the first semiconductor integrated circuit board, thereby manufacturing a second semiconductor integrated circuit device as an ultimate product.02-18-2010
201300391103D ARCHITECTURE FOR BIPOLAR MEMORY USING BIPOLAR ACCESS DEVICE - Memory device and method for fabricating a memory device on two layers of a semiconductor wafer. An example device includes bit lines and word lines fabricated at one layer of a semiconductor wafer and re-writable nonvolatile memory cells that include a two-terminal access device with a bidirectional voltage-current characteristics for positive and negative voltages applied at the terminals. Additionally, a drive circuit electrically coupled to the memory cells and configured to program the memory cells is fabricated at another layer of the semiconductor wafer. Another example embodiment includes a memory device where a plurality of memory arrays are fabricated at one layer of a semiconductor wafer and a plurality of drive circuits electrically coupled to the memory cells and configured to read the memory cells are fabricated at a second layer of the semiconductor wafer.02-14-2013
20090122587MEMORY SYSTEM AND DATA TRANSMISSION METHOD - A memory system of a high-speed operation can be realized by reducing an influence of reflection signals etc. caused by branching and impedance mismatching in various wirings between a memory controller and a memory module, and an influence due to transmission delays of data, command/address, and clocks in the memory module. To this end, a memory system comprises a memory controller and a memory module mounted with DRAMs. A buffer is mounted on the memory module. The buffer and the memory controller are connected to each other via data wiring, command/address wiring, and clock wiring. The DRAMs and the buffer on the memory module are connected to each other via internal data wiring, internal command/address wiring, and internal cock wiring. The data wiring, the command/address wiring, and the clock wiring may be connected to buffers of other memory modules in cascade. Between the DRAMs and the buffer on the memory module, high-speed data transmission is implemented using data phase signals synchronous with clocks.05-14-2009
20100046266High Speed Memory Architecture - Memory devices and memory modules are disclosed. In one embodiment, a memory device includes a semiconductor substrate having a first edge and a second edge opposed to the first edge. A plurality of memory banks is disposed at a central portion of the semiconductor substrate, each memory bank including a plurality of memory cells. A plurality of input/output contacts is disposed between the first edge and the memory banks. Delay locked loop circuitry is disposed adjacent the first edge. A plurality of address and command contacts is disposed between the second edge and the memory banks.02-25-2010
20100046267MEMORY SYSTEM WITH SECTIONAL DATA LINES - A storage system includes a three-dimensional memory array that has multiple layers of non-volatile storage elements grouped into blocks. The blocks are grouped into bays. The storage system includes array lines of a first type in communication with storage elements, array lines of a second type in communication with storage elements, and sense amplifiers. Each block is geographically associated with two sense amplifiers and all blocks of a particular bay share a group of sense amplifiers associated with the blocks of the particular bay. The system includes multiple sets of local data lines in one or more routing metal layers below the three-dimensional memory array and multiple sets of global data lines in one or more top metal layers above the three-dimensional memory array. Each set of one or more blocks include one set of the local data lines. Each bay includes one set of global data lines that connect to the group of sense amplifiers associated with the blocks of the respective bay. Each block includes a subset of first selection circuits for selectively coupling a subset of array lines of the first type to respective local data lines. Each block includes a subset of second selection circuits for selectively coupling a subset of the respective local data lines to global data lines associated with a respective bay.02-25-2010
20100103713ADJUSTABLE WIDTH STROBE INTERFACE - A memory system comprises a circuit board 04-29-2010
20100097833PHASE CHANGE MEMORY DEVICE - A phase change memory device includes a plurality of word lines arranged in a row direction and a plurality of bit lines arranged in a column direction. A plurality of reference bit line and a plurality of clamp bit lines are arranged in the column direction. A cell array block including a phase change resistance cell is arranged where a word line and a bit line intersect. A reference cell array block is formed where a word line and the reference bit line intersect. The reference cell array block is configured to output a reference current. A clamp cell array block is formed where a word line and a clamp bit line intersect. The clamp cell array block is configured to output a clamp current. A sense amplifier is connected to each of the bit lines and is configured to receive a clamp voltage and a reference voltage.04-22-2010
20100110745SWITCHED INTERFACE STACKED-DIE MEMORY ARCHITECTURE - Systems and methods disclosed herein include those that may receive a memory request including a requested memory address and may send the memory request directly to an address decoder associated with a stacked-die memory vault without knowing whether a repair address is required. If a subsequent analysis of the memory request shows that a repair address is required, an in-process decode of the requested memory address can be halted and decoding of the repair address initiated.05-06-2010
20090154214SEMICONDUCTOR MEMORY - Borderless contacts for word lines or via contacts for bit lines are formed using interconnect patterns, a part of which is removed. A semiconductor memory includes: a plurality of active regions AA06-18-2009
20090154213SEMICONDUCTOR MEMORY DEVICE WITH HIERARCHICAL BIT LINE STRUCTURE - A semiconductor memory device has a hierarchical bit line structure. The semiconductor memory device may include first and second memory cell clusters, which share the same bit line pair and are divided operationally; third and fourth memory cell clusters, which are connected respectively corresponding to word lines coupled with the first and second memory cell clusters, and which share a bit line pair different from the bit line pair and are divided operationally; and a column pass gate for switching one of bit line pairs connected with the first to fourth memory cell clusters, to a common sense amplifier, in response to a column selection signal. Whereby an operating speed decrease caused by load of peripheral circuits connected to the bit line is improved, and the number of column pass gates is reduced substantially with a reduction of chip size.06-18-2009
20090154212Memory module - A memory module, includes a memory module board and a plurality of memory devices on the memory module board. The memory module board includes one or more first input terminals configured to receive first signals to individually control the memory devices, and one or more second input terminals configured to receive second signals to commonly control the memory devices. Each of the memory devices includes a plurality of first signal input units configured to receive the first signals through one or more first input pins, a plurality of second signal input units configured to receive the second signals through one or more second input pins, and a plurality of dummy units, the dummy units being respectively connected to the first signal input units in parallel, and being configured to receive the first signals through one or more third input pins and to compensate for a signal line load.06-18-2009
20090154211Placement and routing of ECC memory devices for improved signal timing - Various exemplary embodiments are a printed circuit board and related method of manufacturing, the printed circuit board including a memory controller, a plurality of synchronous data memory devices, each synchronous memory device including at least one data pin and at least one address/command pin, an ECC memory device including at least one ECC data pin and at least one ECC address/command pin, and at least one surface. In various exemplary embodiments, the plurality of synchronous data memory devices are arranged around a central location on the at least one surface and each synchronous data memory device is oriented such that the at least one data pin is further from the memory controller than the at least one address/command pin.06-18-2009
20090135637RESISTANCE CHANGE MEMORY DEVICE - A resistance change memory device including: a cell array having a resistance change type of memory cells disposed at the cross-points of word lines and bit lines, the resistance value of the memory cell being reversibly settable; a word line driver circuit configured to apply a selecting drive voltage to one selected in the word lines; and a bit line driver circuit configured to drive multiple bit lines in such a manner that a set mode and a reset mode are set simultaneously for multiple memory cells selected by the selected word line, the set mode being for changing a selected memory cell from a first resistance state into a second resistance state while the reset mode is for changing a selected memory cell from the second resistance state into the first resistance state.05-28-2009
20100091540MEMORY MODULE DECODER - A circuit is configured to be mounted on a memory module connectable to a computer system so as to be electrically coupled to a plurality of memory devices on the memory module. The plurality of memory devices has a first number of memory devices. The circuit comprises a logic element configurable to receive a set of input signals from the computer system. The circuit further comprising a register and a phase-lock loop circuit, the phase-lock loop circuit configurable to be operatively coupled to the plurality of memory devices, the logic element, and the register. The set of input signals corresponds to a second number of memory devices smaller than the first number of memory devices.04-15-2010
20100091539SOLID STATE DEVICE PRODUCTS, INTERMEDIATE SOLID STATE DEVICES, AND METHODS OF MANUFACTURING AND TESTING THE SAME - Example embodiments of the inventive concept are directed to solid state device products, intermediate solid state devices, and methods of manufacturing and testing the same, with removable test terminals, which may permit in situ testing of one or more components of the solid state device products.04-15-2010
20100091538BRIDGE DEVICE ARCHITECTURE FOR CONNECTING DISCRETE MEMORY DEVICES TO A SYSTEM - Bridge device architecture for connecting discrete memory devices is disclosed. A bridge device is used in conjunction with a composite memory device including at least one discrete memory device. The bridge device comprises a local control interface connected to the at least one discrete memory device, a local input/output interface connected to the at least one discrete memory device, and a global input/output interface interposed between the local control interface and the local input/output interface. The global input/output interface receives and provides global memory control signals and also receives and provides write data to and read data from the at least one discrete memory device.04-15-2010
20120182777MEMORY MODULE CUTTING OFF DM PAD LEAKAGE CURRENT - A memory module includes: an ODT circuit on a memory device and including pull-up and pull-down resistors connected between pull-up and pull-down transistors. A data masking (DM) pad is provided in a tap region of the module board. A current leakage monitoring unit is also provided and receives a ground state signal from the DM pad and a bit configuration signal from the memory device and disables the pull-up transistors to cut off a current path between the pull-up resistors of the ODT circuit and the DM pad during a ODT enable mode.07-19-2012
20120182776DRAM DEVICE WITH BUILT-IN SELF-TEST CIRCUITRY - A dynamic random access memory (DRAM) device includes a first and second integrated circuit (IC) die. The first integrated circuit die has test circuitry to generate redundancy information. The second integrated circuit die is coupled to the first integrated circuit die in a packaged configuration including primary storage cells and redundant storage cells. The second integrated circuit die further includes redundancy circuitry responsive to the redundancy information to substitute one or more of the primary storage cells with one or more redundant storage cells.07-19-2012
20130070506SEMICONDUCTOR DEVICE HAVING STACKED LAYERS - A semiconductor device is disclosed in which there are provided a first substrate including memory cells and at least one bit line electrically coupled to the memory cells, and a second substrate including a sense amplifier. Each of the memory cells includes a first transistor, and the sense amplifier includes a second transistor. The second substrate is stacked with the first substrate such that the sense amplifier amplifies data transferred through the bit line from a selected one of the memory cells. The first transistor is lower in carrier mobility than the second transistor.03-21-2013
20130070507SEMICONDUCTOR MEMORY DEVICE - A memory device is provided. The memory device includes a first semiconductor chip including a memory element and a peripheral circuit configured to write or read data in or from the memory element; and a second semiconductor chip configured to perform an input/output function of data or signals exchanged between an external device and the first semiconductor chip.03-21-2013
20090303768MEMORY MODULE, METHOD FOR USING SAME AND MEMORY SYSTEM - In a multi-rank memory module having a terminal resistance of a data input/output pad 12-10-2009
20090040803Semiconductor Memory and Method for Operating a Semiconductor Memory - A semiconductor memory having read amplifier strips having a plurality of read amplifiers and having memory cell fields which have a plurality of memory cells connected to bit lines is disclosed. The read amplifier strips include at least two outer read amplifier strips between which the remaining read amplifier strips and the memory cell fields are arranged, wherein adjacent to at least one of the outer read amplifier strips, a reference circuit field is arranged, which has reference lines and reference circuit elements connected thereto, and wherein the reference lines are shorter than the bit lines of the memory cell fields.02-12-2009
20090040802SEMICONDUCTOR MEMORY DEVICE, MEMORY-MOUNTED LSI AND FABRICATION METHOD FOR SEMICONDUCTOR MEMORY DEVICE - The semiconductor memory device includes a memory cell array block having one or more stages of memory cell arrays stacked one on another, each memory cell array including a plurality of memory cells placed in a matrix at respective intersections of a plurality of word lines and a plurality of bit lines. A plurality of MOS transistor blocks are provided which are same in the configuration of circuit elements and include MOS transistors as one kind of the circuit elements. In part of the plurality MOS transistor blocks, the MOS transistors are used for drive of the word lines or the bit lines, while in at least part of the remaining MOS transistor blocks, the MOS transistors are used as MOS capacitors.02-12-2009
20130058147Three-Dimensional Writable Printed Memory - The present invention discloses a three-dimensional writable printed memory (3D-wP). It comprises at least a printed memory array and a writable memory array. The printed memory array stores contents data, which are recorded with a printing means; the writable memory array stores custom data, which are recorded with a writing means. The writing means is preferably direct-write lithography. To maintain manufacturing throughput, the total amount of custom data should be less than 1% of the total amount of content data.03-07-2013
20130058146Three-Dimensional Offset-Printed Memory - The present invention discloses a three-dimensional offset-printed memory (3D-oP). Compared with a conventional three-dimensional mask-programmed read-only memory (3D-MPROM), it has a lower data-mask count and thereby a lower data-mask cost. The mask-patterns for different memory levels/bits-in-a-cell are merged onto a multi-region data-mask. At different printing steps, a wafer is offset by different values with respect to said data-mask. Accordingly, data-patterns are printed into different memory levels/bits-in-a-cell from a same data-mask.03-07-2013
20090268499SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes first and second driving transistors; first and second load transistors; and first and second transmission transistors. Their respective drain diffusion layers of the transistors are isolated from one another. The semiconductor memory device also includes a bit cell in which the first and second driving transistors, the first and second load transistors, and the first and second transmission transistors are arranged; a first wiring for connecting their respective drains of the first driving transistor, the first load transistor, and the first transmission transistor; and a second wiring for connecting their respective drains of the second driving transistor, the second load transistor, and the second transmission transistor.10-29-2009
20090268498Semiconductor memory device and method of performing data reduction test - A semiconductor device includes a plurality of package terminals included in a package, a plurality of chips provided on the package, each of the chips including a memory cell array and a plurality of data input/output terminals, and a plurality of data line control switch disposed between the plurality of package terminals and the plurality of data input/output terminals. The plurality of data line control switches of each of the chips connects the data input/output terminals of each of the chips to corresponding ones of the plurality of package terminals in a normal mode. The plurality of data line control switches connects different groups of the data input/output terminals in different ones of the chips to respective groups of the package terminals in a test mode. The respective groups of the data input/output terminals belong to the plurality of data input/output terminals. The respective groups of the package terminals are different between different ones of the chips.10-29-2009
20090237971SEMICONDUCTOR MEMORY DEVICES WITH INTERFACE CHIPS HAVING MEMORY CHIPS STACKED THEREON - A semiconductor memory device includes a controller, a plurality of substrates, and a plurality of stacked memories that are spaced apart and sequence on each of the substrates. Each of the stacked memories includes an interface chip that is connected to the respective substrate and a plurality of memory chips that are stacked on the interface chip. The controller is configured to control the stacked memories. The interface chips are configured to forward a command signal from the controller through each interface chip in the sequence of stacked memories that is intervening between the controller and a selected stacked memory to which the command signal is directed. The interface chips may forward the command signal from one end of the sequence of the stacked memories on one of the substrates to the selected stacked memory, and forward a response signal from the selected stacked memory through the remaining stacked memories in the sequence on the substrate back to the controller or through the same sequence of stacked memories that was taken by the command signal.09-24-2009
20090237970PROCESS VARIATION COMPENSATED MULTI-CHIP MEMORY PACKAGE - A multi-chip package memory includes an interface chip generating at least one reference signal defined in relation to a reference process variation, and a stacked plurality of memory chips electrically connected to the interface chip via a vertical connection path and receiving the reference clock signal via the vertical connection path, wherein each one of the stacked plurality of memory chips is characterized by a process variation and actively compensates for said process variation in relation to the reference signal.09-24-2009
20090231898Integrated Circuit Including Memory Array Having a Segmented Bit Line Architecture and Method of Controlling and/or Operating Same - An integrated circuit device (e.g., a logic device or a memory device) having a memory cell array including a plurality of bit lines (e.g., first and second bit lines) and a plurality of bit line segments (e.g., first and second bit line segments) wherein each bit line segment is selectively and responsively coupled to or decoupled from its associated bit line via an associated isolation circuit. The memory cell array further includes a plurality of memory cells, wherein each memory cell includes a transistor having a first region, a second region, a body region, and a gate coupled to an associated word line via an associated word line segment. A first group of memory cells is coupled to the first bit line via the first bit line segment and a second group of memory cells is coupled to the second bit line via the second bit line segment. A plurality of isolation circuits, disposed between each bit line segment and its associated bit line, to responsively couple the associated bit line segment to or disconnect the associated bit line segment from the associated bit line.09-17-2009
20090231897MULTI-CHIP PACKAGE - A multi-chip package includes a plurality of memory chips and a control chip. The control chip stores information about whether the memory chips are operating normally and selects chips that are operating normally according to an address signal.09-17-2009
20090027940Memory Module - A memory module with a module board is disclosed, on the front side of which a plurality of first memory devices are arranged in rows. A plurality of second memory devices are arranged in rows on the back side. The first and second memory devices have a single chip each. Further, a first register device for providing first control signals to first rows of first memory devices and to first rows of second memory devices is provided. A second register device serves to provide first control signals to second rows of first memory devices and to second rows of second memory devices.01-29-2009
20090010036SEMICONDUCTOR MEMORY - A semiconductor memory includes a memory cell array area having a memory cell, a word line contact area adjacent to the memory cell array area, a word line arranged straddling the memory cell array area and the word line contact area, a contact hole provided on the word line in the word line contact area, and a word line driver connected to the word line via the contact hole. A size of the contact hole is larger than a width of the word line, and the lowest parts of the contact hole exist on a position lower than a top surface of the word line and higher than a bottom surface of the word line.01-08-2009
20110026289CELL STRUCTURE FOR DUAL PORT SRAM - A multi-port SRAM cell includes cross-coupled inverters each including a pull-up transistor and at least a pair of pull down transistors. The SRAM cell includes first and second access ports coupled to first and second word line conductors, each access port including a first pass gate transistor coupled to the data storage node and a second pass gate transistor coupled to the data bar storage node, each pass gate transistor being coupled to a respective bit line conductor, wherein the pull down transistors of the first inverter are formed in a first active region, the pull down transistors of the second inverter are formed in a second active region, the pass gate transistors coupled to the data storage node are formed in a third active region and the pass gate transistors coupled to the data bar storage node are formed in a fourth active region.02-03-2011
20100157645MEMORY MODULE AND LAYOUT METHOD THEREFOR - The present invention provides a novel wiring method for LR-DIMM of VLP type that conforms to LR-DIMM technology. The LR-DIMM comprises a plurality of DRAMs mounted on a board, two connectors mounted on the board for receiving data, and a buffer device mounted on the board for redriving data applied to the two connectors to supply the data to the plurality of DRAMs. The buffer device is located near the center of the board on which the two connectors are arranged at both ends thereof, and supplies data from each connector to DRAMs arranged on the opposite side to the connector.06-24-2010
20110188281Local bit lines and methods of selecting the same to access memory elements in cross-point arrays - Embodiments relate generally to semiconductors and memory technology, and more particularly, to systems, integrated circuits, and methods to implement a memory architecture that includes local bit lines for accessing subsets of memory elements, such as memory elements based on third dimensional memory technology. In at least some embodiments, an integrated circuit includes a cross-point memory array formed above a logic layer. The cross-point memory array includes X-lines and Y-lines, of which at least one Y-line includes groups of Y-line portions. Each of the Y-line portions can be arranged in parallel with other Y-line portions within a group of the Y-line portions. Also included are memory elements disposed between a subset of the X-lines and the group of the Y-line portions. In some embodiments, a decoder is configured to select a Y-line portion from the group of Y-line portions to access a subset of the memory elements.08-04-2011
20110235385SEMICONDUCTOR MEMORY APPARATUS WITH POWER-MESHED STRUCTURE - A semiconductor memory apparatus includes a plurality of banks each having a plurality of cell mats; a plurality of power lines disposed over predetermined portions of each of the plurality of banks; a column control region disposed adjacent to at least one of sides of each bank which are perpendicular to an extending direction of the power lines; and a conductive plate disposed over the column control region and electrically connected to the plurality of power lines.09-29-2011
20080285325Semiconductor Memory Device - In a two-transistor gain cell structure, a semiconductor memory device capable of stable reading without malfunction and having small-area memory cells is provided. In a two-transistor gain cell memory having a write transistor and a read transistor, a write word line, a read word line, a write bit line, and a read bit line are separately provided, and voltages to be applied are independently set. Furthermore, a memory cell is connected to the same read word line and write bit line as those of an adjacent memory cell.11-20-2008
20090168480Three dimensional hexagonal matrix memory array - A nonvolatile memory device includes a plurality of nonvolatile memory cells arranged in a substantially hexagonal pattern. The nonvolatile memory cells may be pillar shaped non-volatile memory cells which can be patterned using triple or quadruple exposure lithography or by using a self-assembling layer.07-02-2009
20110286254Semiconductor Devices Having a Three-Dimensional Stacked Structure and Methods of De-Skewing Data Therein - A semiconductor memory device having a 3D stacked structure includes: a first semiconductor area with a stacked structure of a first layer having first data and a second layer having second data; a first line for delivering an access signal for accessing the first semiconductor area; and a second line for outputting the first and/or second data from the first semiconductor area, wherein access timings of accessing the first and second layers are controlled so that a first time delay from the delivery of the access signal to the first layer to the output of the first data is substantially identical to a second time delay from the delivery of the access signal to the second layer to the output of the second data, thereby compensating for skew according to an inter-layer timing delay and thus performing a normal operation. Accordingly, the advantage of high-integration according to a stacked structure can be maximized by satisfying data input/output within a predetermined standard.11-24-2011
