Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


In transistor inverter systems

Subclass of:

363 - Electric power conversion systems

363013000 - CURRENT CONVERSION

363123000 - Using semiconductor-type converter

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
363132000 Bridge type 127
363133000 Double ended (i.e., push-pull) type 13
Entries
DocumentTitleDate
20130044527POWER CONVERSION SYSTEM - The invention relates to a power conversion system, wherein a first switch is connected between a input voltage source and a second switch, wherein the second switch is connected to a third switch wherein the third switch is connected to a fourth switch, wherein the fourth switch is connected to the input voltage source, wherein a first diode is connected between a neutral point and the second switch, wherein a second diode is connected between the third switch and the neutral point. Two or more current transformers are arranged such that a drive signal is produced in an interleaved mode.02-21-2013
20120163057MECHANICAL ARRANGEMENT OF A MULTILEVEL POWER CONVERTER CIRCUIT - A mechanical arrangement of a multilevel power converter circuit includes a power converter having a first portion with a plurality of first control inputs, at least three direct current voltage inputs, and an alternating current voltage output, and a second portion with a plurality of second control inputs, the at least three direct current voltage inputs and the alternating current voltage output. The second portion is split apart from the first portion. The power converter has at least three levels corresponding to the at least three direct current voltage inputs.06-28-2012
20100073980POWER CONVERTER ASSEMBLY WITH ISOLATED GATE DRIVE CIRCUIT - A power converter assembly is provided. The power converter includes at least one switch, a high frequency oscillator coupled to the at least one switch and configured to generate a high frequency waveform based on direct current (DC) power provided thereto, and a power buffer coupled to the at least one switch and the high frequency oscillator and configured to control the operation of the at least one switch based on the high frequency waveform03-25-2010
20130135912POWER CONTROL DRIVING DEVICE AND METHOD THEREOF - Disclosed is a power control driving device which includes a sine wave signal generating unit; a control signal converting unit configured to convert a sine wave from the sine wave signal generating unit into a multi-bit control signal; and a three-phase inverter circuit configured to output a voltage varied by the multi-bit control signal from the control signal converting unit. The control signal converting unit includes a multi-bit sigma-delta modulator configured to convert an analog sine wave into a digital signal. The three-phase inverter circuit includes a plurality of switch units, on-off states of the plurality of switch units being controlled according to the multi-bit control signal from the control signal converting unit.05-30-2013
20130077372METHODS AND SYSTEMS FOR OPERATING A POWER CONVERTER - A power conversion system for providing power to an electrical grid is described. The power conversion system includes a power converter coupled to a photovoltaic (PV) array and configured to control a PV array voltage. The power conversion system also includes a system controller communicatively coupled to the power converter and configured to select from a first reduced power operating point and a second reduced power operating point when a power available from the PV array is greater than a rated output power of the power conversion system.03-28-2013
20130039108CAPACITOR DISCHARGER FOR POWER CONVERSION SYSTEM - A capacitor discharger applied to a power conversion system including a DC voltage source, a power conversion circuit having a pair of input terminals via which the DC voltage source is electrically connected to the power conversion circuit, and a capacitor electrically connected between the pair of input terminals of the power conversion circuit. The capacitor discharger includes a first series connection of resistive elements and a second series connection of resistive elements. In the capacitor discharger, a parallel connection of the first and second series connections of resistive elements is electrically connected between the pair of input terminals of the power conversion circuit. This can ensure a discharge path for discharging the capacitor even in the presence of an abnormality in a portion of the parallel connection of the first and second series connections of resistive elements.02-14-2013
20130039107DISCHARGE CIRCUIT FOR CAPACITOR - A discharge circuit for discharging a capacitor disposed in a power conversion circuit. The discharge circuit includes: a conduction path connecting the power conversion circuit and input terminals; plural resistors disposed in the conduction path, dividing voltage difference between voltage at the input terminal and reference voltage; a connection path connecting a pair of conduction paths; a switch disposed in the connection path, which opens and closes the connection path, the switch being controlled electrically; and a control unit that controls the switch to be opened or closed, the control unit controls the switch to be closed in order to make a closed loop circuit including the capacitor and the connection path. The connection path is disposed between the pair of conduction paths to include at least one resistor of the plurality of resistors in the closed loop circuit when the switch is closed by the control unit.02-14-2013
20130039106Controllers for Static Energy Supply Units - A static energy supply unit has an energy store 4-connected to an ac supply network by a power converter. A unit controller for the static energy supply unit includes an amplitude controller, a phase controller and a frequency controller. These measure and record characteristics of the supply network and provide output signals indicative of the voltage characteristics for an operating condition of the supply network. A signal generator for generating a simulated output voltage signal for each phase of the ac supply network is provided. A comparator is used to compare the simulated output voltage signal for each phase and a measured voltage for a corresponding phase of the supply network. The controller controls the operation of the power converter to vary the amount of power that is supplied to the supply network from the energy store 4-based on the comparison of the simulated output voltage signal(s) and the measured ac voltage(s).02-14-2013
20130033910Power Converter Circuit - A power converter includes a DC/AC converter with input terminals and output terminals. A DC/DC converter includes input terminals for receiving a DC input voltage and output terminals for providing a DC output voltage. The output terminals are coupled to the input terminals of the DC/AC converter. The DC/DC converter also includes a control circuit that is configured to control an output current of the DC/DC converter dependent on a reference signal. The reference signal has a frequency that is dependent on a frequency of the AC output voltage.02-07-2013
20130033911POWER CONVERTING APPARATUS - A power converting apparatus, includes: switching elements (S02-07-2013
201300445262N+1 LEVEL VOLTAGE INVERTER - This system for converting a direct input voltage into an alternating output voltage comprises two input terminals, two voltage generators connected in series between the input terminals and connected to one another by a middle point, as well as, for each phase of the alternating voltage, an output terminal, two switching branches each connected between the output terminal and a respective input terminal, each switching branch comprising N first switching cells connected in series and N−1 intermediate points, the first switching cells successively being connected to one another by a corresponding intermediate point, N being an integer greater than or equal to 2, and control means for controlling the first switching cells. The system includes, for each phase of the alternating voltage, N−1 pair(s) of capacitors, each pair of capacitors being connected between intermediate points of one of the two switching branches and the other of the two switching branches.02-21-2013
20120262967SINGLE-STAGE INVERTER WITH HIGH FREQUENCY ISOLATION TRANSFORMER - The novel single-stage power processing DC-AC inverter topology with high frequency isolation transformer eliminates the four-transistor unfolding full-bridge stage and provides the output AC voltage at high power conversion efficiency. The new inverter topology has only three switches, two resonant capacitors, a resonant inductor, an output inductor and a small size high-frequency isolation transformer, which does not store the DC energy. The output AC voltage is obtained by the PWM sinusoidal modulation of the duty ratio control of the three switches and can be regulated against the input voltage changes.10-18-2012
20130083580SWITCHING POWER SUPPLY DEVICE, AND INVERTER, CONVERTER, AIR CONDITIONER, SOLAR POWER CONTROLLER, AND AUTOMOBILE EMPLOYING SAME - The switching power supply device is provided with a high-withstand voltage first transistor, a first electrode of which being connected to a first node; a low-withstand voltage second transistor, a first electrode of which being connected to a second electrode of the first transistor, and a second electrode of which being connected to a second node; and a drive circuit. Each of the first and second transistors has a parasitic diode connected in the forward direction between the second and first electrodes. The drive circuit, in a case where electrical current is to flow from the first node to the second node, turns on the first and second transistors, and, in a case where electrical current is to flow from the second node to the first node, turns on the first transistor, and turns off the second transistor.04-04-2013
20090129134CONTROLLED CLASS-E DC AC CONVERTER - Converting a direct (DC) input voltage supplied by a DC source (05-21-2009
20130083579PRE-BIASED SAMPLING FILTER - Methods and apparatuses are disclosed for sampling a feedback signal representative of an output of a power converter using a pre-biased filter capacitor. The pre-biased filter capacitor provides accurate sampling of the feedback signal during various load conditions. The pre-biased filter may be pre-charged to a pre-bias voltage that is below the regulated voltage of the feedback signal to reduce the amount of time required to charge the pre-biased filter capacitor to the regulated voltage of the feedback signal.04-04-2013
20130070502POWER CONVERTER DESIGNED TO ENHANCE STABILITY IN OPERATION - A power converter equipped with a plurality of semiconductor modules, a cooling device, a control circuit board, a smoothing capacitor, and a discharging resistor. The discharging resistor mounted on the control circuit board in parallel connection to the smoothing capacitor. The control circuit board has fabricated thereon a timing controller working to control timings of on/off operations of the semiconductor modules, a driver coupled to control terminals of the semiconductor modules to control voltage applied to the control terminals, and a power supply circuit working to transform a voltage input to the control circuit board into operating voltages for the timing controller and the driver. The driver is disposed between at least one of the timing controller and the power supply circuit and the discharging resistor, thereby protecting the timing controller and/or the power supply circuit mounted on the control circuit board from thermal energy radiating from the discharging resistor.03-21-2013
20130088906Precision Switching For Carrier Based PWM - A voltage source converter station including a multilevel voltage source converter, for conversion of electrical power between AC and DC, and a control system. The voltage source converter includes a plurality of switching cells including switchable semiconductors, and the control system includes at least one main control unit for providing a voltage reference signal and a plurality of cell control units. Each cell control unit uses carrier based pulse width modulation for controlling the switching of a respective cell, where the main control unit is communicatively connected to the cell control units and provides the reference voltage signal to each cell control unit and each cell control unit creates a switching signal to each respective switching cell using the reference voltage signal and a carrier signal to effectuate the conversion.04-11-2013
20130088905DEAD-TIME COMPENSATION ALGORITHM FOR 3-PHASE INVERTER USING SVPWM - Disclosed is a dead-time compensation method of a 3-phase inverter using an SVPWM scheme. The dead-time compensation method includes generating a switching signal having dead-time with respect to the power semiconductor switches of the upper and lower arms in order to obtain a predetermined output through the SVPWM scheme, detecting medium phase current from each phase current output through the switching signal, determining polarity of the medium phase current, and generating a switching signal by calculating switching time in order to compensate for time to apply effective voltage according to the polarity of the medium phase current. Through the dead-time compensation method, the distortion of the output voltage and the reduction of voltage having a fundamental wave in the output voltage, which are caused by the dead-time, are minimized through the switching of compensating for the time to apply effective voltage based on the polarity of the load current.04-11-2013
20130058143POWER CONVERTER EQUIPPED WITH SEMICONDUCTOR MODULE - In a power converter, a plurality of AC busbars are electrically connected to an AC load. An insulating support surrounds at least part of a stacked converter unit of semiconductor modules and refrigerant paths. The set of busbars are fixedly mounted on the insulating support. A terminal holder has a mount surface on which one end of each of the plurality of AC busbars is mounted as a terminal. A current sensor has a through-hole and measures a current flowing through at least part of at least one of the plurality of AC busbars. The current sensor is attached to the terminal holder with the at least part of the at least one of the plurality of AC busbars being fitted in the through-hole of the current sensor.03-07-2013
20130058144POWER CONVERSION APPARATUS - A power conversion apparatus includes a power converter, a voltage detector, a current detector, a detection voltage adjustor, and a controller. The power converter is configured to convert power from a power source into alternating-current power and is configured to output the alternating-current power to a power system. The voltage detector is configured to detect a voltage of the power system. The current detector is configured to detect a direct-current component of a current between the power converter and the power system. The detection voltage adjustor is configured to add a bias corresponding to the direct-current component to the voltage detected by the voltage detector, so as to generate a voltage detection signal, and is configured to output the voltage detection signal. The controller is configured to control the power converter to output an alternating-current voltage corresponding to the voltage detection signal.03-07-2013
20120307540POWER CONVERSION DEVICE - The present invention aims to provide a power converter with an arm including switching devices connected in parallel, realizing long lifespans of switching devices. An inverter includes an upper and a lower arm, and gate drive circuits each driving the corresponding arm according to a gate control signal Gup_s indicating ON/OFF periods. Each arm includes switching devices connected in parallel. Each gate drive circuit includes: a switching gate control circuit 12-06-2012
20110013439POWER CONVERSION APPARATUS - A power conversion apparatus comprising a base 01-20-2011
20110013438 INVERTER TOPOLOGIES USABLE WITH REACTIVE POWER - The present invention generally relates to power electronic switching circuits and in particular to inverter modules employing two or more controlled switches that can be used with reactive loads. An inverter circuit is provided which comprises first and second input terminals for being connected to a DC power source; first and second output terminals for outputting an AC voltage; at least one metal oxide semiconductor field effect transistor, MOSFET, having a parasitic body diode. The inverter circuit further comprises at least one disabling element for disabling said body diode. This may result in an improved efficiency of the inverter circuit in combination with a reactive power capability. Further, a semiconductor switching device is disclosed, comprising at least one metal oxide semiconductor field effect transistor, MOSFET, and at least one insulated gate bipolar transistor, IGBT, wherein said MOSFET and said IGBT are connected in parallel.01-20-2011
