Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Erase

Subclass of:

365 - Static information storage and retrieval

365185010 - FLOATING GATE

365185180 - Particular biasing

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
365185330 Flash 54
365185300 Over erasure 10
365185310 Nonsubstrate discharge 1
20090168545Semiconductor Device and Method of Fabricating the Same - Disclosed are a semiconductor device and a method of fabricating the same. The semiconductor device can include a first wafer including a light emitting diode (LED), a second wafer including a flash cell formed corresponding to the LED, and a conductive via that electrically connects the first wafer to the second wafer.07-02-2009
Entries
DocumentTitleDate
20090196106MEM SUSPENDED GATE NON-VOLATILE MEMORY - A carrier storage node such as a floating gate is formed on a moving electrode with a control gate to form a suspended gate non-volatile memory, reducing floating gate to floating gate coupling and leakage current, and increasing data retention.08-06-2009
20090196105Scalable Electrically Eraseable And Programmable Memory (EEPROM) Cell Array - A non-volatile memory (NVM) system includes a plurality of NVM cells fabricated in a dual-well structure. Each NVM cell includes an access transistor and an NVM transistor, wherein the access transistor has a drain region that is continuous with a source region of the NVM transistor. The drain regions of each NVM transistor in a column of the array are commonly connected to a corresponding bit line. The control gates of each NVM transistor in a row of the array are commonly connected to a corresponding word line. The source regions of each of the access transistors in the array are commonly coupled. The NVM cells are programmed and erased without having to apply the high programming voltage V08-06-2009
20110194357NONVOLATILE MEMORY DEVICES, OPERATING METHODS THEREOF AND MEMORY SYSTEMS INCLUDING THE SAME - Nonvolatile memory device, operating methods thereof, and memory systems including the same. In the operating method, a ground select line of a first string connected to a bit line may be floated. An erase prohibition voltage may be applied to a ground select line of a second string connected to the bit line. An erase operation voltage may be applied to the first and second strings.08-11-2011
20090122618Method for Programming and Erasing an Array of NMOS EEPROM Cells that Minimizes Bit Disturbances and Voltage Withstand Requirements for the Memory Array and Supporting Circuits - A method for programming and erasing an array of NMOS electrically erasable programmable read only memory (EEPROM) cells that minimizes bit disturbances and high voltage requirements for the memory array cells and supporting circuits. In addition, the array of N-channel memory cells may be separated into independently programmable memory segments by creating multiple, electrically isolated P-wells upon which the memory segments are fabricated. The multiple, electrically isolated P-wells may be created, for example, by p-n junction isolation or dielectric isolation.05-14-2009
20100074029NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND OPERATION METHOD THEREOF - A p-type well region is formed at a main surface of a semiconductor substrate. An n-type impurity region is located under the p-type well region. A first insulating layer (03-25-2010
20100074028Memory Architecture Having Two Independently Controlled Voltage Pumps - In embodiments described herein, a memory architecture has an array of non-volatile memory cells and a pair of independently controlled voltage pumps. The pair of voltage pumps is coupled for supplying both positive and negative voltage biases to the memory array during program and erase operations, such that a sum of the magnitudes of the positive and negative voltage biases is applied across a storage node of an accessed memory cell.03-25-2010
20100074027HIGH SECOND BIT OPERATION WINDOW METHOD FOR VIRTUAL GROUND ARRAY WITH TWO-BIT MEMORY CELLS - A non-volatile VG memory array employing memory semiconductor cells capable of storing two bits of information having a non-conducting charge trapping dielectric, such as silicon nitride, layered in associating with at least one electrical insulating layer, such as an oxide, is disclosed. Bit lines of the memory array are capable of transmitting positive voltage to reach the source/drain regions of the memory cells of the array. A method that includes the hole injection erasure of the memory cells of the array that lowers the voltage threshold of the memory cells to a value lower than the initial voltage threshold of the cells is disclosed. The hole injection induced lower voltage threshold reduces the second bit effect such that the window of operation between the programmed and un-programmed voltage thresholds of the bits is widened. The programming and read steps reduce leakage current of the memory cells in the array.03-25-2010
20130033941Non-Volatile Semiconductor Memory Having Multiple External Power Supplies - A memory device includes core memory such as flash memory for storing data. The memory device includes a first power input to receive a first voltage used to power the flash memory. Additionally, the memory device includes a second power input to receive a second voltage. The memory device includes power management circuitry configured to receive the second voltage and derive one or more internal voltages. The power management circuitry supplies or conveys the internal voltages to the flash memory. The different internal voltages generated by the power management circuitry (e.g., voltage converter circuit) and supplied to the core memory enable operations such as read/program/erase with respect to cells in the core memory.02-07-2013
20120182811METHOD OF ERASING A FLASH EEPROM MEMORY - A method for erasing a flash EEPROM memory device is disclosed. The memory device has a first semiconductor region of one conductivity type formed within a second semiconductor region of an opposite conductivity type, source and drain regions formed from a semiconductor layer of the opposite conductivity type in the first semiconductor region, a well electrode formed from a semiconductor layer of the conductivity type inside the first semiconductor region, a charge storing layer electrically isolated from the first semiconductor region by a dielectric layer and having electric charge retention properties, and a control gate electrode electrically isolated from the charge storing layer by a inter layer of coupling dielectrics. The method comprises the steps of: applying a first voltage bias to both the well electrode and the second semiconductor region and a second bias to the control gate electrode for a duration of F/N tunneling; applying a third voltage bias to the well electrode and the second semiconductor region and a first zero voltage bias to the control gate electrode for a duration of traps depopulation; and, after the duration of traps depopulation, applying a fourth voltage bias to the control gate electrode and a second zero voltage bias to the well electrode and the second semiconductor region for a duration of traps assisted tunneling.07-19-2012
20090310425MEMORY DEVICES INCLUDING VERTICAL PILLARS AND METHODS OF MANUFACTURING AND OPERATING THE SAME - In a semiconductor device and a method of forming such a device, the semiconductor device comprises a substrate of semiconductor material extending in a horizontal direction. A plurality of interlayer dielectric layers is provided on the substrate. A plurality of gate patterns is provided, each gate pattern between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of semiconductor material extends in a vertical direction through the plurality of interlayer dielectric layers and the plurality of gate patterns, a gate insulating layer between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel, the vertical channel being in contact with the substrate at a contact region that comprises a semiconducting region.12-17-2009
20120218829NAND FLASH ARCHITECTURE WITH MULTI-LEVEL ROW DECODING - A NAND flash memory device is disclosed. The NAND flash memory device includes a NAND flash memory array defined as a plurality of sectors. Row decoding is performed in two levels. The first level is performed that is applicable to all of the sectors. This can be used to select a block, for example. The second level is performed for a particular sector, to select a page within a block in the particular sector, for example. Read and program operations take place to the resolution of a page within a sector, while erase operation takes place to the resolution of a block within a sector.08-30-2012
20120113727CONFIGURATION FINALIZATION ON FIRST VALID NAND COMMAND - A startup method and circuit to allow high current consumption for startup processes of a low operating voltage memory device such as a NAND device until the receipt of a valid command to the memory device. Upon receipt of a valid command, startup functions are ceased at the high current consumption, and normal operation begins without the need for using an unreliable low voltage power on reset circuit.05-10-2012
20080310238Methods of Programming Data in a Non-Volatile Memory Device and Methods of Operating a Nand Flash Memory Device Using the Same - Methods of programming data in a non-volatile memory cell are provided. A memory cell according to some embodiments may include a gate structure that includes a tunnel oxide layer pattern, a floating gate, a dielectric layer and a control gate sequentially stacked on a substrate, impurity regions that are formed in the substrate at both sides of the gate structure, and a conductive layer pattern that is arranged spaced apart from and facing the floating gate. Embodiments of such methods may include applying a programming voltage to the control gate, grounding the impurity regions and applying a fringe voltage to the conductive layer pattern to generate a fringe field in the floating gate.12-18-2008
20090103371MEMORY CELL OPERATION - Embodiments of the present disclosure provide methods, devices, modules, and systems for programming memory cells. One method includes determining a quantity of erase pulses used to place a group of memory cells of the array in an erased state, and adjusting at least one operating parameter associated with programming the group of memory cells at least partially based on the determined quantity of erase pulses.04-23-2009
20130021850MEMORY ARRAY AND METHOD OF OPERATING THE SAME - A memory device comprises at least one memory array on a semiconductor substrate. Each said memory array comprises a page control line and a plurality of pages, each said page is arranged in a row comprising a plurality of bytes which couple to a page control transistor with its drain terminal connected to the page control line. Each said byte includes at least one memory cell. Said memory array further comprises a plurality of source control devices which are configured to provide either predetermined biases or floating potentials to source lines, each said source line couples to all the bytes on the same byte segment of the memory array. Read, erase, and program methods are provided to operate said memory devices in byte addressable fashion.01-24-2013
20090310426SEMICONDUCTOR MEMORY DEVICE - There is offered a semiconductor memory device that has reduced number of high withstand voltage transistors so as to suppress an increase in a die size. A second transistor of N channel type is connected between a word line and a decoder circuit. A control signal from a control circuit is applied to a gate of the second transistor. When an output of the decoder circuit is at a low level, the word line is in a non-selected state, and a high voltage from a switching circuit is not outputted to the word line. Instead, the word line is provided with the ground voltage (=non-erasing voltage) from the decoder circuit through the second transistor.12-17-2009
