Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Bank or block architecture

Subclass of:

365 - Static information storage and retrieval

365185010 - FLOATING GATE

365185050 - Particular connection

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
365185120 Parallel row lines (e.g., page mode) 80
365185130 Global word or bit lines 54
Entries
DocumentTitleDate
20130028020NAND FLASH MEMORY - A NAND flash memory, in a read operation, a p-type semiconductor substrate is set at a ground potential, a bit line is charged to a first voltage, a source line, a n-type well and a p-type well are charged to a second voltage, which lies between a ground potential and a first voltage, and in a block not selected by said row decoder, said drain-side select gate line and said source-side select gate line are charged to a third voltage, which is higher than said ground potential and is equal to or lower than said second voltage.01-31-2013
20120163082MEMORY WITH SUB-BLOCKS - The apparatuses and methods described herein may comprise a memory array formed on a semiconductor substrate and including a plurality of cells associated with a plurality of word lines. The memory array may comprise a plurality of sub-blocks including a first sub-block and a second sub-block. Each sub-block may comprise a memory cell portion of the plurality of memory cells associated with a corresponding word line portion of the plurality of word lines. The memory cell portions in the first and second sub-blocks may be independently addressable with respect to each other such that a second operation can be performed on at least one memory cell of the memory cell portion of the second sub-block responsive to suspending a first operation directed to at least one memory cell of the memory cell portion of the first sub-block.06-28-2012
20110188310NONVOLATILE MEMORY DEVICES WITH COMMON SOURCE LINE VOLTAGE COMPENSATION AND METHODS OF OPERATING THE SAME - A memory device includes a plurality of memory cells serially connected between a bit line and a common source line and a plurality of word lines, respective ones of which are connected to respective gates of the plurality of memory cells. The memory device further includes a common source line compensation circuit configured to generate a compensated bias voltage on the bit line or at least one of the plurality of word lines responsive to a common source line voltage on the common source line. Related methods of operating memory devices are also provided.08-04-2011
20090034333Method for Managing a Non-Volatile Memory In a Smart Card - The invention concerns a method for managing access to a non-volatile memory (VNVM), characterized in that said non-volatile memory (VNVM) results from the association of a non-volatile memory of a first type (NVMA) comprising first characteristics of capacity and granularity, with a non-volatile memory of a second type (NVMB) comprising second characteristics of capacity and granularity, such that said non-volatile memory (VNVM) resulting from said association has the characteristics of capacity of said non-volatile memory of the first type and the characteristics of granularity of said non-volatile memory of the second type.02-05-2009
20090122611NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD OF DRIVING THE SAME - This disclosure concerns a memory including cell blocks, wherein in a first write sequence for writing data to a first cell block, drivers write the data only to memory cells arranged in a form of a checkered flag among the memory cells included in the first cell block, in a second write sequence for writing the data from the first cell block to a second cell block, the drivers write the data to all memory cells connected to a word line selected in the second cell block, and when the data is read from the first cell block or at a time of data verification when data is written to the first cell block, the word line drivers simultaneously apply a read voltage to two adjacent word lines, and the sense amplifiers detects the data in the memory cells connected to the two word lines.05-14-2009
20100046293MEMORY CELL BLOCK OF NONVOLATILE MEMORY DEVICE AND METHOD OF MANAGING SUPPLEMENTARY INFORMATION - A nonvolatile memory device of a nonvolatile memory device includes a memory cell unit comprising sets of memory cells, a first supplementary information repository comprising source-side dummy cells respectively connected between source select transistors and first memory cells of the sets of the memory cells, and a second supplementary information repository comprising drain-side dummy cells respectively connected between drain select transistors and second memory cells of the sets of the memory cells.02-25-2010
20100097860NAND FLASH MEMORY - A NAND flash memory, in a read operation, a p-type semiconductor substrate is set at a ground potential, a bit line is charged to a first voltage, a source line, a n-type well and a p-type well are charged to a second voltage, which lies between a ground potential and a first voltage, and in a block not selected by said row decoder, said drain-side select gate line and said source-side select gate line are charged to a third voltage, which is higher than said ground potential and is equal to or lower than said second voltage.04-22-2010
20090109754NON-VOLATILE MEMORY ARRAY ARCHITECTURE WITH JOINED WORD LINES - In an embodiment, a non-volatile memory array wherein narrow word lines, as small as the minimum feature size width F, in separate strings, are extended outwardly from a non-volatile memory array and joined by wider connector segments. The joined word lines provide new opportunities. First, metal straps that can be formed to overlie the word lines can be joined by metal connector segments to the word lines. The connector segments can serve as an interface between the polysilicon word lines and the metal straps. Two adjacent word lines in the same string share a single metal strap using these segments thereby reducing the overall number of segments and contacts in the array. Increased width of the polysilicon joinder segments joining word lines in different strings, provides the opportunity for widening the connection beyond the minimum feature size so that contact may be readily made between the metal straps and the polysilicon word lines. Second, the joined word lines require fewer row decoder circuits. One row decoder is provided for each joined set of word lines.04-30-2009
20130083599NONVOLATILE MEMORY AND ERASING METHOD THEREOF - An erase method of a nonvolatile memory includes supplying an erase voltage to a substrate, supplying a selection word line voltage to word lines connected with a selected sub-block within a memory block of the nonvolatile memory, supplying a non-selection word line voltage to word lines connected with an unselected sub-block within the memory block during a first delay time from a point of time when the erase voltage is supplied, and thereafter floating the word lines connected with the unselected sub-block.04-04-2013
20090154245NONVOLATILE SEMICONDUCTOR STORAGE DEVICE - A nonvolatile semiconductor storage device includes: a memory cell array in which electrically rewritable nonvolatile memory cells are arranged; and a register that holds good/bad information on a specific area that requires high reliability in a user accessible area of the memory cell array. An address conversion circuit internally accesses, when the specific area is bad and is accessed, a backup area in the user accessible area based on the good/bad information in the register. When the specific area is bad and the backup area is accessed, on the other hand, the address conversion circuit internally accesses the specific area based on the good/bad information in the register.06-18-2009
20090154244NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device according to one embodiment of the present invention includes: a memory cell array including a plurality of word lines; a parameter storage part which stores a parameter related to a programming voltage which is applied to a word line for programming data; a word line selection circuit which selects a word line among the plurality of word lines which is connected to a memory cell to be programmed with data; a voltage application circuit which applies a programming voltage to the selected word line according to the parameter; a verify circuit which performs verification of programmed data; a control part which outputs a signal for selecting a word line and repeats the operations of the voltage application circuit until the verification is successful; a calculation circuit which calculates an average value of the number of times the control part repeats the operations of the voltage application circuit per each word line; and a parameter setting circuit which sets the parameter using the average value calculated.06-18-2009
20090154243NAND-TYPE FLASH MEMORY AND SEMICONDUCTOR MEMORY DEVICE - A NAND-type flash memory has a memory cell array having NAND cells, each having memory cells capable of being rewritten electrically, a drain of one memory cell and a source of the other memory cell neighboring in a first direction being connected to each other, each of the NAND cells being arranged in a second direction, a plurality of bit lines, each being provided for each of the NAND cells, a plurality of sense amplifiers, each being provided for each of the bit lines, a plurality of data latch circuits, each being provided for each of the sense amplifiers, each of the data latch circuits temporarily holding data sent to and received from the corresponding sense amplifier, at least one test latch circuit which temporarily holds test data supplied from outside, and a data switching circuit which performs control for supplying at least two among the data latch circuits with data held in the test latch circuit.06-18-2009
20100067298Flash EEprom System With Simultaneous Multiple Data Sector Programming and Storage of Physical Block Characteristics in Other Designated Blocks - A non-volatile memory system is formed of floating gate memory cells arranged in blocks as the smallest unit of memory cells that are erasable together. The system includes a number of features that may be implemented individually or in various cooperative combinations. One feature is the storage in separate blocks of the characteristics of a large number of blocks of cells in which user data is stored. These characteristics for user data blocks being accessed may, during operation of the memory system by its controller, be stored in a random access memory for ease of access and updating. According to another feature, multiple sectors of user data are stored at one time by alternately streaming chunks of data from the sectors to multiple memory blocks. Bytes of data in the stream may be shifted to avoid defective locations in the memory such as bad columns. Error correction codes may also be generated from the streaming data with a single generation circuit for the multiple sectors of data. The stream of data may further be transformed in order to tend to even out the wear among the blocks of memory. Yet another feature, for memory systems having multiple memory integrated circuit chips, provides a single system record that includes the capacity of each of the chips and assigned contiguous logical address ranges of user data blocks within the chips which the memory controller accesses when addressing a block, making it easier to manufacture a memory system with memory chips having different capacities. A typical form of the memory system is as a card that is removably connectable with a host system but may alternatively be implemented in a memory embedded in a host system. The memory cells may be operated with multiple states in order to store more than one bit of data per cell.03-18-2010
20120182803NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE CAPABLE OF IMPROVING FAILURE-RELIEF EFFICIENCY - According to one embodiment, a non-volatile semiconductor memory device includes a memory cell array and a row decoder. The memory cell array has NAND strings as a physical block, and word lines respectively connected to memory cells included in the NAND strings. The row decoder includes latch circuits and a drive circuit. When a failure exists within a corresponding first logical block, the latch circuits store a flag indicating the failure. The drive circuit inhibits driving of the word lines belonging to the first logical block when the flag is stored in the latch circuit corresponding to the first logical block to which the selected word lines belong, and allows the driving of the word lines belonging to the physical block including the first logical block when the flag is not stored in the latch circuit corresponding to the first logical block to which the selected word lines belong.07-19-2012
20120182802Memory Architecture of 3D Array With Improved Uniformity of Bit Line Capacitances - A 3D integrated circuit memory array has a plurality of plane positions. Multiple bit line structures have a multiple sequences of multiple plane positions. Each sequence characterizes an order in which a bit line structure couples the plane positions to bit lines. Each bit line is coupled to at least two different plane positions to access memory cells at two or more different plane positions.07-19-2012
20130070530HIGH ENDURANCE NON-VOLATILE STORAGE - A non-volatile storage system is disclosed that includes non-volatile memory cells designed for high endurance and lower retention than other non-volatile memory cells.03-21-2013
20130070528SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a semiconductor memory device includes a memory cell array, a bit line, a source line, and a sense circuit. The memory cell array includes memory strings which include memory cells connected in series and stacked above a semiconductor substrate. The bit line is coupled to one of the memory strings and is capable of transferring data. The source line is coupled to one of the memory strings. When data is read, a read current flows from a bit line into the source line. The sense circuit is coupled to the bit line and senses read data. An operation timing of the sense circuit is determined on the basis of a current flowing through the source line.03-21-2013
20130070529Semiconductor device and operating method thereof - A method of operating a semiconductor device includes programming one of a drain dummy cell and a source dummy cell which are included in a cell string; and coupling a bit line to the cell string in response to program states of the drain dummy cell and the source dummy cell and a voltage level applied to a drain dummy line coupled to a gate of the drain dummy cell and a source dummy line coupled to a gate of the source dummy cell.03-21-2013
20130070527SYSTEM AND METHOD FOR MANAGING ERASE OPERATIONS IN A NON-VOLATILE MEMORY - Embodiments of the invention are directed to managing a memory component. A method may include performing a first erase operation according to a first set of erase parameters, determining a result of the first erase operation, modifying the first set erase parameters based on the result to produce a second set of erase parameters and performing a second erase operation according to a second set of erase parameters. A condition parameter may be maintained based on the erased parameters and/or based on a result of an erase procedure.03-21-2013
20130128666Scrub Techniques for Use with Dynamic Read - The decision on whether to refresh or retire a memory block is based on the set of dynamic read values being used. In a memory system using a table of dynamic read values, the table is configured to include how to handle read error (retire, refresh) in addition to the read parameters for the different dynamic read cases. In a refinement, the read case number can used to prioritize blocks selected for refresh or retire. In cases where the read scrub is to be made more precise, multiple dynamic read cases can be applied. Further, which cases are applied can be intelligently selected.05-23-2013
20130051146THREE DIMENSIONAL SEMICONDUCTOR MEMORY DEVICE - A three-dimensional (3D) semiconductor memory device comprises memory cell strings each comprising at least one selection transistor and at least one memory cell, a first pass transistor group sharing a first well region and comprising a first selection line pass transistor connected to the selection transistor and a first world line pass transistor connected to the memory cell, a second pass transistor group sharing a second well region and comprising a second selection line pass transistor connected to the selection transistor, and a controller that controls the first pass transistor group and the second pass transistor group. The controller applies selected voltages to the first and second well regions during read operation.02-28-2013
20130051145SEMICONDUCTOR MEMORY DEVICE AND METHOD OF OPERATING THE SAME - A semiconductor memory device includes memory blocks that each include memory cells coupled to bit lines, a column masking circuit configured to output data change signals in response to an address signal indicating bit lines of selected columns among a plurality of columns, and an operation circuit configured to store data of the memory cells transferred through the bit lines and simultaneously change data transferred through the bit lines of the selected columns into operation pass data in response to the data change signals.02-28-2013
20130051144SEMICONDUCTOR STORAGE DEVICE COMPRISING ELECTRICALLY REWRITABLE NONVOLATILE SEMICONDUCTOR MEMORY - A semiconductor storage apparatus stores management information comprising, for each block of a nonvolatile semiconductor memory, information denoting at least one of a recent programming time, which is a time at which data is recently programmed to a block, and a recent erase time, which is a time at which an erase process is recently carried out with respect to a block. The semiconductor storage apparatus (b1) controls a timing at which data is programmed to a block based on at least one of the recent programming time and the recent erase time of this block, and/or (b2) controls a timing at which an erase process is carried out with respect to a block based on the recent programming time of this block.02-28-2013
20130088918NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - A non-volatile semiconductor memory device includes a semiconductor layer of a first conductivity type, and a plurality of wells of a second conductivity type formed on the first semiconductor layer, the wells being arranged in a first direction. A memory block is arranged in each well. A plurality of word lines are provided, each word line being commonly connected to a plurality of NAND cell units in one memory block. A plurality of bit lines extend in a first direction, the bit lines being connected to first ends of the04-11-2013
20090091980SEMICONDUCTOR INTEGRATED CIRCUIT - In the semiconductor integrated circuit incorporating non-volatile memory that is not electrically rewritable, updating stored data and reusing the non-volatile memory are made possible. The data stored in the non-volatile memory can be updated and the non-volatile memory can be reused by dividing the non-volatile memory into a plurality of blocks and replacing a used block with an unused block. When data “1” is set in the first flag of a certain block, a block selection circuit judges that data is already written in the block and rewriting new data into the block is not possible. To update the stored data, the updated data is written into a block that is selected by the block selection circuit out of the rest of the blocks. At that time, the first flag of the block is set to data “1”. Stored data is updated one after another as described above. When data of final update is written into a certain block, the second flag of the block is set to data “1”.04-09-2009
20130058165SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a semiconductor memory device includes a memory cells, a selection transistor, a memory string, a block, and a transfer circuit. The memory cells are stacked on a semiconductor substrate. In the memory string, the memory cells and the selection transistor are connected in series. The block includes a plurality of memory strings. In data write and read, the transfer circuit transfers a positive voltage to a select gate line associated with a selected memory string in a selected block, and a negative voltage to a select gate line associated with an unselected memory string in the selected block, and to a select gate line associated with an unselected block.03-07-2013
20110013454NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises: a plurality of first memory strings; a first select transistor having one end thereof connected to one end of the first memory strings; a first line commonly connected to the other end of a plurality of the first select transistors; a switch circuit having one end thereof connected to the first line; and a second line commonly connected to the other end of a plurality of the switch circuits. The switch circuit controls electrical connection between the second line and the first line.01-20-2011
20090268524THREE DIMENSIONAL STACKED NONVOLATILE SEMICONDUCTOR MEMORY - In a three dimensional stacked nonvolatile semiconductor memory according to the present invention, a first block has a selected first cell unit including a memory cell to be read and a non-selected second cell unit not including a memory cell to be read. A read potential or a transfer potential higher than the read potential is applied to the word line in the first block in a state that a ground potential is applied to a channel of a memory cell existing nearer to the bit line side than a memory cell in the second cell unit to which the read potential is applied, after which all the memory cells in the second cell unit are cut off from the bit line, the bit line is set to a precharge potential, and read is performed to the a memory cell to be read in the first cell unit.10-29-2009
20090268523THREE DIMENSIONAL STACKED NONVOLATILE SEMICONDUCTOR MEMORY - A three dimensional stacked nonvolatile semiconductor memory according to an example of the present invention includes a memory cell array comprised of first and second blocks. The first block has a first cell unit which includes a memory cell to be programmed and a second cell unit which does not include a memory cell to be programmed, and programming is executed by applying a program potential or a transfer potential to word lines in the first block after the initial potential of channels of the memory cells in the first and second cell units is set to a plus potential. In the programming, the program potential and the transfer potential are not applied to word lines in the second block.10-29-2009
20090268522THREE DIMENSIONAL STACKED NONVOLATILE SEMICONDUCTOR MEMORY - A three dimensional stacked nonvolatile semiconductor memory according to an example of the present invention includes a memory cell array comprised of first and second blocks disposed side by side in a first direction, and a driver disposed on one end of the memory cell array in a second direction orthogonal to the first direction. First select gate lines in the first block and first select gate lines in the second block are connected to the driver after they are commonly connected in one end in the second direction of the memory cell array in a relation of one to one.10-29-2009
20090268521NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - A non-volatile semiconductor memory device includes a non-volatile memory having a plurality of blocks each including a plurality of memory cells, a bit line electrically connected to one end of a current path of the memory cell, a source line electrically connected to the other end of the current path of the memory cell, a word line electrically connected to the gate electrode, a sense amplifier circuit electrically connected to the bit line and configured to read data from the memory cell, a row decoder electrically connected to the word line and configured to apply a read voltage at which the memory cell is set to an ON state to the word line, and a controller configured to measure a cell current flowing through the memory cell in the ON state to judge whether the memory cell has been degraded.10-29-2009
