Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


FOR OPTICAL FIBER OR WAVEGUIDE INSPECTION

Subclass of:

356 - Optics: measuring and testing

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20090033919Estimating Loss of Mechanical Splices Interconnecting Optical Fibers, and Connector Installation Tool - A method of estimating loss of a splice between first and second optical fibers spliced together by a mechanical splice or a mechanical splice-based connector having a portion through which light leaked from the splice can emerge comprises the steps of launching light into the first fiber, collecting light leaked from the portion using a multiplicity of ports, measuring the power level of the collected light and deriving the insertion loss from the measured power level, a predetermined power level and a collection factor C representing a relationship between measured power level, predetermined power level, power level of light in the first fiber, and power level of light coupled into the second fiber previously obtained for the same or similar connecting device. The ports may be angularly spaced about the axis of the connector or splice. The predetermined power level may be obtained by measuring light emerging from the connector but without the second fiber in position.02-05-2009
20110194102Fiber Optic Building Monitoring System - A building roof monitoring system that includes a fiber optic filament positioned between a water barrier layer (e.g., roof membrane) and a roof substrate layer of the building roof. The fiber optic filament may be part of a sensing layer that includes the fiber optic filament carried by a water transport layer configured to draw water coming into contact with the water transport layer into contact with the fiber optic filament. An optical analyzer injects laser light into the fiber optic filament and detects changes in propagation of the laser light through the fiber optic filament indicative of water coming in contact with the fiber optic filament to detect a roof leak. A response system including a controller, alarm or remote communication unit operatively connected to the optical analyzer responds to the roof leak detected by the optical analyzer.08-11-2011
20130077088Optical Fiber Network Test Method of an Optical Frequency Domain Reflectometer - An optical fiber network test method of an optical frequency domain reflectometer, which is to use the optical testing apparatus and method of the prevent invention to combine the characters of filtering, reflecting and transmission of light of the wave reflecting unit, applying on any optical fiber test or point-to-point or point-to-multipoint optical fiber network. Thus, the optical fiber testing apprartus and method is constructed, and the goals of achieving the optical fiber network test method of the optical frequency domain reflectometer or confirming simultaneously the position of the barrier router and the barrier optical fiber connection point/end point/start point can be accomplished.03-28-2013
20100118295System and Method for Measuring a Laser-Induced Damage Threshold in an Optical Fiber - A system for measuring a laser-induced damage threshold in an optical fiber may include a lens to direct a first laser beam through a core of the optical fiber. The system may also include an optical arrangement to direct a second laser beam through an exterior surface of the optical fiber and into the core of the optical fiber at a preselected location of the optical fiber to provide a predetermined power density at the preselected location, wherein the optical arrangement causes the second laser beam to be directed into the optical fiber substantially completely around a perimeter of the optical fiber to provide the predetermined power density.05-13-2010
20100073667Method and Apparatus for Determining Differential Group Delay and Polarization Mode Dispersion - A method and apparatus for measuring at least one polarization-related characteristic of an optical path (FUT) uses an optical source means connected to the FUT at or adjacent a proximal end of the FUT and an analyzing-and-detection unit connected to the FUT at or adjacent its proximal or distal end. The optical source means injects into the FUT at least partially polarized light having a controlled state of polarization (I-SOP). The analyzer-and-detection unit extracts corresponding light from the FUT, analyzes and detects the extracted light corresponding to at least one transmission axis (A-SOP), and processes the corresponding electrical signal to obtain transmitted coherent optical power at each wavelength of light in each of at least two groups of wavelengths, wherein the lowermost (λ03-25-2010
20130038865Embedded Optical Time Domain Reflectometer for Optically Amplified Links - Fiber-optic communications systems are provided for optical communications networks. Fiber-optic communications links may be provided that use spans of transmission fiber to carry optical data signals on wavelength-division-multiplexing channels at different wavelengths between nodes. An apparatus and method are disclosed to use one optical light source per node to perform OTDR and LCV to satisfy safety concerns and accelerate the verification of the integrity of optical fiber links, before the application of high Raman laser powered light sources to a fiber link. A system using only one receiver per node is also disclosed.02-14-2013
20130038864FIBER OPTIC CONNECTOR INSPECTION MICROSCOPE WITH INTEGRAL OPTICAL POWER MEASUREMENT - A fiber optic inspection microscope including an objective lens, an optical detector, an image detector, an illumination source, and first and second beamsplitters, wherein the first beamsplitter is in a first optical path between the objective lens, the image detector and the optical detector, wherein the first beamsplitter allows passage of an optical image to the image detector, wherein the first beamsplitter directs optical energy to the optical detector, wherein the second beamsplitter is in a second optical path between the illumination source and the objective lens, and wherein the second beamsplitter directs light from the illumination source to the objective lens.02-14-2013
20090244522Polarization Optical Time Domain Reflectometer and Method of Determining PMD - In a method of measuring cumulative polarization mode dispersion (PMD) along the length of a fiber-under-test (FUT), a polarization-sensitive optical time domain reflectometer (POTDR) is used to inject into the FUT plural series of light pulses arranged in several groups. Each group comprises at least two series of light pulses having different but closely-spaced wavelengths and the same state of polarization (SOP). At least two, and preferably a large number of such groups, are injected and corresponding OTDR traces obtained for each series of light pulses by averaging the impulse-response signals of the several series of light pulses in the group. The process is repeated for a large number of groups having different wavelengths and/or SOPs. The PMD then is obtained by normalizing the OTDR traces of all of the groups, then computing the difference between each normalized OTDR trace in one group and the corresponding normalized OTDR trace in another group, followed by the mean-square value of the differences. Finally, the PMD is computed as a predetermined function of the mean-square difference. The function may, for example, be a differential formula, an arcsine formula, and so on.10-01-2009
20100134787MEASUREMENT METHOD OF CHROMATIC DISPERSION OF OPTICAL BEAM WAVEGUIDE USING INTERFERENCE FRINGE MEASUREMENT SYSTEM - The present invention relates to a measurement method of the chromatic dispersion of an optical waveguide using an optical interferometer with a broadband multi-wavelength light source and an optical spectrum analyzing apparatus, wherein one arm, called “reference arm” of the interferometer's two arms has an adjustable air spacing and the other arm, called “sample arm” can contain said optical waveguide to be measured, and including the following measurement and analysis steps: measuring interference spectra of the optical beam output exiting from the said interferometer with an optical spectrum analyzing apparatus when said optical waveguide is connected to said sample arm, and when said optical waveguide is not connected to said sample arm respectively; by adjusting the reference arm length for appearance of clear interference patterns; converting the wavelength-domain interference spectra into frequency-domain interference spectra and calculating phase difference values of the interference peaks of one of the spectra from a predetermined reference peak as a function of the frequency change by counting the interference peak (or valley) points; finding a Taylor series curve fit function for each set of the phase difference value data corresponding to each of the two interference spectra; and calculating a chromatic dispersion coefficient of the optical waveguide by using the coefficients of the Taylor series curve fit functions.06-03-2010
20130027689INSPECTING DEVICE, INSPECTING METHOD, AND METHOD FOR MANUFACTURING OPTICAL FIBER - A detector sequentially detects intensity distribution of transmitted light which is transmitted through a center portion of a preform. A determining section determines at least one of a position of a through hole and a size thereof on the basis of a time series of a feature value in the intensity distribution.01-31-2013
20100328651METHOD AND SYSTEM FOR FIBER-OPTIC MONITORING OF SPATIALLY DISTRIBUTED COMPONENTS - A system for monitoring a plurality of components distributed in different space locations, includes: at least one optical fiber path; an optical radiation source adapted to inject optical radiation into the at least one optical fiber path; at least one first and at least one second optical branches branching from the at least one optical fiber path and adapted to spill respective portions of the optical radiation, the first and second optical branches being adapted to be operatively associated with a respective component to be monitored. The first optical branch includes a first optical reflector and is adapted to reflect the spilled optical radiation portion unless the respective component at least partially breaks; the second optical branch includes at least one passive optical attenuator adapted to be operatively coupled to the respective component to be monitored, and having an attenuation capable of changing in response to a change in operating conditions of the respective monitored component when operatively coupled thereto, and a second optical reflector. An optical receiver is adapted to detect back-reflected optical radiation reflected by the first and second optical branches. The monitoring system is adapted to recognize a position of a component of the plurality of components based on a characteristic of the back-reflected optical radiation.12-30-2010
20130070237Method and Metric for Selecting and Designing Multimode Fiber for Improved Performance - A new metric applicable to the characterization and design of multimode fiber (MMF) is described. The metric is derived from a Differential Mode Delay (DMD) measurement and when used in combination with industry-standard metrics such as Effective Modal Bandwidth (EMB) and DMD, yields a more accurate prediction of MMF channel link performance as measured by Bit Error Rate (BER) testing. The metric can also be used in the design of MMF for improved bandwidth performance. When implemented as a test algorithm in production, it can be used to select, sort, or verify fiber performance. This process can yield a multimode fiber design with a greater performance margin for a given length, and/or a greater length for a given performance margin.03-21-2013
20090303464OPTICAL FIBER TWISTING APPARATUS, METHOD OF MANUFACTURING OPTICAL FIBER, AND OPTICAL FIBER - An optical fiber twisting apparatus that prevents line distortion in an optical fiber undergoing a drawing process and provides a consistent coating on a bare optical fiber. This optical fiber twisting apparatus includes a twist roller apparatus that having a twist roller that, by imparting a twist to an optical fiber, imparts a twist to a molten portion of an optical fiber preform positioned on an upstream side of the optical fiber, and a support portion that supports the twist roller. The accuracy of the outer circumference of the twist roller when the twist roller is forming a part of the twist roller apparatus is 15 μm or less.12-10-2009
20090040509OPTICAL TOPOLOGY FOR MULTIMODE AND SINGLEMODE OTDR - A network test instrument for singlemode and multimode OTDR testing employs an optical topology providing for combined singlemode and multimode use of a detector for reduced cost and instrument size.02-12-2009
20090040508Light Monitoring Method and Light Monitoring Apparatus - A light monitoring method and a light monitoring apparatus are provided, in which light propagating optical fibers can be monitored with a simple structure and a small number of components without causing a large connection loss or Fresnel reflection and without performing precise adjustment of optical components. The light monitoring method is characterized in that light leaking from abutting portions obtained by abutting end faces of the optical fibers is received.02-12-2009
20090268198POLARIZATION MODE DISPERSION MEASUREMENT USING AN IMPROVED FIXED ANALYZER METHOD - A device for performing polarization mode dispersion (PMD) measurements of an optical fiber is disclosed. The PMD measurement device employs a fixed analyzer method, and includes a tunable Fabry-Perot inferometer as the wavelength-selective element and an optical bandpass filter for spectrum calibration. A novel scanning algorithm, which performs multiple scans at different velocities, enables accurate PMD measurements, even of moving optical cable. The tunable Fabry-Perot interferometer is able to scan over a wide wavelength range and yet have a narrow linewidth, such that a wide range of PMD values can be measured.10-29-2009
20090268196MICROWAVE PHOTONIC FREQUENCY DOMAIN REFLECTOMETER - A plurality of microwave signals are converted into optical signals which are directed against an optically reflective surface, whereby the optical signals reflected off of the optically reflective surface are received and converted into microwave signals, which are passed through a Fourier Transformer for extracting information of interest.10-29-2009
20120224170OPTICAL NODE APPARATUS, METHOD FOR CHECKING CONNECTION IN NODE APPARATUS AND PROGRAM THEREOF - An optical node apparatus whose plural function units are connected each other through an optical transmission line includes a control unit which carries out control to send an optical test signal and to stop sending the optical test signal a sending unit which sends the optical test signal on the basis of an instruction issued by the control unit a receiving unit which receives the optical test signal sent by the sending unit through the optical transmission line and a discriminating unit which discriminates whether the receiving unit receives the optical test signal.09-06-2012
20120224169OPTICAL FIBER VIBRATION SENSOR - A Sagnac interference type optical fiber vibration sensor includes two optical fiber loops arranged along a structure, and a vibration sensor main body which detects the vibration caused to the structure via the two optical fiber loops. A sensitivity of one of the two optical fiber loops for detecting a vibration decreases with a distance from one end to an other end, while a sensitivity of an other of the two optical fiber loops increases with a distance from the one end to the other end. The main body includes a portion for determining whether the vibration occurred to the structure based on a sum of outputs produced via the two optical fiber loops, and a portion for determining a position where the vibration occurred based on an output ratio which is a difference between the outputs produced which is divided by the sum of the outputs produced.09-06-2012
20120224167APPARATUS AND METHOD FOR CHEMICAL, BIOLOGICAL AND RADIOLOGICAL AGENT SENSING - Apparatus and method for chemical, biological and radiological agent sensing. The sensing apparatus includes a plurality of resonators each having a resonance frequency and an optical fiber coil. The optical fiber coils have cladding and an indicator embedded in the cladding that reacts to an agent (chemical or biological substance) or a dopant that darkens with radiation. The resonator circulates light through the coil and produces a resonance shape centered at the resonance frequency and measured via the input light. A predetermined change in the resonance shape indicates a presence of the agent in the environment.09-06-2012
20100002226MEASURING BRILLOUIN BACKSCATTER FROM AN OPTICAL FIBRE USING A TRACKING SIGNAL - A method for measuring Brillouin backscattering from an optical fibre (01-07-2010
20120236295METHOD OF MEASURING BENDING PERFORMANCE OF OPTICAL FIBER - A method of measuring the bending performance of an optical fiber in a simple manner is provided. Power P09-20-2012
20120236294Optical Fiber Fault Locator - A method includes applying pulsed light to a first end of an optical fiber from an optical fault locator during a first distance test. The method includes determining an estimated distance to a fault based on the pulsed light. The method includes sending information indicative of the estimated distance to a remote device. The method also includes applying first visible light from the optical fault locator to the first end of the optical fiber to facilitate identification of the fault at a first site that is remote from the first end of the optical fiber.09-20-2012