20110286284MULTI-TRANSISTOR NON-VOLATILE MEMORY ELEMENT - The present disclosure provides a multi-transistor element including a substrate, a first floating gate disposed on the substrate, a second floating gate disposed on the substrate and coupled to the first floating gate, and a first active region disposed in the substrate and coupled to the first and second floating gates.11-24-2011
20090147588MEMORY DEVICES HAVING REDUCED WORD LINE CURRENT AND METHOD OF OPERATING AND MANUFACTURING THE SAME - There is provided a memory array and methods for manufacturing the same. In one embodiment, there is provided a string comprising a plurality of transistors. Each of the plurality of transistors includes: a charge storage node, a control gate, and at least one resistive element coupled to the string. The control gate of at least one of the plurality of transistors can be selectively coupled to a reference potential via a corresponding one of the at least one resistive element.06-11-2009
20080266982CHANNEL DISCHARGING AFTER ERASING FLASH MEMORY DEVICES - A post-erase channel clearing procedure for double well, floating gate, non-volatile memory cells. The channel is cleared of charged particles coming from the floating gate after an erase operation in two steps. In the first step the charged particles are pushed into an upper substrate well below the floating gate but not allowed into a deeper well of opposite conductivity type relative to the upper well. After a brief time, T, the charged particles are pushed by a bias voltage into the deeper well from the upper well. This two step clearing procedure avoids device latchup that might occur otherwise.10-30-2008
20100128537METHOD OF PROGRAMMING A NON-VOLATILE MEMORY - A memory system including non-volatile memory cells. The memory system includes program circuitry that programs cells to a first threshold voltage or a second threshold voltage based on the number of times that cells of the memory system have been erased. In one embodiment, the threshold voltage is reduced when any set of cells of the memory system have been erased a specific number of times.05-27-2010
20090310427EEPROM DEVICES AND METHODS OF OPERATING AND FABRICATING THE SAME - In one aspect, an electrically erasable and programmable read-only memory (EEPROM) is provided. The EEPROM includes a semiconductor substrate including spaced apart first, second and third active regions, a common floating gate traversing over the first through third active regions, source/drain regions formed in the third active region on opposite sides of the floating gate, a first interconnect connected to the first active region, a second interconnect connected to the second active region, and a third interconnect connected to either one of the source/drain regions.12-17-2009
20090310424METHOD OF ERASING A FLASH EEPROM MEMORY - The invention is a new method for erasing a flash EEPROM memory device. The memory device has a first semiconductor region within a second semiconductor region, source and drain regions in the first semiconductor region, a well terminal inside the first semiconductor region, a charge storing layer electrically isolated from the first semiconductor region by a dielectric layer, and a control terminal electrically isolated from the charge storing layer by a inter layer dielectric. The method comprises the steps of: applying a first voltage bias of first polarity to the well terminal; allowing a first time period to elapse; applying a second voltage bias of second polarity opposite to the first polarity to the control terminal; resetting the first voltage bias to zero; allowing a second time period to elapse; and resetting the second voltage bias to zero.12-17-2009
20090262584Nonvolatile Memory Cell and Data Latch Incorporating Nonvolatile Memory Cell - A nonvolatile memory cell, comprising: a first NMOS transistor having a floating gate; a second NMOS transistor and a third NMOS transistor connected to a drain side and a source side of the first NMOS transistor; and a first PMOS transistor and a second PMOS transistor each having the floating gate as a gate, and wherein a read signal is inputted to gates of the second and third NMOS transistors, a control gate signal is inputted to a source and an n-well of the first PMOS transistor, an erase signal is inputted to a source and an n-well of the second PMOS transistor, and a write data signal is inputted to a source of the first NMOS transistor.10-22-2009
20090290433METHOD OF INPUTTING ADDRESS IN NONVOLATILE MEMORY DEVICE AND METHOD OF OPERATING THE NONVOLATILE MEMORY DEVICE - A method of inputting address in a nonvolatile memory device includes inputting a row address including an information for selecting a memory block and an information for selecting a page, and inputting a column including an information for selecting a column and an information for selecting a plane.11-26-2009
20090296493MID-SIZE NVM CELL AND ARRAY UTILIZING GATED DIODE FOR LOW CURRENT PROGRAMMING - A method of operating a non-volatile memory (NVM) cell structure that utilizes gated diode is provided. The cell architecture, utilizing about 4-10 um2 per bit, includes gated diodes that are used to program the cells while consuming low programming current. The cell architecture also allows a large number of cells to be programmed at the same time, thereby reducing the effective programming time per bit. Erase and read mode bias conditions are also provided.12-03-2009
20090296491MEMORY HAVING P-TYPE SPLIT GATE MEMORY CELLS AND METHOD OF OPERATION - A memory comprising a plurality of P-channel split-gate memory cells are organized in rows and columns. Each of the plurality of P-channel split-gate memory cells comprises a select gate, a control gate, a source region, a drain region, a channel region, and a charge storage layer comprising nanocrystals. Programming a memory cell of the plurality of P-channel split-gate memory cells comprises injecting electrons from a channel region of the memory cell to the charge storage layer. Erasing the memory cell comprises injecting holes from the channel region to the charge storage region.12-03-2009
20100103745Nand Flash Memory With a Programming Voltage Held Dynamically in a Nand Chain Channel Region - Operating voltages to a group of memory cells in an array are supplied via access lines such as word lines and bit lines. The capacitance of associated nodes of the memory cells can latch some of these voltages. Memory operation can continue using the latched voltages even when the access lines are disconnected. In a memory have an array of NAND chains, the capacitance of the channel of each NAND chain can latch a voltage to either enable or inhibit programming. The bit lines can then be disconnected during programming of the group and be used for another memory operation. In one embodiment, the bit lines are precharged for the next verifying step of the same group. In another embodiment, two groups of memory cells are being programmed contemporarily, so that while one group is being programmed, the other group can be verified with the use of the bit lines.04-29-2010
20090268527SONOS MEMORY DEVICE AND METHOD OF OPERATING A SONOS MEMORY DEVICE - The present invention relates to a memory device, hereinafter SONOS memory device, comprising SONOS memory cells having a control gate terminal connected to a SONOS layer stack with a nitride layer, a source terminal and a drain terminal; and a programming unit, which is connected to the drain terminal and to the control gate terminal and which is configured to apply a predetermined positive drain voltage to the drain terminal of the selected SONOS memory cell and a predetermined negative gate voltage to the control gate terminal of the selected SONOS memory cell each upon receiving a programming request addressed to a selected SONOS memory cell, the drain voltage and the gate voltage being suitable for creating hot holes at a drain side of the selected SONOS memory cell in a gate-assisted band-to-band-tunneling process and for injecting the hot holes into the nitride layer of the selected SONOS memory cell, thus switching the selected SONOS memory cell from a high-V10-29-2009
20080239828FLASH MEMORY DEVICE AND ERASE METHOD THEREOF - An erase operating time can be shortened and an erase operating characteristic can be improved in a flash memory device. The flash memory device includes a plurality of memory cell blocks, an operating voltage generator and a controller. Each of the plurality of memory cell blocks includes memory cells connected to a plurality of word lines. A voltage generator is configured to apply an erase voltage to a memory cell block selected for an erase operation, and change a level of the erase voltage if an attempt of the erase operation is not successful. A controller is configured to control the voltage generator to apply a first erase voltage to a memory cell block selected for an erase operation. The first erase voltage corresponds to a previous erase voltage that was used successfully in completing a previous erase operation. The first erase voltage is an erase voltage that is used in a first erase attempt for the erase operation.10-02-2008
20080239830Methods of Operating Memory Devices Including Discharge of Source/Drain Regions and Related Electronic Devices - A memory device may include a memory cell array having a plurality of memory cell transistors serially coupled in a string between a string selection transistor and a ground selection transistor. The string selection transistor may be coupled between the string and a bit line, and the ground selection transistor may be coupled between the string and a common source line. In addition, each memory cell transistor may includes a floating gate between a control gate electrode and a semiconductor substrate, and source/drain regions of the semiconductor substrate may be included on opposite sides of the control gate electrode. Responsive to an erase command, the memory cell transistors of the string may be erased. Further responsive to the erase command and after erasing the memory cell transistors of the string, electrical charge from the source/drain regions of the memory cell transistors may be discharged through the ground selection transistor to the common source line and/or through the string selection transistor to the bit line. Related devices are also discussed.10-02-2008
20090003085NONVOLATILE MEMORY SYSTEM, SEMICONDUCTOR MEMORY, AND WRITING METHOD - A nonvolatile semiconductor memory recovers variation in the threshold of a memory cell due to disturbance related to a word line. The nonvolatile memory continuously performs many writing operations without carrying out single-sector erasing after each writing operation, performing the additional writing operations quicker than the usual writing operation, and lightening the burden imposed on software for use in additional writing. The data stored in a designated sector is read out before being saved in a register, and the selected sector is subjected to single-sector erasing when a predetermined command is given. Then write expected value data is formed from the saved data and data to be additionally written, completing the writing operation.01-01-2009