20090059667MEMORY CELL ARRAY AND NON-VOLATILE MEMORY DEVICE - A memory cell array is disclosed which includes a plurality of memory banks, each memory bank including a plurality of logical sectors. The memory cell array includes a plurality of sub-memory banks, wherein each one of the plurality of sub-memory banks includes a plurality of physical sectors, and each one of the plurality of physical sectors is part of one of the plurality of logical sectors, and a plurality of sense amplifiers respectively associated with the plurality of sub-memory banks.03-05-2009
20100124116NON-VOLATILE SEMICONDUCTOR STORAGE DEVICE - Memory strings includes: a first semiconductor layer including a columnar portion extending in a direction perpendicular to a substrate; a first electric charge storage layer formed to surround a side surface of the columnar portion; and a first conductive layer formed to surround the first electric charge storage layer. First selection transistors includes: a second semiconductor layer extending upward from a top surface of the columnar portion; a second electric charge storage layer formed to surround a side surface of the second semiconductor layer; and a second conductive layer formed to surround the second electric charge storage layer. The non-volatile semiconductor storage device further includes a control circuit that causes, prior to reading data from a selected one of the memory strings, electric charges to be accumulated in the second electric charge storage layer of one of the first selection transistors connected to an unselected one of the memory strings.05-20-2010
20130188422METHOD AND SYSTEM FOR ACCESSING A FLASH MEMORY DEVICE - An apparatus, system, and computer-implemented method for controlling data transfer between a plurality of serial data link interfaces and a plurality of memory banks in a semiconductor memory is disclosed. In one example, a flash memory device with multiple links and memory banks, where the links are independent of the banks, is disclosed. The flash memory devices may be cascaded in a daisy-chain configuration using echo signal lines to serially communicate between memory devices. In addition, a virtual multiple link configuration is described wherein a single link is used to emulate multiple links.07-25-2013
20090231918INTERLEAVED MEMORY PROGRAM AND VERIFY METHOD, DEVICE AND SYSTEM - An interleaved memory programming and verification method, device and system includes a memory array including first and second memory banks of memory cells. The memory device further includes a controller configured to concurrently program a first data into the first memory bank and a second data into the second memory bank using iterative programming and verification operations in each of the first and second memory banks with the programming and verification operations in the second memory bank being offset from the programming and verification operations in the first memory bank.09-17-2009
20090046513Enhanced erase for flash storage device - A flash storage device includes flash storage units that are erased in response to a condition or command while allowing the flash storage device to be used subsequent to the erase. A flash controller interface receives a command for erasing the flash storage device and provides an erase command to flash controllers in the flash storage device. Alternatively, the flash storage device detects a condition in response to which the flash controller interface provides an erase command to the flash controllers. Each flash controller independently erases a flash storage unit in response to receiving the purge command such that the flash storage units are erased substantially in parallel with each other and the erase operations overlap. Subsequent to the erase, certain control data is reconstructed to allow subsequent use of the flash storage device.02-19-2009
20120236645SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a memory cell array having a plurality of memory cells arranged in a shape of a matrix along a plurality of parallel bit lines and a plurality of word lines intersecting orthogonally to the bit lines, and that have their data read out to the bit lines; a sense amplifier which detects a voltage or a current of the bit line and decides the read data from each of the memory cells; a clamping transistor connected between the sense amplifier and the bit lines to determine a voltage in a charging mode of the bit lines by a clamp voltage applied to a gate thereof; and a clamp voltage generation circuit which generates the clamp voltage so as to become larger as a distance from the sense amplifier to a selected one of the memory cells is longer.09-20-2012
20120236644SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device according to an embodiment includes: a memory cell array including plural word lines, plural bit lines, and plural memory cells each of which is selected by the word line and the bit line, the memory cell array being divided into plural blocks, some of the word lines being set to a specific word line, at least some of or all the memory cells in each block being set to specific memory cells, the memory cell being accessed by the specific word line, the specific data except user data being stored in the specific memory cell; and an erasing circuit that erases the memory cell of the memory cell array, the erasing circuit referring to the specific data stored in the specific memory cell belonging to the certain block during an erasing operation of the memory cell belonging to the certain block.09-20-2012
20130163331SEMICONDUCTOR MEMORY DEVICE AND OPERATING METHOD THEREOF - A semiconductor memory device and a method of operating the same results in reduced programming time. The semiconductor memory device includes advanced circuitry that enables reductions in programming and verification times, leading to a substantial reduction in the total time required to program the device.06-27-2013
20120236643INTERLEAVED FLASH STORAGE SYSTEM AND METHOD - A flash storage system accesses data interleaved among flash storage devices. The flash storage system receives a data block including data portions, stores the data portions in a data buffer, and initiates data transfers for asynchronously writing the data portions into storage blocks interleaved among the flash storage devices. Additionally, the flash storage system may asynchronously read data portions of a data block interleaved among the storage blocks, store the data portions in the data buffer, and access the data portions from the data buffer.09-20-2012
20110280074Data Writing Method and Data Storage Device - The invention provides a data writing method for a flash memory. First, a target block for storing write data is selected from a plurality of blocks of the flash memory. A target pair page is then selected from a plurality of pair pages of the target block according to a pair page record table, wherein the pair page comprises a strong page and a weak page. The flash memory is then directed to write a data page of the write data to the strong page of the target pair page. The flash memory is then also directed to write first predetermined data to the weak page of the target pair page, wherein the weak page storing the first predetermined data extends the data duration of the strong page of the target pair page. Selecting of the target pair page, writing of the data page, and writing of the first predetermined data are repeated until all of the write data are written to the target block.11-17-2011
20090147582Adjusting program and erase voltages in a memory device - There is provided a method and apparatus for adjusting threshold program and erase voltages in a memory array, such as a floating gate memory array, for example. One such method includes applying a first voltage level to a first edge word line of a memory block string and applying a second voltage level to a second edge word line of the memory block string. Such a method might also include applying a third voltage level to non-edge word lines of the memory block string.06-11-2009
20110128789NONVOLATILE SEMICONDUCTOR MEMORY DEVICE INCLUDING PLURAL MEMORY CELLS AND A DUMMY CELL COUPLED TO AN END OF A MEMORY CELL - A nonvolatile semiconductor memory device having a plurality of electrically rewritable nonvolatile memory cells connected in series together includes a select gate transistor connected in series to the serial combination of memory cells. A certain one of the memory cells which is located adjacent to the select gets transistor is for use as a dummy cell. This dummy cell is not used for data storage. During data erasing, the dummy cell is applied with the same bias voltage as that for the other memory cells.06-02-2011
20110128788NAND FLASH MEMORY - A NAND flash memory having a memory cell array formed of a plurality of blocks including memory cell transistors arranged in a matrix form. The NAND flash memory has a first bit line; a first sense amplifier connected to the first bit line, the first sense amplifier sensing or controlling a potential on the first bit line; a second bit line; and a second sense amplifier connected to the second bit line to sense or control a potential on the second bit line. The NAND flash memory has a first drain side selection gate line; a second drain side selection gate line; a third drain side selection gate line; a fourth drain side selection gate line; a first source side selection gate line; and a second source side selection gate line. The NAND flash memory has a first block; a second block; and a decoder which turns on one of the first and third drain side selection MOS transistors and turns off the other, and which turns on one of the third and fourth drain side selection MOS transistors and turns off the other.06-02-2011
20120287714INCREASED CAPACITY HETEROGENEOUS STORAGE ELEMENTS - Providing increased capacity in heterogeneous storage elements including a method for reading from memory. The method includes receiving a read word from a block of memory cells, where physical characteristics of the memory cells support different sets of data levels. The read word is separated into two or more virtual read vectors. For each of the virtual read vectors, the codebook that was utilized to generate the virtual read vector is identified and a partial read data vector is generated. The generating includes multiplying the virtual read vector by a matrix that represents the codebook. The partial read data vectors are combined into a read message and the read message is output.11-15-2012
20120287713NONVOLATILE MEMORY DEVICE AND METHOD FOR OPERATING THE SAME - A nonvolatile memory device includes a plurality of memory blocks and a high voltage application unit configured to apply a high voltage to a word line of a memory block unselected from among the plurality of memory blocks and float the word line, during the erase operation.11-15-2012
20110134696Flash EEprom System With Simultaneous Multiple Data Sector Programming and Storage of Physical Block Characteristics in Other Designated Blocks - A non-volatile memory system is formed of floating gate memory cells arranged in blocks as the smallest unit of memory cells that are erasable together. The system includes a number of features that may be implemented individually or in various cooperative combinations. One feature is the storage in separate blocks of the characteristics of a large number of blocks of cells in which user data is stored. These characteristics for user data blocks being accessed may, during operation of the memory system by its controller, be stored in a random access memory for ease of access and updating. According to another feature, multiple sectors of user data are stored at one time by alternately streaming chunks of data from the sectors to multiple memory blocks. Bytes of data in the stream may be shifted to avoid defective locations in the memory such as bad columns. Error correction codes may also be generated from the streaming data with a single generation circuit for the multiple sectors of data. The stream of data may further be transformed in order to tend to even out the wear among the blocks of memory. Yet another feature, for memory systems having multiple memory integrated circuit chips, provides a single system record that includes the capacity of each of the chips and assigned contiguous logical address ranges of user data blocks within the chips which the memory controller accesses when addressing a block, making it easier to manufacture a memory system with memory chips having different capacities. A typical form of the memory system is as a card that is removably connectable with a host system but may alternatively be implemented in a memory embedded in a host system. The memory cells may be operated with multiple states in order to store more than one bit of data per cell.06-09-2011
20110292729Method of Controlling Non-Volatile Memory Device - A method of controlling a non-volatile memory device includes comparing the number of banks that are in operating states with a threshold value. If the number of the banks is smaller than the threshold value, data stored in a standby bank is read. If there is no bank having data to be read, a standby bank is programmed. If the number of the banks is equal to or greater than the threshold value or if the reading or the programming is performed, it is determined whether there is a reading or programming command to be performed. If there is the reading or programming command to be performed, the process is repeated from the comparing step. The programming may include programming of a most significant bit (MSB) page or a least significant bit (LSB) page.12-01-2011
20110205798High speed operation method for Twin MONOS metal bit array - The present invention provides a novel operational method of twin MONOS metal bit or diffusion bit structure for high-speed application. In a first embodiment of the present invention, the alternative control gates are set at the same voltage. In a second embodiment of the present invention, all the control gates are set at the operational voltage from the beginning. In both embodiments, the bit line and word gate are used to address the selected memory cell.08-25-2011
20110267886Nonvolatile Semiconductor Memory Device - A NAND cell unit includes memory cells which are connected in series. An erase operation is effected on all memory cells. Then, a soft-program voltage, which is opposite in polarity to the erase voltage applied in an erase operation, is applied to all memory cells, thereby setting all memory cells out of an over-erased state. Thereafter, a program voltage of 20V is applied to the control gate of a selected memory cell, 0V is applied to the control gates of the two memory cells provided adjacent to the selected memory cell, and 11V is applied to the control gates of the remaining memory cells. Data is thereby programmed into the selected memory cell. The time for which the program voltage is applied to the selected memory cell is adjusted in accordance with the data to be programmed into the selected memory cell. Hence, data “0” can be correctly programmed into the selected memory cell, multi-value data can be read from any selected memory cell at high speed.11-03-2011
20100091569METHODS OF FORMING FLASH DEVICE WITH SHARED WORD LINES - Word lines of a NAND flash memory array are formed by concentric, rectangular shaped, closed loops that have a width of approximately half the minimum feature size of the patterning process used. The resulting circuits have word lines linked together so that peripheral circuits are shared. Separate erase blocks are established by shield plates.04-15-2010
20100091570SEMICONDUCTOR MEMORY DEVICE CAPABLE OF INCREASING WRITING SPEED - A memory cell array has a structure in which a plurality of memory cells connected with word lines and bit lines and connected in series are arranged in a matrix form. A selection transistor selects the word lines. A control circuit controls potentials of the word lines and the bit lines in accordance with input data, and controls write, read and erase operations of data with respect to the memory cell. The selection transistor is formed on a well, and a first negative voltage is supplied to a well, a first voltage (the first voltage≧the first negative voltage) is supplied to a selected word line and a second voltage is supplied to a non-selected word line in the read operation.04-15-2010
20100103739MEMORY CONFIGURATION OF A COMPOSITE MEMORY DEVICE - The present invention is related to a composite flash memory device comprises a plural sector flash memory array which is divided to plural sector that is a minimum erasing unit of the flash memory device, a flash memory array storing control commands which control a total system of the composite flash memory device and/or the only composite flash memory device in and sharing I/O line of the plural sector flash memory array, the read operation of the flash memory array is enable when the plural sector flash memory array is gained access.04-29-2010
20090168526FLASH MEMORY DEVICE HAVING DUMMY CELL - A nonvolatile semiconductor memory device includes a string selection transistor coupled to a bit line. The device also includes a plurality of memory cells coupled in series to the string selection transistor, wherein at least one of the memory cells is configured to be in a programmed state during an erase procedure of the plurality of memory cells.07-02-2009
20090310411Row-decoder and source-decoder structures suitable for erase in unit of page, sector and chip of a NOR-type flash operating below +/- 10V BVDS - An apparatus and method for operating an array of NOR connected flash nonvolatile memory cells erases the array in increments of a page, block, sector, or the entire array while minimizing operational disturbances and providing bias operating conditions to prevent gate to source breakdown in peripheral devices. The apparatus has a row decoder circuit and a source decoder circuit for selecting the nonvolatile memory cells for providing biasing conditions for reading, programming, verifying, and erasing the selected nonvolatile memory cells while minimizing operational disturbances and preventing gate to source breakdown in peripheral devices.12-17-2009
20090310412METHODS OF DATA MANAGEMENT IN NON-VOLATILE MEMORY DEVICES AND RELATED NON-VOLATILE MEMORY SYSTEMS - A data management method includes assigning data buffered in a first memory device into at least two different groups for transfer to a second memory device. At least one of the different groups has at least two units of the data assigned thereto. The data is transferred from the first memory device to the second memory device in a sequence according to a respective priority associated with each of the different groups and in group-by-group manner such that units of the data assigned to a group having a higher priority are transferred to the second memory device prior to units of the data assigned to a group having a lower priority. Related systems and methods are also discussed.12-17-2009
20100124117NONVOLATILE SEMICONDUCTOR MEMORY - A memory includes a first word line which is connected to a control gate electrode of a first memory cell, a second word line which is connected to a control gate electrode of a second memory cell, a potential transfer line which is connected to both of the first and second word lines, a first N-channel MOS transistor which is connected between the first word line and the potential transfer line, and a second N-channel MOS transistor which is connected between the second word line and the potential transfer line. A control circuit supplies a first potential with a plus value to a semiconductor substrate, and supplies a second potential with the plus value lower than the first potential to the potential transfer line, to turn the first N-channel MOS transistor on, and to turn the second N-channel MOS transistor off, in erasing data of the first memory cell.05-20-2010
20100124115PROGRAM AND SENSE OPERATIONS IN A NON-VOLATILE MEMORY DEVICE - Methods for programming and sensing in a memory device, a data cache, and a memory device are disclosed. In one such method, all of the bit lines of a memory block are programmed or sensed during the same program or sense operation by alternately multiplexing the odd or even page bit lines to the dynamic data cache. The dynamic data cache is comprised of dual SDC, PDC, DDC05-20-2010
20100128532NONVOLATILE MEMORY DEVICE AND PROGRAMMING METHOD - A nonvolatile memory device includes; a memory cell array configured into a plurality of memory blocks, a decoder connected to the plurality of memory blocks via a word line, a page buffer connected to the plurality of memory blocks via a bit line, and control logic configured to define a control voltage applied to at least one of the word line and the bit line during a program/verify operation in accordance with a location of each one of the plurality of memory blocks within the memory cell array.05-27-2010
20090257278FLASH MEMORY DEVICE HAVING SHARED ROW DECODER - A flash memory device includes at least two mats and a row decoder shared by the mats. Each mat includes multiple word lines, bit lines, and blocks that share the bit lines. The row decoder includes a block decoder that generates a block selection signal for selecting a block, a block word line boosting circuit that generates a high voltage block word line signal in response to the block selection signal, a word line driver that drives word line drive signals driving the word lines of the selected block using drive voltages according to an operation mode and the word lines of an unselected block using a first bias voltage, and a string selection line driver that drives a string selection signal of the selected block using a drive voltage according to the operation mode and the string selection signal of the unselected block using a second bias voltage.10-15-2009
20120268994MEMORY SYSTEM - According to one embodiment, a memory system includes a nonvolatile semiconductor memory device, a voltage generation unit and a control unit. The nonvolatile semiconductor memory device includes a memory cell array having a plurality of blocks each including a plurality of memory cells, and a voltage generation unit configured to change a read level of the memory cell. The control unit controls write, read, and erase of the nonvolatile semiconductor memory device. The control unit changes the read level between a start of use of the nonvolatile semiconductor memory device and a timing after an elapse of a time.10-25-2012
20100118608NON-VOLATILE MEMORY DEVICE, MEMORY CARD AND SYSTEM, AND METHOD DETERMINING READ VOLTAGE IN SAME - A non-volatile semiconductor memory device and related method of determining a read voltage are disclosed. The non-volatile semiconductor memory device includes; a memory cell array including a plurality of memory cells, a read voltage determination unit configured to determine an optimal read voltage by comparing reference data obtained during a program operation with comparative data obtained during a subsequent read operation and changing a current read voltage to a new read voltage based on a result of the comparison, and a read voltage generation unit configured to generate the new read voltage in response to a read voltage control signal provided by the read voltage determination unit.05-13-2010
20090190403Flash Memory Devices and Erasing Methods Thereof - Disclosed is an erasing method for a flash memory device that includes erasing memory cells of a selected memory block and post-programming the erased memory cells to have a threshold voltage distribution with the lowest level that is at or near 0V. The post-programming includes first post-programming the memory block in the unit of memory block and second post-programming the memory block in the unit of word line.07-30-2009
