Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Thermomagnetic recording or transducers

Subclass of:

360 - Dynamic magnetic information storage or retrieval

360055000 - GENERAL RECORDING OR REPRODUCING

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20080247072MAGNETIC TUNNEL JUNCTION MAGNETIC MEMORY - This magnetic memory with a thermally-assisted write, every storage cell of which consists of at least one magnetic tunnel junction, said tunnel junction comprising at least:10-09-2008
20110205661Optical waveguide and thermal assist magnetic recording head therewith - An optical waveguide of the present invention is an optical waveguide in order to directly introduce light beams emitted from a light emitting element. In a core that is a waveguide through which light propagates, a concave part is formed that is a depression in a light incident end surface that is one side where light enters. Therefore, an optical waveguide is realized that can obtain a large optical coupling efficiency is possible by the operation of phase alignment in the concave part.08-25-2011
20100007980HEAT-ASSISTED MAGNETIC RECORDING HEAD GIMBAL ASSEMBLY - Provided is a heat-assisted magnetic recording (HAMR) head gimbal assembly including a light source module including a light source emitting light, an HAMR head including a magnetic recording head including a recording pole for applying a magnetic recording field to a magnetic recording medium and a return pole magnetically connected with the recording pole to form a path of the magnetic field, and an optical transmission module which is formed on one side of the magnetic recording head and guides light incident from the light source module, a head slider including having a trailing edge whereon the HAMR head is formed, and a suspension attached to an end of an actuator arm, wherein the head slider is formed on an end of the suspension, and a sink part in which the light source module is installed and which is formed separated from the head slider, wherein the sink part is formed on a surface on which the head slider of the suspension is formed, and the light source module is formed on a surface on which the suspension of the light source module is formed.01-14-2010
20090122435HEAD CONTROL METHOD, CONTROL DEVICE, AND STORAGE DEVICE - It is related to a head control method. The head control method controls a protruding flying height of a head in which an energization amount applied to a heater element in the head to thermally expands the head. The head control method includes a resistance-value measuring step of measuring a resistance value of the storage element, an energization-amount calculating step of calculating an energization amount applied to the heater element such that the resistance value measured in the resistance-value measuring step reaches a reference resistance value, and a heater control step of performing control to apply the energization amount calculated in the energization-amount calculating step to the heater element.05-14-2009
20100073804Thin-Film Magnetic Head Having Microwave Magnetic Exciting Function And Magnetic Recording And Reproducing Apparatus - A thin-film magnetic head having microwave magnetic exciting function includes a write magnetic field production means for producing, in response to a write signal, a write magnetic field to be applied into a magnetic recording medium, and at least line conductor of a microwave radiator of a plane-structure type, formed independent from the write magnetic field production means, for radiating, by feeding there through a microwave excitation current, a microwave band resonance magnetic field with a frequency equal to or in a range near a ferromagnetic resonance frequency F03-25-2010
20100073802Thermally assisted magnetic head having an asymmetric plasmon antenna and manufacturing method thereof - A thermally assisted magnetic head according to the present invention includes: a medium-facing surface, a main magnetic pole provided on the medium-facing surface, and a plasmon antenna provided on the medium-facing surface in the vicinity of the main magnetic pole, wherein the plasmon antenna is shaped as a triangular flat plate having first, second and third corners, such that the distance from the first corner to the main magnetic pole is shorter than the distance from the second corner to the main magnetic pole and the distance from the third corner to the main magnetic pole, and the interior angle α of the first corner, the interior angle β of the second corner and the interior angle γ of the third corner satisfy relationships α<β, α<γ and β≠γ.03-25-2010
20100073803MAGNETIC RECORDING DEVICE AND MAGNETIC RECORDING HEAD DRIVE MECHANISM - Provided is a magnetic recording device which can perform high density magnetic recording by simple constitution. The magnetic recording device is provided with a disc driving means for rotating a magnetic disc; a head having a heating section for heating a circular track of the magnetic disc and a recording element for applying a magnetic field modulated by an electric signal to the magnetic disc; and a head driving means for circularly moving the head in the radius direction of the magnetic disc by rotating about a driving shaft. The recording element has a magnetism applying section that traverses any track heated by the heating section in the radius direction of the magnetic disc.03-25-2010
20100103553SURFACE PLASMON ANTENNA WITH PROPAGATION EDGE AND NEAR-FIELD LIGHT GENERATING ELEMENT - Provided is a surface plasmon antenna that can be set so that the emitting position on the end surface of the plasmon antenna where near-field light is emitted is located sufficiently close to the end of a magnetic pole. The surface plasmon antenna comprises an edge having a portion for coupling with a light in a surface plasmon mode. The edge is provided for propagating surface plasmon excited by the light and extends from the portion to a near-field light generating end surface that emits near-field light. The edge for propagating surface plasmon is a very narrow propagation region. Therefore, the near-field light generating end surface, which appears as a polished surface processed through polishing in the manufacturing of the plasmon antenna, can be made a shape with a very small size, and further can be set so that surface plasmon propagates to reach the end surface reliably.04-29-2010
20120262816MAGNETIC HEAD HAVING A CONTACT DETECTION SENSOR - A thermally actuated head for magnetic head for magnetic data recording having a contact sensor for detecting contact between the head and a magnetic disk. The contact sensor includes a thermal sensor film and first and second leads, wherein the leads extend at least as far from the ABS as the thermal sensor film. More preferably the leads extend slightly further from the ABS than the sensor film so that contact between the magnetic disk and the contact sensor occurs at the leads rather than at the sensor film. The sensor film can be constructed of NiFe, preferably having 30-70 atomic percent Ni or more preferably 40-60 atomic percent Ni or most preferably 40-50 atomic percent Ni. The leads are preferably constructed of one or more of Ru, Rh or Ta or an alloy whose primary constituents are Ru, Rh or Ta.10-18-2012
20090147392MAGNETIC ELEMENT WITH THERMALLY-ASSISTED WRITING - This magnetic element with thermally-assisted writing using a field or spin transfer comprises a magnetic reference layer referred to as the “trapped layer”, the magnetisation of which is in a fixed direction; a magnetic storage layer called the “free layer” having a variable magnetisation direction and consisting of a layer made of a ferromagnetic material with magnetisation in the plane of the layer and magnetically coupled to a magnetisation-trapping layer made of an antiferromagnetic material; a semiconductor or an insulating layer with confined-current-paths sandwiched between the reference layer and the storage layer. At least one bilayer consisting respectively of an amorphous or quasi-amorphous material and a material having the same structure or the same crystal lattice as the antiferromagnetic layer is placed in the storage layer between ferromagnetic layer which is in contact with the semiconductor or insulating layer with confined-current-paths and antiferromagnetic layer.06-11-2009
20100328807INTEGRATED HEAT ASSISTED MAGNETIC RECORDING DEVICE - An integrated heat-assisted magnetic recording (HAMR) device comprises a slider that has a top surface, a bottom surface, and a trailing end. A waveguide is carried on the trailing end and a near field transducer is positioned to receive energy from the waveguide and produce plasmons for heating a region of a magnetic medium. A write pole is carried by the slider adjacent to the near field transducer. A laser is mounted on the top surface of the slider and produces a laser beam that passes through a beam shaper mounted on the top surface of the slider that collimates or focuses the laser beam. A mirror is mounted on the slider for directing the collimated or focused light beam into the waveguide.12-30-2010
20100328806Near-field light generating device that includes near-field light generating element accommodated in a groove of an encasing layer - A near-field light generating element accommodated in a groove of an encasing layer has an outer surface that includes a first end face including a near-field light generating part, a second end face opposite to the first end face, and a coupling portion that couples the first and second end faces. The coupling portion includes a top surface, and first and second side surfaces that decrease in distance from each other with increasing distance from the top surface. The first end face includes a first side located at an end of the first side surface, and a second side located at an end of the second side surface. Each of the first and second sides includes an upper part and a lower part continuous with each other. An angle formed between the respective lower parts of the first and second sides is smaller than that formed between the respective upper parts of the first and second sides.12-30-2010
20090316289MAGNETIC DISK FOR THERMALLY ASSISTED MAGNETIC RECORDING AND MAGNETIC DISK APPLYING THE SAME THEREIN - A magnetic disk, comprises, a magnetic disk, a disk driving portion for driving the magnetic disk, a slider, mounting thereon a recording element and a reproducing element, for generating a recording magnetic field, and a heating element for use in generation a near field light, and a driver portion for positioning the slide above a desired track of the magnetic disk, wherein the magnetic disk has a recording layer, an overcoat layer formed on the recording layer, a lubricant provided on the overcoat layer, wherein the overcoat layer has a first overcoat film and a second overcoat film, which is formed on the first overcoat film, or has structure of laminating a plural number of overcoat films, and within an inside thereof are provided a plural number of interfaces between different materials and/or grain boundary surfaces.12-24-2009
20120218659CONTACT DETECTION - A method of detecting a contact between a transducing head and a storage medium is provided. The method applies an input signal, having a select power level and known frequency, to an actuator for actuating the head. An output signal is obtained in response to the input signal. At least one signal component is extracted from the output signal at the same or a harmonic of the same known frequency as the input signal applied to the actuator. Whether the at least one extracted signal component indicates a contact between the head and the medium is determined. The power level of the applied wave pattern is increased incrementally until the extracted signal component indicates a contact between the head and the storage medium.08-30-2012
20090040645THERMALLY ASSISTED MAGNETIC HEAD, HEAD GIMBAL ASSEMBLY, AND HARD DISK DRIVE - A thermally assisted magnetic head comprises a slider having a medium-opposing surface and a light source unit secured to a surface of the slider on the side of the slider opposite from the medium-opposing surface. The slider has a slider substrate and a magnetic head part provided on a side face of the medium-opposing surface in the slider substrate. The magnetic head part includes a magnetic recording device for generating a magnetic field and a waveguide for receiving light from an end face opposite from the medium-opposing surface and guiding the light to the medium-opposing surface side. The light source unit has a light source supporting substrate, a light source secured to the light source supporting substrate and adapted to supply light to the end face of the waveguide, and a temperature sensor for measuring the temperature of the light source.02-12-2009
20110013308RECORDING HEAD WITH CURRENT CONTROLLED GAMMA RATIO - A data recording component includes a read transducer and a write transducer. A thermoelectric device generates heat flow between the read transducer and the write transducer. The heat flow is conducted by thermal conductors. A controlled current source provides current to the thermoelectric device that changes polarity to change directions of the heat flow and thereby vary a gamma ratio of transducer protrusion.01-20-2011
20130163108METHODS AND DEVICES INCLUDING MULTIPLE RESISTIVE HEATING ELEMENTS - In certain embodiments, a head includes a writer portion having coils positioned near a writer, a reader portion separate from the writer portion and a single-layer heating circuit positioned near the writer portion. The heating circuit includes at least two resistive elements.06-27-2013
20090231748MAGNETIC RECORDING MEDIUM, APPARATUS AND METHOD FOR RECORDING REFERENCE SIGNAL IN THE SAME - A method for manufacturing a magnetic recording medium having a recording area includes the steps of forming in the recording area a conductive area that includes a plurality of sectors each made of a conductive magnetic body and is partitioned by a nonmagnetic insulator, and recording a reference signal in all of the plurality of sectors by continuously injecting into the conductive area spin-polarized current having a magnetization pattern corresponding to the reference signal so as to sequentially move a domain wall in the conductive area, an injecting position of the spin-polarized current being fixed while the reference signal being recorded in the plurality of sectors, the reference signal being used for a head to confirm a position on the recording area, the head being configured to record information in the recording area and to reproduce the information from the recording area.09-17-2009
20090231747THERMALLY ASSISTED MAGNETIC RECORDING HEAD AND METHOD OF MANUFACTURING THE SAME - In order to prevent deterioration of floating characteristics of a slider due to deformation of a slider floating surface by thermal expansion of a coil, the followings are performed. A recessed portion is formed in a part of the slider, and a device for generating an optical near-field and the coil for generating a magnetic field are formed in the recessed portion. The optical near-field generation device is formed on a surface facing a recording medium, and the magnetic field application coil is formed on an upper surface of the recessed portion. The optical near-field generation device and the magnetic field application coil are respectively exposed to the surface.09-17-2009
20090231746Magnetic recording apparatus and magnetic recording medium - In the magnetic recording apparatus, a recording layer is formed in a concavo-convex pattern, and recording elements are formed of convex portions of the concavo-convex pattern. Furthermore, the following equation (I)09-17-2009