20090003084Driving Method of Flash Memory Device - In a driving method of a flash memory device including a selected first bit line and an unselected second bit line, a program voltage of a pulse is applied to word lines of all memory cells in a block passing an erase verify operation. After the first and second bit lines are precharged to a predetermined level, a ground voltage is applied to the word lines of all the memory cells in the block. The memory cells are evaluated for a predetermined time shorter than an evaluation time of a read operation. Whether or not a memory cell passing a verify operation exists among the memory cells is sensed. Resultantly, when the memory cell passing the verify operation exists, the memory cells in the block are programmed to a desired level using a predetermined program voltage and a step voltage.01-01-2009
20090168544ERASE METHOD AND SOFT PROGRAMMING METHOD OF NON-VOLATILE MEMORY DEVICE - An erase method and a soft programming method of a non-volatile memory device includes performing an erase operation on a memory cell block; applying a pass voltage to a memory cell adjacent to a select transistor of the memory cell block; applying a soft program voltage to the remaining memory cells of the memory cell block; and performing a soft program operation.07-02-2009
20090168543METHOD OF OPERATING A NON-VOLATILE MEMORY DEVICE - A method of operating a non-volatile memory device changes a read voltage by determining a degree that threshold voltages of memory cells are changed and overlap each other. The method of operating the non-volatile memory device includes performing a least significant bit (LSB) program of memory cells and determining a first error rate, performing a most significant bit (MSB) program of the memory cells and determining a second error rate, and setting a read voltage corresponding to a value at which the first and second error rates are minimum values.07-02-2009
20080279014MULTI-PHASE WORDLINE ERASING FOR FLASH MEMORY - Erasing wordlines at the same time can cause undesirable results because some wordlines are affected by electromagnetic waves of other wordlines. However, other wordlines are not affected because they are next to contacts. Therefore, it can be beneficial to erase wordlines in a multi-phase sequence that allows for erasing wordlines without an impact from other wordlines.11-13-2008
20080304328Nonvolatile memory devices and methods of operating the same - Example embodiments include nonvolatile memory devices that have good operation performance and may be made in a highly integrated structure, and methods of operating the same. Example embodiments of the nonvolatile memory devices include a substrate electrode, and a semiconductor channel layer on the substrate electrode, a floating gate electrode on the substrate electrode, wherein a portion of the floating gate electrode faces the semiconductor channel layer, a control gate electrode on the floating gate electrode, and wherein a distance between a portion of the floating gate electrode and the substrate electrode is smaller than a distance between the semiconductor channel layer and the substrate electrode wherein charge tunneling occurs.12-11-2008
20080205165Semiconductor Memory Device - Based on a continuous erase start signal outputted, in response to an inputted continuous erase command, from a continuous erase control circuit, a shift circuit outputs a control signal for giving instructions to execute respective data erase operation to a plurality of non-volatile memory circuits sequentially, and when the data erase operation in all of the non-volatile memory circuits has been completed, the shift circuit outputs a continuous erase completion signal. Thereby, the data erase operation in all of the non-volatile memory circuits built in one chip can be continuously executed by one continuous erase command as is also the case where a single non-volatile memory circuit is built in.08-28-2008
20080273400FAST ERASABLE NON-VOLATILE MEMORY - A method writes data in a non-volatile memory comprising a main memory area comprising target locations, and an auxiliary memory area comprising auxiliary locations. The method comprises a write-erase cycle comprising: reading an initial set of data in a source location located in the main or auxiliary memory area; inserting the piece of data to be written into the initial set of data, to obtain an updated set of data, partially erasing a first group of auxiliary locations and a group of target locations designated by locations of a second group of auxiliary locations, and writing, in an erased auxiliary location of a third group of auxiliary locations, the updated set of data and the address of the target location. The method is particularly applicable to FLASH memories.11-06-2008
20110007574METHOD OF ERASING AN NVM CELL THAT UTILIZES A GATED DIODE - A method of erasing an NVM cell structure formed on a deep well of N-type semiconductor material, wherein the NVM cell structure includes a PMOS transistor formed in an N-type well, the PMOS transistor including spaced-apart p-type source and drain regions defining an n-type channel region therebetween, an NMOS transistor formed in a P-type well that is adjacent to the N-type well, the NMOS transistor including spaced-apart n-type source and rain regions defining a p-type channel region therebetween, a conductive floating gate that includes a first section that extends over the n-type channel region of the PMOS transistor and is separated therefrom by intervening dielectric material and a second section that extends over the p-type channel region and is separated therefrom by intervening dielectric material, and a conductive control gate formed over at least a portion of the second section of the floating gate and separated therefrom by intervening dielectric material, the erasing method comprising: biasing the deep N-type well at a selected erase voltage; holding the source and drain regions of the PMOS transistor at the erase voltage or floating; and holding the control gate at ground for a preselected erase time.01-13-2011
20080212376METHODS OF OPERATING AND MANUFACTURING LOGIC DEVICE AND SEMICONDUCTOR DEVICE INCLUDING COMPLEMENTARY NONVOLATILE MEMORY DEVICE, AND READING CIRCUIT FOR THE SAME - Provided are a complementary nonvolatile memory device, methods of operating and manufacturing the same, a logic device and semiconductor device having the same, and a reading circuit for the same. The complementary nonvolatile memory device includes a first nonvolatile memory and a second nonvolatile memory which are sequentially stacked and have a complementary relationship. The first and second nonvolatile memories are arranged so that upper surfaces thereof are contiguous.09-04-2008
20110267896Non-Volatile Semiconductor Memory with Page Erase - In a nonvolatile memory, less than a full block maybe erased as one or more pages. A select voltage is applied through pass transistors to each of plural selected wordlines and an unselect voltage is applied through pass transistor to each of plural unselected wordlines of a selected block. A substrate voltage is applied to the substrate of the selected block. A common select voltage may be applied to each selected wordline and the common unselect voltage may be applied to each unselected wordline. Select and unselect voltages may be applied to any of the wordlines of a select block. A page erase verify operation may be applied to a block having plural erased pages and plural nonerased pages.11-03-2011
20090161441Nonvolatile semiconductor memory and method for driving the same - To provide a NOR-type nonvolatile semiconductor memory that can inject electric charge into a charge accumulation layer through the use of an FN tunnel current without compromising an increase in the packing density of memory cells. The above problem is solved by a nonvolatile semiconductor memory in which nonvolatile semiconductor memory cells are arranged in a matrix, each nonvolatile semiconductor memory cell having an island semiconductor layer in which a drain diffusion layer formed in the upper part of the island semiconductor layer, a source diffusion layer formed in the lower part of the island semiconductor layer, a charge accumulation layer formed on a channel region of the side wall sandwiched between the drain diffusion layer and the source diffusion layer via a gate insulation film, and a control gate formed on the charge accumulation layer are formed. Further, bit lines connected to the drain diffusion layer are laid out in a column direction, control gate lines are laid out in a row direction, and source lines connected to the source diffusion layer are laid out in the column direction.06-25-2009
20090129171Nonvolatile semiconductor memory and method of driving the same - It is an object of the present invention to provide a nonvolatile semiconductor memory including memory cells using side walls of island semiconductor layers which avoid lowing of the writing speed and the reading speed. In the nonvolatile semiconductor memory having the nonvolatile semiconductor memory cells each having an island semiconductor layer formed on a semiconductor substrate, the island semiconductor layer having a drain diffusing layer formed on top thereof, a source diffusion layer formed on the lower side thereof, a charge-storage layer formed on a channel area on the side wall interposed between the drain diffusion layer and the source diffusion layer via a gate insulation film, and a control gate formed on the charge-storage layer arranged in matrix, bit lines connected to the drain diffusion layers are arranged in the column direction, control gate lines are arranged in the row direction, and source lines connected to the source diffusion layers are arranged in the column direction, the above-described object is achieved by the nonvolatile semiconductor memory characterized in that common source lines connected to the source lines are formed at every predetermined number of control gate lines, the common source lines are formed of metal, and the common source lines are arranged in the row direction.05-21-2009
20090052259NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - A non-volatile semiconductor memory device is provided. A gate electrode configuring a memory cell is turned into floating state and a potential of a gate electrode adjacent thereto is changed, and reduce the potential of the gate electrode by this change of potential and the capacitive coupling. Furthermore, charge sharing is carried out by connecting two gate electrodes, and the voltage of the gate electrode is reduced by capacitive coupling with another gate electrode adjacent thereto, to largely reduce the potential of the gate electrode. Thereby, the voltage level generated by the charge pump circuit can be reduced. As a result, the size of the charge pump circuit can be reduced, or the circuit itself can be eliminated, resulting in reduction of the chip area.02-26-2009
20090244985METHOD FOR ERASING A P-CHANNEL NON-VOLATILE MEMORY - A present invention relates to a method of erasing a P-channel non-volatile memory is provided. This P-channel non-volatile memory includes a select transistor and a memory cell connected in series and disposed on a substrate. In the method of erasing the P-channel non-volatile memory, holes are injected into a charge storage structure by substrate hole injection effect. Hence, the applied operational voltage is low, so the power consumption is lowered, and the efficiency of erasing is enhanced. As a result, an operational speed of the memory is accelerated, and the reliability of the memory is improved.10-01-2009
20090251973Trench monos memory cell and array - The MONOS vertical memory cell of the present invention allow miniaturization of the memory cell area. The two embodiments of split gate and single gate provide for efficient program and erase modes as well as preventing read disturb in the read mode.10-08-2009
