Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Including automatic or integral protection means

Subclass of:

363 - Electric power conversion systems

363013000 - CURRENT CONVERSION

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
363055000 For inverters 65
363052000 For rectifiers 45
363051000 For high voltage D.C. transmission systems 3
20120182771CONVERTER WITH ACTIVE FAULT CURRENT LIMITATION - A voltage source converter for high voltage DC power transmission is disclosed. According to one aspect, the voltage source converter is connectable between a DC network and another electrical network to interconnect the DC network and the other electrical network. The voltage source converter includes a converter unit configured to convert power flowing between the DC network and the other electrical network and at least one fault unit. One or more of the fault units includes at least one fault module having a voltage source that is operable, in the event of a short circuit in a DC network connected to the voltage source converter, to produce a voltage that acts to reduce current flowing through the voltage source converter and the short circuit.07-19-2012
20130070492HIGH VOLTAGE DC BREAKER APPARATUS - A high voltage DC breaker apparatus configured to interrupt a fault current occurring in a high voltage DC conductor comprises a mechanical interrupter, at least one semiconductor device connected in series with the interrupter, an arrester connected in parallel with the semiconductor device and an LC-circuit connected in parallel with the series connection of the semiconductor device and the interrupter. A control unit is configured to, upon detection of a fault current, control switching of the semiconductor device at a frequency adapted to the values of an inductance and a capacitance of the LC-circuit for charging the capacitance by the fault current while making the current through the interrupter oscillating with an increasing amplitude and the interrupter to open for having the mechanical contacts thereof separated when current zero-crossing is reached for obtaining interruption of the fault current through the interrupter.03-21-2013
20090303761CONVERTER STATION AND A METHOD FOR CONTROL THEREOF - A converter station an element adapted to determine a value of an actual temperature of any critical component of the station and an element adapted to determine a value of an actual temperature of any media used to cool the critical component. An arrangement is adapted to utilize these temperature values and information about actual cooling capacity of any cooling equipment present to cool the critical component and information about the thermal behavior of the critical component and the possible cooling media upon a possible change of the power actually transmitted through the station in a mathematical model for calculating the present overload capabilities of the converter station for use in the control of converters of the station upon a possible request of utilizing an overload capability of the station.12-10-2009
Entries
DocumentTitleDate
20090196079SELF-ADJUSTING BLEEDER FOR A FORWARD CONVERTER - A switched mode power supply (SMPS) may be operated with uncoupled output inductors. Overvoltage produced by “low-load” conditions may be controlled through use of an adaptive regulating bleeder. The bleeder may comprise a shunt regulator and a power dissipation resistor connected in parallel with a load of the SMPS. As load on the SMPS is reduced below a predetermined level, the shunt regulator may begin to conduct. Current may pass through the power dissipation resistor. Power dissipation may occur at a rate sufficient to maintain continuous conductance through an output inductor of the SMPS. During normal load operation, the shunt regulator may not conduct and inefficient dissipation of power through the resistor may be avoided.08-06-2009
20130051093METHOD AND APPARATUS FOR VARYING CURRENT LIMIT TO LIMIT AN OUTPUT POWER OF A POWER SUPPLY - A power supply controller includes an input voltage sense input and an output voltage sense input coupled to sense an input voltage and an output voltage of a power supply. A current limit circuit includes a first variable resistance coupled in parallel with a second variable resistance. The first variable resistance responsive the input voltage of the power supply and the second variable resistance is responsive to the output voltage of the power supply. The current limit circuit is coupled to generate a current limit signal in response to an equivalent resistance of the first variable resistance coupled in parallel with the second variable resistance. A drive signal generator is coupled to generate a drive signal in response to the current limit signal to drive a power switch of the power supply to limit an output power of the power supply in response to the input voltage.02-28-2013