20120113541Magneto-Elastic Anisotropy Assisted Thin Film Structure - A method includes activating a stress-effecting layer of a thin film structure, having the stress effecting layer adjacent to a magnetic layer, to induce a magneto-elastic anisotropy in the magnetic layer.05-10-2012
20120113540MODIFIED FIELD GENERATION LAYER FOR MICROWAVE ASSISTED MAGNETIC RECORDING - A spin torque oscillator is described in which the conventional Field Generation Layer (FGL) is replaced by a bilayer, one of whose members exhibits perpendicular magnetic anisotropy while the other exhibits conventional in-plane anisotropy. Provided the layer with the perpendicular anisotropy is the one that is closest to the spacer layer, the device is able to generate microwaves at current densities as low as 1×1005-10-2012
20130188273MAGNETIC HEAD SLIDER HAVING SHARED HEATER AND CONTACT SENSOR TERMINAL PADS - In one embodiment, a magnetic head slider includes at least one magnetic head element chosen from a group consisting of: a write element adapted for writing data to a magnetic recording medium and a read element adapted for reading data from the magnetic recording medium, a heater element adapted for controlling a flying height of the at least one magnetic head element above the magnetic recording medium, a contact sensor element adapted for detecting contact between the magnetic head slider near the at least one magnetic head element and the magnetic recording medium, and shared terminals adapted for supplying voltage to the heater element and for conveying signals from the contact sensor element. Other magnetic head sliders and methods of use are described according to additional embodiments.07-25-2013
20090296256THERMAL-ASSIST MAGNETIC RECORDING DEVICE AND THERMAL-ASSIST MAGNETIC STORAGE DEVICE - A thermal-assist magnetic recording device performs a thermal-assist magnetic recording to achieve high density recording compatible with high speed transfer at low cost. The thermal-assist magnetic recording device includes a signal selector circuit that selects a read signal from the read element at the time of reading by the read element, selects a write signal to the write element at the time of writing by the write element and drives the light transmission unit by the selected signal, and an output light selection unit that outputs an output light from the light transmission unit, as either an optical signal at the time of reading or a thermal assist light for applying the heat at the time of writing.12-03-2009
20090195905METHOD, SYSTEM, AND COMPUTER PROGRAM PRODUCT FOR THERMALLY ASSISTED RECORDING SYSTEMS - A method according to one embodiment comprises using a heating device, inducing localized heating on a magnetic medium during a recording operation; detecting a temperature in a vicinity of the heating device; detecting a current of the heating device; and performing an action if a function of at least one of the temperature and the current is outside an acceptable operation zone. A method according to another embodiment comprises selecting an initial current of a heating device for inducing localized heating on a magnetic medium during recording operations; initiating the heating device; performing recording operations; monitoring a temperature in a vicinity of the heating device during the recording operations; and if a function of the temperature and the current is outside an acceptable operation zone, changing an operating parameter such that the function of the temperature and the current is in the acceptable operation zone.08-06-2009
20100202081THERMALLY ASSISTED MAGNETIC HEAD HAVING A SEMICONDUCTOR SURFACE-EMITTING LASER - A thermally assisted magnetic head includes a slider having a medium-facing surface and a surface-emitting semiconductor laser. The slider has a slider substrate on which part of the medium-facing surface is formed, and a magnetic head portion, on which another part of the medium-facing surface is formed, and which has a first surface in contact with a head stacking surface of the slider substrate, a second surface opposite the first surface, and a third surface opposite the medium-facing surface. The magnetic head portion comprises a main magnetic pole, an optical waveguide core having a first light exit surface at the medium-facing surface and a second light exit surface at the third surface, a first diffraction grating, provided in the optical waveguide core or further towards the second surface than the optical waveguide core, and a light reflective section provided further toward the first surface than the optical waveguide core. The surface-emitting semiconductor laser is provided opposing the second surface. The first diffraction grating causes part of emission light from the surface-emitting semiconductor laser to be optically coupled to the optical waveguide core.08-12-2010
20110279921CoFe/Ni Multilayer film with perpendicular anisotropy for microwave assisted magnetic recording - A spin transfer oscillator with a seed/SIL/spacer/FGL/capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1/A2)11-17-2011
20110279920Main pole design for thermally assisted magnetic recording - Improved spatial resolution during TAMR has been achieved by shaping the write pole to have a lower surface that slopes away from the surface of the recording medium, starting at, or near, the pole's leading edge. The approach may be used for simple or compound (stitched) poles.11-17-2011
20090128944Hard disk drive tunneling magnetoresistive annealing heads with a fly on demand heater - A hard disk drive that includes a head coupled to a disk. The head has a heater element. The drive also includes a controller that causes the heater element to heat the head to a temperature sufficient to anneal material within the head. The head is heated to a temperature sufficient to cause oxidation of any metal, such as aluminum, within the head, and/or oxygen redistribution and homogenization in the barrier. This heating process preferably occurs while the drive is not writing or reading data and the head is off disk.05-21-2009
20100214685Recording Head For Heat Assisted Magnetic Recording - An apparatus includes a waveguide having a core layer and an end adjacent to an air bearing surface, first and second poles magnetically coupled to each other and positioned on opposite sides of the waveguide, wherein the first pole includes a first portion spaced from the waveguide and a second portion extending from the first portion toward the air bearing surface, with the second portion being structured such that an end of the second portion is closer to the core layer of the waveguide than the first portion, and a heat sink positioned adjacent to the second portion of the first pole.08-26-2010
20110286129METHOD AND SYSTEM FOR MAPPING THE SHAPE OF A HEAD UNDER OPERATING CONDITIONS - A method and system for determining a shape of a portion of an air-bearing surface (ABS) of a head residing on a slider are described. The ABS is configured to fly at a fly height from and with a velocity with respect to a disk during normal operating conditions. The method and system include driving at least one heater residing in the head while the slider is substantially at the normal operating conditions with respect to the disk and the fly height. The shape of the portion of the ABS changes in response to the heater(s) being driven. The method and system also include performing Doppler measurements on the slider while the heater is driven. The shape may then be determined based on the Doppler measurements.11-24-2011
20110286128THERMALLY-ASSISTED MAGNETIC RECORDING HEAD INCLUDING PLASMON GENERATOR - A plasmon generator has an outer surface including a plasmon exciting part that faces an evanescent light generating surface of a waveguide. The outer surface further includes first and second inclined surfaces that increase in distance from each other with increasing distance from the plasmon exciting part, and a front end face. The front end face has first and second portions that are connected to each other into a V-shape. The first portion includes a first side lying at an end of the first inclined surface. The second portion includes a second side lying at an end of the second inclined surface. An angle formed between a lower part of the first side and a lower part of the second side is smaller than that formed between an upper part of the first side and an upper part of the second side.11-24-2011
20110286127NEAR FIELD TRANSDUCER WITH SHAPED ENERGY RADIATING END - A magnetic recording head consists of a write pole and a near field transducer close to the write pole that focuses light energy to a focal point. A near field transducer is positioned to receive light energy from a waveguide. The near field transducer comprises an energy-receiving end and an energy-radiating end. The energy-receiving end is located near the focal point of the waveguide and the energy-radiating end is shaped such that it is narrower closer to the write pole and wider farther from the write pole.11-24-2011
20120002318Transducer Assembly For Heat Assisted Magnetic Recording Light Delivery - An apparatus includes a transducer assembly including a waveguide having a core layer and a cladding layer adjacent to the core layer, and a grating structured to couple electromagnetic radiation into the waveguide; and a light source mounted on the cladding to direct light onto the grating at an acute angle with respect to a plane containing the grating.01-05-2012
20110299188MAGNETIC HEAD SLIDER AND MAGNETIC DISK DRIVE - A magnetic head slider having a thermal microactuator capable of efficiently transmitting thermal expansion displacement in the vicinity of a heating element to the region of a read/write element and thereby enabling high-speed displacement response is realized. The magnetic head slider comprises a slider substrate and a thin film stack part formed on the slider substrate. The thin film stack part includes a read/write element for reading and writing data and one or more heating elements arranged on one side or on each side of the read/write element in regard to a direction corresponding to the track width direction for generating heat in response to energization. Further, a low Young's modulus layer (made of a material having a low Young's modulus or void) is arranged between the slider substrate and the thin film stack part.12-08-2011
20110299187MAGNETIC HEAD WITH PROTECTIVE LAYER AND A PROTECTIVE FILM REMOVAL METHOD FOR THE MAGNETIC HEAD - A magnetic head includes a reproducing element for reproducing information recorded on a magnetic recording medium, a recording element for recording information on the magnetic recording medium, and a heating resistor. The magnetic head has a magnetic medium-facing surface on which the reproducing element and the recording element are exposed.12-08-2011
201102925373-D self-focusing gap plasmon generator for TAMR - A device for implementing thermally assisted magnetic recording, using a TE mode laser diode, and method for using it, are described. This device is shaped internally so as to provide three-dimensional self-focusing of plasmon radiation, thereby improving the coupling efficiency between the optical wave-guide and the plasmon generator as a result of ensuring a large overlap between these two modes.12-01-2011
20100033865MAGNETIC RECORDING METHOD AND MAGNETIC RECORDING APPARATUS - One purpose of the invention according to one embodiment is to provide a magnetic recording apparatus of high recording density in which magnetization transition curvature amount of a recording pattern is small. In one embodiment, the center of a heating area is arranged at a track edge side of a recording pattern as compared with the width-direction center position of a main magnetic pole of a recording head, and a recording magnetic field is applied while a medium is locally heated at the time of signal recording. A switching magnetic field of the medium is locally reduced by heating, so that a line where the switching magnetic field of the medium is equal to the recording magnetic field from the head approaches the heating center position, and a desired recording pattern in which the transition curvature amount is reduced can be realized. Other systems and methods are also presented.02-11-2010
20100110577Composite Heat Assisted Magnetic Recording Media With Temperature Tuned Intergranular Exchange - A thin film structure including a plurality of grains of a first magnetic material having a first Curie temperature embedded in a matrix of a second material having a second Curie temperature, wherein the second Curie temperature is lower than the first Curie temperature and the second material comprises one or more of an oxide, a sulfide, a nitride, and a boride.05-06-2010
20100110576THERMALLY ASSISTED RECORDING MEDIA AND SYSTEM - A thermally assisted magnetic recording medium includes a substrate and at least two, i.e., first and second magnetic recording layers. These layers are hard magnetic layers and contain magnetic grains and a non-magnetic substance magnetically segregating the magnetic grains at grain boundaries. The first magnetic recording layer has a magnetic anisotropy energy K05-06-2010
20100123967HEAT-ASSISTED MAGNETIC RECORDING WITH SHAPED MAGNETIC AND THERMAL FIELDS TO MINIMIZE TRANSITION CURVATURE - Devices and methods are provided for heat-assisted magnetic recording (HAMR). In an illustrative example, a device includes a magnetic write pole having a convex pole tip; a magnetic opposing pole longitudinally displaced from the magnetic write pole; and a thermal-source component disposed proximate to the magnetic write pole and comprising a laterally elongated thermal-source peg disposed proximate to the convex pole tip.05-20-2010
20090310243MAGNETIC HEAD AND MAGNETIC STORAGE DEVICE - A magnetic head that floats up while directing an air bearing surface to a relatively moving storage medium and stores information into the storage medium, the magnetic head includes: a main magnetic pole that generates a magnetic field for recording information into the storage medium; and a heater that adjusts a floating-up amount of the magnetic head from the storage medium by deforming the air bearing surface with heat, wherein the heater has a shape that extends towards the air bearing surface up to a proximate distance at which a distance from the air bearing surface overlaps with the main magnetic pole while monotonously decreasing the distance from the air bearing surface to pass a proximate point to the main magnetic pole, and that extends away from the air bearing surface while monotonously increasing the distance from the air bearing surface after passing the proximate point.12-17-2009
20100123966MAGNETIC HEAD, HEAD ASSEMBLY AND MAGNETIC RECORDING/REPRODUCING APPARATUS - The present invention relates to a magnetic head, a head assembly, and a magnetic recording/reproducing apparatus which are capable of effectively detecting thermal asperity. The magnetic head according to the present invention includes a heat-generating resistor, a recording coil, and a resistive element. The heat-generating resistor is adapted to generate heat when power is fed thereto so that the heat generation causes at least a part of the air bearing surface to thermally expand and protrude. The recording coil is adapted to generate a recording magnetic field, and the resistive element is disposed closer to the air bearing surface than the recording coil and connected in series or in parallel with the heater. Thus, the resistive element can share a common wiring with the heater for power feeding, which eliminates the waste of wiring and achieves miniaturization.05-20-2010