20090257283METHOD FOR DELETING DATA FROM NAND TYPE NONVOLATILE MEMORY - To provide a method of releasing charges which have been injected into charge accumulating layers of nonvolatile memory elements without using a substrate terminal such as a p well or an n well, as a method for deleting data from a NAND-type nonvolatile memory. In the method for deleting data from the NAND-type nonvolatile memory, charges stored in a charge accumulating layer of a first nonvolatile memory element are released by applying a first potential to a bit line and a source line, a second potential to a control gate of the first nonvolatile memory element, and a third potential which is different from the second potential to a control gate of a second nonvolatile memory element.10-15-2009
20100149880WINDOW ENLARGEMENT BY SELECTIVE ERASE OF NON-VOLATILE MEMORY CELLS - A method is described for enlarging a programming window of charge trapping memory cells in a virtual ground charge trapping memory EEPROM array. The method substantially eliminates second bit effects and program disturbances to nearby charge trapping memory cells.06-17-2010
20130215682Method for Reading Data Stored in a Flash Memory According to a Threshold Voltage Distribution and Memory Controller and System Thereof - A method for reading data stored in a flash memory. The flash memory comprises a plurality of memory cells and each memory cell has a particular threshold voltage The method includes: obtaining a first threshold voltage distribution representing threshold voltages of a first group of the memory cells; obtaining a second threshold voltage distribution representing threshold voltages of a second group of the memory cells, wherein the second threshold voltage distribution is different from the first threshold voltage distribution, and the first group of the memory cells comprises at least a part of the second group of the memory cells; and controlling the flash memory to perform at least one read operation upon the first group of the memory cells according to the second threshold voltage distribution.08-22-2013
20130215683Three-Dimensional Flash-Based Combo Memory and Logic Design - A three-dimensional NAND-based NOR nonvolatile memory cell has two three-dimensional SONOS-type charge-retaining transistors arranged in a series string such that one of the charge-retaining transistors functions as a select gate transistor to prevent leakage current through the charge-retaining transistors when the charge-retaining transistors is not selected for determining a data state of the three-dimensional NAND-based NOR nonvolatile memory cell. The first charge retaining transistor's drain is connected to a bit line parallel to the charge retaining transistors and the second charge retaining transistor's source is connected to a source line and is parallel to the bit line. The three-dimensional NAND-based NOR nonvolatile memory cell may be reconfigured to function as a PLD cell, an FPGA switching cell, and an EEPROM cell08-22-2013
20130215684NONVOLATILE MEMORY DEVICE, METHOD FOR OPERATING THE SAME, AND METHOD FOR FABRICATING THE SAME - A nonvolatile memory device includes a substrate including a plurality of active regions which are constituted by a P-type semiconductor; first and second vertical strings disposed over each active region, wherein each of the first and second strings includes a channel vertically extending from the substrate, a plurality of memory cells, and a select transistor, wherein the plurality of memory cells and the select transistor are located along the channel; and a bottom gate being interposed between a lowermost memory cell and the substrate, contacting the channel with a first gate dielectric layer interposed therebetween, and controlling connection of the first vertical string with the second vertical string.08-22-2013
20100157690Semiconductor Memory Device of Single Gate Structure - A single gate semiconductor memory device includes a high-potential well on an upper portion of a semiconductor substrate; a first well on an upper portion of the high potential second conductive type well; a second well spaced apart from the first well on the upper portion of the high potential well and across the high-potential well; a floating gate on the first well and the second well; a first ion implantation region in the first well on one side of the floating gate; a second ion implantation region in the first well on an opposite side of the floating gate; a first complementary ion implantation region in the first well next to the second ion implantation region; a third ion implantation region in the second well on one side of the floating gate; and a second complementary ion implantation region in the second well on the opposite side of the floating gate.06-24-2010
20120195130SEMICONDUCTOR MEMORY DEVICE AND DATA ERASE METHOD THEREOF - A semiconductor memory device includes: a plurality of memory cells coupled in series between a bit line and a source line; and a bit line control voltage supply unit configured to provide a control voltage to the bit line according to an operation mode, wherein the bit line control voltage supply unit provides a control voltage having a ground voltage level to the bit line during a soft programming operation.08-02-2012
20100238738EEPROM Having Single Gate Structure and Method of Operating the Same - An electrically erasable programmable read-only memory (EEPROM) includes an access transistor having a floating gate and source/drain regions formed at opposite sides of the floating gate in a first well, a first well tap formed in the first well, a control gate located on a second region, first impurity regions formed at both sides of the control gate in the second region, and a second well tap formed in a third region. In order to erase information stored in a memory cell, a predetermined erasing voltage is applied to the source/drain regions of the access transistor and the first well tap, a ground voltage is applied to the first impurity regions in the second region, and a voltage, which is greater than 0V and less than a junction breakdown voltage between the active area and the first well, is applied to the second well tap.09-23-2010
20100208527SELECTIVE APPLICATION OF WORD LINE BIAS TO MINIMIZE FRINGE EFFECTS IN ELECTROMAGNETIC FIELDS DURING ERASE OF NONVOLATILE MEMORY - A memory device comprising an optimization component that facilitates erasing memory cells in a substantially homogeneous electromagnetic field and methods that facilitate erasing memory cells in a substantially homogeneous electromagnetic field are presented. The optimization component facilitates selecting a subset of memory cells to be erased at the same time, such that a memory cell in the subset of memory cells has two neighbor memory cells adjacent thereto that are in the subset of memory, or one neighbor memory cell adjacent thereto when the memory cell is an end-row memory cell. The optimization component facilitates performing a Fowler-Nordheim channel erase to erase the subset of memory cells, and a predetermined voltage potential associated with an erase command is applied to each cell of the subset of memory cells to facilitate reducing fringing effect associated with the electromagnetic fields applied to the cells during the erase.08-19-2010
20090116296FLASH MEMORY DEVICE APPLYING ERASE VOLTAGE - A flash memory device includes; a plurality of layers, each one including memory cells arranged in a matrix of rows and columns, a layer decoder configured to select one of the plurality of layers to thereby define a selected layer and an unselected layer, a voltage generator configured to generate an erase voltage at a level higher than ground voltage, and an internal voltage, and a row select circuit configured to apply the erase voltage to the selected layer, and apply at least one of the erase voltage and the internal voltage to the unselected layer during an erase operation.05-07-2009
20100054043Split Gate Non-Volatile Flash Memory Cell Having a Floating Gate, Control Gate, Select Gate and an Erase Gate with an Overhang Over the Floating Gate, Array and Method of Manufacturing - An improved split gate non-volatile memory cell is made in a substantially single crystalline substrate of a first conductivity type, having a first region of a second conductivity type, a second region of the second conductivity type, with a channel region between the first region and the second region in the substrate. The cell has a select gate above a portion of the channel region, a floating gate over another portion of the channel region, a control gate above the floating gate and an erase gate adjacent to the floating gate. The erase gate has an overhang extending over the floating gate. The ratio of the dimension of the overhang to the dimension of the vertical separation between the floating gate and the erase gate is between approximately 1.0 and 2.5, which improves erase efficiency.03-04-2010
20120195129NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A control circuit controls various kinds of operations on the memory cell array. The control circuit executes a pre-erase stress application operation in which, when an erase operation on one of the memory cells is executed, prior to the erase operation, a first voltage belonging in a certain voltage range is applied to the control gate while a second voltage having a value smaller than a value of the first voltage is applied to the channel region, whereby a stress is applied to the memory cell due to a potential difference between the first voltage and the second voltage.08-02-2012
20090073776NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device is provided in which stable transistor characteristics with little variation can be obtained, and sufficient threshold voltage and ON current fluctuations can be obtained. A source 03-19-2009
20090316491NON-VOLATILE MEMORY DEVICES AND METHODS OF ERASING NON-VOLATILE MEMORY DEVICES - In one embodiment, an erase method for a memory including a memory array having at least first and second programmable transistors connected in series, includes restricting flow of electrons from the first programmable transistor into the second programmable transistor during an erase operation.12-24-2009
20100296347Method of erasing device including complementary nonvolatile memory devices - Provided are a complementary nonvolatile memory device, methods of operating and manufacturing the same, a logic device and semiconductor device having the same, and a reading circuit for the same. The complementary nonvolatile memory device includes a first nonvolatile memory and a second nonvolatile memory which are sequentially stacked and have a complementary relationship. The first and second nonvolatile memories are arranged so that upper surfaces thereof are contiguous.11-25-2010
20100302870Nonvolatile memory device and method of operating and fabricating the same - Provided is a method of reliably operating a highly integratable nonvolatile memory device. The nonvolatile memory device may include a string selection transistor, a plurality of memory transistors, and a ground selection transistor between a bit line and a common source line. In the nonvolatile memory device, data may be erased from the memory transistors by applying an erasing voltage to the bit line or the common source line.12-02-2010
20100172189NON-VOLATILE SEMICONDUCTOR STORAGE DEVICE - A non-volatile semiconductor storage device includes: a memory string including a plurality of memory cells connected in series; a first selection transistor having one end connected to one end of the memory string; a first wiring having one end connected to the other end of the first selection transistor; a second wiring connected to a gate of the first selection transistor. A control circuit is configured to boost voltages of the second wiring and the first wiring in the erase operation, while keeping the voltage of the first wiring greater than the voltage of the second wiring by a certain potential difference. The certain potential difference is a potential difference that causes a GIDL current.07-08-2010