20090040798SWITCHING MODE POWER SUPPLY APPARATUS AND POWER SUPPLY METHOD THEREOF - A switching mode power supply apparatus includes a conversion unit to convert input power into output power having a predetermined voltage by performing a switching operation; a light emitting unit to emit light if the voltage of the output power exceeds a predetermined threshold voltage; a light receiving unit to receive the light emitted from the light emitting unit and output a signal indicative of the voltage of the output power; a switching controller to control the switching operation of the conversion unit according to the voltage of the output power indicated by the signal output from the light receiving unit; and a disconnection unit to disconnect power applied to the light receiving unit if a voltage of the power applied to the light receiving unit exceeds a predetermined trigger voltage.02-12-2009
20090268489FLYBACK CONVERTER HAVING AN ACTIVE SNUBBER - A flyback converter having an active snubber includes a transformer to receive input power. The transformer has a primary winding at a first side. The active snubber is coupled in parallel with two ends of the primary winding and has a first circumferential circuit coupling in parallel with the primary winding, a second circumferential circuit and a zero voltage switch unit. The second circumferential circuit is controlled by the zero voltage switch unit and incorporated with the first circumferential circuit to form double damping paths to reduce current and prevent resonance that might otherwise occur to a single circumferential circuit and the secondary side of the transformer.10-29-2009
20120099351ELECTRONIC APPARATUS - An electronic apparatus having reinforced power saving and safety functions, the electronic apparatus may include: a power supply which converts alternating current (AC) power input from an AC power source to direct current (DC) power to be outputted; an AC power switch provided on a first AC power input line connecting the AC power source and the power source and is turned on and off to selectively transmit the AC power to the power supply; a relay provided on a second AC power input line connecting the AC power source and the power supply in parallel with the AC power switch, and receives the DC power from the power supply to selectively transmit the AC power to the power supply; a switching unit which selectively transmits the DC power output from the power supply to the relay; and a controller which controls the switching unit to supply the DC power to the relay if the AC power switch is turned on.04-26-2012
20110292698SYSTEM AND METHOD PROVIDING OVER CURRENT AND OVER POWER PROTECTION FOR POWER CONVERTER - System and method for protecting a power converter. A system includes a threshold generator configured to generate a threshold signal, and a first comparator configured to receive the threshold signal and a first signal and to generate a comparison signal. The first signal is associated with an input current for a power converter. Additionally, the system includes a pulse-width-modulation generator configured to receive the comparison signal and generate a modulation signal in response to the comparison signal, and a switch configured to receive the modulation signal and adjust the input current for the power converter. The threshold signal is associated with a threshold magnitude as a function of time. The threshold magnitude increases with time at a first slope during a first period, and the threshold magnitude increases with time at a second slope during a second period. The first slope and the second slope are different.12-01-2011
20080304297SWITCHING POWER SUPPLY WITH PROTECTION FUNCTION - A switching power supply with protection function includes a transistor controlled to be on or off by a PWM signal from a PWM controller to convert a DC voltage into a square wave signal, a filter filtering the square wave signal into an output voltage signal, the output voltage signal being fed back to the PWM controller to be compared with a predetermined voltage, and a switch device having an input terminal for receiving the output voltage signal from the filter, an output terminal for connecting to a load, and a control terminal. If the voltage of the output voltage signal from the filter is not equal to the predetermined output voltage, the PWM controller will not output a signal to the control terminal of the switch device and the switch device will be in an off state. The PWM controller adjusts the duty ratio of the PWM signal until the voltage of the output voltage signal from the filter is equal to the predetermined output voltage such that the PWM controller outputs a control signal to turn on the switch device to allow the load receiving the output voltage signal via the switch device.12-11-2008
20090168469APPARATUS, SYSTEM, AND METHOD FOR A LOW COST FAULT-TOLERANT POWER SUPPLY - An apparatus, system, and method are disclosed for a low cost fault-tolerant power supply. The invention includes a power supply that regulates a bus voltage under varying load conditions. The power supply includes at least one pulse-width modulated stage, where each pulse-width modulated stage includes at least two DC-to-DC converters connected and operating in parallel. Each converter includes a switch and a fuse connected in series where the fuse disconnects the switch in response to an over current condition sufficient to open the fuse. The power supply also includes a pulse-width modulator for each stage of the power supply that regulates a bus voltage controlled by the stage by sensing the controlled bus voltage and adjusting a switching duty cycle to regulate the controlled bus voltage to a target value. The pulse-width modulator for a stage provides a substantially identical switching duty cycle to each switch of the stage.07-02-2009