20110170350SEMICONDUCTOR MEMORY DEVICE CAPABLE OF INCREASING WRITING SPEED - A memory cell array has a structure in which a plurality of memory cells connected with word lines and bit lines and connected in series are arranged in a matrix form. A selection transistor selects the word lines. A control circuit controls potentials of the word lines and the bit lines in accordance with input data, and controls write, read and erase operations of data with respect to the memory cell. The selection transistor is formed on a well, and a first negative voltage is supplied to a well, a first voltage (the first voltage≧the first negative voltage) is supplied to a selected word line and a second voltage is supplied to a non-selected word line in the read operation.07-14-2011
20090201734Verified purge for flash storage device - A flash storage device includes flash storage units that are purged in response to a condition or command wherein, during or subsequent to the purge, the purge is verified. A flash controller interface receives a command for purging the flash storage device and provides a purge command to flash controllers in the flash storage device. Alternatively, the flash storage device detects a condition in response to which the flash controller interface provides a purge command to the flash controllers. Each flash controller independently erases a flash storage unit in response to receiving the purge command such that the flash storage units are erased substantially in parallel with each other. The purge of the flash storage device is subsequently verified.08-13-2009
20090201733FLASH MEMORY DEVICE - A flash memory device can include a memory cell array that includes a plurality of memory blocks, where each of the memory blocks has memory cells arranged at intersections of word lines and bit lines, where ones of the plurality of memory blocks are immediately adjacent to one another and define memory block pairs. The flash memory device can further include a row selection circuit that is configured to drive the word lines responsive to memory operations associated with a memory address, where the row selection circuit can include respective shield lines that are located between the memory blocks included in each pair and each of the memory blocks in the pair has a common source line therebetween.08-13-2009
20090290419SEMICONDUCTOR MEMORY DEVICE USING ONLY SINGLE-CHANNEL TRANSISTOR TO APPLY VOLTAGE TO SELECTED WORD LINE - A semiconductor memory device has a memory cell array, a first transistor of a first conductivity type, a second transistor of a second conductivity type and a third transistor of the first conductivity type. A source or drain of the first transistor is connected to each of word lines. A drain of the second transistor is connected to a gate of the first transistor. A source of the third transistor is connected to the gate of the first transistor. The gates of the second transistor and the third transistor are not connected, a source of the second transistor is not connected to a drain of the third transistor, and the gate of the second transistor and the drain of the third transistor have different voltage levels corresponding to opposite logic levels each other.11-26-2009
20090273977MULTILAYERED NONVOLATILE MEMORY WITH ADAPTIVE CONTROL - A method and device for adaptive control of multilayered nonvolatile semiconductor memory are provided, the device including memory cells organized into groups and a control circuit having a look-up matrix for providing control parameters for each of the groups, where characteristics of each group are stored in the look-up matrix, and the control parameters for each group are responsive to the stored characteristics for that group; the method including organizing memory cells into groups, storing characteristics for each group in a look-up matrix, providing control parameters for each of the groups, where the control parameters for each group are responsive to its stored characteristics, and driving each memory cell in accordance with its provided control parameters.11-05-2009
20090296472FLASH MEMORY DEVICES AND METHODS OF PROGRAMMING THE SAME BY OVERLAPPING PROGRAMMING OPERATIONS FOR MULTIPLE MATS - A flash memory device is programmed by loading first data into a page buffer of a first mat. Second data is loaded into a page buffer of a second mat while programming the first data in a first memory block of the first mat.12-03-2009
20090279358SEMICONDUCTOR DEVICE AND CONTROL METHOD OF THE SAME - A semiconductor device includes: a first sector (11-12-2009
20090296471MEMORY CELL OPERATION - Embodiments of the present disclosure provide methods, devices, modules, and systems for operating memory cells. One method includes: performing an erase operation on a selected group of memory cells, the selected group including a number of reference cells and a number of data cells; performing a programming monitor operation on the number of reference cells as part of the erase operation; and determining a number of particular operating parameters associated with operating the number of data cells at least partially based on the programming monitor operation performed on the number of reference cells.12-03-2009
20120294086ADAPTIVE PROGRAMMING FOR FLASH MEMORIES - A method to adjust the programming voltage in flash memory when the programming time exceeds specification. A method to adjust the programming voltage of flash memory after a predetermined number of erase/write cycles.11-22-2012
20090040828SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes first and second memory cell blocks, a block decoder, and first and second block switches. The first and second memory cell blocks have a plurality of memory cells connected in a string structure and are respectively disposed in neighboring planes. The block decoder outputs first and second block select signals in response to pre-decoded address signals and first and second plane select signals, which are respectively enabled according to an enable state of the planes. The first and second block switches connect global word lines to word lines of the first and second memory cell blocks in response to the first and second block select signals, respectively.02-12-2009
20110199825NONVOLATILE MEMORY DEVICE, OPERATING METHOD THEREOF, AND MEMORY SYSTEM INCLUDING THE SAME - Provided is a method of operating a nonvolatile memory device that includes a substrate and memory blocks having a plurality of memory cells stacked along a direction perpendicular to the substrate. The method includes: reading data from a selected sub block among sub blocks of a selected memory block and selectively refreshing each sub block of the selected memory block in response to the reading of the selected sub block, wherein each sub block of the selected memory block is separately erased.08-18-2011
20110199826CHARGE LOSS COMPENSATION METHODS AND APPARATUS - Methods and apparatus for compensating for charge loss in memories include tracking a specific block of the main memory array and determining charge loss compensation by comparing pre-cycled and post-cycled mean threshold voltages for the tracking block; or tracking each block of the main memory and determining charge loss and compensation on a block by block basis.08-18-2011
20110199824STORING OPERATIONAL INFORMATION IN AN ARRAY OF MEMORY CELLS - The present disclosure includes methods, devices, modules, and systems for storing operational information in an array of memory cells. One method embodiment includes storing data units of operational information in memory cells of at least one row of a first block of memory cells. The method also includes using a column scramble to shift the order of the data units. The method includes storing the data units in memory cells of at least one row of a second block of memory cells, wherein an order of the data units stored in the at least one row of the second block is different than an order of the data units stored in memory cells of the at least one row of the first block.08-18-2011
20100103738MEMORY AND OPERATING METHOD THEREOF - A method of programming data stored in a memory, which comprises a number of user-defined blocks, a number of manufacture-defined blocks, and an information block, includes the following steps. A programming address pointing to a user-defined block in the memory and programming data is obtained. After that, it is determined whether there is an empty manufacture-defined block among a number of user-defined blocks in the memory. If so, an information block in the memory is programmed to store the programming address and a replacing address pointing to the empty manufacture-defined block. The empty manufacture-defined block is programmed to store the programming data.04-29-2010
20080239811METHOD FOR CONTROLLING A NON-VOLATILE SEMICONDUCTOR MEMORY, AND SEMICONDUCTOR STORAGE SYSTEM - A semiconductor storage system includes a first memory region including at least one block constituted from a plurality of memory cells, the memory cell is capable of storing n bits data, the block is a minimum unit which is capable of being independently erased, a second memory region including at least one block constituted from a plurality of memory cells, the memory cell is capable of storing m (m>n: m is integer) bits data, the block is a minimum unit which is capable of being independently erased, and a controller which controls a number of rewrites for the block in the first memory region not to be more than a first predetermined number of times, and controls a number of rewrites for the block in the second memory region not to be more than a second predetermined number of times.10-02-2008
20110205797METHOD AND APPARATUS FOR PERFORMING MULTI-BLOCK ACCESS OPERATION IN NONVOLATILE MEMORY DEVICE - A nonvolatile memory device comprises a first mat, a second mat, a third mat, a first address decoder, a second address decoder, and a third address decoder. The first mat comprises first memory blocks, the second mat comprises second memory blocks, and the third mat comprises third memory blocks. The first address decoder selects one of the first memory blocks according to a first even address, the second address decoder selects one of the second memory blocks according to a second even address or a first odd address, and the third address decoder selects one of the third memory blocks according to a second odd address.08-25-2011
20090168525Flash memory controller having reduced pinout - Disclosed is a flash memory controller connected to a flash memory module. The pin-out of the flash memory controller combines ready-busy and chip-select signals. In one embodiment, the flash memory module is made up of a set of banks, each consisting of a plurality of devices, with each bank sharing a single chip-select/ready-busy connection to the controller.07-02-2009
20120294084Flash EEPROM System with Simultaneous Multiple Data Sector Programming and Storage of Physical Block Characteristics in Other Designated Blocks - A non-volatile memory system is formed of floating gate memory cells arranged in blocks as the smallest unit of memory cells that are erasable together. One feature is the storage in separate blocks of the characteristics of a large number of blocks of cells in which user data is stored. These characteristics for user data blocks being accessed may, during operation of the memory system by its controller, be stored in a random access memory for ease of access and updating. A typical form of the memory system is as a card that is removably connectable with a host system but may alternatively be implemented in a memory embedded in a host system. The memory cells may be operated with multiple states in order to store more than one bit of data per cell.11-22-2012
20080279005MANAGING FLASH MEMORY PROGRAM AND ERASE CYCLES IN THE TIME DOMAIN - A memory management component can track the amount of time between erase cycles for a particular memory region, and can manage memory region such that the regions are given sufficient time to rest and recover, or are given at least as much rest time as is practical, before being subject to an erase cycle. A reclamation management component can reclaim memory region that have invalid data stored therein, and can reclaim regions on a just-in-time basis when practical, and can determine which regions to reclaim based on various factors, such as the amount of time since a region was last erased, and the number of programming errors associated with a region. The memory management component can thereby optimize the useful life, minimize or reduce loss of margin in memory regions, and minimize or reduce programming errors of memory regions, of non-volatile (e.g., flash) memory.11-13-2008
20080279006SEMICONDUCTOR MEMORY DEVICE AND ELECTRIC POWER SUPPLY METHOD - A semiconductor device includes a first and a second memory cell array each including a plurality of electrically reprogrammable memory cells arranged in the form of a matrix, the first memory cell array having a larger capacity than the second memory cell array; a plurality of word and bit lines connected to the memory cells; a data program and read control section including a plurality of decoders for, when performing data programming, read or erasure with respect to a corresponding memory cell, selecting, and applying a voltage to corresponding word and bit lines; and a power supply circuit for supplying power to the data program and read control section; wherein when the power supply circuit is to supply power to the second memory cell array, an output terminal of the power supply circuit is electrically connected to at least one of the decoders connected to the first memory cell array.11-13-2008
20080310229SEMICONDUCTOR MEMORY DEVICE IN WHICH WORD LINES ARE DRIVEN FROM EITHER SIDE OF MEMORY CELL ARRAY - A semiconductor memory device includes a memory cell array, a first row decoder which drives the memory cell array, and a second row decoder which drives the memory cell array. The first and second row decoders simultaneously drive the memory cell array.12-18-2008
20120033497NON-VOLATILE MEMORY DEVICE HAVING CONFIGURABLE PAGE SIZE - A flash memory device having at least one bank, where the each bank has an independently configurable page size. Each bank includes at least two memory planes having corresponding page buffers, where any number and combination of the memory planes are selectively accessed at the same time in response to configuration data and address data. The configuration data can be loaded into the memory device upon power up for a static page configuration of the bank, or the configuration data can be received with each command to allow for dynamic page configuration of the bank. By selectively adjusting a page size the memory bank, the block size is correspondingly adjusted.02-09-2012
20080266958FLASH MEMORY ARRAY OF FLOATING GATE-BASED NON-VOLATILE MEMORY CELLS - A flash memory array comprises a plurality of memory cells organized in a matrix of rows and columns. Each of the memory cells includes a floating gate memory transistor having a source region and a drain region, and a coupling capacitor electrically connected to the memory transistor. A plurality of word lines are each electrically connected to the capacitor in each of the memory cells in a respective row. A first set of bit lines are each electrically connected to the drain region of the memory transistor in each of the memory cells in a respective column. A plurality of high voltage access transistors are each electrically connected to a bit line in the first set of bit lines. A second set of bit lines are each electrically connected to the source region of the memory transistor in each of the memory cells in a respective column. Various combinations of voltages can be applied to the word lines and the first and second sets of bit lines in operations to erase, program, inhibit, or read the logic state stored by the memory transistor in one or more of the memory cells.10-30-2008
20110267885NON-VOLATILE MEMORY AND METHOD WITH EVEN/ODD COMBINED BLOCK DECODING - A nonvolatile memory array is organized into a plurality of interleaving even and odd blocks. When a block is selected for operation, a set of word line voltages are delivered to the block of word lines by space-efficient decoding circuits and scheme. The plurality of blocks is organized into an array of pairs of adjacent odd and even blocks. A first voltage bus allows all even blocks access to the set of word line voltages. A second voltage bus allows all odd blocks access to the set of word line voltages. A decoder for selection is provided for each pair of adjacent even and odd blocks. Selecting a block is effected by selecting the pair of adjacent even and odd blocks containing the selected block, and supplying the set of word line voltages only to the selected block, which is one of the even or odd block in the selected pair.11-03-2011
20090080256FLASH MEMORY DEVICE AND PROGRAMMING METHOD - Provided are a flash memory device and method of controlling certain program operation voltages. The flash memory device includes a high voltage generation circuit providing a high voltage to a block selection circuit and a program voltage to a row decoder. The high voltage generation circuit includes a charge pump, a high voltage control circuit controlling the charge pump to provide the high voltage, and a program voltage control circuit providing the program voltage in relation to the high voltage, wherein the high voltage control circuit and the program voltage control circuit operate in response to the same control code.03-26-2009
20090161432FLASH MEMORY DEVICE AND OPERATING METHOD THEREOF - A flash memory device includes a plurality of memory cell blocks, a control unit, a program speed calculation unit, a voltage generator and a block select unit. Each memory cell block includes a string having a drain select transistor, a plurality of memory cells, a novel cell and a source select transistor. The control unit generates a block select signal in response to an address signal and generates an operation control signal in response to a command signal. The program speed calculation unit decides a level of an initial program voltage based on threshold voltages detected after a program operation of the novel cells. The voltage generator generates operating voltages including the initial program voltage of the level according to the operation control signal. The block select unit transfers the operating voltages to a memory cell block corresponding to the block select signal.06-25-2009
20080316823STORAGE DEVICE AND CIRCUIT ELEMENT SWITCHING METHOD THEREOF - The present invention discloses a storage device and a circuit element switching method thereof. The storage device includes: a plurality of memory modules, wherein each of the plurality of memory modules includes a plurality of chip enable terminals; a memory control unit that includes a plurality of bank selection terminals; and a switch module that is coupled between the plurality of memory modules and the memory control unit, and utilized for dispersedly coupling the plurality of bank selection terminals to the plurality of chip enable terminals of each of the plurality of memory modules. The circuit element switching method applied to the storage device includes: providing a memory control unit including a plurality of bank selection terminals; and dispersedly coupling the plurality of bank selection terminals to a plurality of chip enable terminals of each of the plurality of memory modules.12-25-2008
20080316824Non-volatile memory device and method of operating the same - Provided are a semiconductor device having a block state confirmation cell that may store information indicating the number of data bits written to a plurality of memory cells, a method of reading memory data based on the number of the data bits written, and/or a memory programming method of storing the information indicating the number of the data bits written. The semiconductor device may include one or more memory blocks and a controller. Each of the memory blocks may include a plurality of memory cells each storing data, and a block state confirmation cell storing information indicating the number of data bits written to the memory cells. The controller may read the data bits from the memory blocks based on the number of data bits, which is indicated in the information in the block state confirmation cell.12-25-2008
20120069664FLASH MEMORY SYSTEM AND WORD LINE INTERLEAVING METHOD THEREOF - Provided are a flash memory system and a word line interleaving method thereof. The flash memory system includes a memory cell array, and a word line interleaving logic. The memory cell array is connected to a plurality of word lines. The word line (WL) interleaving logic performs an interleaving operation on WL data corresponding to at least two different wordlines and programming data, including the interleaved data, to the memory cell array.03-22-2012
20120069663NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A control circuit is configured to execute an erasing operation on a selected cell unit in a selected memory block. In the erasing operation, the control circuit raises the voltage of the bodies of the first memory transistors included in the selected cell unit to a first voltage, sets the voltage of the bodies of the first memory transistors included in the non-selected cell unit to a second voltage lower than the first voltage, and applies a third voltage equal to or lower than the second voltage to the gates of the first memory transistors included in the selected cell unit and the non-selected cell unit.03-22-2012
20120069662SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a semiconductor memory device includes memory cell units including serially-connected memory cells, which includes a semiconductor pillar and conductive and insulation films surrounding the semiconductor pillar. The memory cell units constitute blocks each of which is the minimum unit of data erasure. A pipe layer in at least one pair of adjacent first and second memory cell units of the memory cell units includes a semiconductor layer connected to the semiconductor pillars in the first and second memory cell units, and are connected to first ends of the first and second memory cell units. A conductive plate between the first ends of the first and second memory cell units and the semiconductor substrate contain the pipe layers of at least two blocks and controls conduction of the pipe layers. A supply path structure is connected to the plate and transmitting a potential the plate.03-22-2012
20120069661NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A control circuit during an erase operation sets a voltage of a first line connected to a selected cell unit to a voltage larger than a voltage of a gate of a first transistor included in the selected cell unit by an amount of a first voltage, sets a voltage difference between a voltage of a first line connected to an unselected cell unit and a voltage of a gate of a first transistor included in the unselected cell unit to a second voltage which differs from the first voltage, applies in the selected cell unit and the unselected cell unit a third voltage to a gate of at least one of dummy memory transistors in a dummy memory string, and applies a fourth voltage to a gate of another one of the dummy memory transistors in the dummy memory string, the fourth voltage being lower than the third voltage.03-22-2012
20120069660NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises a plurality of memory blocks, each including a plurality of cell units and each configured as a unit of execution of an erase operation. Each of the cell units comprises a memory string, a first transistor, a second transistor, and a diode. The first transistor has one end connected to one end of the memory string. The second transistor is provided between the other end of the memory string and a second line. The diode is provided between the other end of the first transistor and a first line. The diode comprises a second semiconductor layer of a first conductivity type and a third semiconductor layer of a second conductivity type.03-22-2012