20110299315COMMUNICATION CIRCUIT FOR DRIVING A PLURALITY OF DEVICES - A system and method is provided for transmitting a signal to a plurality of slave devices (e.g., memory devices, etc.) via a communication circuit having a plurality of segments that are substantially equal in length and/or impedance. Specifically, according to one embodiment of the invention, an electronic system includes a processor, a plurality of memory devices, and a communication circuit (i.e., a bus) having a central node and a plurality of segments. Specifically, the plurality of segments are used to connect the plurality of devices (e.g., the processor, the plurality of memory devices) to the central node. For example, the processor is connected to the central node via a primary segment, the first memory device (M12-08-2011
20110299314Non-Volatile Memory Having 3d Array of Read/Write Elements with Efficient Decoding of Vertical Bit Lines and Word Lines - A three-dimensional array of memory elements is formed across multiple layers of planes positioned at different distances above a semiconductor substrate. The memory elements reversibly change a level of electrical conductance in response to a voltage difference being applied across them. The three-dimensional array includes a two-dimensional array of pillar lines from the substrate through the multiple layers of planes. A first set of pillar lines acts as local bit lines for accessing the memory elements together with an array of word lines on each plane. A second set of pillar lines is connected to the word lines. An array of metal lines on the substrate is switchable connected to the pillar lines to provide access to the first and second sets of pillar lines, thereby to provide access respectively to the bit lines and word lines of the three-dimensional array.12-08-2011
20110292707SEMICONDUCTOR MEMORY APPARATUS - A semiconductor memory apparatus includes: a memory cell array including a plurality of memory cells; a bit line sense amplifier (BLSA) coupled to the memory cells in the memory cell array through a bit line; a plurality of local input/output lines coupled to the BLSA; and a switching unit coupled to the local input/output lines and configured to select a part of the local input/output lines.12-01-2011
20110188282Memory architectures and techniques to enhance throughput for cross-point arrays - Embodiments of the invention relate generally to semiconductors and memory technology, and more particularly, to systems, integrated circuits, and methods to implement memory architectures configured to enhance throughput for cross point arrays including memory elements, such as memory elements based on third dimensional memory technology. In at least some embodiments, an integrated circuit includes arrays that include memory elements being formed BEOL above a FEOL logic layer within a boundary in a plane parallel to a substrate, and array lines. Further, the integrated circuit includes array line decoders disposed in the logic layer within a region located coextensive with the boundary and between the substrate and the arrays. In some embodiments, the disposition of peripheral circuitry, such as the array line decoders, under the arrays can preserve or optimize die efficiency for throughput enhancement.08-04-2011
20090097296REDUCED SIZE SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device is described that includes memory banks having memory cells and are laid out as a matrix on a semiconductor chip body. The semiconductor memory device includes a first pad group having first pads that are arranged in a line between two adjoining memory banks and a second pad group having second pads that are also arranged in a line between the two adjoining memory banks parallel to the first pad group. At least one third pad group is also formed interposed between the first and second pad groups having at least one third pad allowing for a reduction in size of the semiconductor memory device.04-16-2009
20100080032SEMICONDUCTOR DEVICE - A semiconductor device is provided in which two adjacent cell lines extending in a word line direction are connected by one word line. Additionally, A semiconductor device comprising: word lines; bit lines which are disposed to cross the word lines; a plurality of cell lines extending in a word line direction; and a word line provided to share one cell line and the other cell line, of a pair of cell lines comprising two adjacent cell lines, wherein a distance between two adjacent cell lines in the pair of cell lines is smaller than a distance between two adjacent cell lines between one pair of cell lines and the other pair of cell lines.04-01-2010
20110267864NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a nonvolatile semiconductor memory device includes a first memory chip, a second memory chip, and a control chip. The first chip includes a first inductor configured to transmit/receive a signal, and a memory cell. The second chip is disposed on the first chip and includes a second inductor configured to transmit/receive a signal, and a memory cell. The control chip includes a control circuit configured to control the first and second chips, and a third inductor configured to transmit/receive a signal to/from the first and second inductors. The outer peripheries of the first and second inductors are included in a closed space produced by extending the outer periphery of the third inductor in a direction perpendicular to a plane that includes the third inductor. The inductance of the third inductor is greater than at least one of the inductances of the first and second inductors.11-03-2011
20100034004SEMICONDUCTOR MEMORY DEVICE OF OPEN BIT LINE TYPE - There is provided a semiconductor memory device that includes: a plurality of memory mats each including a plurality of word lines, a plurality of bit lines, a plurality of memory cells each located at an intersection between the word line and the bit line, and at least one dummy word line not having connection to a dummy cell; a plurality of sense amplifier arrays located between adjacent memory mats, the sense amplifier arrays including a plurality of sense amplifiers including a pair of input/output nodes, one of which pair is connected to the bit lines of the adjacent memory mats on one side and the other of which pair is connected to the bit lines of the adjacent memory mats on the other side, respectively; and an activating unit which, in response to activation of the word line in a memory mat selected from the memory mats, activates the dummy word line in the memory mat adjacent to the selected memory mat.02-11-2010
20100091536COMPOSITE MEMORY HAVING A BRIDGING DEVICE FOR CONNECTING DISCRETE MEMORY DEVICES TO A SYSTEM - A composite memory device including discrete memory devices and a bridge device for controlling the discrete memory devices in response to global memory control signals having a format or protocol that is incompatible with the memory devices. The discrete memory devices can be commercial off-the-shelf memory devices or custom memory devices which respond to native, or local memory control signals. The global and local memory control signals include commands and command signals each having different formats. The composite memory device includes a system in package including the semiconductor dies of the discrete memory devices and the bridge device, or can include a printed circuit board having packaged discrete memory devices and a packaged bridge device mounted thereto.04-15-2010
20100091537MULTI-DIE MEMORY DEVICE - An integrated circuit (IC) package includes an interface die and a separate storage die. The interface die has a synchronous interface to receive memory access commands from an external memory controller, and has a plurality of clockless memory control interfaces to output row and column control signals that correspond to the memory access commands. The storage die has a plurality of independently accessible storage arrays and corresponding access-control interfaces to receive the row and column control signals from the clockless memory control interfaces, each of the access-control interfaces including data output circuitry to output read data corresponding to a given one of the memory access commands in a time-multiplexed transmission.04-15-2010
200901475573D CHIP ARRANGEMENT INCLUDING MEMORY MANAGER - Systems, apparatuses and methods involving centralized memory management capable of allocating and de-allocating memory for all subsystems dynamically. One embodiment involves a base substrate, a logic die(s) on the base substrate and having a subsystem(s), a memory die(s) having a memory module(s), a memory management unit, a first data interface connecting the memory management unit with the at least one logic die, a second data interface connecting the memory management unit with the at least one memory die, a configuration interface connecting the memory management unit with the at least one memory die, where the configuration interface includes face-to-face connections, a control interface connecting the memory management unit with the at least one logic die, where the memory die(s) and the logic die(s) are arranged in a stacked configuration on the base substrate, and the memory management unit is adapted for managing memory accesses from the subsystem(s) by negotiating an allowed memory access with the subsystem(s) via the control interface and configuring the at least one memory module according to the allowed memory access via the configuration interface.06-11-2009
20100128507CIRCUIT PROVIDING LOAD ISOLATION AND MEMORY DOMAIN TRANSLATION FOR MEMORY MODULE - A circuit is configured to be mounted on a memory module so as to be electrically coupled to a plurality of double-data-rate (DDR) memory devices arranged in one or more ranks on the memory module. The circuit includes a logic element, a register, and a phase-lock loop device. The circuit is configurable to respond to a set of input signals from a computer system to selectively isolate one or more loads of the plurality of DDR memory devices from the computer system and to translate between a system memory domain of the computer system and a physical memory domain of the plurality of DDR memory devices.05-27-2010
20090141532SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a memory block having a three-dimensional memory cell array structure in which memory cell arrays are stacked, the memory cell array including: a plurality of first interconnections which are parallel to one another; a plurality of second interconnections which are formed so as to intersect with the plurality of first interconnections, the second interconnections being parallel to one another; and a memory cell which is disposed in each intersection portion of the first interconnection and the second interconnection, one end of the memory cell being connected to the first interconnection, the other end of the memory cell being connected to the second interconnection. The first interconnection disposed between the adjacent memory cell arrays is shared by memory cells above and below the first interconnection, and the vertically-overlapping first interconnections are connected to each other.06-04-2009
20080266925Array Split Across Three-Dimensional Interconnected Chips - A design structure including a semiconductor storage array having a first array portion on a first plane of circuitry and a second array portion on a second plane of circuitry. A composite bit line and/or a composite word line is divided and arranged to have a first portion on the first array portion and a second portion on the second array portion. The two portions of the composite word line or the composite bit line are on different planes of circuitry, and three-dimensional interconnections connect proximal ends of the word line portions, or proximal ends of the bit line portions. A word line driver drives the word line portions in parallel. A bit line driver drives the bit line portions in parallel. Signal propagation times down the composite word or bit lines are significantly less than signal propagation times down corresponding undivided word or bit lines.10-30-2008
20100277962Media player with non-volatile memory - A media player is provided that includes a processor configured to execute a media player program, a non-volatile memory electrically coupled with the processor, the non-volatile memory being vertically configured, an input/output module electrically coupled with the processor and the non-volatile memory and configured to communicate with an input/output device, and an analog/digital module electrically coupled with the processor and the non-volatile memory, the analog/digital module configured to output a media signal. The input/output module may be in electrical communication with the input/output device (e.g., electrically coupled) and/or signal communication with the input/output device (e.g., wireless and/or optical communication).11-04-2010
20100277963IC CARD - An IC card capable of reinforcing the prevention of the electrostatic damage without causing a rise in the cost of a semiconductor integrated circuit chip. The semiconductor integrated circuit chip (11-04-2010
20100124090SEMICONDUCTOR MEMORY DEVICE AND CONTROL METHOD THEREOF - To provide data lines connected via column switches to a plurality of sense amplifiers and an input/output circuit that, in response to a write request, supplies pre-write data through the data line to selected phase change memory cells and then write data through the data line to the selected phase change memory cells. Thus, a pre-write operation and an actual write operation according to the write data can be performed at high speed. Because only the memory cells selected by a column address are subject to write, consumption power is reduced and lives of the memory cells are not shortened.05-20-2010
20090219745MEMORY MODULE AND MEMORY DEVICE - In a memory module including a plurality of DRAM chips which transmit/receive a system data signal with a predetermined data width and at a transfer rate and which transmit/receive an internal data signal having a larger data width and a lower transfer rate as compared with the system data signal, the transfer rate of the system data signal is restricted. Current consumption in DRAMs constituting the memory module is large, hindering speed increases. For this memory module, a plurality of DRAM chips are stacked on an IO chip. Each DRAM chip is connected to the IO chip by a through electrode, and includes a constitution for mutually converting the system data signal and the internal data signal in each DRAM chip by the IO chip. Therefore, wiring between the DRAM chips can be shortened, and DLL having a large current consumption may be disposed only on the IO chip.09-03-2009
20090219743Three dimensional structure memory - A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 μm in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.09-03-2009
20100118579Nand Based Resistive Sense Memory Cell Architecture - Various embodiments are directed to an apparatus comprising a semiconductor memory array with non-volatile memory unit cells arranged into a NAND block. Each of the unit cells comprises a resistive sense element connected in parallel with a switching element. The resistive sense elements are connected in series to form a first serial path, and the switching elements are connected in series to form a second serial path parallel to the first serial path. Each resistive sense element is serially connected to an adjacent resistive sense element in the block by a tortuous conductive path having a portion that extends substantially vertically between said elements to provide operational isolation therefor.05-13-2010
20090290403SEMICONDUCTOR DEVICE - According to an aspect of the present invention, there is provided a semiconductor device including: first and second blocks that each includes a word line group of first to N-th word lines, the word lines extending in a given direction, the word lines having a first width, the first and second blocks being adjacent to and in parallel with each other in a crossing direction so that an inter-block area is interposed therebetween and so that the word line groups are symmetrical with respect to the inter-block area; and a first wirings that are formed in a first wiring layer positioned above the word lines to have a second width wider than the first width and that connect a k-th word line of the first block and a k-th word line of the second block.11-26-2009
20090185407Semiconductor Memory Device Having Transistors of Stacked Structure - Provided is a semiconductor device having transistors of stacked structure. The semiconductor memory device having transistors includes a memory cell array block which includes a plurality of word lines and a plurality of memory cells which each includes at least one first transistor connected between the plurality of word lines, and a word line decoder which includes a plurality of drivers which drive the plurality of word lines, respectively, wherein a plurality of word lines are disposed on a first layer, and a plurality of drivers are disposed on at least two second layers.07-23-2009
20090201710SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises a plurality of cell arrays, each cell array including a plurality of mutually parallel word lines, a plurality of mutually parallel bit lines disposed to cross these word lines, and a plurality of cells connected to the intersections of these word lines and bit lines, respectively, one portion of the cell arrays forming a memory cell array that has the cells as memory cells, and another portion of the cell arrays forming a reference cell array that has the cells as reference cells. A cell selection circuit is operative to select from the memory cell array a memory cell whose data is to be read, and to select from the reference cell array a reference cell at a position corresponding to a position of the memory cell selected in the memory cell array. A sense amplifier circuit is operative to detect and compare a current or a voltage of the selected memory cell with a current or a voltage of the selected reference cell, and thereby read data of the memory cell.08-13-2009
20090201711MEMORY MODULE WITH A CIRCUIT PROVIDING LOAD ISOLATION AND MEMORY DOMAIN TRANSLATION - A memory module includes a plurality of memory devices and a circuit. Each memory device has a corresponding load. The circuit is electrically coupled to the plurality of memory devices and is configured to be electrically coupled to a memory controller of a computer system. The circuit selectively isolates one or more of the loads of the memory devices from the computer system. The circuit comprises logic which translates between a system memory domain of the computer system and a physical memory domain of the memory module.08-13-2009
20120106226SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a bit line; two or more word lines; and a memory cell including two or more sub memory cells that each include a transistor and a capacitor. One of a source and a drain of the transistor is connected to the bit line, the other of the source and the drain of the transistor is connected to the capacitor, a gate of the transistor is connected to one of the word lines, and each of the sub memory cells has a different capacitance of the capacitor.05-03-2012
20120106225Array-Based Integrated Circuit with Reduced Proximity Effects - An integrated circuit and method of generating a layout for an integrated circuit in which circuitry peripheral to an array of repetitive features, such as memory or logic cells, is realized according to devices constructed similarly as the cells themselves, in one or more structural levels. The distance over which proximity effects are caused in various levels is determined. Those proximity effect distances determine the number of those features to be repeated outside of and adjacent to the array for each level, within which the peripheral circuitry is constructed to match the construction of the repetitive features in the array.05-03-2012
20090262564CIRCUIT WIRING LAYOUT IN SEMICONDUCTOR MEMORY DEVICE AND LAYOUT METHOD - An improved circuit wiring layout provides smooth circuit wiring in a peripheral circuit region adjacent to a memory cell region of a semiconductor memory device, and eliminates a write-speed limiting factor. Forming a metal (instead of a metal silicided polysilicon) wiring layer to be connected to a gate layer, to transmit an electrical signal to the gates of FET (e.g., MOSFET (Metal Oxide Semiconductor Field Effect Transistor) transistors formed in the peripheral circuit region; the metal wiring layer is formed (e.g., using one metal damascene process), on a layer different from a word line layer formed on the gate layer (e.g., using another metal damascene process), thereby obtaining a layout of a peripheral circuit region having a reduced area and without using a silicide process.10-22-2009
20090262563Memory device capable of one-time data writing and repeated data reproduction, and method and display apparatus for operating the memory device - Provided are a memory device where data may be recorded one time and/or reproduced repeatedly, and a method and display apparatus for operating the memory device. The memory device may include a program area having a plurality of memory cells and a spare area having a plurality of memory cells. The memory device may include a memory cell layer having the program area and the spare area. The memory cell layer may include a plurality of vertically stacked memory cell layers. Each of the plurality of memory cell layers may include the program area and the spare area. The program area and the spare area may be either vertical or horizontal to one another.10-22-2009
20090290402Semiconductor memory devices and methods of arranging memory cell arrays thereof - A semiconductor memory device and a method of arranging a memory cell array of the semiconductor device are provided. The semiconductor memory device has a memory cell array including a word line pair including a first word line and a second word line that are arranged in a first direction, a source line arranged in the first direction between the first word line and the second word line, a bit line pair including a first bit line and a second bit line arranged in a second direction perpendicular to the first direction, a first memory cell including a gate connected to the first word line and first and second regions respectively connected to the second bit line and the source line, and arranged in a third direction between the first direction and the second direction, and a second memory cell including a gate connected to the second word line, a third region and the second region respectively connected to the first bit line and the source line, and arranged in the third direction. The first word line and the second word line are simultaneously activated. Therefore, disturbance that may be generated between adjacent memory cells in the semiconductor memory cell can be prevented, integration density of the semiconductor memory device can be enhanced, and the number of word lines to be driven may be reduced to employ a sub-word line structure.11-26-2009
20090296445DIODE DECODER ARRAY WITH NON-SEQUENTIAL LAYOUT AND METHODS OF FORMING THE SAME - In various embodiments, an electronic circuit includes an array of locations each corresponding to an intersection of a row and a column, and a plurality of devices each disposed proximate one of the locations, wherein no more than ten contiguous locations lack a proximate device.12-03-2009
20090290401PLACEMENT AND OPTIMIZATION OF PROCESS DUMMY CELLS - A method for laying out process dummy cells in relationship to inside memory cells of a memory array includes (a) calculating an initial process performance parameter for the memory array; (b) changing dummy cell layout configuration for a layer electrically connected to inside cells; (c) applying lithographic simulation and yield model for both the inside memory cells and the changed layout configuration process dummy cells; and (d) repeating steps (b) and (c) until yield is maximized. Checks may be performed to ensure that there is enough room to make the change and that there is no significant adverse effect to neighboring circuits. The process performance parameter may be yield or a process window for the inside memory cells.11-26-2009
20090103343Semiconductor memory device comprising transistor having vertical channel structure - A semiconductor memory device including a transistor having a vertical channel structure is provided. The device comprises a first sub memory cell array comprising a first memory cell connected to a first bit lines and comprising a transistor having a vertical channel structure, a second sub memory cell array comprising a second memory cell connected to a first inverted bit lines and comprising a transistor having a vertical channel structure, and a plurality of precharge blocks. In addition, first and second precharge blocks are disposed at first and second sides of the first bit line and precharge the first bit line, and third and fourth precharge blocks are disposed at first and second sides of the first inverted bit line and precharge the first inverted bit line.04-23-2009
20090244948EMBEDDED MEMORY APPARATUS WITH REDUCED POWER RING AREA - An embedded memory apparatus with reduced power ring area is disclosed. In order to save the area consumption of a chip, a scheme for removing the power rings originally disposed in a memory core, or another scheme for sharing the power rings with other adjacent memory cores is provided. According to the preferred embodiment of the routing, the power strips originally bridging the inner elements and the outer power serve as the power source (VDD) and ground (VSS) respectively since the peripheral power ring surrounded the core is removed. Thus the area consumption is reduced as if the surrounded power ring shrinks inwardly. The shared power ring for the adjacent memory cores can also be another aspect for reducing the area.10-01-2009
20110199804THREE-DIMENSIONAL SEMICONDUCTOR DEVICE AND RELATED METHOD OF OPERATION - A three-dimensional semiconductor device comprises active patterns arranged two-dimensionally on a substrate, electrodes arranged three-dimensionally between the active patterns, and memory regions arranged three-dimensionally at intersecting points defined by the active patterns and the electrodes. Each of the active patterns is used as a common current path for an electrical connection to two different memory regions that are formed at the same height from the substrate.08-18-2011
20110199803Semiconductor device with a selection circuit selecting a specific pad - A semiconductor device includes a selection circuit for selecting a specific pad of a semiconductor memory. The semiconductor device is configured to produce a signal determined by a pin array by the selection circuit.08-18-2011
20100110747SEMICONDUCTOR MEMORY DEVICE - The semiconductor memory device proposed in the present invention comprises memory cells disposed in the row direction and the column direction, a plurality of first lines by which supply voltages are supplied in order to select memory cells disposed in the row direction among the plurality of cells, a plurality of second lines by which supply voltages are supplied in order to select memory cells disposed in the column direction among the plurality of cells, the data lines which input and output the data to the selected memory cells, the first power voltage supply circuit which supplies the predetermined supply voltages to the first lines corresponding with the externally input row address synchronizing with an act command, and the second power voltage supply circuit which supplies the predetermined supply voltages to the second lines corresponding with the externally input column address synchronizing with an act command. It also comprises m pieces of memory banks (m is a natural number larger than 2) which write or read the data into or from the memory cells which are selected one after another in the row or column directions, data input circuits in which multiple bits of serial data which is larger than 512 bits to be written in the m pieces of memory banks, data output circuits which reads the data from the m pieces of memory banks and output in a form of multiple bits of serial data which is larger than 512 bits, and data conversion circuits which convert the serial data input in the data input circuits to parallel data so that it can be written in each memory bank or to convert each parallel data read from each memory bank to serial data so that such data are supplied to the data output circuits.05-06-2010