20120224402POWER SEMICONDUCTOR MODULE AND POWER SEMICONDUCTOR CIRCUIT CONFIGURATION - A power semiconductor module having a substrate, at least two power semiconductor switches being situated on the substrate and connected in parallel, at least one intermediate circuit terminal for connecting the power semiconductor switches to a first supply voltage potential and at least two intermediate circuit terminals for connecting the power semiconductor switches to a second supply voltage potential, one of the supply voltage potentials being negative and the other being positive.09-06-2012
20090010035Boost and up-down switching regulator with synchronous freewheeling MOSFET - A freewheeling MOSFET is connected in parallel with the inductor in a switched DC/DC converter. When the freewheeling MOSFET is turned on during the switching operation of the converter, while the low-side and energy transfer MOSFETs are turned off, the inductor current circulates or “freewheels” through the freewheeling MOSFET. The frequency of the converter is thereby made independent of the lengths of the magnetizing and energy transfer stages, allowing far greater flexibility in operating and converter and overcoming numerous problems associated with conventional DC/DC converters. For example, the converter may operate in either step-up or step-down mode and may even transition for one mode to the other as the values of the input voltage and desired output voltage vary.01-08-2009
20120236615CONVERTER - A converter utilizing synchronous rectification comprises a first switch, a second switch connected in series to the first switch, and a gate drive circuit controlling each switch to switch to on/off-state using pulse-width modulation. Each switch includes a channel region that is conductive in both forward and reverse directions in on-state and is not conductive in the forward direction in off-state, and a unipolar diode region conductive only in the reverse direction. The gate drive circuit synchronizes output timing for signal with which the first switch switches to on-state with output timing for signal with which the second switch switches to off-state, and synchronizes output timing for signal with which the first switch switches to off-state with output timing for signal with which the second switch switches to on-state.09-20-2012
201102800553-PHASE HIGH-POWER UPS - A 3-phase uninterruptible power supply (UPS) including first, second, and third AC/DC converters, a DC/DC converter, and at least one DC/AC converter coupled to multiple electrical buses. The first, second, and third AC/DC converters each being configured to receive AC power and to provide multiple DC signals to the multiple electrical buses. The DC/DC converter being configured to convert DC voltages present on the multiple electrical buses to a DC voltage that can be used to charge a battery. The DC/AC converter being configured to receive DC power from the multiple electrical buses and to provide an AC output. The 3-phase UPS being configured such that when suitable AC power is provided to the AC/DC converters, the DC/DC converter is configured to charge a battery, and when suitable AC power is not provided to the AC/DC converters, the DC/DC converter is configured to provide DC power to the multiple electrical buses using power provided by the battery.11-17-2011
20110280054INVERTER CIRCUIT - This inverter circuit includes first and second switching elements and an output transformer which has a first primary winding connected in series between the first switching element and the second switching element and a second primary winding for obtaining an output voltage. The inverter circuit also includes a first voltage source, a second voltage source, and a control unit. The first voltage source is connected between a first connection point at which the first primary winding is connected to the second switching element, and the first switching element, and applies a voltage to the first switching element via the first primary winding. And the second voltage source is connected between a second connection point at which the first primary winding is connected to the first switching element, and the second switching element, and applies a voltage to the second switching element via the first primary winding. The control unit alternately turns the first switching element and the second switching element ON and OFF. And this inverter circuit also may include first and second recovery snubber circuits for recovering electrical charge in snubber capacitors.11-17-2011
20120099357POWER CONVERTER - A power converter includes an input terminal configured to be connected to a power supply, an output terminal, and a first switching element coupled between the input terminal and the output terminal. The first switching element includes a semiconductor multilayer structure formed on a substrate and made of a nitride semiconductor, a gate electrode formed on the semiconductor multilayer structure, a first and a second ohmic electrode, and a back electrode formed on a back surface of the substrate. A potential is supplied from the power supply connected to the input terminal to the back electrode so that a potential difference between the back surface and the second ohmic electrode is reduced. When the first switching element is in the on-state, a positive voltage bias is applied to the back electrode.04-26-2012
20080291711Step-down switching regulator with freewheeling diode - A freewheeling DC/DC step-down converter includes a high-side MOSFET, an inductor and an output capacitor connected between the input voltage and ground. A freewheeling clamp, which includes a freewheeling MOSFET and diode, is connected across the inductor. When the high-side MOSFET is turned off, a current circulates through the inductor and freewheeling clamp rather than to ground, improving the efficiency of the converter. The converter has softer diode recovery and less voltage overshoot and noise than conventional Buck converters and features unique benefits during light-load conditions.11-27-2008
20110292705METHOD AND APPARATUS FOR POWER CONVERTER INPUT VOLTAGE REGULATION - A method and apparatus for regulating an input voltage to a power conversion module. In one embodiment, the method comprises computing a voltage regulation threshold based on an output voltage for the power conversion module; comparing an input voltage of the power conversion module to the voltage regulation threshold; and generating, when the input voltage satisfies the voltage regulation threshold, an average input voltage less than the voltage regulation threshold, wherein the average input voltage is generated from the input voltage.12-01-2011
20110299310SYNCHRONOUS OPERATING SYSTEM FOR DISCHARGE TUBE LIGHTING APPARATUSES, DISCHARGE TUBE LIGHTING APPARATUS, AND SEMICONDUCTOR INTEGRATED CIRCUIT - A synchronous operating system for operating a plurality of discharge tube lighting apparatuses at the same frequency and same phase includes (1) an oscillator of a triangular wave signal whose inclination for charging a capacitor C12-08-2011
20090285004INVERTER MODULE WITH THERMALLY SEPARATED SEMICONDUCTOR DEVICES - Systems and apparatus are provided for an inverter module for use in a vehicle. The inverter module comprises a first electrical base and a second electrical base each having an electrically conductive mounting surface, wherein the electrical bases are physically distinct and electrically coupled. A first semiconductor switch has a surface terminal that is coupled to the electrically conductive mounting surface of the first electrical base. A second semiconductor switch has a surface terminal that is coupled to the electrically conductive mounting surface of the first electrical base. A first semiconductor diode and a second semiconductor diode each have a surface terminal, the surface terminals are coupled to the electrically conductive mounting surface of the second electrical base. The first semiconductor switch and first semiconductor diode are antiparallel, and the second semiconductor switch and second semiconductor diode are antiparallel.11-19-2009
20100054010VEHICLE INVERTER - A method and system of inverting DC energy stored within a vehicle to AC energy sufficient for supplying appliances or other devices that traditionally receive AC energy from a wall outlet. The inverting may be executed without feedback control in that switching operations used to controller boosting and inverting the DC energy are controller solely from inputs and without regard to the actual output.03-04-2010
20110261600POWER CONVERSION APPARATUS - A power conversion apparatus includes a plurality of semiconductor modules and a plurality of bus bars. The plurality of bus bars include a positive electrode bus bar connected to a positive electrode power terminal, a negative electrode bus bar connected to a negative electrode power terminal, and a plurality of AC bus bars connected to an AC power terminal. Of a DC bus bar group Including the positive electrode bus bar and the negative electrode bus bar, and an AC bus bar group including the plurality of AC bus bars, part of one of the bus bar groups is sealed with insulating resin, and the other of the bus bar groups is not sealed with insulating resin. A seat is formed on the insulating resin sealing the one of the bus bar groups, and the other of the bus bar groups is mounted on a seat face of the seat.10-27-2011
20080266923Power inverter - A power inverter is disclosed. The power inverter includes an electronic switching circuit designed to be electrically connected to a DC power supply. A power inverter circuit is electrically connected to the electronic switching circuit for converting a DC supply voltage to an AC voltage and has output terminals to output the resulting AC voltage. The power inverter further includes a microprocessor having an oscillating circuit provided therein for counting time. The microprocessor is constructed to be able to send a control signal to the electronic switching circuit at a desired time to order the electronic switching circuit to break the power inverter circuit.10-30-2008
20080266921Method for Operating an Inverter and Arrangement for Executing the Method - The invention relates to a method for operating an electronically controlled inverter, said method being characterised in that the inverter is controlled during the positive half-wave of the output alternating voltage in such a way that it operates as a step-up converter/step-down converter cascade, and during the negative half-wave of the output alternating voltage in such a way that it operates as a CUK converter.10-30-2008
20120033475POWER CONVERSION APPARATUS - Technology leading to a size reduction in a power conversion apparatus comprising a cooling function and technology relating to enhancing productivity and enhancing reliability necessary for commercial production are provided. Series circuits comprising an upper arm and lower arm of an inverter circuit are built in a single semiconductor module 02-09-2012
20100080030LOW-MASS, BI-DIRECTIONAL DC-AC INTERFACE UNIT - A DC-AC converter includes a DC-DC converter providing bi-directional conversion between a first DC power signal and a second DC power signal, the first DC power signal being on a first DC bus and the second DC power signal being on a second DC bus. The DC-AC converter also includes an inverter providing bi-directional DC-AC conversion between a third DC power signal and a first AC power signals the third DC power signal being on the second DC bus and the first AC power signal being on a first AC bus.04-01-2010
20120294056SWITCHING LOSS REDUCTION IN CONVERTER MODULES - The invention relates to converters for converting a DC input voltage a DC or an AC output voltage. The converters have a parasitic inductance. The converters comprise at least one switching element connected to an input terminal for providing a first voltage at an output terminal. In order to allow temporarily storing, in a capacitor, energy induced by the parasitic inductance when switching OFF the switching element, a first series circuit of a diode and a capacitor is provided in the converter, wherein the diode is coupled to the one input terminal. An active circuit coupled in parallel with the diode enables controlling the release of temporarily stored energy from the capacitor of the first series circuit.11-22-2012
20110199801ENERGY RECOVERY DEVICE IN A VARIABLE-FREQUENCY DRIVE - A variable-frequency drive that includes a DC power supply bus with a positive line and a negative line, and an inverter module powered by the DC bus for supplying a variable voltage to an electric load. The inverter includes a first DC/DC converter including output terminals connected in series on the positive line of the DC bus, a second DC/DC converter including input terminals connected between the positive line and the negative line of the DC bus, a filtering capacitor connected in parallel to the input terminals of the first converter and to the first output terminals of the second converter, and an electric power storage module connected in parallel to the second output terminals of the second converter.08-18-2011
20120106220SWITCHING MODULE - A switching module includes a series-connected unit of a first flowing restriction element and a second flowing restriction element, the first flowing restriction element having an opening and closing function of opening and closing a flowing path of current, and the second flowing restriction element having at least one of a rectifying function of restricting the direction in which current flows and the opening and closing function, and a snubber circuit connected to the series-connected unit in parallel. A first wiring line connecting between the first flowing restriction element and the snubber circuit, a second wiring line connecting between the second flowing restriction element and the snubber circuit, a third wiring line connecting between the first flowing restriction element and the second flowing restriction element, the first flowing restriction element, the second flowing restriction element, and the snubber circuit are formed substantially integrally with each other by using an insulator.05-03-2012
20080291710Semiconductor module and inverter device - A semiconductor module includes a base plate; a plurality of substrates placed on one surface of the base plate, with each substrate of the plurality of substrates including a switching element, a diode element, and a connection terminal area; and a parallel flow forming device that forms parallel coolant flow paths that are provided so as to be in contact with the other.11-27-2008
20090279335POWER CONVERTER - To provide a power converter, comprising: a pair of main circuit switching elements to which diodes are connected; a means for generating a first PWM basic signal for driving a main circuit switching element; and a reverse voltage application circuit to be operated, triggered by a second PWM basic signal which differs from the first PWM basic signal only in phase.11-12-2009
20120294057RESONANT POWER CONVERSION CIRCUIT - An apparatus and system for power conversion. In one embodiment, the apparatus comprises a transformer having a primary winding and a plurality of secondary windings; and a cyclo-converter comprising a plurality of switch pairs for converting an alternating current to an AC current, wherein each switch pair in the plurality of switch pairs (i) is coupled between two lines of an AC output and (ii) has a different secondary winding of the plurality of secondary windings coupled between its switches.11-22-2012
20110199802SINGLE ENDED POWER CONVERTERS OPERATING OVER 50% DUTY CYCLE - This invention discloses apparatus and methods for increasing the duty cycle of the single ended power converters surpass 50 percent limitation by adding active switch-capacitor network to the primary circuit and several inversion circuits can be realized to convert a DC input to an AC output. The circuits comprise two series circuits, at least one clamp clamping capacitor, and at least one transformer. The first series circuit includes one active switch paralleled with a diode, one capacitor and at least one transformer primary. The second series circuit includes at least one active switch and at least one transformer primary. At least one clamp clamping capacitor couples the first and the second series circuits, and is attached to each series circuit at a node between the respective transformer primary winding.08-18-2011
20110199800Power Conversion Device - Connection portions (08-18-2011
20090185406Switched-Capacitor Circuit Having Two Feedback Capacitors - A switched-capacitor circuit performing two-phase operation with a sampling phase and an amplification phase comprising: an inverter having a common source type input transistor and a load transistor; a first capacitor whose first terminal is connected to a gate of the input transistor serving as an input of the inverter; a first switch which connects between the input (the gate of the input transistor) and the output of the inverter, which turns on during the sampling phase and turns off during the amplification phase; a second switch which connects a second terminal of the first capacitor to an input voltage terminal during the sampling phase, and connects the second terminal of the first capacitor to the output terminal of the inverter during the amplification phase; a second capacitor whose first terminal is connected to a gate of the load transistor of the inverter and whose second terminal is connected to the second terminal of the first capacitor; and a third switch which connects the first terminal of the second capacitor to a bias voltage terminal during the sampling phase, and turns off the first terminal of the second capacitor from the bias voltage during the amplification phase.07-23-2009