20100118431THERMALLY ASSISTED MAGNETIC HEAD HAVING AN ASYMMETRIC PLASMON ANTENNA AND MANUFACTURING METHOD THEREOF - The thermally assisted magnetic head according to the present invention comprises a medium-facing surface, a main magnetic pole provided on the medium-facing surface, and a plasmon antenna provided on the medium-facing surface, in the vicinity of the main magnetic pole. The shape of the plasmon antenna, as viewed from a direction perpendicular to the medium-facing surface, is a triangle having first, second and third corners, the plasmon antenna being shaped as a flat plate the thickness direction of which is perpendicular to the medium-facing surface. The distance from the first corner to the main magnetic pole is shorter than the distance from the second corner to the main magnetic pole and the distance from the third corner to the main magnetic pole. The second corner and the third corner are rounded.05-13-2010
20090059411SEMICONDUCTOR LASER DEVICE STRUCTURE, THERMALLY ASSISTED MAGNETIC HEAD, AND METHOD OF MANUFACTURING SAME - A first alignment mark member is exposed at both of a mounting surface and a bonding surface, and thus can be seen from two directions by image sensors. While a semiconductor laser device is mounted on the mounting surface of a light source supporting substrate with reference to the first alignment mark member observed from the direction of the image sensor, the first alignment mark member can also be observed from the direction of the image sensor. With reference to the first alignment mark member observed from the latter direction, the light source supporting substrate is bonded to the slider substrate. Namely, though observed from different directions, the alignment mark member is used for a common reference for two securing operations, whereby attachment errors can be suppressed.03-05-2009
20100079895PLASMON ANTENNA AND HEAT-ASSISTED MAGNETIC RECORDING HEAD - Provided is a plasmon antenna in which a near-field light having a sufficient intensity is generated only in a desired location. The plasmon antenna comprises an end surface on a side where a near-field light is generated; the end surface is flat and has a shape with at least three vertexes or rounded corners; and an end surface of the plasmon antenna which is opposite to the flat end surface and receives light, is inclined with respect to the flat end surface so as to become closer to the flat end surface toward one of the at least three vertexes or rounded corners. When the light-receiving end surface of the plasmon antenna is irradiated with the light, a near-field light having a sufficient intensity can be generated at only the vertex or rounded corner toward which the entire plasmon antenna becomes thinner.04-01-2010
20110267715MAGNETIC DEVICE CONTAINING A HEATER - An apparatus that includes a writer that includes a write pole, at least one return pole, a writer coil and a write pole tip, wherein the write coil wraps around the write pole such that the flow of electrical current through the write coil generates a magnetic flux at the write pole tip, and wherein the write coil has a writer coil shape; and a heater that includes a resistive material, wherein the heater has a heater shape that substantially matches the writer coil shape.11-03-2011
20100123965Near-Field Transducers For Focusing Light - An apparatus includes a waveguide shaped to direct light to a focal point, and a near-field transducer positioned adjacent to the focal point, wherein the near-field transducer includes a dielectric component and a metallic component positioned adjacent to at least a portion of the dielectric component. An apparatus includes a waveguide shaped to direct light to a focal point, and a near-field transducer positioned adjacent to the focal point, wherein the near-field transducer includes a first metallic component, a first dielectric layer positioned adjacent to at least a portion of the first metallic component, and a second metallic component positioned adjacent to at least a portion of the first dielectric component.05-20-2010
20090262448HEAT-ASSISTED MAGNETIC HEAD CONSTITUTED OF SLIDER AND LIGHT SOURCE UNIT, AND MANUFACTURING METHOD OF THE HEAD - Provided is a heat-assisted magnetic recording head constituted of a light source unit and a slider, which can be easily joined to each other with sufficiently high accuracy of joining position. The slider comprises a head part including a waveguide having an incident center on its end. The surface including an emission center of the light source is protruded from a joining surface of the unit substrate. And a step is provided on an end surface of the head part. The protruded portion of a lower surface of the light source has a surface contact with a wall surface of the step. Further, the distance between the wall surface of the step and the incident center of the waveguide is set to be equal to the distance between the emission center of the light source and the protruded portion of the lower surface of the light source.10-22-2009
20100177426MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDER - A magnetic recording medium for a hard disk drive is provided based on a thermally assisted magnetic recording technique. The magnetic recording medium includes a recording layer and a thermal conduction layer. The thermal conduction layer is formed on the recording layer. The thermal conduction layer is made of materials having different thermal conductivities. The recording layer has data recording regions. First thin films made of a material highest in thermal conductivity among the materials are formed on some portions of the thermal conduction layer, with the some portions being located in association with portions of the data recording regions included in the recording layer. Second thin films made of a material relatively lower in thermal conductivity than the first thin films are formed between respective pairs of the first thin films within the thermal conduction layer. The recording layer includes magnetic particles that are heated and cooled for magnetic recording. The magnetic recording medium ensures the thermal stability of the magnetic particles heated for the magnetic recording and the thermal stability of magnetic particles located near the heated magnetic particles, thereby suppressing disappearance of data.07-15-2010
20080239542Magnetic recording head and magnetic recording method - A magnetic recording head includes: a main magnetic pole containing a ferromagnetic layer; a main magnetic pole-magnetization fixing portion containing an antiferromagnetic layer in contact with at least one side surface of the main magnetic pole; a heater for heating at least the main magnetic pole so that a magnetic interaction between the main magnetic pole and the main magnetic pole-magnetization fixing portion can be decreased; and a magnetic field generator for generating a magnetic field so as to direct a magnetization of the main magnetic pole in one direction.10-02-2008
20080239541THERMALLY ASSISTED MAGNETIC HEAD, HEAD GIMBAL ASSEMBLY, AND HARD DISK DRIVE - The thermally assisted magnetic head comprises a medium-opposing surface; a magnetic recording device whose distance from a main magnetic pole to a medium is set longer than a distance from the medium-opposing surface to the medium; a first core for receiving light; and a second core positioned between a first light exit surface of the first core and the medium-opposing surface, having a second light exit surface on the medium side; while a distance between positions where an optical intensity distribution center within the first light exit surface and a center of the main magnetic pole are orthographically projected onto a reference plane including the second light exit surface is greater than a distance between an optical intensity distribution center within the second light exit surface and the position where the center of the leading end of the main magnetic pole is orthographically projected onto the reference plane.10-02-2008
20110222184OPTICAL WAVEGUIDE AND THERMAL ASSIST MAGNETIC RECORDING HEAD THEREWITH - An optical waveguide, on account of its ability to apply phase resonance of a wavelength and of a first and second triangular plate-like spot size converter members formed of the same material as a core material and being arranged and formed in a substantially symmetrical structure, can promote shortening of the waveguide length and contrive to reduce the size of the optical waveguide itself. Further, an optical waveguide having excellent spot size conversion efficiency can be obtained even in a reduced size.09-15-2011
20090168220THERMALLY ASSISTED MAGNETIC HEAD AND MANUFACTURING METHOD OF SAME - When first and second near-field light-generating portions are irradiated with laser light or other energy rays, near-field light is generated at the tips of both the near-field light-generating portions. By means of the near-field light thus generated, a magnetic recording medium opposing the medium-opposing surface is heated, and the coercivity of the magnetic recording medium is lowered. Since at least a portion of the main magnetic pole is positioned within the spot region including the region between the first and second near-field light-generating portions, the tips of both the near-field light-generating portions and the main magnetic pole can be brought extremely close together, and high-density recording can be performed.07-02-2009
20090034111Magnetic head having track width expansion mechanism, magnetic storage device and control circuit - The present invention generally relates to a magnetic head and a magnetic storage device using a recording medium. More particularly, the present invention relates to a magnetic head for expanding the track width of the recording medium, a control circuit for controlling the magnetic head, and a storage device that uses the magnetic head and the control circuit. The magnetic head includes a slider, a read element disposed on the slider, and a heater element disposed closer to the leading edge side of the magnetic head than the read element in a position opposite to a recording medium.02-05-2009
20080310045CONTROL UNIT, STORAGE UNIT, AND METHOD FOR MANUFACTURING STORAGE UNIT - A control unit adjusts spacing between a head with a heater and a storage medium of a storage unit by controlling power of the heater. The control unit measures first values of touchdown heater power at a first temperature set as temperature condition. And the control unit estimates second values of the touchdown heater power at a temperature other than the first temperature set on the measurement of the first values, on basis of a conversion equation. And the control unit determines heater power setting values to adjust the spacing between the head and the storage medium, for each of the sub-areas, on the basis of the first values and the second values.12-18-2008
20120092791HEAD GIMBAL ASSEMBLY AND DISK DRIVE WITH THE SAME - According to one embodiment, a head gimbal assembly includes a magnetic head for perpendicular, a suspension supporting the magnetic head, and a heating module configured to locally heat a recording area of the recording medium. A head section of the magnetic head includes a magnetic core including a main pole and a return pole forming a magnetic circuit in conjunction with the main pole, a coil configured to excite magnetic flux in the magnetic circuit, and a thermal conductor having thermal conductivity higher than thermal conductivity of the recording medium and including a heat absorbing portion configured to remove heat from the recording medium, and a contact portion configured to contact airflow produced, as the recording medium rotates, at a position other than a facing surface of a slider opposed to the recording medium and radiate heat.04-19-2012
20100208378Bit Patterned Media With Embedded Near-Field Transducer - An apparatus includes a recording media including a substrate, a plurality of islands of magnetic material on the substrate, and a non-magnetic material between the islands, a recording head having an air bearing surface positioned adjacent to the recording media, and including a magnetic pole, and an optical transducer, wherein the optical transducer directs electromagnetic radiation onto recording media to heat portions of the recording media and a magnetic field from the magnetic pole is used to set the direction of the magnetization in the heated portions of the recording media, and a plurality of near-field transducers, each positioned adjacent to one of the islands to increase coupling between the electromagnetic radiation and the magnetic material.08-19-2010
20100142079Near-Field Light Generating Element And Method For Forming The Element - Provided is a method for forming a near-field light generating element, which is capable of sufficiently suppressing the unevenness of a waveguide surface and the distortion within the waveguide. The forming method comprises the steps of: forming a first etching stopper layer on a lower waveguide layer; forming a second etching stopper layer; forming, on the second etching stopper layer, a plasmon antenna material layer; performing etching with the second etching stopper layer used as a stopper, to form a first side surface of plasmon antenna; forming a side-surface protecting mask so as to cover the first side surface; and performing etching with the first and second etching stopper layers used as stoppers, to form the second side surface. By providing the first and second etching stopper layer, over-etching can be prevented even when each etching process takes enough etch time, which allows easy management of etching endpoints.06-10-2010
20110205660Spot size converter and thermal assist magnetic recording head therewith - A spot size converter according to the present invention is capable of shortening the waveguide length in the spot size converter and of promoting a size reduction of the optical waveguide itself because two cores having a taper portion are combined and those tapering angles are mutually aligned. Furthermore, spot size conversion efficiency is favorable even in a small size.08-25-2011
20090141387NANOPROBE-BASED HEATING APPARATUS AND HEAT-ASSISTED MAGNETIC RECORDING HEAD USING THE SAME - A nanoprobe-based heating apparatus includes a nanoprobe, a heating unit, a gap control unit, and a support unit. The nanoprobe has a tip forming at an end of the nanoprobe, and the tip applies heat to a magnetic recording bit of a recording medium. The heating unit heats the nanoprobe. The gap control unit controls a gap between the nanoprobe and the recording medium. The support unit supports the nanoprobe, the heating unit, and the gap control unit. The nanoprobe-based heating apparatus is installed at a magnetic recording head of a magnetic hard disk drive to be able to heat an ultra-fine region of a recording medium very rapidly by applying heat together with a magnetic field.06-04-2009
20080316633HEAD INTEGRATED CIRCUIT AND STORAGE APPARATUS INCLUDING THE SAME - A head integrated circuit for drives a head. The head includes at least a head unit and a heating element for adjusting spacing between the head and a storage medium. And the head integrated circuit includes at least a read amplifier for amplifying the read signal from the head unit and a heater drive circuit for driving the heating element. The heater drive circuit includes a measuring circuit configured to measure level of power supplied to the heating element, an error calculating circuit configured to calculate an error between predetermined power level and the measured power level, a pulse width modulation circuit configured to modulate the error into a pulse width, and a switch configured to operate in response to a pulse from the pulse width modulation circuit and supply power to the heating element.12-25-2008