20080291708PROTECTIVE CIRCUIT AND METHOD FOR MULTI-LEVEL CONVERTER - A protective circuit for a multi-level converter including a DC link capacitor bank includes: an energy absorbing element; switches, wherein at least two of the switches each couple the energy absorbing element to the capacitor bank; and a controller configured to provide control signals to the switches to selectively actuate the switches to enable control of energy dissipation and to enable control of voltage balance on the capacitor bank of the multi-level converter.11-27-2008
20080310198Apparatus and method for suppressing the input current inrush for a voltage converter in a pre-charge stage - An apparatus and method are provided for suppressing the input current inrush for a voltage converter in a pre-charge stage. The voltage converter comprises a power input for receiving an input current, a power output for supplying an output voltage for a load, and an output capacitor connected to the power output. In a pre-charge stage, a current limiting device is connected between the power input and the output capacitor to limit the input current to flow therethrough, and a variable current limiting control circuit provides a control signal to the current limiting device to determine a variable maximum value for the input current.12-18-2008
20080212345DC-DC CONVERTER SYSTEM - A DC-DC converter system is provided to improve switching control operation of a battery charging DC-DC converter (09-04-2008
20080316777Method for thermal protection of frequency converter and a frequency converter - A method for thermal protection of a frequency converter and a frequency converter that comprises means for controlling the output current of the frequency converter. The method comprises the steps of determining beforehand two or more data points which define a thermal current limit for a semiconductor component of the frequency converter at specific temperatures at two or more switching frequencies, determining beforehand two or more data points which define a thermal current limit for the semiconductor component at specific temperatures at a zero converter output frequency, measuring the temperature of the semiconductor component, determining the switching frequency of the frequency converter, determining the output frequency of the frequency converter, determining the highest allowable thermal current as a function of measured temperature, determined switching frequency and determined output frequency on the basis of the defined data points, and limiting the output current of the frequency converter to the determined highest allowable thermal current.12-25-2008
20080266912HIGH VOLTAGE POWER SUPPLY - A high voltage power supply includes a current overflow prevention unit to detect a change in a load of a device that is operated by an output power supplied from a transformer and to ground filtered signals that are input to first and second comparison units according to the detection result.10-30-2008
20090086517DC/DC BOOST CONVERTER WITH RESISTORLESS CURRENT SENSING - A DC to DC boost converter circuit receives a DC input voltage and converts it to a DC output voltage at a different voltage level than the DC input voltage. The DC to DC boost converter includes a switching power converter for receiving the input voltage on an input and converting the input voltage to an output as the DC output voltage in response to pulse control signals. A switching controller generates the pulse control signals during a switching cycle. Current sensing circuitry limits a current passing through the switching power converter. The current sensing circuitry generates an overload signal when the current exceeds a reference value. The current sensing circuitry sensing the current with a current sensing resistor having a size of at least approximately 500 ohms.04-02-2009
20120195078PREVENTION OF SAFETY HAZARDS DUE TO LEAKAGE CURRENT - Medical apparatus includes an electrical power supply, which is configured for connection to an electrical medical device that is coupled to a body of a patient. In one embodiment, the apparatus includes alternating current (AC) lines that include a ground line. A switch is coupled to connect and disconnect the AC lines from an AC power source. A current sensor is coupled to sense a current flowing in the ground line and to actuate the switch to disconnect the AC lines when the current exceeds a predetermined threshold. In another embodiment, a plurality of electrocardiogram (ECG) leads, including a common lead, are coupled to the body of the patient. An auxiliary current sensor is coupled to monitor a current flowing through the common lead and to actuate the switch to disconnect the power connection when the current exceeds a predetermined limit.08-02-2012