20090034307Protection Device for Electronic Converters, Related Converter and Method - A device for protecting an electronic converter, e.g. for halogen lamps, includes a comparator (02-05-2009
20090034306Power Module, Power Converter, and Electric Machine System for Mounting in Vehicle - The present invention provides a power module, power converter, and vehicular electric machine system capable of reducing inductance of a peripheral section of an output terminal in a power module, and additionally, reducing a surge voltage.02-05-2009
20080310204Close Control of Electric Power Converters - The invention relates to a close control of electric power converters. It comprises: a diode D12-18-2008
20080247210Resonant Inverter - A resonant inverter includes inductive elements (L10-09-2008
20120033474HIGHLY EFFICIENT HALF-BRIDGE DC-AC CONVERTER - The invention relates to a DC to AC converter circuit. In particular, the invention relates to a half-bridge inverter for converting a DC to an AC voltage. The half-bridge inverter for converting a DC input voltage to provide an AC output voltage at an output terminal, comprising a first switching circuit connected to at least one input terminal and to the output terminal and configured to provide a high or a low voltage level at the output terminal; a second switching circuit connected to the output terminal and configured to provide a connection to an intermediate voltage level, the intermediate voltage level being between the high and the low voltage level; and wherein the second switching circuit is further connected to the at least one input terminal allowing the second switching circuit to provide the high or the low voltage level at the output terminal.02-09-2012
20110007536DEVICE FOR DRIVING INVERTER - Disclosed is a device for driving an inverter having a semiconductor switching element. A gate voltage calculating unit (01-13-2011
20080266922Integrated Circuits and Power Supplies - We describe a semiconductor-on-insulator integrated circuit die comprising a substrate bearing a power conditioning circuit, the power conditioning circuit comprising at least two power devices, a lateral power device and a vertical power device. The power conditioning circuit comprises: a DC input to receive DC power, an AC output for connection to AC mains; a DC-to-DC converter having an input coupled to said DC input; a DC-to-AC converter having a DC input and an AC output to convert DC power to AC power for mains output; and a DC voltage regulator coupled between, the output of said DC-to-DC converter and the input of said DC-to-AC converter to regulate said PC voltage input to said DC-to-AC converter. The regulator is configured to control an AC output current of said circuit by controlling said DC voltage input to the DC-to-AC converter.10-30-2008
20080273360Inverter Device and Vehicle Air Conditioner Using the Same - The inverter device contains three sets of series circuit formed by connecting two switching elements (11-06-2008
20100142239Fully integrated multi-phase grid-tie inverter - In a grid-tie inverter, the DC input is phase and pulse-width modulated to define multiple phase shifted voltage pulses with the width of each pulse being modulated according to the grid AC amplitude for the corresponding portion of the AC phase.06-10-2010
20090161398METHOD OF CONTROLLING A THREE LEVEL CONVERTER - A system and method are disclosed for controlling an inverter to provide an alternating inverter voltage to a load for a transition in which a change in active power (P) and/or reactive power (Q) within a transition time (T06-25-2009
20120069618INVERTER CONTROL SYSTEM - An inverter control apparatus is provided that offers a ‘soft turn off’ to a gate operation of the inverter so as to securely protect the IGBT. In particular, an inverter control system according to the present invention may include a gate operating portion that controls turn on/off of an IGBT and forcibly turns off the IGBT if a short circuit or an over current is detected from the IGBT, a current buffer that amplifies a control current for the turn on/off of the IGBT that is outputted from the gate operating portion, and a filter that delays the forcible turn off control current that is outputted from the gate operating portion.03-22-2012
20090141525POWER SOURCE DEVICE - A power source device includes an input terminal, a first switching element connected to the input terminal, a second switching element connected to the first switching element, a transformer having a primary coil connected to a connecting node between the first and second switching elements, a low-pass filter including a series body of a coil and a capacitor connected to a secondary coil of the transformer, an output terminal connected to a connecting node between the coil and the capacitor, a comparator having a first input terminal connected to the output terminal, and an alternating signal generator connected to a second terminal of the comparator. An output terminal of the comparator is connected to each control terminal of the first switching element and the second switching element via the temporary amplitude generation permissible section.06-04-2009
20090251937CIRCUIT ARRANGEMENT HAVING A DUAL COIL FOR CONVERTING A DIRECT VOLTAGE INTO AN ALTERNATING VOLTAGE OR AN ALTERNATING CURRENT - The invention proposes a circuit arrangement for converting a DC voltage present at DC voltage terminals into an alternating current, which is supplied via AC voltage terminals, or an AC voltage, which circuit arrangement has a first series circuit, which is connected to the DC voltage terminals, comprises a first electronic switch (S10-08-2009
20130121051DC PRE-CHARGE CIRCUIT - Systems and methods are provided for pre-charging the DC bus on a motor drive. Pre-charging techniques involve pre-charge circuitry including a manual switch, an automatic switch, and pre-charge control circuitry to switch the automatic switch between pre-charge and pre-charge bypass modes in response to an initialized pre-charge operation, input voltage sags, and so forth. In some embodiments, the pre-charge operation may be initialized by switching the manual switch closed. In some embodiments, the pre-charge operation may also be initialized by a detected voltage sag on the DC bus. The pre-charge circuitry may also be configured to disconnect to isolate a motor drive from the common DC bus under certain fault conditions.05-16-2013
20130121052ELECTRIC POWER CONVERTER HAVING PLURALITY OF SEMICONDUCTOR MODULES ARRAYED IN SUCCESSIVE LAYERS - In an electric power converter, a stacked-layer unit has a plurality of semiconductor modules arrayed as layers along a stacking direction, each semiconductor module containing a semiconductor element and a pair of power terminals protruding outward in a protrusion direction at right angles to the stacking direction, each pair consisting of an AC terminal and a positive-polarity or negative-polarity power terminal. The semiconductor modules are arranged with the positive-polarity and negative-polarity power terminals in a single column at one side of the stacked-layer unit, and respectively connected to a positive-polarity busbar and negative-polarity busbar which are located at that side and which are separated by a fixed spacing in the protrusion direction, while the AC terminals of each layer-adjacent pair of semiconductor modules are connected in common to a corresponding one of a plurality of AC busbars.05-16-2013
20090052215CURRENT CONTROLLER AND CURRENT OFFSET CORRECTION METHOD OF THE SAME - To provide a current controller capable of constantly detecting an offset value of a current detection system, the offset value overlapping with a current detection value, in a state of regular operation of a motor to correct the current detection value and capable of current detection with high accuracy and a current offset correction method of the same.02-26-2009
20110228577Optimizing Operation of DC-To-AC Power Converter - In one embodiment, a power converter system includes an input terminal for receiving a DC input voltage. The power converter system delivers AC power to a load at an output terminal. A transformer is coupled between the input terminal and the output terminal. The transformer has a first winding, a second winding, and a third winding. The output terminal is coupled to the second winding. A half-bridge circuit, coupled between the input terminal and the first winding of the transformer, includes a first switch and a second switch coupled at a common node. The first and second switches are operable to be turned on and off for causing current to flow in the transformer during operation of the power converter system. Circuitry is close coupled to the first winding of the transformer. The circuitry is operable to provide a current path for transformer magnetizing current and reflected load current when both the first and second switches of the half-bridge circuit are turned off, thereby preventing energy from being fed back to the half-bridge circuit.09-22-2011
20090231896CONVERTER CIRCUIT FOR SWITCHING A LARGE NUMBER OF SWITCHING VOLTAGE LEVELS - A converter circuit for switching a large number of switching voltage levels is specified, in which a first switching group is provided for each. Second switching groups are provided, each having a first, second, third, fourth, fifth and sixth drivable bidirectional power semiconductor switch and capacitor. The first drivable bidirectional power semiconductor switch is reverse-connected in series with the second drivable bidirectional power semiconductor switch, the third drivable bidirectional power semiconductor switch is reverse-connected in series with the fourth drivable bidirectional power semiconductor switch, the first drivable bidirectional power semiconductor switch is connected to the capacitor, the third drivable bidirectional power semiconductor switch is connected to the capacitor, the fifth drivable bidirectional power semiconductor switch is directly connected to the fourth drivable bidirectional power semiconductor switch, and the sixth drivable bidirectional power semiconductor switch is directly connected to the second drivable bidirectional power semiconductor switch.09-17-2009
20090244946DC-AC CONVERTER - A DC-AC converter includes a signal generating module, a first switch, a first capacitor, a transformer, and a trigger signal generating module. The signal generating module generates a pulse width modulation (PWM) signal according to a trigger signal. The first switch has a control terminal receiving the PWM signal, and a first terminal and a second terminal coupled to a first terminal and a second terminal of the first capacitor respectively. The transformer has a primary winding coupled to the second terminal of the first switch, and a secondary winding coupled to a load. The transformer generates a driving signal to the load according to a signal variation of the primary winding. The trigger signal generating module compares a first signal outputted from the second terminal of the first switch with a phase delay signal thereof and thereby generates the trigger signal for controlling the frequency of the PWM signal.10-01-2009
20090251936DISTRIBUTED MULTIPHASE CONVERTERS - A direct current to pulse amplitude modulated (“PAM”) current converter, denominated a “PAMCC”, is connected to an individual source of direct current. The PAMCC receives direct current and provides pulse amplitude modulated current at its output. The pulses are produced at a high frequency relative to the signal modulated on a sequence of pulses. The signal modulated onto a sequence of pulses may represent portions of a lower frequency sine wave or other lower frequency waveform, including DC. When the PAMCC's output is connected in parallel with the outputs of similar PAMCCs an array of PAMCCs is formed, wherein the output pulses of the PAMCCs are out of phase with respect to each other. An array of PAMCCs constructed in accordance with the present invention form a distributed multiphase inverter whose combined output is the demodulated sum of the current pulse amplitude modulated by each PAMCC.10-08-2009
20110141786DC-LINK VOLTAGE BALANCING SYSTEM AND METHOD FOR MULTILEVEL CONVERTERS - A control system for a multilevel converter includes a differential mode current regulator, a neutral point (NP) controller and a PWM controller for generating switching pulses for the multilevel converter. The differential mode current regulator generates reference voltage command signals based on a difference between reference current command signals and actual current command signals, and the NP controller determines a modified neutral point current signal in response to a DC link voltage unbalance. The NP controller utilizes the modified neutral point current signal to generate a common mode reference voltage signal. The switching pulses are generated by the PWM controller based on the reference voltage command signals and the common mode reference voltage signal.06-16-2011
20100259958ZERO VOLTAGE SWITCHING HIGH-FREQUENCY INVERTER - There is provided a zero-voltage switching high-frequency inverter capable of supplying a current of a large amplitude operation to a load, while suppressing a main switch current. The zero-voltage switching high-frequency inverter according to the present invention comprises: a first switch S10-14-2010
20100220508Photovoltaic Inverter with Option for Switching Between a Power Supply System with a Fixed Frequency and a Load Variable Frequency - A photovoltaic inverter having an inverter bridge section, a first output, a second output, and a power switch. The inverter bridge section is operable for converting DC electrical energy into AC electrical energy. The inverter bridge section has an output for outputting the AC electrical energy. The power switch is connected to the output of the inverter bridge section, the first output, and the second output. The power switch is selectively switchable between a first state in which the output of the inverter bridge section is connected to the first output via the power switch and a second state in which the output of the inverter bridge section is connected to the second output via the power switch.09-02-2010
20090296441Semiconductor Power Switch - A semiconductor power switch comprises at least a first IGBT and a second IGBT. The collectors of the first and second IGBTs are connected to each other, and the emitters of the first and second IGBTs are connected to each other. The first IGBT is an IGBT type with a comparatively low collector-emitter on-voltage and a comparatively high turn-on or turn-off switching energy. In contrast thereto, the second IGBT is an IGBT type with a comparatively high collector-emitter on-voltage and a comparatively low turn-on or turn-off switching energy. Both IGBTs receive gate signals from a control circuit for switching the power switch on during a first time interval and switching the power switch off during a second time interval. The control circuit is designed to supply an on-signal to the second IGBT during the whole first time interval and another on-signal to the first IGBT during only a part of the first time interval, which is less than the whole.12-03-2009
20100226157POWER CONVERSION CONTROL DEVICE, POWER CONVERSION CONTROL METHOD, AND POWER CONVERSION CONTROL PROGRAM - In the present invention, when configuring a control system of an inverter performing power conversion between AC and DC, a frequency computation is performed based on biaxial voltage amounts obtained through two current regulators in such a way that each of biaxial component currents obtained by detecting an AC circuit current and performing a rotational coordinate transformation matches each respective command value and phase information in synchronization with an electromotive force power supply of the AC circuit is obtained by integrating the frequency to perform the rotational coordinate transformation of the AC current and also the inverter is caused to operate by generating a PWM switching signal from the biaxial voltage amounts to perform necessary power conversion control.09-09-2010
20100157638Energy Conversion Systems With Power Control - In one embodiment, a power conversion system includes a controller to provide power control to a converter, and a distortion mitigation circuit. In another embodiment, a system includes a converter to transfer power between a power source and a load having fluctuating power demand, and a controller to provide power control, where the controller may selectively disable the power control. In another embodiment, a power conversion system includes a controller to generate a drive signal to provide power control to a power path in response to a sense signal from the power path, where the sense signal is taken from other than the input of the power path, or the drive signal is applied to the power path at other than a first power stage.06-24-2010