20090135409Optical waveguide rotator mechanism, birefringence-inducing element and polarization control devices employing either or both and methods of using same - A fiber rotator mechanism for rotating a portion of an optical waveguide, specifically an optical fiber, about a longitudinal axis thereof comprises a motor having a tubular rotor through which the fiber extends, in use, and to which the fiber is secured, directly or indirectly. An optical fiber may be secured by means of a device which also compresses the optical fiber to induce a required birefringence, conveniently by means of a spring-loaded clamping device or a ferrule of shape memory material.05-28-2009
20100171945Method of Classifying a Graded-Index Multimode Optical Fiber - A method of classifying a graded-index multimode optical fiber includes taking a series of individual measurements at a single wavelength, and using the measurements to characterize the departure of the multimode optical fiber's actual index profile from the corresponding nominal index profile. The measurements, coupled with intermodal dispersion or EMB measurement, may be used to predict the approximate transmission properties of the optical fiber at wavelengths other than the measurement wavelength.07-08-2010
20080297772Detecting a Disturbance in the Propagation of Light in an Optical Waveguide - An optical time domain reflectometry apparatus has a laser and light modulator for producing coherent light pulses, each having two sections of higher intensity separated by a gap of lower or substantially zero intensity. As the light pulses propagate along the optical fibre, light is continuously Rayleigh backscattered by inhomogeneities of the optical fibre. A photodetector generates backscatter signals representing the intensity of light Rayleigh backscattered in the optical fibre as each light pulse travels along the optical fibre. The PC uses these backscatter signals to derive a difference signal representing a change dI in intensity between signals generated from two successive pulses. The PC then calculates the Root Mean Square (RMS) of the difference signal averaged over the interval between the two sections of the light pulses. Next, the PC averages the backscatter signal generated from the first of the pulses over the same interval and normalises the RMS difference signal using the averaged signal to obtain a compensated difference signal that depends only on differences in the rate of change of phase of light of the light pulses as they travelled along the waveguide. This is repeated at different wavelengths to allow the compensated difference signal to be adjusted to represent the magnitude of the differences.12-04-2008
20090059209LOCK-IN DEMODULATION TECHNIQUE FOR OPTICAL INTERROGATION OF A GRATING SENSOR - A grating sensor and method for optical interrogation of that sensor uses a lock-in technique to achieve simultaneous measurements of strain (and related temperature) and ultrasonic stress wave signals, as well as other environmental conditions that affect a reflection spectrum of the grating sensor. It achieves this by using a lock-in amplifier or a software demodulator to detect slight shifts in the grating reflection spectrum with high sensitivity and accuracy. A dynamic feedback loop based on the lock-in error signal output retunes the light wavelength of the light source (e.g., a tunable laser) or of a wavelength filter in the reflection path to maintain it relative to a specified reflection point of the grating reflector. The lock-in error signal serves as a measure of temperature/strain changes and of ultrasonic vibrations.03-05-2009
20110292378METHOD AND APPARATUS FOR USING OPTICAL FEEDBACK TO DETECT FIBER BREAKDOWN DURING SURGICAL LASER PROCEDURES - Failure events detected by a laser surgery monitoring feedback circuit are analyzed in order to distinguish between events that result from fiber breakdown and those arising from other sources, such as burning of tissues. If the number of failure events within a predetermined time exceeds a predetermined count, then it is determined that the radiation is the result of fiber breakdown. If the number of failure events within the predetermined time is less than the predetermined count, then it is determined that the failure events result from other causes, such as heating of tissues by the laser. Based on the analysis, an override switch or alarm may be initiated.12-01-2011
20110141459OPTICAL FIBER SENSING SYSTEM - Provided is an optical fiber sensing system that can carry out measurement accurately without being affected by measurement noise factors other than the physical-quantity attribute of a measurement target object, for example, the effects of the emission power of a light source, fiber insertion loss, fluctuations in the sensitivity of a photo detector, fluctuations in the amplitude of an amplifier or other fluctuations, the loss of optical energy due to the bending of an optical fiber (bending loss), the loss of optical energy due to the connecting of two or more optical fibers by means of connectors (connector loss), the gain fluctuations of electric circuitry provided on a platform, and so forth. A reflective sensor is connected to an end of an optical fiber connected to a light source. The light source outputs physical measurement light. Reflected light coming from the reflective sensor is separated into two beams of light. Information on the physical quantity of a measurement target object is detected on the basis of an intensity ratio of the two beams.06-16-2011
20090002689LOOP BACK PLUG WITH PROTECTIVE DUST CAP - A loop back device can include a dust cap with which to protect the loop back ferrule after use to facilitate reuse of the loop back device. The dust cap can be provided at a free end of the loop back device when the loop back device is secured to a tether connector. When the loop back device is removed from the tether connector, the dust cap is removed from the free end of the device and is mounted over the ferrule to protect the loop back ferrule.01-01-2009
20100283996METHOD AND SYSTEM FOR DISTRIBUTED MEASUREMENT AND COMPENSATION OF CHROMATIC DISPERSION IN AN OPTICAL NETWORK - A method and apparatus for distributed measurement of chromatic dispersion in an optical network is disclosed. The network comprises optical switching nodes interconnected by optical links. An optical link may comprise multiple spans, each span ending in a transport module which comprises signal-processing components. At least one optical switching node has a probing signal generator transmitting an optical probing signal along a selected path in the network. Probing-signal detectors placed at selected transport modules determine chromatic-dispersion values and send results to a processing unit which determines appropriate placement of compensators or appropriate adjustments of compensators placed along the path. A preferred probing signal has the form of wavelength modulated optical carrier which is further intensity modulated by a periodic, preferably sinusoidal, probing tone. Variation in the phase-shift of the probing tone corresponding to variation of the wavelength of the optical probing signal determines chromatic-dispersion characteristics for different spans of the path.11-11-2010
20090141267OPTICAL-FIBER-CHARACTERISTIC MEASURING APPARATUS AND OPTICAL-FIBER-CHARACTERISTIC MEASURING METHOD - A measurement range is extended while maintaining the spatial resolution high by completely separating the increment of a probe light from noises. Modulations are performed on both probe light and pump light to differentiate both lights. Using the modulations, only the change in the probe light necessary for measuring the characteristic of a measurement-target optical fiber FUT can be separated. Accordingly, unlike the conventional technology, an optical wavelength filter becomes unnecessary. Further, in a case where an amplitude Δf of the frequency modulation of a light source 06-04-2009
20100085558Detection System and Optical Fiber for Use in Such System - A detection system comprising: (i) an optical fiber, the optical fiber having (a) a length L≧1 km; (b) beat length between 10 m and 100 m; and (c) beat length uniformity over any distance of at least 100 m within the length L is characterized by standard deviation σ, where |σ|≦10 m; (ii) an OTDR coupled to the fiber and including (a) a radiation source providing pulsed radiation to the fiber, (b) a detection system capable of detecting radiation that is backscattered back through the fiber; and (iii) at least one polarizer situated between the fiber and the detector, such that the backscattered radiation passes through the polarizer before reaching the detector.04-08-2010
20120033206CABLE INSTALLED STATE ANALYZING METHOD AND CABLE INSTALLED STATE ANALYZING APPARATUS - An image of an installed state of an optical fiber is captured by a camera. The optical fiber is provided with position marks at fixed intervals, the position marks each indicating a distance from a predetermined position and a direction of the optical fiber. An installed state analyzing apparatus performs image processing on the captured image and analyzes the installed state of the optical fiber by using the optical fiber installation tools and the position marks.02-09-2012
20100079746MIXER-BASED TIME DOMAIN REFLECTOMETER AND METHOD - An apparatus to measure optical characteristics of a fiber optic transmission line or other optical medium may include a source to generate a bipolar pulse signal waveform. The apparatus may also include a mixer to mix the bipolar pulse signal waveform and an optical pulse and reflected signal waveform from the fiber optic transmission line or other optical medium to form a mixed product waveform, wherein the reflected signal is responsive to the optical pulse being transmitted into the fiber optic transmission line or optical medium.04-01-2010
20100123896Method and Apparatus for Measuring the Birefringence Autocorrelation Length in Optical Fibers - Disclosed is a method and apparatus for determining the birefringence autocorrelation length of a fiber in a non-destructive manner. The PMD of an optical fiber is measured over a first optical spectrum. A Faraday rotation angle is measured over a second optical spectrum. The birefringence autocorrelation length is determined from the measuring of the PMD and the Faraday rotation angle.)05-20-2010
20090097014Measurement of Optical Fiber Length and Determination of Chromatic Dispersion Over the Optical Fiber - In one embodiment, first optical signal can be generated at a first end of an optical fiber segment at a first time. The first optical signal can be detected at a second end of the optical fiber segment at a second time. A second optical signal can be generated at a second end of the optical fiber segment at a third time in response to the detection of the first optical signal. The second optical signal can be detected at the first end of the optical fiber segment at a fourth time. A length of the optical fiber segment can be determined based on a difference between the second time and the first time, a difference between the third time and the second time, and a difference between the fourth time and the third time.04-16-2009
20090046276System And Method For Determination Of The Reflection Wavelength Of Multiple Low-Reflectivity Bragg Gratings In A Sensing Optical Fiber - A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.02-19-2009
20090147244Method and apparatus for measuring the birefringence autocorrelation length in optical fibers - Disclosed is a method and apparatus for determining the birefringence autocorrelation length of a fiber in a non-destructive manner. The PMD of an optical fiber is measured over a first optical spectrum. A Faraday rotation angle is measured over a second optical spectrum. The birefringence autocorrelation length is determined from the measuring of the PMD and the Faraday rotation angle.06-11-2009
20090262337Measuring modal content of multi-moded fibers - The output modal content of optical fibers that contain more than one spatial mode may be analyzed and quantified by measuring interference between co-propagating modes in the optical fiber. By spatially resolving the interference, an image of the spatial beat pattern between two modes may be constructed, thereby providing information about the modes supported by the optical fiber. Measurements of the phase front exiting the optical fiber under test are advantageously performed in the far field.10-22-2009
20090262336NON-DESTRUCTIVE TESTING OF AN INTEGRATED OPTICAL COUPLER IN AN INTEGRATED OPTICAL CIRCUIT - A non-destructive method for characterizing a surface-illuminated integrated optical coupler associated with an optical waveguide, comprising the steps of measuring the reflection coefficient on a first region of the coupler at a distance from the optical waveguide and constructing a first curve, determining a first model of the reflection coefficient on the first region, performing a first parameter fitting between the first curve and the first model to determine first parameters, measuring the reflection coefficient on a second region of the coupler close to the guide, and constructing a second curve, determining a second model of the reflection coefficient on the second region, performing a second parameter fitting between the second curve and the second model to determine second parameters, and constructing the characteristic of the coupling efficiency of the coupler using the first and second parameters.10-22-2009
20100141934Inspection Tip for a Fiber Optic Inspection Probe - An inspection probe is disclosed for use with a fiber optic adapter. The inspection probe can inspect a terminated end of an optical fiber within the fiber optic adapter. The fiber optic adapter can include a ferrule receiver located between first and second ports. The inspection probe is inserted into the first port of the fiber optic adapter and a coupling feature of the inspection probe engages and aligns with the ferrule receiver. A fiber optic connector is inserted into the second port of the fiber optic adapter and a ferrule of the fiber optic connector aligns with the ferrule receiver. The ferrule holds the terminated end of the optical fiber and thereby positions the terminated end within the ferrule receiver. An image capturing end of the inspection probe is thereby positioned proximal the terminated end of the optical fiber and can inspect the terminated end and/or the ferrule.06-10-2010
20080212082FIBER OPTIC POSITION AND/OR SHAPE SENSING BASED ON RAYLEIGH SCATTER - A fiber optic position and/or shape sensing device includes an optical fiber with either two or more single core optical fibers or a multi-core optical fiber having two or more fiber cores. In either case, the fiber cores are spaced apart so that mode coupling between the fiber cores is reduced, and preferably, minimized. The optical fiber is physically associated with an object. Strain on at least a portion of the optical fiber where it is associated with the object is determined by an OFDR using one or more Rayleigh scatter patterns for that portion of the optical fiber. The determined strain is used to determine a position and/or a shape of the object.09-04-2008
20110199607DETECTING A DISTURBANCE IN THE PHASE OF LIGHT PROPAGATING IN AN OPTICAL WAVEGUIDE - A partially coherent Optical Time Domain Reflectometry (OTDR) apparatus has a light source comprising a directly modulated semiconductor Distributed FeedBack (DFB) laser diode for transmitting partially coherent light pulses along a monomode optical fibre. Light Rayleigh backscattered from the light pulses as they travel along the optical fibre is output from the end of the fibre into which the light pulses are transmitted to a Fibre Bragg Grating (FBG) filter. The FBG filter reduces the supectral width of light received at a photodetector. In one embodiment, the supectral width of the FBG filter is around one fifth of the supectral width of the light pulse after it has travelled around 1 km along the optical fibre. As a consequence of reducing the supectral width of the light received at the photodetector, the FBG filter increases the temporal coherence of the light. So, the FBG filter can ensure that the detected light is sufficiently coherent that a temporal supeckle pattern can be detected at the photodetector. At the same time, the light traveling in the optical fibre can be relatively supectrally broad so that non-linear effects in the optical fibre, such as Brillouin scattering, can be reduced.08-18-2011
20100277719Intrusion Detecting System With Polarization Dependent Sensing Elements - A detection system includes a length of optical fiber and an OTDR coupled to the optical fiber. The OTDR includes a radiation source providing pulsed radiation to the fiber, a detector detecting radiation that is backscattered through the fiber, and a processor capable of analyzing the variation of the radiation that is backscattered through the fiber. At least two polarization dependent sensing elements are positioned along the length of optical fiber.11-04-2010
20110205532INSPECTION METHOD FOR INSPECTING CORROSION UNDER INSULATION - The present invention realizes an inspection method for inspecting corrosion under insulation. This inspection method according to the present invention makes it possible to inspect corrosion easily and economically in piping furnished with heat insulators. The inspection method is an inspection method for inspecting corrosion under insulation, in piping to which an heat insulator is provided, and includes providing a fiber optical Doppler sensor to the piping; and inspecting the corrosion in the piping by using the fiber optical Doppler sensor.08-25-2011
20080239295OPTICAL POWER MONITORING WITH ROBOTICALLY MOVED MACRO-BENDING - A method may include bending a first optical fiber of a plurality of optical fibers; measuring light leaked from the first optical fiber with a photo detector; robotically moving the photo detector to a second optical fiber of the plurality of optical fibers; bending the second optical fiber; and measuring light leaked from the second other optical fiber with the photo detector.10-02-2008