20090052078THERMALLY ASSISTED MAGNETIC HEAD, HEAD GIMBAL ASSEMBLY, AND HARD DISK DRIVE - A slider has a slider substrate, an electromagnetic transducer, a waveguide for receiving light from a surface on the side opposite from a medium-opposing surface and guiding the light to the medium-opposing surface side, and a device electrode electrically connected to the electromagnetic transducer. A light source unit includes a light source supporting substrate, a light source, and a lead extending from the slider side to the side opposite from the slider and having both end parts exposed at a surface of the light source unit. The device electrode of the slider is exposed at the surface of the slider on the side opposite from the medium-opposing surface without being covered with the light source unit. An end part on the slider side of the lead of the light source unit is soldered to the device electrode of the slider.02-26-2009
20090052077THERMALLY ASSISTED MAGNETIC HEAD WITH OPTICAL WAVEGUIDE AND LIGHT SHIELD - A thermally assisted magnetic head which can realize high-density writing onto magnetic recording media is provided.02-26-2009
20090052076THERMALLY ASSISTED MAGNETIC HEAD WITH OPTICAL WAVEGUIDE - While an emitting position of light from an optical waveguide and a magnetic pole end part are made closer to each other, high-density writing onto a magnetic recording medium is realized.02-26-2009
20090201600THERMALLY ASSISTED MAGNETIC HEAD, HEAD GIMBAL ASSEMBLY, AND HARD DISK APPARATUS - A thermally assisted magnetic head includes a main magnetic pole for writing and a near-field light generator provided near the main magnetic pole, the near-field light generator having a non-magnetic base metal layer, a non-magnetic upper metal layer, an intermediate insulating layer interposed between the base metal layer and the upper metal layer, and the base metal layer having a V-shaped groove and also the upper metal layer having a projection facing the deepest part in the groove of the base metal layer, in a vertical cross-section parallel to a medium facing surface.08-13-2009
20110228420HEAT-ASSISTED MAGNETIC RECORDING HEAD INCLUDING PLASMON GENERATOR - A plasmon generator has an outer surface including a plasmon exciting part, and has a near-field light generating part located in a medium facing surface. The plasmon exciting part faces an evanescent light generating surface of a waveguide's core with a predetermined distance therebetween. The outer surface of the plasmon generator further includes first and second inclined surfaces that are each connected to the plasmon exciting part. The first and second inclined surfaces increase in distance from each other with increasing distance from the plasmon exciting part. The plasmon generator includes a shape changing portion where the angle of inclination of each of the first and second inclined surfaces with respect to the evanescent light generating surface increases continuously with decreasing distance to the medium facing surface.09-22-2011
20110228417HEAT-ASSISTED MAGNETIC RECORDING HEAD WITH NEAR-FIELD LIGHT GENERATING ELEMENT - A near-field light generating element has an outer surface. The outer surface includes a bottom surface, first and second inclined surfaces, an edge part that connects the first and second inclined surfaces to each other, and a front end face located in a medium facing surface. The front end face includes a first side that lies at an end of the first inclined surface, a second side that lies at an end of the second inclined surface, and a tip that is formed by contact of the first and second sides with each other and forms a near-field light generating part. Each of the first side and the second side has a lower part and an upper part that are continuous with each other. An angle formed between the upper part of the first side and the upper part of the second side is smaller than that formed between the lower part of the first side and the lower part of the second side.09-22-2011
20110228416A METHOD OF MANUFACTURING A THERMALLY ASSISTED MAGNETIC HEAD - A thermally assisted magnetic head is formed by performing a head forming process, a mounting part forming process and a light source mounting process in that order. In the head forming process, a planned area is secured on a light source placing surface of a slider substrate, then a magnetic head part is formed on a head area other than the planned area and a spacer for securing a mounting space for the laser diode is formed on the planned area. In the mounting part forming process, a light source mounting part is formed by removing the spacer. In the light source mounting process, a laser diode is mounted on the light source mounting part formed by the mounting part forming step.09-22-2011
20110222185Magnetic Recording Apparatus Provided with Microwave-Assisted Head - A magnetic recording apparatus includes a magnetic recording medium having a magnetic recording layer, a thin-film magnetic head with a microwave-band magnetic drive function, the head having a write field generation means that generates a write field to the magnetic recording medium in response to a write signal, and a microwave generator that is provided independent of the write field generation means and generates an alternating magnetic field in plane having a microwave-band frequency when microwave-excitation current is fed, an excitation current generation means that generates the microwave-excitation current by amplitude-modulating microwave carrier current with a modulating signal having a fixed period, and a write signal supply means that generates the write signal and applies it to the write field generation means of the thin-film magnetic head.09-15-2011
20110228418HEAT-ASSISTED MAGNETIC RECORDING HEAD WITH NEAR-FIELD LIGHT GENERATING ELEMENT - A near-field light generating element has an outer surface including a bottom surface that lies at an end closer to a top surface of a substrate, a waveguide facing surface that lies at an end farther from the top surface of the substrate and faces a waveguide, a front end face located in a medium facing surface, and a side surface that connects the bottom surface, the waveguide facing surface and the front end face to each other. The front end face includes a first side that lies at an end of the bottom surface, a tip that lies at an end farther from the top surface of the substrate and forms a near-field light generating part, a second side that connects an end of the first side to the tip, and a third side that connects the other end of the first side to the tip. The waveguide facing surface includes a width changing portion that has a width in a direction parallel to the bottom surface and the front end face, the width decreasing with decreasing distance to the front end face.09-22-2011
20090219638Magnetic Sensor Device, Magnetic Reproduction Head, Magnetic Reproducer, And Magnetic Reproducing Method - There are provided a magnetic layer 09-03-2009
20090213483Magnetic head drive device and magnetic recording/reproducing device using this drive device - A magnetic head drive device drives a heater element for controlling a protrusion amount of the magnetic head. The heater drive circuit of the heater element of the magnetic head, in which a read element, a write element and a heat element is included, is constructed by the PWM modulation method. A pair of heater wiring lines is made of a path in which the signal polarity is inverted. Therefore cross-talk noise, to the read wiring line, can be decreased even if PWM driving is executed.08-27-2009
20120105996THERMALLY ASSISTED MAGNETIC WRITE HEAD EMPLOYING A NEAR FIELD TRANSDUCER (NFT) HAVING A DIFFUSION BARRIER LAYER BETWEEN THE NEAR FIELD TRANSDUCER AND A MAGNETIC LIP - A thermally assisted magnetic write head having a near-field transducer, a magnetic lip and a diffusion barrier layer between the near-field tranducer and the magnetic lip. The near-field transducer includes a transparent aperture constructed of a material such as SiO05-03-2012
20100182714THERMAL-ASSIST MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDING AND REPRODUCING APPARATUS - A thermal-assist magnetic recording medium is provided which can accomplish a surface recording density of 1 Tbit/inch07-22-2010
20100188769METHOD AND DEVICE FOR INFORMATION RECORDING/REPRODUCING AND INFORMATION RECORDING MEDIUM - In an information recording/reproducing method performing a thermo-magnetic recording, a tracking offset value of a recording light spot and/or a tracking offset value of a magnetic flux detecting element is changed in accordance with a radial position at which a tracking is performed at the present time, to make a direction of a magnetic wall of a recording magnetic domain in accord with a longitudinal direction of the magnetic flux detecting element. Alternatively, a shape of a heated area is changed to be in accord with the direction of the magnetic flux detecting means at respective radial position, to make the direction of the magnetic wall of the recording magnetic domain in accord with the longitudinal direction of the magnetic flux detecting element.07-29-2010
20100002330Thermally assisted recording head control means for protrusion management - Methods and structures for improving fly height control for thin film write heads utilized in thermally assisted recording are disclosed. Methods include the use of the TAR near field light source to provide a preheating pulse to improve the transient response when moving from one fly height to another prior to writing data. Methods and structures having an additional auxiliary optical heating source to avoid media overheating and replacement of embedded resistive heaters are also disclosed.01-07-2010
20100188768Transducer For Data Storage Device - An apparatus includes a metallic transducer and a condenser for directing electromagnetic radiation onto the transducer. The transducer includes a first section and a second section, wherein the first section is wider than the second section and has a width to length aspect ratio greater than or equal to a width to length aspect ratio of the second section, the first section having a dimple formed on a surface thereof.07-29-2010
20100238580THERMALLY-ASSISTED MAGNETIC RECORDING HEAD WITH LIGHT SOURCE ON ELEMENT-INTEGRATION SURFACE - A thermally-assisted magnetic recording head is provided, in which a light source with a sufficient power is disposed in the element-integration surface to improve mass-productivity. The head comprises, in an element-integration surface of a substrate: a light source; a waveguide for propagating light from the light source; and a magnetic pole for generating write field. Further, the edge along optical axis of the light source is set to be parallel with or inclined from the edge on the opposed-to-medium surface side of the element-integration surface. In the head, since the light source is disposed in the element-integration surface, the construction of the optical system can be completed in the stage of a wafer process. This construction can be relatively facilitated and simplified; thus, mass-productivity in the head manufacturing can be improved. Further, a light source with a sufficient power (cavity length) can be disposed in the element-integration surface.09-23-2010
20130215530SPIN-TORQUE OSCILLATOR (STO) FOR MICROWAVE-ASSISTED MAGNETIC RECORDING (MAMR) AND METHODS OF USE THEREOF - In one embodiment, a magnetic data storage system includes a main pole power supply adapted for supplying an excitation current to a main pole coil, a microwave-assisted magnetic recording (MAMR) device including a spin-torque oscillator (STO) element, the STO element having a field generation layer (FGL) and a polarization layer, a timing-control circuit adapted for determining a duration of a main pole magnetic moment inversion process and signaling a start of the main pole magnetic moment inversion process, and a current-regulating circuit comprising an STO power supply adapted for supplying current to the STO element, wherein the STO power supply prevents degradation of a single rotating magnetic domain structure in the FGL into a closure magnetic domain structure in the FGL. Other systems and methods for preventing degradation of the single rotating magnetic domain structure in the FGL into a closure magnetic domain structure are described for more embodiments.08-22-2013
20100226034MAGNETIC HEAD, MAGNETIC DISK DEVICE, AND MANUFACTURING METHOD OF MAGNETIC HEAD - According to one embodiment, a magnetic disk device includes a magnetic disk, a slider opposed to the magnetic disk, and a magnetic head on the slider. The magnetic head includes a head element configured to carry out recording or reproduction, a heating element configured to thermally protrude the element, and a groove configured to partition a peripheral area of the head element in a direction in which the head element are to protrude.09-09-2010
20100238581HEAD GIMBAL ASSEMBLY AND DISK DRIVE - A head gimbal assembly including a gimbal provided with a tongue comprising a stage; a sub-mount comprising a laser diode, wherein the laser diode is disposed internally in the sub-mount, and wherein the sub-mount is mounted on said stage; a head slider for thermally assisted recording, wherein the head slider is disposed on the sub-mount; a first piezoelectric element; a second piezoelectric element; and a plurality of lead wires.09-23-2010
20100238582DISK APPARATUS WITH CONTACT-TYPE HEAD - According to one embodiment, a disk drive comprises a head and a heating actuator. The head is configured to slide over a rotating disk in contact with a surface of the disk. The heating actuator is configured to vary a state of contact between the head and the disk by being expanded by supplied heat. The head comprises the heating actuator.09-23-2010
20110058272Thermally-Assisted Magnetic Recording Head Comprising Near-Field Light Generator - Provided is a thermally-assisted magnetic recording head capable of setting the near-field light (NFL-) emission point to be sufficiently close to the write-field-generating portion. The head comprises a magnetic pole, a waveguide propagating light, and a NFL-generator coupled with the light in surface plasmon mode. The NFL-generator comprises a propagation edge extending to the NFL-generating end surface, at least a portion of the propagation edge being opposed to the waveguide with a distance, and the magnetic pole has a surface contact with a surface portion of the NFL-generator including no propagation edge. Therefore, the distance between the magnetic-pole end surface and the NFL-generating end surface becomes zero. The propagation edge is not contacted with the magnetic pole. Accordingly, the surface plasmon can propagate along on the propagation edge without being absorbed by the pole. Thus, the NFL-emission point is ensured to be at the end point of the propagation edge.03-10-2011
20120194942THIN FILM STRUCTURE WITH CONTROLLED LATERAL THERMAL SPREADING IN THE THIN FILM - An apparatus includes a non-metallic interlayer between a magnetic data storage layer and a heat sink layer, wherein interface thermal resistance between the interlayer and the heat sink layer is capable of reducing heat flow between the heat sink layer and the magnetic data storage layer. The apparatus may be configured as a thin film structure arranged for data storage. The apparatus may also include thermal resistor layer positioned between the interlayer and the heat sink layer.08-02-2012
20100195239THERMALLY ASSISTED MAGNETIC HEAD COMPRISING SURFACE-EMITTING SEMICONDUCTOR LASER - The present thermally assisted magnetic head has: a plasmon antenna; an optical wave guide having the plasmon antenna installed at the tip thereof; a diffraction grating which is disposed in or on the optical wave guide; and a laser element which is disposed at a position to irradiate laser beams onto the diffraction grating, and is composed of a photonic crystal surface emitting semiconductor layer. A laser light intensity distribution on the diffraction grating has at least two intensity peaks in the width direction of the optical wave guide. The two-dimensional form of the laser light intensity distribution on the diffraction grating is a ring or two ellipses.08-05-2010