20080232147RESONANT INVERTER - The present invention provides a low-cost resonant inverter circuit for ballast. The resonant circuit includes a transformer connected in series with a lamp to operate the lamp. A first transistor and a second transistor are coupled to switch the resonant inverter circuit. A second winding and a third winding of the transformer are used for generating control signals in response to a switching current of the resonant inverter circuit. The transistor is turned on once the control signal is higher than a high-threshold. Next, the transistor is turned off once the control signal is lower than a low-threshold. Therefore, soft switching operation for the first transistor and the second transistor is achieved.09-25-2008
20110058400POWER CONVERSION APPARATUS - The power conversion apparatus includes a power conversion circuit including parallel-connected pairs of a high-side switching element and a low-side switching element connected in series, high-side driver circuits to drive the high-side switching elements, low-side driver circuits to drive the low-side switching elements, and a transformer to supply voltages to drive the high-side switching and low-side switching elements to the high-side and low-side driver circuits. The high-side switching elements are mounted in a row along a first direction on a wiring board, and the low-side switching elements are mounted in a row along the first direction on the wiring board side by side with the row of the high-side switching elements. The transformer is mounted on the wiring board on the side of the row of the high-side switching elements opposite to the row of the low-side switching elements.03-10-2011
20120033473SYSTEMS AND METHODS FOR ELECTRICAL POWER GRID MONITORING USING LOOSELY SYNCHRONIZED PHASORS - The present disclosure describes systems and methods for monitoring an electrical power grid using loosely synchronized phasors. The grid can include a phasor measurement unit (PMU) that keeps a highly-accurate time, such as a time provided by GPS signals. A solar power inverter can include a clock that is synchronized to a less-accurate time, such as a time provided by a public time server or a radio time signal. The inverter can also include a PMU that generates phasors timestamped according to the less-accurate time. The inverter can receive phasors from the grid PMU. Although the grid and inverter phasors can be loosely synchronized in time, the inverter can analyze the grid and inverter phasors to determine a state of the grid. For example, the inverter can calculate a Pearson's correlation coefficient based on the grid and inverter phasors, and use the result to determine a state of the grid.02-09-2012
20100302825SINGLE-PHASE VOLTAGE SOURCE AC-DC POWER CONVERTER AND THREE-PHASE VOLTAGE SOURCE AC-DC POWER CONVERTER - The present invention is a single-phase voltage source AC-DC power converter and a three-phase voltage source AC-DC power converter. Each of the single-phase voltage source AC-DC power converter and the three-phase voltage source AC-DC power converter includes a voltage source AC-DC power converting circuit that converts power from a DC voltage source into AC power to output the AC power from an AC terminal; and target current producing means that includes a filter voltage command device and a voltage controller, the filter voltage command device generating a filter voltage command value that becomes a reference of the AC power output from the AC terminal, the AC output voltage at the AC terminal being input as an input signal to the voltage controller, the voltage controller integrating a difference between the filter voltage command value from the filter voltage command device and the AC output voltage at the AC terminal, the target current producing means outputting a PWM command such that the integration value of the difference between the filter voltage command value from the filter voltage command device and the AC output voltage at the AC terminal becomes zero.12-02-2010
20130135913INVERTER SCALABLE IN POWER AND FREQUENCY - An inverter is proposed for providing an inverter output signal scalable in frequency. The inverter has a controller for controlling frequency of the inverter output signal according to a predefinable value. In order to generate a signal having a frequency value prescribed for the inverter output signal, the controller initiates a time delay of signals and superimposes the signals onto the signal having the frequency value prescribed for the inverter output signal. A low-complexity inverter concept for high voltages or high power is thus provided05-30-2013
20110242866POWER SEMICONDUCTOR DEVICE AND POWER CONVERSION SYSTEM USING THE DEVICE - Aspects of the invention are related to a power semiconductor module applied to a multi-level converter circuit with three or more levels of voltage waveform. Aspects of the invention can include a first IGBT to which a diode is reverse parallel connected and a second IGBT having reverse blocking voltage whose emitter is connected to the emitter of the first IGBT are housed in one package, and each of the collector of the first IGBT, the collector of the second IGBT, and the connection points of the emitter of the first IGBT and the emitter of the second IGBT, is an external terminal.10-06-2011
20110019453ELECTRIC CIRCUIT FOR CONVERTING DIRECT CURRENT INTO ALTERNATING CURRENT - The invention relates to a DC/AC conversion structure, preferably intended for photovoltaic systems, having a high yield across the entire input voltage range thereof, thereby guaranteeing that direct current is not injected into the alternating current network. In a preferred embodiment, the circuit includes six switching elements (T01-27-2011
20110044083Adaptive Photovoltaic Inverter - A DC to AC inverter unit used in a solar cell power system can include a controller capable of adjusting the inverter's minimal operating voltage to increase the inverter unit power capacity.02-24-2011
20110085363POWER ELECTRONICS AND INTEGRATION SYSTEM FOR PROVIDING A COMMON HIGH CURRENT INVERTER FOR USE WITH A TRACTION INVERTER AND AN AUXILIARY INVERTER - A system for using an IGBT module, electrically rated for use in a traction inverter used with a powered system, in an auxiliary inverter used with the powered system which requires a different electrically rated IGBT module than the traction inverter, the system including an IGBT module, including plurality of IGBTs as part of the IGBT module, electrically rated for use with a traction inverter, and a plurality of gate drives each configured to singularly connect to a respective one of the plurality of IGBTs within the IGBT module. All three phases of three-phase electrical power of the auxiliary inverter are associated with the IGBT module.04-14-2011
20110242868CIRCUIT AND METHOD FOR COUPLING ELECTRICAL ENERGY TO A RESONATED INDUCTIVE LOAD - A switching circuit (Q10-06-2011
20110141785DC-TO-AC POWER CONVERTING DEVICE - A power converting device is adapted for converting a DC voltage input from an external power source into an AC voltage output. The power converting device includes: a transformer having first and second windings each having opposite first and second ends; a clamp unit coupled to the external power source, and including a first switch coupled between a reference node and the second end of the first winding, and a series connection of a clamp capacitor and a second switch coupled across the first winding; and an inverting unit coupled to the first end of the second winding, and operable so as to output the AC voltage output based on an induced voltage across the second winding.06-16-2011
20110211380THREE-QUARTER BRIDGE POWER CONVERTERS FOR WIRELESS POWER TRANSFER APPLICATIONS AND OTHER APPLICATIONS - A three-quarter bridge power converter includes a first switch configured to selectively couple a switch node to a higher voltage. The power converter also includes a second switch configured to selectively couple the switch node to a lower voltage. The power converter further includes a third switch configured to selectively cause a third voltage to be provided to the switch node when the first and second switches are not coupling the switch node to the higher and lower voltages. The third switch may be configured to selectively couple the switch node to an energy storage or energy source, such as a capacitor. The third switch may also be configured to selectively couple an energy storage or energy source to ground, where the energy storage or energy source is coupled to the switch node.09-01-2011
20110211379POWER CONVERTER WITH REVERSE RECOVERY AVOIDANCE - A power converter includes a reverse-recovery avoidance scheme. The power converter may include deliver current from a direct current (DC) power source to an alternating current (AC) load. A first switch and second switch of the power converter may be operated to supply the AC load with positive current respective to the AC load from the DC power source. A third and fourth switch of the power converter may be operated to supply the AC load with negative current respective to the AC load from the DC power source. A first diode may be electrically coupled in series with the second switch and second diode may be electrically coupled in parallel with the first diode and the second switch. The second diode may conduct the positive current when the first switch is off and the second switch is on. A third diode may be electrically coupled in series with the fourth switch and a fourth diode may be electrically coupled in parallel with the third diode and the fourth switch. The fourth diode may conduct the negative current when the third switch is off and the fourth switch is on.09-01-2011
20110242867Power Inverters and Related Methods - Some embodiments include power inverters and related methods. Other embodiments of related systems and methods are also disclosed.10-06-2011
20100039844SEMICONDUCTOR DEVICE AND POWER CONVERTER USING THE SAME - A semiconductor device which can avoid increase of a conduction loss of an IGBT, secure a low noise characteristic and also reduce a switch loss. The switching device is of a trench gate type, in which a drift n02-18-2010
20100039843Semiconductor module for use in power supply - A series connection circuit of IGBTs and an AC switch are contained in one package. The series connection circuit is connected between the positive and negative terminals of a DC power source, and the AC switch is connected between a neutral point of the DC power source and a series connection point between the IGBTs. Straight conductor strips can be used to connect terminals on the package to the DC power source, thereby reducing inductance and thus also reducing voltage spikes.02-18-2010
20100054009CURRENT CONVERSION CIRCUIT - A current conversion circuit includes a control circuit, and a switch circuit. The control circuit includes a first photoelectric coupler receiving a first driving signal and outputting a first control signal, and a second photoelectric coupler receiving a second driving signal and outputting a second control signal. The switch circuit includes a first transistor and a second transistor connected in series between a positive power source and a negative power source. The first transistor includes a control terminal receiving the first control signal, and the second transistor includes a control terminal receiving the second control signal. A node between the first and second transistors outputs an alternating signal.03-04-2010
20100128505CURRENT MEASUREMENT IN AN INVERTER UNIT AND A FREQUENCY CONVERTER - A method and an arrangement of measuring inverter current, where the inverter is connected to and supplied by a DC intermediate circuit having two or more parallel capacitor branches connected between the positive and negative rail of the DC intermediate circuit, and the capacitance of the capacitor branches being known. The method comprises the steps of measuring the current of one of the parallel capacitor branches, and determining from the measured current the magnitude of the inverter current.05-27-2010
20110249478POWER OUTPUT STAGE FOR A PULSE-CONTROLLED INVERTER - A power output stage for a pulse-controlled inverter includes a half-bridge. The half-bridge has a control terminal and power terminals. The power terminals include a terminal for a positive supply voltage, a terminal for a negative supply voltage and a phase voltage terminal. In particular, the power output stage has two half-controlled half-bridges, whose power terminals are connected in parallel, and whose control terminals are not connected to one another.10-13-2011
20110069517ARRANGEMENT FOR VOLTAGE CONVERSION - An arrangement for converting direct voltage into alternating voltage and conversely has a Voltage Source Converter with at least one phase leg connected to opposite poles (03-24-2011
20090316457INVERTER - On an inverter for feeding power of a direct voltage source, in particular of a photovoltaic generator (PVG), into an alternating voltage mains (N), with an asymmetrically clocked bridge circuit with at least two first switches (S12-24-2009
20100259959ZERO VOLTAGE SWITCHING HIGH-FREQUENCY INVERTER - There is provided a zero-voltage switching high-frequency inverter capable of supplying a current of a large amplitude operation to a load, while suppressing a main switch current. The zero-voltage switching high-frequency inverter according to the present invention comprises: a first switch S10-14-2010
20110149624POWER CONVERSION APPARATUS - A power conversion apparatus includes two power conversion circuits, two direct-current inductors, and a pulse-width-modulation control circuit. One of the two power conversion circuits is connected in parallel to a direct-current load or a single-phase alternating-current load, and the other of the two power conversion circuits is connected in parallel to a three-phase alternating-current load. The two power conversion circuits are connected in reverse polarity to each other via the two direct-current inductors. The pulse-width-modulation control circuit pulse-width-modulates the two power conversion circuits, allows switching between the two power conversion circuits, and realizes a bidirectional step-up/down operation between the direct-current load or single-phase alternating-current load and the three-phase alternating-current load.06-23-2011
20090185405THREE-PHASE VOLTAGE SOURCE INVERTER SYSTEM - The present invention provides a three-phase voltage source inverter system capable of obtaining a nearly sinusoidal output waveform while minimizing apparatus size increase and cost increases. The three-phase voltage source inverter system of the present invention is provided with: a three-phase inverter unit INV-M; and an auxiliary circuit 07-23-2009
20080285320Alternating electric current generating process - This is a process to generate alternating current without an external source for cell-houses in electrowinning or electrorefining of copper or other products in which the electric source consists of a conventional rectifier-transformer group that supplies continuous electrical current to the cell-house, which is connected in parallel to a device characterized by having the capacity to extract an electrical current from the cell-house for a period of time and then return it in another period of time, whether periodically or semiperiodically and without changing the average value of the electrical current, supplied to the cell-house by the rectifier-transformer. This results in a electrical current in the cell-house that is the superimposition of a continuous and alternating current. This process is designed to overcome the barrier of electric potential produced by the presence of the pure continuous electric field in cell-houses through the electric agitation of an ion-rich electrolyte.11-20-2008
20090021970DC-AC CONVERTER, CONTROLLER IC THEREFOR, AND ELECTRONIC APPARATUS UTILIZING THE DC-AC CONVERTER - An inverter controls the power supplied to a load such as a CCFL connected to a secondary winding of a transformer by means of pulse width modulation (PWM) control of the switches of a semiconductor switching circuit connected to the primary winding of the transformer. The current and voltage supplied to the load are fed back to the inverter in the form of a current error signal and a voltage error signal, respectively, from which a feedback signal is formed in accordance with the magnitudes of these signals. Thus, when the DC supply voltage of a DC power supply sharply rises, the inverter changes the feedback signal directly, that is, without waiting for the changes to occur in the load current and load voltage, so as to reduce the power supplied to the load. Thus, over-current and resultant viewer's discomfort is suppressed. Sudden shut down of the inverter are also prevented from occurring.01-22-2009