20110141458Coated Optical Fiber Identifying Apparatus and Coated Optical Fiber Identifying Method - A coated optical fiber identifying apparatus is provided, which can realize coated optical fiber identification for a single mode optical fiber with holes. The coated optical fiber identifying apparatus comprises a grating forming tool 06-16-2011
20110141457OPTICAL TIME-DOMAIN REFLECTOMETER - A optical time domain reflectometer (OTDR) which sends and receives pulses for multiple frequencies down a fiber under testing (FUT). These frequencies can include frequencies for testing a live FUT and frequencies for testing a dark FUT. The pulses of the various frequencies are sent and received through a single optical connection with the FUT. The number of connections necessary to test the fiber is thus reduced. The OTDR may also include a built in passive optical network (PON) power meter, which measures the power level of the fiber over the same single optical connection.06-16-2011
20100271622Optical time domain reflectometer and method for testing optical fiber using optical pulse - When a measurement position is specified by a marker during real time measurement, a marker level acquisition unit acquires a waveform level from waveform data stored in a waveform memory. A level comparison unit judges whether the waveform level acquired by the maker level acquisition unit is within an effective measurement level range set in accordance with a currently selected attenuator (ATT) value. If the level comparison unit judges that the waveform level is out of the effective measurement level range, an ATT value modification unit modifies the ATT value to a new ATT value so that the waveform level is contained in the corresponding effective measurement level range. According to the new ATT value, a control performs measurement of an optical fiber to be measured so that a waveform can be observed with a preferable SN ratio above a predetermined value according to the measured waveform displayed on a screen of a display unit.10-28-2010
20080304051Inspecting end surfaces of fiber optic connectors - A system for inspecting the end faces of fiber optic connectors includes a fixture holding a plurality of fiber optic connectors. The system also includes an inspection device configured to inspect end faces of each of the fiber optic connectors, the inspection device including a movement device to which the fixture is coupled, the movement device being configured to move the inspection device relative to the fixture to allow all of the end faces to be inspected. The system also includes a computer system connected to the inspection device, the computer system being programmed to control the inspection device, display inspection data from the inspection device, and store the inspection data.12-11-2008
20120140207FIBER OPTIC PORT SIGNATURE APPLICATOR - An apparatus for illuminating optical fibers, said apparatus includes a housing having a face; fiber ports disposed on said face, each of said fiber ports being configured to engage a connector on an optical fiber; port lamps, each being disposed to provide light through a corresponding one of said fiber ports; and a control system configured to cause said port lamps to provide light according to corresponding port signatures, said port signatures being distinct from each other.06-07-2012
20080278711Distributed Backscattering - The present invention relates to a method for detecting or inferring a physical disturbances on a communications link, in particular by using distributed backscattering. The method includes the steps of: transmitting test signals onto a link; receiving test signals returned from a remote portion of the link; performing a function on the returned test signals; and in dependence on at least one characteristic of the combination signal, inferring the presence of a disturbance. The test signal are returned by a process Rayleigh backscattering along the fibre, so existing fibre installations can be used without requiring a mirror to be specifically introduced.11-13-2008
20080239296OPTICAL FIBER INSPECTION TOOL - An optical fiber inspection device includes a housing, wherein the housing defines an opening disposed on an end portion. A lens is disposed within the housing, wherein the lens and the opening define an axis of viewing. A fiber position assembly is mounted to the housing. The fiber position assembly includes a tube having a first axial end portion and a second axial end portion. An inner diameter of the first axial end portion is larger than an inner diameter of the second axial end portion. The inner diameters of the first and second axial end portions of the tube define an inner passage, wherein a longitudinal axis of the inner passage is about perpendicular to the axis of viewing.10-02-2008
20110205531WAVELENGTH DISPERSION MEASUREMENT METHOD AND DEVICE AND OPTICAL TRANSMISSION SYSTEM - A wavelength dispersion measurement method includes generating a plurality of test lights in the first terminal, the wavelengths of which are different from a wavelength of a signal light, multiplexing each test light with the signal light and outputting the multiplexed light to the first transmission path, reconverting each electrical signal after converting each beam into electrical signals, multiplexing each test light with the signal light and outputting the multiplexed light to the second transmission path, reconverting each electrical signal after converting each test light into electrical signals, multiplexing each test light with the signal light and outputting the multiplexed light to the first transmission path, measuring times for each test light to be propagated up to a specified number of go-around, and measuring a change of a wavelength dispersion amount in the paths based on a difference between the measured propagation times of each wavelength.08-25-2011
20080285017Fiber Damage Detection and Protection Device - A medical laser system and related methods of monitoring optical fibers to determine if an optical fiber cap on the optical fiber is in imminent danger of failure. The laser system includes a photodetector for converting returned light from the optical fiber cap to an electronic signal for comparison to a trigger threshold value known to be indicative imminent fiber cap failure. The returned light can be the main laser treatment wavelength, an auxiliary wavelength such as an aiming beam or infrared wavelengths generated by a temperature of the optical fiber cap. In the event the electronic signal reaches the trigger threshold value, the laser system can be temporarily shut-off or the power output can be reduced.11-20-2008
20090185170Sensor cable and multiplexed telemetry system for seismic cables having redundant/reversible optical connections - An optical sensor cable includes at least one light source fiber extending substantially the entire length of the cable. A plurality of optical sensors are functionally coupled at an input thereof to the at least one light source fiber. At least one signal return fiber extends substantially along the entire length of the cable and is functionally coupled to an output of each of the optical sensors. The at least one source light fiber and the at least one signal return fiber are configured to be coupled at either end thereof to a respective one of a light source and a photodetection device.07-23-2009
20090185171Measuring modal content of multi-moded fibers - The output modal content of optical fibers that contain more than one spatial mode may be analyzed and quantified by measuring interference between co-propagating modes in the optical fiber. By spatially resolving the interference, an image of the spatial beat pattern between two modes may be constructed, thereby providing information about the modes supported by the optical fiber.07-23-2009
20090257048OPTICAL FIBER INSPECTION DEVICE AND METHOD THEREOF - The present invention provides an optical fiber inspection device. The optical fiber inspection device is used to inspect an optical fiber. The optical fiber has a first termination and a second termination. The optical fiber inspection device includes a light emitter and an engagement portion. The first termination of the optical fiber can be detachably connected to the engagement portion so as to make the optical fiber to be coupled to the light emitted by the light emitter.10-15-2009
20090079967METHOD FOR MAPPING OF DISPERSION AND OTHER OPTICAL PROPERTIES OF OPTICAL WAVEGUIDES - A method is provided for measurement of dispersion or other optical and mechanical properties within a waveguide by inducing four-photon mixing at different locations within the waveguide by timing a pump signal to counter-collide with and abruptly amplify or attenuate one or both of a probe pulse and a signal pulse at each location. The measurement of the components of the resulting mixing signal created by each collision is used to calculate dispersion defined by the location at which the collision occurred. By combining the measurements from all of the locations, a spatial map of dispersion or other optical or mechanical properties within the waveguide can be generated.03-26-2009
20090097015MEASURING A CHARACTERISTIC OF A MULTIMODE OPTICAL FIBER - To measure a characteristic of a multimode optical fiber, a light pulse source produces a light pulse for transmission into the multimode optical fiber. A spatial filter passes a portion of Brillouin backscattered light from the multimode optical fiber that is responsive to the light pulse. Optical detection equipment detects the portion of the Brillouin backscattered light passed by the spatial filter.04-16-2009
20090185172Optical Inspection of Optical Specimens Supported by a Work Holder - An optical inspection system includes an optical inspection device and an interface. The optical inspection device houses optical imaging components that acquire microscope visual images and acquire interference fringe images of a plurality of optical specimens along an optical path. The optical path is located along an optical axis of the optical inspection device. The interface is coupled to the optical inspection device and is configured to removably engage a polishing work holder that supports the plurality of optical specimens. The interface allows an optical specimen axis of each of the plurality of optical specimens and the optical axis of the optical inspection device to be aligned.07-23-2009
20110228259OPTICAL FIBER ALIGNMENT MEASUREMENT METHOD AND APPARATUS - A measurement system comprising an analog position sensitive device is provided that can measure the XY position of a plurality of light beams at very high resolution. In accordance with one exemplary associated method, a connector bearing one or more optical fibers is fixedly positioned before a position sensing detector so that light emanating from the ends of the optical fibers will strike the position sensing detector. A light beam is passed through at least one opening in the connector, such as a guide pin hole onto the detecting surface of the PSD to establish the position of the connector. Next, each optical fiber in the connector is individually illuminated sequentially so that the light emanating from the fiber falls on the position sensing detector. The locations of all of these light beams striking the PSD are compared to position of the light beam passed through the guide pins and/or to each other to determine if all the fibers are in the correct positions relative to the connector. In addition, it is possible to simultaneously measure the magnitude of the light emanating from each fiber in order to measure the quality of the light transmission through the connector/cable assembly.09-22-2011
20110228260SYSTEM AND METHOD FOR MEASURING AN OPTICAL FIBER - Subject matter disclosed herein relates to measuring optical fibers or measuring devices comprising optical fibers and, in particular, to measuring a variation of refractive index of an optical fiber as a function of position and wavelength.09-22-2011
20080285016Method and device for monitoring an optical amplifier, in particular, an optical fiber amplifier - The invention relates to a method for monitoring an optical amplifier, in particular, an optical fiber amplifier, which has an optical input port (11-20-2008
20080291431APPARATUS FOR MONITORING OPTICAL OBSTRUCTIONS IN AN OPTICAL SPLIT NETWORK AND METHOD THEREOF - An apparatus and method for monitoring optical fiber obstructions in an optical split network is described. The monitoring apparatus comprises a broadband-monitoring light source module, an optical circulator, an optical spectral analyzer, a high-density multi-wavelength ODTR, a controlling computer, a wavelength division multiplexer, a specific wavelength optical filter, a monitoring-waveband reflector, and an optical channel selector. The monitoring apparatus utilizes the specific wavelength optical filter and the monitoring-waveband reflector to collectively construct an optical split network optical fiber obstruction monitoring apparatus for the passive optical network having multiple split routes by filtering, reflecting, and transmitting coming lights, so as to achieve the purposes of locating the obstructed split routes and obstruction locations at the same time.11-27-2008
20090219516Fiber Optic Sensing System, Method of Using Such and Sensor Fiber - An embodiment of a sensor fiber includes: at least two fiber sections with a plurality of holes; and at least one other fiber section situated between said at least two fiber sections, wherein the at least one other fiber sections being without the plurality of holes.09-03-2009
20090244524OPTICAL POWER MONITORING WITH ROBOTICALLY MOVED MACRO-BENDING - A method may include bending a first optical fiber of a plurality of optical fibers; measuring light leaked from the first optical fiber with a photo detector; robotically moving the photo detector to a second optical fiber of the plurality of optical fibers; bending the second optical fiber; and measuring light leaked from the second other optical fiber with the photo detector.10-01-2009
20090244523Optical fiber continuous measurement system - An optical fiber continuous measurement system continually measures at least one optical property along a length of optical fiber. The system includes a rotatable body onto which a reflector is secured. The reflector is optically coupled to an end of the optical fiber, thereby allowing light propagating from the optical fiber to the reflector to be reflected back along the length of the optical fiber toward a measuring device. The property to be measured is acquired as the fiber is wound from one rotatable body to the other. The system is particularly suited for measuring attenuation, including macrobend loss in which case a localized bending mechanism is employed, along the length of the fiber.10-01-2009
20090273775SCATTERED LIGHT MEASURING DEVICE - Measurement of Brillouin scattered light is enabled without an optical receiver having a wide reception band. A scattered light measuring device includes a continuous wave light source that generates continuous wave light, an optical pulse generator that converts the continuous wave light into pulsed light, an optical frequency shifter that receives the continuous wave light, and outputs shifted light including the continuous wave light, first sideband light having an optical frequency higher than an optical frequency F11-05-2009
20100149522METHOD FOR SIMULATING THE TRANSMISSION CHARACTERISTICS OF OPTICAL MULTIMODE WAVEGUIDES - A method for determining optical characteristics of a channel waveguide by way of beam tracking by calculating a profile of sample beams using geometrical optics, in which first the profile is determined as a curve by projection into a two-dimensional area, then a three-dimensional area is determined by the curve, in which area the three-dimensional profile is determined as a substantially two-dimensional problem. A device or installation and a software product which use the method are also provided.06-17-2010
20100177302Phase Based Sensing - A method of interrogating a phase based transducer by providing a pulsed input including two different wavelengths. The different wavelength components can be used to derive a phase change experienced by a synthetic wavelength, and by arranging for the synthetic wavelength to be significantly greater that the component wavelengths, the phase so detected has a reduced sensitivity, and is less susceptible to overscaling effects.07-15-2010
20100177301Characterization Of Non-Linear Optical Materials Using Bragg Coupling - Methods of characterizing non-linear optical materials and fabricating wavelength conversion devices are provided. The method of characterizing non-linear optical materials comprising a periodically poled waveguide layer and at least one waveguide region includes coupling at least one diagnostic laser beam into the waveguide region at one or more input locations positioned on the waveguide layer of the non-linear optical material, and out-coupling the diagnostic laser beam from the waveguide region by applying an electric field to the periodically poled domains at one or more output locations positioned on the waveguide layer. The method also includes measuring an intensity level of the out-coupled beam and determining at least one optical property of the waveguide region based at least in part on the measured intensity level of the out-coupled beam. The characterization method may be implemented into a wavelength conversion fabrication process.07-15-2010
20090115999Optical Cable Testing - Method for testing optical fibre connection quality of an optical drop fibre between a telecommunications system and a subscriber connection box in a multi-dwelling unit or other subscriber premises before connection to other subscriber equipment comprises placing the end of the optical fibre to be tested in a fibre-holding device, which holds the fibre end in alignment with a suitable reflective body; providing an optical signal from the system direction which is reflected by the said reflective body back towards the system; and detecting the reflected signal by a suitable instrument, preferably an optical time domain reflectometer (OTDR), to confirm acceptable signalling quality of the optical path between the system and the fibre end.05-07-2009