20110235374Stored Energy Dissipating Circuits and Methods for Switched Mode Power Supplies - A circuit includes a detector configured to detect a state of a power supply including an energy storage component and to generate a control signal responsive to the state of the power supply, a dissipating component, and a switch configured to controllably couple the dissipating component to the energy storage component in response to the control signal output by the detector. Methods of operating a power supply including an energy storage component and a dissipating component are disclosed. The methods include monitoring the power supply to determine if the power supply may be active, and, in response to determining that the power supply may be inactive, coupling the dissipating component to the energy storage component to dissipate energy from the energy storage component.09-29-2011
20100259956Dimmable Power Supply - Various embodiments of a dimmable power supply are disclosed herein. For example, some embodiments provide a dimmable power supply including an output driver, a variable pulse generator and a load current detector. The output driver has a power input, a control input and a load path. The variable pulse generator includes a control input and a pulse output, with the pulse output connected to the output driver control input. The variable pulse generator is adapted to vary a pulse width at the pulse output based on a signal at the control input. The load current detector has an input connected to the output driver load path and an output connected to the variable pulse generator control input. The load current detector has a time constant adapted to substantially filter out a change in a load current at a frequency of pulses at the variable pulse generator pulse output.10-14-2010
20090316451APPARATUS PROVIDING PROTECTION FOR POWER CONVERTER - A switching circuit for a power converter includes an oscillation circuit, a first circuit, and a first comparator. The oscillation circuit generates a switching signal for regulating an output of the power converter. The first circuit generates a threshold signal. The first comparator is coupled to receive a signal representative of a current through a power switch. Besides, the first comparator generates a control signal in response to the signal and the threshold signal. A frequency of the switching signal is increased in response to the enabling of the control signal.12-24-2009
20110122663POWER SUPPLY WITH ARC FLASH PROTECTION MECHANISM AND DATA-PROCESSING SYSTEM EMPLOYING SAME - A power supply with arc flash protection mechanism for providing power to a load is disclosed. The power supply comprises a first power connector including a plurality of power terminals and a first detecting terminal, a power conversion circuit, a control unit and a connection status detection circuit. The power terminals of the first power connector are configured to couple with a plurality of power terminals of a second power connector, and the first detecting terminal is configured to couple with a second detecting terminal of the second power connector and provide a detecting signal indicative of whether the second power connector is being disconnected with the first power connector. When the first detecting terminal is disconnected with the second detecting terminal, a power connection status signal of the connection status detection circuit is under disable status and the control unit controls the power conversion circuit not to generate or output the output voltage to the load.05-26-2011
20110128760APPARATUS AND METHOD FOR DC/AC SYSTEMS TO RIDE THROUGH GRID TRANSIENTS - A converter system comprises a DC to AC converter, a maximum power point tracking device, and an array-side control. The DC link converts DC from a photovoltaic array to AC for a grid. The maximum power point tracking device is coupled to the array. The array-side control, which is coupled to the DC to AC converter and the device, prevents overvoltage in the DC bus of the DC to AC converter using array voltage and current data from the device and DC bus voltage data from the DC to AC converter during a grid transient by adjusting a maximum power point of the array to increase array voltage.06-02-2011
20110019444Method and apparatus for detection and control of dc arc faults - A method and apparatus for managing DC arc faults. At least a portion of the method is performed by a controller comprising at least one processor. In one embodiment, the method comprises analyzing a signature of a signal of a power converter and determining, based on analysis of the signature, whether an arc fault exists.01-27-2011