20100110748HYBRID VOLATILE AND NON-VOLATILE MEMORY DEVICE - A composite, hybrid memory device including a first storage die having an array of volatile storage cells and a second storage die having an array of non-volatile storage cells disposed within an integrated circuit package. The hybrid memory device includes a shared interface circuit to receive memory access commands directed to the first storage die and the second storage die and to convey read and write data between an external data path and the first and second storage dice.05-06-2010
20100110746MEMORY CELL WITH ALIGNMENT STRUCTURE - A memory cell that includes a memory element configured for switching from a first data state to a second data state by passage of current therethrough. The memory cell includes a top electrode and a bottom electrode for providing the current through the memory cell, and an alignment element positioned at least between the top electrode and the top surface of the memory element, the alignment element having an electrically conductive body tapering from the top electrode to the top surface of the memory element. Methods for forming the memory cell are also described.05-06-2010
20120294058MULTI-DIE MEMORY DEVICE - A multi-die memory device includes a first die of a first type and configured to electrically interface with an external processor via a first synchronous interface operating at a first clock rate, and at least one second die of a second type and configured for data storage. Each second die transacts data with the first die via a second synchronous interface operating at a second clock rate, where the first clock rate is an integer multiple of the second clock rate, and where a timing reference associated with the second synchronous interface is transmitted by the first die to the second die.11-22-2012
20100103714SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device includes: a memory cell array having memory cells positioned at respective intersections between a plurality of first wirings and a plurality of second wirings, each of the memory cells having a rectifier element and a variable resistance element connected in series; and a control circuit selectively driving the first and second wirings. The plurality of first wirings that are specified and selectively driven at the same time by one of a plurality of address signals are separately arranged with other first wirings interposed therebetween within the memory cell array when a certain potential difference is applied to a selected memory cell positioned at an intersection between the first and second wirings by the control circuit.04-29-2010
20100061132SEMICONDUCTOR STORAGE DEVICE - In a semiconductor storage device such as a phase change memory, a technique which can realize high integration is provided. The semiconductor storage device includes a phase change thin film 03-11-2010
20100061131Circuit Arrangement Comprising a Memory Cell Field and Method for Operation Thereof - A circuit arrangement comprises a memory cell array (03-11-2010
20090296443MEMORY DEVICE HAVING DATA PATHS - Apparatus and methods are disclosed, such as those involving array/port consolidation and/or swapping. One such apparatus includes a plurality of port pads including a plurality of contacts; a plurality of memory arrays; and a plurality of master data lines. Each of the master data lines extends in a space between one of the port pads and a respective one of the memory arrays. Each of the master data lines is electrically connectable to the contacts of a respective one of the port pads. The apparatus further includes a plurality of local data lines, each of which extends over a respective one of the memory arrays. Each of the local data lines is electrically connectable to a respective one of the master data lines. At least one of the local data lines extends over at least two of the memory arrays. This configuration allows memory array consolidation and/or swapping without increasing die space for additional routing and adversely affecting performance of the apparatus.12-03-2009
20100142243DATA STORAGE SYSTEM WITH REMOVABLE MEMORY MODULE HAVING PARALLEL CHANNELS OF DRAM MEMORY AND FLASH MEMORY - A data storage system 06-10-2010
20120170345STACKED SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - The stacked semiconductor device including a first chip, a second chip positioned on the first chip, the second chip being connected to a plurality of first penetration electrodes and including a first memory and a memory controller that are each controlled by the first chip, and a second memory positioned on the second chip and connected to a plurality of second penetration electrodes and controlled by the memory controller.07-05-2012
20090003027PRODUCTION METHOD FOR SEMICONDUCTOR STORAGE DEVICE AND SEMICONDUCTOR STORAGE DEVICE - A pair of power supply lines that are orthogonal to the border with the cell array are placed, for each one-bit processing circuit of the data processing unit, in a semiconductor storage device such as SRAM or the like comprising a data processing unit for writing data to memory cells and reading it therefrom, a row decode unit for driving the word lines of the memory cells, and a timing control unit for generating a control pulse for the data processing unit, all of which are arranged around the circumference of a cell array in which memory cells are arrayed in a grid-like fashion. MOS transistors are placed between the power supply lines in such a position that the principal axis direction of the gate pattern is orthogonal to the two aforementioned wirings, and are closely arrayed in the longitudinal direction of the power supply lines.01-01-2009
20090003026SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a plurality of banks, each of which is constituted of a plurality of memory cell arrays that are aligned in series in the longitudinal direction, wherein each memory cell array includes a plurality of memory cells, and wherein memory cell arrays of banks are collectively aggregated into a plurality of blocks, each of which includes memory cell arrays aligned in the perpendicular direction, in connection with a plurality of DQ pads. DQ pads are arranged in proximity to blocks. Substantially the same distance is set between memory cells and DQ pads so as to reduce dispersions in access times with respect to all DQ pads, thus achieving high-speed access in the semiconductor memory device. The wiring region of IO lines is reduced in the center area of the chip.01-01-2009
20090003025DUAL BIT LINE METAL LAYERS FOR NON-VOLATILE MEMORY - Structures and techniques are disclosed for reducing bit line to bit line capacitance in a non-volatile storage system. The bit lines are formed at a 4 f pitch in each of two separate metal layers, and arranged to alternate between each of the layers. In an alternative embodiment, shields are formed between each of the bit lines on each metal layer.01-01-2009
20100097834TREE-STRUCTURE MEMORY DEVICE - A tree-structure memory device including a plurality of bit lines formed on a substrate and arranged in at least one plane substantially parallel to a substrate surface and extending substantially in a first direction, a plurality of layers having a plurality of memory cells arranged in a first array, a tree structure corresponding to a plurality of layers and a bit line; and a word-line group including at least one word line crossing with the tree structure, a memory cell of the first array being located at the first intersection region in a layer of said layers.04-22-2010
20100128506MEMORY - A memory includes conductive layers provided to extend along the word lines, memory cells each including a diode having a cathode connected to the conductive layer and a source line reading data stored in the memory cells, wherein either the conductive layers or the bit lines are in floating states in a standby time.05-27-2010
20090168481Tree-structure memory device - A tree-structure memory device. A tree-structure memory device comprises a plurality of bit lines formed on a substrate and arranged in at least one plane substantially parallel to a substrate surface and extending substantially in a first direction. A plurality of layers having a plurality of memory cells is arranged in a first array. At least one tree structure corresponds to a plurality of layers and a bit line, and has a trunk portion and at least one branch portion that corresponds to one of the layers. A word-line group includes at least one word line crossing with the branch portion of the tree structure at a first intersection region. A memory cell of the first array is located at the first intersection region in a layer of the layers. The first array of memory cells includes at least one memory cell comprising a phase-change-material layer disposed between the word line and the branch portion of the tree structure at the first intersection region without an intervening current-steering element.07-02-2009
20080273364MEMORY STRUCTURE WITH EMBEDED MULTI-TYPE MEMORY - A memory includes a first-type memory; and a second-type memory, formed on the first-type memory, wherein the first-type memory is a nonvolatile memory with a stack of conductor/storage/conductor, and the second-type memory is a nonvolatile memory, a flash memory or another memory with a stack of conductor/storage/conductor. In addition, the nonvolatile memory can include a storage element for each memory cell, including a bottom electrode layer; a memory material layer, disposed over the bottom electrode layer, wherein the memory material has at least two physical states under different electric operation condition; and a top electrode layer, disposed over the memory material layer.11-06-2008
20080273363Semiconductor Constructions, Electronic Systems, And Methods of Forming Cross-Point Memory Arrays - Some embodiments include vertical stacks of memory units, with individual memory units each having a memory element, a wordline, a bitline and at least one diode. The memory units may correspond to cross-point memory, and the diodes may correspond to band-gap engineered diodes containing two or more dielectric layers sandwiched between metal layers. Tunneling properties of the dielectric materials and carrier injection properties of the metals may be tailored to engineer desired properties into the diodes. The diodes may be placed between the bitlines and the memory elements, or may be placed between the wordlines and memory elements. Some embodiments include methods of forming cross-point memory arrays. The memory arrays may contain vertical stacks of memory unit cells, with individual unit cells containing cross-point memory and at least one diode.11-06-2008
200803102073-D SRAM ARRAY TO IMPROVE STABILITY AND PERFORMANCE - A design structure for a three-dimensional memory circuit provides reduction in memory cell instability due to half-select operation by reduction of the number of memory cells sharing a sense amplifier and, potentially, avoidance of half-select operation by placing some or all peripheral circuits including local evaluation circuits functioning as a type of sense amplifier on an additional chips or chips overlying the memory array. Freedom of placement of such peripheral circuits is provided with minimal increase in connection length since word line decoders may be placed is general registration with ant location along the word lines while local evaluation circuits and/or sense amplifiers can be placed at any location generally in registration with the bit line(s) to which they correspond.12-18-2008
20080212352MULTI-LAYER SEMICONDUCTOR MEMORY DEVICE COMPRISING ERROR CHECKING AND CORRECTION (ECC) ENGINE AND RELATED ECC METHOD - Embodiments of the invention provide a multi-layer semiconductor memory device and a related error checking and correction (ECC) method. The multi-layer semiconductor memory device includes first and second memory cell array layers, wherein the first memory cell array layer stores first payload data. The multi-layer semiconductor memory device also includes an ECC engine selectively connected to the second memory cell array layer and configured to receive the first payload data, generate first parity data corresponding to the first payload data, and store the first parity data exclusively in the second memory cell array layer.09-04-2008
20080239780SEMICONDUCTOR DEVICE - A technology that makes it possible to reduce fluctuation in operating voltage for operating the circuits formed in the core region of a semiconductor device is provided. This semiconductor device is so arranged that the core region is divided into multiple functional blocks and power can be supplied and this power supply can be interrupted with respect to each of the divided functional blocks. The core region formed in the semiconductor chip is divided into multiple functional blocks. A power switch row in which multiple power switches are arranged is disposed in the boundaries between the divided functional blocks. These power switches have a function of controlling the supply of reference potential to each of functional blocks and the interruption of this supply. A feature of the invention is that reference pads are disposed directly above the power switch rows. This shortens the wires coupling together the reference pads and the power switches.10-02-2008
20080266924NAND INTERFACE - A NAND interface having a reduced pin count configuration, in which all command and address functions and operations of the NAND are provided serially on a single serial command and address pin.10-30-2008
20080285324SEMICONDUCTOR MEMORY DEVICE - Shunt regions are formed at certain intervals in a memory cell array region as extending in a second direction. The shunt regions each include a contact formed to connect a word line or a signal line wired in the same direction to another metal wire. Extension regions are each formed of an extension of the shunt region in the data cache array region. Data input/output lines extend in a first direction and transfer data on bit lines simultaneously via a data cache array. Sense circuits are arranged around the data cache array and connected to the data input/output lines respectively. The data input/output lines are divided at a certain interval in the first direction. The divided portions are connected to respective leads formed in the extension region in the longitudinal direction thereof and connected to the sense circuits via the leads.11-20-2008
20110007538SYSTEMS AND METHODS OF CELL SELECTION IN CROSS-POINT ARRAY MEMORY DEVICES - The disclosure is related to three dimensional cross-point array memory devices and selecting cells within a three dimensional cross-point array memory. In a particular embodiment, three different voltages levels are applied to bit lines of the cross point array to allow for selection of a specific cell. Series of select devices may be implemented to provide a high voltage and a low voltage to specific bit lines, while a middle voltage may also be provided. In a particular embodiment, the select devices comprise Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs).01-13-2011
20100142245Semiconductor device - A semiconductor device includes: a memory cell array having a plurality of memory cells arranged in arrays; a plurality of bit lines formed correspondingly to a column arrangement of the memory cells; a plurality of word lines formed correspondingly to a row arrangement of the memory cells; a plate line having one of a configuration in which the first electrodes of the respective memory cells are included in the plate line and a configuration in which the first electrodes are connected to the plate line; a column switch used to connect a selected bit line and a data access line; and a pre-charge portion that performs a pre-charge operation to pre-charge a non-selected bit line not selected by the column switch to potential of the plate line.06-10-2010
20100142246SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises a plurality of memory cell mats, a plurality of sub-word driver regions and a plurality of sense amplifier regions, a plurality of intersection regions, a sub-amplifier, and a start signal (a control signal) supply circuit (a sub-amplifier control circuit). A plurality of sub-word driver regions and a plurality of sense amplifier regions are disposed adjacent to the plurality of memory cell mats. A plurality of intersection regions are intersection regions between the plurality of sub-word driver regions and the plurality of sense amplifier regions. The sub-amplifier is disposed in a first intersection region among the plurality of intersection regions. The start signal supply circuit is disposed in a second intersection region among the plurality of intersection regions, and supplies a start signal (a control signal) of the sub-amplifier to the sub-amplifier based on a sub-amplifier timing signal supplied from the extending direction of the sub-word driver region.06-10-2010
20100142247MEMORY MODULES AND METHODS FOR MODIFYING MEMORY SUBSYSTEM PERFORMANCE - Methods and memory modules adapted for use in computer systems to generate different voltages for core supply (VDD) and input/output supply (VDDQ) inputs to memory components of the computer memory subsystem. The memory module includes a substrate with an edge connector, a memory component, and first and second voltage planes adapted to supply the core supply voltage and the input/output supply voltage to the memory component. The first voltage plane receives a system input voltage from the edge connector, and the second voltage plane is connected to the first voltage plane to receive a second voltage that is either higher or lower than the system input voltage. One of the first and second voltage planes is connected to the memory component to supply the core supply voltage thereto, and the other voltage plane supplies the input/output supply voltage to the memory component.06-10-2010
20100142244MEMORY MODULE AND DATA INPUT/OUTPUT SYSTEM - A memory module is configured to include a first rank installed with a first memory chip and a second rank installed with a second memory chip. When the first and second memory chips are in a first data output mode, the first memory chip is configured to externally output lower order data of a plurality of data via lower data output pins. Also, when the first and second memory chips are in the first data output mode, the second memory chip is configured to externally output data that has the same order as the lower order data output by the first memory chip via upper data output pins.06-10-2010
20090091962MULTI-CHIP MEMORY DEVICE WITH STACKED MEMORY CHIPS, METHOD OF STACKING MEMORY CHIPS, AND METHOD OF CONTROLLING OPERATION OF MULTI-CHIP PACKAGE MEMORY - A multi-chip memory device includes a transfer memory chip communicating input/output signals, a stacked plurality of memory chips each including a memory array having a designated bank, and a signal path extending upward from the transfer memory chip through the stack of memory chips to communicate input/output signals, wherein each bank of each memory chip in the stacked plurality of memory chips is commonly addressed to provide read data during a read operation and receive write data during a write operation, and vertically aligned within the stacked plurality of memory chips.04-09-2009
20100142248Buffering systems for accessing multiple layers of memory in integrated circuits - Embodiments of the invention relate generally to data storage and computer memory, and more particularly, to systems, integrated circuits and methods for accessing memory in multiple layers of memory implementing, for example, third dimension memory technology. In a specific embodiment, an integrated circuit is configured to implement write buffers to access multiple layers of memory. For example, the integrated circuit can include memory cells disposed in multiple layers of memory. In one embodiment, the memory cells can be third dimension memory cells. The integrated circuit can also include read buffers that can be sized differently than the write buffers. In at least one embodiment, write buffers can be sized as a function of a write cycle. Each layer of memory can include a plurality of two-terminal memory elements that retain stored data in the absence of power and store data as a plurality of conductivity profiles.06-10-2010
20100265752SEMICONDUCTOR STORAGE DEVICE AND METHOD OF FABRICATING THE SAME - A semiconductor storage device includes a memory cell array, a plurality of word lines, a plurality of bit lines, a first gate wiring element 10-21-2010
20090161403SEMICONDUCTOR MEMORY DEVICE HAVING A PLURALITY OF CHIPS AND CAPABILITY OF OUTPUTTING A BUSY SIGNAL - One package contains a plurality of memory chips. Each memory chip has an I/O terminal which generates a busy signal. The busy signal enables a busy state when a power supply voltage value reaches a specified and guaranteed range after a power-on sequence. The busy signal maintains the busy state until completion of initialization operations for the plurality of memory chips. The busy signal releases the busy state after completion of all initialization operations for the plurality of memory chips.06-25-2009
20090129135Semiconductor devices having sense amplifiers and electronic systems employing the same - A semiconductor device having sense amplifiers and an electronic system employing the same are provided. The semiconductor device includes first sense amplifier blocks arranged in a row direction on a substrate and spaced apart from each other by a first distance. A second sense amplifier block spaced apart from the first sense amplifier blocks by a second distance greater than the first distance is provided. A plurality of cell array blocks arranged in the row direction on the substrate is provided. Each of the first and second sense amplifier blocks is disposed between the cell array blocks, and each of the cell array blocks includes a plurality of memory cells.05-21-2009
20090161402DATA STORAGE AND STACKABLE CONFIGURATIONS - A first memory device and second memory device have a same input/output layout configuration. To form a stack, the second memory device is secured to the first memory device. To facilitate connectivity, the second memory device is rotationally offset with respect to the first memory device in the stack to align outputs of the first memory device with corresponding inputs of the second memory device. The rotational offset of the second memory device with respect to the first memory device aligns one or more outputs of the first memory device with one or more respective inputs of the second memory device. Based on links between outputs and inputs from one memory device to another in the stack, the stack of memory devices can include paths facilitating one or more series connection configurations through he memory devices.06-25-2009
20090161401Multi-die Memory, Apparatus and Multi-die Memory Stack - The multi-die memory comprises a first die and a second die. The first die comprises a first group of memory banks, and the second die comprises a second group of memory banks. The first group of memory banks and the second group of memory banks are coupled to a common memory interface. The common memory interface couples the multi-die memory with an internal connection.06-25-2009
20090129136SEMICONDUCTOR MEMORY DEVICE - If memory cell blocks are laid out in a conventional manner to create a memory chip with a capacity of an odd power of 2 by using memory cells whose aspect ratio is 1:2, the chip will take a 1:1 shape and become difficult to enclose in a package of a 1:2 shape. In addition, such conventional layout of memory cell blocks to form the 1:2 shape causes the area of a peripheral circuit region to be limited by the memory blocks, pads to be arranged collectively in the central section of the chip, and wiring to become dense during the enclosure of the chip in the package.05-21-2009
20080316788Semiconductor memory device and method for operating semiconductor memory device - A semiconductor memory device includes a memory array section configured to serve as an information storage area and an interface section configured to interface between an external memory controller and the memory array section. The memory array section and the interface section are sealed in a package. The interface section has a plurality of interface modules corresponding to a plurality of memory types on a one-to-one basis. The method includes the steps of: selecting one of the plurality of interface modules in accordance with the memory type complying with specifications of the external memory controller being connected; and causing the selected interface module to access the memory array section for either a write or a read operation in response to either a write or a read request issued by the external memory controller.12-25-2008
20120069620System Including Vertically Stacked Embedded Non Flash Re Writable Non Volatile Memory - A multiple-type memory is disclosed. The multiple-type memory includes memory blocks in communication with control logic blocks. The memory blocks and the control logic blocks are configured to emulate a plurality of memory types. The memory blocks can be configured into a plurality of memory planes that are vertically stacked upon one another. The vertically stacked memory planes may be used to increase data storage density and/or the number of memory types that can be emulated by the multiple-type memory. Each memory plane can emulate one or more memory types. The control logic blocks can be formed in a substrate (e.g., a silicon substrate including CMOS circuitry) and the memory blocks or the plurality of memory planes can be positioned over the substrate and in communication with the control logic blocks. The multiple-type memory may be non-volatile so that stored data is retained in the absence of power.03-22-2012
20090052219MEMORY CIRCUIT ARRANGEMENT AND METHOD FOR THE PRODUCTION THEREOF - A memory circuit arrangement and fabrication method thereof are presented in which the parts of the memory circuit arrangement are situated on two different substrates. An integrated memory cell array is situated on one substrate. An integrated control circuit that controls access to the memory cells is situated on the other (logic circuit) substrate. The control circuit controls sequences when reading, writing or erasing content of a memory cell. The logic circuit substrate also contains a CPU and encryption coprocessor. The memory circuit contains a sense amplifier, with the aid of which the memory state of a memory cell can be determined, and a decoding circuit that selects a word or bit line.02-26-2009
20090052218SEMICONDUCTOR PACKAGE HAVING MEMORY DEVICES STACKED ON LOGIC DEVICE - A semiconductor package includes a base substrate, a logic device with a serializer/deserializer (SerDes), a plurality of odd memory devices disposed on a lower surface of the logic device and operatively stack-connected with the SerDes, and a plurality of even memory devices disposed on an upper surface of the logic device and operatively stack-connected with the SerDes, such that the plurality of odd memory devices and the plurality of even memory devices are connected in parallel by the SerDes.02-26-2009