20080239810CELL ARRAY OF SEMICONDUCTOR MEMORY DEVICE AND METHOD OF DRIVING THE SAME - A cell array of a flash memory device includes first and second memory block units, and a voltage generator. Each of the first and second memory block units includes a plurality of memory blocks having a plurality of memory cells. The voltage generator outputs a source voltage, a power supply voltage and a positive bias to the first and second memory block units. The first and second memory block units are connected in parallel through a bit line.10-02-2008
20130121075SYSTEMS AND METHODS FOR OPERATING MULTI-BANK NONVOLATILE MEMORY - A non-volatile memory system that has multiple memory banks initially assigns logical addresses to memory banks according to an assignment scheme, maintains this assignment for a period of time, then identifies frequently-written data (“hot-data”) assigned to a memory bank that is heavily worn over that period of time and reassigns it to a less worn memory bank.05-16-2013
20130121076THREE DIMENSIONAL STACKED NONVOLATILE SEMICONDUCTOR MEMORY - A three dimensional stacked nonvolatile semiconductor memory according to an example of the present invention includes a memory cell array comprised of first and second blocks. The first block has a first cell unit which includes a memory cell to be programmed and a second cell unit which does not include a memory cell to be programmed, and programming is executed by applying a program potential or a transfer potential to word lines in the first block after the initial potential of channels of the memory cells in the first and second cell units is set to a plus potential. In the programming, the program potential and the transfer potential are not applied to word lines in the second block.05-16-2013
20130121077THREE DIMENSIONAL STACKED NONVOLATILE SEMICONDUCTOR MEMORY - In a three dimensional stacked nonvolatile semiconductor memory according to the present invention, a first block has a selected first cell unit including a memory cell to be read and a non-selected second cell unit not including a memory cell to be read. A read potential or a transfer potential higher than the read potential is applied to the word line in the first block in a state that a ground potential is applied to a channel of a memory cell existing nearer to the bit line side than a memory cell in the second cell unit to which the read potential is applied, after which all the memory cells in the second cell unit are cut off from the bit line, the bit line is set to a precharge potential, and read is performed to the a memory cell to be read in the first cell unit.05-16-2013
20110228606NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a nonvolatile semiconductor memory device comprises a first block, a second block, a storage circuit, a controller. A first block comprises a first select gate and a first word line. A second block comprises a second select gate and a second word line. A storage circuit configures to store first data concerning a voltage to be applied to the first select gate, and second data concerning a voltage to be applied to the second select gate. A controller configures to control the voltages to be applied to the first select gate and the second select gate. The controller applies, in a write operation, a first voltage to the first select gate based on the first data, and a second voltage different from the first voltage to the second select gate based on the second data.09-22-2011
20080266959MEMORY ARRAY OF FLOATING GATE-BASED NON-VOLATILE MEMORY CELLS - A memory array comprises a plurality of memory cells organized in a matrix of rows and columns. Each of the memory cells includes a high voltage access transistor, a floating gate memory transistor electrically connected to the access transistor, and a coupling capacitor electrically connected to the memory transistor. A first set of word lines are each electrically connected to the capacitor in each of the memory cells in a respective row. A second set of word lines are each electrically connected to the access transistor in each of the memory cells in a respective row. A first set of bit lines are each electrically connected to the access transistor in each of the memory cells in a respective column. A second set of bit lines are each electrically connected to the memory transistor in each of the memory cells in a respective column. Various combinations of voltages can be applied to the word lines and bit lines in operations to program, erase, read, or inhibit a logic state stored by the memory transistor in one or more of the memory cells.10-30-2008
20080316825SEMICONDUCTOR MEMORY DEVICE - An electrically erasable programmable non-volatile semiconductor memory device. The semiconductor memory device includes a memory cell array comprising a plurality of memory blocks, each memory block comprising a plurality of memory cells, a dummy memory cell, and a select gate transistor. Transfer transistors each having a current path connected between a corresponding wordline enable signal line and a corresponding wordline are controlled by an output of a block selection circuit. The transfer transistors include a dummy transfer transistor electrically coupled to the dummy memory cell, and configured to transmit a dummy wordline enable signal.12-25-2008
20110141813USE OF EMERGING NON-VOLATILE MEMORY ELEMENTS WITH FLASH MEMORY - Memory devices and methods of operating memory devices are provided, such as those that involve a memory architecture that replaces typical static and/or dynamic components with emerging non-volatile memory (NV) elements. The emerging NV memory elements can replace conventional latches, can serve as a high speed interface between a flash memory array and external devices and can also be used as high performance cache memory for a flash memory array.06-16-2011
20090196102FLEXIBLE MEMORY OPERATIONS IN NAND FLASH DEVICES - A flash memory device having at least two bank, where the each bank has an independently configurable page size and core controller. The core controller is local to each bank, and governs memory access operations for the bank that include read, program and erase operations. Each core controller controls timing and activation of row circuits, column circuits, voltage generators, and local input/output path circuits for a corresponding memory access operation of the bank. Concurrent operations are executable in multiple banks to improve performance. Each bank has a page size that is configurable with page size configuration data such that only selected wordlines are activated in response to address data. The configuration data can be loaded into the memory device upon power up for a static page configuration of the bank, or the configuration data can be received with each command to allow for dynamic page configuration of the bank.08-06-2009
20090244976NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - The present invention provides a non-volatile memory capable of realizing erase/write operations in sufficiently small division units while suppressing an increase in chip area to the minimum, and shortening an erase time. Two of a physical erase state and a logical erase state are provided as threshold voltage distribution states of each memory cell. In the logical erase state, a threshold voltage criterion of the memory cell is shifted to a state higher than the physical erase state. When data rewriting of the memory cell placed in the physical erase state is performed, a logical erase is performed and the threshold voltage criterion is shifted to a high voltage level. The logical erase simply shifts the voltage level of the threshold voltage criterion. Since an electrical charge accumulated in the memory cell is not moved, erasing can be done at high speed and in a short period of time.10-01-2009
20090244975FLASH MEMORY DEVICE AND BLOCK SELECTION CIRCUIT THEREOF - The present invention relates to a block selection circuit of a flash memory device. The block selection circuit includes a control signal output unit, switching means, and an operation controller. The control signal output unit outputs a control signal for enabling or disabling memory blocks connected thereto by employing block address signals. The block address signals are decoded according to an input address and provided. The switching means switches the control signal so that the control signal is input as a block selection control signal. The operation controller turns off drain and source select transistors of a memory block connected thereto according to a logic level of a first control signal.10-01-2009
20100039860MEMORY DEVICES AND METHODS OF STORING DATA ON A MEMORY DEVICE - Apparatus and methods are disclosed, such as those involving a flash memory device. One such apparatus includes a memory block including a plurality of memory cells; and a data randomizer configured to randomly or pseudo-randomly change original data to be stored in the memory block to changed data. The original data is changed such that a pattern of data as stored in the memory block is different than what it would have been if the original data had been stored in the memory block during a write operation. This configuration can reduce or eliminate data pattern-dependent errors in data digits stored in memory cells.02-18-2010
20100149875Nonvolatile Semiconductor Memory Device - The present invention relates to a nonvolatile semiconductor memory, and more specifically relates to a nonvolatile semiconductor memory with increased program throughput. The present invention provides a nonvolatile semiconductor memory device with a plurality of block source lines corresponding to the memory blocks, arranged in parallel to the word lines, a plurality of global source lines arranged in perpendicular to the block source lines; and a plurality of switches for selectively connecting corresponding ones of the block source lines and the global source lines.06-17-2010
20100182836Nonvolatile memory having plurality of memory blocks each including data storage area and discrimination area - A nonvolatile memory includes memory blocks each including a data storage area for storing user data and a discrimination area that is provided so as to correspond to the each data storage area on a one-to-one basis and stores discriminative data indicating a writing state of data to the data storage area. The nonvolatile memory further includes a control circuit which determines the data storage area that will be a storage destination of the user data based on a relative difference relation among the discriminative data of the respective memory blocks, and changes the discriminative data of the discrimination area corresponding to the data storage area in which the user data was written to a value different from that before the writing.07-22-2010
20100182834TWISTED DATA LINES TO AVOID OVER-ERASE CELL RESULT COUPLING TO NORMAL CELL RESULT - Over-erasure induced noise on a data line in a nonvolatile memory that couples into an adjacent data line is mitigated by using twisted data lines and differential sensing amplifiers. Noise coupled into data lines is compensated by similar noise coupled into reference data lines and cancelled in the differential sensing amplifiers.07-22-2010
20100182835BLOCK DECODER OF FLASH MEMORY DEVICE - A block decoder of a flash memory device includes a discharge control unit configured to output a discharge signal in response to a program precharge signal and one or more of a number of address signals, and a selection line control unit configured to apply a ground voltage to source and drain selection lines of memory blocks in response to the discharge signal.07-22-2010
20100238729NON-VOLATILE MEMORY WITH REDUCED LEAKAGE CURRENT FOR UNSELECTED BLOCKS AND METHOD FOR OPERATING SAME - A memory device with reduced leakage current during programming and sense operations, and a method for operating such a memory device. In a non-volatile memory device, current leakage at the drain select gates of NAND strings can occur in unselected blocks when a selected block undergoes a program or read operation, and the bit lines are shared by the blocks. In one approach, in which a common transfer gate driver is provided for both blocks, the drain select gates are pre-charged at an optimum level, which minimizes leakage, and subsequently floated while a program or read voltage is applied to a selected word line in the selected block. In another approach, a separate transfer gate driver is provided for the unselected block so that the optimal select gate voltage can be driven in the unselected block, even while the program or read voltage is applied in the selected block.09-23-2010
20110058422Systems and Methods for Circular Buffering Control in a Memory Device - circuits for memories and utilization thereof. As one example, memory devices are disclosed that include a plurality of non-volatile memory blocks, and a memory write circuit. The memory write circuit is operable to write subsets of the plurality of non-volatile memory blocks at locations identified by a pointer, and to update the pointer to implement a circular buffer in the plurality of non-volatile memory blocks. In some cases, the non-volatile memory blocks are flash memory blocks.03-10-2011
20110058421Systems and Methods for Peak Power and/or EMI Reduction - Various embodiments of the present invention provide systems, methods and circuits for power management and/or EMI reduction. As one example, a method for memory system access is disclosed that includes providing a first bank of memory; providing a second bank of memory; receiving a memory access request that includes assertion of a reference memory clock; accessing the first bank of memory using a first sub memory clock asserted relative to the reference memory clock; delaying a phase offset; and accessing the second bank of memory using a second sub memory clock asserted the phase offset after assertion of the first sub memory clock.03-10-2011
20100226179NAND FLASH ARCHITECTURE WITH MULTI-LEVEL ROW DECODING - A NAND flash memory device is disclosed. The NAND flash memory device includes a NAND flash memory array defined as a plurality of sectors. Row decoding is performed in two levels. The first level is performed that is applicable to all of the sectors. This can be used to select a block, for example. The second level is performed for a particular sector, to select a page within a block in the particular sector, for example. Read and program operations take place to the resolution of a page within a sector, while erase operation takes place to the resolution of a block within a sector.09-09-2010
20100142276NONVOLATILE MEMORY - A nonvolatile memory includes a memory cell allay including a plurality of memory cells, each of the memory cells capable of storing electric charges nonvolatilly, a first sense amplifier for comparing a voltage produced by one of the selected memory cells to be read out with a first threshold value for distinguishing between a write state and an erase state of the selected memory cell, a second sense amplifier for comparing the voltage produced by one of the selected memory cell with a second threshold value having a greater voltage than the first threshold voltage, and a write unit for rewriting data of the selected memory cell when the first and the second sense amplifiers produce different sense outputs from each other.06-10-2010
20090116285NONVOLATILE MEMORY DEVICE AND READING METHOD THEREOF - A nonvolatile memory device can improve its operation characteristic by reducing leakage current of a bit line in a read operation. The nonvolatile memory device includes a plurality of word lines, a plurality of main bit lines intersecting with the plurality of word lines, a plurality of cell blocks each including a plurality of cell strings, each of the cell strings including first and second select transistors and a plurality of memory cells, a plurality of sub bit lines commonly connected to the respective cell strings in same group, the cell blocks being grouped into a plurality of groups whose number is identical to or smaller than the number of the cell blocks, a plurality of group selectors configured to selectively connect the main bit lines to the sub bit lines of a selected group, and a plurality of page buffers configured to sense data of the memory cells through the main bit lines.05-07-2009
20090073768MEMORY WITH OUTPUT CONTROL - An apparatus, system, and method for controlling data transfer to an output port of a serial data link interface in a semiconductor memory is disclosed. In one example, a flash memory device may have multiple serial data links, multiple memory banks and control input ports that enable the memory device to transfer the serial data to a serial data output port of the memory device. In another example, a flash memory device may have a single serial data link, a single memory bank, a serial data input port, a control input port for receiving output enable signals. The flash memory devices may be cascaded in a daisy-chain configuration using echo signal lines to serially communicate between memory devices.03-19-2009
20130128667Low-Voltage Page Buffer to be Used in NVM Design - A low-current FN channel for Erase, Program, Program-Inhibit and Read operations is disclosed for any non-volatile memory using FN-tunneling scheme for program and erase operation, regardless NAND, NOR, and EEPROM and regardless PMOS or NMOS non-volatile cell type. As a result, all above NMV memories can use the disclosed LV, compact PGM buffer to replace the traditional HV PGM buffer for saving in the silicon area and power consumption. The page buffer is used to store new loaded data for new writing and to convert the stored data into the required BL HV voltage for either Erase or Program operations according to the stored data. In addition, the simpler on-chip State-machine design can be achieved with the superior quality of NVMs of this disclosure.05-23-2013
20130128668NON-VOLATILE MEMORY DEVICE HAVING CONFIGURABLE PAGE SIZE - A flash memory device having at least one bank, where the each bank has an independently configurable page size. Each bank includes at least two memory planes having corresponding page buffers, where any number and combination of the memory planes are selectively accessed at the same time in response to configuration data and address data. The configuration data can be loaded into the memory device upon power up for a static page configuration of the bank, or the configuration data can be received with each command to allow for dynamic page configuration of the bank. By selectively adjusting a page size the memory bank, the block size is correspondingly adjusted.05-23-2013
20090109755Neighbor block refresh for non-volatile memory - Two or more erase sectors (blocks) in a given physical sector of the array. When (after) erasing a target block, determining whether a neighbor block needs to be refreshed by checking a sub-population of Vt distributions at a given program level. Various timings and strategies for performing the refresh operation are disclosed. The effects of word line disturb (gate disturb) may thereby be reduced.04-30-2009
20110235416NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device for raising operating speed is provided. The nonvolatile semiconductor memory device includes plural bit lines extending in a first direction, and a memory cell that includes plural blocks each having plural NAND strings each of which includes a group of memory cells connected in series with one another and selecting transistors connected to the respective ends of the memory cell group. One ends of current paths in ones of the selecting transistors are connected to the bit lines, while one ends of current paths in the other selecting transistors are connected to a source line. The nonvolatile semiconductor memory device further includes a memory cell array and a voltage control circuit that is disposed in the memory cell array in a manner of bisecting the memory cell array and that charges or discharges the bit lines.09-29-2011
20080291730REDUCING EFFECTS OF PROGRAM DISTURB IN A MEMORY DEVICE - A selected word line that is coupled to cells for programming is biased with an initial programming voltage. The unselected word lines that are adjacent to the selected word line are biased at an initial V11-27-2008
20130135931SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a semiconductor memory device includes a first memory cell array including a first block that includes memory cells, a second memory cell array including a second block that includes memory cells, word lines arranged in the first and second memory cell arrays, and a row decoder including transfer gates that respectively transfer voltages to the word lines. Word lines arranged in the first block include first and second groups, word lines arranged in the second block include third and fourth groups, and the first and third groups commonly use the transfer gates.05-30-2013
20110122696NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - The present invention provides a non-volatile memory capable of realizing erase/write operations in sufficiently small division units while suppressing an increase in chip area to the minimum, and shortening an erase time. Two of a physical erase state and a logical erase state are provided as threshold voltage distribution states of each memory cell. In the logical erase state, a threshold voltage criterion of the memory cell is shifted to a state higher than the physical erase state. When data rewriting of the memory cell placed in the physical erase state is performed, a logical erase is performed and the threshold voltage criterion is shifted to a high voltage level. The logical erase simply shifts the voltage level of the threshold voltage criterion. Since an electrical charge accumulated in the memory cell is not moved, erasing can be done at high speed and in a short period of time.05-26-2011
20100322003INTERLEAVED MEMORY PROGRAM AND VERIFY METHOD, DEVICE AND SYSTEM - An interleaved memory programming and verification method, device and system includes a memory array including first and second memory banks of memory cells. The memory device further includes a controller configured to concurrently program a first data into the first memory bank and a second data into the second memory bank using iterative programming and verification operations in each of the first and second memory banks with the programming and verification operations in the second memory bank being offset from the programming and verification operations in the first memory bank.12-23-2010
20090067243NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD OF DRIVING THE SAME - This disclosure concerns a memory including memory cell arrays including word lines extending in a first direction, bit lines extending in a second direction crossing the first direction, and memory cells provided to respectively correspond to cross-points in form of a lattice constituted by the word lines and the bit lines; sense amplifiers provided to respectively correspond to the bit lines and reading data stored in the memory cells; and bit line drivers provided to the bit lines and operating the bit lines when data is written to the memory cells, wherein the bit line drivers access the memory cells adjacent to a first memory cell diagonally with respect to the form of the lattice for writing the data to the adjacent memory cells during a data write operation without changing data stored in the memory cells adjacent to the first memory cell in the first and the second directions.03-12-2009