20110085360METHOD AND APPARATUS PROVIDING A MULTI-FUNCTION TERMINAL FOR A POWER SUPPLY CONTROLLER - A power supply controller circuit is disclosed. An example power supply controller circuit includes a control circuit coupled to generate a switching waveform to be used to regulate an output of a power supply. A current input circuit is coupled to receive a current representative of an input of the power supply. The current input circuit is to generate a sense signal in response to the current representative of the input of the power supply. A first comparator is coupled to the current input circuit to receive the sense signal. The first comparator coupled to generate a first signal in response to the sense signal being above a first threshold. An enable/disable logic circuit is coupled to the first comparator. The enable/disable logic circuit is coupled to deactivate the control circuit in response to the first signal.04-14-2011
20090323377OPTIMAL UTILIZATION OF POWER CONVERTERS FOR ENGINE START SYSTEM - A method and system for utilization of power converters in an aircraft engine start system includes measurement of power converter operation data that is utilized with a mathematical model of the power converter thermal characteristics to calculate operation limits for subsequent start duty cycles. A warning indicator is utilized in the event the start duty cycle limits are exceeded. This invention can be extended for any More Electric Vehicle applications, which utilizes an electric engine start system.12-31-2009
20090257255ACTIVE SNUBBER FOR TRANSITION MODE POWER CONVERTER - A transition mode power converter having an active snubber the operation of which is controlled using an auxiliary winding on the transformer of the power converter. In one embodiment, the power converter includes a transformer having a primary winding connected to a voltage source, a primary switch, an auxiliary switch, a capacitor, and an auxiliary winding on the transformer. The primary switch includes a first terminal connected to the primary winding of the transformer and a second terminal connected to a common node. The auxiliary switch includes a first terminal connected to the voltage source and to the primary winding. The capacitor is connected between a second terminal of the auxiliary switch and the first terminal of the primary switch. The auxiliary winding of the transformer is connected to a third terminal of the auxiliary switch and controls operation of the auxiliary switch via the third terminal.10-15-2009
20110249475GRID-CONNECTED INVERTER - A grid-connected inverter includes first and second power conversion circuits, a contactor and a control circuit. The first conversion circuit converts a first DC voltage to a second DC voltage. The second conversion circuit converts the second DC voltage to an AC voltage. The contactor connects an output side of the second conversion circuit to a power system. The control circuit includes a decision circuit and controls start and stop operations of the conversion circuits, and opening and closing of the contactor. The decision circuit decides whether a condition of the contactor is abnormal by detecting, after the control circuit controls the contactor to be open, whether or not a value of the second DC voltage is less than a threshold value, and if the value of the second DC voltage is detected to be not less than the threshold value, decides that the condition of the contactor is abnormal.10-13-2011
20090027928STEP UP CONVERTER WITH OVERCURRENT PROTECTION - A step up converter with overcurrent protection is disclosed. The step up converter can precisely limit the output current of the upstream device. Current from the input terminal of the converter is detected and compared with a predetermined maximum current to get a comparison value which is delivered to a close-loop regulator. The overcurrent protection is achieved by the regulator outputting a control signal to fulfill the conduction or resistance increase of a resistive element of the protection circuit. Furthermore, detection of the temperature or the output voltage may trigger shut off of the protection circuit to implement a protection function.01-29-2009
20110149619METHOD AND APPARATUS FOR VARYING CURRENT LIMIT TO LIMIT AN OUTPUT POWER OF A POWER SUPPLY - A power supply controller is disclosed. An example power supply controller includes an input voltage sense input coupled to sense an input voltage sense signal representative of an input voltage of a power supply. An output voltage sense input is coupled to sense an output voltage sense signal representative of an output voltage of the power supply. A current limit circuit is coupled to generate a current limit signal. The current limit signal is varied relative to a first ratio representative of a ratio of a product of the input voltage and a scaled output voltage of the power supply, to a sum of the input voltage and the scaled output voltage of the power supply. A drive signal generator is coupled to generate a drive signal in response to the current limit signal to drive the power switch of the power supply to limit an output power of the power supply in response to the input voltage.06-23-2011
20080247199METHOD AND APPARATUS FOR POWER CONVERTER FAULT CONDITION DETECTION - An example controller includes a fault detector and a control. The fault detector is to be coupled to a feedback circuit of a power converter to detect a fault condition in the power converter in response to an input voltage of the power converter. The control is coupled to the fault detector and is to be coupled to control the switching of a power switch to regulate an output of the power converter. The control is coupled to inhibit the switching of the power switch in response to the fault detector detecting the fault condition during the switching of the power switch.10-09-2008