20130215659LOAD REDUCED MEMORY MODULE AND MEMORY SYSTEM INCLUDING THE SAME - A device includes a printed circuit board, a clock connector provided on the printed circuit board and configured to be supplied with a first clock signal, a first register buffer provided on the printed circuit board, coupled to the clock connector and, including a first clock generator that produces a second clock signal in response to the first clock signal, a plurality of data connectors, provided on the printed circuit board, a plurality of memory chips each provided on the printed circuit board and including a first data terminal, and a plurality of second register buffers each provided on the printed circuit board independently of the first register buffer.08-22-2013
20110141788PAGE REGISTER OUTSIDE ARRAY AND SENSE AMPLIFIER INTERFACE - A non-volatile storage device includes a substrate, a monolithic three-dimensional memory array of non-volatile storage elements arranged above a portion of the substrate, a plurality of sense amplifiers in communication with the non-volatile storage elements, a plurality of temporary storage devices in communication with the sense amplifiers, a page register in communication with the temporary storage devices, and one or more control circuits. The one or more control circuits are in communication with the page register, the temporary storage devices and the sense amplifiers. The sense amplifiers are arranged on the substrate underneath the monolithic three-dimensional memory array. The temporary storage devices are arranged on the substrate underneath the monolithic three-dimensional memory array. The page register is arranged on the substrate in an area that is not underneath the monolithic three-dimensional memory array. Data read from the non-volatile storage elements by the sense amplifiers is transferred to the temporary storage devices and then to the page register in response to the one or more control circuits. Data to be programmed into the non-volatile storage elements is transferred to the temporary storage devices from the page register in response to the one or more control circuits.06-16-2011
20110222328DISTRIBUTED SEMICONDUCTOR DEVICE METHODS, APPARATUS, AND SYSTEMS - Some embodiments include a device having a number of memory cells and associated circuitry for accessing the memory cells. The memory cells of the device may be formed in one or more memory cell dice. The associated circuitry of the device may also be formed in one or more dice, optionally separated from the memory cell dice.09-15-2011
20090097297Memory module having star-type topology and method of fabricating the same - A memory module having a start-type topology and a method of fabricating the same are provided. The memory module includes a substrate. Memory devices are mounted on the substrate in at least two rows and at least two columns. A star-type topology is disposed to be electrically connected to the memory devices. One or more pairs of adjacent ones of the memory devices have a point-symmetric structure.04-16-2009
20090097295Nonvolatile Semiconductor Memory Device - A nonvolatile semiconductor memory device can prevent memory characteristics from deteriorating due to IR drop on word or bit lines in a cross-point type memory cell array. The device comprises a word line selection circuit selecting a selected word line from word lines and applying selected and unselected word line voltages to the selected and unselected word lines, respectively, a bit line selection circuit selecting a selected bit line from bit lines and applying selected and unselected bit line voltages to the selected and unselected bit lines, respectively, and voltage control circuits preventing voltage fluctuation of at least either one of the word and bit lines, wherein at least either one of the word and bit lines are connected to the voltage control circuits at a voltage control point positioned at a farthest point from a drive point connected to the word line selection circuit or bit line selection circuit.04-16-2009
20110228582STACKED MEMORY DEVICE AND METHOD OF FABRICATING SAME - A stacked semiconductor memory device comprises a semiconductor substrate having a functional circuit, a plurality of memory cell array layers, and at least one connection layer. The memory cell array layers are stacked above the semiconductor substrate. The connection layers are stacked above the semiconductor substrate independent of the memory cell array layers. The connection layers electrically connect memory cell selecting lines arranged on the memory cell array layers to the functional circuit.09-22-2011
20110228581STACKED MEMORY DEVICE AND METHOD OF REPAIRING SAME - A stacked semiconductor memory device comprises memory cell array layers that are stacked in an inverted wedge shape and have different redundancy sizes from each other. The stacked semiconductor memory device has space for vertical connection between layers, a relatively small size, and a relatively high yield.09-22-2011
20110141789MEMORY MODULE AND MEMORY SYSTEM - In a memory module including a plurality of DRAM chips which transmit/receive a system data signal with a predetermined data width and at a transfer rate and which transmit/receive an internal data signal having a larger data width and a lower transfer rate as compared with the system data signal, the transfer rate of the system data signal is restricted. Current consumption in DRAMs constituting the memory module is large, hindering speed increases. For this memory module, a plurality of DRAM chips are stacked on an IO chip. Each DRAM chip is connected to the IO chip by a through electrode, and includes a constitution for mutually converting the system data signal and the internal data signal in each DRAM chip by the IO chip. Therefore, wiring between the DRAM chips can be shortened, and DLL having a large current consumption may be disposed only on the IO chip.06-16-2011
20090103344MEMORY MODULE, SYSTEM AND METHOD OF MAKING SAME - A memory module, system and method of making the same includes a memory module including a plurality of memory devices having a first portion of memory devices cooperatively forming a first rank of memory devices and a second portion of memory devices cooperatively forming a second rank of memory devices. The first and second portions of memory devices are grouped into a plurality of memory device stacks, wherein each of the plurality of memory device stacks includes at least one of the plurality of memory devices coupled to a first portion of the plurality of DQ signals and at least another one of the plurality of memory devices coupled to a different second portion of the plurality of DQ signals.04-23-2009
20090251940NONVOLATILE SEMICONDUCTOR MEMORY DEVICE USING A VARIABLE RESISTANCE FILM AND METHOD OF MANUFACTURING THE SAME - A plurality of bit lines s arranged crossing a plurality of first word lines. A first diode is arranged at each cross point of the first word lines and the bit lines. A cathode of the first diode is connected to one of the first word lines. A first variable resistance film configuring the first diode is provided between the anodes of the first diodes and the bit lines, and configures a first memory cell together with each of the first diodes, and further, is used in common to the first diodes.10-08-2009
20090219744Three dimensional structure memory - A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 μm in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.09-03-2009
20090219742Three dimensional structure memory - A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 μm in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.09-03-2009
20090219740SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises a plurality of memory layers arranged in multilayer, each memory layer including a cell array, the cell array containing a plurality of first parallel lines, a plurality of second parallel lines arranged crossing the first lines, and a plurality of memory cells connected at intersections of the first lines and the second lines; a pulse generator operative to generate pulses required for data access to the memory cell; and a control means operative to control the pulse generator such that the pulse output from the pulse generator has energy in accordance with the memory layer to which the access target memory cell belongs.09-03-2009
20100265749THREE DIMENSIONALLY STACKED NON VOLATILE MEMORY UNITS - A memory unit including a first transistor spanning a first transistor region in a first layer of the memory unit; a second transistor spanning a second transistor region in a second layer of the memory unit; a first resistive sense memory (RSM) cell spanning a first memory region in a third layer of the memory unit; and a second RSM cell spanning a second memory region in the third layer of the memory unit, wherein the first transistor is electrically coupled to the first RSM cell, and the second transistor is electrically coupled to the second RSM cell, wherein the second layer is between the first and third layers, wherein the first and second transistor have an transistor overlap region, and wherein the first memory region and the second memory region do not extend beyond the first transistor region and the second transistor region.10-21-2010
20090273960SYSTEM FOR PROVIDING ON-DIE TERMINATION OF A CONTROL SIGNAL BUS - A system for providing on-die termination (ODT) of a control signal bus. The system includes a memory device that includes a plurality of data bus connectors, one or both of a load signal connector and a reset signal connector, a control bus connector, an ODT, and a mechanism. The ODT is in communication with the control bus connector, and the ODT provides a level of termination resistance to a control bus connected to the control bus connector. The mechanism latches data received via the data bus connectors in response to a signal received via one or both of the load signal connector and the reset signal connector. The data is utilized to set the level of termination resistance provided by the ODT.11-05-2009
20100157647Memory access circuits and layout of the same for cross-point memory arrays - An integrated circuit includes a substrate including active circuitry fabricated on the substrate and a cross-point memory array formed above the substrate. The cross-point memory array can include conductive array lines arranged in different directions, and re-writable memory cells. Further, the integrated circuit can also include a memory access circuit configured to perform data operations on the cross-point memory array. The integrated circuit can include a cross-point memory array interface layer positioned between the substrate and the cross-point array and including conductive paths configured to electrically couple portions of the memory access circuit with a subset of the conductive array lines. At least one layer of cross-point memory arrays can be formed over the substrate. The memory cells can be two-terminal memory cells that store data as a plurality of conductivity profiles (e.g., resistive states) that can be non-destructively determined by applying a read voltage across the terminals.06-24-2010
20100157644Configurable memory interface to provide serial and parallel access to memories - The invention relates to an interface for providing multiple modes of accessing data, including serial and parallel modes. Controllable non-volatile memory interfaces are described, including a serial module configured to provide a serial connection between a non-volatile memory array and another non-volatile memory array. The serial module can provide access to the non-volatile memory array. A mode module can be configured to determine which type of interface operation (i.e., serial mode or parallel mode) will be used for the non-volatile memory array and the another non-volatile memory array. In some cases, a controller can be configured to select the serial module independent of the mode module. Circuitry for performing data operations on the non-volatile memories can be fabricated FEOL on a substrate and the non-volatile memories can be fabricated BEOL directly on top of the substrate in one or more layers of memory.06-24-2010
20090273961SEMICONDUCTOR DEVICE - A technique for increasing rewriting current without increasing a power supply voltage and also reducing location dependency inside a memory array of a resistive state after the rewriting is provided in a resistance change memory in which the resistance value of a memory cell changes between logical values “1” and “0”. In the resistance change memory, bit lines are formed into a layered structure, the bit line select switches for connecting to the global bit line are provided at both ends of the local bit line, and a control method of the bit line select switches is changed in the writing and the reading, thereby realizing the optimum array configurations for each of them. More specifically, in the writing and the reading, two current paths are provided in parallel by turning ON the bit line select switches simultaneously.11-05-2009
20100177545MEMORY CIRCUITS AND ROUTING OF CONDUCTIVE LAYERS THEREOF - A memory circuit includes at least one memory cell for storing a datum. The memory cell is coupled with a word line, a bit line, a bit line bar, a first voltage line, and a second voltage line. The memory circuit includes a first conductive layer, a second conductive layer coupled with the first conductive layer, a third conductive layer coupled with the second conductive layer. The third conductive layer is routed for the word line and is free from including the bit line, the bit line bar, the first voltage line, and the second voltage line within the memory cell.07-15-2010
20100157643SEMICONDUCTOR MEMORY APPARATUS - A semiconductor memory apparatus includes non-inversion repeaters that non-invert data and output the inverted data; and inversion repeaters that invert data and output the inverted data. The non-inversion repeaters or the inversion repeaters are arranged on a first data line and a second data line at a predetermined distance, respectively, which are parallel with each other and the most adjacent to each other and the non-inversion repeater or the inversion repeater is arranged at first positions corresponding to the first data line and the second data line, respectively. The non-inversion repeaters are arranged on one of the first data line and the second data line while the inversion repeaters are arranged on the other first data line and the second data line, at second positions except for the first arrangement positions of positions corresponding to the first data line and the second data line, respectively.06-24-2010
20100157646METHODS AND APPARATUS FOR DISABLING A MEMORY-ARRAY PORTION - A memory device having a plurality of storage locations disposed along a plurality of generally parallel lines includes, connected to the lines, a decoder circuit for selecting one line, and, connected to each line, a line-disabling circuit for selectively preventing the line from being energized during line selection.06-24-2010
20100002485CONFIGURABLE INPUTS AND OUTPUTS FOR MEMORY STACKING SYSTEM AND METHOD - Embodiments of the present invention relate to configurable inputs and/or outputs for memory and memory stacking applications. More specifically, embodiments of the present invention include memory devices that include a die having a circuit configured for enablement by a particular signal, an input pin configured to receive the particular signal, and a path selector configured to selectively designate a signal path to the circuit from the input pin.01-07-2010
20100259962Three-Dimensional Array of Re-Programmable Non-Volatile Memory Elements Having Vertical Bit Lines and a Single-Sided Word Line Architecture - A three-dimensional array especially adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. A two-dimensional array of bit lines to which the memory elements of all planes are connected is oriented vertically from the substrate and through the plurality of planes. A single-sided word line architecture provides a word line exclusively for each row of memory elements instead of sharing one word line between two rows of memory elements thereby avoids linking the memory element across the array across the word lines. While the row of memory elements is also being accessed by a corresponding row of local bit lines, there is no extension of coupling between adjacent rows of local bit lines and therefore leakage currents beyond the word line.10-14-2010
20100182817Memory system, semiconductor memory device, and wiring substrate - A memory system includes a plurality of semiconductor memory devices each including a termination resistance circuit that can be controlled to be turned on or off from an outside by a termination resistance control signal, and a memory controller. The memory controller includes a termination resistance control unit that outputs the termination resistance control signal so that when a read command or a write command is executed on one of the semiconductor memory devices, termination resistances of all of the semiconductor memory devices are turned on, and when any of the semiconductor memory devices does not execute the read command or the write command, the termination resistances of all of the semiconductor memory devices are turned off. The termination resistance circuit of one of the semiconductor memory devices is turned off, irrespective of the level of the termination resistance control signal when the one of the semiconductor memory devices outputs data in response to the read command.07-22-2010
20100214813Memory module having a plurality of phase change memories, buffer RAM and nand flash memory - A memory module comprises a plurality of main memories; a buffer RAM configured to temporarily store data being provided to or read from the main memories and to perform a buffer function between an external device and the main memories; and a NAND flash memory configured to store data of the buffer RAM during an interruption of power being supplied to the buffer RAM.08-26-2010
20090296444MEMORY MODULE AND METHOD FOR ACCESSING MEMORY MODULE - A memory module includes a plurality of memory sub-modules and a plurality of groups of input pins, where each memory module includes a plurality of memory chips and the memory chips are series-connected. In addition, the plurality of groups of input pins are connected to the plurality of memory modules, respectively, and are utilized to receive the same input signals, where each group of input pins includes a plurality of input pins which are utilized to transmit the input signals to a corresponding memory module.12-03-2009
20080212351Pin configuration changing circuit, base chip and system in package including the same - A pin configuration changing circuit of a base chip includes pin configuration changing register (PCCR) and a pin configuration changing logic unit (PCCLU). The PCCR stores and provides a pin connection assignment value indicating a first connection order of a plurality of pins included in a memory connected to the base chip, based on a type of the memory when the memory is changed. The PCCLU receives the pin connection assignment value and changes a second connection order of a plurality of inner pins of the base chip. Various memories can be connected to the base chip without extra wiring or a printed circuit board (PCB).09-04-2008
20100157642MITIGATION OF CHARGE SHARING IN MEMORY DEVICES - One embodiment relates to a memory element disposed on a substrate. The memory element includes first and second interlocked data storage elements adapted to cooperatively store the same datum. An output of the first data storage element is coupled to an input node of the second data storage element. An output of the second data storage element is coupled to an input of the first data storage element. An isolation element in the substrate is arranged laterally between storage nodes of the first and second data storage elements. The isolation element is arranged to limit charge sharing between the storage nodes of the first and second data storage elements. Other methods and systems are also disclosed.06-24-2010
20100238694SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device is configured to reduce data read time. In the semiconductor storage device, an input/output control circuit is formed along one side of a memory cell array disposed between a data input pad and a data output pad. The input/output control circuit is disposed between a hold command input pad and a clock input pad. Accordingly, it is possible to minimize the distances of the wirings from the input/output control circuit to the pads and to make the distances of the wirings equal and thus to minimize the read time of the memory cell array. In addition, since it is also possible to make equal wiring distances from the input/output control circuit to the address decoder and output multiplexer, it is possible to minimize the read time of the memory cell array.09-23-2010
20090027938METHOD AND APPARATUS PROVIDING MULTI-PLANED ARRAY MEMORY DEVICE - A three dimensional variable resistance memory array and method of forming the same. The memory array has memory cells in multiple planes in three dimensions. The planes of the memory cells include shared interconnect lines, dually connected to driving and sensing circuits, that are used for addressing the cells for programming and reading. The memory array is formed using only a single patterned mask per central array plane to form the memory cells of such planes.01-29-2009
20090116271MEMORY - A memory is so formed that, in a first block and a second block each including a prescribed number of the bit lines arranged therein, positions of the bit lines simultaneously selected in the first and second blocks with reference to ends of the first and second blocks respectively are different from each other.05-07-2009
20090116270Floating Body Memory Cell System and Method of Manufacture - A plurality of integrated circuit features are provided in the context of an array of memory cells including a plurality of word lines and a plurality of bit lines. Each memory cell includes a floating body or is volatile memory. The aforementioned features may include, among others, an option whereby the foregoing bit lines may be situated below a channel region of corresponding memory cells, etc.05-07-2009
20100118580SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes first positive and negative data lines driven with voltage levels contrary to each other in response to first data and second positive and negative data lines driven with voltage levels contrary to each other in response to second data, wherein one of the second positive and negative data lines is disposed between the first positive and negative data lines.05-13-2010
20110128764SEMICONDUCTOR MEMORY DEVICE - A semiconductor device includes a first amplifier circuit, a second amplifier circuit, first and second bit lines coupled to the first amplifier circuit, third and fourth bit lines coupled to the second amplifier circuit, a first equalizer circuit being coupled to the first and second bit lines, and a second equalizer circuit being coupled between the second and third bit lines. The second equalizer circuit being closer to the second amplifier circuit than the first equalizer circuit, the first equalizer circuit being closer to the first amplifier circuit than the second equalizer circuit.06-02-2011
20090073736SEMICONDUCTOR DEVICE HAVING STORAGE NODES ON ACTIVE REGIONS AND METHOD OF FABRICATING THE SAME - A semiconductor device includes an active region in a semiconductor substrate, having first, second and third regions sequentially arranged in the active region. An inactive region in the semiconductor substrate defines the active region. Gate patterns, partially buried in the active and inactive regions, are positioned between the first and second regions or between the second and third regions, intersecting the active region at right angles. A bit line pattern intersects the gate patterns at right angles and overlaps the inactive region, the bit line pattern including a region electrically connected to the second region of the active region. An interlayer insulating layer covers the gate patterns. Storage nodes on the interlayer insulating layer are electrically connected to the active region. A first storage node overlaps the first region and the inactive region and a second storage node overlaps the third region, the inactive region and the bit line pattern.03-19-2009
20110032740MEMORY SYSTEM HAVING IMPROVED SIGNAL INTEGRITY - A memory system having improved signal integrity includes a printed circuit board for use in a memory device, N memory semiconductor packages mounted on the printed circuit board, a first switch mounted on the printed circuit board, a controller mounted on the printed circuit board, N first signal lines connecting the semiconductor packages to the first switch such that the semiconductor packages and the first switch are in an N-to-1 correspondence, a second signal line connecting the first switch to the controller, and N selection lines connecting the semiconductor packages to the first switch such that the semiconductor packages and the first switch are in an N-to-1 correspondence. The N selection lines connect the semiconductor packages to the controller and transmit an enable signal. N is a natural number.02-10-2011
20090168482THREE-DIMENSIONAL MEMORY DEVICE - A three-dimensional memory device includes a base layer having a memory array and peripheral circuits formed on a bulk silicon substrate, and N circuit layers each having a memory array formed on a silicon-on-insulator (SOI) substrate. The N circuit layers are vertically stacked one on top of the other on the base layer and the uppermost Nth circuit layer additionally includes passive elements07-02-2009
20080273365NONVOLATILE MEMORY DEVICE HAVING TWIN MEMORY CELLS - A nonvolatile memory device includes multiple first bit lines extending in a first direction, multiple word lines formed on the first bit lines and extending in a second direction different from the first direction, and multiple second bit lines, formed on the word lines and extending in the first direction. The nonvoliative memory device also includes multiple twin memory cells, each of which includes a first memory cell coupled between a first bit line and a word line and a second memory cell coupled between the word line and a second bit line. The first and second memory cells store different data.11-06-2008
20090109720Memory Structure - The subject matter of this specification can be embodied in, among other things, a method for manufacturing and a structure of a byte-addressable electrically erasable programmable read-only memory (EEPROM). In a first aspect, a byte-addressable EEPROM integrated circuit includes isolation means, in each of a plurality of memory bytes, for electrically isolating the EEPROM byte select transistor from an EEPROM memory bit disposed closest to the byte select transistor. In one example, the isolation means precludes the need to use a wide STI oxide for isolation, and thereby avoids the process variation of active area of memory bits.04-30-2009
20130135915SEMICONDUCTOR APPARATUS - Provided is a semiconductor apparatus having memory chips stacked along a direction, each memory chip having bit lines and word lines arranged therein and memory blocks each having memory cells. The semiconductor apparatus includes: bit line sense amplifiers coupled to the bit lines arranged in each of the memory chips and configured to enable the bit lines of an enabled memory chip among the plurality of bit lines; and sub word line drivers coupled to the word lines arranged in each of the memory chips and configured to enable word lines of the enabled memory chip among the plurality of word lines. The bit line sense amplifiers and sub word line drivers are provided in any one of the memory chips.05-30-2013