20090067242PROGRAMMING METHOD OF FLASH MEMORY DEVICE - A memory device comprises a drain select line, a source select line, word lines, and a string connected between a bit line and a common source line. A program-inhibited voltage is applied to the bit line and a first voltage of a positive potential is applied to the drain select line. A second voltage for activating a programmed memory cell is applied to a word line to which the programmed memory cell is connected. A programming operation is performed by applying a program voltage to a selected word line and applying a pass voltage to the unselected word lines.03-12-2009
20110019476NONVOLATILE MEMORY DEVICE AND PROGRAMMING METHOD THEREOF - A nonvolatile memory device is provided which includes a plurality of memory blocks, a bias block and a control logic block. The memory blocks are formed in wells, respectively. The bias block biases a well of a selected memory block. The control logic block controls the bias block to pre-charge doping regions of the selected memory block to a junction voltage before word line voltages are applied to the selected memory block in a programming operation.01-27-2011
20100157676NAND FLASH MEMORY - A NAND flash memory that is read while a selected bit line and a non-selected bit line are adjacent to each other, has a memory cell array having a plurality of blocks each of which is composed of a plurality of memory cell units, each of said memory cell units having a plurality of electrically rewritable memory cells that are connected to each other and composed of a p-type well surrounded by an n-type well formed in a p-type semiconductor substrate, drain-side select gate transistors each of which connects a memory cell unit to a bit line and is connected to a drain-side select gate line at the gate thereof, and source-side select gate transistors each of which connects a memory cell unit to a source line and is connected to a source-side select gate line at the gate thereof; a row decoder that is connected to word lines, the drain-side select gate lines and the source-side gate line of said memory cell array, and applies a signal voltage to word lines, the drain-side select gate lines and the source-side gate line of said memory cell array for selecting a block; and a sense amplifier that is controlled by a column decoder and makes a selection from said bit lines of said memory cell array, wherein, in a block that is not selected by said row decoder, said bit line selected by said sense amplifier is charged in a state where the drain-side select gate line, the source-side select gate line and the p-type semiconductor substrate are set at a ground potential, and the source lines, the n-type wells, the p-type wells and a bit line that is not selected by said sense amplifier are in a floating state.06-24-2010
20090034334NONVOLATILE MEMORY DEVICE HAVING A PLURALITY OF MEMORY BLOCKS - A nonvolatile memory device 02-05-2009
20110019475INTERLEAVED FLASH STORAGE SYSTEM AND METHOD - A flash storage system accesses data interleaved among flash storage devices. The flash storage system receives a data block including data portions, stores the data portions in a data buffer, and initiates data transfers for asynchronously writing the data portions into storage blocks interleaved among the flash storage devices. Additionally, the flash storage system may asynchronously read data portions of a data block interleaved among the storage blocks, store the data portions in the data buffer, and access the data portions from the data buffer.01-27-2011
20100027337Nonvolatile memory device extracting parameters and nonvolatile memory system including the same - The nonvolatile memory device includes a memory cell array having a plurality of memory blocks and a control logic circuit configured to store a parameter to access at least one of the plurality of memory blocks, configured to detect a variation of the parameter while accessing the at least one the memory block, and configured to store the varied parameter into the memory cell array in accordance with a result of the detection, wherein the control logic circuit is configured to utilize the varied parameter, which is stored in the memory cell array, while accessing the at least one memory block.02-04-2010
20100027338SEMICONDUCTOR DEVICE AND A MANUFACTURING METHOD THEREOF - A semiconductor device includes at least two adjacent memory cell blocks, each of the memory cell blocks having a plurality of memory cell units, each of memory cell units having a plurality of electrically reprogrammable and erasable memory cells connected in series, a plurality of cell gates for selecting the plurality of memory cells within the two adjacent memory cell blocks, each of the plurality of cell gates being formed with roughly rectangular closed loops or roughly U shaped open loops, each of the loops being connected to a corresponding cell of the memory cells in a corresponding memory cell unit of the plurality of memory cell units within one of the two adjacent memory cell blocks and being connected to a corresponding memory cell of the memory cells in a corresponding memory cell unit of the plurality of memory cell units within the other memory cell block of the two adjacent memory cell blocks and a plurality of pairs of first and second selection gates for selecting the memory cell block, the plurality of cell gates being located between one pair of the first and second selection gates within a corresponding block of the memory cell block.02-04-2010
20100039861NONVOLATILE MEMORY DEVICE AND READ METHOD - Disclosed is a nonvolatile memory including a memory cell array including a first cell string connected between a first bit line and a first common source line, and a second cell string a second common source line and a second bit line adjacent to the first bit line. The nonvolatile memory also includes a control logic circuit configured to independently control the first and second common source lines.02-18-2010
20110075483NON-VOLATILE SEMICONDUCTOR STORAGE DEVICE AND METHOD OF CONTROLLING THE SAME - According to one embodiment, a non-volatile semiconductor storage device includes a control circuit. When performing a read operation, the control circuit is configured to: apply a first voltage to a selected word line that is connected to a selected memory cell, the first voltage being a voltage between a plurality of threshold voltage distributions; apply a second voltage to a first unselected word line adjacent to the selected word line, the second voltage being not more than the first voltage; apply a third voltage to a second unselected word line adjacent to the first unselected word line, the third voltage being not less than a read pass voltage at which non-volatile memory cells become conductive; and apply the read pass voltage to a third unselected word line, the third unselected word line being an unselected word line other than the first unselected word line and the second unselected word line.03-31-2011
20110249501DYNAMIC POLARIZATION FOR REDUCING STRESS INDUCED LEAKAGE CURRENT - Subject matter disclosed herein relates to non-volatile flash memory, and more particularly to a method of reducing stress induced leakage current.10-13-2011
20110069550THREE DIMENSIONAL STACKED NONVOLATILE SEMICONDUCTOR MEMORY - A three dimensional stacked nonvolatile semiconductor memory according to an example of the present invention includes a memory cell array comprised of first and second blocks. The first block has a first cell unit which includes a memory cell to be programmed and a second cell unit which does not include a memory cell to be programmed, and programming is executed by applying a program potential or a transfer potential to word lines in the first block after the initial potential of channels of the memory cells in the first and second cell units is set to a plus potential. In the programming, the program potential and the transfer potential are not applied to word lines in the second block.03-24-2011
20100246266NONVOLATILE MEMORY DEVICE AND RELATED PROGRAMMING METHOD - A nonvolatile memory device comprises a memory cell array comprising a plurality of memory blocks each divided into a plurality of regions, and a control logic component. The control logic component selects a memory block to be programmed based on program/erase cycles of the memory blocks, and selects a program rule used to program the regions of the selected memory block.09-30-2010
20100246265ERASE CYCLE COUNTER USAGE IN A MEMORY DEVICE - Memory devices and methods are disclosed to facilitate adjustment of program voltages applied during a program operation based upon erase operation cycle counter values stored in the memory device. In one such embodiment, an erase cycle counter is maintained for each block of a memory device and is stored in the associated block of memory. Programming voltage levels utilized during program operations of memory cells are determined, at least in part, based upon the value of the erase cycle counter stored in a memory block undergoing a programming operation, for example.09-30-2010
20110019477NAND TYPE FLASH MEMORY - According to one embodiment, a NAND type flash memory includes a first transfer transistor disposed between first and second memory planes, the first potential transfer terminal of the first transfer transistor being commonly connected to a first word line in the first NAND block and a second word line in the third NAND block, a second transfer transistor disposed at a first end of the first memory plane, the first potential transfer terminal of the second transfer transistor being connected to a third word line in the second NAND block, and a third transfer transistor disposed at a second end of the second memory plane, the first potential transfer terminal of the third transfer transistor being connected to a fourth word line in the fourth NAND block.01-27-2011
20120201080Nonvolatile Memory Devices And Driving Methods Thereof - Nonvolatile memory devices including memory cell arrays with a plurality of cell strings connected between a substrate and a plurality of bit lines and selected by selection lines, and a gating circuit configured to drive the selection lines in at least two directions.08-09-2012
20090185422Flash memory device having row decoders sharing single high voltage level shifter, system including the same, and associated methods - A flash memory device includes first and second memory cell array blocks and a row decoder coupled to the first memory cell array block and the second. memory cell array block. The row decoder includes a block decoder, a single high voltage level shifter that is coupled to both the first and second memory cell array blocks, the single high voltage level shifter configured to provide a block wordline signal of a high voltage to the first and second memory array blocks in response to a block selection signal received from the block decoder, a first pass transistor unit, and a second pass transistor unit.07-23-2009
20080310230Flash Memory Devices Having Three Dimensional Stack Structures and Methods of Driving Same - Flash memory devices are provided including a plurality of layers stacked vertically. Each of the plurality of layers include a plurality of memory cells. A row decoder is electrically coupled to the plurality of layers and configured to supply a wordline voltage to the plurality of layers. Memory cells provided in at least two layers of the plurality of layers belong to a same memory block and wordlines associated with the memory cells in the at least two layers of the plurality of layers are electrically coupled.12-18-2008
20110255339METHOD AND SYSTEM FOR ACCESSING A FLASH MEMORY DEVICE - An apparatus, system, and computer-implemented method for controlling data transfer between a plurality of serial data link interfaces and a plurality of memory banks in a semiconductor memory is disclosed. In one example, a flash memory device with multiple links and memory banks, where the links are independent of the banks, is disclosed. The flash memory devices may be cascaded in a daisy-chain configuration using echo signal lines to serially communicate between memory devices. In addition, a virtual multiple link configuration is described wherein a single link is used to emulate multiple links.10-20-2011
20110002171MEMORY WITH OUTPUT CONTROL - An apparatus, system, and method for controlling data transfer to an output port of a serial data link interface in a semiconductor memory is disclosed. In one example, a flash memory device may have multiple serial data links, multiple memory banks and control input ports that enable the memory device to transfer the serial data to a serial data output port of the memory device. In another example, a flash memory device may have a single serial data link, a single memory bank, a serial data input port, a control input port for receiving output enable signals. The flash memory devices may be cascaded in a daisy-chain configuration using echo signal lines to serially communicate between memory devices.01-06-2011
20100284224FLASH MEMORY DEVICE AND ERASE METHOD USING THE SAME - A flash memory device includes a plurality of memory blocks and a plurality of block selection circuits corresponding to the plurality of memory blocks. All of the block selection circuits are sequentially operated in response to block control signals, or two or more of the block selection circuits are operated in response to the block control signals.11-11-2010
20100284223NONVOLATILE SEMICONDUCTOR MEMORY - The invention decreases the number of writing processes of EEPROM. When a mode change signal is L level, a EEPROM is set to a bank mode. In this case, first and second memory banks are independently accessed by a control signal of a first port and a control signal of a second port, respectively. When the mode change signal is H level, the EEPROM is set to a combine mode. In this case, the first and second memory banks are combined into a 4k-bit memory bank, and accessed by the control signal of the first port.11-11-2010
20110075482MAINTAINING INTEGRITY OF PRELOADED CONTENT IN NON-VOLATILE MEMORY DURING SURFACE MOUNTING - A non-volatile memory chip package is prepared for surface mounting to a substrate in a solder reflow process by programming erased blocks to higher threshold voltage levels, to improve data retention for blocks which are preloaded with content, such as by an electronic device manufacturer. Following the surface mounting, the previously-erased blocks are returned to the erased state. The threshold voltage of storage elements of the preloaded blocks can change during the surface mounting process due to a global charge effect phenomenon. The effect is most prominent for higher state storage elements which are surrounded by erased blocks, in a chip for which the wafer backside was thinned and polished. The erased blocks can be programmed using a single program pulse without performing a verify operation, as a wide threshold voltage distribution is acceptable.03-31-2011
20090323419READ-TIME WEAR-LEVELING METHOD IN STORAGE SYSTEM USING FLASH MEMORY DEVICE - Disclosed is a read-time wear-leveling method in a storage system using a flash memory device, in which the abrasion of the flash memory device generated by repeated read operations is dispersed over the entire region so that the abrasion of memory blocks can be equalized to prolong the life of the flash memory device, to minimize errors in the memory blocks, and to secure the reliability of the storage system.12-31-2009
20110096602NONVOLATILE MEMORY DEVICES OPERABLE USING NEGATIVE BIAS VOLTAGES AND RELATED METHODS OF OPERATION - A nonvolatile memory device includes a first address decoder and a second address decoder. The first address decoder includes a plurality of transistors disposed in a first well, and the second address decoder includes a plurality of transistors disposed in a second well that is electrically isolated from the first well. The first and second address decoders are associated with first and second memory blocks, respectively. A switch circuit is configured to provide a negative voltage to one of the first address decoder and the second address decoder on the basis of block address information that specifies an address included in one of the first memory block and the second memory block. Related methods of operation are also discussed.04-28-2011
20120206966METHOD FOR MODIFYING DATA MORE THAN ONCE IN A MULTI-LEVEL CELL MEMORY LOCATION WITHIN A MEMORY ARRAY - A method and apparatus for marking a block of multi-level memory cells for performance of a block management function by programming at least one bit in a lower page of the memory cell block such that a first logic state is stored in the at least one bit in the lower page; programming at least one bit in an upper page of the memory cell block such that the first logic state is stored in the at least one bit in the upper page; reprogramming the at least one bit in the upper page such that the at least one bit transitions from the first logic state to a second logic state; identifying the first logic state in the at least one bit of a lower page and the transition of at least one corresponding bit in the upper page from the first logic state to the second logic state; and in response, marking the corresponding memory cell block for performance of a block management function.08-16-2012
20100067297BIAS CIRCUITS AND METHODS FOR ENHANCED RELIABILITY OF FLASH MEMORY DEVICE - A non-volatile semiconductor memory device includes: cell strings connected to respective bit lines; each of the cell strings having a string select transistor connected to a string select line, a ground select transistor connected to a ground select line, and memory cells connected to corresponding word lines and connected in series between the string select transistor and the ground select transistor; a first voltage drop circuit configured to reduce an applied read voltage during a read operation; a second voltage drop circuit configured to reduce the applied read voltage; a string select line driver circuit configured to drive the string select line with the reduced voltage provided by the first voltage drop circuit; and a ground select line driver circuit configured to drive a ground select line with the reduced voltage provided by the second voltage drop circuit.03-18-2010
20100165732FLASH MEMORY APPARATUS AND READ OPERATION CONTROL METHOD THEREFOR - A flash memory apparatus of an embodiment is configured to include a flash memory including a plurality of blocks and a read operation control circuit determining whether to replace a block in accordance with the number of times a read process is performed for each block of the plurality of blocks.07-01-2010
20090175082Flash EEprom System With Simultaneous Multiple Data Sector Programming and Storage of Physical Block Characteristics in Other Designated Blocks - A non-volatile memory system is formed of floating gate memory cells arranged in blocks as the smallest unit of memory cells that are erasable together. The system includes a number of features that may be implemented individually or in various cooperative combinations. One feature is the storage in separate blocks of the characteristics of a large number of blocks of cells in which user data is stored. These characteristics for user data blocks being accessed may, during operation of the memory system by its controller, be stored in a random access memory for ease of access and updating. According to another feature, multiple sectors of user data are stored at one time by alternately streaming chunks of data from the sectors to multiple memory blocks. Bytes of data in the stream may be shifted to avoid defective locations in the memory such as bad columns. Error correction codes may also be generated from the streaming data with a single generation circuit for the multiple sectors of data. The stream of data may further be transformed in order to tend to even out the wear among the blocks of memory. Yet another feature, for memory systems having multiple memory integrated circuit chips, provides a single system record that includes the capacity of each of the chips and assigned contiguous logical address ranges of user data blocks within the chips which the memory controller accesses when addressing a block, making it easier to manufacture a memory system with memory chips having different capacities. A typical form of the memory system is as a card that is removably connectable with a host system but may alternatively be implemented in a memory embedded in a host system. The memory cells may be operated with multiple states in order to store more than one bit of data per cell.07-09-2009
20090175081NAND FLASH MEMORY HAVING MULTIPLE CELL SUBSTRATES - A NAND flash memory bank having a plurality of bitlines of a memory array connected to a page buffer, where NAND cell strings connected to the same bitline are formed in at least two well sectors. At least one well sector can be selectively coupled to an erase voltage during an erase operation, such that unselected well sectors are inhibited from receiving the erase voltage. When the area of the well sectors decrease, a corresponding decrease in the capacitance of each well sector results. Accordingly, higher speed erasing of the NAND flash memory cells relative to a single well memory bank is obtained when the charge pump circuit drive capacity remains unchanged. Alternately, a constant erase speed corresponding to a single well memory bank is obtained by matching a well segment having a specific area to a charge pump with reduced drive capacity. A reduced drive capacity charge pump will occupy less semiconductor chip area, thereby reducing cost.07-09-2009
20100020614Non-Volatile Memory With Linear Estimation of Initial Programming Voltage - In a non-volatile memory, a selected page on a word line is successively programmed by a series of voltage pulses of a staircase waveform with verifications in between the pulses until the page is verified to a designated pattern. The programming voltage at the time the page is programmed verified will be used to estimate the initial value of a starting programming voltage for the page. The estimation is further refined by using the estimate from a first pass in a second pass. Also, when the test is over multiple blocks, sampling of word lines based on similar geometrical locations of the blocks can yield a starting programming voltage optimized for faster programming pages.01-28-2010
20110216593NAND FLASH MEMORY - A method of controlling a programming of a flash memory with memory blocks. The method includes checking whether a selected block among the memory blocks belongs to a first group or a second group. The method further includes executing the programming from a least bit address when the selected block belongs to the first group. The method also includes executing the programming from a most bit address when the selected block belongs to the second group.09-08-2011
20110051515NONVOLATILE SEMICONDUCTOR MEMORY - Disclosed is a nonvolatile memory system including at least one nonvolatile memory each having a plurality of nonvolatile memory cells and a buffer memory; and a control device coupled to the nonvolatile memory. The control device is enabled to receive external data and to apply the data to the nonvolatile memory, and the nonvolatile memory is enabled to operate a program operation including storing the received data to the buffer memory and storing the data held in the buffer memory to ones of nonvolatile memory cells. Moreover, the control device is enabled to receive external data while the nonvolatile memory is operating in the program operation. Also, the buffer memory is capable of receiving a unit of data, equal to the data length of data to be stored at one time of the program operation, the data length being more than 1 byte.03-03-2011