20080310205Method for Controlling a Polyphase Converter With Distributed Energy Stores - The invention relates to a method for controlling a power converter comprising at least two phase modules, each of which is provided with an upper and a lower valve leg that is equipped with at least two serially connected bipolar subsystems, respectively. According to the invention, the switching actions in the two valve legs (T12-18-2008
20100328977METHOD FOR CONTROLLING A VOLTAGE SOURCE CONVERTER AND A VOLTAGE CONVERTING APPARATUS - In a method for controlling a Voltage Source Converter having at least one phase leg comprising a series connection of switching elements, in which each said element has at least two semiconductor devices of turn-off type, at least two free-wheeling diodes connected in parallel therewith and at least one energy storing capacitor, each said switching element is controlled according to a Pulse Width Modulation pattern so that each switching element is switched to change between applying a zero voltage and the voltage across its capacitor across its terminals each time a saw tooth voltage wave for that switching element crosses a reference alternating voltage belonging to that switching element.12-30-2010
20100328976CASCODE CONFIGURED SWITCHING USING AT LEAST ONE LOW BREAKDOWN VOLTAGE INTERNAL, INTEGRATED CIRCUIT SWITCH TO CONTROL AT LEAST ONE HIGH BREAKDOWN VOLTAGE EXTERNAL SWITCH - An electronic system includes a low breakdown voltage (LBV) switch internal to an integrated circuit controller to control conductivity of an external, high breakdown voltage (HBV) switch. In at least one embodiment, the internal LBV switch and a cascode configuration of the LBV and HBV switches allow the controller to control the LBV switch and the HBV switch using an internal (“on-chip”) control signal. In at least one embodiment, the LBV switch and the cascode configuration of the HBV switch also allows the controller to control the LBV and HBV switches with more accuracy and less parasitic losses relative to directly controlling the HBV switch. Thus, in at least one embodiment, the low breakdown voltage switch is fabricated as part of an integrated circuit controller, and the high breakdown voltage switch is fabricated separately and located external to the integrated circuit controller.12-30-2010
20110080762ELECTRONIC DEVICE CONTROL SYSTEM AND METHOD - There is provided a system and method of operating a plurality of inverters that provide power via a plurality of switches. An exemplary method includes determining an inverter firing pattern corresponding to one of a plurality of regions of an inverter firing cycle, the inverter firing pattern defining whether each of the plurality of switches are held either on or off. The exemplary method also includes producing control signals for the plurality of switches based on the firing pattern. The control signals may be applied to the plurality of inverters for powering one or more electronic devices.04-07-2011
20100067276TWO TERMINALS QUASI RESONANT TANK CIRCUIT - A power converter includes a transformer, a primary switch, an auxiliary switch, first and second resonance capacitors, and a secondary side rectification means. A switch mode power supply is formed to use reflected voltage and parasitic capacitance as an energy source for a transformer resonance. The auxiliary switch effectively exchanges energy between the primary inductance of the transformer and the first and second resonant capacitors. The auxiliary switch effectively switches the transformer resonance between two distinct frequencies. In one embodiment of the invention, the power converter can be, but is not limited to, a flyback converter and further includes a comparator and a driver. The comparator is for detecting the voltage across the second resonance capacitor and the driver is configured to drive the auxiliary switch based on the output state of the comparator. The resonant nature of the converter provides zero voltage (ZVS) for the primary switch as well as for the auxiliary switch.03-18-2010
20110261601METHOD AND SYSTEM FOR CONTROLLING A MULTI-STAGE POWER INVERTER - A method for controlling an multi-stage inverter comprises controlling an input converter of the multi-stage inverter with an input controller and controlling an output converter of the multi-stage inverter with an output controller separate from the input controller. The input controller and output controller may be galvanically isolated. Additionally, the method may include communicating data between the input controller and the output controller over a power bus of the multi-stage inverter.10-27-2011
20110188277CIRCUIT CONFIGURATION WITH A STEP-UP CONVERTER, AND INVERTER CIRCUIT HAVING SUCH A CIRCUIT CONFIGURATION - An inverter circuit contains a first and second DC sources for providing a DC voltage, a common step-up converter for boosting the DC voltage, an intermediate circuit capacitor connected between the outputs of the common step-up converter, and an inverter for converting the DC voltage provided by the capacitor into an AC voltage. The common step-up converter contains a series circuit having a first inductance and a first rectifier element and is connected between an output of the first DC source and one side of the intermediate circuit capacitor as well as a series circuit which includes a second inductance and a second rectifier element and is connected between an output of the second DC source and another side of the intermediate circuit capacitor. The common step-up converter further contains a common switching element which is connected between the first and second DC sources.08-04-2011
20110188276CIRCUIT ARRANGEMENT HAVING A BOOST CONVERTER, AND INVERTER CIRCUIT HAVING SUCH A CIRCUIT ARRANGEMENT - An inverter circuit contains a first and second DC sources for providing a DC voltage, a common boost converter for boosting the DC voltage, an intermediate circuit capacitor connected between the outputs of the common boost converter, and an inverter for converting the DC voltage provided by the capacitor into an AC voltage. The common boost converter contains a series circuit having a first inductance and a first rectifier element and is connected between an output of the first DC source and one side of the intermediate circuit capacitor as well as a series circuit which includes a second inductance and a second rectifier element and is connected between an output of the second DC source and another side of the intermediate circuit capacitor. The common boost converter further contains a common switching element formed by at least two circuit-breakers which are connected between the first and second DC sources.08-04-2011
20100027305ELECTRIC POWER CONTROL DEVICE AND VEHICLE WITH THE SAME - Power lines are connected to neutral points of motor generators, respectively, and an electric power is transmitted and received between a vehicle and a load outside the vehicle via the power lines. In this transmission, an ECU simultaneously PWM-controls all phases of one of inverters, and controls the other inverter to keep continuously the conducting state.02-04-2010
20110216567Single switch inverter - A novel concept of converting a DC input to an AC output with a single active switch is disclosed. A series of topologies are developed to support the needs of different applications. Particular requirements for driving modern lighting devices are also addressed and supporting solutions are elaborated.09-08-2011
20090279336Inverter modulator with variable switching frequency - An inverter control is used to control the output of a distributed power generating station, such as a photovoltaic (PV) solar power station, connected to a power grid. The power station is connected to an inverter output. Pulse width modulation is used to shape the output in order to maximize power output within power quality parameters and provides control of a switching frequency of the inverter responsive to a sensed parameter. The technique allows an increase in output efficiency and provides for adjustment of power output to meet power quality parameters to an extent required in order to connect to the power grid.11-12-2009
20100124087POWER CONVERTER START-UP CIRCUIT - A power converter arrangement configured to convert a direct voltage into an alternating voltage to be supplied to a grid includes a photovoltaic generator configured to generate the direct voltage, a voltage intermediate circuit, a main power converter connected in series with a bypass switch, a maximum power point controller configured to set a maximum power point voltage, and at least one voltage-limited additional circuit configured to be active during a start-up phase of the photovoltaic generator. The at least one voltage-limited additional circuit and the main power converter are configured as a voltage divider in parallel with the photovoltaic generator. The at least one voltage-limited additional circuit is configured as a capacitive voltage divider having a first capacitor and an intermediate circuit capacitor connected in series.05-20-2010
20110063882ACCURACY OF A VOLT-SECOND CLAMP IN AN ISOLATED DC/DC CONVERTER - A novel system and methodology for providing a volt-second clamp. A DC/DC conversion system configured for producing an output voltage in response to an input voltage has a transformer with a primary winding responsive to the input voltage and a secondary winding for producing the output voltage. The conversion system has a power switch coupled to the primary winding of the transformer and controlled with a converter control signal, such as a PWM control signal. The power switch is further controlled by a comparator that compares an input value supplied to its input with a variable reference value so as to prevent magnetic flux density of the transformer from increasing to an undesired level. The input value of the comparator is produced by a comparator input circuit as a function of the input voltage and an on-time of the power switch. A reference circuit produces the reference value that varies as a function of the input voltage.03-17-2011
20120044730LINE AND NEUTRAL POINT CLAMPED INVERTER - Exemplary embodiments are directed to an inverter and a method for controlling an inverter. The inverter includes a DC link having two capacitor units in series and a neutral point between the capacitor units, and a first and a second inverter leg. Both inverter legs are connected between the poles of the DC link and include four switching devices connected in series. Both inverter legs include an upper connection point between the two topmost switching devices, a lower connection point between the two bottommost switching devices, and an output between the two middle switching devices. Both inverter legs further include a first rectifier device connected between the DC link neutral point and the leg upper connection point, and a second rectifier device connected between the DC link neutral point and the leg lower connection point. Both inverter legs further include a third rectifier device connected between the upper connection point of the leg and the output of the other leg, and a fourth rectifier device connected between the output of the leg and the lower connection point of the other leg.02-23-2012
20120002453CONTROLLER APPARATUS FOR CONTROLLING A MULTIPHASE MULTILEVEL VOLTAGE SOURCE INVERTER AND A METHOD THEREOF - The present invention provides an apparatus for controlling a multiphase multilevel voltage source inverter. The apparatus includes a signal-generating unit and a converter. The signal-generating unit responds to an input signal to produce a switching strategy control signal and a duration timing control signal corresponding to the switching strategy control signal. The converting unit responds to the switching strategy control signal and the duration timing control signal to produce a switching signal. The voltage source inverter responds to the switching signal to generate a multiphase-and-multilevel AC voltage output.01-05-2012
20120002452Compact inverter - A method of making a compact power inverter is disclosed. Steps include: providing a plurality of transistors, a main circuit board, a transformer, an input control circuit board; an output control circuit board; and optionally, casing; aligning transistors in the plurality of transistors in rows on the top side of the main circuit board; capping the rows with heat sinks; installing the main circuit board in the casing when a casing is present, preferably in a thermally coupled configuration adapted to cool at least one of the transistors in the plurality of transistors by conduction to the casing; positioning the output control circuit board and the input control circuit board vertically between rows of the plurality of transistors; and, attaching the transformer to the bottom side of the main circuit board.01-05-2012
20120057386SEMICONDUCTOR ELEMENT, SEMICONDUCTOR DEVICE, AND POWER CONVERTER - A semiconductor element 03-08-2012
20120155139Electrical Energy Conversion Circuit Device - The present invention is related to an electrical energy conversion circuit device (06-21-2012
20120008356CURRENT-FED CONVERTER - A converter circuit includes first and second input terminals for receiving input current from a current source, a first capacitor connected between the first and second input terminals, a second capacitor having a first terminal of which is connected to the second input terminal and a second terminal which forms a positive voltage node, and first and third semiconductor components connected in series between the first input terminal and a positive voltage node, where the midpoint between the series connection forms a first node. The converter circuit includes first inductive component connected between the second input terminal and first node, second and fourth semiconductor components connected in series in parallel with the series connection first and third semiconductor components, a second inductive component having a first end which is connected to a second node formed between the second and fourth semiconductor components and a second end which produces a first output terminal, where the second output terminal is formed of the first input terminal. The first and the third semiconductor components are configured to control the voltage between the first and second input terminals.01-12-2012
20120008358ELECTRIC CIRCUIT FOR CONVERTING DIRECT CURRENT INTO ALTERNATING CURRENT - Electric circuit for converting direct into alternating current specially designed for photovoltaic systems connected to the electrical grid without a transformer, and enabling the earthing of one of the input terminals (01-12-2012
20120008357Capacitor Module, Power Converter, Vehicle-Mounted Electrical-Mechanical System - A capacitor module in which the structure of a connecting portion is highly resistant against vibration and has a low inductance. The capacitor module includes a plurality of capacitors and a laminate made up of a first wide conductor and a second wide conductor joined in a layered form with an insulation sheet interposed between the first and second wide conductors. The laminate comprises a first flat portion including the plurality of capacitors which are supported thereon and electrically connected thereto, a second flat portion continuously extending from the first flat portion while being bent, and connecting portions formed at ends of the first flat portion and the second flat portion and electrically connected to the exterior.01-12-2012
20120063187INVERTER DEVICE - An inverter device that converts electric power between a direct current and an alternating current. The inverter is configured with an inverter circuit and a control circuit. The control circuit substrate includes a driver circuit that supplies a control signal for each switching element. The driver circuit is placed so as to overlap a mount region of each switching element in the inverter circuit unit as viewed in a direction perpendicular to a substrate surface of the control circuit substrate. The temperature detection circuit is placed so as to overlap a mount region of the one of the upper arm and the lower min of each of the inverter circuit units. The current detection circuit is placed so as to overlap a mount region of the other of the upper arm and the lower arm of each of the legs in the inverter circuit unit.03-15-2012
20120057385POWER CONTROL CIRCUIT - This invention relates to a power control circuit, and, an inventive PWM controller, switching circuit, high voltage discharge circuit and magnetic amplifier are also introduced and used to construct the power control circuit. The power control circuit has featured power saving and wide frequency band.03-08-2012