20090040646Thermally assisted recording system - A thermally assisted magnetic recording system is provided to achieve excellent thermal resistance and low noise. In one embodiment, a magnetic recording medium is used, in which the magnetic intergrain exchange coupling is large to let the magnetization be thermally stable by coupling the magnetic grains constituting the recording layer at room temperature (the temperature maintaining the magnetization) and reduced by heating during recording to let the recording magnetization transition slope become steep. Parameter A normalizing the slope around the coercivity of the MH-loop of the medium is 1.5≦A<6.0 at room temperature, and it becomes approximately 1.0 with heating.02-12-2009
20090040644Laminated Exchange Coupling Adhesion (LECA) Media For Heat Assisted Magnetic Recording - An apparatus includes a plurality of bilayer structures positioned adjacent to each other, each of the bilayer structures including a first layer of magnetic material having a first Curie temperature and a second layer of magnetic material positioned adjacent to the first layer, wherein the second layer has a second Curie temperature that is lower than the first Curie temperature, and magnetic grains of the first layer are unstable when the second layer of magnetic material is heated above the second Curie temperature. The recording temperature is reduced due to the smaller switching volume achieved by using vertically decoupled laminations at elevated temperatures.02-12-2009
20090207519Compensating the Effects of Static Head-Media Spacing Variations and Nonlinear Transition Shift in Heat Assisted Magnetic Recording - An apparatus comprises a storage medium, a recording head, a source of electromagnetic radiation, and a control circuit for modulating the source of electromagnetic radiation in response to a static deviation of a spacing between the recording head and the storage medium. A method of compensating a static deviation of a spacing between a recording head and a storage medium performed by the apparatus, and a method of precompensating for nonlinear transition shifts in a heat assisted magnetic recording system, are also provided.08-20-2009
20090073597Magnetic head slider - Embodiments of the present invention provide a magnetic head slider capable of reducing thermal protrusion attributable to a heating mechanism for heat-assisted recording. According to one embodiment, a magnetic head slider for heat-assisted recording includes an insulating film formed on an end surface of a slider, and a read element, a write device and a heating mechanism for heating a recording medium embedded in the insulating film. The heating mechanism includes an optical waveguide and a near-field light emitting device. A heat radiating film of a material having a thermal conductivity higher than that of the insulating film is formed near the heating mechanism so that one end surface thereof is exposed in an air bearing surface.03-19-2009
20100302672THERMALLY-ASSISTED MAGNETIC RECORDING HEAD AND THERMALLY-ASSISTED MAGNETIC RECORDING METHOD - A magnetic recording head capable of a satisfying thermally-assisted magnetic recording without depending on the use of a near-field light generator is provided. The head comprises a waveguide and a main magnetic pole having a main pole tip. Further, at least a portion of the main pole tip is embedded in a groove provided in the upper surface of the waveguide. Further, a second clad layer is provided on the first clad layer and on a rear side from the main pole tip. This configuration of the first and second clad layers suppresses the absorption of the light propagating through the waveguide by the main magnetic pole. Further, the configuration in which at least a portion of the main pole tip is embedded in the groove can cause the distance between the light spot center of the waveguide and the main magnetic pole to be sufficiently small.12-02-2010
20110026156Heat-assisted magnetic recording head with laser diode - A heat-assisted magnetic recording head includes a slider, and an edge-emitting laser diode that emits polarized light of TM mode. The laser diode is arranged so that its bottom surface faces the top surface of the slider. An electrode of the laser diode closer to the active layer is bonded to a conductive layer of the slider, whereby the laser diode is fixed to the slider. As viewed from above the laser diode, the bottom surface of the electrode of the laser diode includes a first area that a light propagation path of the laser diode overlies, and a second area other than the first area. The top surface of the conductive layer is in contact not with the first area but with the second area of the bottom surface of the electrode.02-03-2011
20110043942MAGNETIC HEAD SLIDER AND MAGNETIC DISC DRIVE - The invention provides a magnetic head slider and a magnetic disc drive which can position at a high precision and in a simple manner. A magnetic head slider (02-24-2011
20110043943MICROWAVE ASSISTED MAGNETIC RECORDING HEAD AND MICROWAVE ASSISTED MAGNETIC RECORDING APPARATUS - With respect to microwave assisted magnetic recording, high-density information recording is performed by forming a favorable write magnetic domain on a recording medium. The recording medium is placed in a magnetically resonant state by generating a microwave, and information is recorded. A recording medium 02-24-2011
20110043941ENERGY ASSISTED DISCRETE TRACK MEDIA WITH HEAT SINK - A discrete track perpendicular magnetic recording (PMR) disk and a method of fabricating the disk are described. The PMR disk may include a heat sink layer disposed above a substrate, intermediate layers disposed above the heat sink layer, and a magnetic recording layer disposed above the intermediate layers. The magnetic recording layer may have raised and recessed areas, where a heat conductive material may be disposed within one or more of the recessed areas.02-24-2011
20110116184MAGNETIC HEAD HAVING A MULTILAYER MAGNETIC FILM AND METHOD FOR PRODUCING THE SAME - According to one embodiment, a method for producing a magnetic head includes depositing a first film above a substrate, etching a pattern into the first film, depositing a second film on the etched portion of the first film, and depositing a third film above the first and second film to form a multilayer magnetic film, wherein the second film is embedded between the first and third film in a portion of the first film that is removed. In another embodiment, a differential magnetic read head includes a magnetic multilayer film comprising a stack of a first magnetic sensor film and a second magnetic sensor film which are not magnetically connected and a hard magnetic film provided on both sides in a track width direction of the magnetic multilayer film for controlling a magnetic domain of the magnetic multilayer film. The hard magnetic film is a laminated structure as described above.05-19-2011
20110128644REDUCING RECESSION BY HEATING A MAGNETIC TAPE HEAD - A magnetic tape head including a transducer disposed between a substrate, a recession between the transducer and the substrate, where the recession is formed at least by wear from a magnetic tape. The magnetic tape head also includes a heater disposed in the transducer. The heater thermally expands the transducer at a particular location such that the recession is reduced at the particular location.06-02-2011
20110242697METHOD FOR MANUFACTURING THERMALLY-ASSISTED MAGNETIC RECORDING HEAD WITH LIGHT SOURCE UNIT - Provided is a method for manufacturing a thermally-assisted magnetic recording head with “composite slider structure”. In the method, the waveguide is irradiated with a first light from opposed-to-medium surface side, and the passing first light is detected on back surface side to obtain an image of the light-receiving end surface, and a light-receiving center position is determined from the image. Further, the light source is irradiated with a second light from opposite side to joining surface, and the passing second light is detected on the joining surface side to obtain an image of the light-emitting end surface, and a light-emitting center position is determined from the image. Then, the slider and the light source unit are moved based on the determined positions of the light-receiving and light-emitting centers, aligned and bonded. As a result, alignment can be performed with high accuracy in a short process time under simplified process.10-06-2011
20110242696MICROWAVE ASSISTED MAGNETIC HEAD - A gap between a main pole and auxiliary pole composing a thin film magnetic head having a microwave assisted function of the present invention is filled with a nonmagnetic dielectric layer to embed a microwave radiator. The nonmagnetic dielectric layer has an inclined surface at a end on a side of an opposing medium surface by which the microwave radiated from the microwave radiator to be bent toward the main pole, whereby the microwave magnetic field generated from the microwave generator can be gathered immediately below the main pole, further improving the microwave assisted effect.10-06-2011
20090015959Thermally assisted magnetic recording system and thermally assisted magnetic recording - Heating power control is performed in thermally assisted magnetic recording using a patterned recording medium. Trial writing is performed by continuously changing a heating power intensity with respect to a pattern row of a trial writing area provided in plurality on the recording medium. From a reproduction signal thereof, a minimum heating power of recording that is a boundary power between recording and non-recording, and a maximum heating power of recording that is a boundary power between recording and a heating power by which recorded information of an adjacent pattern is deleted are determined to decide an optimum recording power.01-15-2009
20100134915MAGNETIC HEAD WITH A HEATING ELEMENT BETWEEN THE READ AND WRITE ELEMENT AND METHOD OF MANUFACTURING THEREOF - According to one embodiment, a magnetic head includes a write element, a read element, and a heating element disposed between the write element and the read element. When power is applied to the heating element, either the read element or the write element projects beyond a plane of an air-bearing surface (ABS) of the magnetic head, and when power is not applied to the heating element, a portion of the ABS of the magnetic head facing a magnetic disk close to the heating element has a concave shape. In another embodiment, when power is applied to the heating element, at least one of a portion of the read element and a portion of the write element approaches a magnetic disk, and when power is not applied to the heating element, a portion of the ABS of the magnetic head facing a magnetic disk close to the heating element has a concave shape.06-03-2010
20100246047MAGNETIC HEAD AND INFORMATION STORAGE DEVICE - According to one embodiment, a magnetic head includes a magnetic pole layer including a magnetic pole extending along a layer, a coil layer configured to adjoin the magnetic pole layer and including a plurality of conductor patterns constituting a part of a coil wound around the magnetic pole and a resin which fills up a gap between the conductor patterns, a heater layer configured to adjoin the coil layer and including a heater extending in the heater layer via an area along a coil-forming region in which the conductor patterns in the coil layer are formed and an area along a no-coil region off the coil-forming region, and a transition-reluctant portion in that part of the no-coil region which adjoins the heater and having a glass transition temperature higher than that of the resin or not having any glass transition temperature.09-30-2010
20110069408DISK DRIVE, HEAD-SLIDER AND METHOD FOR CONTROLLING CLEARANCE OF A READ ELEMENT AND A WRITE ELEMENT IN THE DISK DRIVE - A disk drive. The disk drive includes a disk, a head-slider, a moving mechanism, and a controller. The head-slider includes a read/write element, a first heater element, a contact pad, and a second heater element. The read/write element includes a read element configured to read user data from the disk, and a write element configured to write user data to the disk. The moving mechanism is configured to support and to move the head-slider. The controller is configured to control the second heater element to control contact between the contact pad and the disk, and is configured to control clearance between the read/write element and the disk by using the first heater element with the contact pad in contact with the disk.03-24-2011
20110058273Heat-assisted magnetic recording head with laser diode fixed to slider - A heat-assisted magnetic recording head includes a slider, an edge-emitting laser diode fixed to the slider, and an external mirror provided outside the slider. The slider includes a magnetic pole, a waveguide, and a near-field light generating element. The laser diode includes: an emitting end face that lies at an end in a direction parallel to the plane of an active layer and includes a laser-light emission part; and a mounting surface that lies at an end in a direction perpendicular to the plane of the active layer and faces the slider. The external mirror includes: a first reference surface that is parallel to the emitting end face and faces the emitting end face; a second reference surface that is parallel to the mounting surface and faces toward the same direction as the mounting surface does; and a reflecting surface that connects the first and second reference surfaces to each other and reflects the laser light emitted from the emission part toward the waveguide.03-10-2011
20100097716HEAD SLIDER, HEAD ASSEMBLY, AND MAGNETIC DISK DEVICE - Provided is a head slider that can heat a recording medium with a simple structure. In the head slider (04-22-2010
20100053794THERMALLY ASSISTED MAGNETIC RECORDING METHOD, MAGNETIC RECORDING HEAD, MAGNETIC RECORDING MEDIUM, AND MAGNETIC RECORDING APPARATUS - In a thermally assisted magnetic recording method, tunneling current is applied from a tunneling current wiring arranged on a magnetic recording head configured to fly above a magnetic recording medium having a bit pattern formed of recording bits separated from one another by an insulator to a desired recording bit of the magnetic recording medium, so that the recording bit is heated and thus coercivity of the recording bit is reduced. Then, an alternating magnetic field corresponding to information to be recorded is applied from the magnetic recording head to the heated recording bit, so that the information can be recorded in the magnetic recording medium.03-04-2010
20080247073DISK DRIVE APPARATUS AND METHOD OF ADAPTIVELY CONTROLLING FLYING HEIGHT OF MAGNETIC HEAD THEREIN - An apparatus and method of adaptively controlling a flying height of a magnetic head above a disk in accordance with a change in a user environment of a disk drive apparatus includes determining if a parameter reset condition related to the flying height of the magnetic head has been set; measuring a temperature of a disk drive if the parameter reset condition has been set, obtaining a flying height profile representing a variation of spacing between the magnetic head and a disk in accordance with a variation of power supplied to a heater controlling the flying height of the magnetic head at the measured temperature, based on a reference flying height profile stored in the disk drive, and determining the power that is to be supplied to the heater of the magnetic head, the power corresponding to a target flying height of the magnetic head from the obtained flying height profile.10-09-2008