20100302829SEMICONDUCTOR MODULE AND DATA MEMORY MODULE HAVING THE SAME - A semiconductor module and a data memory module having the same are provided. The semiconductor module includes a substrate having a semiconductor device, a ground terminal, a protection pattern, and a switching element. The ground terminal and the protection pattern are formed on the substrate. The switching element connects the ground terminal and the protection pattern in series. The switching element electrically connects the protection pattern and the ground terminal when a voltage applied to the substrate is beyond a set voltage range.12-02-2010
20100309706Load reduced memory module and memory system including the same - A memory module includes a plurality of memory chips, a plurality of data register buffers, and a command/address/control register buffer mounted on a module PCB. The data register buffers perform data transfers with the memory chips. The command/address/control register buffer performs buffering of a command/address/control signal and generates a control signal. The buffered command/address/control signal is supplied to the memory chips, and the control signal is supplied to the data register buffers. According to the present invention, because line lengths between the data register buffers and the memory chips are shortened, it is possible to realize a considerably high data transfer rate.12-09-2010
20110019455LOW COST HIGH DENSITY RECTIFIER MATRIX MEMORY - A high density memory device is fabricated three dimensionally in layers. To keep points of failure low, address decoding circuits are included within each layer so that, in addition to power and data lines, only the address signal lines need be interconnected between the layers.01-27-2011
20090034315Memory core and semiconductor memory device having the same - A memory core capable of decreasing the area of core conjunction region is disclosed. The memory core includes a first sub word-line driving circuit and a first sub word-line control signal generating circuit. The first sub word-line driving circuit is disposed in a first region, and generates a first word-line driving signal to provide the first word-line driving signal to an array unit. The first sub word-line control signal generating circuit is disposed in the first region, and generates the first sub word-line control signal based on a sub word-line driving signal. Therefore, the memory core has a small size and, consequently so can the semiconductor device.02-05-2009
20090034314SEMICONDUCTOR MEMORY DEVICE - To secure a sufficient read-out voltage even when lines are arranged at a fine pitch, a semiconductor memory device including: a memory array in which a plurality of memory cells are arranged in rows and columns; and a plurality of bit lines associated with the respective columns of the memory cells is provided. The bit lines include main bit lines and sub bit lines to have a hierarchical structure, the main bit lines are divided among a plurality of interconnection layers, and a distance between the main bit lines in one of the interconnection layers is larger than a distance between the sub bit lines.02-05-2009
20090034313SEMICONDUCTOR MEMORY DEVICE AND LAYOUT STRUCTURE OF SUB-WORD LINE CONTROL SIGNAL GENERATOR - A semiconductor memory device and a layout structure of sub-word line control signal generators. The sub-word line control signal generators are configured to supply a sub-word line control signal of a predefined voltage level to a sub-word line driver to enable a sub-word line of a memory cell array. At least two sub-word line control signal generators are disposed, respectively, at edge areas of the memory cell array, to directly supply the sub-word line control signal to one selected sub-word line driver, thereby reducing the power consumption, including for example, VPP voltage. Embodiments of the present invention also reduce the number of VPP power lines, thereby lessening a noise disturbance.02-05-2009
20090034312SINGLE-EVENT UPSET IMMUNE STATIC RANDOM ACCESS MEMORY CELL CIRCUIT, SYSTEM, AND METHOD - A circuit and method are provided in which a six-transistor (6-T) SRAM memory cell is hardened to single-event upsets by adding isolation-field effect transistors (“iso-fets”) connected between the reference voltage Vdd and the field-effect transistors (“fets”) respectively corresponding to first and second inverters of the memory cell. According to certain embodiments, the control gates of first and second P-iso-fets are respectively tied to the control gates of first and second pull-up P-fets. According to certain embodiments, first and second N-iso-fets are connected between the output nodes of the memory cell and the pull-down N-fets respectively corresponding to the first and second inverters. The control gates of the first and second N-iso-fets are respectively tied to the control gates of the first and second pull-down N-fets. Again according to certain embodiments, one or more of the iso-fets are physically removed from the proximity of other transistors which comprise the memory cell.02-05-2009
20110242872SEMICONDUCTOR DEVICE - A highly-reliable, highly-integrated large-capacity phase-change memory is achieved. For this purpose, for example, memory tiles MT10-06-2011
20110116298Memory emulation using resistivity-sensitive memory - Interface circuitry in communication with at least one non-volatile resistivity-sensitive memory is disclosed. The memory includes a plurality of non-volatile memory elements that may have two-terminals, are operative to store data as a plurality of conductivity profiles that can be determined by applying a read voltage across the memory element, and retain stored data in the absence of power. A plurality of the memory elements can be arranged in a cross-point array configuration. The interface circuitry electrically communicates with a system configured for memory types, such as HDD, DRAM, SRAM, and FLASH, for example, and is operative to communicate with the non-volatile resistivity-sensitive memory to emulate one or more of those memory types. The interface circuitry can be fabricated in a logic plane on a substrate with at least one non-volatile resistivity-sensitive memory vertically positioned over the logic plane. The non-volatile resistivity-sensitive memories may be vertically stacked upon one another.05-19-2011
20110116297Multi-layered memory devices - A multi-layered memory device is provided. The multi-layered memory device includes two or more memory units and an active circuit unit arranged between each of the two or more memory units. The active circuit includes a decoder. Each memory unit includes one or more memory layers. Each memory layer includes a memory array.05-19-2011
20110242871Vertically stacked third-dimensional embedded re-writeable non-volatile memory and registers - A non-volatile register is disclosed. The non-volatile register includes a memory element. The memory element comprises a first end and a second end. The non-volatile register includes a register logic connected with the first and second ends of the memory element. The register logic is positioned below the memory element. The memory element may be a two-terminal memory element configured to store data as a plurality of conductivity profiles that can be non-destructively determined by applying a read voltage across the two terminals. New data can be written to the two-terminal memory element by applying a write voltage of a predetermined magnitude and/or polarity across the two terminals. The two-terminal memory element retains stored data in the absence of power. A reference element including a structure that is identical or substantially identical to the two-terminal memory element may be used to generate a reference signal for comparisons during read operations.10-06-2011
20090323385Method for fabricating high density pillar structures by double patterning using positive photoresist - A method of making a semiconductor device includes forming a first photoresist layer over an underlying layer, patterning the first photoresist layer into a first photoresist pattern, wherein the first photoresist pattern comprises a plurality of spaced apart first photoresist features located over the underlying layer, and etching the underlying layer using the first photoresist pattern as a mask to form a plurality of first spaced apart features. The method further includes removing the first photoresist pattern, forming a second photoresist layer over the plurality of first spaced apart features, and patterning the second photoresist layer into a second photoresist pattern, wherein the second photoresist pattern comprises a plurality of second photoresist features covering edge portions of the plurality of first spaced apart features. The method also includes etching exposed portions of the plurality of first spaced apart features using the second photoresist pattern as a mask, such that a plurality of spaced apart edge portions of the plurality of first spaced apart features remain, and removing the second photoresist pattern.12-31-2009
20110242870STACKED MEMORY AND DEVICES INCLUDING THE SAME - In one embodiment, the stacked memory includes a first group of stacked memory chips, a second group of stacked memory chips, and connection terminals configured to electrically connect a first memory chip among the stacked memory chips in the first group to a second memory chip among the stacked memory chips in the second group.10-06-2011
20110242869THREE-DIMENSIONAL STACKED SEMICONDUCTOR INTEGRATED CIRCUIT AND CONTROL METHOD THEREOF - A three-dimensional stacked semiconductor integrated circuit including a plurality of stacked chips. The semiconductor integrated circuit is configured to simultaneously select the plurality of chips in response to an external command and an address, and to activate one of memory banks which are aligned on the same line in a vertical direction, among a plurality of memory banks included in the plurality of chips.10-06-2011
20110085366DEVICE - A device includes first to N-th (N is an integer of 2 or more) semiconductor chips stacked. These semiconductor chips have substantially the same configuration, and each includes an identification flag memory circuit including first to N-th memory units and a plurality of through electrodes connected to the identification flag memory circuit. Each of the through electrodes is connected to or masked with respect to the corresponding one of the through electrodes of the underlying semiconductor chip, such that an identification flag is stored in n-th (n indicates 1, 2, . . . , and N) memory units of the n-th semiconductor chips sequentially in the stacking order in response to a clock signal input in common to the first to N-th semiconductor chips, and the storage of the identification flag in the N-th memory unit of the N-th semiconductor chip can be detected from the lower side of the first semiconductor chip.04-14-2011
20110085365SEMICONDUCTOR DEVICE - A semiconductor device includes a substrate including a cell area and a sense amplifier area, a first bit line connected to a bit line contact of the cell area and a first contact of the sense amplifier area, and a second bit line located on the first bit line to overlap with the first bit line on a plan view and connected to a second contact of the sense amplifier area. The semiconductor device applies a folded bit line structure to a 6F2 structure so as to promote competitiveness of a net die, resulting in reduction of production costs. The semiconductor device implements various test patterns for defect analysis, wherein a conventional 6F2-layout open bit line has difficulty in using the test patterns, resulting in an increased production yield. The semiconductor device reduces noise of a sense amplifier, and performs mat-basis repairing, resulting in an increased production yield.04-14-2011
20110176346SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, semiconductor memory device including: a circuit substrate in which a circuit pattern is formed; a plurality of semiconductor memories mounted via a solder on both surfaces of the circuit substrate; a connector disposed at one end part of the circuit substrate for connection with a host device; and a resin mold part that seals the both surfaces of the circuit substrate. The resin mold part does not seal a region in which the connector is disposed and collectively seals regions in which the plurality of semiconductor memories are disposed.07-21-2011
20100039845INTEGRATED CIRCUIT WITH BIT LINES POSITIONED IN DIFFERENT PLANES - An integrated circuit includes a memory cell array including a plurality of memory cells. A first plurality of bit lines is positioned in a first plane. The first plurality of bit lines is electrically coupled to a first set of the memory cells. A second plurality of bit lines is positioned in a second plane that is different than the first plane. The second plurality of bit lines is electrically coupled to a second set of the memory cells.02-18-2010
20100039846Method and Apparatus for Non-Volatile Multi-Bit Memory - A memory device that selectably exhibits first and second logic levels. A first conductive material has a first surface with a first memory layer formed thereon, and a second conductive material has a second surface with a second memory layer formed thereon. A connective conductive layer joins the first and second memory layers and places the same in electrical contact. The structure is designed so that the first memory layer has a cross-sectional area less than that of the second memory layer.02-18-2010
20100238693CONFIGURABLE BANDWIDTH MEMORY DEVICES AND METHODS - Memory devices and methods are described, such as those that include a stack of memory dies and an attached logic die. Method and devices described provide for configuring bandwidth for selected portions of a stack of memory dies. Additional devices, systems, and methods are disclosed.09-23-2010
20110249481Generating ROM bit cell arrays - A method of generating a ROM bit cell array layout is provided, the method comprising the steps of: inputting a predetermined memory architecture having a predetermined positioning of bit lines and virtual ground lines, said memory architecture comprising a plurality of columns of memory cells, each column of memory cells being located between its own associated bit line and its own associated virtual ground line, and adjacent memory cells in each column of memory cells sharing a common connection to either said associated bit line or said associated virtual ground line; evaluating a possible range of width of active area of each of said columns of memory cells, in dependence on said predetermined positioning of bit lines and virtual ground lines; selecting a final width of active area in dependence on at least one performance characteristic associated with said final width of active area; and generating said ROM bit cell array layout according to said final width of active area. Thus the system designer can reuse an existing memory architecture, yet still retain an advantageous degree of flexibility with regard to performance characteristic selection of the final ROM bit cell array.10-13-2011
20090213633Four vertically stacked memory layers in a non-volatile re-writeable memory device - A multi-layer non-volatile memory integrally formed on top of a substrate including active circuitry is disclosed. Each layer of memory includes memory cells (e.g., a two-terminal memory cell) having a multi-resistive state material layer that changes its resistive state between a low resistive state and a high resistive state upon application of a write voltage across the memory cell. Data stored in the memory cells can be non-destructively determined by applying a read voltage across the memory cells. Data storage capacity can be tailored to a specific application by increasing or decreasing the number of memory layers that are integrally fabricated on top of the substrate (e.g., more than four layers or less than four layers). The memory cells can include a non-ohmic device for allowing access to the memory cell only during read and write operations. Each memory layer can comprise a cross point array.08-27-2009
20100259961Three-Dimensional Array of Re-Programmable Non-Volatile Memory Elements Having Vertical Bit Lines and a Double-Global-Bit-Line Architecture - A three-dimensional array especially adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. A two-dimensional array of bit lines to which the memory elements of all planes are connected is oriented vertically from the substrate and through the plurality of planes. A double-global-bit-line architecture provides a pair of global bit lines for each bit lines for accessing a row of memory elements in parallel. A first one of each pair allows the local bit lines of the row to be sensed while a second one of each pair allows local bit lines in an adjacent row to be set to a definite voltage so as to eliminate leakage currents between adjacent rows of local bit lines.10-14-2010
20100277964MULTI-BANK MEMORY - A multi-bank memory device includes rows and columns of memory cores. Each row includes memory cores from one bank interleaved with memory cores from another bank. Banks in different rows can be simultaneously accessed.11-04-2010
20100265750MEMORY SYSTEM WITH DATA LINE SWITCHING SCHEME - A storage system includes a three-dimensional memory array that has multiple layers of non-volatile storage elements grouped into blocks. Each block includes a subset of first selection circuits for selectively coupling a subset of array lines (e.g. bit lines) of a first type to respective local data lines. Each block includes a subset of second selection circuits for selectively coupling a subset of the respective local data lines to global data lines that are connected to control circuitry. To increase the performance of memory operations, the second selections circuits can change their selections independently of each other. For example, a memory operation is performed concurrently on a first non-volatile storage element of each group of a plurality of groups of non-volatile storage elements. Completion of the memory operation for the first non-volatile storage element of each group is independently detected. A memory operation on a second non-volatile storage element of each group is independently commenced for each group upon independently detecting completion of the memory operation for the first non-volatile storage element of the respective group.10-21-2010
20100097832NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile-semiconductor-memory-device including a cell array having a plurality of MATs (unit-cell-array) disposed in a matrix, the MATs each include a plurality of first lines, a plurality of second lines crossing the first lines, and memory cells being connected between the first and second lines. The device further includes a first and second drive circuit selecting the first and second lines connected to the memory cells of each MAT that are accessed, and driving the selected first and second lines to write or read data. The memory cells form a page by being connected to each first line selected from the MATs. The device also includes a data latch latching the write or the read data in units of pages, where the first and second drive circuit drive the first and second lines multiple times to write or read data for one page in and out of the cell array.04-22-2010
20080304307USE OF A SYMMETRIC RESISTIVE MEMORY MATERIAL AS A DIODE TO DRIVE SYMMETRIC OR ASYMMETRIC RESISTIVE MEMORY - A symmetrically resistive memory material (such as a phase change material) is described for use as a rectifying element for driving symmetric or asymmetric resistive memory elements in a crosspoint memory architecture. The crosspoint architecture has a plurality of electrodes and a plurality of crossbar elements, with each crossbar element being disposed between a first and a second electrode. The crossbar element is made of a symmetric resistive memory element used as a rectifier in series with a symmetric or asymmetric resistive memory element.12-11-2008
20080198640Data Storage Device - In a non-volatile electric memory system a card-like memory unit (08-21-2008
20100309705Stacked memory devices - A stacked memory device may include a substrate, a plurality of memory groups sequentially stacked on the substrate, each memory group including at least one memory layer, a plurality of X-decoder layers, at least one of the plurality of X-decoder layers being disposed between every alternate neighboring two of the plurality of memory groups, and a plurality of Y-decoder layers disposed alternately with the plurality of X-decoder layers, at least one of the plurality of Y-decoder layers being disposed between every alternate neighboring two of the plurality of memory groups.12-09-2010
20100309704In-pakage microelectronic apparatus, and methods of using same - A mounting substrate for a processor includes a die side and a land side with a processor footprint configured on the die side. The processor footprint is coupled to at least one processor interconnect and a microelectronic die is embedded in the mounting substrate. The microelectronic die is coupled to the processor interconnect and communication between a processor to be installed on the processor footprint is in a rate between 10 Gb/s and 1 Tb/s.12-09-2010
20100309707PCB CIRCUIT MODIFICATION FROM MULTIPLE TO INDIVIDUAL CHIP ENABLE SIGNALS - A semiconductor package is disclosed having a single CE signal during electrical test and a plurality of CE signals during normal operation thereafter. After electrical testing of the memory die during fabrication, the electrical traces carrying the single CE signal from the memory test pad matrix to each of the memory die may be severed. Severing the electrical traces from the memory test pad matrix electrically isolates the multiple electrical traces between the controller die and memory die, and allows separate and individual CE signals between the controller die and memory die during normal usage of the memory die.12-09-2010
20080253159SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises word lines, global bit lines intersecting with the word lines; local bit lines partitioned into N sections along the global bit lines and aligned with a same pitch as the global bit lines; N memory cell arrays each including memory cells formed at intersections of the word lines and the local bit lines and being arranged corresponding to the sections of the local bit lines; local sense amplifiers for amplifying a signal read out from a selected memory cell to the local bit line and for outputting the signal to the global bit line; global sense amplifiers for amplifying the signal transmitted from the local sense amplifier corresponding to the selected memory cell through the global bit line and for selectively coupling the signal to an external data line.10-16-2008
20110002153MANUFACTURING METHOD FOR STACKING MEMORY CIRCUITS AND FOR ADDRESSING A MEMORY CIRCUIT, CORRESPONDING STACKING AND DEVICE - The invention relates to a method for making a stack of memory circuits, wherein the method includes the step of testing the validity of at least two memory circuits. According to the invention, the method includes the phase of configuring each memory circuit, the configuration phase including the step of writing, within a configuration device of each memory circuit included in the stack, a piece of information on an identifier allocated to the memory circuit in the stack, and a piece of information on the results of the validity test of the memory circuit. The invention also relates to a method for addressing a memory circuit, to a stack of memory circuits, and to an electronic device including such a stack.01-06-2011
20080205111Semiconductor memory device and defect remedying method thereof - A semiconductor memory device formed on a semiconductor chip includes first memory arrays, a plurality of second memory arrays, a first voltage generator, and first bonding pads. The semiconductor chip is divided into first, second and third rectangle regions and the third rectangle region is arranged between the first rectangle region and the second rectangle region. The first memory arrays are formed in the first rectangle region. The second memory arrays are formed in the second rectangle region. The voltage generator and first bonding pads are arranged in the third rectangle region. The first bonding pads are arranged between the first rectangle region and the voltage generator and no bonding pads are arranged between the voltage generator and the second memory arrays.08-28-2008
20110164444RESISTANCE CHANGE MEMORY - According to one embodiment, a resistance change memory includes a stacked layer structure stacked on a semiconductor substrate in order of a first conductive line, a first variable resistance element, a second conductive line, a second variable resistance element, . . . a n-th conductive line, a n-th variable resistance element and a (n+07-07-2011
20110164445SEMICONDUCTOR MEMORY DEVICE INCLUDING PLURALITY OF MEMORY CHIPS - A semiconductor memory device includes a plurality of memory chips each including a chip identification (ID) generation circuit. The chip ID generation circuits of the respective memory chips are operatively connected together in a cascade configuration, and the chip ID generation circuits are activated in response to application of a power supply voltage the memory device to sequentially generate respective chip ID numbers of the plurality of device chips07-07-2011
20110026290SEMICONDUCTOR DEVICE HAVING MEMORY CELL ARRAY DIVIDED INTO PLURAL MEMORY MATS - A semiconductor device includes a plurality of memory mats arranged in an X direction and a mat selecting circuit that activates a part of the memory mats based on a row address and maintains the rest of the memory mats inactivated. The memory mats are divided into a plurality of memory mat groups each including the same number of memory mats arranged in the X direction. The mat selecting circuit activates at least one of the memory mats included in each of the memory mat groups, while maintaining the rest of memory mats inactivated. With this operation, a portion of discontinuity does not occur in the memory mats arranged in the X direction, and thus the necessity of arranging two sub-word driver areas in the portion of discontinuity is eliminated.02-03-2011
20110044084MULTI-CHIP MEMORY DEVICE WITH STACKED MEMORY CHIPS, METHOD OF STACKING MEMORY CHIPS, AND METHOD OF CONTROLLING OPERATION OF MULTI-CHIP PACKAGE MEMORY - A multi-chip memory device includes a transfer memory chip communicating input/output signals, a stacked plurality of memory chips each including a memory array having a designated bank, and a signal path extending upward from the transfer memory chip through the stack of memory chips to communicate input/output signals, wherein each bank of each memory chip in the stacked plurality of memory chips is commonly addressed to provide read data during a read operation and receive write data during a write operation, and vertically aligned within the stacked plurality of memory chips.02-24-2011
20110080763METHOD FOR CONTEMPORANEOUS MARGIN VERIFICATION AND MEMORY ACCESS FOR MEMORY CELLS IN CROSS-POINT MEMORY ARRAYS - Circuitry and methods for restoring data values in non-volatile memory are disclosed. An integrated circuit includes a memory access circuit and a sensing circuit configured to sense a data signal during a read operation to at least one two-terminal non-volatile cross-point memory array. Each memory array includes a plurality of two-terminal memory cells. A plurality of the memory arrays can be fabricated over the substrate and vertically stacked on one another. Further, the integrated circuit can include a margin manager circuit configured to manage a read margin for the two-terminal memory cells substantially during the read operation, thereby providing for contemporaneous read and margin determination operations. Stored data read from the two-terminal memory cells may have a value of the stored data restored (e.g., re-written to the same cell or another cell) if the value is not associated with a read margin (e.g., a hard programmed or hard erased state).04-07-2011