20120069665Memory Device With Vertically Embedded Non Flash Non Volatile Memory For Emulation Of Nand Flash Memory - A system and a method for emulating a NAND memory system are disclosed. In the method, a command associated with a NAND memory is received. After receipt of the command, a vertically configured non-volatile memory array is accessed based on the command. In the system, a vertically configured non-volatile memory array is connected with an input/output controller and a memory controller. The memory controller is also connected with the input/output controller. The memory controller is operative to interface with a command associated with a NAND memory and based on the command, to access the vertically configured non-volatile memory array for a data operation, such as a read operation or write operation. An erase operation on the vertically configured non-volatile memory array is not required prior to the write operation. The vertically configured non-volatile memory array can be partitioned into planes, blocks, and sub-planes, for example.03-22-2012
20110149653NAND FLASH MEMORY - A NAND flash memory, in a read operation, a p-type semiconductor substrate is set at a ground potential, a bit line is charged to a first voltage, a source line, a n-type well and a p-type well are charged to a second voltage, which lies between a ground potential and a first voltage, and in a block not selected by said row decoder, said drain-side select gate line and said source-side select gate line are charged to a third voltage, which is higher than said ground potential and is equal to or lower than said second voltage.06-23-2011
20120099377THREE DIMENSIONAL STACKED NONVOLATILE SEMICONDUCTOR MEMORY - In a three dimensional stacked nonvolatile semiconductor memory according to the present invention, a first block has a selected first cell unit including a memory cell to be read and a non-selected second cell unit not including a memory cell to be read. A read potential or a transfer potential higher than the read potential is applied to the word line in the first block in a state that a ground potential is applied to a channel of a memory cell existing nearer to the bit line side than a memory cell in the second cell unit to which the read potential is applied, after which all the memory cells in the second cell unit are cut off from the bit line, the bit line is set to a precharge potential, and read is performed to the a memory cell to be read in the first cell unit.04-26-2012
20120099376THREE DIMENSIONAL STACKED NONVOLATILE SEMICONDUCTOR MEMORY - A three dimensional stacked nonvolatile semiconductor memory according to an example of the present invention includes a memory cell array comprised of first and second blocks. The first block has a first cell unit which includes a memory cell to be programmed and a second cell unit which does not include a memory cell to be programmed, and programming is executed by applying a program potential or a transfer potential to word lines in the first block after the initial potential of channels of the memory cells in the first and second cell units is set to a plus potential. In the programming, the program potential and the transfer potential are not applied to word lines in the second block.04-26-2012
20120099375NONVOLATILE MEMORY DEVICE AND METHOD OF OPERATING THE SAME - A method of operating a nonvolatile memory device includes performing a first program loop, including a first program operation and a first program verification operation, for memory cells of a first page, counting a number of times that the first program loop is performed and storing the counted number when a memory cell having a threshold voltage higher than a first verification voltage, among the memory cells of the first page, is detected, and performing a second program loop, including a second program operation and a second program verification operation, for memory cells of a second page in response to the stored number for the first program loop.04-26-2012
20090003065Flash cell with improved program disturb - Memory cells, memory arrays, memory devices and methods are disclosed, such as those involving a memory cell comprising a floating gate comprising lightly doped polysilicon, wherein the lightly doped polysilicon has a substantially uniform doping concentration. One such memory cell further comprises a control gate and dielectric disposed between the floating gate and the control gate.01-01-2009
20120039128THREE DIMENSIONAL STACKED NONVOLATILE SEMICONDUCTOR MEMORY - A three dimensional stacked nonvolatile semiconductor memory according to an example of the present invention includes a memory cell array comprised of first and second blocks disposed side by side in a first direction, and a driver disposed on one end of the memory cell array in a second direction orthogonal to the first direction. First select gate lines in the first block and first select gate lines in the second block are connected to the driver after they are commonly connected in one end in the second direction of the memory cell array in a relation of one to one.02-16-2012
20120039127FLASH MEMORY DEVICE AND METHOD OF OPERATING THE SAME - A method for operating a flash memory device includes applying a pass voltage to a drain pass word line, a source pass word line, and unselected word lines. The drain pass word line is provided between a drain select line and a word line. The drain pass word line has a structure in the same manner as the word lines. The source pass word line is provided between a source select line and a word line. The source pass word line has a structure in the same manner as the word lines. A program voltage is applied to a selected word line associated with a selected memory cell block. A ground voltage is applied to drain pass word lines and source pass word lines. Word lines associated with unselected memory cell blocks are set to a floating state.02-16-2012
20110063911SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a memory cell array including a plurality of blocks each including a memory cell unit, and a selection transistor which selects the memory cell unit, and a row decoder including a first block selector and a second block selector each of which includes a plurality of transfer transistors which are formed to correspond to the plurality of blocks and arranged adjacent to each other in a word-line direction wherein the diffusion layers are formed to oppose each other in the first block selector and the second block selector, and a width between the diffusion layers of the first block selector and the second block selector adjacent to each other in the word-line direction is made larger than a width between the diffusion layers in each of the first block selector and the second block selector adjacent to each other in the word-line direction.03-17-2011
20110063910THREE DIMENSIONAL STACKED NONVOLATILE SEMICONDUCTOR MEMORY - A three dimensional stacked nonvolatile semiconductor memory according to an example of the present invention includes a memory cell array comprised of first and second blocks disposed side by side in a first direction, and a driver disposed on one end of the memory cell array in a second direction orthogonal to the first direction. First select gate lines in the first block and first select gate lines in the second block are connected to the driver after they are commonly connected in one end in the second direction of the memory cell array in a relation of one to one.03-17-2011
20110063913THREE DIMENSIONAL STACKED NONVOLATILE SEMICONDUCTOR MEMORY - In a three dimensional stacked nonvolatile semiconductor memory according to the present invention, a first block has a selected first cell unit including a memory cell to be read and a non-selected second cell unit not including a memory cell to be read. A read potential or a transfer potential higher than the read potential is applied to the word line in the first block in a state that a ground potential is applied to a channel of a memory cell existing nearer to the bit line side than a memory cell in the second cell unit to which the read potential is applied, after which all the memory cells in the second cell unit are cut off from the bit line, the bit line is set to a precharge potential, and read is performed to the a memory cell to be read in the first cell unit.03-17-2011
20110063912METHODS AND STRUCTURES FOR READING OUT NON-VOLATILE MEMORY USING NVM CELLS AS A LOAD ELEMENT - A Non-Volatile Memory (NVM) cell in an NVM array is read out using other NVM cells in the array as a load element. Conventional load elements such as MOS transistors or resistors used to vary the bitline potential for the NVM cell readout in conventional NVM arrays are replaced with NVM cell(s) in the array. The omission of the extra MOS transistors or resistors for the load elements not only saves silicon area but also simplifies the bitline sensing circuitry design in the NVM array.03-17-2011
20120002476Semiconductor Memory With Improved Block Switching - A non-volatile memory core comprises one or more memory bays. Each memory bay comprises one or more memory blocks that include a grouping of non-volatile storage elements. In one embodiment, memory blocks in a particular memory bay share a group of read/write circuits. During a memory operation, memory blocks are transitioned into active and inactive states. The process of transitioning blocks from an inactive state to an active state includes enabling charge sharing between a memory block entering the active state and another memory block that was previously in the active state. This charge sharing improves performance and/or reduces energy consumption for the memory system.01-05-2012
20120002474INTERLEAVED MEMORY PROGRAM AND VERIFY METHOD, DEVICE AND SYSTEM - An interleaved memory programming and verification method, device and system includes a memory array including first and second memory banks of memory cells. The memory device further includes a controller configured to concurrently program a first data into the first memory bank and a second data into the second memory bank using iterative programming and verification operations in each of the first and second memory banks with the programming and verification operations in the second memory bank being offset from the programming and verification operations in the first memory bank.01-05-2012
20120002475NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - A non-volatile semiconductor memory device includes a non-volatile memory having a plurality of blocks each including a plurality of memory cells, a bit line electrically connected to one end of a current path of the memory cell, a source line electrically connected to the other end of the current path of the memory cell, a word line electrically connected to the gate electrode, a sense amplifier circuit electrically connected to the bit line and configured to read data from the memory cell, a row decoder electrically connected to the word line and configured to apply a read voltage at which the memory cell is set to an ON state to the word line, and a controller configured to measure a cell current flowing through the memory cell in the ON state to judge whether the memory cell has been degraded.01-05-2012
20120044764NONVOLATILE SEMICONDUCTOR MEMORY DEVICE WHICH PERFORMS IMPROVED ERASE OPERATION - According to one embodiment, a nonvolatile semiconductor memory device includes a memory cell array and a control unit. The memory cell array includes a plurality of memory cells arranged in a matrix. The control unit erases data of the memory cells. The control unit interrupts the erase operation of the memory cells and holds an erase condition before the interrupt in accordance with a first command during the erase operation, and resumes the erase operation based on the held erase condition in accordance with a second command.02-23-2012
20120008397MEMORY SYSTEM AND METHOD OF OPERATING THE SAME - A memory system includes a flash memory device including a first memory block group on which a least significant bit (LSB) program operation has been performed and a program operation on another bit has not been performed and a second memory block group on which both the LSB program operation and a most significant bit (MSB) program operation have been performed and a memory controller configured to check which of the first and second memory block groups a memory block selected for an LSB data read operation belongs to and set a level of a read voltage for the LSB data read operation of the selected memory block.01-12-2012
20120008395Nonvolatile Memory Device and Method of Operating the Same - A nonvolatile memory device includes memory cell blocks each configured to comprise memory cells erased by an erase voltage, supplied to a word line, and a bulk voltage supplied to a bulk, a bias voltage generator configured to generate a first erase voltage, having a first pulse width and a first amplitude, in order to perform the erase operation of the memory cells and a second erase voltage, having a second pulse width narrower than the first pulse width and a second amplitude lower than the first amplitude, in order to perform an additional erase operation if an unerased memory cell is detected after the erase operation is performed, and a bulk voltage generator configured to generate the bulk voltage.01-12-2012
20120008394NONVOLATILE MEMORY SYSTEM AND REFRESH METHOD - A memory system including non-volatile memory devices and a corresponding refresh method are disclosed. The method groups memory blocks of the non-volatile memory devices into memory groups, determines a refresh sequence for the memory groups, and refreshes the memory groups in accordance with the refresh sequence.01-12-2012
20120008393NONVOLATILE MEMORY DEVICE AND OPERATION METHOD THEREOF - An operation method of a nonvolatile memory device includes reading information of an erase target block, and performing an erase operation by using a starting erase bias corresponding to the information.01-12-2012
20120008396SEMICONDUCTOR MEMORY DEVICE AND METHOD OF ERASING THE SAME - A semiconductor memory device includes memory cell blocks having physical pages coupled to memory cells, peripheral circuits configured to program the memory cells or read data stored in the memory cells, and a controller configured to control the peripheral circuits so that a pre-program is performed to make memory cells in the memory cell blocks have threshold voltages higher than a set voltage by programming memory cells of the selected memory cell block, having threshold voltages lower than the set voltage, in response to an erase command. The set voltage is an intermediate threshold voltage obtained from the threshold voltages of the memory cells of the selected memory cell block.01-12-2012
20120008392NONVOLATILE MEMORY DEVICE AND METHOD FOR OPERATING THE SAME - A nonvolatile memory device includes a plurality of memory blocks, a plurality of erasure detection units provided at the plurality of memory blocks, respectively, and configured to each detect erasure of the respective memory blocks, and a control unit configured to determine that a memory block is a bad memory block when a number of erasure operations performed on the memory block as detected by the respective erasure detection unit is greater than a reference value.01-12-2012
20120063229SEMICONDUCTOR MEMORY DEVICE WHICH INCLUDES MEMORY CELL HAVING CHARGE ACCUMULATION LAYER AND CONTROL GATE - A semiconductor memory device includes a memory cell array, a power source circuit, a sense amplifier, a control circuit, and a processor. The memory cell array includes a nonvolatile memory cell. The power source circuit includes a first register and generates a voltage. The sense amplifier includes a second register, reads from the memory cell and amplifies the read data. The control circuit includes a third register and controls operations of the power source circuit and the sense amplifier. The processor controls the operations of the power source circuit, the sense amplifier and the control circuit by giving an instruction to the first to third registers. The control circuit decodes the instruction received at the third register so as to control the power source circuit and the sense amplifier directly based on a result of decoding.03-15-2012
20120063228DATA SENSING ARRANGEMENT USING FIRST AND SECOND BIT LINES - Over-erasure induced noise on a data line in a nonvolatile memory that couples into an adjacent data line is mitigated by using twisted data lines and differential sensing amplifiers. Noise coupled into data lines is compensated by similar noise coupled into reference data lines and cancelled in the differential sensing amplifiers.03-15-2012
20120014181Nonvolatile Semiconductor Memory - A hot electron (BBHE) is generated close to a drain by tunneling between bands, and it data writing is performed by injecting the hot electron into a charge storage layer. When Vg is a gate voltage, Vsub is a cell well voltage, Vs is a source voltage and Vd is a drain voltage, a relation of Vg>Vsub>Vs>Vd is satisfied, Vg−Vd is a value of a potential difference required for generating a tunnel current between the bands or higher, and Vsub−Vd is substantially equivalent to a barrier potential of the tunnel insulating film or higher.01-19-2012
20120057405SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a semiconductor memory device comprises a cell array, voltage generation circuits, and a control circuit. The cell array comprises memory cell strings. The voltage generation circuits are arranged below the cell array. Each of the memory cell strings comprises a semiconductor layer, control gates, and memory cell transistors. The semiconductor layer comprises a pair of pillar portions, and a connecting portion. The control gates intersect the pillar portion. The memory cell transistors are formed at intersections of the pillar portion and the control gates. In a write operation and a read operation, the control circuit does not drive voltage generation circuits which give noise to memory cell strings as a write target and a read target, and drives voltage generation circuits which do not give noise to the memory cell strings as the write target and the read target.03-08-2012
20120113720SEMICONDUCTOR MEMORY DEVICE AND ERASE METHOD THEREOF - A semiconductor memory device includes a plurality of memory blocks configured to include memory cells, a voltage supply circuit configured to supply an erase voltage for an erase operation of a memory block selected from the memory blocks and supply an erase verify voltage and an erase pass voltage for an erase verify operation of the memory block selected from the memory blocks, and a control logic configured to group word lines per specific word lines, when the erase verify operation for the selected memory block is performed, and control the voltage supply circuit so that one or more of the erase verify voltage and the erase pass voltage rise whenever the erase verify operation is performed.05-10-2012
20120206965NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, an erase verification execution unit that makes an erase verify operation of a memory cell, on which an erase operation is performed, to be performed, a number-of-erase-verifications counting unit that counts the number of erase verifications of a memory cell on which the erase operation is performed, and a number-of-erase-verifications setting unit that sets a minimum number of erase verifications from the next time based on the current number of erase verifications counted by the number-of-erase-verifications counting unit are included.08-16-2012
20120155175FLASH MEMORY DEVICE AND OPERATION METHOD THEREOF - A method for operating a flash memory device includes storing a first command and a first address corresponding to a first plane, storing a second command and a second address corresponding to a second plane, and performing a first command operation for the first plane based on the first command and the first address and performing a second command operation for the second plane based on the second command and the second address, wherein the first address includes a first block address for selecting a block in the first plane, and the second address includes a second block address for selecting a block in the second plane.06-21-2012
20130010539NONVOLATILE MEMORY DEVICE PROVIDING NEGATIVE VOLTAGE - Disclosed is a nonvolatile memory device which includes memory blocks, a pre-decoder, and a row decoder. Each of the memory blocks has a plurality of memory cells. The pre-decoder includes a multiplexer and negative level shifters. The multiplexer is configured to generate multiplexing signals in response to address signals. Each of the negative level shifters is configured to generate a converted multiplexing signal corresponding to a respective multiplexing signal by converting a multiplexing signal having a ground voltage into a converted multiplexing signal having a first negative voltage. The row decoder is configured to select at least one of the memory blocks in response to the converted multiplexing signals.01-10-2013
201100907373D NON-VOLATILE MEMORY DEVICE AND METHOD FOR OPERATING AND FABRICATING THE SAME - A 3D non-volatile memory device includes a plate-type lower select line formed over a substrate, a lower select transistor formed in the lower select line, a plurality of memory cells stacked over the lower select transistor, an upper select transistor formed over the memory cells, and a line-type common source line formed over the substrate and spaced from the lower select line.04-21-2011
20100290287METHOD CIRCUIT AND SYSTEM FOR OPERATING AN ARRAY OF NON-VOLATILE MEMORY ("NVM") CELLS AND A CORRESPONDING NVM DEVICE - Disclosed is a method, circuit and system for determining a Lowest Operative Threshold Voltage Level for one or more cell segments/blocks/sets of a NVM array and a corresponding device, adapted to compare substantially native state NVM cells in a block of cells against one or more reference cells/structures or offset values, and to maintain a read error count.11-18-2010
20120163081Nonvolatile Memory Devices - Nonvolatile memory devices including a memory cell array with a plurality of memory blocks and a plurality of bit lines arranged at the memory cell array. Each of the plurality of memory blocks may include a plurality of strings arranged in rows and columns and formed to be vertical to a substrate. Strings of each row of each memory block are connected with the bit lines, respectively, and strings of each column of each memory block are connected in common with a corresponding one of the bit lines. One memory block of the plurality of memory blocks includes a first region for storing ROM data and a second region for storing replica ROM data for repairing the ROM data.06-28-2012
20100214838NON-VOLATILE SEMICONDUCTOR STORAGE DEVICE - A non-volatile semiconductor storage device includes a control circuit performing an erase operation to erase data from a selected one of memory transistors. The control circuit applies a first voltage to the other end of selected one of selection transistors, causes the selected one of the selection transistors to turn on, and causes any one of the memory transistors to turn on that is closer to the selection transistor than the selected one of the memory transistors. The control circuit also applies a second voltage lower than the first voltage to a gate of the selected one of the memory transistors. Such a potential difference between the first voltage and the second voltage causing a change in electric charges in the electric charge storage layer.08-26-2010
20120213005NON-VOLATILE MEMORY DEVICE, MEMORY CONTROLLER, AND METHODS THEREOF - The method includes receiving a block address and an erase command output from a controller, and changing, until an erase operation performed according to the erase command on a block corresponding to the block address is completed, a parameter value related to the erase operation. The method further includes storing information corresponding to a finally changed parameter value, and transmitting the information to the controller according to a command output from the controller.08-23-2012