20110044115Non-volatile memory using pyramidal nanocrystals as electron storage elements - A non-volatile memory device includes a floating gate with pyramidal-shaped silicon nanocrystals as electron storage elements. Electrons tunnel from the pyramidal-shaped silicon nanocrystals through a gate oxide layer to a control gate of the non-volatile memory device. The pyramidal shape of each silicon nanocrystal concentrates an electrical field at its peak to facilitate electron tunneling. This allows an erase process to occur at a lower tunneling voltage and shorter tunneling time than that of prior art devices.02-24-2011
20100259996System and method for providing low cost high endurance low voltage electrically erasable programmable read only memory - A system and method are disclosed for increasing the reliability of a channel erase procedure in an electrically erasable programmable read only memory (EEPROM) memory cell. A memory cell of the present invention comprises a program gate, a control gate, and a floating gate that erase data using a channel erase procedure. An erase capacitor is coupled to the floating gate to provide a low voltage bias that decreases the voltage that is required to perform a Fowler-Nordheim erase process in the memory cell. The erase capacitor of the present invention is formed without adding a step in the manufacturing process of the memory cell. Memory cells of the present invention are low cost, high endurance, low voltage memory cells.10-14-2010
20100177570SEMICONDUCTOR MEMORY DEVICE CAPABLE OF COMPENSATING VARIATION WITH TIME OF PROGRAM VOLTAGE - A voltage generating circuit generates, at a time of write, a first voltage which is higher than a program voltage, and generates an erase voltage at a time of erase. A first transistor has a current path and a gate, and the first voltage generated by the voltage generating circuit is supplied to one end of the current path and the gate of the first transistor. The first transistor outputs the program voltage from the other end of the current path thereof. A driving transistor has one end of a current path thereof connected to a word line, and has a gate supplied with the first voltage. The driving transistor has the other end of the current path supplied with the program voltage. Stress applying portion applies the erase voltage to the other end of the current path of the first transistor at the time of erase.07-15-2010
20100039869MULTI-STATE MEMORY CELL WITH ASYMMETRIC CHARGE TRAPPING - A multi-state NAND memory cell is comprised of two drain/source areas in a substrate. An oxide-nitride-oxide structure is formed above the substrate between the drain/source areas. The nitride layer acting as an asymmetric charge trapping layer. A control gate is located above the oxide-nitride-oxide structure. An asymmetrical bias on the drain/source areas causes the drain/source area with the higher voltage to inject an asymmetric distribution hole by gate induced drain leakage injection into the trapping layer substantially adjacent that drain/source area.02-18-2010
20110255350METHOD OF OPERATING MEMORY CELL - A method of operating a memory cell is provided. The memory cell has first, second, third and fourth storage regions in a charge-storage layer between a substrate and a word line. The first and second storage regions are respectively adjacent to lower and upper portions at one side of the protruding part of the substrate, and the third and fourth storage regions are respectively adjacent to lower and upper portions at the other side of the same. The second and third storage regions are regarded as a top storage region. When the top storage region is programmed, a first positive voltage is applied to the word line, a second positive voltage is applied to a top bit line in a top portion of the protruding part, and a bottom voltage is applied to first and second bottom bit lines in the substrate beside the protruding part respectively.10-20-2011
20100322013Nonvolatile Semiconductor Memory Device - In a situation where a memory cell includes an ONO film, which comprises a silicon nitride film for charge storage and oxide films positioned above and below the silicon nitride film; a memory gate above the ONO film; a select gate, which is adjacent to a lateral surface of the memory gate via the ONO film; a gate insulator positioned below the select gate; a source region; and a drain region, an erase operation is performed by injecting holes generated by BTBT into the silicon nitride film while applying a positive potential to the source region, applying a negative potential to the memory gate, applying a positive potential to the select gate, and flowing a current from the drain region to the source region, thus improving the characteristics of a nonvolatile semiconductor memory device.12-23-2010
20100061155MEMORY ARRAY SEGMENTATION AND METHODS - An embodiment of a method includes applying a first voltage to a selected word line commonly coupled to portions of a row of memory cells respectively formed on first well regions of a plurality of first well regions of a first conductivity type formed in a second well region of a second conductivity type, at least one target memory cell coupled to the selected word line and formed on one of the first well regions, the first well regions electrically isolated from each other; applying a second voltage to unselected word lines, each unselected word line commonly coupled to portions of a row of memory cells not targeted for programming and respectively formed on the first well regions; and applying a third voltage to those first well regions that do not include the at least one target memory cell.03-11-2010
20080298136ENHANCED ERASING OPERATION FOR NON-VOLATILE MEMORY - Structures, methods, and systems for enhanced erasing operation for non-volatile memory are disclosed. In one embodiment, a semiconductor device which comprises a memory cell array having a plurality of non-volatile memory cells, a negative voltage generating circuit for applying a negative voltage to a word line of the memory cell array during an erasing operation of the memory cell array, and a positive voltage generating circuit for applying a positive voltage to a well of the memory cell array when the negative voltage reaches a predetermined voltage.12-04-2008
20090021988Nonvolatile memory device and method of operating fabricating the same - Provided is a method of reliably operating a highly integratable nonvolatile memory device. The nonvolatile memory device may include a string selection transistor, a plurality of memory transistors, and a ground selection transistor between a bit line and a common source line. In the nonvolatile memory device, data may be erased from the memory transistors by applying an erasing voltage to the bit line or the common source line.01-22-2009
20100315884Non-volatile memory utilizing impact ionization and tunnelling and method of manufacturing thereof - A non-volatile memory device (and method of manufacture) is disclosed and structured to enable a write operation using an ionization impact process in a first portion of the device and a read operation using a tunneling process in a second portion of the device. The non-volatile memory device (1) increases hot carrier injection efficiency, (2) decreases power consumption, and (3) enables voltage and device scaling in the non-volatile memory devices.12-16-2010
20090154254CLUSTER BASED NON-VOLATILE MEMORY TRANSLATION LAYER - An improved non-volatile memory and logical block to physical block address translation method utilizing a cluster based addressing scheme is detailed. The translation of logical blocks/sectors to the physical blocks/sectors is necessary for a non-volatile memory to appear as a freely rewriteable device to a system or processor. Embodiments of the present invention utilize cluster based address translation to translate logical block addresses to physical block addresses, wherein each cluster contains a plurality of sequentially addressed logical blocks. This allows the use of a smaller RAM table for the address translation lookup and/or faster scanning of the memory device or memory subsystem for the matching cluster address. In one embodiment, a specially formatted cluster is utilized for frequently updated sectors/logical blocks, where the cluster stores a single logical block and a new sequential physical block of the cluster is written in turn with each update.06-18-2009
20080205164Decoding control with address transition detection in page erase function - Circuits and methods are provided for controlling multi-page erase operations in flash memory. The page address of each address of a multi-page erase operation is latched in wordline decoders. A page select reset generator circuit processes the block addresses of each address of the multi-page erase operation. In the event the addresses relate to pages in different blocks, then previously latched page addresses are reset. This avoids the incorrect circuit operation that will result should a multi-page erase operation include multiple pages in different blocks.08-28-2008
20080205166TRAPPING STORAGE FLASH MEMORY CELL STRUCTURE WITH INVERSION SOURCE AND DRAIN REGIONS - Methods of manufacturing a nitride trapping EEPROM flash memory are described where each memory cell uses Si-Fin to form a nitride trapping EEPROM flash cell in which the source region and drain region are undoped. Each adjacent poly-gate to a selected poly-gate in a row of nitride trapping memory cells is used to produce the inversion region that acts as a source region or a drain region for transferring of a required voltage, which conserves the density of a memory cell given that the source region and the drain region for each memory cell are not doped. The flash memory includes a plurality of polysilicon layers intersecting with a plurality of Si-Fin layers.08-28-2008
20100329038METHODS OF OPERATING MEMORY DEVICES INCLUDING DIFFERENT SETS OF LOGICAL ERASE BLOCKS - Methods of operating memory devices include storing data of a first type in a first set of logical erase blocks and storing data of a second type in a second set of logical erase blocks. The logical erase blocks of the first set of logical erase blocks each have a first size the logical erase blocks of the second set of logical erase blocks each have a second size different than the first size.12-30-2010
20100329037CIRCUIT FOR SUPPLYING WELL VOLTAGES IN NONVOLATILE MEMORY DEVICE - A circuit for supplying well voltages in a nonvolatile memory device includes an erase voltage supply unit for supplying an erase voltage to a well in response to an erase enable signal, a discharge unit for discharging the erase voltage, supplied to the well, in response to a discharge control signal, and a negative voltage supply unit for supplying a negative voltage to the well in response to a negative voltage output enable signal.12-30-2010
20110096610METHOD FOR ENABLING A SONOS TRANSISTOR TO BE USED AS BOTH A SWITCH AND A MEMORY - There is a method for enabling a SONOS transistor to be used as both a switch and a memory. FN tunneling is carried out through the source or drain of the transistor, so as to further change the state of electrons stored in an upper charge storage layer adjacent to the drain or source, and the variation in gate-induced drain leakage is used to recognize the memory state of the drain and source. A stable threshold voltage of the transistor is always maintained during this operation. The present invention enables one single transistor having dual features of switch and memory, while being provided with a two-bit memory effect, thus providing a higher memory density in comparison with a general transistor.04-28-2011