20110002152SYSTEMS, MEMORIES, AND METHODS FOR REPAIR IN OPEN DIGIT MEMORY ARCHITECTURES - Memories, systems, and methods for repairing are provided. A memory with extra digit lines in end arrays with an open digit architecture can use the extra digit lines to form repair cells. In one example, folded digit sense amplifiers are connected to an end array with an open digit architecture such that each sense amplifier corresponds to a group four adjacent digit lines. Two digit lines of the group connect to two open digit sense amplifiers and the other two digit lines connect to the corresponding folded digit sense amplifier. To repair memories including folded digit end arrays, a row in a core array that includes a replaceable IO is activated and a row in an end array is activated. The repair cells in the end array can be sensed by the folded digit sense amplifiers to generate a replacement IO, which is selected rather than the replaceable IO.01-06-2011
20090207641NOVEL TRANSMISSION LINES FOR CMOS INTEGRATED CIRCUITS - Improved methods and structures are provided for impedance-controlled low-loss lines in CMOS integrated circuits. The present invention offers a reduction in signal delay. Moreover, the present invention further provides a reduction in skew and crosstalk. Embodiments of the present invention also provide the fabrication of improved transmission lines for silicon-based integrated circuits using conventional CMOS fabrication techniques. One method of the present invention provides transmission lines in an integrated circuit. Another method includes forming transmission lines in a memory device. The present invention includes a transmission line circuit, a differential line circuit, a twisted pair circuit as well as systems incorporating these different circuits all formed according to the methods provided in this application.08-20-2009
20110026291System using non-volatile resistivity-sensitive memory for emulation of embedded flash memory - Interface circuitry in communication with at least one non-volatile resistivity-sensitive memory is disclosed. The memory includes a plurality of non-volatile memory elements that may have two-terminals, are operative to store data as a plurality of conductivity profiles that can be determined by applying a read voltage across the memory element, and retain stored data in the absence of power. A plurality of the memory elements can be arranged in a cross-point array configuration. The interface circuitry electrically communicates with a system configured for memory types, such as DRAM, SRAM, and FLASH, for example, and is operative to communicate with the non-volatile resistivity-sensitive memory to emulate one or more of those memory types. The interface circuitry can be fabricated in a logic plane on a substrate with at least one non-volatile resistivity-sensitive memory vertically positioned over the logic plane. The non-volatile resistivity-sensitive memories may be vertically stacked upon one another.02-03-2011
20120147648THREE DIMENSIONAL NON-VOLATILE STORAGE WITH DUAL GATE SELECTION OF VERTICAL BIT LINES - A three-dimensional array adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes.06-14-2012
20120147647THREE DIMENSIONAL NON-VOLATILE STORAGE WITH THREE DEVICE DRIVER FOR ROW SELECT - A three-dimensional array adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes.06-14-2012
20120147646THREE DIMENSIONAL NON-VOLATILE STORAGE WITH CONNECTED WORD LINES - A three-dimensional array adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes.06-14-2012
20120147645THREE DIMENSIONAL NON-VOLATILE STORAGE WITH DUAL GATED VERTICAL SELECT DEVICES - A three-dimensional array adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes.06-14-2012
20120147644CONTINUOUS MESH THREE DIMENSIONAL NON-VOLATILE STORAGE WITH VERTICAL SELECT DEVICES - A three-dimensional array adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes.06-14-2012
20110096583Semiconductor modules and signal line layout methods thereof - A memory module and a layout method of the memory module. The memory module includes memory devices connected to corresponding tabs through corresponding damping resistors formed on a printed circuit board and includes a first signal line group in a first region between the memory devices and the damping resistors and a second signal line group in a second region between the corresponding damping resistors and the connecting terminals.04-28-2011
20100214812STACKED SEMICONDUCTOR DEVICES INCLUDING A MASTER DEVICE - A stack that includes non-volatile memory devices is disclosed. One of the non-volatile memory devices in the stack is a master device, and the remaining memory device or devices is a slave device(s).08-26-2010
20100238695MEMORY MODULE INCLUDING MEMORY CHIPS - To provide a module substrate, memory chips mounted on the module substrate, and data input/output wirings that are connected respectively to the memory chips and read data or write data is transmitted thereto. The number of memory chips is equal to the number of bits of read data or write data transmitted through the data input/output wirings at the same time. Because a plurality of data input/output wirings are connected to different memory chips, the load exerted upon each channel can be reduced without using memory buffers.09-23-2010
20100165692VARIABLE MEMORY REFRESH DEVICES AND METHODS - Memory devices and methods are described such as those that monitor and adjust characteristics for various different portions of a given memory device. Examples of different portions include tiles, or arrays, or dies. One memory device and method described includes monitoring and adjusting characteristics of different portions of a 3D stack of memory dies. One characteristic that can be adjusted at multiple selected portions includes refresh rate.07-01-2010
20100165693SEMICONDUCTOR MEMORY DEVICE HAVING OPEN BIT LINE STRUCTURE - A semiconductor memory device has an array structure of an open bit line structure and comprises a plurality of normal memory mats, two dummy mats and a plurality of rows of sense amplifiers. The normal memory mat includes a plurality of memory cells and arranged in a bit line extending direction, while the dummy mat includes a plurality of dummy cells and arranged in a bit line extending direction at both ends of the plurality of normal memory mats. The rows of sense amplifiers are arranged between the normal memory mats and between each of the normal memory mats and each of the dummy mats. A first predetermined number of the dummy cells, the number of which is smaller than a number of the memory cells arranged along each bit line of the normal memory mats, are arranged along each bit line of the dummy mats.07-01-2010
20100067279SEMICONDUCTOR MEMORY DEVICE USING VARIABLE RESISTOR - Example embodiments relate to a variable resistance semiconductor memory device including: a plurality of memory blocks belonging to different memory sectors and alternately arranged in a memory bank including the memory sectors so as to be adjacent to each other; and a line selecting unit simultaneously selecting word lines of the plurality of memory blocks and simultaneously selecting bit lines of the memory blocks belonging to the same memory sector among the plurality of memory blocks in an access operation mode.03-18-2010
20100067278MASS DATA STORAGE SYSTEM WITH NON-VOLATILE MEMORY MODULES - A mass data storage system, which comprises: a controller for issuing and receiving signals to carry out memory operations; a motherboard comprising at least one first connector and providing signal pathways for establish a ring from the controller via each of the at least one first connector and back to the controller; and at least one non-volatile memory module comprising a second connector electrically connected to a chain of non-volatile memory devices, wherein mating of the second connector with a given one of the at least one first connector causes the chain of non-volatile memory devices to be inserted into the ring, thereby to allow the controller to carry out the memory operations on the non-volatile memory devices in the chain.03-18-2010
20100195363Multiple layers of memory implemented as different memory technology - Circuits and methods that use third dimension memory as a different memory technology are described. The third dimension memory can be used for application specific data storage and/or to emulate conventional memory types such as DRAM, FLASH, SRAM, and ROM or new memory types as they become available. A processor-memory system implements a memory operable as different memory technologies. The processor-memory system includes a logic subsystem and a memory subsystem, which includes third dimension memory cells. The logic subsystem implements memory technology-specific signals to interact with the third dimension memory cells as memory cells of a different memory technology. As such, the memory subsystem can emulate different memory technologies. The logic subsystem can be fabricated FEOL on a substrate and the memory subsystem can be fabricated BEOL directly on top of the substrate. An interlayer interconnect structure can electrically couple the logic subsystem with the memory subsystem.08-05-2010
20100195362Non-volatile dual port third dimensional memory - Non-volatile dual port memory with third dimension memory is described, including a non-volatile third dimensional memory array comprising a memory element, the memory element is configured to change from a first resistive state to a second resistive state in response to a voltage, a transceiver gate configured to gate the voltage to the memory element, the voltage being configured to change the memory element from the first resistive state to the second resistive state, the transceiver gate is configured to receive another voltage from a bit line and a bit bar line, the bit line and the bit bar line being coupled to the memory element and configured to provide the another voltage, and a plurality of word lines coupled to the memory element, the plurality of word lines are configured to provide substantially simultaneous access to the non-volatile third dimensional memory array using two or more ports.08-05-2010
20100265753SYSTEMS, METHODS AND DEVICES FOR ARBITRATING DIE STACK POSITION IN A MULTI-DIE STACK DEVICE - Embodiments are described for arbitrating stacked dies in multi-die semiconductor packages. In one embodiment, die identification data for at least two stacked dies are arbitrated to select one of the dies as the primary die and the other as secondary. Each die includes an input/output buffer that drives an output signal to a commonly shared output terminal in response to receiving a die identification data bit as the input signal. Each die also includes an arbitration circuit that generates a control signal in response to the identification bit of one die being mismatched to a corresponding identification bit of the other die. The control signal programs a stack enable fuse in accordance with the arbitration to designate one of the dies as the secondary die.10-21-2010
20100265751MULTI-CHIP PACKAGES PROVIDING REDUCED SIGNAL SKEW AND RELATED METHODS OF OPERATION - A packaged integrated circuit device includes a substrate including a conductive pad thereon, and a chip stack including a plurality of chips on the substrate. A primary conductive line electrically connects the pad on the substrate to a conductive pad on one of the plurality of chips in the chip stack. Secondary conductive lines electrically connect the pad on the one of the plurality of chips to respective conductive pads on ones of the plurality of chips above and below the one of the plurality of chips in the chip stack. The primary conductive line may be configured to transmit a signal from the pad on the substrate to the pad on the one of the plurality of chips in the chip stack. After receiving the signal at the one of the plurality of chips, the secondary conductive lines may be configured to transmit the signal from the one of the plurality of chips to the ones of the plurality of chips above and below the one of the plurality of chips in the chip stack at a same time. Related methods of operation are also discussed.10-21-2010
20100259960Three-Dimensional Array of Re-Programmable Non-Volatile Memory Elements Having Vertical Bit Lines - A three-dimensional array especially adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes.10-14-2010
20110188284Circuits and techniques to compensate memory access signals for variations of parameters in multiple layers of memory - Embodiments of the invention relate generally to semiconductors and memory technology, and more particularly, to systems, integrated circuits, and methods to implement circuits configured to compensate for parameter variations in layers of memory by adjusting access signals during memory operations. In some embodiments, memory cells are based on third dimensional memory technology. In at least some embodiments, an integrated circuit includes multiple layers of memory, a layer including sub-layers of semiconductor material. The integrated circuit also includes an access signal generator configured to generate an access signal to facilitate an access operation, and a characteristic adjuster configured to adjust the access signal for each layer in the multiple layers of memory.08-04-2011
20110188283Circuits and techniques to compensate data signals for variations of parameters affecting memory cells in cross-point arrays - Embodiments of the invention relate generally to semiconductors and memory technology, and more particularly, to systems, integrated circuits, and methods to implement circuits configured to compensate for parameter variations that affect the operation of memory elements, such as memory elements based on third dimensional memory technology. In at least some embodiments, an integrated circuit includes a cross-point array comprising memory elements disposed among word lines and bit lines, where a parameter can affect the operating characteristics of a memory element. The integrated circuit further includes a data signal adjuster configured to modify the operating characteristic to compensate for a deviation from a target value for the operating characteristic based on the parameter. In some embodiments, the memory element, such as a resistive memory element, is configured to generate a data signal having a magnitude substantially at the target value independent of variation in the parameter.08-04-2011
20110149628Programming Phase Change Memories Using Ovonic Threshold Switches - A phase change memory using an ovonic threshold switch selection device may be programmed from one state to another by first turning on the ovonic threshold switch. After the voltage across the cell has fallen, the cell may then be biased to program the cell to the desired state.06-23-2011
20100027308SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device includes a memory cell array having memory cells positioned at respective intersections between a plurality of first wirings and a plurality of second wirings, each of the memory cells having a rectifier element and a variable resistance element connected in series, and a control circuit selectively driving the first and second wirings. The control circuit applies a first voltage to the selected first wiring and applies a second voltage to the selected second wiring to apply a certain potential difference to a selected memory cell positioned at a intersection between the selected first and second wirings, and brings at least one of nonselected first wirings into a floating state.02-04-2010
20100027307MEMORY DETECTING CIRCUIT - A memory detecting circuit includes five switch elements and two indication devices. A first switch element is connected to a standby power, and also connected to memory sockets of a first channel to receive a first memory detecting signal. A second switch element is connected to the first switch element and the standby power. A third switch element is connected to the second switch element and the standby power, and also connected to memory sockets of a second channel to receive a second memory detecting signal. A fourth switch element is connected to the third switch element and the standby power. A fifth switch element is connected to the fourth switch element and the standby power. When there are memories installed into the memory sockets of the first channel and the second channel, the second indication device indicates that the memories run in a dual channel mode.02-04-2010
20100020583Stacked memory module and system - A three dimensional memory module and system are formed with at least one slave chip stacked over a master chip. Through semiconductor vias (TSVs) are formed through at least one of the master and slave chips. The master chip includes a memory core for increased capacity of the memory module/system. In addition, capacity organizations of the three dimensional memory module/system resulting in efficient wiring is disclosed for forming multiple memory banks, multiple bank groups, and/or multiple ranks of the three dimensional memory module/system.01-28-2010
20120147650Non-Volatile Memory Having 3D Array of Read/Write Elements with Vertical Bit Lines and Select Devices and Methods Thereof - A three-dimensional memory is formed as an array of memory elements that are formed across multiple layers of planes positioned at different distances above a semiconductor substrate. The memory elements reversibly change a level of electrical conductance in response to a voltage difference being applied across them. The three-dimensional array includes a two-dimensional array of pillar lines acting as local vertical bit lines through the multiple layers of planes which together with arrays of word lines on each plane are used to access the memory elements. The three-dimensional memory is formed over a CMOS substrate with an intermediate pillar select layer. The pillar select layer is formed with a plurality of pillar select devices which are switching transistors formed outside the CMOS and serve to switch selected rows of pillar lines to corresponding metal lines on the substrate.06-14-2012
20110051487Read only memory cell for storing a multiple bit value - A read only memory cell for storing a multiple bit value is disclosed. The read only memory cell comprises: at least three output lines, each of the at least three output lines representing a different multiple bit value; a switching device connected between a single one of the three output lines and a voltage source. The switching device provides an electrical connection between the voltage source and the single one of the three output lines in response to a switching signal, a voltage of the connected output line switching value in response to connection to the predetermined voltage and the multiple bit value represented by the output line is thereby selected. There is also an output device provided for outputting the selected multiple bit value.03-03-2011
20120147649Non-Volatile Memory Having 3d Array of Read/Write Elements with Low Current Structures and Methods Thereof - A three-dimensional array read/write (R/W) memory elements is formed across multiple layers of planes positioned at different distances above a semiconductor substrate. It is preferable to operate the R/W elements with low current and high resistive states. The resistance of these resistive states depends also on the dimension of the R/W elements and is predetermined by the process technology. A sheet electrode in series with the R/W element and a method of forming it provide another degree of freedom to adjust the resistance of the R/W memory element. The thickness of the sheet electrode is adjusted to obtain a reduced cross-sectional contact in the circuit path from the word line to the bit line. This allows the R/W memory element to have a much increased resistance and therefore to operate with much reduced currents. The sheet electrode is formed with little increase in cell size.06-14-2012
20120307542LOCAL BIT LINES AND METHODS OF SELECTING THE SAME TO ACCESS MEMORY ELEMENTS IN CROSS-POINT ARRAYS - Embodiments relate generally to semiconductors and memory technology, and more particularly, to systems, integrated circuits, and methods to implement a memory architecture that includes local bit lines for accessing subsets of memory elements, such as memory elements based on third dimensional memory technology. In at least some embodiments, an integrated circuit includes a cross-point memory array formed above a logic layer. The cross-point memory array includes X-lines and Y-lines, of which at least one Y-line includes groups of Y-line portions. Each of the Y-line portions can be arranged in parallel with other Y-line portions within a group of the Y-line portions. Also included are memory elements disposed between a subset of the X-lines and the group of the Y-line portions. In some embodiments, a decoder is configured to select a Y-line portion from the group of Y-line portions to access a subset of the memory elements.12-06-2012
20110116296Non-volatile semiconductor memory device - A non-volatile semiconductor memory device includes: a memory component in which an electric charge discharging rate between two electrodes is different in accordance with logic of stored information; a sense amplifier that detects the logic of the information by comparing a discharge electric potential of a wiring to which one of the electrodes of the memory component is connected with a reference electric potential; and a load capacitance changing unit that changes load capacitance of a sense node of the sense amplifier to which the discharge electric potential is input or both the load capacitance of the sense node and load capacitance of a reference node of the sense amplifier to which the reference electric potential is input in accordance with the logic of the information read out by the memory component.05-19-2011
20110305057SEMICONDUCTOR MEMORY DEVICE, MEMORY CONTROLLER, AND DATA PROCESSING SYSTEM INCLUDING THESE - In one embodiment, a semiconductor memory device receives a refresh command and address information, and supplies a refresh control signal and the address information in common to core chips. Each of the core chips includes a layer-address comparison circuit that determines whether the address information assigns an own core chip, and a refresh control circuit that refreshes an own memory cell based on the refresh control signal when the address information assigns the own core chip. With this arrangement, a memory capacity of a chip that is refreshed by a refresh command for one time is reduced, and therefore a shortest issuing interval of a refresh command can be shortened.12-15-2011
20100014339Semiconductor memory device and memory access method - A semiconductor memory device includes: first and second memory mats; first and second local input output lines coupled to the first memory mat via a first amplifier circuit; third and fourth local input output lines different from the first and second local input output lines, third and fourth local input output lines coupled to the second memory mat via a second amplifier circuit; a third amplifier circuit coupled between the first local input output line and a first main input output line; a fourth amplifier circuit coupled between the third local input output line and a second main input output line different from the first main input output line; and a first switch coupled between the second and third local input output lines and connecting the second local input output line to the fourth amplifier circuit when the first memory mat is activated and the second memory mat is not activated.01-21-2010
20130010515SEMICONDUCTOR DEVICE, ADJUSTMENT METHOD THEREOF AND DATA PROCESSING SYSTEM - A method includes preparing a chip-stack structure in which a first memory chip is stacked over a first main surface of a second memory chip, data electrodes of the first and second memory chips being electrically connected and a data signal outputted from the data electrode of the first memory chip being conveyed on a side of the second main surface of the second memory chip, accessing the first memory chip so that the data signal is outputted from the first memory chip and appears on the side of the second main surface of the second memory chip in first access time, accessing the second memory chip so that a data signal is outputted and appears on the side of the second main surface of the second memory chip in second access time, and setting output timing adjustment information into at least one of the first and second memory chips.01-10-2013
20080304308UNIPOLAR RESISTANCE RANDOM ACCESS MEMORY (RRAM) DEVICE AND VERTICALLY STACKED ARCHITECTURE - One embodiment of the present invention includes a low-cost unipolar rewritable variable-resistance memory device, made of cross-point arrays of memory cells, vertically stacked on top of one another and compatible with a polycrystalline silicon diode.12-11-2008
20120044733Single Device Driver Circuit to Control Three-Dimensional Memory Element Array - A memory device includes diode plus resistivity switching element memory cells coupled between bit and word lines, single device bit line drivers with gates coupled to a bit line decoder control lead, sources/drains coupled to a bit line driver, and drains/sources coupled to bit lines, single device word line drivers with gates coupled to a word line decoder control lead, sources/drains coupled to a word line driver output, and drains/sources coupled to word lines, a first bleeder diode coupled between a bit line and a first bleeder diode controller, and a second bleeder diode coupled between a word line and a second bleeder diode controller. The first bleeder diode controller connects the first bleeder diode to low voltage in response to a bit line decoder signal. The second bleeder diode controller connects the second bleeder diode to high voltage in response to a word line decoder signal.02-23-2012
20090213634STACKED MEMORY AND FUSE CHIP - A stacked memory comprises one or more memory core chips and a fuse chip. Each of the memory core chips has a memory cell array including spare memory cells for replacing defective memory cells. The fuse chip has a fuse unit including a plurality of fuse elements whose electrical cut state corresponding to a replacement with the spare memory cells can be set. Also the fuse chip has a redundancy cell control circuit for controlling a redundancy cell operation of the defective memory cells based on state information of the fuse unit.08-27-2009
20120063190COMPLEX SEMICONDUCTOR DEVICE FOR USE IN MOBILE EQUIPMENT - Provided is a complex semiconductor device. The complex semiconductor device includes first memory chips in a first package, second memory chips in a second package configured for mass storage of data, and a controller packaged with either the first package or the second package in a complex package. The controller is connected to the first package via a first internal bus and to the second package via a second internal bus, and the first package, second package and controller are commonly packaged within a single complex package.03-15-2012
20120014156DATA RECEIVER, SEMICONDUCTOR DEVICE AND MEMORY DEVICE INCLUDING THE SAME - A data receiver includes a first buffer circuit and a second buffer circuit. The first buffer circuit varies a resistance of a data path and a resistance of a reference voltage path based on a plurality of control signals, and adjusts a voltage level of an input data signal and a level of a reference voltage to generate an internal data signal and an internal reference voltage based on the varied resistance of the data path and the varied resistance of the reference voltage path. The second buffer circuit compares the internal data signal with the internal reference voltage to generate a data signal.01-19-2012
20090323386Methods and Systems for Reducing Heat Flux in Memory Systems - The memory module includes front and back faces. Multiple devices are disposed on each of the faces. A first control line serially connects a first group of devices on both the front and back faces so that the first group of devices commonly contribute multiple bits to a data bus. A second control line serially connects a second group of devices on both the front and back faces so that the second group of devices commonly contribute multiple bits to a data bus.12-31-2009