20080285316AC/DC CONVERTER AND AC/DC CONVERSION METHOD USING THE SAME - Disclosed herein are an AC/DC converter which is simple in circuit configuration, generates little ElectroMagnetic Interference (EMI) and has no transformer so that it can be reduced in weight and size and improved in AC/DC conversion efficiency, and an AC/DC conversion method using the same. The AC/DC converter includes a rectification circuit for converting a commercial AC (85-264V) voltage into a ripple AC voltage, a first control circuit for comparing the converted ripple AC voltage with a reference voltage and outputting a first pulse control signal as a result of the comparison, a first switching circuit for switching and outputting the ripple AC voltage from the rectification circuit in response to the first pulse control signal outputted from the first control circuit, and a first charge storage circuit for smoothing the ripple AC voltage outputted from the first switching circuit to convert it into a primary DC voltage.11-20-2008
20080259659Overload and short protected soft-start converter - A converter and a driving method thereof are provided. The converter can determine the output short state of the converter after the soft start is finished by using a detection signal that corresponds to an input signal while a switched is turned on and that corresponds to an output signal while the switch is turned off, so as to convert the input signal into the output signal according to a switching operation of the switch. The converter can determine the overload state of the converter by using a feedback voltage corresponding to the output signal, and terminate the switching operation when the converter is in an output short state or overload state.10-23-2008
20080266911Current sensing circuits and methods for a converter - In one embodiment, a current sensing circuit for a converter includes a sensing switch and a comparator. The sensing switch is coupled to a power switch within the converter for receiving a first voltage signal indicative of the current through the power switch. The sensing switch also produces a second voltage signal based on the first voltage signal. The comparator is coupled to the sensing switch for detecting an operation condition of the converter based on the second voltage signal. An offset voltage between the second voltage signal and the first voltage signal can compensate for a delay at the comparator.10-30-2008
20080247198CONTROL CIRCUIT AND CONTROLLING METHOD OF SWITCHING POWER SUPPLY SYSTEM - A switching power supply system has a control circuit that controls an output voltage by causing a switching device to turn ON and OFF. The control circuit includes a control pulse supplying unit that supplies a pulsed signal that_keeps the switching device turned-ON and -OFF. A protection circuit shuts down the switching power supply system upon occurrence of an abnormality. A delay circuit produces a delay signal that delays by a specified time duration the termination of a state of the pulsed signal in which the pulsed signal keeps the switching device turned-ON. The protection circuit is responsive to the pulsed signal or the delay signal to switch between an operation state and a stand-by state.10-09-2008
20100165676SYSTEM AND METHOD PROVIDING OVER CURRENT AND OVER POWER PROTECTION FOR POWER CONVERTER - System and method for protecting a power converter. A system includes a threshold generator configured to generate a threshold signal, and a first comparator configured to receive the threshold signal and a first signal and to generate a comparison signal. The first signal is associated with an input current for a power converter. Additionally, the system includes a pulse-width-modulation generator configured to receive the comparison signal and generate a modulation signal in response to the comparison signal, and a switch configured to receive the modulation signal and adjust the input current for the power converter. The threshold signal is associated with a threshold magnitude as a function of time. The threshold magnitude increases with time at a first slope during a first period, and the threshold magnitude increases with time at a second slope during a second period. The first slope and the second slope are different.07-01-2010
20110080759FEEDING SYSTEM FOR AN INDUCTIVE LOAD FROM AN ENERGY SOURCE WITH VARIABLE POWER - A system is provided for the feeding of an inductive load, with electric power of continuous current, generated from an energy source and, more in particular, to a feeding system for a vibratory pump from solar or aeolic energy, which processes the electric power of continuous current supplied by a bank of solar cells or aeolic generator, in a compatible form, using a circuit of electronic command by digital micro controller, for the control and actuation of vibratory pump, independent of the electric power variations supplied by the sources as solar cells, due to the alterations in the level of solar radiation; or in aeolic generator, due to wind speed variations.04-07-2011