20120026770POWER CONVERTER WITH LINEAR DISTRIBUTION OF HEAT SOURCES - A power converter design is disclosed with a novel approach to thermal management which enhances the performance and significantly reduces the cost of the converter compared to prior art power converters. The invention minimizes the heating of one power component by another within the power converter and therefore enables the power converter to work at higher power levels. Essentially, the power converter uses a heatsink having a high length to width ratio, a linear array of power components thermally coupled to the heatsink parallel to the long axis of the heatsink and a heat removal system which produces the highest cross sectional thermal flux perpendicular to said long axis. In addition, a number of ancillary thermal management techniques are used to significantly enhance the value of this basic approach. A specific circuit design for the power converter is not disclosed or discussed as the invention can be applied to any number of power converter electrical topologies. What is addressed is the specific thermal management of the three primary component groups found in any power converter; semiconductor devices, magnetic components and capacitors. The invention uses specific geometries and power component arrangements as well as strategic use of advanced thermal materials.02-02-2012
20120026769PHOTOVOLTAIC INVERTER SYSTEM AND METHOD OF STARTING SAME AT HIGH OPEN-CIRCUIT VOLTAGE - A power inverter system includes a DC to AC inverter configured to convert DC voltage from a DC power source to AC voltage. A DC link couples the DC power source and the inverter. An inverter pre-charger operates to pre-charge the inverter to achieve a desired DC link voltage prior to connecting the power inverter system to an AC power grid. A phased lock loop synchronizes the pre-charged inverter to the AC power grid prior to connecting the power inverter system to the AC power grid. The pre-charged inverter regulates the DC link voltage to about the minimum voltage level that allows control of AC grid currents via the inverter subsequent to connecting the power inverter system to the AC grid. The inverter operates in a maximum power point tracking control mode only subsequent to a first voltage transient caused by connecting the DC power source to energize the power inverter system.02-02-2012
20120300523POWER SUPPLY DEVICE - A power supply device includes: a magnetic-coupling-type multi-phase converter having first and second chopper circuits that respectively adjust respective currents flowing in first and second reactors magnetically coupled to each other, and performing voltage conversion between a DC power supply and a load; and a control circuit. The control circuit includes a determination unit and a current control unit. The determination unit determines whether the temperature of the power supply is lower than a reference temperature. In the case where the power supply temperature is lower than the reference temperature, the current control unit uses a value determined by adding an offset amount to a detected value of the reactor current to set a duty command value for the first chopper circuit and uses a detected value of the reactor current to set a duty command value for the second chopper circuit.11-29-2012
20120300522Semiconductor Device, Power Semiconductor Module and Power Conversion Device Equipped with Power Semiconductor Module - A semiconductor device includes: a case with an opening formed thereat; a semiconductor element housed inside the case; a first conductor plate housed inside the case and positioned at one surface side of the semiconductor element; a second conductor plate housed inside the case and positioned at another surface side of the semiconductor element; a positive bus bar electrically connected to the first conductor plate, through which DC power is supplied; a negative bus bar electrically connected to the second conductor plate, through which DC power is supplied; a first resin member that closes off the opening at the case; and a second resin member that seals the semiconductor element, the first conductor plate and the second conductor plate and is constituted of a material other than a material constituting the first resin member.11-29-2012
20120300521EASY-TO-ASSEMBLE STRUCTURE OF POWER CONVERTER - An easy-to-assemble structure of a power converter includes a control circuit board, semiconductor modules with power terminals and control terminals extending therefrom, and a capacitor to smooth voltage to be applied to the semiconductor modules. The capacitor includes capacitor devices coupled to the power terminals and voltage measuring terminals joined to electrodes of the capacitor devices. The control terminals and the voltage measuring terminals extend in a direction normal to the surface of the control circuit board. This permits the connections of the voltage measuring terminals and the control terminals with the control circuit board to be achieved simultaneously by bringing them close to the control circuit board from the normal direction.11-29-2012
20130170266TWO-STAGE ISOLATED DC/AC CONVERSION CIRCUIT STRUCTURE - A two-stage isolated DC/AC conversion circuit structure, consisting of a main switch, a second switch attached to a controller, another controller for controlling, and in work mode 1 and 2, after passing through the capacitor filter the low frequency half sine wave power is stored on this capacitor. After an inductor outputs the low frequency half sine wave power through this capacitor filter, it can respectively pass through the first and second transformers to increase the voltage, and then pass through the first and second secondary diode rectifiers, outputting the positive and negative half waves AC to the end user, and allow the end user to obtain the whole wave of the AC. Using the first and second diodes prevents outputting in reverse, and has the effect of isolation, and prevents all the stored energy for the later stage end user recharging to the front stage DC/AC conversion circuit.07-04-2013
20080259666Power Unit - The invention makes it possible to secure a maximum output within the capacity range of an electrical power source by preventing an output from being cut by a protective function of a converter at the time of a temporary overload. A bidirectional DC-DC converter 10-23-2008
20110090726PORTABLE ALTERNATING CURRENT INVERTER HAVING REDUCED IMPEDANCE LOSSES - A portable power supply apparatus is provided having reduced impedance losses. The portable power supply apparatus is comprised of: a portable housing; a battery system residing in the housing; and an inverter circuit residing in the housing. The battery system generates a direct current (DC) voltage having a magnitude greater than or equal to a peak value of a desired alternating current (AC) voltage. The inverter circuit receives the DC voltage directly from the battery system, converts the DC voltage to an AC output voltage and outputs the AC output voltage to one or more outlets exposed on an exterior surface of the portable housing.04-21-2011
20100172166PLUG-IN NEUTRAL REGULATOR FOR 3-PHASE 4-WIRE INVERTER/CONVERTER SYSTEM - A neutral line regulator is designed as a plug-in module or new integrated inverter with a lower rating 4th-leg, instead of using a conventional four-leg inverter to supply power to three-phase four-wire unbalanced AC loads or three-phase nonlinear loads without a neutral connection. The neutral line regulator may be designed for controlling only the unbalanced power rather than using a fully rated inverter leg. Since this plug-in module may be separate from the main inverter and may operate at a lower power, the switching frequency may be higher than the main inverter. Thus, the size and weight requirements for providing the neutral line can be significantly reduced. In addition, the plug-in regulator may maintain voltage balance between the center-tapped DC link capacitors for non-linear, unbalanced loads. Moreover, the plug-in module may be used as a retrofit module replacing, for example, delta-wye transformers.07-08-2010
20100172167METHOD AND APPARATUS OF AN IMPROVEMENT IN PWM SWITCHING PATTERNS - An improvement in PWM switching patterns applicable for almost all voltage source converters is disclosed. Conventional PWM switching patterns, including carrier based PWM, spacer vector PWM, hysteretic switching pattern, etc, contain a lot of unnecessary switching events. In the present invention, most of the unnecessary switching events are eliminated. The benefits of the method include the significant reduction in control power dissipation which is very attractive especially in high power applications; no risk of shoot through; and no need for deadtime. This method can be easily applied to all existing switching patterns with a little modification. The modification can be in hardware, if the original switching pattern is generated in hardware; it can also be in software, if the original switching pattern is generated in software.07-08-2010
20110103115VOLTAGE SOURCE CONVERTER - A Voltage Source Converter having at least one phase leg connected to opposite poles of a direct voltage side of the converter and comprising a series connection of switching cells has inductance means comprising a plurality of inductors (05-05-2011
20110103114SOLAR POWER CONVERSION CIRCUIT AND POWER SUPPLY SYSTEM USING THE SAME - A solar power supply system includes at least one solar power conversion circuit and an inverter circuit. Each solar power conversion circuit comprises a solar module and a direct current (DC) module. The solar module converts the solar power into the DC signals. The DC module with two-stage conversion comprises a DC transformer circuit and a maximum power point tracking circuit, to boost the DC signals and adjust output power of the solar module to a maximum value. The inverter circuit converts the boosted DC signals output from the solar power conversion circuits into AC signals and combines the AC signals into the AC utility network.05-05-2011
20110103116PLANT FOR TRANSMITTING ELECTRIC POWER - A plant for transmitting electric power comprising a direct voltage network (05-05-2011
20100246230High reliability power systems and solar power converters - Reliability enhanced systems are shown where an short-lived electrolytic capacitor can be replaced by a much smaller, perhaps film type, longer-lived capacitor to be implemented in circuits for power factor correction, solar power conversion, or otherwise to achieve DC voltage smoothing with circuitry that has solar photovoltaic source (09-30-2010
20120314467POWER CONVERSION SYSTEM AND METHOD - Embodiments of the invention relate to a power system for converting direct current (“DC”) power on a DC bus into alternating current (“AC”) power with a regulated voltage output and for feeding the AC power to an electrical system which may include a power utility or an electric grid, for example. A power conversion control system is used for controlling the power conversion and for maintaining the DC bus voltage (“DC voltage”) at a certain level.12-13-2012
20120127768POWER CONVERTER - A power converter includes a power converter section (05-24-2012
20120127767Low-Current Inverter Circuit - The circuit includes an E-mode transistor with gate-source junction, a D-mode transistor with gate-source junction, a component generating a voltage drop between the source of the D-mode transistor and the drain of the E-mode transistor, and a connection between the drain of the E-mode transistor and the gate of the D-mode transistor. The gate of the E-mode transistor is provided for an input signal, and the drain of the E-mode transistor is provided for an output signal.05-24-2012
20120163058HIGH VOLTAGE INVERTER DEVICE AND ELECTRICAL LEAKAGE DETECTOR THEREOF - In a high voltage inverter device switching an input voltage to apply an exciting current to an excitation winding of a transformer and output an alternating-current high voltage from an output winding to supply the high voltage to a load from output lines, a point on the output line is connected to a frame ground. Each of a first and a second winding of the electrical leakage detecting transformer is interposed in series with the output line on a side where current flows out of the point and a side where current flows into the point respectively. A detection voltage Vd outputted from an amplifying winding is compared by a comparison voltage Vref, and an electrical leakage detection signal Sd is outputted when Vd>Vref. The first and second winding are opposite in winding direction to each other and equal in number of turns.06-28-2012
20100208502SWITCHING POWER SOURCE DEVICE AND DRIVE METHOD THEREOF - A switching power source device includes current control pulse generating means configured of a target value setting module, which outputs a changeable value which is a predetermined target value relating to a control of an output current, a computing module, which carries out a computing process relating to the control of the output current based on the target value, and outputs a computation result, and a pulse generating module, which generates a current control pulse voltage for controlling the output current based on the computation result. The switching power source device includes a current detecting circuit, which detects the output current or a current flowing in a switching element TR08-19-2010
20110182096SEMICONDUCTOR INTEGRATED CIRCUIT, PWM SIGNAL OUTPUT DEVICE, AND POWER CONVERSION CONTROL APPARATUS - Provided is a control technique of a PWM conversion type power converter capable of compensating for a voltage error due to voltage drop mainly at a switching element and managing a switching time of a PWM signal at the same time, and capable of suppressing increase/decrease of software operation load and addition of a hardware circuit to the minimum. A semiconductor integrated circuit having a PWM signal generating unit which generates a PWM signal is provided with a PWM timer unit including a counter counting a pulse width of a pulse signal inputted from the outside with delay from a PWM signal, a register loading a counter value of the counter in synchronization with the PWM signal, and an A/D converting unit converting an analog signal serving as a source signal of the pulse signal inputted from the outside to a digital signal.07-28-2011
20120134191POWER CONVERTING APPARATUS, GRID INTERCONNETION APPARATUS AND GRID INTERCONNECTION SYSTEM - A power converting apparatus comprises a DC-DC converter circuit that steps up or steps down an input voltage from a DC power supply, a DC-AC converter circuit that converts an intermediate voltage outputted by the DC-DC converter circuit to an alternate current, and a control circuit that controls the DC-DC converter circuit and the DC-AC converter circuit. The control circuit is provided with a circuit control unit that controls the DC-DC converter circuit so that the modulation factor, which is the amplitude ratio between a signal wave for manipulating the DC-AC converter circuit and the carrier wave therefor, will become a target modulation factor.05-31-2012
20120170340Power Inverter - A power inverter comprises at least a box-shaped housing; and a power module, a smoothing capacitor, a base plate made of a flat plate, and a rotating electric machine control circuit board arranged in order in the housing. The base plate is arranged with the fringes fixed to the inner wall surfaces of the housing, and the smoothing capacitor and rotating electric machine control circuit board are fixed.07-05-2012
20120236614HIGH VOLTAGE INVERTER DEVICE - A high voltage inverter device uses, as an input voltage (Vin), a DC voltage or a voltage composed of a DC component with a pulsating current superposed thereon, switches the input voltage by a switching element (Qsw) to apply an exciting current to an excitation winding (NP) of a resonant transformer (09-20-2012
20120075899INTERCONNECTION INVERTER DEVICE - The interconnection point of capacitors C03-29-2012
20120075898Photovoltaic Power Converters and Closed Loop Maximum Power Point Tracking - Power converters for photovoltaic (PV) systems and maximum power point tracking techniques are disclosed. One example power converter for a PV system includes an input for coupling to the PV system, an output for providing an output voltage, and a switch coupled between the input and the output. The input is configured to receive an input voltage (Vin) and input current (Iin) from the PV system. The power converter includes a controller configured for controlling operation of the switch using a control signal C. C is a function of at least the input voltage, the input current and a variable (K).03-29-2012
20100271852Power conversion circuit - A power conversion circuit converting DC electric power into AC electric power and sending the AC power to an inductive load, includes a first switching device connected to the positive pole side of the DC power supply to exhibit a conductive state and an interrupted state of a current; a second switching device connected to the negative pole side of the DC power supply to exhibit a conductive state and an interrupted state of the current; a first inductor provided between the first switching device and the inductive load; a second inductor provided between the second switching device and the inductive load; and a clamping diode connected between a first connection point between the first switching device and the first inductor, and a second connection point between the second switching device and the second inductor. Thus, conduction is provided from the second connection point to the first connection point.10-28-2010