20100165328APPARATUS AND METHOD FOR MEASURING CHROMATIC DISPERSION - Highly accurate measurement of chromatic dispersions of a device under test that is an optical component is enabled with a simple structure comprising: propagating pump light having a wavelength λ07-01-2010
20100165327MEASURING BRILLOUIN BACKSCATTER FROM AN OPTICAL FIBRE USING CHANNELISATION - A method for measuring Brillouin backscattering comprises obtaining a signal representative of backscattered Brillouin light received from a deployed optical fibre, and dividing the signal into a plurality of signal components each having a different frequency hand. Each signal component is delivered to one of a plurality of parallel detection channels, in which the components are detected, and the signal generated by the detection is sampled using an analog-to-digital converter. The samples are then processed to determine one or more properties of the Brillouin spectral line. Detection may be optical, where the backscattered light is dispersed into a plurality of optical frequency components, or electrical, where the backscattered light is first frequency mixed to downconvert the frequency to the microwave regime.07-01-2010
20100188652QUANTUM DOT-MEDIATED OPTICAL FIBER INFORMATION RETRIEVAL SYSTEMS AND METHODS OF USE - The present disclosure relates to a non-invasive and real-time diagnostic analysis concept for an operational single mode optical fiber communication system and methods of using said system. The system comprises an optical fiber capable of being diagnosed non-invasively comprising an optical fiber for conveying a light beam that comprises an optical fiber comprising a first end for receiving the light beam and a second end opposed thereto, a core comprising an inner wall, and a cladding surrounding the core, the optical fiber further comprising at least one uncladded portion comprising a plurality of quantum dots dispersed in a medium, and wherein the quantum dots become activated by evanescent wave coupling resulting from total internal reflection of the light beam contacting the inner wall of the optical fiber core and wherein the activation results in emittance of light from the quantum dots.07-29-2010
20100014072Optical device for monitoring a rotatable shaft with an oriented axis - An optical device for monitoring a rotatable shaft is disclosed. The optical device has an optical waveguide arranged on the rotatable shaft and an optical sensor. The optical device further has a transmitting unit transmit the light signal, a transfer device to transmit the light signal between the transmitting unit and the optical waveguide and an evaluation unit for determining a physical variable from a light signal coming from the optical sensor and transferred by the transfer device, the evaluation unit being associated with the transmitting unit. The transfer device has an optical ‘multimode’ waveguide associated with a coupling device, the waveguide being associated with the transmitting unit and a further optical ‘multimode’ waveguide, with an associated coupling device associated with the optical waveguide and arranged on the rotatable shaft eccentrically to its axis.01-21-2010
20130215417SYSTEM AND METHOD FOR DETERMINING OPTICAL DISTRIBUTION NETWORK CONNECTIVITY - A system and method for determining optical distribution network connectivity. In one embodiment, the system includes: (1) a transceiver configured to monitor at least one parameter and (2) a fiber bending device configured to introduce a bend into a particular fiber, the parameter exhibiting a corresponding attenuation when the bend is introduced and indicating a connectivity of the particular fiber.08-22-2013
20100225900OPTICAL-FIBER-CHARACTERISTIC MEASURING DEVICE AND OPTICAL-FIBER-CHARACTERISTIC MEASURING METHOD - A measurement precision is improved and a measurement range is extended by efficiently suppressing a noise level of integrated unnecessary components from non-correlation positions. Measuring means 09-09-2010
20100238429Method and Apparatus for Acoustic Sensing Using Multiple Optical Pulses - An improved technique for acoustic sensing involves, in one embodiment, launching into a medium, a plurality of groups of pulse-modulated electromagnetic-waves. The frequency of electromagnetic waves in a pulse within a group differs from the frequency of the electromagnetic waves in another pulse within the group. The energy scattered by the medium is detected and, in one embodiment, may be used to determine a characteristic of the environment of the medium. For example, if the medium is a buried optical fiber into which light pulses have been launched in accordance with the invention, the presence of acoustic waves within the region of the buried fiber can be detected09-23-2010
20100238427OPTICAL FIBER FEATURE DISTRIBUTION SENSOR - The present invention relates to an optical fiber characteristic distribution sensor comprising a structure to effectively reduce the measurement errors of position in the temperature distribution measurement etc. The sensor comprises an optical fiber section, part of which is installed in an object to be measured and to which probe light and pumping light are inputted in opposite directions. The optical fiber section includes a marker portion where data relating to the shape of a BGS in the maker has been preliminarily measured in a state where the optical fiber section is installed in a normal state. At the time of calculating the characteristic distribution in the longitudinal direction of the optical fiber section while measuring the data relating to the BGS shape, the errors of the calculated gain occurrence position are corrected, for example, by shifting the scanning range of phase difference between the probe light and the pumping light. The amount of shift of the scanning range of phase difference is given based on a difference value between the phase difference at the time of measurement when the BGS that reflects the gain that has occurred in the marker portion is measured, and the reference phase difference when data relating to the already known shape of the BGS in the marker portion has been preliminarily measured.09-23-2010
20100238428METHOD FOR DETECTING FIBER OPTIC FIBERS AND RIBBONS - A method of identifying or tracing one of a plurality of fiber optic fibers including transmitting a plurality of fiber identification data signals into ends of a plurality of fiber optic fibers, wherein a different data signal is transmitted to each of the plurality of fiber optic fibers; and identifying one of the plurality of fiber optic fibers based on the signal transmitted on the one fiber; wherein the data signals are digital codes.09-23-2010
20100033711METHOD OF MEASURING PHYSICAL QUANTITY OF OBJECT TO BE MEASURED, AND METHOD OF CONTROLLING THE SAME - This invention relates to optical sensing technology to measure and control a physical quantity of an object that exists on or within a microstructure object, utilizing Brillouin scattering decreases. The measurement method prepares an optical waveguide one-, two- or three-dimensionally, on or within a micro-chemical chip, IC chip, or other element, and measures a physical quantity of the object on the basis of a property variation of light attributed to Brillouin scattering occurring in the optical waveguide.02-11-2010
20100302531Method And Apparatus For Fiber Optic Signature Recognition - A method and apparatus is disclosed for use in fiber optic signature recognition to analyze buried optical fiber to identify a non-threat area along a fiber route and to discontinue monitoring for disturbances along that area of the cable route. The technique includes determining the location of the zone of non-threatening disturbances from comparing an optical signal to the representation of a prearranged optical signal identified as friendly. Once a zone of non-threatening disturbances is identified, all subsequent disturbances in that zone are considered friendly. Cable monitoring is discontinued in the identified zone of non-threatening disturbances so as to avoid monitoring fiber cable when permitted workers are in the area.12-02-2010
20090116000FIBER OPTIC SHAPE DETERMINATION SYSTEM - A fiber optic shape determination system having at least one optical fiber for placement within or along an elongated structure. The optical fiber defines an optical path for conveying an optical signal. The optical path manifests an interaction with the optical signal wherein the interaction occurs in a continuous fashion during the propagation of the optical signal along the optical path and produces a measurable response, the response conveying information about strain imparted to the optical fiber and a location along the optical fiber at which the strain occurs. The shape determination system also has a measurement component coupled to the optical fiber to sense the response and for determining the strain applied at different locations along the fiber and for deriving a shape of optic fiber, accordingly.05-07-2009
20090073424FIBER RACK ASSEMBLY AND ASSOCIATED TESTING SYSTEM - A fiber rack assembly is provided. The assembly includes at least one patch panel having adapters configured to couple a first plurality of fibers to a second plurality of fibers and a test system for measuring the optical power lever of the fibers. The test system may include a base and a sensor. The base may define a plurality of test sites. Each test site is configured to support a portion of a fiber. The sensor is movable to one or more test sites and, at each test site, is configured to measure a macro-bending loss at the portion of the fiber supported at the test site as an indication of an optical power level of the fiber. The test system may also have interface panel that includes user inputs and a display.03-19-2009
20090323050OPTICAL PATH MONITORING DEVICE AND OPTICAL PATH MONITORING SYSTEM - An optical path monitoring device according to the present invention includes: a measurement unit which irradiates optical pulses to an optical path as a monitoring target to cause back scattered lights, the measurement unit generating measurement data based on the back scattered lights; and a processing unit which controls operation of the measurement unit, the processing unit acquiring the measurement data from the measurement unit, the processing unit performing an arithmetic processing of the measurement data to identify an abnormal point of the optical path, and after acquiring the measurement data the processing unit sending the measurement unit instructions to start the next measurement.12-31-2009
20100220317Method and Apparatus for Acoustic Sensing Using Multiple Optical Pulses - An improved technique for acoustic sensing involves, in one embodiment, launching into a medium, a plurality of groups of pulse-modulated electromagnetic-waves. The frequency of electromagnetic waves in a pulse within a group differs from the frequency of the electromagnetic waves in another pulse within the group. The energy scattered by the medium is detected and, in one embodiment, the beat signal may be used to determine a characteristic of the environment of the medium. For example, if the medium is a buried optical fiber into which light pulses have been launched in accordance with the invention, the presence of acoustic waves within the region of the buried fiber can be detected09-02-2010
20090109425SYSTEM AND METHOD FOR DETERMINING FIBER CHARACTERISTICS - A system is provided for characterizing optical fibers carrying signal traffic. The system includes a transmitter, a variable optical attenuator (VOA), a receiver, and a computing device. The transmitter propagates an optical test signal along a channel of a fiber pathway. The VOA adjusts the attenuation of the optical test signal from an initial, greater attenuation to a subsequent, lesser attenuation. At the same time, the computing device monitors at least one other channel of the fiber pathway and identifies effects upon the other channel(s) from the optical test signal. The computing device may communicate with the VOA and with other components of the fiber pathway to direct adjustment of the signal strength. A maximum optical test signal strength may thus be achieved that does not negatively affect signal traffic on the other channels, and the fiber pathway may subsequently be tested using the achieved maximum optical test signal strength.04-30-2009
20090109424Polarity checking apparatus for multi-fiber connectors - A polarity checking apparatus for multi-fiber connectors includes a body, a diverging lens attached to the body and a screen attached to the body, wherein the apparatus is configured to determine test and/or determine polarity of the multi-fiber connector. The screen may be translucent or may be opaque in part and rotatable for checking whether a signal is being transmitted on an individual optical fiber position of the multi-fiber connector. The invention is also directed to a method for checking the polarity of an optical assembly.04-30-2009
20100315620Method and Metric for Selecting and Designing Multimode Fiber for Improved Performance - A new metric applicable to the characterization and design of multimode fiber (MMF) is described. The metric is derived from a Differential Mode Delay (DMD) measurement and when used in combination with industry-standard metrics such as Effective Modal Bandwidth (EMB) and DMD, yields a more accurate prediction of MMF channel link performance as measured by Bit Error Rate (BER) testing. The metric can also be used in the design of MMF for improved bandwidth performance. When implemented as a test algorithm in production, it can be used to select, sort, or verify fiber performance. This process can yield a multimode fiber design with a greater performance margin for a given length, and/or a greater length for a given performance margin.12-16-2010
20110001959OPTICAL FIBRE CIRCUIT MONITORING SYSTEM AND MONITORING DEVICE INCLUDED IN THIS SYSTEM - Optical fiber lines of a PON system can be monitored with the remote fiber test system having a practical structure, comprising a branch-type optical fiber line constituting the PON system and test equipment connected to the branch-type optical fiber line on the central office side. The test equipment comprises a light source, an optical splitter, a detecting part, and a control unit. The light source outputs light having an optical coherence function of a comb shape that is formed as a result of the optical frequency being modulated by a modulation signal of period p. The optical splitter receives light output from the light source and splits the light into probe light and reference light. The detecting part detects interference light that occurs from mutual interference between the reference light and reflected light arising while the probe light propagates through the branch-type optical fiber line. And, upon detection of the interference light, the detecting part converts the interference light into an electrical signal. The control unit changes the period p, and on the basis of the period p and the electrical signal output from the detecting part, obtains reflectance distribution along the direction of the probe light propagation in the branch-type optical fiber line.01-06-2011
20110032518DETECTION ASSEMBLY - A detection assembly comprising: a body portion having a slot formed along at least a portion of a length thereof, the slot having a slot opening formed in an outer surface of the body portion, the slot opening being arranged to receive a sensor optical fibre through the slot opening; a sensor optical fibre constrained to lie in said slot and in juxtaposition with a plurality of protrusions; and at least one swell member, the swell member being configured to increase in volume in response to exposure to a target measurand, the detection assembly being arranged whereby an increase in a volume of said swell member causes said sensor optical fibre to be urged against at least one of said plurality of protrusions thereby to cause bending of said sensor optical fibre.02-10-2011
20090066937Method of Measuring the Differential Group Delay of an Optical Fiber Connection - Apparatus for measuring the differential group delay τ03-12-2009
20110109898OPTICAL POSITION AND/OR SHAPE SENSING - An accurate measurement method and apparatus are disclosed for shape sensing with a multi-core fiber. A change in optical length is detected in ones of the cores in the multi-core fiber up to a point on the multi-core fiber. A location and/or a pointing direction are/is determined at the point on the multi-core fiber based on the detected changes in optical length. The accuracy of the determination is better than 0.5% of the optical length of the multi-core fiber up to the point on the multi-core fiber. In a preferred example embodiment, the determining includes determining a shape of at least a portion of the multi-core fiber based on the detected changes in optical length.05-12-2011
20110116080METHOD OF MEASURING OPTICAL LOSS AND APPARATUS FOR MEASURING OPTICAL LOSS - The invention is to provide an optical loss measuring method and an optical loss measuring apparatus capable of efficiently measuring an optical loss occurring to a target for measurement. The other optical loss measurement method comprising the steps of inputting light outputted from a light source to a target for measurement to thereby measure an output level of the target for measurement with the use of an optical power meter, maintaining the output level of the light source at a predetermined fixed value, and finding the optical loss occurring to the target for measurement on the basis of the output level of the light source maintained at the fixed value for use as the reference value.05-19-2011