20100182847NONVOLATILE MEMORY SYSTEM, SEMICONDUCTOR MEMORY AND WRITING METHOD - A nonvolatile semiconductor memory recovers variation in the threshold of a memory cell due to disturbance related to a word line. The nonvolatile memory continuously performs many writing operations without carrying out single-sector erasing after each writing operation, performing the additional writing operations quicker than the usual writing operation, and lightening the burden imposed on software for use in additional writing. The data stored in a designated sector is read out before being saved in a register, and the selected sector is subjected to single-sector erasing when a predetermined command is given. Then write expected value data is formed from the saved data and data to be additionally written, completing the writing operation.07-22-2010
20100165747NON-VOLATILE MEMORY CELL HEALING - Embodiments of the present disclosure provide methods, devices, modules, and systems for healing non-volatile memory cells. One method includes biasing a first select gate transistor coupled to a string of memory cells at a first voltage, biasing a second select gate transistor coupled to the string at a second voltage, applying a first healing voltage to a first edge word line in order to extract charge accumulated between the first select gate transistor and a first edge memory cell stack of the string, and applying a second healing voltage to a second edge word line in order to extract charge accumulated between the second select gate transistor and a second edge memory cell stack of the string.07-01-2010
20100165746SEMICONDUCTOR MEMORY CELL, METHOD FOR MANUFACTURING THE SAME AND METHOD FOR OPERATING THE SAME - A semiconductor memory cell, and method of manufacturing a semiconductor memory cell and an method of operating a semiconductor memory cell. A method of operating may include programming a semiconductor memory cell by applying a preset programming voltage to a common source and/or an N-well region, grounding and/or floating a control gate, and/or grounding a word line and/or a bit line. A method of operating may include erasing a semiconductor memory cell by floating and/or grounding a word line, applying a preset erase voltage to a control gate, and/or grounding an N-well, a bit line and/or a common source. A method of operating may include reading a semiconductor memory cell by grounding and/or floating a control gate, applying a preset read voltage to an N-well and/or a common source, grounding a word line, and/or applying a preset drain voltage to a bit line.07-01-2010
20100027352NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - In a non-volatile semiconductor memory device, variations in voltage applied to a bit line when an erase voltage applying step is repeatedly executed are suppressed, thereby reducing variations in Vt after erasure. A memory array includes memory cells arranged in an array, a plurality of word lines, and a plurality of bit lines and main bit lines. The memory array also includes a usable region which can store data and an isolation region which cannot store data. Each bit line provided in the usable region is connected via a select transistor to the corresponding main bit line. At least one main bit line is connected not only to a bit line of the usable region, but also to a bit line of the isolation region via a select transistor.02-04-2010
20110051527NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device includes: a memory unit; and a control unit. The memory unit includes: first and second memory strings including first and second memory transistors with first and second select gates, respectively; and first and second wirings connected thereto. In a selective erase operation of a selected cell transistor of the first memory transistors, the control unit applies V03-03-2011
20120307569Printed Non-Volatile Memory - A nonvolatile memory cell is disclosed, having first and second semiconductor islands at the same horizontal level and spaced a predetermined distance apart, the first semiconductor island providing a control gate and the second semiconductor island providing source and drain terminals; a gate dielectric layer on at least part of the first semiconductor island; a tunneling dielectric layer on at least part of the second semiconductor island; a floating gate on at least part of the gate dielectric layer and the tunneling dielectric layer; and a metal layer in electrical contact with the control gate and the source and drain terminals. In one advantageous embodiment, the nonvolatile memory cell may be manufactured using an “all-printed” process technology.12-06-2012
20110116324MEMORY ARRAY OF FLOATING GATE-BASED NON-VOLATILE MEMORY CELLS - A memory array comprises a plurality of memory cells organized in a matrix of rows and columns. Each of the memory cells includes a high voltage access transistor, a floating gate memory transistor electrically connected to the access transistor, and a coupling capacitor electrically connected to the memory transistor. A first set of word lines are each electrically connected to the capacitor in each of the memory cells in a respective row. A second set of word lines are each electrically connected to the access transistor in each of the memory cells in a respective row. A first set of bit lines are each electrically connected to the access transistor in each of the memory cells in a respective column. A second set of bit lines are each electrically connected to the memory transistor in each of the memory cells in a respective column. Various combinations of voltages can be applied to the word lines and bit lines in operations to program, erase, read, or inhibit a logic state stored by the memory transistor in one or more of the memory cells.05-19-2011
20120099381EMBEDDED NON-VOLATILE MEMORY CELL, OPERATION METHOD AND MEMORY ARRAY THEREOF - The present invention discloses an embedded non-volatile memory cell, an operation method and a memory array thereof. The method includes using a gate of a selection transistor as a floating gate of a memory, and using a source electrode and a drain electrode of the selection transistor as a source electrode and a drain electrode of the memory; and then changing a threshold of the device by varying the electrode voltages, thereby realizing a storage and change of information. The invention has advantages of a small area, a low operating voltage, high operating speed and high reliability.04-26-2012
20110317493Method and Apparatus of Performing An Erase Operation on a Memory Integrated Circuit - Various discussed approaches improve the over erase issue and the coupling effect, and include (A) multilevel contacts between (i) the first outer selected word line of an erase group, and (ii) the first unselected word line outside the ease group neighboring the first outer selected word line; (B) a sufficient separation distance between (i) the first outer selected word line of an erase group, and (ii) the first unselected word line outside the ease group neighboring the first outer selected word line. These are examples of electrically isolating (i) the first outer selected word line of an erase group, from (ii) the first unselected word line outside the ease group neighboring the first outer selected word line.12-29-2011
20120002485SEMICONDUCTOR MEMORY DEVICE - In a semiconductor memory circuit, a write voltage generation circuit receives an output voltage of a voltage boosting circuit to generate a write voltage to a memory cell. When the write voltage is low, a number-of-bits adjustment circuit increases the number of write bits of memory cells before write operation is performed. On the other hand, when the write voltage to a memory cell is high, the number-of-bits adjustment circuit decreases the number of write bits of memory cells before write operation is performed. The area and write time of the voltage boosting circuit can be reduced while the current supply capability of the voltage boosting circuit is efficiently used.01-05-2012
20120057410Method and Apparatus for the Erase Suspend Operation - Various aspects of a nonvolatile memory have an improved erase suspend procedure. A bias arrangement is applied to word lines of an erase sector undergoing an erase procedure interrupted by an erase suspend procedure. As a result, another operation performed during erase suspend, such as a read operation or program operation, has more accurate results due to decreased leakage current from any over-erased nonvolatile memory cells of the erase sector.03-08-2012
20120300553Method and Apparatus of Performing An Erase Operation On A Memory Integrated Circuit - Various discussed approaches improve the over erase issue and the coupling effect, and include (A) multilevel contacts between (i) the first outer selected word line of an erase group, and (ii) the first unselected word line outside the ease group neighboring the first outer selected word line; (B) a sufficient separation distance between (i) the first outer selected word line of an erase group, and (ii) the first unselected word line outside the ease group neighboring the first outer selected word line. These are examples of electrically isolating (i) the first outer selected word line of an erase group, from (ii) the first unselected word line outside the ease group neighboring the first outer selected word line.11-29-2012
20090135659ROOM TEMPERATURE DRIFT SUPPRESSION VIA SOFT PROGRAM AFTER ERASE - Providing for suppression of room temperature electronic drift in a flash memory cell is provided herein. For example, a soft program pulse can be applied to the flash memory cell immediately after an erase pulse. The soft program pulse can help to mitigate dipole effects caused by non-combined electrons and holes in the memory cell. Specifically, by utilizing a relatively low gate voltage, the soft program pulse can inject electrons into the flash memory cell proximate a distribution of uncombined holes associated with the erase pulse in order to facilitate rapid combination of such particles. Rapid combination in this manner reduces dipole effects caused by non-combined distributions of opposing charge within the memory cell, reducing room temperature program state drift05-28-2009
20090213662MEMORY DEVICE AND APPLICATIONS THEREOF - A system that incorporates teachings of the present disclosure may include, for example, a memory device having a memory cell to selectively store holes by photon and bias voltage induction as a representation of binary values. Additional embodiments are disclosed.08-27-2009
20110032772SEMICONDUCTOR DEVICE WITH VERTICAL GATE AND METHOD FOR FABRICATING THE SAME - A vertical channel type non-volatile memory device having a plurality of memory cells stacked along a channel includes the channel configured to be protruded from a substrate, a tunnel insulation layer configured to surround the channel, a plurality of floating gate electrodes and a plurality of control gate electrodes configured to be alternately stacked along the channel, and a charge blocking layer interposed between the plurality of the floating gate electrodes and the plurality of the control gate electrodes alternately stacked.02-10-2011