20100290148Magnetic recording medium for thermally assisted magnetic recording - A magnetic recording medium used for the thermally assisted magnetic recording system which fires a laser beam at a magnetic recording medium to partially heat the medium and applies a magnetic field from the outside to the part heated to lower the coercivity for recording. The magnetic recording medium is configured by a glass substrate on which a heat radiation layer, heat retention layer, intermediate layer, and recording layer are stacked. Further, the heat retention layer is configured by a member having an effective refractive index lower than the effective refractive index of the recording layer and having an temperature diffusion coefficient determined by the specific heat, density, and heat conductivity rate higher than glass and lower than metal. The material with a high temperature diffusion coefficient is used lowered in temperature diffusion coefficient using a porous structure or granular structure.11-18-2010
20080198497HARD DISK DRIVE APPARATUS, METHOD TO CONTROL FLYING HEIGHT OF MAGNETIC HEAD THEREOF, AND RECORDING MEDIA FOR COMPUTER PROGRAM THEREFOR - A method of controlling a flying height of a magnetic head of a hard disk drive apparatus includes producing a reference FOD (flying on demand) voltage profile defining a relationship between the flying height of the magnetic head and an FOD voltage at a measured temperature, wherein an end of the magnetic head thermally expands and protrudes when the FOD voltage is applied to a heater included in the magnetic head and setting the reference FOD voltage profile that is corrected using a reference maximum flying height of the magnetic head that is preset at room temperature, as an applied FOD voltage profile to control the flying height of the magnetic head.08-21-2008
20080198496Near-field light generator plate, thermally assisted magnetic head, head gimbal assembly, and hard disk drive - A near-field light generator plate 08-21-2008
20100321814ELECTRICAL LAP GUIDES AND METHODS OF USING THE SAME - An electrical lap guide having a first layer, the first layer including a material having a first resistivity, the first layer having first and second contact regions for electrically connecting the electrical lap guide to electrical leads; a second layer, the second layer including a material having a second resistivity, wherein the electrical lapping guide has a lapping axis and a layered axis, the layered axis being perpendicular to the lapping axis, the electrical lapping guide has an air bearing plane, the air bearing plane being perpendicular to the lapping axis, the second layer is disposed adjacent to a portion of the first layer in the direction of the layered axis, and the first layer extends farther in the lapping axis than does the second layer.12-23-2010
20100321816MAGNETIC HEAD AND DISK APPARATUS PROVIDED WITH THE SAME - According to an embodiment, a magnetic head of a disk apparatus includes a recording element, a reproduction element, and a heater configured to thermally expand the elements toward the recording medium side. The recording element and reproduction element are configured in such a manner that when a recording current of an amplitude less than or equal to a predetermined amplitude is applied to the recording element, a distance between the recording element and the recording medium surface becomes greater than a distance between the reproduction element and recording medium surface, and when a recording current of an amplitude exceeding the predetermined amplitude is applied to the recording element, the distance between the recording element and the recording medium surface becomes less than the distance between a surface of the reproduction element and the recording medium surface.12-23-2010
20100321815NOTCHED POLE DESIGN FOR HAMR RECORDING - A magnetic writer comprises a write pole and a near field transducer. The write pole has a leading edge, a trailing edge and a notch at the leading edge of the write pole. The near field transducer produces near field radiation. The near field transducer positioned in front of or at least partially within the notch.12-23-2010
20080204917Thermally assisted magnetic recording head, recording system, and recording method - Embodiments of the present invention help to suppress the effects of thermal fluctuation in a thermally assisted magnetic field recording, and improve recording density. According to one embodiment, a recording area of a magnetic disk is heated and the full width at half maximum of an optical power distribution of a near field light generator is controlled to be 100 nm or less. Thereby, the cooling time of the magnetic disk is made 2 nm or less and the effects of thermal fluctuation are suppressed. Moreover, although an incomplete area of the magnetization reversal at the rear end of the magnetic domain is created with rapid cooling, by creating an overshoot at the rising end of the magnetic field waveform of the magnetic recording head, the incomplete area of the magnetization reversal can be overwritten, which is created at the rear end of the magnetic domain previously recorded by the overshoot magnetic field. Therefore, the expansion of the magnetic transition width can be suppressed, resulting in the recording density being improved.08-28-2008
20080204916THERMALLY ASSISTED MAGNETIC RECORDING HEAD AND MAGNETIC RECORDING APPARATUS - A second waveguide is formed near a first waveguide for guiding light to the vicinity of a main pole of a thermally assisted magnetic recording head, and a portion of light propagated through the waveguide 08-28-2008
20110164334Integrated focusing elements for TAMR light delivery system - A device to facilitate Thermally Assisted Magnetic Recording (TAMR), and a method for its manufacture, are described. One or more cylindrical lenses are used to focus light from a laser diode onto a wave-guide and a nearby plasmon antenna. Five embodiments of the invention are described, each one featuring a different way to couple the laser light to the optical wave-guide.07-07-2011
20110164333Thermally assisted magnetic head, method of manufacturing the same, head gimbal assembly, and hard disk drive - A thermally assisted magnetic head includes a main magnetic pole layer, a near-field light generating layer having a generating end part generating near-field light arranged within a medium-opposing surface, and an optical waveguide guiding light to the near-field light generating layer. The near-field light generating layer has a near-field light generating part in a triangle shape with the generating end part being one vertex, and is formed in a triangle pole shape. The optical waveguide is formed to be opposed to a ridge part of the near-field light generating layer via an interposed layer. The main magnetic pole layer is formed to be opposed to the generating end part via the interposed layer. The thermally assisted magnetic head further includes a heat radiating layer in contact with an opposite side of the near-field light generating layer from the optical waveguide.07-07-2011
20100232051COMBINED BULK THERMAL-ASSISTER AND BULK ERASER - A combined bulk thermal-assister and bulk eraser. The bulk thermal-assister is configured to produce a temperature in a magnetic-recording disk in a hard-disk drive when the hard-disk drive is disposed in the bulk eraser. The temperature is about equal to a second temperature greater than a first temperature of the magnetic-recording disk. The bulk eraser is configured to erase recorded information from the magnetic-recording disk at the second temperature. The second temperature lowers a coercivity of the magnetic-recording disk so that, when recorded information is erased from the magnetic-recording disk at the second temperature, recorded information on the magnetic-recording disk is erased from a second magnetic-recording track in closer proximity to an inside diameter of the magnetic-recording disk than a first magnetic-recording track from which recorded information on the magnetic-recording disk may be erased, if recorded information were erased from the magnetic-recording disk at the first temperature.09-16-2010
20110096431JOINT DESIGN OF THERMALLY-ASSISTED MAGNETIC RECORDING HEAD AND PATTERNED MEDIA FOR HIGH OPTICAL EFFICIENCY - A system according to one embodiment includes a magnetic recording medium having a magnetic layer with features in a discrete track configuration or a bit patterned configuration and an underlayer adjacent the magnetic layer, the underlayer comprising a material capable of forming surface plasmon resonance; and a magnetic head having: a writer for writing to the medium; and a near-field transducer for heating the medium for thermally assisted recording. Additional systems and methods are also presented.04-28-2011
20110096432Thin Film Structure With Controlled Lateral Thermal Spreading In The Thin Film - An apparatus includes a magnetic layer, a heat sink layer, and a thermal resistor layer between the magnetic layer and the heat sink layer. The apparatus may be configured as a thin film structure arranged for data storage. The apparatus may also include an interlayer positioned between the magnetic layer and the thermal resistor layer.04-28-2011
20080218891Magnetic recording device with an integrated microelectronic device - A system includes a magnetic recording device and a circuit including at least one active semiconductor component. The circuit is formed on the magnetic recording device and generates an output associated with operation of the magnetic recording device.09-11-2008
20100214684Discrete Track Media (DTM) Design and Fabrication for Heat Assisted Magnetic Recording (HAMR) - An apparatus includes a recording media including a substrate, a plurality of tracks of magnetic material on the substrate, and a non-magnetic material between the tracks; a recording head having an air bearing surface positioned adjacent to the recording media, and including a magnetic pole, an optical transducer, and a near-field transducer, wherein the near-field transducer directs electromagnetic radiation onto tracks to heat portions of the tracks and a magnetic field from the magnetic pole is used to create magnetic transitions in the heated portions of the tracks; and a plasmonic material positioned adjacent to the magnetic material to increase coupling between the electromagnetic radiation and the magnetic material.08-26-2010
20100165500Thermal Energy Assisted Medium - In order to provide a thermal energy assisted medium capable of improving anti-sliding reliability over long periods of time in low flying head conditions, while also maintaining a high SNR, a unique medium is proposed. A soft magnetic layer is formed on a substrate, a soft magnetic layer is formed thereon via a non-magnetic intermediate layer, and an intermediate layer, a crystal oriented control intermediate layer, an artificial lattice intermediate layer having an artificial lattice film in which a first layer comprising Co and a second layer comprising Pt and Pd are laminated repeatedly to form a recording layer, and a cap layer and an lubricating layer are formed. The concentration of Pd comprising the second layer is from about 20 atomic % to about 40 atomic %. Other mediums and systems are also described.07-01-2010
20100165499THERMALLY ASSISTED RECORDING HEAD HAVING AN ELECTRICALLY ISOLATED MAGNETIC LAYER AND A NEAR FIELD TRANSDUCER - According to one embodiment, an apparatus includes a near field transducer comprising a conductive metal film having a main body, a ridge extending from the main body, and wings extending from the main body in a same direction as the ridge, wherein the wings are only electrically coupled by the main body. In another embodiment, an apparatus includes a near field transducer comprising a conductive metal film having a main body, a ridge extending from the main body, and wings extending from the main body in a same direction as the ridge. Also the apparatus includes a layer of magnetic material positioned beyond the wings relative to the main body, wherein a length of the layer of magnetic material adjacent the near field transducer is at least about coextensive with a length of the main body in a same direction.07-01-2010
20100195238THERMALLY ASSISTED MAGNETIC HEAD HAVING A SEMICONDUCTOR SURFACE-EMITTING LASER - A thermally assisted magnetic head includes: a slider having a medium-facing surface; and a surface-emitting semiconductor laser. The slider has: a slider substrate, on which part of the medium-facing surface is formed; and a magnetic head portion, on which another part of the medium-facing surface is formed, and which has a first surface in contact with a head stacking surface of the slider substrate and a second surface opposite the first surface. The magnetic head portion has: a main magnetic pole that generates a write magnetic field from an end face on the side of the medium-facing surface; an optical waveguide core extending along the first surface and having a light exit surface at the medium-facing surface; and a diffraction grating, which is provided in the optical waveguide core or further towards the second surface than the optical waveguide core, and the refractive index of which varies periodically along the direction in which the optical waveguide core extends. The surface-emitting semiconductor laser is provided opposing the second surface so that emission light from the surface-emitting semiconductor laser is incident onto the diffraction grating, and the diffraction grating causes at least part of emission light from the surface-emitting semiconductor laser to be optically coupled to the optical waveguide core.08-05-2010
20100195240THERMALLY ASSISTED MAGNETIC RECORDING DISK DRIVE - A thermally assisted magnetic recording disk drive, comprises: a magnetic recording medium, on a surface of non-magnetic substrate of which are formed an under layer, a vertical magnetic recording layer, a protective layer and a lubricant layer, sequentially; a recording/reproducing head having a magnetic pole, which is configured to apply a magnetic field onto the magnetic recording medium, and a heating means, which is configured to heat an area being applied with a magnetic field by means of a near-field light; a mechanism, which is configured to rotate the magnetic recording medium; a mechanism, which is configured to position the recording/reproducing head; and a circuit, which is configured to process a recording/reproducing signal, and further comprising, a plate-like structure, which supplies a lubricant onto a surface of the magnetic recording medium and thereby having a function of cooling the surface of the magnetic recording medium.08-05-2010
20110149426Heat-assisted magnetic recording head with internal mirror - A heat-assisted magnetic recording head has an internal mirror that includes a reflecting film support body and a reflecting film. The internal mirror reflects light that comes from above a waveguide so that the reflected light travels through the waveguide toward a medium facing surface. The reflecting film support body includes first and second inclined surfaces. The reflecting film includes first and second portions that are located on the first and second inclined surfaces, respectively. The step of forming the reflecting film support body includes two-taper etching operations to be performed on an initial support body.06-23-2011
20100020431HEAT-ASSISTED THIN-FILM MAGNETIC HEAD AND HEAT-ASSISTED MAGNETIC RECORDING METHOD - In a heat-assisted magnetic recording, a thin-film magnetic head, which can form stable recording bits pattern having steep magnetization transition regions without using a near-field light generating element, is provided. The head is formed on an element forming surface of a substrate, and has a waveguide for leading a light for heat-assist to a magnetic medium and a write element formed on a trailing side of the waveguide and having a magnetic pole for applying a write field to the medium. Here, a write field profile, which is an intensity distribution of the write field from the pole along a track in a recoding layer of the medium, has a projecting region on a leading side. Further, an anisotropy field profile, which is a distribution of an anisotropy field when the anisotropy field is reduced by irradiating the light on a part of the recoding layer, traverses the projecting region.01-28-2010