20100149521Apparatus And Method For Monitoring Extinction Ratio Of Optical Signals - An apparatus for monitoring extinction ratio (ER) of optical signals comprises an optical spectrum analyzing unit, an ER monitoring control unit and an ER monitoring output unit. The optical spectrum analyzing unit measures two peak values corresponding to level one and level zero of optical signals from an optical coupler, and obtains two wavelengths for the two peak values. The ER monitoring output unit outputs the difference of the two wavelengths to the ER monitoring control unit. With a relation formula of the wavelength difference, the ER monitoring control unit estimates an optimal resolution bandwidth for setting up the optical spectrum analyzing unit. As such, the optical spectrum analyzing unit measures two optical powers corresponding to level one and level zero of optical signals. With the two optical powers, the ER monitoring output unit computes an ER value.06-17-2010
20110242525Redundant Optical Fiber System and Method for Remotely Monitoring the Condition of a Pipeline - An optical fiber sensor system and method for monitoring a condition of a linear structure such as a pipeline is provided which is capable of providing continuous monitoring in the event of a break in the sensing optical fiber or fibers. The system includes at least one sensing fiber provided along the length of the linear structure, and first and second interrogation and laser pumping sub-systems disposed at opposite ends of the sensing fiber, each of which includes a reflectometer. The reflectometer of the first interrogation and laser pumping sub-system is connected to one end of the sensing fiber. The reflectometer of the second interrogation and laser pumping sub-system is coupled to either (i) an end of a second sensing fiber provided along the length of the linear structure which is opposite from the one end of the first sensing fiber, or (ii) the opposite end of the first sensing fiber. Before any break of the sensing fiber or fibers occurs, each reflectometer redundantly monitors the condition of the linear structure over its entire length. After any such break occurs, each reflectometer will continue to receive signals up to the point of the break from opposite ends of the structure.10-06-2011
20110085159FIBER OPTIC END FACE INSPECTION PROBE AND SYSTEM - A fiber optic end face inspection probe that includes a power control, an image control; a probe adaptor and probe end extending from a housing; an electronics module that includes a microprocessor, a memory and an optional wireless transmitter; and an autofocus camera system that includes a lens, a motor adapted to move the lens in order to focus the image through the lens, and an image sensor that is adapted to accept the image passing through the lens and transmit this image to the electronics module.04-14-2011
20110085158APPARATUS FOR OPTICAL FIBER TESTING - An apparatus for fiber optic testing is presented. In one exemplary embodiment, the apparatus may comprise a plurality of fiber optic connectors for coupling to one or more fiber optic cables, one or more photodetectors operatively connected to the plurality of fiber optic connectors, an optical power measurement module operatively connected to the one or more photodetectors, a display for displaying information received from the optical power measurement module, and one or more user controls for accepting user input.04-14-2011
20100014071FREQUENCY-SCANNED OPTICAL TIME DOMAIN REFLECTOMETRY - A frequency-scanned optical time domain reflectometry technique includes launching a plurality of interrogating pulses into an optical fiber at a plurality of optical carrier frequencies. A Rayleigh backscatter signal is detected for each interrogating pulse as a function of time between the launching of the pulse and the detection of the backscatter signal. The time resolved Rayleigh backscatter signal at each optical frequency may then be examined to determine a distribution of a physical parameter along the length of the optical fiber.01-21-2010
20100128258APPARATUS FOR INTERROGATING FIBRE BRAGG GRATINGS - Apparatus for interrogating an optical fibre comprising a plurality of fibre Bragg gratings each having a resonant wavelength in a different discrete wavelength band. The apparatus comprises a delay arrangement interposed in use in an optical path for light supplied to and/or reflected from the fibre Bragg gratings. The delay arrangement is configured to apply a different time delay to light in each of the discrete wavelength bands, whereby the light reflected from each of the fibre Bragg gratings is received at an interrogator port of the apparatus in a different discrete time interval.05-27-2010
20090027659Measuring system for measuring a physical parameter influencing a sensor element - A measuring system is disclosed for measuring a physical parameter influencing a sensor element adapted to be connected to a measuring and control unit. The system comprises an information-carrying unit comprising a memory and being adapted to be associated with said measuring and control unit, said information-carrying unit being coordinated with the sensor element by containing stored information regarding the properties of the measuring system and the sensor element during measurements, and said information-carrying unit being supported by a connector for connecting said sensor element with said measuring and control unit.01-29-2009
20110075129MULTI-PATH INTERFERENCE PERFORMANCE TESTING - A system comprises a laser configured to produce a laser beam and to be optically coupled to a first end of an optical fiber of a device under test, a phase mask configured to selectively pass one of a plurality of modes and to be optically coupled to a second end of the optical fiber of the device under test, and a detector optically coupled to the phase mask and configured to determine an intensity of the beam received over the optical connection from the phase mask. The system may further comprise a data analyzer connected to the detector and in selective communication with the phase mask, wherein the data analyzer is configured to set the phase mask to selectively pass a fundamental mode, set the phase mask to selectively pass a higher order mode, receive intensity data from the detector, and determine a performance in the form of at least one performance factor for said device under test according to said intensity data.03-31-2011
20110075130Selection of a Signal Input from an Optical Fiber Member - Methods and systems for analyzing optical parameters of a selected optical fiber member are disclosed. A signal input from an optical fiber member may be selected by instructing a corresponding optical separation device. The output from the corresponding optical separation device may be combined with the outputs of other optical separation devices using an optical coupler. A measurement circuit may measure the optical parameter from the output. Proper operation of an optical separation device may be validated by a monitoring circuit. The monitoring circuit may provide an indication to a user or may be processed by a diagnostic processor. A processing circuit may select one of the optical separation devices in order to measure the optical parameter for a corresponding optical fiber member and consequently may instruct an adjustment circuit to cause the selected optical fiber member to conform to a desired value of the optical ameter.03-31-2011
20120120389Monitoring Fibers in an Optical Ribbon Cable - A system for monitoring an optical cable includes a cable having monitor fibers solely for monitoring cable status. The monitor fibers may be fibers selected from optical fibers having a higher mechanical sensitivity to mechanical stresses than other fibers in the cable, which may attenuate earlier than the other fibers in the event of cable degradation. The monitor fibers may be in communication with a transmitter and receiver, for transmitting and receiving a monitor signal. The receiver may be in communication with an alarm, the alarm being operative to send an alert signal when an increased attenuation is detected from the monitor signal, the increased attenuation being indicative of the status of the optical cable.05-17-2012
20120200846OPTICAL TIME DOMAIN REFLECTOMETER USER INTERFACE - An OTDR user interface including a setup menu that includes a plurality of user settings capable of displaying information corresponding to a test, wherein each of the plurality of user settings is capable of displaying information corresponding to a different aspect of the test, and wherein one of the plurality of user settings is a dynamic range setting capable of displaying a dynamic range of the test.08-09-2012
20110037972INTERFEROMETER EMPLOYING A MULTI-WAVEGUIDE OPTICAL LOOP PATH AND FIBER OPTIC ROTATION RATE SENSOR EMPLOYING SAME - An interferometer employed, in part, as a Sagnac interferometer or fiber optic gyro (FOG) includes a light source (02-17-2011
20100302530DUST CAP ASSEMBLY FOR SEALING AN OPTICAL FIBER FERRULE AND METHODS THEREOF - A dust cap assembly comprising a sleeve and a sealant that seals a fiber optic ferrule from contaminants and, upon removal, provides remedial cleaning of any foreign matter present on the ferrule when the dust cap assembly was initially installed. Further, the sealant has advantageous mechanical and optical properties such that the interaction of the sealant, the sleeve and the fiber optic ferrule defines a convex shape. The dust cap assembly may therefore function as a terminator that reduces back reflection during testing.12-02-2010
20100097601OPTICAL FIBER TRANSMISSION LINE MEASUREMENT APPARATUS AND SYSTEM - A measurement apparatus for measuring an optical fiber transmission line used to connect to an opposite apparatus, the measurement apparatus includes a transmission part for generating a measurement packet used for measuring a length of a first and second optical fiber transmission line, and transmitting the measurement packet to the opposite apparatus through the first optical fiber transmission line, a reception part for detecting the measurement packet returned from the opposite apparatus that perform a loopback processing of the measurement packet through the second optical fiber transmission line, a calculation part for calculating a packet transmission time which is a processing time required from the generation of the measurement packet to the detection of the measurement packet, and a measurement part for performing a measurement control of the length of the first and second optical fiber transmission line based on the packet transmission time calculated by the calculation part.04-22-2010
20100097600Fiber Optic Optical Subassembly Configuration - A fiber optic optical subassembly configuration for monitoring fibers. The configuration includes a hollow container, a laser for emitting laser signals towards the fibers being monitored, a photodetector for monitoring reflected laser signals from the fibers being monitored and for monitoring laser output power, a beam splitter and an optical fiber. The optical fiber, disposed within the hollow container, has a coated end face surface, the laser emits signals toward and through the beam splitter, whereby a portion of the laser signal illuminates the photodetector, and another portion traverses down the optical fiber toward the coated end face surface and reflects off the coated end face surface toward the fibers that are being monitored, and reflects back from the fibers being monitored to the photodetector such that faults on the fibers can be detected.04-22-2010
20130194566FIELD TESTER FOR TOPOLOGIES UTILIZING ARRAY CONNECTORS AND MULTI-WAVELENGTH FIELD TESTER FOR TOPOLOGIES UTILIZING ARRAY CONNECTORS - A test instrument comprises plural first optical signal sources at a first wavelength and a distributor coupled to the plural first optical signal sources to supply the signals produced to a multi-fiber test port. Additional second wavelength signal sources may be provided, and a second test instrument for use at a second end of the link under test may be provided, to effect testing of the optical link.08-01-2013
20080246957Hybrid fiber optic transceiver optical subassembly - The subassembly includes a laser for emitting signals towards fibers to be monitored, a first photodetector for monitoring reflected laser signals from the fibers, a second photodetector for monitoring laser output power, and an optical fiber. The optical fiber has an angled fiber facet. The laser emits signals toward and through the angled fiber facet, whereby a portion of the laser signal illuminates the second photodetector, and another portion illuminates the fibers that are being monitored and reflects back to the first photodetector such that faults on the fibers can be detected.10-09-2008
20080204726APPARATUS FOR CHARACTERIZING FIBER BRAGG GRATINGS - An apparatus characterizes at least one fiber Bragg grating. The apparatus includes a laser pulse source, an optical spectrum analyzer, and multiple optical paths. A first optical path includes a pulse stretcher and an attenuator. A second optical path optically coupled to the first optical path includes a mirror. A third optical path optically coupled to the first optical path includes a first fiber Bragg grating. A fourth optical path is optically coupled to the second optical path, the third optical path, and the optical spectrum analyzer. A fifth optical path optically coupled to the laser pulse source and the optical spectrum analyzer includes a delay line.08-28-2008
20110051126Method for Increasing Accuracy of Measurement of Mean Polarization Mode Dispersion - A method of determining a mean square differential group delay associated with a length of optical fiber. The method including measuring a polarization mode dispersion vector as a function of frequency, using a frequency-domain polarization mode dispersion measurement apparatus. The method also including calculating a second-order polarization mode dispersion vector as a function of frequency by calculating a derivative of the polarization mode dispersion vector with respect to frequency. Also, calculating the mean of the magnitude of the second-order polarization mode dispersion vector to obtain a first result. Further, multiplying a proportionality coefficient by the first result to calculate the mean square differential group delay.03-03-2011
20100283997Test device, system and method for optic fiber cable connections - The specification discloses test device, system, and method for optic fiber cable connections. A light-emitting element emits a light signal, and a light-receiving element receives the light signal. When no electrical signal is received within a predetermined time, the central processing unit generates a random delay time for the light-emitting element to wait for the random delay time before re-emitting the light signal for a connection test. The invention solves the problem of difficulty in locating wrong corrections of optic fiber cables. It can quickly check whether the optic fiber cables are correctly connected.11-11-2010
20110075128BIREFRINGENT FIBERS ORIENTATION MEASUREMENT - Methods and apparatus to determine the orientation of randomly arranged birefringent fibers are disclosed. One method comprises emitting light, creating N03-31-2011
20100253936MEASUREMENT OF NONLINEAR EFFECTS OF AN OPTICAL PATH - A network device may include a receiver to receive optical pulses from an optical path, wherein the optical pulses include a plurality of intensities and represent data. The network device may also include a processor to determine a rate of bit errors introduced during propagation of the optical pulses through the optical path and to determine a parameter indicative of nonlinear effects of the optical path based on the rate of bit errors and the plurality of intensities.10-07-2010
20090207402Method for Detecting a Core of an Optical Fiber and Method and Apparatus for Connecting Optical Fibers - A method for connecting optical fibers comprises determining the position of the core of a fiber. In response to heating, the optical fibers emit light of which an image can be recorded. The position of the core and/or the eccentricity of the fiber is determined from the recorded image. The core position and/or eccentricity can be used to align fibers for a subsequent fusion splicing operation. The process is suitable for, for example, bend optimized optical fibers.08-20-2009
20090207401APPARATUS FOR CHARACTERIZING FIBER BRAGG GRATINGS - An apparatus characterizes at least one fiber Bragg grating. The apparatus includes a laser pulse source, an optical spectrum analyzer, and multiple optical paths. A first optical path includes a pulse stretcher and an attenuator. A second optical path optically coupled to the first optical path includes a mirror. A third optical path optically coupled to the first optical path includes a first fiber Bragg grating. A fourth optical path is optically coupled to the second optical path, the third optical path, and the optical spectrum analyzer. A fifth optical path optically coupled to the laser pulse source and the optical spectrum analyzer includes a delay line.08-20-2009
20110255077Distributed Optical Fibre Sensor - A distributed optical fibre sensor is described. The sensor uses a sensor fibre (10-20-2011
20100134788Method for Increasing Accuracy of Measurement of Mean Polarization Mode Dispersion - The present invention provides a method of determining a mean differential group delay associated with a length of optical fiber. The method including measuring a magnitude of a polarization mode dispersion vector as a function of frequency, using a frequency-domain polarization mode dispersion measurement apparatus, where the magnitude of the polarization mode dispersion vector is a scalar differential group delay. Also the method calculates a frequency derivative of the scalar differential group delay from the magnitude of the polarization mode dispersion vector to obtain a first result. The frequency derivative of the scalar differential group delay being a scalar second-order polarization mode dispersion function. The method further multiplies a proportionality coefficient B06-03-2010