20120314509NON-VOLATILE SEMICONDUCTOR DEVICE, AND METHOD OF OPERATING THE SAME - A non-volatile semiconductor device and a method for operating the same are disclosed, where the non-volatile semiconductor device includes a gate dielectric layer, a p-type floating gate, a coupling gate, a first p-type source/drain, a second p-type source/drain, a first contact plug and a second contact plug. The gate dielectric layer is formed on a n-type semiconductor substrate. The p-type floating gate is formed on the gate dielectric layer. The first p-type source/drain and the second p-type source/drain are formed in the n-type semiconductor substrate. The first and second contact plugs are formed on the first and second p-type source/drains respectively. The coupling gate consists essentially of a capacitor dielectric layer and a third contact plug, where the capacitor dielectric layer is formed on the p-type floating gate, and the third contact plug is formed on the capacitor dielectric layer.12-13-2012
20100208526Non-volatile memory device and method of operation therefor - In one embodiment, the non-volatile memory device includes a well of a first conductivity type formed in a substrate, and a first plurality of memory cell transistors connected in series to a bit line formed in the well. A buffer is formed in the substrate outside the well and is connected to the bit line. At least one de-coupling transistor is configured to de-couple the buffer from the bit line; and the de-coupling transistor is formed in the well.08-19-2010
20110182124NON-VOLATILE MEMORY LOW VOLTAGE AND HIGH SPEED ERASURE METHOD - A non-volatile memory low voltage and high speed erasure method, the non-volatile memory is realized through disposing a stacked gate structure having a control gate and a floating gate on a semiconductor substrate or in an isolation well, such that adequate hot holes are generated in proceeding with low voltage and high speed erasure operation through a drain reverse bias and making changes to gate voltage. In addition, through applying positive and negative voltages on a drain, a gate, and a semiconductor substrate or well regions, adequate hot holes are generated, so as to lower the absolute voltage in achieving the objective of reducing voltage of erasing memory.07-28-2011
20090059679ERASING METHOD OF NON-VOLATILE MEMORY - An erasing method of a non-volatile memory is provided. The non-volatile memory includes a control gate disposed in a substrate, a floating gate, a gate oxide layer disposed between the floating gate and the substrate, a source region disposed in the substrate, a drain region disposed in the substrate, a first dielectric layer disposed on the floating gate, a second dielectric layer disposed on sidewalls of the floating gate, and an erase gate. The erasing method includes applying a first voltage on the control gate, applying a second voltage on the drain, applying a third voltage on the source, applying a fourth voltage on the erase gate, and applying a fifth voltage on the substrate, such that electrons are drawn from the floating gate to the erase gate to be erased.03-05-2009
20090059678Memory Cell Arrangement, Method for Controlling a Memory Cell, Memory Array and Electronic Device - In an embodiment of the invention, a memory cell arrangement includes a substrate and at least one memory cell including a charge storing memory cell structure and a select structure. The memory cell arrangement further includes a first doping well, a second doping well and a third doping well arranged within the substrate, wherein the charge storing memory cell structure is arranged in or above the first doping well, the first doping well is arranged within the second doping well, and the second doping well is arranged within the third doping well. The memory cell arrangement further includes a control circuit coupled with the memory cell and configured to control the memory cell such that the charge storing memory cell structure is programmed or erased by charging or discharging the charge storing memory cell structure via at least the first doping well.03-05-2009
20120213009NONVOLATILE MEMORY DEVICE AND OPERATING METHOD THEREOF - A nonvolatile memory device includes a channel vertically extending from a substrate, a plurality of memory cells stacked along the channel; a source region connected to a first end portion of the channel, and a bit line connected to a second end portion of the channel, wherein the first end portion of the channel that adjoins the source region is formed as an undoped semiconductor layer or a semiconductor layer doped with P-type impurities.08-23-2012
20110188321NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD FOR DRIVING THE SAME - According to one embodiment, a nonvolatile semiconductor memory device includes a memory unit and a control unit. The memory unit includes a charge storage film, a first insulating film provided adjacent to one surface of the charge storage film, a second insulating film provided adjacent to one other surface of the charge storage film, a semiconductor portion provided adjacent to the first insulating film and a plurality of electrode portions provided adjacent to the second insulating film. The control unit performs a control of applying a first voltage to electrode portions adjacent to each other in one direction at different timing respectively, in an erasing. The erasing is performed by at least one selected from injecting electron holes into the charge storage film and removing electrons from the charge storage film. The first voltage is applied from one of the electrode portions to the charge storage film to be erased.08-04-2011
20120188826MEMORY ARCHITECTURE HAVING TWO INDEPENDENTLY CONTROLLED VOLTAGE PUMPS - In embodiments described herein, a memory architecture has an array of non-volatile memory cells and a pair of independently controlled voltage pumps. The pair of voltage pumps is coupled for supplying both positive and negative voltage biases to the memory array during program and erase operations, such that a sum of the magnitudes of the positive and negative voltage biases is applied across a storage node of an accessed memory cell.07-26-2012
20120188825MEMORY DEVICES HAVING SOURCE LINES DIRECTLY COUPLED TO BODY REGIONS AND METHODS - Memory devices, memory cell strings and methods of operating memory devices are shown. Configurations described include directly coupling an elongated body region to a source line. Configurations and methods shown should provide a reliable bias to a body region for memory operations such as erasing.07-26-2012
20120257458NON-VOLATILE SEMICONDUCTOR DEVICE, AND METHOD OF OPERATING THE SAME - A non-volatile semiconductor device and a method for operating the same are disclosed, where the non-volatile semiconductor device includes a gate dielectric layer, a n-type floating gate, a coupling gate, a first n-type source/drain, a second n-type source/drain, a first contact plug and a second contact plug. The gate dielectric layer is formed on a p-type semiconductor substrate. The n-type floating gate is formed on the gate dielectric layer. The first n-type source/drain and the second n-type source/drain are formed in the p-type semiconductor substrate. The first and second contact plugs are formed on the first and second n-type source/drains respectively. The coupling gate consists essentially of a capacitor dielectric layer and a third contact plug, where the capacitor dielectric layer is formed on the n-type floating gate, and the third contact plug is formed on the capacitor dielectric layer.10-11-2012
20120230117NONVOLATILE SEMICONDCUTOR MEMORY DEVICE - According to one embodiment, a nonvolatile semiconductor memory device includes semiconductor regions provided on a substrate and electrically separated from each other, a memory cell block provided in each of the semiconductor regions and includes nonvolatile memory cells, word lines connected to control gates of memory transistors so as to commonly connect memory transistors in a same row, select gate lines connected to gates of select transistors so as to commonly connect select transistors in a same row, and a row decoder configured to apply a first negative voltage to a selected word line from which data is erased, and to apply a second positive voltage to a non-selected word lines from which data is not erased while an erasing voltage is applied to the semiconductor region upon erasing operation.09-13-2012
20120230120NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND ERASING METHOD OF NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device including a first bit line commonly coupling drain sides memory cells; a word line commonly coupling control gates of memory cell transistors; a column decoder coupled to a second bit line; a row decoder coupled to a word line; a first transistor having a source coupled to the first bit line and having a drain electrically coupled to the column decoder via the second bit line; and a first control unit for controlling potential of a gate of the first transistor, the memory cell transistor being formed over a first well, the first transistor being formed over a second well electrically isolated from the first well, a film thickness of a gate insulation film of the first transistor being smaller than that of a gate insulation film of a second transistor formed in the row decoder and coupled to the word line.09-13-2012
20120230119WORD LINE DRIVER IN FLASH MEMORY - A memory device of the non-volatile type including a memory array having a plurality of memory cells organized as sectors, each sector having a main word line associated with a plurality of local word lines, each local word line coupled to the main word line by a respective local word line driver circuit, each of the local word line driver circuits consisting of a first MOS transistor coupled between the respective main word line and a respective local word line and a second MOS transistor coupled between the respective local word line and a first biasing terminal.09-13-2012
20120230118NON-VOLATILE MEMORY CELL HAVING A HEATING ELEMENT AND A SUBSTRATE-BASED CONTROL GATE - The number of times that a non-volatile memory (NVM) can be programmed and erased is substantially increased by utilizing a localized heating element that anneals the oxide that is damaged by tunneling charge carriers when the NVM is programmed and erased. The program and erase voltages are also reduced when heat from the heating element is applied prior to programming and erasing.09-13-2012
20120320685ERASE OPERATION CONTROL SEQUENCING APPARATUS, SYSTEMS, AND METHODS - Apparatus, systems, and methods may operate to receive an external erase command at a control circuit coupled to an erasable memory array located on a substrate. A global select gate voltage may thereafter be enabled for application to wordline transistors coupled to the erasable memory array after a voltage applied to the substrate has reached a preselected initiation voltage level between about zero volts and an ultimate erase voltage.12-20-2012
20120327720ADAPTIVE WRITE PROCEDURES FOR NON-VOLATILE MEMORY USING VERIFY READ - A method includes performing a write operation on memory cells of a memory array to a first logic state using a voltage of a charge pump. A portion of the write operation is performed on the memory cells of the memory array using the voltage of the charge pump. A determination is made if the voltage insufficient for performing the write operation on the memory cells of the memory array. If a level of the voltage is insufficient, the write operation is continued with an increased level of the voltage by reducing load on the charge pump by providing the voltage on a reduced number of memory cells. The reduced number of memory cells is a first subset of the memory cells.12-27-2012