20120039100POWER CONVERSION DEVICE, METHOD OF CONTROLLING POWER CONVERSION DEVICE, AND VEHICLE WITH THE SAME MOUNTED THEREON - In a power conversion device of a vehicle, when a collision of a vehicle is detected, the voltage of a gate signal that drive a semiconductor switching element included in the power conversion device is decreased, and residual charge stored in a smoothing capacitor is discharged. Such a configuration increases switching loss when the semiconductor switching element is turned on or off during discharge of the residual charge in the power conversion device, so that discharge of the residual charge can be accomplished in a shorter time.02-16-2012
20120147635SYNCHRONOUS RECTIFIED PWM REGULATOR WITH AUTO FAULT CLEARING - A fault tolerant synchronous rectifier PWM regulator system and method are disclosed. In the system and method, a force commutated synchronous rectifier is operable to be coupled to an electrical bus, and a low side switch is operable to be coupled to a common ground. In addition, a first fuse is coupled to the force commutated synchronous rectifier and the low side switch, and is operable to open in response to a first fault. Furthermore, an inductor is coupled to the first fuse, the force commutated synchronous rectifier and the low side switch, and a second fuse is coupled to the inductor and is operable to be coupled to a current source and to open in response to a second fault.06-14-2012
20120063180Protection Circuit for a Power Conversion Apparatus - A protection circuit that interrupts a supply of power to a driving circuit for a power conversion apparatus upon detection of an abnormality includes switches connected in series between the power supply and the driving circuit. An interruption signal enabling/disabling circuit controls the transmission of an interruption signal from the power conversion apparatus to one of the switches and turns the switch off. A monitoring circuit monitors a voltage output from the switches, and determines that the switch which is to be turned off is in a short-circuit state if the voltage is a normal value. A switch may also be determined to be in a short-circuit fault state if the interruption signal turns the switches off, and if a monitored voltage output from the switches decreases at a decay rate faster than a decay rate in a condition where the switch is not in a short-circuit state.03-15-2012
20080310199POWER SUPPLY PROTECTION APPARATUS AND RELATED METHOD - A power supply protection method for a power supply device includes: detecting whether an output voltage of the power supply device reaches a voltage protection threshold to generate a detection result; generating a first control signal according to a power good input signal and the detection result; utilizing a fault protection circuit to decide whether to output a fault protection signal according to the first control signal; and using a short circuit protection circuit to receive the power good input signal and determining whether to generate a second control signal according to the power good input signal. When the power good input signal is not enabled during a specific time after the power supply device is started, the short circuit protection circuit is directly used to generate the second control signal into the fault protection circuit for triggering the fault protection circuit to output the fault protection signal.12-18-2008
20120014146POWER-DEPENDANT MAINS UNDER-VOLTAGE PROTECTION - A method and controller for power dependant mains under-voltage (“brown-out”) protection is disclosed. Brown-out protection is meant for protection against overheating due to low mains voltage and associated high mains current. Usually this is coupled to the absolute value of the mains voltage, but for devices operating at low power this is not necessary, as overheating will not occur. The disclosed method and controller allow for lower mains voltages at low load by comparing the mains voltage with a signal indicating the actual power level of the power supply.01-19-2012
20110103108Converter Valve - A converter valve unit including a plurality of parallel connected semiconducting elements, a free-wheeling diode and a control unit.05-05-2011
20120314463POWER SUPPLY WITH RESTART CIRCUIT - A power supply protected against open circuit conditions at its output terminals, and methods for so protecting, are disclosed. A front end circuit receives an input voltage and provides a regulated front end DC voltage to a voltage converter circuit, which in turn provides a DC output voltage to the output terminals to drive a light source. An open circuit protection circuit is coupled between the voltage converter circuit and the output terminals. It has a non-conducting state to couple the DC output voltage to the output terminals, and a conducting state to establish a short circuit across the output terminals in response to charging of a capacitor during an open circuit condition at the output terminals. A restart circuit intermittently discharges the capacitor during the open circuit condition to place the open circuit protection circuit in the non-conducting state when the open circuit condition is resolved.12-13-2012