20110096323OPTICAL-FIBER CONNECTOR WITH ACCURATE MEASURING REFERENCE - An optical-fiber connector includes an insulative main body having a pair of optical components extending forwardly therefrom. Each optical component defines at least one lens and a guiding post located at outside of the lens. Each guiding post defines a through hole extend through the guiding post and the main body in a front-to-back direction and fulfilled with the air for transmitting a test light. The test light from the through hole of the guiding post acts as an accurate measuring reference of the true position between the lens and the fiber because of having no displacement of the light path through a through hole.04-28-2011
20100066997Methods and devices for testing an optical fiber - Methods are provided including the steps of transmitting a beam of light through a length of the optical fiber, reflecting a transmitted beam of light at a second end of an optical fiber such that a highly reflective event reflects the light beam, and identifying the second end of the optical fiber by monitoring at least the reflected light beam. In further examples, devices are provided for removable mounting with respect to an end of an optical connector. Each device comprises a reflective surface configured to provide a highly reflective event to reflect a beam of light back through an optical fiber supported by the optical connector. In further examples, optical assemblies are provided that include an optical connector with an optical fiber and a device with a reflective surface configured to provide a highly reflective event.03-18-2010
20080291432SYSTEM AND METHOD FOR MONITORING THE COUPLING EFFICIENCY OF A FIBER-OPTIC SURGICAL SYSTEM - Embodiments of the present invention provide a system and method for allowing a user to monitor the coupling efficiency of a fiber-optic surgical system. An embodiment of the present invention can include: an energy source to produce a beam of light, a fiber in optical communication with the energy source and a set of light sensors positioned to detect scattered light from the beam of light scattered proximate to the entrance of the fiber.11-27-2008
20110149272Methods and Apparatus for Measuring Insertion Loss in a Fiber Optic Cable Connection - A method and apparatus for measuring the insertion loss of a fiber optic connection is provided. The invention generally comprises a light source providing light to a test connector which contains a juncture of two fiber optic cables. The test connector has one or more opaque portions surrounding the fiber optic juncture. A pyrometer or other heat detection means is then used to measure any temperature increase as a result of light scattered into the opaque portions of the test connector.06-23-2011
20110149271Enhanced Optical Time-Domain Reflectometer Resolution Using Depolarization of Light Source - Described herein are systems and methods for enhancing the resolution of an optical time-domain reflectometer (“OTDR”). One embodiment of the disclosure of this application is related to a device, comprising an optical measuring component collecting a first set of measurement data from a forward trace along an optical fiber with the optical measuring device using depolarized light, and a processing component calculating loss along the length of fiber. The optical measuring device further collects a second set of measurement data from a backward trace along the optical fiber with the optical measuring device using depolarized light.06-23-2011
20110149270Enhanced OTDR Sensitivity by Utilizing Mode-Field Diameter Measurements - Described herein are systems and methods for enhancing sensitivity of an optical time-domain reflectometer (“OTDR”) using bi-directional analysis techniques. One embodiment of the disclosure of this application is related to a computer readable storage medium including a set of instructions that are executable by a processor. The set of instructions being operable to collect a first set of measurement data at a first resolution to provide a relative backscatter of the fiber, collect a second set of measurement data taken at a second resolution to calculate loss along the length of fiber, and combine the first set of measurement data with the second set of measurement data to calculate the loss along the fiber at the first resolution.06-23-2011
20100026992SYSTEM AND METHOD FOR BUILT-IN TESTING OF A FIBER OPTIC TRANSCEIVER - Systems and methods for testing an optical fiber involving: a laser in optical communication with an end of the fiber, the laser configured to direct a test beam of radiation into an end of the fiber; a detector in optical communication with the end of the fiber, the detector configured to detect a reflection of the test beam by a defect within the fiber; and a timer connected to the laser and to the detector, wherein the timer is capable of measuring a delay between an emission of the test beam of radiation by the laser and a detection of the emitted test beam by the detector, the delay being indicative of the position of the defect within the fiber.02-04-2010
20110032517OPTICAL FIBER CHARACTERISTIC MEASURING DEVICE AND METHOD - An optical fiber characteristic measuring device of the present invention includes: a light source which emits laser light modulated at a predetermined modulation frequency; an incident section which causes the laser light from the light source as continuous light and pulsed light to be incident from one end and other end of an optical fiber respectively; a timing adjuster which causes light emitted from the optical fiber to pass therethrough at a predetermined timing; and a light detector which detects the light which passes through the timing adjuster, and measures a characteristic of the optical fiber by using a detection result of the light detector, and the device includes: a synchronous detector which synchronously detects the detection result of the light detector by using a synchronization signal having a predetermined frequency; and a frequency setter which changes the frequency of the synchronization signal in a case where the modulation frequency at the light source is an integer multiple of the frequency of the synchronous signal.02-10-2011
20110043790LIGHT PULSE GENERATOR AND OPTICAL TIME DOMAIN REFLECTOMETER USING THE SAME - There is provided a light pulse generator. The light pulse generator includes: a laser diode; a voltage source that provides a bias voltage to the laser diode; a switching element that causes the laser diode to emit a light pulse by directly modulating the laser diode; and an auxiliary current circuit which starts to charge immediately after turn-on of the switching element and which starts to discharge after a forward current flows through the laser diode so as to provide a auxiliary current to the laser diode in the same direction as the forward current.02-24-2011
20120307235OPTICAL CABLE MEASUREMENT EQUIPMENT WITH FUNCTION OF OPERATING GUIDANCE - An optical cable measurement equipment with function of operating guidance includes a circuit board, a central processing unit (CPU), a measurement module, an output interface, an input interface and a power supply module. The CPU is arranged on and electrically connected with the circuit board. The measurement module is configured for implementing functions of optical cable measurement. The output interface is configured for outputting a prompting signal to guide a user to operate the optical cable measurement equipment. The input interface is configured for receiving operations of the user and generating a feedback signal. The CPU generates operating instruction according to the feedback signal. The power supply module is configured for providing required power of the optical cable measurement equipment. The above-mentioned optical cable measurement equipment is able to provide operating guidance by prompting signal of sound/voice, light, text or pattern to guide users to complete operating flow.12-06-2012
20100128257METHOD FOR MEASURING POLARIZATION CHARACTERISTICS OF OPTICAL FIBER, DRAWING METHOD, METHOD FOR IDENTIFYING ABNORMAL POINT, AND METHOD FOR CONFIGURING OPTICAL FIBER TRANSMISSION LINE - The present invention relates to a measuring method, etc., comprising a structure for accurately measuring optical characteristics such as PMD of an optical fiber. The measuring method is a technique for measuring polarization characteristic distributions along the longitudinal direction of the optical fiber as a measuring object by using BOCDA, and by propagating probe light and pumping light opposite in the optical fiber, BGS is generated at a plurality of respective measurement positions. Then, based on Brillouin gain fluctuations at the respective measurement positions, polarization characteristic distributions are calculated.05-27-2010
20080309925System and Method for Monitoring an Optical Communication System - A monitoring system and method may be used to monitor an optical communication system. A monitoring system and method may be used to derive loop gain data sets from optical time domain reflectometry (OTDR) or coherent optical time domain reflectometry (COTDR) data. A monitoring system and method may also use differential monitoring techniques to obtain data representing gain tilt in the transmission system and to locate an anomalous loss or gain in the transmission system.12-18-2008
20120038909OPTICAL PULSE TEST APPARATUS AND METHOD OF TESTING OPTICAL TRANSMISSION PATH - [Task] To enable a test of an optical transmission path using an MMF with a simple configuration in an optical pulse test apparatus which is used for an SFM for long-distance transmission.02-16-2012
20120099099Method for Designing and Selecting Optical Fiber for use with a Transmitter Optical Subassembly - A method for compensating for both material or chromatic dispersion and modal dispersion effects in a multimode fiber transmission system is provided. The method includes, but is not limited to measuring a fiber-coupled spatial spectral distribution of the multimode fiber laser transmitter connected with a reference multimode fiber optical cable and determining the amount of chromatic dispersion and modal dispersion present in the reference multimode fiber optic cable. The method also includes, but is not limited to, designing an improved multimode fiber optic cable which compensates for at least a portion of the chromatic dispersion and modal dispersion present in the reference multimode fiber optic cable resulting from the transmitter's fiber-coupled spatial spectral distribution.04-26-2012
20110063605METHOD OF TESTING A PASSIVE OPTICAL ELEMENT - A passive optical element defining an optical propagation path is tested by coupling a first end of a first buffer fiber to an input of the optical propagation path and coupling a second end of the buffer fiber to an optical time domain reflectometer (OTDR). The OTDR launches optical radiation into the first buffer fiber via the second end thereof, measures power level of return light received at the OTDR via the second end of the first buffer fiber, and creates a first OTDR signature representing power level of return light as a function of distance from the second end of the first buffer fiber. The OTDR selects a first marker point by applying data reduction to at least a portion of a segment of the first OTDR signature corresponding to the first buffer fiber, selects a second marker point downstream of the input of the optical propagation path, and calculates a first power difference value as difference between a power level at the first marker point and a power level at the second marker point.03-17-2011
20110317151MEDIA STRESS ANALYSIS SYSTEM AND METHOD - A method and system for determining stress associated with a communication device, e.g., an optical fiber, and associated structures are disclosed. An exemplary method includes transmitting an initiated signal through a communication device, and comparing a reflected signal reflected by the communication device with the initiated signal. The method may further include determining a stress associated with the device from at least the comparison of the initiated signal and the reflected signal.12-29-2011
20120044483METHOD AND APPARATUS FOR MEASURING EXIT ANGLE OF OPTICAL FIBER - An object is to improve the repeatability of measurements of an exit angle of an optical fiber, facilitate a measuring operation, and accurately measure exit angles of many optical fibers in a short time. A measurement end of an optical fiber is passed through a through hole of a holder. While the optical fiber is being rotated by using the through hole as a guide, output light from the measurement end is received by light receiving means. Coordinates of at least three points on a locus circle of the output light are measured to calculate a size of the locus circle. On the basis of the calculated size, the exit angle of the optical fiber is measured. The through hole of the holder has a small-diameter portion on a front side and a large-diameter portion on a rear side. An inside diameter of the small-diameter portion is 0.1 μm to 1.0 μm larger than a diameter of a bare fiber, and an inside diameter of the large-diameter portion is larger than a diameter of a sheathed fiber. The object described above is thus achieved.02-23-2012
20120176607Testing of Optical Cable Using Optical Time Domain Reflectometry - Methods for testing optical equipment are disclosed. One method includes connecting an optical time domain reflectometer to optical equipment to be tested, the optical equipment including at least one optical connector. The method includes injecting an optical signal onto the optical equipment from the optical time domain reflectometer, and observing an amount of reflected light at the connector. Based on the observed reflected light, an amount of loss attributable to the optical equipment is determined.07-12-2012
20120044482MEASURING METHOD OF HOLE DIAMETER, HOLE POSITION, HOLE SURFACE ROUGHNESS, OR BENDING LOSS OF HOLEY OPTICAL FIBER, MANUFACTURING METHOD OF HOLEY OPTICAL FIBER, AND TEST METHOD OF OPTICAL LINE OF HOLEY OPTICAL FIBER - A measuring method of a hole diameter of a holey optical fiber includes calculating an arithmetical mean value I(x) from two backscattering light intensities at a position x of two backscattering light waveforms of the holey optical fiber, in which the two backscattering light waveforms are obtained by OTDR measurement; and obtaining the hole diameter at the position x, based on a correlation between an arithmetical mean value I(x) and an hole diameter of the holey optical fiber that is obtained in advance.02-23-2012
20120044481SEMICONDUCTOR LIGHT EMITTING ELEMENT, DRIVING METHOD OF SEMICONDUCTOR LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND OPTICAL PULSE TESTER USING LIGHT EMITTING DEVICE - [Task] To provide a semiconductor light emitting element capable of emitting light beams with wavelengths in a plurality of wavelength ranges with a high optical output, a driving method of a semiconductor light emitting element capable of making a semiconductor light emitting element that can emit light beams with wavelengths in a plurality of wavelength ranges operate with a high optical output, a light emitting device, and a small and high-performance optical pulse tester using the light emitting device.02-23-2012
20120013894OPTICAL FIBRE NETWORK TEST DEVICE - An optical fibre network test device comprising an actuator that is manually operable, without manual handling of optical fibres, firstly to direct light from a light path of the optical network so that test equipment associated with the network can be operated to test the quality of the said light path, and secondly to return the light path to its previous state after completion of the test.01-19-2012
20120013893COMMUNICATION THROUGH AN ENCLOSURE OF A LINE - A communication system can include a transmitter which transmits a signal, and at least one sensing device which receives the signal, the sensing device including a line contained in an enclosure, and the signal being detected by the line through a material of the enclosure. A sensing system can include at least one sensor which senses a parameter, at least one sensing device which receives an indication of the parameter, the sensing device including a line contained in an enclosure, and a transmitter which transmits the indication of the parameter to the line through a material of the enclosure. Another sensing system can include an object which displaces in a subterranean well. At least one sensing device can receive a signal from the object. The sensing device can include a line contained in an enclosure, and the signal can be detected by the line through a material of the enclosure.01-19-2012
20100225901PON TESTER - A high resolution optical fiber length meter, live fiber detector, and reflectance tester (instrument) for single mode applications using a low power, long wavelength laser for generating wide and narrow optical pulses that are launched into a single mode fiber under test. The laser output fiber pigtail is fusion spliced to a singlemode coupler whose output is coupled to the instrument bulkhead connector. A PIN photodiode is fusion spliced to the singlemode coupler to receive the reflected light from the fiber under test. The high resolution hand-held instrument is useful in examining singlemode passive optical networks (PON).09-09-2010
20120206718Stimulated Brillouin System with Multiple FBG's - A Brillouin system for monitoring both temperature and strain includes either a single or double-ended fiber with multiple fiber Bragg gratings (FBG's) at different wavelengths and a pumped seed laser system tunable over a range substantially larger than a Brillouin shift. The FBG's are distributed along the length of the deployed fiber and serve as wavelength selectable reflectors that enable maintaining system operation even in the case of a fiber break.08-16-2012