20120213004NON-VOLATILE MEMORY DEVICE AND RELATED READ METHOD - A nonvolatile memory device comprises a memory cell array and a voltage generator. The memory cell array comprises a plurality of memory cells connected in series between a string selection transistor connected to a bit line and a ground selection transistor connected to a source line. The voltage generator provides read voltages to word lines of memory cells selected from among the plurality of memory cells during a read operation. The read voltages of the selected memory cells differ from each other according to their respective distances from the string selection transistor.08-23-2012
20120134211MEMORY SYSTEM - A memory system includes: a plurality of banks each including a memory cell array and a sense amplifier; a buffer circuit electrically connected to the plurality of banks; a switch circuit configured to switch on and off an electrical connection between the buffer circuit and each of the plurality of banks an interface electrically connected to the buffer circuit; and a controller configured to control the plurality of banks, the buffer circuit, the switch circuit and the interface, wherein for reading data held in the memory cell array by outputting the data to the interface in 5 clock cycles, the controller is configured to control the switch circuit in order that the switch circuit electrically connects a selected one of the banks to the buffer circuit upon the lapse of 1.5 clock cycles after a clock is inputted into the selected bank.05-31-2012
20120314499INTELLIGENT SHIFTING OF READ PASS VOLTAGES FOR NON-VOLATILE STORAGE - A first read pass voltage is determined and optimized for cycled memory. One or more starting read pass voltages are determined for one or more dies. The system dynamically calculates a current read pass voltage based on the number of program/erase erase cycles, the first read pass voltage and the respective starting read pass voltage. Data is read from one or more non-volatile storage elements using the calculated current read pass voltage.12-13-2012
20120134210NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - When selectively erasing one sub-block, a control circuit applies, in a first sub-block, a first voltage to bit lines and a source line, and applies a second voltage smaller than the first voltage to the word lines. Then, the control circuit applies a third voltage lower than the first voltage by a certain value to a drain-side select gate line and a source-side select gate line, thereby performing the erase operation in the first sub-block. The control circuit applies, in a second sub-block existing in an identical memory block to the selected sub-block, a fourth voltage substantially identical to the first voltage to the drain side select gate line and the source side select gate line, thereby not performing the erase operation in the second sub-block.05-31-2012
20090059666MEMORY CELL ARRAY AND NON-VOLATILE MEMORY DEVICE - A memory cell array, divided into multiple row memory cell arrays, includes multiple memory banks and sense amplifiers. Each of the memory banks includes multiple logical sectors and at least two sub-memory banks of multiple sub-memory banks. The at least two sub-memory banks are included in different row memory cell arrays, and each of the sub-memory banks includes multiple physical sectors. The sense amplifiers are dedicated to the sub-memory banks, respectively.03-05-2009
20100034021METHOD OF CONTROLLING OPERATION OF FLASH MEMORY DEVICE - According to a method of controlling the operation of a flash memory device including a number of memory blocks, a memory block of the memory blocks is first selected as a reference block. A program operation is performed on a memory cell included in the reference block. In order to check an operating characteristic of the reference block, a threshold voltage level of the programmed memory cell is read. Parameters for performing an operation of the flash memory device are determined based on the operating characteristic of the reference block. The parameters are stored in the reference block.02-11-2010
20120218821NON-VOLATILE SEMICONDUCTOR STORAGE DEVICE - A non-volatile semiconductor storage device includes: a memory string including a plurality of memory cells connected in series; a first selection transistor having one end connected to one end of the memory string; a first wiring having one end connected to the other end of the first selection transistor; a second wiring connected to a gate of the first selection transistor. A control circuit is configured to boost voltages of the second wiring and the first wiring in the erase operation, while keeping the voltage of the first wiring greater than the voltage of the second wiring by a certain potential difference. The certain potential difference is a potential difference that causes a GIDL current.08-30-2012
20120218820THREE DIMENSIONAL STACKED NONVOLATILE SEMICONDUCTOR MEMORY - A three dimensional stacked nonvolatile semiconductor memory according to examples of the present invention includes a memory cell array comprised of first and second blocks disposed side by side and a driver disposed between the first and second blocks. At least two conductive layers having the same structure as that of the at least two conductive layers in the first and second blocks are disposed on the driver, and select gate lines in the first and second blocks are connected to the driver through the at least two conductive layers on the driver.08-30-2012
20120218819NONVOLATILE SEMICONDUCTOR MEMORY - Disclosed is a nonvolatile memory system including at least one nonvolatile memory each having a plurality of nonvolatile memory cells and a buffer memory; and a control device coupled to the nonvolatile memory. The control device is enabled to receive external data and to apply the data to the nonvolatile memory, and the nonvolatile memory is enabled to operate a program operation including storing the received data to the buffer memory and storing the data held in the buffer memory to ones of nonvolatile memory cells. Moreover, the control device is enabled to receive external data while the nonvolatile memory is operating in the program operation. Also, the buffer memory is capable of receiving a unit of data, equal to the data length of data to be stored at one time of the program operation, the data length being more than 1 byte.08-30-2012
20120224426NONVOLATILE MEMORY DEVICE AND READ METHOD THEREOF - According to example embodiments, a read method of a nonvolatile memory device includes Disclosed is a read method of a nonvolatile memory device which includes selecting one of a plurality of vertical strings in a nonvolatile memory device, judging a channel length between a common source line and a selected one of the plurality of vertical strings, selecting a sensing manner corresponding to the judged channel length, and performing a sensing operation according to the selected sensing manner. The plurality of vertical strings may extend in a direction perpendicular to a substrate of the nonvolatile memory device.09-06-2012
20120224427NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - According to an embodiment, a block dividing unit groups l word lines into p groups, to divide a block into p divisional blocks. An erasing unit has an erasing operation performed on data stored in memory cells in a memory cell array, on a divisional block basis. An erasing verifying unit has an erasing verifying operation performed on memory cells subjected to the erasing operation, on a divisional block basis.09-06-2012
20120262989NONVOLATILE SEMICONDUCTOR MEMORY DEVICE INCLUDING PLURAL MEMORY CELLS AND A DUMMY CELL COUPLED TO AN END OF A MEMORY CELL - A nonvolatile semiconductor memory device having a plurality of electrically rewritable nonvolatile memory cells connected in series together includes a select gate transistor connected in series to the serial combination of memory cells. A certain one of the memory cells which is located adjacent to the select gets transistor is for use as a dummy cell. This dummy cell is not used for data storage. During data erasing, the dummy cell is applied with the same bias voltage as that for the other memory cells.10-18-2012
20120262987METHOD AND APPARATUS FOR LEAKAGE SUPPRESSION IN FLASH MEMORY IN RESPONSE TO EXTERNAL COMMANDS - Techniques are described herein for detecting and recovering over-erased memory cells in a flash memory device. In one embodiment, a flash memory device includes a memory array including a plurality of blocks of memory cells. The device also includes a command interface to receive a command from a source external to the memory device. The device also includes a controller including logic to perform a leakage-suppression process in response to the command. The leakage-suppression process includes performing a soft program operation to increase a threshold voltage of one or more over-erased memory cells in a given block of memory cells and establish an erased state.10-18-2012
20120262988METHOD AND APPARATUS FOR LEAKAGE SUPPRESSION IN FLASH MEMORY - Techniques are described herein for detecting and recovering over-erased memory cells in a flash memory device. In one embodiment, a flash memory device is described including a memory array including a plurality of blocks of memory cells. The device also includes a controller to perform a leakage-suppression process. The leakage-suppression process includes determining that a given block of memory cells includes one or more over-erased memory cells. Upon the determination, the leakage-suppression process also includes performing a soft program operation to increase the threshold voltage of the over-erased memory cells in the given block.10-18-2012
20120081960SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a plurality of memory cell data holding transistors provided in each block; a row decoder including transfer transistors, a voltage controller and a block selector in each block, the transfer transistors electrically connected to respective of the memory cell transistors, the voltage controller connected to gates of the respective transfer transistors and transferring a desired voltage to the gates of the respective transfer transistors, the block selector electrically connected to gates of the respective transfer transistors and configured to select blocks. A voltage generator generates the voltage to be supplied to the transfer transistors; and a controller controls the row decoder and the voltage generator circuit. When data is written, the gates of the respective transfer transistors are connected to the voltage controller in each non-selected block, and the gates of the respective transfer transistors are disconnected from the voltage controller in each selected block.04-05-2012
20120257452NONVOLATILE MEMORY DEVICE AND METHOD OF DRIVING THE SAME - A nonvolatile memory device includes a plurality of memory blocks, and a pass transistor array transmitting a plurality of drive signals to a selected memory block among the plurality of memory blocks in response to a block select signal. The pass transistor array includes high voltage transistors including one common drain and two sources formed in one active region and one of the plurality of drive signals transmitted to the common drain is transmitted to different memory blocks through the two sources.10-11-2012
20120230107SEMICONDUCTOR MEMORY DEVICE HAVING MEMORY BLOCK CONFIGURATION - A semiconductor device includes a semiconductor substrate having first and second edge lines, address pads along the first edge line, and memory mats, each including normal memory blocks and a spare memory block. Each normal memory block has nonvolatile memory cells and is a unit of batch erase. The memory mats are arranged in a U-shaped area having a hollow portion facing the second edge line. The device includes column decoders arranged correspondingly to the memory mats, an analog/logic circuit arranged in the hollow portion, and a power supply pad arranged between the analog/logic circuit and the second edge line. The analog/logic circuit includes a charge pump circuit. The device further includes a first power supply interconnection supplying power supply voltage to the charge pump circuit from the power supply pad, and a second power supply interconnection supplying power supply voltage to the column decoder from the power supply pad.09-13-2012
20120230106SEMICONDUCTOR MEMORY DEVICES, READING PROGRAM AND METHOD FOR MEMORY DEVICES - A semiconductor memory device, having a memory array which has two memory banks which can be accessed simultaneously is provided. A word line selection circuit selects the word line according to the row address information, and a controller controls the word line selection circuit according to the received instruction. The controller performs the first read operation of the word line selection circuit in response to a first read command, and performs the second read operation of the word line selection circuit in response to a second read command. The first read operation selects the n-th word line of one of the memory banks and selects the (n+1)-th or (n−1)-th word line of the other memory bank, and the second read operation selects the n-th word line of one of the memory banks and selects the n-th word line of the other memory bank.09-13-2012
20120320678NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - In performing a read operation of a memory transistor, a control circuit supplies a first voltage to a selected word line connected to a selected memory transistor. A second voltage is supplied to a non-selected word line connected to a non-selected memory transistor other than the selected memory transistor, the second voltage being higher than the first voltage. A third voltage is supplied to a bit line. A fourth voltage lower than the third voltage is supplied to, among source lines, a selected source line connected to a memory string including the selected memory transistor in a selected memory block. A fifth voltage substantially the same as the third voltage is supplied to, among the source lines, a non-selected source line connected to a non-selected memory string in the selected memory block.12-20-2012
20120320677NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - In a writing operation, a control circuit raises the voltage of a writing-prohibited bit line among a plurality of bit lines to a first voltage, and thereafter brings the writing-prohibited bit line into a floating state. Then, the control circuit raises the voltage of a writing bit line other than the writing-prohibited bit line to a second voltage. In this way, the control circuit prohibits writing into a memory transistor corresponding to the writing-prohibited bit line. On the other hand, the control circuit executes writing into a memory transistor corresponding to the writing bit line.12-20-2012
20120327712METHOD FOR MEMORY CELL ERASURE WITH A PROGRAMMING MONITOR OF REFERENCE CELLS - Embodiments of the present disclosure provide methods, devices, modules, and systems for operating memory cells. One method includes: performing an erase operation on a selected group of memory cells, the selected group including a number of reference cells and a number of data cells; performing a programming monitor operation on the number of reference cells as part of the erase operation; and determining a number of particular operating parameters associated with operating the number of data cells at least partially based on the programming monitor operation performed on the number of reference cells.12-27-2012
20120268991DATA STORAGE DEVICE AND BLOCK SELECTION METHOD FOR A FLASH MEMORY - The invention provides a block selection method for a flash memory. First, a flash memory is divided into a plurality of great block groups. Each of the great block groups is then divided into a plurality of block groups. Scores corresponding to the blocks of the flash memory are then recorded in a score table. When the score of a target block selected from the blocks of the flash memory has been amended, the amended score of the target block is compared with a first extreme value and a second extreme value corresponding to the block group and the great block group comprising the target block and the total extreme value. A victim block is then determined from the blocks of the flash memory according to an extreme value table.10-25-2012
20120268993SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes first and second memory planes that each include a plurality of memory blocks, a first page buffer group coupled to the memory blocks of the first memory plane through first bit lines and configured to perform a read operation and a program operation, a second page buffer group coupled to the memory blocks of the second memory plane through second bit lines and configured to perform the read operation and the program operation, a coupling circuit configured to couple the first bit lines of the first memory planes and the second bit lines of the second memory planes, respectively, in response to a coupling signal, and a control circuit configured to generate the coupling signal for controlling the coupling circuit in a copyback operation of data, read from a source page of the first memory plane, in a target page of the second memory plane.10-25-2012
20120268992SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a memory cell array configured to include a plurality of memory blocks, a voltage generator configured to output operating voltages for data input and output to global lines, and a row decoder configured to transfer the operating voltages to local lines of a memory block, selected from among the plurality of memory blocks, and supply a ground voltage to local lines of unselected memory blocks in response to address signals.10-25-2012
20120268995NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE AND ELECTRONIC APPARATUS - A memory cell array including non-volatile memory cells is divided into a first block including a non-volatile memory cell for accumulating a degradation over time and a second block including a non-volatile memory cell for storing data. A word line select circuit and a bit line select circuit select a first word line and a first bit line connected to the second block to access the non-volatile memory cell for storing data of the second block, and selects a second word line or a second bit line connected to the first block to apply a stress voltage to the non-volatile memory cell for accumulating the degradation over time of the first block, thereby automatically detecting ambient temperature and storing accumulated stress.10-25-2012
20110216594SEMICONDUCTOR MEMORY DEVICE USING ONLY SINGLE-CHANNEL TRANSISTOR TO APPLY VOLTAGE TO SELECTED WORD LINE - A semiconductor memory device has a memory cell array, a first transistor of a first conductivity type, a second transistor of a second conductivity type and a third transistor of the first conductivity type. A source or drain of the first transistor is connected to each of word lines. A drain of the second transistor is connected to a gate of the first transistor. A source of the third transistor is connected to the gate of the first transistor. The gates of the second transistor and the third transistor are not connected, a source of the second transistor is not connected to a drain of the third transistor, and the gate of the second transistor and the drain of the third transistor have different voltage levels corresponding to opposite logic levels each other.09-08-2011
20110216592NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND MEMORY SYSTEM - According to one embodiment, a nonvolatile semiconductor memory device includes a memory cell array includes blocks, each of the blocks includes NAND strings that each comprise memory cells serially connected in a first direction, word lines respectively connected to memory cell groups arranged in a second direction in the block, and a controller configured to perform a process (A) of verifying one of states in which all of the memory cells included in the block are turned on (pass) and at least one memory cell is turned off (fail) by use of a first read voltage applied to unselected word lines in a data read time, and to perform a process (B) of reading data from the fail block by use of a second read voltage that is higher than the first read voltage and applied to the unselected word lines.09-08-2011
20110235417NAND FLASH MEMORY - A NAND flash memory that is read while a selected bit line and a non-selected bit line are adjacent to each other, has a memory cell array having a plurality of blocks each of which is composed of a plurality of memory cell units, each of said memory cell units having a plurality of electrically rewritable memory cells that are connected to each other and composed of a p-type well surrounded by an n-type well formed in a p-type semiconductor substrate, drain-side select gate transistors each of which connects a memory cell unit to a bit line and is connected to a drain-side select gate line at the gate thereof, and source-side select gate transistors each of which connects a memory cell unit to a source line and is connected to a source-side select gate line at the gate thereof; a row decoder that is connected to word lines, the drain-side select gate lines and the source-side gate line of said memory cell array, and applies a signal voltage to word lines, the drain-side select gate lines and the source-side gate line of said memory cell array for selecting a block; and a sense amplifier that is controlled by a column decoder and makes a selection from said bit lines of said memory cell array, wherein, in a block that is not selected by said row decoder, said bit line selected by said sense amplifier is charged in a state where the drain-side select gate line, the source-side select gate line and the p-type semiconductor substrate are set at a ground potential, and the source lines, the n-type wells, the p-type wells and a bit line that is not selected by said sense amplifier are in a floating state.09-29-2011
20120275223SEMICONDUCTOR DEVICE AND OPERATING METHOD THEREOF - There is disclosed an operating method of a semiconductor device including programming a memory cell by supplying a program voltage to a control gate of the memory cell and a detrap voltage to a well which is formed in a semiconductor substrate, and subsequently removing electrons trapped in a tunnel insulating layer of the memory cell by supplying a voltage lower than the detrap voltage to the control gate while also supplying the detrap voltage to the well before the programmed memory cell is verified.11-01-2012
20120092930SEMICONDUCTOR STORAGE DEVICE AND METHOD OF READING DATA THEREFROM - A semiconductor memory device includes a first memory cell array having a first plane which is composed of a plurality of blocks each having a plurality of memory cells, a sense circuit which reads data the memory cells, a sequencer which receives control signals from outside, a first address register, and a second address register which receives an output address from the first address register and outputs an address signal in response to an address control signal from the sequencer. In reading from the memory cells, the sequencer reads a page n in accordance with the address stored in the second address register, then transfers an address stored in the first address register to the second address register concurrently with outputting data read from the page n to outside and reads data from an arbitrary page m in accordance with the address transferred to the second address register.04-19-2012
20130016560SEMICONDUCTOR MEMORY DEVICESAANM YANO; MasaruAACI TokyoAACO JPAAGP YANO; Masaru Tokyo JPAANM CHIANG; Lu-PingAACI Hsinchu CityAACO TWAAGP CHIANG; Lu-Ping Hsinchu City TW - A semiconductor memory device includes a memory array, a row selection circuit and a bit line selection circuit. The memory array is composed of a plurality of cell units, wherein each cell unit has memory cells connected in series. The row selection circuit selects the memory cells in a row direction of the cell units, and the bit line selection circuit selects a bit line from an even bit line and an odd bit line coupled to the cell units. The bit line selection circuit includes a first selection part including selection transistors for selectively coupling the even or odd bit line to a sensor circuit and a second selection part including bias transistors for selectively coupling the even or odd bit line to a voltage source providing biases, wherein the bias transistors and the memory cells are formed in a common well.01-17-2013