20120218800POWER CONVERTER DEVICE AND DRIVING METHOD THEREOF - A leg includes: two semiconductor device groups connected in series and a division current is generated in a current which flows in the semiconductor device group between elements in the semiconductor device groups, a current sensor which detects a current which flows in the semiconductor device group, a voltage command generation unit which calculates a voltage command value to be outputted, a voltage drop calculating unit which calculates a voltage drop of the semiconductor device group by using a current value which is detected by the current sensor and voltage drop characteristics including a division characteristic of the semiconductor device group, and a switching control unit which corrects a voltage command value which is generated by the voltage command generation unit by using the voltage drop which is calculated so as to control ON/OFF of the switching element.08-30-2012
20100265746DRIVE CIRCUIT OF SEMICONDUCTOR DEVICE - The invention provides a switching circuit of a power semiconductor device having connected in parallel SiC diodes with a small recovery current, capable of significantly reducing turn-on loss and recovery loss without increasing the noise in the MHz band, and contributing to reducing the loss and noise of inverters. The present invention provides a switching circuit and an inverter circuit of a power semiconductor device comprising a module combining Si-IGBT and SiC diodes, wherein an on-gate resistance is set smaller than an off-gate resistance.10-21-2010
20120257430BOOTSTRAP GATE DRIVE FOR FULL BRIDGE NEUTRAL POINT CLAMPED INVERTER - In a neutral-point-clamped power inverter, gate drive circuit comprises four drive blocks providing bipolar DC signals to control switch gates. The first and third drive blocks are bootstrapped to the second and fourth. Inverter's neutral bus is commonly connected to the positive and negative DC buses through clamping capacitors. An arm of four serially-stacked-switches bridges DC buses. The switch arm midpoint is an output of the inverter. A first clamping diode connects the neutral bus to the first switch emitter; a second clamping diode connects the neutral bus to the third switch emitter. In one embodiment, a second switch arm mirrors the first, providing a second output; a second gate drive circuit mirrors the first. A bias circuit provides two reference voltages for the gate drive circuits. Three isolated DC sources provide signals that, when used by the gate drive circuit, result in seven isolated bipolar DC signals.10-11-2012
20100309702DC-TO-AC POWER INVERTER AND METHODS - Embodiments of the invention relate generally to semiconductors for power generation and conversion applications, and more particularly, to devices, integrated circuits, substrates, and methods to convert direct current (“DC”) voltage signals to alternating current (“AC”) voltage signals. In some embodiments, an inverter can include a modulator configured to convert a direct current signal into a first variable signal, and a transformation module configured to step up the first variable signal to form a second variable signal. The transformation module can be configured to generate a first portion of the second variable signal and a second portion of the second variable signal. Further, the inverter can include a waveform generator configured to synchronize the first portion and the second portion of the second variable signal at a frequency to generate an alternating current (“AC”) signal.12-09-2010
20080298107AC signal producer and method thereof - An AC signal producer comprises a controlling unit, a Class-D switch circuit, and a low-pass filter. The control unit receives a DC signal and produces a PWM control signal via checking reference tables. The Class-D switch circuit receives the PWM control signal and outputs a square-wave signal. The low-pass filter transforms the square-wave signal into the AC signal. Thereby, the defect of using an oscillator and a transformer to perform the DC to an AC function in the DC system is solved by the present invention.12-04-2008
20120320649DISCHARGE CONTROL APPARATUS FOR POWER CONVERTING SYSTEM WITH CAPACITOR - A discharge controller carries out discharge control by determining a voltage to be applied to a conduction control terminal of each of switching elements such that a current in a non-saturation region of one of the switching elements is lower than a current in a non-saturation region of the other thereof, and applying the voltage to the conduction control terminal of each switching element with an opening-closing member opening an electrical path to turn on the switching elements, resulting in short-circuit of both electrodes of a capacitor so that a discharge current is outputted from the capacitor based on the discharge control. A manipulator manipulates, based on a value of the discharge current, how to apply the voltage to the conduction control terminal of the one of the switching elements, thus controlling an amount of heat to be generated in the one of the switching elements.12-20-2012
20110038193VOLTAGE SOURCE CONVERTER - A Voltage Source Converter having at least one phase leg connected to opposite poles of a direct voltage side of the converter and comprising a series connection of switching elements including at least one energy storing capacitor and configured to obtain two switching states, namely a first switching state and a second switching state, in which the voltage across said at least one energy storing capacitor and a zero voltage, respectively, is applied across the terminals of the switching element, has semiconductor chips of said switching elements arranged in stacks comprising each at least two semiconductor chips. The converter comprises an arrangement configured to apply a pressure to opposite ends of each stack.02-17-2011
20110235383FREQUENCY SYNCHRONIZING METHOD FOR DISCHARGE TUBE LIGHTING APPARATUS, DISCHARGE TUBE LIGHTING APPARATUS, AND SEMICONDUCTOR INTEGRATED CIRCUIT - An oscillator generates a triangular wave signal whose inclination for charging a capacitor and inclination for discharging the same are the same and which is used to turn on/off FETs Qp09-29-2011
20110235382HIGH VOLTAGE INVERTER DEVICE - The high voltage inverter device receives, as an input voltage, a DC voltage or a voltage within Safety Extra Low Voltage composed of a DC component with a pulsating flow superposed thereon. The input voltage is switched by a switching element to pass an exciting current to excitation windings on a primary side of a plurality of separate transformers having same characteristics to simultaneously excite the excitation windings. Output windings of the plurality of transformers are connected in parallel or in series with one another, and time axes of waveforms of output voltages of the output windings are synchronized. Thereby, a high-power high voltage is outputted continuously, stably, and safely from both ends of the output windings connected in parallel or in series.09-29-2011
20090086519Induction Heating Apparatus - An induction heating apparatus capable of stop heating without excessively boosting output voltages of a booster circuit and a power factor correction circuit is provided.04-02-2009
20100202177VOLTAGE LINK CONTROL OF A DC-AC BOOST CONVERTER SYSTEM - Systems and methods are disclosed for a DC boost converter. The systems and methods combine operation of an inductor with the input capacitor of a DC/AC inverter via a switch configuration to power the DC/AC inverter. The switch configuration is controlled by a plurality of control signals generated by a controller based on a variety of control modes, and feedback signals.08-12-2010
20100202176Method for operating an electronically controlled inverter - A method for operating an electronically controlled inverter and an inverter are provided. The inverter includes semiconductor switches, inductors and a first capacitor. The semiconductor switches of the inverter are controlled by a microcontroller alternately as elements of a buck converter and as elements of an inverting Cuk converter with a continuous connection of a neutral conductor at the output to a positive pole at the input side.08-12-2010
20130016547Simplified Multilevel DC Converter Circuit StructureAANM Liao; Yi-HungAACI Erlun TownshipAACO TWAAGP Liao; Yi-Hung Erlun Township TWAANM Lai; Ching-MingAACI Taichung CityAACO TWAAGP Lai; Ching-Ming Taichung City TW - A simplified multilevel DC converter circuit structure comprises a dual input DC power supply, a power control module and an AC side low-pass filter, wherein each of the dual input DC power supply supplies half of the rated DC voltage to the power control module, and the power control module is composed of six power switches, and different switching combinations of each power switch are controlled to convert a DC voltage to an output of an AC voltage, and two of the power switches of the power control module perform a low-frequency switching twice every cycle of the output voltage, and the withstand voltage is equal to the input voltage, and the remaining power switches perform the switching by a high frequency, and the withstand voltage is only half of the input voltage, such that a multilevel voltage can be outputted, and a low harmonic AC waveform can be outputted from the AC side low-pass filter.01-17-2013
20130016548SEMICONDUCTOR DEVICEAANM SEKI; ShinseiAACI WakoAACO JPAAGP SEKI; Shinsei Wako JP - A semiconductor device includes at least one arm series circuit, a conductive first thermal buffer member, and a conductive second thermal buffer member. The arm series circuit includes an upper arm, a lower arm, a positive-electrode terminal, a negative-electrode terminal, and an output terminal. The first thermal buffer member has a linear expansion coefficient greater than a linear expansion coefficient of the first switching device and smaller than a linear expansion coefficient of one of the positive-electrode terminal and the output terminal. The second thermal buffer member has a linear expansion coefficient greater than a linear expansion coefficient of the second switching device and smaller than a linear expansion coefficient of one of the negative-electrode terminal and the output terminal.01-17-2013
20130016549METHOD FOR CONTROLLING AN ELECTRICAL CONVERTER - A method is provided for predicting pulse width modulated switching sequences for a multi-phase multi-level converter. With a first predicted switching sequence, due to multi-phase redundancies, equivalent switching sequences are determined. From the equivalent switching sequences, one switching sequence optimal with respect to a predefined optimization goal is selected. The selected switching sequence is used to switch the converter.01-17-2013
20130021831INVERTER - An inverter comprising: a circuit including arms connected in parallel, each of the arms including a first switch and a second switch connected in series; and a gate drive circuit configured to control, by pulse-width modulation using synchronous rectification, each of the first switch and the second switch to switch to an on-state or an off-state, wherein each of the first switch and the second switch includes: a channel region that is conductive in both a forward direction and a reverse direction in the on-state, and that is not conductive in the forward direction in the off-state; and a diode region that is combined as one with the channel region, and that is conductive only in the reverse direction, the diode region being unipolar, and the gate drive circuit synchronizes a timing at which the gate drive circuit outputs a signal for causing the first switch to switch to the on-state with a timing at which the gate drive circuit outputs a signal for causing the second switch to switch to the off-state, and synchronizes a timing at which the gate drive circuit outputs a signal for causing the first switch to switch to the off-state with a timing at which the gate drive circuit outputs a signal for causing the second switch to switch to the on-state.01-24-2013
20130170268POWER CONVERTER - A motor drive system wherein an LC circuit exists between an inverter and a motor is such that switching of semiconductor switching elements Su to Sw and Sx to Sz configuring the inverter is controlled by an on-signal formed of a first on-signal, a second on-signal, and an off-state period of a time the same as the first on-signal provided between the first on-signal and second on-signal, and by an off-signal formed of a first off-signal, a second off-signal, and an on-state period of a time the same as the first off-signal provided between the first off-signal and second off-signal, and surge voltage applied to an input terminal of the motor is suppressed by the time of the first on-signal and the time of the second off-signal being set to one-sixth of a resonance cycle specific to the LC circuit.07-04-2013
20120243279Buck Converter and Inverter Comprising the same - A buck converter for converting a DC voltage at input terminals into an output voltage at output terminals is disclosed. The buck converter includes a DC voltage link including a series-connection of at least two capacitors between the output terminals, and one subcircuit per each capacitor of the series-connection. Each subcircuit includes an inductor and a freewheeling diode. A first one of the input terminals is connected to a first output terminal by a series-connection of a semiconductor switch and the inductor of a first one of the subcircuits, and the subcircuits are coupled for balancing the voltages across their inductors. The buck converter may be used upstream of an inverter bridge of an inverter, such that a maximum voltage at the input terminals may exceed a maximum voltage rating of the bridge switches within the inverter.09-27-2012
20130170267SUPPRESSION OF CHARGE PUMP VOLTAGE DURING SWITCHING IN A MATRIX CONVERTER - Switches of a matrix converter are protected from potentially damaging charge-pump voltage build-up during a transition (dead) time by pulsing On (temporarily closing) any “at risk” switch during the transition (dead) time. The temporary closing of the “at risk” switch discharges any voltage build-up across a parallel coupled capacitor, which protects the at risk switch from damage or failure.07-04-2013
20130176760POWER CONVERTION CIRCUIT USING HIGH-SPEED CHARACTERISICS OF SWITCHING DEVICES - A power conversion circuit converting DC electric power into AC electric power and sending the AC power to an inductive load, includes a first switching device connected to the DC power supply; a second switching device connected to the DC power supply; a first inductor provided between the first switching device and the inductive load; a second inductor provided between the second switching device and the inductive load; and a clamping diode connected between a first connection point between the first switching device and the first inductor, and a second connection point between the second switching device and the second inductor. When the first and second switching devices are turned off, a current flows through the second diode, clamping diode, first inductor and inductive load to completely flow out a current in the first inductor, and then a current flows through the second diode, second inductor and inductive load.07-11-2013
20130176761Power Conversion Device - A power conversion device comprises a power semiconductor device, first and second conductor plates joined to the power semiconductor device, first and second insulating member, a case made of metal which stores the components, and a channel-forming structure made of metal. Part of the case is fixed to the metallic channel-forming structure via a third insulating member. Leakage current caused by the switching operation of the power semiconductor device is transmitted to the channel-forming structure via a series circuit including parasitic capacitance of the first insulating member and/or parasitic capacitance of the second insulating member and parasitic capacitance of the third insulating member.07-11-2013
20130114318SOLID-STATE INDUCTIVE CONVERTER - A converter configured to transform DC into AC. Includes a first and second transistor with connected bases and emitters, and a coil or inductor having a first end that is connected to the bases, a second end that is free, and a common central zero, which is connected to the emitters and divides the inductor into two equal portions, a first portion from the end to a central zero and a second portion from the latter to the end. The circuit is supplied by a direct current applied to the collectors and envisages at least one output between said second end and the collector of one of the two transistors configured to supply a respective load and behaves substantially as a capacitor or electroluminescent cable/panel. Transistors work alternatively by following the cycles of charging and discharging of the load and obtain a supply current having a substantially perfect sinusoidal waveform.05-09-2013