20120105831MEASURING MODAL CONTENT OF MULTI-MODED FIBERS - The output modal content of optical fibers that contain more than one spatial mode may be analyzed and quantified by measuring interference between co-propagating modes in the optical fiber. By spatially resolving the interference, an image of the spatial beat pattern between two modes may be constructed, thereby providing information about the modes supported by the optical fiber. Measurements of the phase front exiting the optical fiber under test are advantageously performed in the far field.05-03-2012
20110069302Wide Area Seismic Detection - A method for monitoring for seismic events by interrogating an optic fibre which forms part of an existing communications infrastructure to provide distributed acoustic sensing (DAS). The signals provided by the distributed sensing provide measurements at each of a plurality of discrete portions along the fibre, which may be many tens of kilometres in length. Warning or measurement and consequently prediction of seismic activity can be provided by collecting data over a wide area, without the need to deploy a correspondingly large fibre network.03-24-2011
20090135408Method for reducing the uncertainty of the measured average PMD of a long fiber - A methodology, device and memory medium for measuring the polarization mode dispersion (PMD) of an optical fiber is disclosed. The root mean square (rms) differential group delay (DGD) of fiber sections is estimated, the multisection DGD value τ05-28-2009
20110090486FIBER SHAPE SENSING SYSTEMS AND METHODS - In certain variations, fiber shape sensing or measuring systems, devices and methods are described herein, which allow for measurement of three dimensional bending as well as twist measurements of various fibers, e.g., optical fibers and fiber optic probes of various sizes. In certain variations, the systems are designed to take advantage of unique light guiding properties of optical fibers and various fiber gratings.04-21-2011
20110102773IDENTIFICATION APPARATUS OF OPTICAL CABLE AND IDENTIFICATION METHOD - An optical cable identification apparatus is disclosed. The optical cable identification apparatus capable of identity an optical cable by disturbing an optical fiber, existing inside an optical cable desired to be identified, from an outside. An optical unit transmits two optical signals to a single strand of optical fiber inside the optical cable, and detects a phase difference, a time difference, and light intensity between two optical signals which are reflected due to the disturbance from the outside. A single-fiber ending unit generates the time difference. A signal processing unit removes noise from the two reflected optical signals and demodulates the optical signals. A sound output unit outputs the optical signals from the signal processing unit as sounds.05-05-2011
20120162639OPTICAL SENSOR AND METHOD OF USE - An interferometer apparatus for an optical fibre system and method of use is described. The interferometer comprises an optical coupler and optical fibres which define first and second optical paths. Light propagating in the first and second optical paths is reflected back to the optical coupler to generate an interference signal. First, second and third interference signal components are directed towards respective first, second and third photodetectors. The third photodetector is connected to the coupler via a non-reciprocal optical device and is configured to measure the intensity of the third interference signal component directed back towards the input fibre. Methods of use in applications to monitoring acoustic perturbations and a calibration method are described.06-28-2012
20120250008MEASURING METHOD FOR CROSSTALK BETWEEN CORES IN MULTI-CORE OPTICAL FIBER - The present invention obtains a statistical distribution of inter-core crosstalk by measuring the inter-core crosstalk of a multi-core optical fiber while changing the wavelength of incident light in a predetermined range including a specific wavelength relative to the multi-core optical fiber, or while changing a polarization state of incident light entering the multi-core optical fiber. According to the present invention, there is no need to measure the crosstalk by rewinding the multi-core optical fiber and changing the phase difference between cores around the zero point of the equivalent propagation constant difference between cores.10-04-2012
20100290035CHAOTIC OPTICAL TIME DOMAIN REFLECTOMETER METHOD AND APPARATUS - In a method and a corresponding apparatus for performing chaotic optical time domain reflectometer, the chaotic laser signal, generated by the chaotic laser transmitter, is split into probe signal I and reference signal II by a fiber coupler. Through an optical circulator, the probe signal I is launched into the test fiber and the echo light is converted into electrical signal by a photodetector and digitalized by an A/D converter. The reference signal II is converted into electrical signal by a photodetector and digitalized by another A/D converter. Two digital signals received from two A/D converters are correlated in a signal processing device to locate the exact position of faults in fibers. The result output is then displayed on a display device. This invention was developed to overcome the tradeoff between resolution and dynamic range of the pulse-based OTDR. This method can improve the dynamic range and spatial resolution significantly; enhance the anti-jamming capability and noise tolerance. Also it has merits of simple structure and lower cost.11-18-2010
20120127459Distributed Optical Fibre Sensing - There is disclosed a distributed optical fibre sensing system in which the sensor fibre comprises at least first and second waveguides used for separate sensing operations. The sensor fibre may be, for example, a double clad fibre having a monomode core and a multimode inner cladding.05-24-2012
20110181871COMBINED SWEPT-CARRIER AND SWEPT-MODULATION FREQUENCY OPTICAL FREQUENCY DOMAIN REFLECTOMETRY - An apparatus for estimating a parameter, the apparatus includes: an optical fiber; a component in communication with the optical fiber and configured to interact with light at a wavelength related to the parameter; and an optical interrogator in communication with the optical fiber and configured to: illuminate the optical fiber with a series of light inputs, each light input in the series having a substantially constant unique optical wavelength and swept-frequency amplitude modulation; and receive a resulting light signal associated with each light input in the series; wherein the resulting light signals associated with the series of light inputs are used to estimate the parameter.07-28-2011
20120314209Linearity Calibration Standard For Fiber Optic Power Meters - An integrated, more automated system for determining the linearity of measurements of fiber optic power meters reduces the time and expense needed for linearity calibration. The system uses the triplet superposition method of linearity calibration and aids in performing the necessary series of measurements. A linearity measurement system for an optical power meter comprises an apparatus to output an optical signal to the optical power meter, the apparatus configured to output the optical signal at a controllable plurality of optical powers, a controller for controlling an optical power output from the apparatus to the optical power meter, a display device for displaying a state of the apparatus based on information from the controller, and an input device for commanding the controller to control the optical power output from the apparatus to the optical power meter.12-13-2012
20120075621OPTICAL FIBER CONNECTOR - The present invention relates to an optical fiber connector, which comprises a tube member, an optical-fiber module, a positioning member, and a position-limiting member. The back end of the tube member puts around a light-source module or an inspection module. The optical-fiber module is disposed at the front end of the tube member. The positioning member is disposed in the optical-fiber module. The position-limiting member puts around the positioning member and is disposed in the optical-fiber module. Thereby, when a user measures or inspects the optical fiber, the position-limiting member is used for limiting the assembly position of the optical fiber. Besides, the positioning member is used for aligning the optical fiber with the inspection module or the light-source module accurately. Thereby, the alignment of optical fibers can be performed in convenience.03-29-2012
20120176606METHOD AND APPARATUS FOR DISTURBANCE DETECTION - A sweep sensor may include a signal source, a propagation medium, and a detector. By transmitting an interrogating signal from the signal source into the propagation medium, detectable disturbances along the medium can physically alter the characteristics of the medium, which may cause a measurable change in the backscattered signal at the detector. Based on the change, it may be possible to locate the geographic origins of the physical disturbances along the propagation medium, or to determine the nature of the disturbances, or both. For example, it is generally possible to estimate the approximate distance between the detector and the disturbance given the time required to obtain the backscattered signal and the velocity of the signal source in the propagation medium. Further, in some embodiments, it is possible to quantify the amount of disturbance.07-12-2012
20100271623Method and Apparatus for Characterizing a Multilayered Structure - An apparatus and method for characterizing the complex coupling coefficient of a multilayered periodic structure either during or after inscription is described. This apparatus is capable of continuously measuring the complex reflectivity at single or multiple wavelengths to a resolution limited by Rayleigh scattering in the waveguide section where the structure is inscribed. The apparatus is also capable of rejecting undesired signals associated with stray reflections in the system and unwanted environmentally induced change in optical path lengths during the inscription procedure. The complex coupling coefficient of the multilayered periodic structure can be derived from the measured complex reflectivity and can reveal errors present in the structure. The complex coupling coefficient can also be used to derive an error signal to enable implementation of a closed loop inscription system capable of inscribing error free multilayer structures.10-28-2010
20120224168OPTICAL COMMUNICATION MODULE AND OPTICAL FIBER COMMUNICATION SYSTEM - Bending of an optical fiber where a heat may be generated by a high output power can be detected without using a dedicated light source. An optical communication module that outputs a continuous wave light generated by at least one light source to an optical fiber transmission line, includes: (1) a loss measurement unit that measures a loss of an amplified spontaneous emission generated by allowing the continuous wave light output from the light source to create stimulated Raman scattering in the optical fiber transmission line; (2) a fiber abnormality analyzer that detects the abnormal state of the optical fiber transmission line on the basis of loss information on the ASE measured by the loss measurement unit; and (3) a light source controller that controls a supply state of the continuous wave light from the light source on the basis of the detection of the fiber abnormality analyzer.09-06-2012
20120257193MINIATURIZED ON-LINE TRACE ANALYSIS - The invention relates to a measuring apparatus comprising an apparatus for forming a liquid optical waveguide having a substrate (10-11-2012
20120188533Phase Based Sensing - A method of distributed acoustic sensing (DAS) whereby the derivative or rate of change of a signal backscatted from a fibre is measured. The change, or derivative of the phase measured in this way has a much smaller amplitude than the signal itself if the difference between the two times at which the signal is measured is much less than the period of the signal being measured, resulting in lower sensitivity. Frequency shifts can be applied to temporally displaced return signals to compare the rate of change, for example by employing an output interferometer arranged to modulate the signal in each arm by a different frequency shift.07-26-2012
20120262706METHOD OF MEASURING CUT-OFF WAVELENGTH OF OPTICAL FIBER - A cut-off wavelength measuring method according to the present invention includes: preparing a single mode fiber as a reference fiber; preparing a measurement target fiber; adjusting the length of the single mode fiber such that the length of the single mode fiber is longer than the that of the measurement target fiber at the time of measuring power of transmission light and the reference fiber propagates only light of a base mode at a predicted cut-off wavelength of the measurement target fiber; measuring wavelength dependence of power of light transmitted through the reference fiber and wavelength dependence of power of light transmitted through the measurement target fiber; and calculating a cut-off wavelength of the measurement target fiber based on wavelength dependence represented as the ratio of the power of transmission light transmitted through the measurement target fiber to the power of light transmitted through the reference fiber.10-18-2012
20120081696DISTRIBUTED OPTICAL CHEMICAL SENSOR - The invention relates to a sensor system comprising a waveguide, which waveguide comprises a grating in at least a part of the waveguide, which waveguide further comprises a coating, the coating comprising a polymer, which polymer comprises a chain, in which chain are present an aromatic group and a chemical group selected from the group of sulfonyl groups, carbonyl groups, carbonate groups, fluorocarbon groups, siloxane groups, pyridine groups and amide groups.04-05-2012
20110122401Method and Apparatus For Verifying the Termination Quality of an Optical Fiber Interface in a Fiber Optic Cable Connector - A method and apparatus for verifying the termination quality of an optical fiber interface in a fiber optic connector is provided. The test apparatus generally comprises a light source providing light to a test connector which contains an interface of a stub fiber of a fiber optic connector and a field fiber of a fiber optic cable. The portions of the test connector that are located between the optical fiber optic interface and the light detector are transmissive while other portions of the test connector located near the interface are highly reflective.05-26-2011
20100328650Fiber Property Measurement - A fiber instrument for measuring properties of a fiber sample, the fiber instrument having a surface for receiving the fiber sample, a hand for pressing the fiber sample against the surface, an illumination source for selectively illuminating the fiber sample with more than one peak wavelength, where each of the peak wavelengths is independently controllable as to an applied intensity of the peak wavelength, a sensor for capturing images of the fiber sample while it is illuminated, and a controller for controlling at least the sensor and the illumination source. By providing multiple peak wavelengths of illumination that are each independently controllable as to illumination intensity, the fiber instrument as described herein is better able to detect both foreign material within the fiber sample, and color gradations of the fiber sample.12-30-2010
20100110417CRITICALLY COUPLED MICRORING RESONATOR AND METHOD - A microring resonator and methods critically couple a microring waveguide to an adjacent bus waveguide. A method of determining parameters of a critically coupled microring resonator includes modeling a coupled portion of the microring resonator as a U-shaped waveguide spaced apart from a straight waveguide by a gap and selecting a straight waveguide width and a gap size to optimize an output coupling ratio between the U-shaped waveguide and the straight waveguide. A method of producing the microring resonator includes using the determined parameters to produce, and a critically coupled microring resonator includes, a ring-shaped or microring waveguide spaced from the bus waveguide by a gap.05-06-2010
20080297773Using Sets of Otdr Receive Fibers with Different Lengths of Marker Events to Verify Optical Fiber connectivity - A test receiver for use with an Optical Time Domain Reflectometer (OTDR), including a first receive fiber having a first attribute, and a second receive fiber having a second attribute different from the first attribute. The attributes may be lengths, marker events, or both. This configuration reduces the number of times an OTDR operator must travel back and forth between cable ends when testing fibers.12-04-2008
20110235023RETURN LOSS MEASUREMENT SYSTEM - A method may include injecting a test signal having a first optical launch power into a device under test via an optical splitter. The optical splitter includes at least two upstream ports and a downstream port and the test signal is injected in a first upstream port of the optical splitter. The device under test is coupled to the downstream port. Return loss associated with the device under test is measured at a second upstream input of the optical splitter. The RL measurement in stored a database. The injecting, measuring, and storing are repeated for a number of different optical launch powers.09-29-2011