20120113704IN-PACKAGE MICROELECTRONIC APPARATUS, AND METHODS OF USING SAME - A mounting substrate for a processor includes a die side and a land side with a processor footprint configured on the die side. The processor footprint is coupled to at least one processor interconnect and a microelectronic die is embedded in the mounting substrate. The microelectronic die is coupled to the processor interconnect and communication between a processor to be installed on the processor footprint is in a rate between 10 Gb/s and 1 Tb/s.05-10-2012
20120026772MEMORY MODULE AND LAYOUT METHOD THEREFOR - The present invention provides a novel wiring method for LR-DIMM of VLP type that conforms to LR-DIMM technology. The LR-DIMM comprises a plurality of DRAMs mounted on a board, two connectors mounted on the board for receiving data, and a buffer device mounted on the board for redriving data applied to the two connectors to supply the data to the plurality of DRAMs. The buffer device is located near the center of the board on which the two connectors are arranged at both ends thereof, and supplies data from each connector to DRAMs arranged on the opposite side to the connector.02-02-2012
20120300528Stacked Memory Module and System - A three dimensional memory module and system are formed with at least one slave chip stacked over a master chip. Through semiconductor vias (TSVs) are formed through at least one of the master and slave chips. The master chip includes a memory core for increased capacity of the memory module/system. In addition, capacity organizations of the three dimensional memory module/system resulting in efficient wiring is disclosed for forming multiple memory banks, multiple bank groups, and/or multiple ranks of the three dimensional memory module/system.11-29-2012
20120300527NONVOLATILE MEMORY INCLUDING PLURAL MEMORY CELLS STACKED ON SUBSTRATE - According to example embodiments, a nonvolatile memory device includes a memory cell array including a plurality of memory cells stacked on a substrate, a plurality of word lines connected with the memory cell array, a plurality of pass voltage generators, and a voltage control circuit. The pass voltage generators each include a plurality of current paths and are configured to generate pass driving signals applied to unselected word lines of the plurality of word lines. The voltage control circuit is configured to control rising slopes of the pass driving signals generated from the plurality of pass voltage generators, based on adjusting the number of current paths in each pass voltage generator used to generate each driving signal.11-29-2012
20120206952SEMICONDUCTOR DEVICE HAVING MULTIPORT MEMORY - A semiconductor device enabling expansion of a noise margin. For example, in a memory area in which each memory cell MC is coupled to a word line WLA for a first port and a word line WLB for a second port, and a plurality of memory cells MC are disposed in a matrix shape, each word line is disposed in the order of WLA08-16-2012
20090135638SEMICONDUCTOR MEMORY DEVICE CAPABLE OF IDENTIFYING A PLURALITY OF MEMORY CHIPS STACKED IN THE SAME PACKAGE - A semiconductor memory device is configured to vertically stack a plurality of memory chips using a resistance-change memory element as a memory cell in one package. The memory chips each have first and second memory position detection pads connected via chip top and bottom electrodes facing each other. Of the vertically stacked memory chips, the lowermost memory chip is provided with the connected chip bottom electrodes of the first and second memory position detection pads. The memory chips each control the variable resistance element, and in a state that the first memory position detection pad has a higher resistance than the second memory position detection pad, compare a voltage applied to the first memory position detection pad with the chip position detection signal using the comparator when a voltage is applied between the first and second memory position detection pads provided on the uppermost layer memory chip.05-28-2009
20110069522VARIABLE RESISTANCE MEMORY WITH LATTICE ARRAY USING ENCLOSING TRANSISTORS - A variable resistance memory array, programming a variable resistance memory element and methods of forming the array. A variable resistance memory array is formed with a plurality of word line transistors surrounding each phase change memory element. To program a selected variable resistance memory element, all of the bitlines are grounded or biased at the same voltage. A top electrode select line that is in contact with the selected variable resistance memory element is selected. The word line having the word line transistors surrounding the selected variable resistance memory element are turned on to supply programming current to the element. Current flows from the selected top electrode select line through the variable resistance memory element into the common source/drain region of the surrounding word line transistors, across the transistors to the nearest bitline contacts. The word lines are patterned in various lattice configurations.03-24-2011
20090027939MULTI-CHIP PACKAGE REDUCING POWER-UP PEAK CURRENT - Disclosed is a multi-chip package having a plurality of memory chips. Each memory chip includes a memory cell array storing e-fuse data, a read-out control circuit reading e-fuse data in response to a read signal, a first internal pad receiving a first control signal, a read-out controller generating the read signal to define a read period, and to generate a second control signal following the read period, and a second internal pad receiving the second control signal, wherein the plurality of memory chips is connected series and each respective read-out control circuit and read-out controller in each one of the plurality of memory chips cooperate to implement a sequential read of e-fuse data across the plurality of memory chips.01-29-2009
20110075466METHODS AND APPARATUS FOR USING A CONFIGURATION ARRAY SIMILAR TO AN ASSOCIATED DATA ARRAY - Methods, apparatus, and systems in accordance with this invention include memories that include a data array and a configuration array adapted to store configuration information for configuring the data array. The data array and the configuration array include a plurality of wordlines and a plurality of bitlines. The plurality of wordlines in the data array extend in the same direction as the plurality of wordlines in the configuration array. Likewise, the plurality of bitlines in the data array extend in the same direction as the plurality of bitlines in the configuration array. Numerous other aspects are disclosed.03-31-2011
20110090728MEMORY CORE AND SEMICONDUCTOR MEMORY DEVICE HAVING THE SAME - A memory core capable of decreasing the area of core conjunction region is disclosed. The memory core includes a first sub word-line driving circuit and a first sub word-line control signal generating circuit. The first sub word-line driving circuit is disposed in a first region, and generates a first word-line driving signal to provide the first word-line driving signal to an array unit. The first sub word-line control signal generating circuit is disposed in the first region, and generates the first sub word-line control signal based on a sub word-line driving signal. Therefore, the memory core has a small size and, consequently so can the semiconductor device.04-21-2011
20110090727Memory Module Having Signal Lines Configured for Sequential Arrival of Signals at Synchronous Memory Devices - A memory module includes a first signal line to carry a first signal. The first signal line has (i) a first line segment disposed along a length of the memory module and coupled to a termination, and (ii) a second line segment disposed along a width of the memory module and coupled to an edge finger. The first line segment and the second line segment are coupled together at a turn. A first synchronous memory device and a second synchronous memory device are coupled to the first line segment. The first signal arrives at the first synchronous memory device and the second synchronous memory device in a sequential manner. The memory module includes a clock line routed alongside the first signal line. A clock signal arrives at the first synchronous memory device and the second synchronous memory device in sequence alongside the first signal traversing along the first signal line.04-21-2011
20110103122SYSTEM AND METHOD FOR OPTIMIZING INTERCONNECTIONS OF COMPONENTS IN A MULTICHIP MEMORY MODULE - An apparatus and method couples memory devices in a memory module to a memory hub on the module such that signals traveling from the hub to the devices have approximately the same propagation time regardless of which device is involved. Specifically, the devices are arranged around the hub in pairs, with each pair of devices being oriented such that a functional group of signals for each device in the pair, such as the data bus signals, are positioned adjacent each other on a circuit board of the module. This allows for a data and control-address busses having approximately the same electrical characteristics to be routed between the hub and each of the devices. This physical arrangement of devices allows high speed operation of the module. In one example, the hub is located in the center of the module and eight devices, four pairs, are positioned around the hub.05-05-2011
20110103121STACKED SEMICONDUCTOR DEVICE AND AUTOMATIC CHIP RECOGNITION SELECTION CIRCUIT - A semiconductor device includes a plurality of stacked chips which are allocated with different self-chip addresses. Each of the plurality of stacked chips includes a frequency change circuit, a self-address storing circuit and a determination circuit. The frequency change circuit changes a first frequency of a signal into a second frequency of the signal. The self-address storing circuit stores a chip select address that is supplied to other chips, in a period of time when the signal as input to the frequency change circuit is different in logic level from the signals as input to the frequency change circuits in the other chips. The determination circuit determines whether the chip select address is identical to the self-chip address.05-05-2011
20100091541Stacked memory device and method thereof - A stacked memory device includes a plurality of memory layers, where at least one of the plurality of memory layers is stacked on another of the plurality of memory layers and each of the memory layers includes an array of memory cells, a first active circuit unit configured to classify and process address information for at least one of the memory cells as vertical address information and horizontal address information, and at least one second active circuit unit configured to generate a memory selection signal for at least one of the memory cells based on signals processed by the first active circuit unit.04-15-2010
20120120703MEMORY DEVICE WITH ASYMMETRICAL BIT CELL ARRAYS AND BALANCED RESISTANCE AND CAPACITANCE - An SRAM or other semiconductor integrated circuit device includes a memory cell array having a layout portion in which a plurality of cell arrays extend along a substantially parallel pair of bit lines. Each cell array is separated from an adjacent cell array by a strap cell. As the cell arrays extend along the bit line pair, they form an alternating sequence of first and second cell arrays in which the first cell array is asymmetric with respect to the second cell array. In each first cell array, the bit line is coupled to a greater number of contacts and in each second cell array, the complementary bit line is coupled to a greater number of contacts. The first cell arrays may all include the same layout and orientation.05-17-2012
20120250387SEMICONDUCTOR DEVICE INCLUDING PLURAL CHIPS STACKED TO EACH OTHER - Disclosed herein is a device that includes a plurality of stacked core chips and an interface chip that controls the core chips. Each of the core chips includes a memory cell array, a penetration electrode, and an output circuit that outputs read data that are read from the memory cell array to the penetration electrode. The penetration electrode respectively provided in the core chips are commonly connected with each other, and the output circuits respectively provided in the core chips are activated in response to a read clock signal supplied from the interface chip.10-04-2012
20120250386CIRCUIT PROVIDING LOAD ISOLATION AND NOISE REDUCTION - Certain embodiments described herein include a memory module having a printed circuit board including at least one connector configured to be operatively coupled to a memory controller of a computer system. The memory module further includes a plurality of memory devices on the printed circuit board and a circuit including a first set of ports operatively coupled to at least one memory device. The circuit further includes a second set of ports operatively coupled to the at least one connector. The circuit includes a switching circuit configured to selectively operatively couple one or more ports of the second set of ports to one or more ports of the first set of ports. Each port of the first set and the second set comprises a correction circuit which reduces noise in one or more signals transmitted between the first set of ports and the second set of ports.10-04-2012
20100246234Stacked memory devices - A stacked memory device may include a substrate, a plurality of memory layers stacked on and above the substrate and divided into a plurality of groups, a plurality of inter-decoders electrically connected to and disposed between the plurality of memory layers in a corresponding one of the plurality of groups, and at least one pre-decoder electrically connected to the plurality of inter-decoders and disposed between the plurality of inter-decoders. A stacked memory device may include a substrate, a plurality of memory layers stacked on and above the substrate and divided into a plurality of groups, a plurality of inter-drivers electrically connected to and disposed between the plurality of memory layers in a corresponding one of the plurality of groups, and at least one pre-driver electrically connected to the plurality of inter-drivers, and disposed between the plurality of inter-drivers.09-30-2010
20120163060SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises a semiconductor substrate; a plurality of memory cell arrays stacked on the semiconductor substrate, each memory cell array including a plurality of first lines paralleled with each other, a plurality of second lines paralleled with each other and formed crossing the first lines, and a plurality of memory cells arranged at intersections of the first lines and the second lines, each memory cell having one end connected to the first line and the other end connected to the second line; a first control circuit provided on the semiconductor substrate immediately beneath the memory cell arrays and having one end connected to the first line to select and drive the first line; and a second control circuit provided on the semiconductor substrate immediately beneath the memory cell arrays and having one end connected to the second line to select and drive the second line.06-28-2012
20100238696MULTI-CHIP PACKAGES INCLUDING EXTRA MEMORY CHIPS TO DEFINE ADDITIONAL LOGICAL PACKAGES AND RELATED DEVICES - A packaged integrated circuit device includes a primary chip stack and a secondary chip stack. The primary chip stack includes memory chips therein that define a logical package addressable by a memory controller. The secondary chip stack includes fewer memory chips than the primary chip stack. The memory chips of the secondary chip stack are configured to be electrically connected to memory chips of at least one external device package to define an additional logical package addressable by the memory controller. For example, the additional logical package may include a same number of memory chips as the primary chip stack. Related devices are also discussed.09-23-2010
20100208503THREE-DIMENSIONAL SEMICONDUCTOR STRUCTURE AND METHOD OF FABRICATING THE SAME - A three-dimensional (3D) semiconductor structure with high density and method of fabricating the same are disclosed. The 3D semiconductor structure comprises at least a first memory cell and a second memory cell stacked on the first memory cell. The first memory cell comprises a first conductive line and a second conductive line. The second memory cell comprises another first conductive line opposite to the first conductive line of the first memory cell, and the second conductive line formed between said two first conductive lines of the first and second memory cells. The first and second memory cells share the second conductive line when the 3D semiconductor structure is programming and erasing, and each of the first and second memory cells has a diode.08-19-2010
20110182100SEMICONDUCTOR DEVICE HAVING MULTIPORT MEMORY - A semiconductor device enabling expansion of a noise margin. For example, in a memory area in which each memory cell MC is coupled to a word line WLA for a first port and a word line WLB for a second port, and a plurality of memory cells MC is disposed in a matrix shape, each word line is disposed in the order like WLA07-28-2011
20110182099SEMICONDUCTOR MEMORY DEVICE FOR REDUCING BIT LINE COUPLING NOISE - A semiconductor memory device including: first and second memory cell arrays each including at least one word line, at least three bit lines, and memory cells; and a sense amplifier area disposed between the first and second memory cell arrays and including a sense amplifier circuit for sensing and amplifying data of the memory cells, wherein the at least three bit lines of the first memory cell array and the at least three bit lines of the second memory cell array extend in a first direction and the at least three bit lines of the first and the second memory cell arrays are respectively connected to data lines disposed in a second direction, and wherein a bit line located between two of the at least three bit lines of each of the first and the second memory cell arrays is connected to an outermost data line of the data lines.07-28-2011
20110182098INTEGRATED CIRCUITS AND METHODS FOR FORMING THE SAME - An integrated circuit including a first memory array and a logic circuit coupled with the first memory array. All active transistors of all memory cells of the first memory array and all active transistors of the logic circuit are Fin field effect transistors (FinFETs) and have gate electrodes arranged along a direction a first longitudinal direction.07-28-2011
20120212989MEMORY CORE AND SEMICONDUCTOR MEMORY DEVICE INCLUDING THE SAME - A semiconductor memory device is disclosed. The semiconductor memory device includes a memory array block, a first word line and a second word line. The memory array block includes a plurality of adjacent columns of memory cells, each column of memory cells including a plurality of consecutive memory cells having a plurality of respective consecutive cell transistors that comprise at least a first group of cell transistors and a second group of cell transistors. The first word line is disposed above the plurality of respective consecutive cell transistors and electrically connected to the first group of cell transistors, and the second word line is disposed below the plurality of respective consecutive cell transistors and electrically connected to the second group of cell transistors.08-23-2012
20120212988SEMICONDUCTOR DEVICE - According to an embodiment, a semiconductor device includes a substrate, a connector, a volatile semiconductor memory element, multiple nonvolatile semiconductor memory elements, and a controller. A wiring pattern includes a signal line that is formed between the connector and the controller and that connects the connector to the controller. On the opposite side of the controller to the signal line, the multiple nonvolatile semiconductor memory elements are aligned along the longitudinal direction of the substrate.08-23-2012
20120134193SEMICONDUCTOR DEVICE HAVING PLURAL MEMORY CHIP - A semiconductor device includes a stacked plurality of memory chips. The memory chips each include a plurality of memory banks, a plurality of read/write buses that are assigned to the respective memory banks, and a plurality of penetration electrodes that are assigned to the respective read/write buses and arranged through the memory chip. Penetration electrodes arranged in the same positions as seen in a stacking direction are connected in common between the chips. In response to an access request, the memory chips activate the memory banks that are arranged in respective different positions as seen in the stacking direction, whereby data is simultaneously input/output via the penetration electrodes that lie in different planar positions.05-31-2012
20120134192SEMICONDUCTOR MEMORY DEVICE AND METHOD FOR FABRICATING THE SAME - A semiconductor memory device includes: a plurality of mats; a plurality of sense amplifier regions disposed on a side of the plurality of mats; and a plurality of main bit lines overlapping with a plurality of secondary bit lines, respectively, in regions for the plurality of mats, wherein the plurality of main bit lines and the plurality of secondary bit lines are formed in regions for the plurality of mats and the plurality of sense amplifier regions.05-31-2012
20090059640SEMICONDUCTOR DEVICE HAVING MULTIPORT MEMORY - A semiconductor device enabling expansion of a noise margin. For example, in a memory area in which each memory cell MC is coupled to a word line WLA for a first port and a word line WLB for a second port, and a plurality of memory cells MC is disposed in a matrix shape, each word line is disposed in the order like WLA03-05-2009
20120170346MEMORY SYSTEM WITH SECTIONAL DATA LINES - The system includes multiple sets of local data lines in one or more routing metal layers below the three-dimensional memory array and multiple sets of global data lines in one or more top metal layers above the three-dimensional memory array. Each set of one or more blocks include one set of the local data lines. Each bay includes one set of global data lines that connect to the group of sense amplifiers associated with the blocks of the respective bay. Each block includes a subset of first selection circuits for selectively coupling a subset of array lines of the first type to respective local data lines. Each block includes a subset of second selection circuits for selectively coupling a subset of the respective local data lines to global data lines associated with a respective bay.07-05-2012
20120257433MEMORY SYSTEM WITH DATA LINE SWITCHING SCHEME - A storage system includes a three-dimensional memory array that has multiple layers of non-volatile storage elements grouped into blocks. Each block includes a subset of first selection circuits for selectively coupling a subset of array lines (e.g. bit lines) of a first type to respective local data lines. Each block includes a subset of second selection circuits for selectively coupling a subset of the respective local data lines to global data lines that are connected to control circuitry. To increase the performance of memory operations, the second selection circuits can change their selections independently of each other.10-11-2012
20120257434CONFIGURABLE BANDWIDTH MEMORY DEVICES AND METHODS - Memory devices and methods are described, such as those that include a stack of memory dies and an attached logic die. Method and devices described provide for configuring bandwidth for selected portions of a stack of memory dies. Additional devices, systems, and methods are disclosed.10-11-2012
20100271856SEMICONDUCTOR MEMORY DEVICE HAVING HIERARCHICALLY-CONSTRUCTED I/O LINES - To provide main I/O lines(MIOX) arranged along an X direction; a plurality of I/O nodes(ND) arranged along the X direction; an amplifier circuit area(AMPA) including a plurality of amplifier circuits(AMP); a plurality of main I/O lines(MIOY) arranged along a Y direction, which respectively connect each of the main I/O lines(MIOX) and each of the corresponding I/O nodes(ND). Among the main I/O lines(MIOY) allocated to the amplifier circuits different from one another, that having a longer wire length is connected more closely to a center of the corresponding main I/O line(MIOX); and that having a shorter wire length is connected more closely to an end of the corresponding main I/O line(MIOX). Accordingly, the difference in wire length for each signal route becomes smaller, and also the wire length of the longest wire route is reduced.10-28-2010
20100271855MEMORY CELL ARRANGEMENTS - In an embodiment, a memory cell arrangement is provided. The memory cell arrangement may include a first memory cell and a second memory cell, a first source/drain line coupled to a first source/drain region of the first memory cell and a second source/drain line coupled to a second source/drain region of the first memory cell, and a third source/drain line coupled to a first source/drain region of the second memory cell and a fourth source/drain line coupled to a second source/drain region of the second memory cell, wherein the third source/drain line is disposed proximate to the second source/drain line, and wherein the third source/drain line is disposed in the same metallization level as the second source/drain line.10-28-2010
20100008120SEMICONDUCTOR MEMORY - Dummy memory cells are disposed on an outside of real memory cells positioned on a peripheral part of a matrix. First contacts coupling between two wiring layers laminated on a semiconductor substrate are disposed around each of the real and dummy memory cells, and are shared by an adjacent real or dummy memory cell. Number of the first contacts disposed in each of the dummy memory cells is set to be smaller than number of the first contacts disposed in each of the real memory cells. Accordingly, even when a well region is not formed normally due to a variation in manufacturing conditions, it is possible to prevent an abnormal power supply current from being flown into the dummy memory cells, and an occurrence of latch up can be prevented.01-14-2010
20120218804MAGNETIC MEMORY DEVICE - The present invention provides a magnetic memory device capable of providing high-speed access without increasing an array area. Gate word lines are respectively linearly disposed between source impurity regions and drain impurity regions within a memory cell array area. Gate word line protrusions are respectively provided at boundary regions of memory cell forming regions. Contacts relative to the gate word line protrusions are respectively provided at boundary regions of memory cells at adjacent columns. The drain impurity regions are respectively disposed with being shifted from the centers of the memory cell forming regions in such a manner that spaces between the drain impurity regions become large in the regions in which the protrusions are disposed.08-30-2012
20120218803MEMEORY DEVICE INTERFACE METHODS, APPARATUS, AND SYSTEMS - Apparatus and systems may include an interface chip, a first memory die having at least one memory array disposed on the interface chip, and a second memory die having at least one memory array disposed on the first memory die. The first memory die can include a plurality of vias configure allow a first plurality of through wafer interconnects (TWIs) to couple the interface chip with the second memory die, and the interface chip can be configured to communicatively couple the first memory die and the second memory die. Other apparatus, systems, and methods are disclosed.08-30-2012