20130016561ERASE SYSTEM AND METHOD OF NONVOLATILE MEMORY DEVICEAANM NAM; Sang-WanAACI Hwaseong-siAACO KRAAGP NAM; Sang-Wan Hwaseong-si KR - An erase system and method of a nonvolatile memory device includes supplying an erase voltage to a plurality of memory cells of a nonvolatile memory, performing a read operation with a read voltage to word lines of the plurality of memory cells, and performing an erase verification operation with an erase verification voltage to at least one of the word lines of the plurality of memory cells, the erase verification voltage lower than the read voltage.01-17-2013
20110149652SEMICONDUCTOR MEMORY DEVICE AND METHOD OF OPERATING THE SAME - A semiconductor memory device comprises memory blocks having a plurality of memory cells coupled to a plurality of bit lines, a first latch group coupled to a sense node and configured to store data to be programmed into memory cells, where the memory cells are coupled to the bit lines and the sense node is coupled to at least one of the bit lines, a second latch group coupled to the sense node and configured to receive data of the first latch group, and a sense node voltage control circuit configured to control a voltage of the sense node according to data stored in the first latch group.06-23-2011
20110157988SEMICONDUCTOR MEMORY DEVICE AND METHOD OF OPERATING THE SAME - A semiconductor memory device includes memory blocks each comprising a plurality of memory cells formed over a semiconductor substrate having a P well, a first voltage generator supplying operating voltages to an selected block of the memory blocks, and a second voltage generator generating a negative voltage to the P well during a program operation.06-30-2011
20130170298SCALABLE MEMORY SYSTEM - A memory system architecture has serially connected memory devices. The memory system is scalable to include any number of memory devices without any performance degradation or complex redesign. Each memory device has a serial input/output interface for communicating between other memory devices and a memory controller. The memory controller issues commands in at least one bitstream, where the bitstream follows a modular command protocol. The command includes an operation code with optional address information and a device address, so that only the addressed memory device acts upon the command. Separate data output strobe and command input strobe signals are provided in parallel with each output data stream and input command data stream, respectively, for identifying the type of data and the length of the data. The modular command protocol is used for executing concurrent operations in each memory device to further improve performance.07-04-2013
20120243316MEMORY DEVICES AND THEIR OPERATION WITH DIFFERENT SETS OF LOGICAL ERASE BLOCKS - Methods of operating memory devices include storing data of a first type in a first set of logical erase blocks and storing data of a second type in a second set of logical erase blocks. The logical erase blocks of the first set of logical erase blocks each have a first size the logical erase blocks of the second set of logical erase blocks each have a second size different than the first size.09-27-2012
20080253184NON VOLATILE MEMORY - An electrically programmable and erasable non-volatile semiconductor memory such as a flash memory is designed into a configuration in which, when a cutoff of the power supply occurs in the course of a write or erase operation carried out on a memory cell employed in the non-volatile semiconductor memory, the operation currently being executed is discontinued and a write-back operation is carried out to change a threshold voltage of the memory cell in the reversed direction. In addition, the configuration also allows the number of charge-pump stages in an internal power-supply configuration to be changed in accordance with the level of a power-supply voltage so as to make the write-back operation correctly executable. As a result, no memory cells are put in deplete state even in the event of a power-supply cutoff in the course of a write or erase operation.10-16-2008
20080247233NON-VOLATILE MEMORY DEVICE, NON-VOLATILE MEMORY SYSTEM AND CONTROL METHOD FOR THE NON-VOLATILE MEMORY DEVICE - A nonvolatile memory device which can reduce consumption current and shorten access time and a control method thereof is provided. The nonvolatile memory device 10-09-2008
20100085810METHOD OF CONTROLLING MEMORY SYSTEM - A memory unit includes a plurality of first blocks each having a first block size. Each of the first blocks stores data of a plurality of second blocks each having a second block size which is smaller than the first block size. A control unit writes the data of the second block in the first block. The control unit is configured such that in a case where the second block to be written is a block that is to be written in the same first block as the second block that is already written in the first block, the second block to be written is written in the same first block even if an address of the second block to be written is not consecutive to an address of the second block that is already written in the first block.04-08-2010
20080225592Nonvolatile semiconductor memory device - With this flash memory, because a plurality of memory blocks are formed on a surface of a single P-type well, a layout area can be made small. Further, when erasing data for a memory block to be erased, a voltage of the P-type well is applied to all word lines of a memory block to be not erased. Consequently, the voltage of the P-type well and the voltage of all word lines of the memory block to be not erased change at the same time. With this, it is possible to prevent a threshold voltage for the memory block to be not erased from changing.09-18-2008
20130141976Semiconductor Memory Apparatus - A semiconductor memory apparatus comprises first and second memory blocks each comprising semiconductor elements coupled to first and second local line groups, a first switching circuit configured to couple a first global line group to the first local line group of the first memory block in response to a block selection signal, a second switching circuit configured to couple a second global line group to the second local line groups of the first and second memory blocks in response to the block selection signal, and a third switching circuit configured to couple the first global line group to the first local line group of the second memory block in response to the block selection signal.06-06-2013
20130176784ADJUSTING OPERATING PARAMETERS FOR MEMORY CELLS BASED ON WORDLINE ADDRESS AND CYCLE INFORMATION - Disclosed is an apparatus and method for adjusting operating parameters in a storage device. A controller in a solid state drive monitors current operating conditions for blocks of memory used to store data in the drive. When a block has been subjected to a predetermined number of program/erase cycles one or more stored bias values are retrieved from a storage location based on the wordline(s) associated with a current memory operation. The one or more parameters of the memory operation are then adjusted based on the one or more stored bias values, and the memory operation performed on the block of memory cells using the adjusted parameters.07-11-2013
20080219053PARTIAL BLOCK ERASE ARCHITECTURE FOR FLASH MEMORY - A method and system for increasing the lifespan of a flash memory device by selectively erasing sub-blocks of a memory block. Each physical memory block of the flash memory device is dividable into at least two logical sub-blocks, where each of the at least two logical sub-blocks is erasable. Therefore, only the data of the logical sub-block is erased and reprogrammed while unmodified data in the other logical sub-block avoids unnecessary program/erase cycles. The logical sub-blocks to be erased are dynamically configurable in size and location within the block. A wear leveling algorithm is used for distributing data throughout the physical and logical sub-blocks of the memory array to maximize the lifespan of the physical blocks during programming and data modification operations.09-11-2008
20120250412FLASH MEMORY APPARATUS AND METHOD FOR GENERATING READ VOLTAGE THEREOF - A flash memory apparatus includes: a cell array including a plurality of main blocks, a code addressable memory (CAM) block, and a security block; a control unit configured to detect a threshold voltage change data of a main block to which a program operation has been performed among the plurality of main blocks, and set a trimming value corresponding to the detected threshold voltage change data; and a read voltage generation unit configured to generate a read voltage according to the set trimming value.10-04-2012
20130094296THREE DIMENSIONAL STACKED NONVOLATILE SEMICONDUCTOR MEMORY - A three dimensional stacked nonvolatile semiconductor memory according to an example of the present invention includes a memory cell array comprised of first and second blocks disposed side by side in a first direction, and a driver disposed on one end of the memory cell array in a second direction orthogonal to the first direction. First select gate lines in the first block and first select gate lines in the second block are connected to the driver after they are commonly connected in one end in the second direction of the memory cell array in a relation of one to one.04-18-2013
20130114340SECURE MEMORY WHICH REDUCES DEGRADATION OF DATA - A method for managing a non-volatile memory may include a first phase of writing data to a first bank of a memory plane of the non-volatile memory, and then a second phase of writing the same data to a second bank of the same memory plane of the non-volatile memory in the case of success of the first writing phase.05-09-2013
20130100739SEMICONDUCTOR DEVICE - The present invention provides a semiconductor device having a nonvolatile memory function capable of shortening an erase time and executing data access efficiently. When, under the control of a command register/control circuit, an erase voltage is applied to an embedded erase gate wiring disposed in a memory cell boundary region, and an electrical charge is transferred between a floating gate and an embedded erase gate to thereby perform an erase operation, a read selection voltage is applied to a memory gate line and an assist gate line during the application of the erase voltage to thereby carry out the reading of data.04-25-2013
20130100738THREE-DIMENSIONAL NONVOLATILE MEMORY DEVICES - A three-dimensional (3-D) nonvolatile memory device includes channel layers protruded from a substrate, word line structures configured to include word lines stacked over the substrate, first junctions and second junctions formed in the substrate between the word line structures adjacent to each other, source lines coupled to the first junctions, respectively, and well pickup lines coupled to the second junctions, respectively.04-25-2013
20130100737NONVOLATILE MEMORY DEVICE AND RELATED METHOD OF OPERATION - A nonvolatile memory comprises a memory block having memory cells stacked in a three dimensional structure. The nonvolatile memory device performs an erase operation to erase a selected sub block among sub blocks of the memory block, a verification operation to determine whether program states of memory cells of an unselected sub block of the memory block have changed as a consequence of the erase operation, and a reprogramming operation to reprogram at least a portion of the unselected sub block upon determining that at least one of the program states have changed as a consequence of the erase operation.04-25-2013
20110228607ADJUSTING PROGRAM AND ERASE VOLTAGES IN A MEMORY DEVICE - A system and apparatus for adjusting threshold program and erase voltages in a memory array, such as a floating gate memory array, for example. One such method includes applying a first voltage level to a first edge word line of a memory block string and applying a second voltage level to a second edge word line of the memory block string. Such a method might also include applying a third voltage level to non-edge word lines of the memory block string.09-22-2011
20100309724SEMICONDUCTOR MEMORY DEVICE USING ONLY SINGLE-CHANNEL TRANSISTOR TO APPLY VOLTAGE TO SELECTED WORD LINE - A semiconductor memory device has a memory cell array, a first transistor of a first conductivity type, a second transistor of a second conductivity type and a third transistor of the first conductivity type. A source or drain of the first transistor is connected to each of word lines. A drain of the second transistor is connected to a gate of the first transistor. A source of the third transistor is connected to the gate of the first transistor. The gates of the second transistor and the third transistor are not connected, a source of the second transistor is not connected to a drain of the third transistor, and the gate of the second transistor and the drain of the third transistor have different voltage levels corresponding to opposite logic levels each other.12-09-2010
20120275224OPERATING METHOD OF SEMICONDUCTOR DEVICE - An operating method of a semiconductor device that includes a plurality of memory cell blocks, comprising selecting one of the memory cell blocks in response to a program command, performing a pre-program operation and a pre-erase operation so that threshold voltages of memory cells included in the selected memory cell block are distributed between a first positive voltage and a first negative voltage, supplying a program permission voltage to a first group of bit lines and supplying a program inhibition voltage to a second group of bit lines, wherein the first group and the second group are mutually exclusive, and supplying a positive program voltage to a selected word line coupled to memory cells.11-01-2012
20100315874USE OF EMERGING NON-VOLATILE MEMORY ELEMENTS WITH FLASH MEMORY - Memory devices and methods of operating memory devices are provided, such as those that involve a memory architecture that replaces typical static and/or dynamic components with emerging non-volatile memory (NV) elements. The emerging NV memory elements can replace conventional latches, can serve as a high speed interface between a flash memory array and external devices and can also be used as high performance cache memory for a flash memory array.12-16-2010
20130155772SEMICONDUCTOR MEMORY DEVICE AND METHOD OF OPERATING THE SAME - In a semiconductor memory device and a method of operating the same, a memory block including memory cells is divided into memory groups. A level of bit line voltage applied to a bit line coupled to the memory cells included in each of the memory groups varies according to a distance between a row decoder and each memory groups during a program operation. Characteristics of the threshold voltage distribution of the memory cells in the semiconductor memory device may be improved without deteriorating performance of the program.06-20-2013
20110286272MEMORY DEVICES AND THEIR OPERATION WITH DIFFERENT SETS OF LOGICAL ERASE BLOCKS - Methods of operating memory devices include storing data of a first type in a first set of logical erase blocks and storing data of a second type in a second set of logical erase blocks. The logical erase blocks of the first set of logical erase blocks each have a first size the logical erase blocks of the second set of logical erase blocks each have a second size different than the first size.11-24-2011
20110310668Flash Memory Device and Program Method Thereof - A nonvolatile memory device that includes first and second storage areas, and a control logic configured to control the first and second storage areas, wherein when a program operation of the first storage area is passed before a program operation of the second storage area is passed, the control logic completes the program operation of the first storage area and continues the program operation of the second storage area is provided.12-22-2011
20110310667SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a memory cell array including a plurality of blocks each including a memory cell unit, and a selection transistor which selects the memory cell unit, and a row decoder including a first block selector and a second block selector each of which includes a plurality of transfer transistors which are formed to correspond to the plurality of blocks and arranged adjacent to each other in a word-line direction wherein the diffusion layers are formed to oppose each other in the first block selector and the second block selector, and a width between the diffusion layers of the first block selector and the second block selector adjacent to each other in the word-line direction is made larger than a width between the diffusion layers in each of the first block selector and the second block selector adjacent to each other in the word-line direction.12-22-2011
20110310666PROGRAMMING METHOD FOR NAND FLASH MEMORY DEVICE TO REDUCE ELECTRONS IN CHANNELS - In a programming method for a NAND flash memory device, a self-boosting scheme is used to eliminate excess electrons in the channel of an inhibit cell string that would otherwise cause programming disturb. The elimination is enabled by applying a negative voltage to word lines connected to the inhibit cell string before boosting the channel, and this leads to bringing high program immunity. A row decoder circuitry to achieve the programming operation and a file system architecture based on the programming scheme to improve the efficiency of file management are also described.12-22-2011
20120002473BACKGROUND POWER CONSUMPTION REDUCTION OF ELECTRONIC DEVICES - An electronic device including a set of functional block, and a biasing block for generating a set of bias voltages for the functional blocks. The electronic device further includes a holding block coupled between the biasing block and the functional blocks for providing each bias voltage to at least one corresponding functional block, for each bias voltage the holding block including a capacitive element for storing the bias voltage, and a switch element switchable between an accumulation condition wherein provides the bias voltage from the biasing block to the capacitive element and to the at least one corresponding functional block, and a release condition wherein isolates the capacitive element from the biasing block and provides the bias voltage from the capacitive element to the at least one corresponding functional block, and a control block for alternately switching the switching elements between the accumulation condition and the release condition.01-05-2012
20120020160NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND WRITING METHOD THEREOF - A control circuit is configured to execute a writing operation for giving a second threshold voltage distribution to a plurality of memory cells formed along one word line. In the writing operation, the control circuit performs a writing operation by executing a voltage applying operation in memory cells to be given the second threshold voltage distribution. While the control circuit executes a voltage applying operation in memory cells to be maintained in an erased state, thereby moving a first threshold voltage distribution to a positive direction to obtain a third threshold voltage distribution representing the erased state.01-26-2012
20130194869THREE-DIMENSIONAL NON-VOLATILE MEMORY DEVICE - A three-dimensional (3-D) non-volatile memory device according to embodiment of the present invention includes a plurality of bit lines, at least one string row extending in a first direction coupled to the bit lines and including 2N strings, wherein the N includes a natural number, a common source selection line configured to control source selection transistors of the 2N strings included in a memory block, a first common drain selection line configured to control drain selection transistors of a first string and a 2N-th string among the 2N strings included in a memory block, and N−1 second common drain selection lines configured to control drain selection transistors of adjacent strings in the first direction among remaining strings other than the first string and the 2N-th string.08-01-2013
20130194870SEMICONDUCTOR MEMORY DEVICE AND METHOD OF OPERATING THE SAME - A semiconductor memory device includes a memory block including memory strings coupled to and disposed between bit lines and a common source line, and a peripheral circuit configured to perform a read operation of memory cells included in selected memory strings of the memory strings and increase channel potential of unselected memory strings in the read operation.08-01-2013
20130194868NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - A limiter circuit compares a voltage of a control gate line and a set voltage, thereby switching the logic of a flag signal. A booster circuit starts or stops its operation according to the logic of the flag signal. A leak reference circuit has a function of leaking a leak reference current from the control gate line. A counter generates a first count value by counting the number of times the flag signal logic changes in a condition that a word-line transfer transistor is rendered non-conductive and a leak reference circuit is driven, while the counter generates a second count value by counting the number of times the flag signal logic changes in a condition that the word-line transfer transistor is rendered conductive and the leak reference circuit is undriven. A comparator compares the first count value and the second count value.08-01-2013
20120294085MULTI-PARTITION ARCHITECTURE FOR MEMORY - A multiple partition memory and architecture for concurrent operations reduces circuit overhead by providing a common read sense amplifier and program path for multiple partitions. Long separate datalines for read and algorithm operations allow concurrent operation and blockout of multiple operations in a single block of the memory.11-22-2012
20120092929SEMICONDUCTOR MEMORY DEVICE CAPABLE OF INCREASING WRITING SPEED - A memory cell array has a structure in which a plurality of memory cells connected with word lines and bit lines and connected in series are arranged in a matrix form. A selection transistor selects the word lines. A control circuit controls potentials of the word lines and the bit lines in accordance with input data, and controls write, read and erase operations of data with respect to the memory cell. The selection transistor is formed on a well, and a first negative voltage is supplied to a well, a first voltage (the first voltage the first negative voltage) is supplied to a selected word line and a second voltage is supplied to a non-selected word line in the read operation.04-19-2012
20120092928SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes: a memory-cell array provided between a first region and a second region, and including a plurality of memory cells; a first row decoder and a second row decoder; a first power line provided in the first region; a second power line provided in the first region; a first power-supply circuit configured to supply the first voltage to the first power line and to the second power line; a first switching circuit; and a second switching circuit. In a write operation, the first switching circuit connects the first power line and the first power-supply circuit to each other whereas the second switching circuit disconnects the second power line and the first power-supply circuit from each other.04-19-2012

Patent applications in class Bank or block architecture

Patent applications in all subclasses Bank or block architecture