20130114317VOLTAGE CONVERTING APPARATUS AND METHOD FOR CONVERTING A VOLTAGE - A voltage converting apparatus includes a series connection of at least four switching elements each including at least one semiconductor device of turn-off type and a free-wheeling diode connected in anti-parallel therewith. The apparatus has a device configured to measure a parameter representative of the voltage across each free-wheeling diode when turned off and an arrangement configured to control the amount of charge stored in each diode at the moment the diode is turned-off by stopping to conduct depending upon the results of the measurement carried out by the device for controlling the voltage across the diode after turn-off thereof.05-09-2013
20130114320DEVICE FOR BALANCING THE VOLTAGE ON THE TERMINALS OF A CAPACITOR OF A SET OF CAPACITORS, AND VOLTAGE CONVERSION SYSTEM INCLUDING SUCH A BALANCING DEVICE - Device for balancing voltage on terminals of at least one capacitor of a set of N−1 capacitors connected in series between a positive terminal and a negative input terminal and connected through intermediate points, comprising at least one balancing module connected between both input terminals; each balancing module including means for determining the amount of excess or lacking charges in the intermediate points, a temporary electric energy storage element including two terminals, first current guiding means to extract electric charges from an intermediate point towards a terminal of the storage element, second current guiding means to inject electric charges from the other terminal of the storage element towards an intermediate point, and a member able to control the first means so as to extract charges from at least one intermediate point and able to control the second means so as to inject the charges to at least one intermediate point.05-09-2013
20130094265INTEGRATED INVERTER APPARATUS AND METHOD OF OPERATING THE SAME - An integrated inverter apparatus and a method of operating the same are disclosed. The integrated inverter apparatus includes at least two inverter units and a control unit. The inverter units are electrically connected in parallel to each other. At least one of the inverter units has a plurality of field-effect transistor (FET) switches and at least another one of the inverter units has a plurality of insulated gate bipolar transistor (IBGT) switches. The control unit is electrically connected to the inverter units to control the transistor switches of the corresponding inverter units when an optimal efficiency of the integrated inverter apparatus is reached at different operation conditions of the inverter units.04-18-2013
20130094266VOLTAGE INVERTER AND METHOD OF CONTROLLING SUCH AN INVERTER - A voltage inverter capable of operating in the event of a short-circuit or open-circuit fault. The voltage inverter includes: a load having three phases, each phase having a first terminal and a second terminal; first and second cells each including three branches connected together in parallel, each branch including two switches connected in series and a mid-point positioned between the two switches, each first terminal of each of the phases being connected to one of the mid-points of the first cell and each second terminal of each of the phases being connected to one of the mid-points of the second cell; and a DC voltage source, the first and second cells each being connected to the DC voltage source via two electrical isolators.04-18-2013
20130100721INVERTER DRIVING SYSTEM - Provided is an efficient inverter driving method. A pulse with very short pulse width is supplied as a primary driving pulse of a transformer, and the secondary output voltage of the transformer caused by a transient phenomenon can be enlarged several times while keeping the power source voltage for input current constant by shortening the time interval of the primary driving pulse.04-25-2013
20130114319REACTOR - A reactor having a good heat dissipation effect is provided. The reactor includes one coil formed by winding a wire, a magnetic core arranged inside and outside the coil and forming a closed magnetic circuit, and a case for housing an assembly of the coil and the magnetic core. An end surface of the coil has a race track shape, and the coil is housed in the case such that the axial direction of the coil is parallel to an outer bottom surface of the case 05-09-2013
20130128643Power Converter Device - A power converter device includes first through third semiconductor modules provided for phases of a three-phase inverter circuit, and incorporating upper and lower arms series circuit, and a flow path forming cabinet in a rectangular prism shape having an electric equipment containing space and a coolant flow path formed to surround the electric equipment containing space, the coolant flow path includes a first flow path provided along a first side face of the flow path forming cabinet, a second flow path provided along a second side face contiguous to one side of the first side face and connected to one end of the first flow path, and a third flow path provided along a third side face contiguous to other side of the first side face and connected to other end of the first flow path.05-23-2013
20100290261Machine, Computer Program Product And Method For Implementing An Improved Efficiency And Reduced Harmonic Distortion Inverter - A machine, computer program product and method for implementing an improved inverter circuit that converts, with high efficiency, direct-current electrical power (DC) to alternating-current electrical power (AC) with low signal distortion is described herein. The machine to convert a DC input into an AC output comprises a first inverter comprising a plurality of first transistors, at least some of the first transistors receiving the DC signal, the first inverter generating a first inversion signal, the first inversion signal having an error component; a second inverter comprising a plurality of second transistors, the plurality of the second transistors connected to at least one of the first transistors, the second inverter generating a second inversion signal; a combining circuit connected to the first inverter and second inverter, combining circuit producing the AC output; and a computer defining a waveform synthesizer, the waveform synthesizer having an A/D converter for receiving a sample signal from the combining circuit and converting the sample signal into a plurality of digital data points; a non-transient computer memory having instructions stored thereon and a computer processor for executing the instructions, the instructions performing a process of computing an error between the sample signal and an ideal sine waveform and a process of correcting the error.11-18-2010
20100315851CIRCUIT ARRANGEMENT AND METHOD FOR SUPPLYING A CAPACITIVE LOAD - A circuit arrangement (S) for supplying a load (P), whose essential electric property is capacitance, from a DC voltage source (U12-16-2010
20130155745POWER SEMICONDUCTOR DEVICE - Among first IGBTs and first MOSFETs, a transistor arranged near a first gate control circuit gives, through a gate thereof, a gate control signal supplied from the first gate control circuit to a gate of a transistor arranged at a position farther from the first gate control circuit. Among second IGBTs and second MOSFETs, a transistor arranged near a second gate control circuit gives, through a gate thereof, a gate control signal supplied from the second gate control circuit to a gate of a transistor arranged at a position farther from the second gate control circuit.06-20-2013
20130155746POWER LAYER GENERATION OF INVERTER GATE DRIVE SIGNALS - Techniques include systems and methods of synchronizing multiple parallel inverters in a power converter system. In one embodiment, control circuitry is connected to a power layer interface circuitry at each of the parallel inverters, via an optical fiber interface. The system is synchronized by transmitting a synchronizing pulse to each of the inverters. Depending on the operational mode of the system, different data exchanges may occur in response to the pulse. In an off mode, power up and power down data may be exchanged between the control circuitry and the inverters. In an initiating mode, identification data may be transmitted from the inverters to the control circuitry. In an active mode, control data may be sent from the control circuitry to the inverters. In some embodiments, the inverters also transmit feedback data and/or acknowledgement signals to the control circuitry. Power layer circuitry of the inverter adjusts a local clock based upon sampled data from the control circuitry to maintain synchronicity of the inverters between synchronization pulses.06-20-2013
20130182480AC POWER SUPPLY APPARATUS - In an AC power supply apparatus, first and second switching circuits connected in series to an input terminal to which a DC input power supply is connected include first and second rectification elements, respectively. A capacitor, an inductor, and a capacitive load are equivalently connected in series to the second switching circuit. The capacitor is charged after the first switching circuit is turned on before the second rectification element is turned off and the charged capacitor is caused to discharge after the second switching circuit is turned on before the second rectification element is turned off. The above operations are periodically repeated. The voltage of the capacitive load is reversed with current flowing during the charge and the discharge of the capacitor to adjust the on and off periods of the first and second switching circuits in order to supply desired AC voltage to the capacitive load.07-18-2013
20110286252T-TYPE THREE-LEVEL INVERTER CIRCUIT - This invention relates to a T-type three-level inverter circuit. The circuit includes an absorption unit. In the absorption unit, a first terminal of the first resistor is connected to a positive bus terminal, and a second terminal of the first resistor is connected to a first terminal of the first capacitor and a negative electrode of the first diode; a second terminal of the first capacitor and an positive electrode of the first diode are respectively connected to an emitter and a collector of the first controllable switch tube; a first terminal of the second resistor is connected to a negative bus terminal, and a second terminal of the second resistor is connected to a positive electrode of a third diode; a negative electrode of the third diode is connected to both a first terminal of the second capacitor and a positive electrode of a second diode; and a second terminal of the second capacitor and a negative electrode of the second diode are respectively connected to a collector and a emitter of the second controllable switch tube. As the T-type three-level inverter circuit according to the invention is implemented, a voltage stress on the bidirectional switch tube is effectively reduced due to strong absorption capacity of the absorption unit, and thus the bidirectional switch tube can adopt a tube having a relatively low breakdown voltage value. Moreover, the absorption unit has a low cost and a small loss.11-24-2011
20120020136Electric Power Conversion System - A power conversion system according to the present invention includes: an inverter circuit unit that converts a direct current power supplied from a direct current source into an alternating current power, the direct current power being supplied to the inverter circuit through a contactor that conducts and interrupts the direct current; a capacitor that smoothes the direct current power; a discharge circuit unit that is connected to the capacitor in parallel, and that includes a discharge resistor for discharging a charge stored in the capacitor and a switching element for the discharge resistor, being connected in series to the discharge resistor; a voltage detection circuit unit that detects voltage between both terminals of the capacitor; a first discharge control circuit that includes a first microcomputer, and that outputs a control signal to control switching of the switching element for discharging; and a second discharge control circuit that outputs an interruption signal to interrupt the switching element for the discharge resistor.01-26-2012
20130194852POWER CONVERTING APPARTATUS - In a power converting apparatus having a plurality of phases on an AC side and configured to perform conversion between DC power and AC power, a current detector detects currents flowing through a DC source line through which a plurality of phase currents commonly flow. A control unit sets a current detection period and a succeeding current control period in each successive control cycle. Using first gate signals based on reference gate signals for PWM control, the control unit calculates values of the individual phase currents from the first gate signals and the detected currents during the current detection period. Then, during the current control period, the control unit performs PWM control using phase voltage commands generated by correcting phase voltage target values so as to cancel out voltage errors that occur during the current detection period.08-01-2013
20130194853Electric Power Conversion Apparatus - An electric power conversion apparatus includes a channel case in which a cooling water channel is formed; a double side cooling semiconductor module that has an upper and lower arms series circuit of an inverter circuit; a capacitor module; a direct current connector; and an alternate current connector. The semiconductor module includes first and second heat dissipation metals whose outer surfaces are heat dissipation surfaces, the upper and lower arms series circuit is disposed tightly between the first heat dissipation metal and the second heat dissipation metal, and the semiconductor module further includes a direct current positive terminal, a direct current negative terminal, and an alternate current terminal which protrude to outside. The channel case is provided with the cooling water channel which extends from a cooling water inlet to a cooling water outlet, and a first opening which opens into the cooling water channel.08-01-2013
20130194851PHASE ANGLE DETECTION IN AN INVERTER - A system and method of detecting phase angle in an inverter is provided. A shunt resistor is coupled to a controller which is part of an inverter circuit and a phase angle may be directly derived from the detected voltage across the shunt resistor. The detected shunt voltage may be used to adjust the power delivery from the inverter to the load.08-01-2013
20130201741POWER MODULE FOR CONVERTING DC TO AC - A power module for converting direct current to alternating current comprising a semiconductor switching circuit device, a substrate onto which the switching circuit device is physically and electrically coupled without wirebonds, a plurality of leadframe terminals physically and electrically coupled to the substrate, and a cover including an opening exposing a bottom side of the substrate and including a wall portion oriented generally orthogonally relative to the substrate with at least some of the leadframe terminals projecting outwardly from the wall portion. The leadframe terminals projecting outwardly from the wall portion may include an affixed portion coupled to the substrate and an extending segment lying in a plane above the affixed portion with the extending segment projecting outwardly from the wall portion and the cover encapsulating the affixed portion whereby the extending segment is spaced from a plane defined by the bottom side of the substrate.08-08-2013
20130201740MAXIMUM POWER POINT TRACKER, POWER CONVERSION CONTROLLER, POWER CONVERSION DEVICE HAVING INSULATING STRUCTURE, AND METHOD FOR TRACKING MAXIMUM POWER POINT THEREOF - Disclosed are a maximum power point tracker, a power conversion controller, a power conversion device having an insulating structure, and a method for tracking maximum power point. The power conversion device includes: a DC/AC converter including a primary DC chopper unit having a primary switch, a transformer, and an AC/AC conversion unit including a secondary switch; a current detector detecting current from an input stage of the DC/AC converter and providing a detected current value; a voltage detector detecting a system voltage from an output stage of the DC/AC converter; and a power conversion controller generating a primary PWM signal to be provided to the primary DC chopper unit and secondary first and second PWM signals, having the mutually opposing phases, to be provided to the AC/AC conversion unit by using the detected current value and the system voltage.08-08-2013
20120087167POWER CONVERSION DEVICE - Disclosed is a power conversion device which achieves reductions in switching loss due to a reverse recovery current and heat generation loss. Specifically disclosed is a power conversion device provided with a cascode element configured by electrically connecting a normally-on switching element and a normally-off switching element in series and connecting a gate terminal of the normally-on switching element and a source terminal of the normally-off switching element via a cascode connection diode, and a high-speed diode electrically connected in parallel with the cascode element and having a cathode region connected to a positive electrode terminal and an anode region connected to a negative electrode terminal.04-12-2012

Patent applications in class In transistor inverter systems

Patent applications in all subclasses In transistor inverter systems