20120099218MAGNETIC-RECORDING HEAD WITH FIRST THERMAL FLY-HEIGHT CONTROL ELEMENT AND EMBEDDED CONTACT SENSOR ELEMENT CONFIGURABLE AS SECOND THERMAL FLY-HEIGHT CONTROL ELEMENT - A magnetic-recording head with a first thermal fly-height control (TFC) element and an embedded contact sensor element (ECSE) configurable as a second TFC element. The magnetic-recording head includes a write element, a read element, a first heater element, and an ECSE. The write element is configured for writing data to a magnetic-recording disk. The read element is configured for reading data from the magnetic-recording disk. The first heater element is configured as a first TFC element to coarsely adjust a fly-height of the magnetic-recording head with respect to the magnetic recording disk. The ECSE is configured to detect a contact with the magnetic-recording disk, and to function as a second heater element that is configured as a second TFC element to finely adjust the fly-height. The first heater element is configured with a first stroke-length larger than a second stroke-length of the second heater element for adjusting the fly-height.04-26-2012
20120002319MAGNETIC RECORDING AND REPRODUCTION DEVICE AND FLYING HEIGHT CONTROL METHOD - According to one embodiment, a magnetic recording and reproduction device includes a head; a heater configured to heat the head by electric power supplied; a detector provided with a resistive element and configured to detect a contact between the head and a magnetic recording medium by detecting a change in resistance of the resistive element associated with the contact between the head and the magnetic recording medium; and a flying height controller configured to control a flying height of the head from the magnetic recording medium by supplying electric power to the heater to thermally deform the head and to bring the deformed head into contact with the magnetic recording medium so as to determine reference power supplied when the head is in contact with the magnetic recording medium and by supplying electric power to the heater based on the reference power.01-05-2012
20120120519Resistance Temperature Sensors for Head-Media and Asperity Detection - A temperature sensor of a head transducer measures temperature near or at the close point. The measured temperature varies in response to changes in spacing between the head transducer and a magnetic recording medium. A detector is coupled to the temperature sensor and is configured to detect a change in a DC component of the measured temperature indicative of onset of contact between the head transducer and the medium. Another head transducer configuration includes a sensor having a sensing element with a high temperature coefficient of resistance to interact with asperities of the medium. Electrically conductive leads are connected to the sensing element and have a low temperature coefficient of resistance relative to that of the sensing element, such thermally induced resistance changes in the leads have a negligible effect on a response of the sensing element to contact with the asperities.05-17-2012
20120008230Thin film magnetic head, head gimbals assembly, head arm assembly and magnetic disk device - This thin film magnetic head has a magnetic read head and a magnetic write head each having respective end surfaces exposed to an ABS. The magnetic read head includes a magnetic reader including an end surface exposed to the ABS, first heat generator disposed on an opposite side of the magnetic reader from the ABS, and first temperature detector disposed closer to the ABS than the first heat generator is. The magnetic write head includes a magnetic pole having an end surface exposed to the ABS, second heat generator, and second temperature detector disposed closer to the ABS than the second heat generator is. The first heat generator and the first temperature detector adjust the protrusion of the magnetic read head, and the second heat generator and the second temperature detector adjust the protrusion of the magnetic write head.01-12-2012
20120008231MAGNETIC HEAD SLIDER AND MAGNETIC DISK UNIT USING SAME - There is provided the magnetic head slider including a reader, a writer, and a heater. A contact surface coming into contact with a medium surface when power is applied to the heater, and a step surface formed on both sides of the contact surface, through the intermediary of a step part, are provided on respective surfaces of the upper shield layer, the lower shield layer, the lower magnetic pole, the shield layer, and the return pole, the respective surfaces being opposite to a disk. And the respective contact surfaces of the upper shield layer, the lower shield layer, the lower magnetic pole, the shield layer, and the return pole are configured so as to be substantially circular in shape, as a whole, thereby providing a cylindrical small pad on a surface of a magnetic head slider, opposite to the disk.01-12-2012
20120063025HIGH SPEED WRITER - An apparatus comprising a control circuit, a driver circuit and a write head. The control circuit may be configured to generate a plurality of control signals in response to a data input signal. The driver circuit may be configured to generate a differential write control signal in response to the plurality of control signals. The driver circuit may receive the plurality of control signals through a flexible bus. The driver circuit may be located remotely from the control circuit. The write head may be configured to write information by physically moving above one of a plurality of tracks on a disk in response to the write control signal. The driver circuit may be configured to move along with the write head.03-15-2012
20120300335Tribological Monitoring of a Data Storage Device - A system that is capable of monitoring tribological data, such as friction, in a data storage device. In accordance with various embodiments, a magnetoresistive head is separated from a rotating data storage media by an air bearing and attached to a slider that is adjusted through deformation controlled by a heating element. A measurement circuit concurrently monitors friction from the head and power applied to the heating element to determine an MR head clearance. The measurement circuit includes at least a phase filter that eliminates off-phase friction from contributing to the determination of the MR head clearance.11-29-2012
20120300334MAGNETIC HEAD WITH SELF COMPENSATING DUAL THERMAL FLY HEIGHT CONTROL - A magnetic head for data recording having a pair of heating elements that self regulate in response to temperature to distribute heat for thermal actuation. The head includes a first heating element located adjacent to the read sensor and away from the writer, and a second heating element located adjacent to the writer. The first and second heating elements have different coefficients of thermal resistance that cause the heating of the second heating element to increase relative to that of the first heating element when the overall temperature increases or when power provided by a power source increases. There, thereby prevents the read sensor from extending too much and possibly contacting the disk.11-29-2012
20090135513MAGNETIC RECORDING MEDIUM, MAGNETIC STORAGE AND METHOD FOR REPRODUCING INFORMATION FROM MAGNETIC RECORDING MEDIUM - A magnetic recording medium includes a first magnetic layer; and a second magnetic layer formed on the first magnetic layer. The first magnetic layer and the second magnetic layer make exchange coupling therebetween and also, have their magnetizing direction in anti-parallel to one another. A net residual area magnetization of the first magnetic layer and the second magnetic layer is expressed by the following formula: |Mr05-28-2009
20110090588WRITE HEAD WITH BEVEL STRUCTURE AND REVERSE NFT FOR HAMR - A magnetic recording head comprises a write pole tip adjacent to an air bearing surface and a return pole. In addition, a near field transducer is positioned adjacent the write pole in order to produce near field radiation to heat a portion of a recording medium to facilitate switching by the magnetic write pole. The near field transducer is a reverse optical near field transducer with internal bevel structures that enhance the magnetic write field intensity.04-21-2011
20110090587Thermally-Assisted Magnetic Recording Head With Plane-Emission Type Light Source - A thermally-assisted magnetic recording head includes a surface-emitting type light source for emitting substantially collimated beam, a first diffraction optical element for focusing the substantially collimated beam emitted from the surface-emitting type light source, a second diffraction optical element for collimating the light beam focused by the first diffraction optical element, a waveguide integrally formed with the second diffraction optical element and made of the material as that of second diffraction optical element, the light beam collimated by the second diffraction optical element being incident to the waveguide, an optical-path direction conversion element for converting a direction of an optical path of the incident light beam to a propagation direction of the waveguide, the propagation direction being toward an opposed-to-medium surface, and a magnetic pole for generating write field from its end face on the opposed-to-medium surface side.04-21-2011
20110090586DISK DRIVE AND METHOD FOR ADJUSTING COMMON-MODE VOLTAGE OF AN ELEMENT ON A HEAD-SLIDER - A disk drive. The disk drive includes a disk configured to store data, a motor configured to rotate the disk, a head-slider and a controller. The head-slider includes a slider configured to fly in proximity to a recording surface of the disk, and an element on the slider. The controller is configured to measure a fly height between the head-slider and the disk at different common-mode voltages of the element to determine an operational common-mode voltage from a measurement result.04-21-2011
20120162808Perpendicular magnetic recording media and magnetic disc apparatus - [Problem] A perpendicular magnetic recording medium and a magnetic disk device that are suitable for a shingle recording type are provided.06-28-2012
20110181979Shaped plasmon generators for thermally-assisted magnetic recording - A TAMR (Thermal Assisted Magnetic Recording) write head uses the energy of optical-laser generated plasmons in a plasmon generator to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. To enable the TAMR head to operate most effectively, the antenna is formed in three portions, a wide portion of uniform horizontal area, a tapered portion tapering towards the ABS of the write head and a narrow tip extending from the tapered portion to the ABS. The wide portion enhances coupling of optical radiation from a waveguide to surface plasmons generated within the generator, the tapered portion condenses and focuses the plasmons as they propagate towards the ABS and the narrow tip further focuses the surface plasmon field at the medium surface.07-28-2011
20090059410Frictional heat assisted recording - In a method for writing data to a disk drive, a selected portion of a surface of a rotating disk of the disk drive is contacted with a designated contact region of a slider. An aspect of the contact is controlled to regulate frictional heating of the selected portion such that a magnetic field required to write data to the selected portion is reduced to a level which permits writing of data in the selected portion. Data is written on a frictionally heated track in the selected portion.03-05-2009
20120188663GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM AND ITS USE - An aspect of the present invention relates to a glass substrate for a magnetic recording medium, which is comprised of glass with a glass transition temperature of equal to or greater than 600° C., an average coefficient of linear expansion at 100 to 300° C. of equal to or greater than 70×1007-26-2012
20100328808MAGNETIC ELEMENT WITH THERMALLY ASSISTED WRITING - Magnetic element with thermally-assisted magnetic-field writing or thermally-assisted spin-transfer writing, comprising: a reference magnetic layer having a fixed direction magnetization; a storage magnetic layer exchange-pinned with an antiferromagnetic layer, wherein the magnetization direction of the storage layer can vary when said element can be heated to a temperature at least higher than a critical temperature of the antiferromagnetic layer; a tunnel barrier, provided between the reference layer and the storage layer; wherein the magnetic reference layer, and/or the magnetic storage layer includes at least one electrically-resistive thin layer for heating the magnetic element. The magnetic element disclosed herein has a voltage gain of typically 10 to 50% compared to conventional magnetic elements and shows a reduction of the stress induced during a writing operation as well as a reduction of the ageing.12-30-2010
20110216435MICROWAVE-ASSISTED MAGNETIC RECORDING HEAD AND MAGNETIC READ/WRITE APPARATUS USING THE SAME - A microwave-assisted magnetic recording head includes: a main magnetic pole that generates a recording magnetic field to be recorded on a magnetic recording medium; a shield; and an oscillator that is provided between the main magnetic pole and the shield and generates a microwave magnetic field. The microwave-assisted magnetic recording head is provided with a thermal expansion device for adjusting a relative position between the oscillator and the main magnetic pole so as to be able to independently adjust a recording magnetic field from the main magnetic pole and a microwave magnetic field from the oscillator.09-08-2011
20100232050Power control of TAMR element during read/write transition - A slider mounted TAMR (Thermal Assisted Magnetic Recording), DFH (Dynamic Flying Height) type read/write head using optical-laser generated surface plasmons in a small antenna to locally heat a magnetic medium, uses the same optical laser at low power to pre-heat the antenna. Maintaining the antenna at this pre-heated temperature, approximately 50% of its highest temperature during write operations, allows the DFH mechanism sufficient time to compensate for the thermal protrusion of the antenna at that lower temperature, so that thermal protrusion transients are significantly reduced when a writing operation occurs and full laser power is applied. The time constant for antenna protrusion is less than the time constant for DFH fly height compensation, so, without pre-heating, the thermal protrusion of the antenna due to absorption of optical radiation cannot be compensated by the DFH effect.09-16-2010
20100208379Thin-Film Magnetic Head Having Microwave Magnetic Exciting Function and Magnetic Recording and Reproducing Apparatus - A thin-film magnetic head having microwave magnetic exciting function, includes a write magnetic field production unit for producing, in response to a write signal, a write magnetic field to be applied into a magnetic recording medium, a line conductor of a microwave radiator of a plane-structure type, formed independent from the write magnetic field production means, for radiating, by feeding there through a microwave excitation current, a microwave band resonance magnetic field with a frequency equal to or in a range near a ferromagnetic resonance frequency F08-19-2010