20110235437Single-Polycrystalline Silicon Electrically Erasable and Programmable Memory Device of Varied Gate Oxide Thickness, Using PIP or MIM Coupling Capacitor for Cell Size Reduction and Simultaneous VPP and VNN for Write Voltage Reduction - A single polycrystalline silicon floating gate nonvolatile memory device has a storage MOS transistor and at least one polycrystalline-insulator-polycrystalline (PIP) or metal-insulator-metal (MIM) capacitor manufactured with dimensions that can be fabricated using current low voltage logic integrated circuit process. The PIP or MIM capacitor is a coupling capacitor with a first plate connected to a floating gate of the storage MOS transistor to form a floating gate node. The coupling PIP or MIM capacitor couples the voltage level applied to a second plate of the PIP or MIM capacitor to the floating gate node with a large coupling ratio approximately 90% so as to initiate Fowler-Nordheim tunneling effect for erasing or programming the memory device. The memory device may also have another PIP or MIM capacitor with a first pate connected to the floating gate of the storage MOS transistor for serving as a tunneling capacitor.09-29-2011
20130016570N-Channel Erasable Programmable Non-Volatile Memory - In an embodiment of the invention, a method of fabricating a floating-gate NMOSFET (n-type metal-oxide semiconductor field-effect transistor) is disclosed. A silicide blocking layer (e.g. oxide, nitride) is used not only to block areas from being silicided but to also form an insulator on top of a poly-silicon gate. The insulator along with a top electrode (control gate) forms a capacitor on top of the poly-silicon gate. The poly-silicon gate also serves as the bottom electrode of the capacitor. The capacitor can then be used to capacitively couple charge to the poly-silicon gate. Because the poly-silicon gate is surrounded by insulating material, the charge coupled to the poly-silicon gate may be stored for a long period of time after a programming operation.01-17-2013
20120243339NONVOLATILE MEMORY DEVICES INCLUDING NOTCHED WORD LINES - Nonvolatile memory devices can include a floating gate on a substrate, with a first tunnel insulating film therebetween. A memory gate can be on the floating gate, with a blocking insulating film therebetween. A word line can be located at a first side of both the memory gate and the floating gate, with a second tunnel insulating film therebetween. The first side of the floating gate can protrude beyond the first side of the memory gate toward the word line.09-27-2012
20120243338NONVOLATILE SEMICONDUCTOR STORAGE DEVICE - A nonvolatile semiconductor storage device of an embodiment includes: a cell array including a plurality of memory cells formed on a well and configured by a charge accumulating layer and a control gate; a plurality of control gate lines that are paths for supplying a voltage necessary to access the memory cells to the control gates of the memory cells; and an erasing circuit that performs an erasing operation configured by an erasing period during which data of the memory cells are erased and a resetting period during which a post processing of the erasing period is performed, the erasing circuit applying an erasing voltage necessary to erase the data to the well of the memory cells during the erasing period, and discharging the erasing voltage applied to the well of the memory cells to a ground line via the control gate lines during the resetting period.09-27-2012
20120243337P-/METAL FLOATING GATE NON-VOLATILE STORAGE ELEMENT - Non-volatile storage elements having a P−/metal floating gate are disclosed herein. The floating gate may have a P− region near the tunnel oxide, and may have a metal region near the control gate. A P− region near the tunnel oxide helps provide good data retention. A metal region near the control gate helps to achieve a good coupling ratio between the control gate and floating gate. Therefore, programming of non-volatile storage elements is efficient. Also, erasing the non-volatile storage elements may be efficient. In some embodiments, having a P− region near the tunnel oxide (as opposed to a strongly doped p-type semiconductor) may improve erase efficiency relative to P+.09-27-2012
20080239829MEMORY APPARATUS INCLUDING PROGRAMMABLE NON-VOLATILE MULTI-BIT MEMORY CELL, AND APPARATUS AND METHOD FOR DEMARCATING MEMORY STATES OF THE CELL - Memory states of a multi-bit memory cell are demarcated by generating read reference signals having levels that constitute boundaries of the memory states. The read reference signals may be dependent upon the levels of programming reference signals used for controlling the programming of the memory cell. The memory cell can thus be programmed without reading out its memory state during the programming process, with programming margins being assured by the dependence of the read reference signals on the programming reference signals. Both sets of reference signals may be generated by reference cells which track variations in the operating characteristics of the memory cell with changes in conditions, such as temperature and system voltages, to enhance the reliability of memory programming and readout.10-02-2008
20080225602DATA PROCESSING SYSTEM AND NONVOLATILE MEMORY - Erasing is performed with respect to a nonvolatile memory cell without causing depletion halfway therethrough. A control circuit for reversibly and variably controlling the threshold voltage of the nonvolatile memory cell by electrical erasing and writing controls an erase process of performing erasing to the plurality of nonvolatile memory cells assigned to one unit in an erase operation, a first write process of performing writing to the nonvolatile memory cell exceeding a pre-write-back level before a depletion level, and a second write process of performing writing to the nonvolatile memory cell exceeding a write-back level after the first write process. Since the occurrence of depletion is suppressed by successively performing the first write process with respect to the nonvolatile memory cells which may exceed the depletion level in the erase process, erasing can be performed to the nonvolatile memory cell without causing depletion halfway therethrough.09-18-2008
20080225601EEPROM MEMORY DEVICE WITH CELL HAVING NMOS IN A P POCKET AS A CONTROL GATE, PMOS PROGRAM/ERASE TRANSISTOR, AND PMOS ACCESS TRANSISTOR IN A COMMON WELL - A memory device including a plurality of memory cells, each with a control gate NMOS transistor sharing a floating gate with a program/erase PMOS transistor which is, in turn, connected in series with an access PMOS transistor. The memory cells are formed in a common N-Well formed in a P-substrate, the NMOS transistor being formed in a p-doped pocket or base. The program/erase PMOS includes a gate, and first and second P+ doped regions formed in the N-Well, wherein the first P+ region is electrically connected to a corresponding bit line. The access PMOS includes a gate, and first and second P+ regions formed within the N-Well, wherein the first P+ region is electrically connected to the second P+ region of the program/erase PMOS, and the gate is electrically connected to a corresponding word line. The control gate NMOS includes source, drain, and gate, wherein the source and third drain as well as the p-doped pocket are electrically connected to a corresponding control gate line, and the gate is electrically connected to the gate of the program/erase PMOS, forming floating gate of the cell.09-18-2008
20080310237CMOS Compatible Single-Poly Non-Volatile Memory - The present invention teaches a single-poly non-volatile memory cell which is compatible with the CMOS process, uses lower voltages for operating, and is more reliable in program, read, or erase operation. The single-poly non-volatile memory cell in accordance with the present invention comprises a program transistor with a program terminal; a sensing transistor with a sensing terminal; and an erase transistor with an erase terminal, wherein the sensing transistor shares a floating gate with the program transistor and the erase transistor. By employing the present invention, significant cost advantages in feature-rich semiconductor products, such as System-on-Chip (SoC) design, compared to conventional dual-poly floating gate embedded Flash memory are provided.12-18-2008
20090296492METHOD FOR ERASING FLASH MEMORY - A method for erasing flash memory comprises the steps of: setting a critical ending condition; simultaneously erasing selected multiple sectors of the flash memory; stopping simultaneous erasing if one of the selected multiple sectors meets the critical ending condition; and erasing the remainder of each of the selected multiple sectors sequentially.12-03-2009
20130114346METHOD OF OPERATING A FLASH EEPROM MEMORY - The invention is a new method for operating a flash EEPROM memory device and in particular for programming and erasing the device. The memory device has a first semiconductor region within a second semiconductor region, source and drain regions in the first semiconductor region, a well terminal inside the first semiconductor region, a charge storing layer electrically isolated from the first semiconductor region by a dielectric layer, and a control terminal electrically isolated from the charge storing layer by a inter layer dielectric. The method comprises the steps of: applying a first voltage bias of first polarity to the well terminal; allowing a first time period to elapse; applying a second voltage bias of second polarity opposite to the first polarity to the control terminal; resetting the first voltage bias to zero; allowing a second time period to elapse; and resetting the second voltage bias to zero.05-09-2013
20130121085Method Of Operating A Split Gate Flash Memory Cell With Coupling Gate - A method of operating a memory cell that comprises first and second regions spaced apart in a substrate with a channel region therebetween, a floating gate disposed over the channel region and the first region, a control gate disposed over the channel region and laterally adjacent to the floating gate with a portion disposed over the floating gate, and a coupling gate disposed over the first region and laterally adjacent to the floating gate. A method of erasing the memory cell includes applying a positive voltage to the control gate and a negative voltage to the coupling gate. A method of reading the memory cell includes applying positive voltages to the control gate, to the coupling gate, and to one of the first and second regions.05-16-2013
20130148437THERMAL ANNEAL USING WORD-LINE HEATING ELEMENT - In response to detecting an event during operation of an integrated-circuit memory device containing charge-storing memory cells, an electric current is enabled to flow through a word line coupled to the charge-storing memory cells for a brief interval to heat the charge-storing memory cells to an annealing temperature range.06-13-2013
20080219059Method for Cache Page Copy in a Non-Volatile Memory - A non-volatile memory and methods include cached page copying using a minimum number of data latches for each memory cell. Multi-bit data is read in parallel from each memory cell of a group associated with a first word line. The read data is organized into multiple data-groups for shuttling out of the memory group-by-group according to a predetermined order for data-processing. Modified data are returned for updating the respective data group. The predetermined order is such that as more of the data groups are processed and available for programming, more of the higher programmed states are decodable. An adaptive full-sequence programming is performed concurrently with the processing. The programming copies the read data to another group of memory cells associated with a second word line, typically in a different erase block and preferably compensated for perturbative effects due to a word line adjacent the first word line.09-11-2008

Patent applications in class Erase

Patent applications in all subclasses Erase