20120262973Arrays Of Nonvolatile Memory Cells And Methods Of Forming Arrays Of Nonvolatile Memory Cells - An array of nonvolatile memory cells includes a plurality of vertically stacked tiers of nonvolatile memory cells. The tiers individually include a first plurality of horizontally oriented first electrode lines and a second plurality of horizontally oriented second electrode lines crossing relative to the first electrode lines. Individual of the memory cells include a crossing one of the first electrode lines and one of the second electrode lines and material there-between. Specifically, programmable material, a select device in series with the programmable material, and current conductive material in series between and with the programmable material and the select device are provided in series with such crossing ones of the first and second electrode lines. The material and devices may be oriented for predominant current flow in defined horizontal and vertical directions. Method and other implementations and aspects are disclosed.10-18-2012
20120262974MEMORY MODULE AND MEMORY SYSTEM - In a memory module including a plurality of DRAM chips which transmit/receive a system data signal with a predetermined data width and at a transfer rate and which transmit/receive an internal data signal having a larger data width and a lower transfer rate as compared with the system data signal, the transfer rate of the system data signal is restricted. Current consumption in DRAMs constituting the memory module is large, hindering speed increases. For this memory module, a plurality of DRAM chips are stacked on an IO chip. Each DRAM chip is connected to the IO chip by a through electrode, and includes a constitution for mutually converting the system data signal and the internal data signal in each DRAM chip by the IO chip. Therefore, wiring between the DRAM chips can be shortened, and DLL having a large current consumption may be disposed only on the IO chip.10-18-2012
20120262975SEMICONDUCTOR MEMORY DEVICE INCLUDING PLURALITY OF MEMORY CHIPS - A semiconductor memory device includes a plurality of memory chips each including a chip identification (ID) generation circuit. The chip ID generation circuits of the respective memory chips are operatively connected together in a cascade configuration, and the chip ID generation circuits are activated in response to application of a power supply voltage the memory device to sequentially generate respective chip ID numbers of the plurality of device chips10-18-2012
20120081940SEMICONDUCTOR MEMORY DEVICE HAVING AN ELECTRICALLY FLOATING BODY TRANSISTOR - A semiconductor memory cell is formed in a semiconductor. The semiconductor memory cell includes: a floating body region defining at least a portion of a surface of the semiconductor memory cell, the floating body region having a first conductivity type; and a buried region located within the semiconductor memory cell and located adjacent to the floating body region, wherein the buried region has a second conductivity type.04-05-2012
20100328983Memory System with Multi-Level Status Signaling and Method for Operating the Same - A memory system includes a status circuit having a common status node electrically connected to a respective status pad of each of a plurality of memory chips. The memory system also includes a plurality of resistors disposed within the status circuit to define a voltage divider network for generating different voltage levels at the common status node. Each of the different voltage levels indicates a particular operational state combination of the plurality of memory chips. Also, each of the plurality of memory chips is either in a first operational state or a second operational state. Additionally, the different voltage levels are distributed within a voltage range extending from a power supply voltage level to a reference ground voltage level.12-30-2010
20080298111Semiconductor memory device - A semiconductor memory device includes: a substrate with first and second memory-cell array regions disposed on first and second substrate sides and first and second sense-circuit regions disposed on the first and second substrate sides between the first and second memory-cell array regions; first and second bitlines coupled to a plurality of memory cells in the first memory-cell array region; first and second complementary bitlines coupled to a plurality of memory cells in the second memory-cell array region; first and second column-selection transistors formed in the first sense-circuit region, and selectively couple the first bitline and the first complementary bitline to a first input/output (I/O) line and a first complementary I/O line; and third and fourth column-selection transistors formed in the second sense-circuit region, and selectively couple the second bitline and the second complementary bitline to a second I/O line and a second complementary I/O line.12-04-2008
20120320651SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises: a semiconductor substrate; a memory cell array provided above the semiconductor substrate and including a plurality of memory cells that are stacked; a plurality of bit lines connected electrically to the plurality of memory cells; and a plurality of sense amplifiers connected to the bit lines via bit line connection lines. The bit line connection lines have every adjacent N lines (where N is an integer of 2 or more) as one group. The sense amplifiers are arranged in a number smaller than N in a first direction that the bit line connection lines extend. An M number of the sense amplifiers are arranged in a width of a P number of groups in a second direction intersecting the first direction. The M number being larger than the P number12-20-2012
20110007539TEST MODE FOR MULTI-CHIP INTEGRATED CIRCUIT PACKAGES - When a test mode of a controller of a multi-chip integrated circuit package is activated, external signal lines coupled to the controller are re-mapped to signal lines of one of the integrated circuit devices of the multi-chip integrated circuit package to permit direct testing of the integrated circuit device.01-13-2011
20100177544Generating ROM bit cell arrays - A method of generating a ROM bit cell array layout is provided, the method comprising the steps of: inputting a predetermined memory architecture having a predetermined positioning of bit lines and virtual ground lines, said memory architecture comprising a plurality of columns of memory cells, each column of memory cells being located between its own associated bit line and its own associated virtual ground line, and adjacent memory cells in each column of memory cells sharing a common connection to either said associated bit line or said associated virtual ground line; evaluating a possible range of width of active area of each of said columns of memory cells, in dependence on said predetermined positioning of bit lines and virtual ground lines; selecting a final width of active area in dependence on at least one performance characteristic associated with said final width of active area; and generating said ROM bit cell array layout according to said final width of active area. Thus the system designer can reuse an existing memory architecture, yet still retain an advantageous degree of flexibility with regard to performance characteristic selection of the final ROM bit cell array.07-15-2010
20100232201STACKED SEMICONDUCTOR MEMORY DEVICE - A stacked semiconductor memory device includes an interface chip and a plurality of core chips, in which the interface chip and the plurality of core chips are stacked. The core chips are mutually connected by a plurality of data through electrodes. The core chips each include a plurality of memory arrays. In response to an access request, the plurality of memory arrays corresponding to a predetermined data through electrode are activated, and the plurality of activated memory arrays and the predetermined data through electrode are sequentially connected. Thereby, even though it requires approximately ten-odd ns for transferring the first data, similarly to the conventional case, it is possible to transfer the subsequent data at high speed determined by the reaction rate (1 to 2 ns) of the through electrode. As a result, it becomes possible to increase a bandwidth while suppressing the number of through electrodes.09-16-2010
20100232200VERTICAL SWITCH THREE-DIMENSIONAL MEMORY ARRAY - A memory device includes a substrate, and, disposed thereover, an array of vertical memory switches. In some embodiments, each switch has at least three terminals and a cross-sectional area less than 6F09-16-2010
20100232199SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device includes: a memory cell array including memory cells, each of the memory cells having a variable resistance element; and a control circuit configured to apply a control voltage, which is necessary for the variable resistance element to transit a resistance state, to a selected memory cell. When applying the control voltage plural times, the control circuit operates to set a value of the control voltage applied in a first control voltage application operation to be substantially equal to a minimum value of distribution of the voltage values of all the memory cells in the memory cell array required to transit the resistance state of the variable resistance element from a high resistance state to a low resistance state. The control circuit operates to perform a plurality of control voltage application operations by increasing the value of the control voltage by a certain value.09-16-2010
20100232197DATA STORAGE DEVICE - A device to selectively activate memory chips includes a memory unit including n memory chips activated in response to n memory chip activation signals (n is a natural number), a controller to generate m control signals (m is a natural number), and a memory chip activation signal generator to combine m chip enable (CE) signals to generate the n memory chip activation signals.09-16-2010
20100232196MULTI-CHIP PACKAGE SEMICONDUCTOR MEMORY DEVICE PROVIDING ACTIVE TERMINATION CONTROL - A semiconductor memory device having a multi-chip package structure providing active termination control. The semiconductor memory device includes first and second memory chips sharing a data I/O bus. The first memory chip includes a first chip enable (CE) port determining whether the first memory chip is activated, and a second CE port monitoring whether the second memory chip is activated. An active termination unit is turned ON only when the first and second chips are deactivated.09-16-2010
20100232198SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device includes: a cell array including a plurality of first wirings, a plurality of second wirings intersecting the first wirings, and memory cells positioned at intersecting portions between the first wirings and the second wirings, each of the memory cells having a series circuit of a non-ohmic element and a variable resistance element; a control circuit configured to apply a control voltage, which is necessary for the variable resistance element to transit from a low resistance state to a high resistance state, to the memory cells through the first wirings and the second wirings; and a bias voltage application circuit configured to apply a bias voltage, which suppresses a potential variation caused by the transition of the variable resistance element from the low resistance state to the high resistance state, to one end of the variable resistance element.09-16-2010
20100202179MEMORY DEVICE - A memory device is provided. The memory device comprises a substrate, a plurality of word lines, a plurality of conductive regions and at least a shielding plug. The substrate has a memory region and a peripheral region. The word lines are disposed on the substrate and at least a dummy word line disposed in the peripheral region and adjacent to the word lines. The conductive regions are disposed in the substrate and between the word lines respectively. The shielding plug is located on the substrate and adjacent to the dummy word line and between the dummy word line and the word lines and there is no self-aligned source region around the dummy word line.08-12-2010
20100202180MEMORY MODULE CUTTING OFF DM PAD LEAKAGE CURRENT - A memory module includes: an ODT circuit on a memory device and including pull-up and pull-down resistors connected between pull-up and pull-down transistors. A data masking (DM) pad is provided in a tap region of the module board. A current leakage monitoring unit is also provided and receives a ground state signal from the DM pad and a bit configuration signal from the memory device and disables the pull-up transistors to cut off a current path between the pull-up resistors of the ODT circuit and the DM pad during a ODT enable mode.08-12-2010
20120140542Arrays of Nonvolatile Memory Cells - Disclosed is an array of nonvolatile memory cells includes five memory cells per unit cell. Also disclosed is an array of vertically stacked tiers of nonvolatile memory cells that includes five memory cells occupying a continuous horizontal area of 4F06-07-2012
20130010514SEMICONDUCTOR MODULE HAVING MODULE SUBSTRATE AND PLURAL SEMICONDUCTOR DEVICES MOUNTED THEREON - Disclosed herein is a semiconductor module that includes a module substrate and a plurality of semiconductor devices mounted on the module substrate. Among the semiconductor devices, two of the semiconductor devices adjacent in a first direction differ in a mounting direction by 180°. Among the semiconductor devices, two of the semiconductor devices adjacent in a second direction perpendicular to the first direction differing in a mounting direction by 180°.01-10-2013
20130021832SEMICONDUCTOR DEVICE - In a semiconductor device, memory modules each having a low power consumption mode that is enabled and disabled by a control signal belong to a memory block. A transmission path of the control signal is provided such that the control signal is inputted in parallel to the memory module via an inside-of-module path, and such that the control signal is outputted by a particular memory module of the memory modules via the inside-of-module path to a downstream outside-of-module path. The particular memory module in the memory block is selected such that it has a greater storage capacity than the other memory modules belonging to this same memory block have.01-24-2013
20080239781Semiconductor memory device and method of forming a layout of the same - A semiconductor memory device having a double-patterned memory cell array that includes a plurality of first bit lines spaced apart from each other and having a first pattern, a plurality of second bit lines spaced apart from each other and having a second pattern, the second bit lines being between the first bit lines to define an alternating array of first and second bit lines, the first and second patterns being different from each other, a first main memory cell array defined by a first portion of the alternating array, a second main memory cell array defined by a second portion of the alternating array, bit lines in the first main memory cell array having a substantially same regularity as bit lines in the second main memory cell array, and a dummy array between the first main memory cell array and the second main memory cell array.10-02-2008
20130170274SEMICONDUCTOR MEMORY DEVICE STORING MEMORY CHARACTERISTIC INFORMATION, MEMORY MODULE AND MEMORY SYSTEM HAVING THE SAME, AND OPERATING METHOD THEREOF - A semiconductor memory device includes a cell array including a plurality of regions accessed by first addresses, where the plurality of regions including at least two groups of regions having respectively different memory characteristics. The device further includes a nonvolatile array for nonvolatile storage of group information indicative of which of the least two groups each of the plurality of regions belongs.07-04-2013
20130176763STACKED MEMORY WITH REDUNDANCY - A stacked memory is disclosed including a first integrated circuit memory chip having first storage locations and stacked with a second integrated circuit memory chip. A redundant memory is shared by the first and second integrated circuit memory chips and has redundant storage locations that selectively replace corresponding storage locations in the first or second integrated circuit memory chips. The stacked memory also includes a pin interface for coupling to an external integrated circuit memory controller and respective first and second signal paths. The first signal path is formed through the first and second integrated circuit memory chips and is coupled to the redundant memory and to the pin interface. The second signal path is formed through the first and second integrated circuit memory chips and is coupled to the redundant memory and to the pin interface via the first signal path.07-11-2013
20090219741DIAGONAL CONNECTION STORAGE ARRAY - In one aspect, an electronic memory array includes overlapping, generally parallel sets of conductors, and includes storage elements near each point of overlap. One set of conductors has a non-negligible resistance. An address path for each storage element traverses a portion of one each of the first and second sets of conductors and a selectable resistance element. All storage element address paths have substantially equivalent voltage drops across the corresponding storage elements.09-03-2009
20130135916MEMORY MODULE INCLUDING PLURAL MEMORY DEVICES AND DATA REGISTER BUFFER - Disclosed herein is a memory module that includes a module substrate, data connectors, memory devices, and data register buffers. A first main surface of the module substrate has first and second memory mounting areas. One of the first and second main surfaces of the module substrate has a register mounting area located between the first and second memory mounting areas in a planner view. The memory devices include a plurality of first memory devices that are mounted on the first memory mounting area and a plurality of second memory devices that are mounted on the second memory mounting area. The data register buffers are mounted on the register mounting area. The data register buffers transfers write data supplied from the data connectors to the memory devices, and transfers read data supplied from the memory devices to the data connectors.05-30-2013
20130100722THREE-DIMENSIONAL NON-VOLATILE MEMORY DEVICE, MEMORY SYSTEM INCLUDING THE SAME, AND METHOD OF MANUFACTURING THE SAME - A 3D non-volatile memory device including a substrate that includes a first region and a second region; a pipe channel film that is formed on the substrate in the first region; a pipe gate that substantially encloses the pipe channel film; and a driving gate that is formed on the substrate in the second region and has at least one dummy pattern.04-25-2013
20110267865CONFIGURABLE BANDWIDTH MEMORY DEVICES AND METHODS - Memory devices and methods are described, such as those that include a stack of memory dies and an attached logic die. Method and devices described provide for configuring bandwidth for selected portions of a stack of memory dies. Additional devices, systems, and methods are disclosed.11-03-2011
20130128647DATA PROCESSING DEVICE - A microcomputer provided on a rectangular semiconductor board has memory interface circuits. The memory interface circuits are separately disposed in such positions as to extend along the peripheries of the semiconductor board on both sides from one corner as a reference position. In this case, limitations to size reduction imposed on the semiconductor board can be reduced compared with a semiconductor board having memory interface circuits only on one side. Respective partial circuits on each of the separated memory interface circuits have equal data units associated with data and data strobe signals. Thus, the microcomputer has simplified line design on a mother board and on a module board.05-23-2013
20130148398THREE-DIMENSIONAL NON-VOLATILE MEMORY DEVICE, MEMORY SYSTEM INCLUDING THE SAME AND METHOD OF MANUFACTURING THE SAME - A three-dimensional (3-D) non-volatile memory device according to an embodiment of the present invention includes a plurality of vertical channel layers protruding from a substrate, a plurality of interlayer insulating layers and a plurality of memory cells stacked alternately along the plurality of vertical channel layers, and an air gap formed in the plurality of interlayer insulating layers disposed between the plurality of memory cells, so that capacitance between word lines is reduced to thus improve a program speed.06-13-2013
20110235386Semiconductor Memory Device and Manufacturing Method of the Same - The invention provides a voltage applying structure having a reduced area penalty with respect to a data line. A wiring forming a global data line and a local data line formed in a p-type well region are connected via a select transistor. Two select lines are formed on a gate electrode of the select transistor. One select line is electrically connected to the gate electrode of the select transistor, however, the other select line is not connected to the select transistor. That is, an insulator film is formed between the select line and the gate electrode. As mentioned above, two select lines shorter than a gate length are provided on one select transistor. The select line is structured such as to be connected to the other select transistor.09-29-2011
20130148399SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device in accordance with an embodiment includes a plurality of first word lines, a plurality of bit lines, a resistance varying material, a plurality of second word lines and an insulating film. The bit lines intersect the first word lines. The resistance varying material is disposed at respective intersections of the first word lines and the bit lines. The second word lines intersect the bit lines. The insulating film is disposed at respective intersections of the second word lines and the bit lines. One of the first word lines and one of the second word lines are disposed so as to sandwich the bit lines. The second word lines, the bit lines, and the insulating film configure a field-effect transistor at respective intersections of the second word lines and the bit lines. The field-effect transistor and the resistance varying material configure one memory cell.06-13-2013
20100290262Three dimensional hexagonal matrix memory array - A nonvolatile memory device includes a plurality of nonvolatile memory cells arranged in a substantially hexagonal pattern. The nonvolatile memory cells may be pillar shaped non-volatile memory cells which can be patterned using triple or quadruple exposure lithography or by using a self-assembling layer.11-18-2010
20100315852MEMORY AND STORAGE DEVICE UTILIZING THE SAME - A storage device including a memory and a reading circuit is disclosed. The memory includes a plurality of word lines, a first bit line, a second bit line, a third bit line, and a plurality of cells. The word lines are sequentially disposed in parallel. The first, the second, and the third bit lines are sequentially disposed in parallel and vertical with the word lines. Each cell corresponds to one word line and one bit line. The word line, which corresponds to the cell corresponding to the first bit line, differs from the word line, which corresponds to the cell corresponding to the second bit line. The read circuit is coupled to the memory for reading the data stored in the memory.12-16-2010
20130155751MEMORY DEVICES HAVING BREAK CELLS - A representative memory device includes a cell array, at least one break cell that subdivides the cell array into bit cell arrays, and one or more power switches that are electrically coupled to the bit cell. In one embodiment, the break cell separates a connectivity of a first voltage and a second voltage between at least two bit cell arrays so that the bit cell arrays can be selectively coupled to either the first voltage or the second voltage using the power switches. The power switches control the connection of each separated bit cell array of the cell array to either the first voltage or second voltage.06-20-2013
20130155750SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device includes: a memory cell array having memory cells positioned at respective intersections between a plurality of first wirings and a plurality of second wirings, each of the memory cells having a rectifier element and a variable resistance element connected in series; and a control circuit selectively driving the first and second wirings. The plurality of first wirings that are specified and selectively driven at the same time by one of a plurality of address signals are separately arranged with other first wirings interposed therebetween within the memory cell array when a certain potential difference is applied to a selected memory cell positioned at an intersection between the first and second wirings by the control circuit.06-20-2013
20130182483Discrete Three-Dimensional Memory Comprising Off-Die Address/Data Translator - The present invention discloses a discrete three-dimensional memory (3D-M). Its 3D-M arrays are located on at least one 3D-array die, while its address-data translator (A/D-translator) is located on a separate peripheral-circuit die. The A/D-translator converts at least an address and/or data between logical space and physical space for the 3D-array die. A single A/D-translator die can support multiple 3D-array dies.07-18-2013
20110310649Stacked Memory Module and System - A three dimensional memory module and system are formed with at least one slave chip stacked over a master chip. Through semiconductor vias (TSVs) are formed through at least one of the master and slave chips. The master chip includes a memory core for increased capacity of the memory module/system. In addition, capacity organizations of the three dimensional memory module/system resulting in efficient wiring is disclosed for forming multiple memory banks, multiple bank groups, and/or multiple ranks of the three dimensional memory module/system.12-22-2011
20110317463SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises a semiconductor substrate; a plurality of memory cell arrays stacked on the semiconductor substrate, each memory cell array including a plurality of first lines paralleled with each other, a plurality of second lines paralleled with each other and formed crossing the first lines, and a plurality of memory cells arranged at intersections of the first lines and the second lines, each memory cell having one end connected to the first line and the other end connected to the second line; a first control circuit provided on the semiconductor substrate immediately beneath the memory cell arrays and having one end connected to the first line to select and drive the first line; and a second control circuit provided on the semiconductor substrate immediately beneath the memory cell arrays and having one end connected to the second line to select and drive the second line.12-29-2011
20120002455MINITURIZATION TECHNIQUES, SYSTEMS, AND APPARATUS RELATNG TO POWER SUPPLIES, MEMORY, INTERCONNECTIONS, AND LEDS - Miniaturization techniques, systems, and apparatus relating to power supplies, memory, interconnections, and LEDS are described herein. Specifically, some aspects of the invention relate to techniques for miniaturization of power supplies. Other aspects relate to systems and methods for optimizing memory performance in a computer device or system. Still further, some aspects relate to systems and methods for miniaturizing and optimizing memory layout on a circuit board. Other aspects relate to systems and methods for attaching an integrated circuit, which comprises an array of pins, to a circuit board through the use of an adaptor that comprises a BGA, and which is configured to electrically and physically attach to the circuit board. Furthermore, some aspects relate to systems and methods for achieving activation of at least one multi-color LED, such as a bi-color or tri-color LED, using multiple electrical ground outputs or signals intended to activate only a single unicolor LED.01-05-2012
20130201743Three-Dimensional Memory Comprising an Integrated Intermediate-Circuit Die - The present invention discloses a discrete three-dimensional memory (3D-M). It comprises at least a 3D-array die and at least an integrated intermediate-circuit die comprising both a read/write-voltage generator (V08-08-2013

Patent applications in class FORMAT OR DISPOSITION OF ELEMENTS