20110134561PERPENDICULAR MAGNETIC RECORDING WRITE HEAD AND SYSTEM WITH IMPROVED SPIN TORQUE OSCILLATOR FOR MICROWAVE-ASSISTED MAGNETIC RECORDING - A microwave-assisted magnetic recording (MAMR) write head and system has a spin-torque oscillator (STO) located between the write pole of the write head and a trailing shield that alters the write field from the write pole. The STO is a stack of layers whose planes lie generally parallel to the X-Y plane of an X-Y-Z coordinate system, the stack including a ferromagnetic polarizer layer, a free ferromagnetic layer, and a nonmagnetic electrically conductive spacer between the polarizer layer and the free layer. In the presence of the write field from the write pole the polarizer layer has its magnetization oriented at an angle between 20 and 80 degrees, preferably between 30 and 70 degrees, with the Z-axis. In the presence of a direct electrical current through the STO stack, the free layer magnetization rotates or precesses about the Z-axis with a non-zero angle to the Z-axis.06-09-2011
20110157738METHOD FOR MANUFACTURING THERMALLY-ASSISTED MAGNETIC RECORDING HEAD BY SEMI-ACTIVE ALIGNMENT - A method for manufacturing a thermally-assisted magnetic recording head is provided, in which joined are: a light source unit that includes a light source having a surface including a light-emission center on the joining surface side of a unit substrate; and a slider that includes an optical system having a light-receiving end surface reaching a back surface opposite to the opposed-to-medium surface. This method utilizes “semi-active alignment” that uses an alignment light, and comprises steps of: causing a light to enter the light source from a surface opposite to the light-emission center; detecting the light that has passed through the light source and is emitted from the light-emission center to align the light-emission center with the light-receiving end surface of the slider; and bonding the light source unit to the slider. This manufacturing method can achieve the alignment with a sufficiently high alignment accuracy in a short processing time.06-30-2011
20120243117METHOD FOR MAGNETIC RECORDING USING MICROWAVE ASSISTED MAGNETIC HEAD - An object is to provide a magnetic recording method that demonstrates an additional high assistance effect to magnetic recording by applying an alternate current magnetic field in the in-plane direction to a magnetic recording medium having a large coercive force, and a method of the present invention for magnetic recording using a magnetic recording head to a recording layer of a magnetic recording medium arranged to oppose the magnetic recording head, the magnetic recording head including a main pole, an auxiliary pole, a main coil for generating a perpendicular recording magnetic field to the main pole, and either a sub-coil for generating an in-plane alternate current magnetic field of a microwave band to the main pole or a microwave radiator that is arranged in vicinity of the main pole and that radiates microwaves, the method including: a step for modulating an amplitude of the in-plane alternate current magnetic field by modulating an amplitude of microwave alternating current that is applied to either the sub-coil or the microwave radiator using a modulation signal wave so that a ratio (fc/fm) of a carrier frequency (fc) to a modulation frequency (mf) is from 10 to 40; and a step for performing magnetic recording to the recording layer of the magnetic recording medium by applying the perpendicular recording magnetic field while applying the in-plane alternate current magnetic field with the modulated amplitude to the magnetic recording medium.09-27-2012
20130141813MAGNETIC HEAD HAVING A THERMAL FLY-HEIGHT CONTROL (TFC) STRUCTURE UNDER A FLAT LOWER SHIELD - In one embodiment, a method includes forming a conducting material above an insulating film, applying a mask to portions of the conducting material in a shape of a TFC structure, removing exposed portions of the conducting material to form the TFC structure, depositing an insulating film above the TFC structure, and planarizing the insulating film to form a planar upper surface of the insulating film. In another embodiment, a magnetic head includes a TFC structure positioned between insulating films and a magnetic element positioned above the TFC structure, the TFC structure configured for providing localized thermal protrusion of the magnetic head on a media facing surface thereof, wherein an upper surface of an upper of the insulating films is planar, the magnetic element includes at least one of a main magnetic pole and a read sensor, and the TFC structure is configured for providing thermal protrusion of the magnetic element.06-06-2013
20130141814ERROR RECOVERY BASED ON APPLYING CURRENT/VOLTAGE TO A HEATING ELEMENT OF A MAGNETIC HEAD - In one embodiment, a magnetic disk device includes a magnetic disk medium, at least one magnetic head having at least one of: a magnetic read element adapted for reading data from the magnetic disk medium and a magnetic write element adapted for writing data to the magnetic disk medium, and a heating element adapted for generating heat upon application of a voltage/current thereto, wherein the heating element is positioned on, near, or within the magnetic head, a drive mechanism for passing the magnetic disk medium over the at least one magnetic head, and a controller electrically coupled to the at least one magnetic head for controlling operation of the at least one magnetic head, wherein the controller is configured to retract the at least one magnetic head from a flying state above the magnetic disk medium and apply the voltage/current to the heating element while the magnetic head is retracted.06-06-2013
20120250178MAGNETIC MEDIA WITH THERMAL INSULATION LAYER FOR THERMALLY ASSISTED MAGNETIC DATA RECORDING - A magnetic media for heat assisted magnetic data recording. The magnetic media includes a thermal insulation layer structure formed near the substrate of the media provide more efficient heating of the write layer by allowing less heat dissipation to the substrate. The thermal insulation layer structure can be one or more layers of an oxide such as SiO2 and one or more layers of a material such as NiTa. Increasing the number of oxide layers and NiTa layers increases the thermal insulation of the thermal insulation layer structure thereby further increasing the efficiency of the heat assisted writing.10-04-2012
20130128378MEDIUM, METHOD OF FABRICATING A MEDIUM, RECORDING SYSTEM AND METHOD OF CONTROLLING A RECORDING SYSTEM - A medium may be provided. The medium includes a servo layer, a data recording layer, and a heat sink layer disposed between the servo layer and the recording layer.05-23-2013
20110228419HEAT-ASSISTED MAGNETIC RECORDING HEAD INCLUDING PLASMON GENERATOR - A plasmon generator has an outer surface including a propagation edge, and has a near-field light generating part lying at an end of the propagation edge and located in a medium facing surface. The propagation edge faces an evanescent light generating surface of a waveguide's core with a predetermined distance therebetween and extends in a direction perpendicular to the medium facing surface. The propagation edge is arc-shaped in a cross section parallel to the medium facing surface. The plasmon generator includes a shape changing portion in which a radius of curvature of the propagation edge in the cross section parallel to the medium facing surface continuously decreases with decreasing distance to the medium facing surface.09-22-2011
20130148231SUSPENSION ASSEMBLY FORMED WITH A PROTECTIVE STRUCTURE - A magnetic disk drive system that has a suspension assembly that includes a slider having a heating element and a suspension configured with a protective structure that protects the heating element. The heating element of the slider can extend through the suspension to extend from the suspension assembly from a side that is opposite the slider. The protective structure is configured to protect the heating element and to prevent the heating element from contacting the heating element of an adjacent suspension during an event such as a physical shock to the disk drive system.06-13-2013
20110235205Laminated Exchange Coupling Adhesion (LECA) Media For Heat Assisted Magnetic Recording - An apparatus includes a plurality of bilayer structures positioned adjacent to each other, each of the bilayer structures including a first layer of magnetic material having a first Curie temperature and a second layer of magnetic material positioned adjacent to the first layer, wherein the second layer has a second Curie temperature that is lower than the first Curie temperature, and magnetic grains of the first layer are unstable when the second layer of magnetic material is heated above the second Curie temperature. The recording temperature is reduced due to the smaller switching volume achieved by using vertically decoupled laminations at elevated temperatures.09-29-2011
20100315737CONTROL DEVICE, CONTROL METHOD, AND INFORMATION STORAGE APPARATUS - A control device includes an acquisition section which acquires a reading signal from a head under plural heat amounts, an computation section which computes plural kinds of characteristic values representing characteristics of the reading signal for each of the plural generated heat amounts by using at least one kind of algorithm, a contact determination section which determines whether or not the head contacts the storage medium for each of the two or more kinds of characteristic values based on a change of the characteristic values for the generated heat amount, and an association determination section which determines an association of a distance between the head and the storage medium with the generated heat amount when determined that the head contacts the storage medium for any of the characteristic values as the generated heat amount when the head contacts the storage medium so that the is considered to be zero.12-16-2010
20100315736Multilayered Waveguide Having Protruded Light-Emitting End - A waveguide is provided, in which the optical coupling efficiency to a light source is sufficiently high, and the light-emitting spot center is stably provided at the intended position. The waveguide comprises a multilayered structure in which refractive indexes of layers having a surface contact with each other are different from each other. The multilayered structure is divided into a plurality of groups, and the length from the light-receiving end surface to the light-emitting end surface of one group is different from that of the neighboring group, and the protruded light-emitting end surface of the first group defined as a group that has the largest length includes a center of the light-emitting spot. In this waveguide, the state in which the light-emitting spot center is positioned within the light-emitting end surface does not easily be changed, even when the light-receiving spot center within the light-receiving end surface is rather displaced.12-16-2010
20100315735Plasmon antenna with magnetic core for thermally assisted magnetic recording - A TAMR (Thermal Assisted Magnetic Recording) write head uses the energy of optical-laser generated plasmons in a plasmon antenna to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. To enable the TAMR head to operate most effectively, the maximum gradient of the magnetic recording field should be concentrated in the small region being heated. Typically this does not occur because the spot being heated by the antenna is offset from the position at which the magnetic pole concentrates its magnetic field. The present invention incorporates a magnetic core within a plasmon antenna, so the antenna effectively becomes an extension of the magnetic pole and produces a magnetic field whose maximum gradient overlaps the region being heated by edge plasmons being generated in a conducting layer surrounding the antenna's magnetic core.12-16-2010
20120008229Magnetic core plasmon antenna with improved coupling efficiency - A TAMR (Thermal Assisted Magnetic Recording) write head uses the energy of optical-laser generated plasmons in a magnetic core plasmon antenna to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. To enable the TAMR head to operate most effectively, the maximum gradient and value of the magnetic recording field should be at a point of the magnetic medium that is as close as possible to the point being heated. In addition, the coupling between the optical mode and the plasmon mode should be efficient so that maximum energy is transmitted to the medium. The present invention achieves both these objects by surrounding the magnetic core of a plasmon antenna by a variable thickness plasmon generating layer, whose thinnest and shortest portion is at the ABS end of the TAMR head and whose thickest and longest portion efficiently couples to the optical mode of a waveguide to produce a plasmon.01-12-2012
20120075740Thermally Assisted Magnetic Recording Disk, Manufacturing Method Thereof, And Magnetic Recording Method - The invention provides a magnetic disk that solves (1) a problem of cross-talk that cannot be solved even by an existing thermally assisted recording method or a discrete method (DTM or the like), (2) a problem of surface flatness, which an existing embedding type DTM or the like has, and (3) a problem of a difference in thermal expansion coefficient between materials when a thermally assisted method is applied to the DTM, and that (4) does not necessitate a special medium structure, and is excellent in a surface flatness and economically and functionally high in realizability. A DTM manufactured by ion implantation is excellent in the surface flatness, and can solve the cross-talk problem by conducting the thermally assisted recording at a temperature between a Curie temperature (Tcn) of a portion where ions are implanted (non-recording region) and a Curie temperature (Tcr) of a portion where ions are not implanted (recording region).03-29-2012
20120092790PATTERNED PERPENDICULAR MAGNETIC RECORDING DISK DRIVE AND MEDIUM WITH PATTERNED EXCHANGE BRIDGE LAYER BELOW THE DATA ISLANDS - A patterned perpendicular magnetic recording disk with discrete data islands of recording layer (RL) material includes a substrate, a patterned exchange bridge layer of magnetic material between the substrate and the islands, and an optional exchange-coupling control layer (CCL) between the exchange bridge layer and the islands. The exchange bridge layer has patterned pedestals below the islands. The exchange bridge layer controls exchange interactions between the RLs in adjacent islands to compensate the dipolar fields between islands, and the pedestals concentrate the flux from the write head. The disk may include a soft underlayer (SUL) of soft magnetically permeable material on the substrate and a nonmagnetic exchange break layer (EBL) on the SUL between the SUL and the exchange bridge layer. In a thermally-assisted recording (TAR) disk a heat sink layer may be located below the exchange bridge layer and the SUL may be optional.04-19-2012
20120092789THERMAL FLY HEIGHT CONTROL MAGNETIC RECORDING HEAD HAVING A NOVEL HEATING ELEMENT GEOMETRY - A heating element for use in a thermal fly height control magnetic recording head of a magnetic data recording system. The heating element has a centrally disposed portion with a straight front edge that is recessed by a substantially constant distance, and has first and second side portions that taper away from the air bearing surface. The side portions preferably taper away from the air bearing surface by an angle of 20 to 45 degrees. The center portion of the front edge is spaced from the air bearing surface by a distance D and has a width W, such that W is 1.5 to 2.5 (or about 2) times D. D is typically 2-6 um to have good heater efficiency while being large enough to not over heat the heater. The heating element has an overall width WW and a overall depth HH from the air bearing surface such that WW is 1.5-2.5 (or about 2) times HH.04-19-2012

Patent applications in class Thermomagnetic recording or transducers