20080298099Apparatus and method for reducing the die area of a PWM controller - An apparatus and method for reducing the die area of a PWM controller include a protection circuit triggered by a fault index signal for counting, and the counting time is provided for a delay time required by fault verification. Therefore, fault detection circuits can be eliminated and the purpose of reducing the die area can be achieved.12-04-2008
20080253155Power Supply with Current Limiting Circuits - A power supply (10-16-2008
20080253154Inrush Current Limiter Device and Power Factor Control (Pfc) Circuit Having an Improved Inrush Current Limiter Device - The present invention relates to an inrush current limiter device (10-16-2008
20130114314CONVERTER SYSTEM AND POWER ELECTRONIC SYSTEM COMPRISING SUCH CONVERTER SYSTEMS - Exemplary embodiments are directed to a converter system having a phase voltage source, n partial converter systems, wherein n≧1 and, when n=1, the partial converter system is connected to the phase voltage source at a connection point and, when n>1, the partial converter systems are connected to the phase voltage source at the connection point. Furthermore, a power switch is connected in series between the phase voltage source and the connection point. An interruption element is connected in series between the phase voltage source, the power switch, and the connection point to rapidly switch off a fault current via a partial converter system. Furthermore, a power electronic system including m converter systems is specified, wherein m>1.05-09-2013
20130121044Power Converter Controller IC Having Pins with Multiple Functions - A controller integrated circuit (IC) for controlling a power converter uses one or more IC pins having plurality of functions such as configuration of a parameter supported by the controller IC and shutdown protection. Several different functions may be supported by a single IC pin, thereby reducing the number of pins required in the controller IC and also reducing the cost of manufacturing the controller IC. The controller IC may also share a comparison circuit among different pins and the different functions provided by those pins. Use of a shared comparison circuit further reduces the cost of manufacturing the controller IC without sacrificing the performance of the IC.05-16-2013
20130128635METHOD FOR OPERATING A CONVERTER AND A SWITCHING CELL AND A CONVERTER - Exemplary embodiments are directed to a method for operating a converter, wherein the converter includes a plurality of bridge branches having one or more switching cells connected in series. Each bridge branch connects one of a plurality of inputs to one of a plurality of outputs of the converter. The method includes monitoring each of the switching cells in order to determine a fault. If a fault is identified in one of the switching cells, triggering one of the triggering elements for short-circuiting switching cell connections if the fault identified in the switching cell is not followed by identification of a fault in a further one of the switching cells within a predetermined period of time.05-23-2013
20100315847COMPONENT FAULT DETECTION FOR USE WITH A MULTI-PHASE DC-DC CONVERTER - Provided herein are circuits, systems and methods that monitor for a fault within a multi-phase DC-DC converter. This can include monitoring the channels of the DC-DC converter for way out of balance (WOB) conditions, and monitoring for a component fault in dependence on detected WOB conditions. A fault can be detected if, during a predetermined period of time, one of the WOB conditions occurs at least a specified amount of times more than another one of the WOB conditions. The DC-DC converter and/or another circuit can be shut-down in response to a fault being detected. Additionally, or alternatively, a component fault detection signal can be output in response to a fault being detected.12-16-2010
20100315846SWITCHING POWER SUPPLY AND OVER-TEMPERATURE PROTECTION METHOD - A switching power supply includes an energy-storing device, a power switch, a driving circuit and a thermal sensing device. The energy-storing device is coupled to an input power source and controlled by the power switch to increase or decrease the power therein. The power switch has a control terminal connected to the driving circuit for switching. The thermal sensing device is connected to the control terminal of the power switch and powered by the driving circuit. When sensing an operation temperature exceeding a predetermined range, the thermal sensing device disables the driving circuit.12-16-2010
20130194840Redundancy Structures for Static Converters - The invention relates to a static converter connected between an electrical voltage source (08-01-2013

Patent applications in class Including automatic or integral protection means

Patent applications in all subclasses Including automatic or integral protection means