20110255078INTERROGATOR FOR A PLURALITY OF SENSOR FIBER OPTIC GRATINGS - An interrogator for a plurality of sensor fiber optic gratings. The interrogator includes a broadband optical source; at least one beam splitter directing output of the optical source to the sensor fiber optic gratings; at least one linear filter for converting changes in peak reflection wavelength to changes in intensity; at least one optical receiver; and at least one amplifier associated with each optical receiver. The interrogator also includes, alternatively, a driver/modulator for the optical source providing on/off pulses; an analog integrator following the at least one amplifier; or a mechanism compensating for masking of one sensor fiber optic grating by another.10-20-2011
20110267602Testing An Optical Fiber Connection - For testing whether an optical fiber is properly connected to a device, a beam of light is output to the optical fiber. An intensity is detected of light reflected by the device back through the optical fiber in response to the beam of light. In response to the detected intensity, a determination is made of whether the optical fiber is properly connected to the device.11-03-2011
20120092651Multimode Optical Fiber Insensitive to Bending Losses - A method of selecting a multimode optical fiber includes determining a first modal bandwidth value BW for each of a plurality of multimode optical fibers in a straight position and determining a second modal bandwidth value bBW for each of a plurality of multimode optical fibers in a bent position. Typically, the method includes selecting the multimode optical fibers for which the second modal bandwidth value bBW is greater than a threshold bandwidth A. The threshold bandwidth A may be (i) a function of the multimode optical fiber's first modal bandwidth value BW and a bending-loss value BL and (ii) greater than the multimode optical fiber's first modal bandwidth value BW.04-19-2012
20090086193OPTICAL TIME DOMAIN REFLECTOMETER - An improvement is added to an optical time domain reflectometer for emitting pulsed light of invisible light to a measured optical fiber, receiving return light of the pulsed light by a light detection section, measuring the measured optical fiber, and emitting visible light for visible inspection of a fault point of the measured optical fiber to the measured optical fiber. The optical time domain reflectometer includes an incidence-emission port for emitting the invisible light and the visible light to the measured optical fiber and an output judgment section for judging that a communication light exists in the measured optical fiber based on the light power of the light detection section receiving light incident through the incidence-emission port in a state in which the pulsed light of the invisible light is not emitted.04-02-2009
20120140208GUIDED-MODE RESONANCE SENSORS EMPLOYING ANGULAR, SPECTRAL, MODAL, AND POLARIZATION DIVERSITY FOR HIGH-PRECISION SENSING IN COMPACT FORMATS - A guided mode resonance (GMR) sensor assembly and system are provided. The GMR sensor includes a waveguide structure configured for operation at or near one or more leaky modes, a receiver for input light from a source of light onto the waveguide structure to cause one or more leaky TE and TM resonant modes and a detector for changes in one or more of the phase, waveshape and/or magnitude of each of a TE resonance and a TM resonance to permit distinguishing between first and second physical states of said waveguide structure or its immediate environment.06-07-2012
20110157582Process for Manufacturing a Microstructured Optical Fibre and Method and System for On-Line Control of a Microstructured Optical Fibre - A manufacturing process of a microstructured optical fibre including a void-containing region, includes the steps of: drawing a microstructured optical fibre along a longitudinal direction from a heated preform, wherein the optical fibre is continuously advanced along the longitudinal direction; directing a radiation beam at a longitudinal position in the longitudinal direction of the optical fibre so as to produce an interference pattern; detecting the interference pattern and producing at least one electrical detection signal corresponding to the interference pattern and including a plurality of signal fringe cycles; feeding the first detection signal into a first counter circuit; determining a first number of interference fringe increments in the plurality of signal wave fringe cycles of the at least one detection signal by using the first counter circuit; determining the outer diameter of the optical fibre, and controlling the microstructure of the optical fibre during advancement of the optical fibre. The step of controlling includes at least one step selected from: (a) controlling the first number of interference fringe increments within a reference number range of reference numbers of interference fringe increments, and (b) calculating a microstructure length value.06-30-2011
20130021598FIBER MEASUREMENT DEVICE - A fiber measurement device includes: a light detector adapted to detect feedback light of laser light output to a fiber; a band limiting circuit adapted to extract, from a signal depending on the feedback light, a signal having a component corresponding to a frequency of the laser light, wherein the signal extracted by the band limiting circuit is a first differentiation target signal; and a waveform equalizing circuit having a differentiating and adding circuit adapted to differentiate the first differentiation target signal to generate a first differentiation result signal and to add the first differentiation target signal and the first differentiation result signal.01-24-2013
20130021597CABLE IDENTIFICATION - A storage area network cable apparatus can include a cable, an identification adaptor disposed in the cable, an illuminator disposed in the identification adaptor, an endpoint adaptor disposed at an end of the cable and an integrated device disposed in the endpoint adapter and configured to generate a frequency in the cable.01-24-2013
20080231843OPTICAL PASSIVE DEVICE PRODUCT IDENTIFICATION APPARATUS AND CONNECTIVITY DETERMINATION APPARATUS - An identification apparatus for identifying an optical passive device product. The apparatus includes an optical input output monitor section for monitoring an optical input and an optical output of the optical passive device product respectively; a loss calculation section for calculating a loss in the optical passive device product based on a monitoring result of the optical input output monitor section; and a product identification section in which product information indicating a correspondence between a loss characteristic and a product has been stored in advance, and which identifies the optical passive device product by comparing the stored product information and the loss calculated by the loss calculation section.09-25-2008
20080231842HIGH DYNAMIC RANGE PHOTON-COUNTING OTDR - An optical time domain reflectometer (OTDR) operates in a gated mode, enabling a predetermined width of an optical fiber to be analyzed. The OTDR may test only a desired position on the fiber. Data obtained along different lengths of the fiber may be combined together, providing a thorough representation of the fiber characteristics. Alternatively, specific regions of the fiber may be analyzed. The OTDR measures the backscattered signal using photon-counting techniques, and improves the accuracy of such algorithms by attenuating the incoming backscattering signals automatically and independently at each position in the fiber being tested. The OTDR simultaneously achieves a high dynamic range and a high temporal/spatial resolution, an improvement over conventional OTDRs.09-25-2008
20080225277METHOD AND APPARATUS FOR TESTING AND MONITORING DATA COMMUNICATIONS IN THE PRESENCE OF A COUPLER IN AN OPTICAL COMMUNICATIONS NETWORK - Some optical communications networks include one ingress fiber, an n-way signal coupler, and n egress fibers, where each fiber may carry signals in one or both directions. A method and apparatus for testing and monitoring data communications immediately before and after the coupler is provided. Benefits include improved ability to identify and locate system faults, and improved ability to monitor data quality and content.09-18-2008
20080225276SYSTEM FOR MEASURING THE WAVELENGTH DISPERSION AND NONLINEAR COEFFICIENT OF AN OPTICAL FIBER - A method of simultaneously specifying the wavelength dispersion and nonlinear coefficient of an optical fiber. Pulsed probe light and pulsed pump light are first caused to enter an optical fiber to be measured. Then, the power oscillation of the back-scattered light of the probe light or idler light generated within the optical fiber is measured. Next, the instantaneous frequency of the measured power oscillation is obtained, and the dependency of the instantaneous frequency relative to the power oscillation of the pump light in a longitudinal direction of the optical fiber is obtained. Thereafter, a rate of change in the longitudinal direction between phase-mismatching conditions and nonlinear coefficient of the optical fiber is obtained from the dependency of the instantaneous frequency. And based on the rate of change, the longitudinal wavelength-dispersion distribution and longitudinal nonlinear-coefficient distribution of the optical fiber are simultaneously specified.09-18-2008
20120250007Efficient Silicon-On-Insulator Grating Coupler - An efficient grating coupler for a semiconductor optical mode includes a tapered edge to couple light between waveguide modes constrained by differing waveguide thicknesses. An optical circuit or laser has a waveguide in a rib or strip waveguide section that is of different height (e.g., having different vertical constraints) than a waveguide section that has a grating coupler through which light passes off-circuit. The tapered edge can couple light between the two waveguide sections with very low loss and back-reflection. The low loss and minimal back-reflection enables testing of the photonics circuit on a wafer level, and improved performance through the grating coupler.10-04-2012
20130176557High Q-Factor Conical Optical Microresonator And Utilization In The Location Characterization Of Optical Fibers - A conically tapered optical fiber with a small half-angle γ (e.g., less than 1007-11-2013
20130094015TESTING HARDENED FIBER OPTIC CONNECTOR HOUSING - A system includes a first assembly including a fiber optic connector. The system also includes a second assembly to which one end of a rigid arm is rotatingly affixed. Another end of the arm is affixed rigidly to a mass. The system further includes a mechanical device for applying a force to the mass. After the mechanical device applies the force to the mass, the mass swings from and about the second assembly and strikes the fiber optic connector.04-18-2013
20130100440OPTICAL FIBER CURVATURE MEASURING METHOD - An optical fiber curvature measuring method comprising rotatably holding an end of the optical fiber, irradiating two points at a prescribed distance from each other on a side surface of the fiber with a pair of parallel light beams orthogonal to an axial direction, measuring representative positions of scattered and reflected light beams scattered by the side surface as coordinate positions on an axis parallel to the optical fiber axis, calculating a difference between the two coordinate positions, rotating the fiber by a prescribed angle, repeating the calculation of the difference a plurality of times, calculating a positive representative value for amplitude S04-25-2013
20090268197Method and apparatus for identification of multiple fibers using an OTDR - In order to simplify and expedite identification of fibers (DF10-29-2009
20100277720VIRTUAL FENCE SYSTEM AND METHOD - A security, monitoring and/or detection system is described. In several exemplary embodiments, the system secures, monitors, and/or detects movement across, a boundary extending across, for example, a relatively large geographic area such as, for example, a transnational border.11-04-2010
20080198370Method and Device For Measuring the Concentricity of an Optical Fiber Core - Device for measuring the concentricity of the core 08-21-2008
20110222052TEST SYSTEMS THAT INCLUDE A CENTERING SYSTEM FOR ALIGNING AN OPTICAL PULSE LAUNCHING DEVICE WITH A MULTI-MODE FIBER AND METHODS OF OPERATING THE SAME - A test system for a multi-mode fiber comprises a launching device that is configured to generate optical pulses and has a rest position. A centering system is operable to move the launching device in a circular motion having a center corresponding to the rest position and a diameter corresponding to a core diameter of the multi-mode fiber. The centering system is further operable to adjust a position of the multi-mode fiber relative to the launching device while the launching device is moving in the circle until an optical power coupled from the launching device into the multi-mode fiber is below a threshold. The centering system optically centers the launching device with the multi-mode fiber by fixing the position of the multi-mode fiber responsive to the optical power coupled from the launching device into the multi-mode fiber being below the threshold and returning the launching device to the rest position. In addition, the centering system can move the launching device in a circular motion to launch optical pulses into a multi-mode fiber to perform differential mode delay measurements, which may result in better screening of any circular inhomogeneity of the core of the multi-mode fiber.09-15-2011
20130148108OPTICAL TIME DOMAIN REFLECTOMETER TEST SIGNAL MODULATION CIRCUIT, AND PASSIVE OPTICAL NETWORK SYSTEM AND APPARATUS USING SAME - Embodiments of the present disclosure disclose an OTDR test signal modulation circuit, including a laser diode drive, a laser diode, a current adjusting unit, and an OTDR control unit. The laser diode drive is connected to the laser diode and is configured to drive, according to an input data signal, the laser diode to transmit data light. The current adjusting unit is connected to the laser diode and the OTDR control unit and is configured to adjust a current flowing through the laser diode according to an OTDR test signal provided by the OTDR control unit, so as to modulate the OTDR test signal to the data light transmitted by the laser diode. Moreover, the embodiments of the present disclosure also disclose a passive optical network system and apparatus.06-13-2013
20110235024METHOD, APPARATUS AND SYSTEM FOR MINIMALLY INTRUSIVE FIBER IDENTIFICATION - A method, apparatus and system for minimally intrusive fiber identification includes imparting a time-varying modulation onto an optical signal propagating in an optical fiber and subsequently detecting the presence of the time-varying modulation in the optical signal transmitting through the fiber to identify the fiber. In a specific embodiment of the invention, a time-varying curvature is imposed on the fiber to be identified and the presence of the resultant time variation in the transmitted power of a propagating optical signal is subsequently detected for identification of the manipulated fiber.09-29-2011
20130148109METHOD AND SYSTEM FOR DETECTING FIBER FAULT IN PASSIVE OPTICAL NETWORK - The disclosure provides a method and a system for detecting a fiber fault in a Passive Optical Network (PON). The system comprises an optical path detection device, a Wavelength Division Multiplexing (WDM) coupler, a wavelength selection coupler, a branch fiber selector and a wavelength selection router. The detection system is attached to an original PON system, without influencing the operation of the original system while performing the detection. With the disclosure, the problem of being unable to determine whether there is a fault in a branch fiber due to the loss of an optical path detection reflection signal is solved, the branch fiber with a fault can be quickly located and fixed, thus the operational and maintenance costs of an operator are reduced.06-13-2013
20120274928METHOD OF MEASURING CUTOFF WAVELENGTH - A method for accurately measuring the cutoff wavelength of a high order mode of an optical fiber includes a first step of measuring power spectrum P11-01-2012
20120274927DISTRIBUTED BRILLOUIN SENSING SYSTEMS AND METHODS USING FEW-MODE SENSING OPTICAL FIBER - Some embodiments of a distributed Brillouin optical fiber sensing system employs a sensing optical fiber that supports two or more (i.e., few) guided modes. Pump light supported by one of the guided modes is used to form a dynamic Brillouin grating (DBG). Probe light supported by at least one of the other guided modes interacts with the DBG to form reflected probe light that is received and analyzed to determine a Brillouin frequency shift, a phase matching wavelength between probe and pump light, a reflection location, which in turn allows for making a measurement of at least one condition along the sensing optical fiber. Supporting the pump and probe light in different guided modes results in the optical fiber sensing system being able to simultaneously measure temperature and strain and having a higher spatial resolution than sensing systems where the pump light and probe light share a common guided mode.11-01-2012
20120274926Distributed Brillouin Sensing Systems and Methods Using Few-Mode Sensing Optical Fiber - A distributed Brillouin optical fiber sensing system employs a sensing optical fiber that supports two or more (i.e., few) guided modes. Pump light supported by one of the guided modes is used to form a dynamic Brillouin grating (DBG). Probe light supported by at least one of the other guided modes interacts with the DBG to form reflected probe light that is received and analyzed to determine a Brillouin frequency shift and a reflection location, which in turn allows for making a measurement of at least one condition along the sensing optical fiber. Supporting the pump and probe light in different guided modes results in the optical fiber sensing system having a higher spatial resolution than sensing systems where the pump light and probe light share a common guided mode.11-01-2012
20100309456SYSTEM AND METHOD FOR MEASURING DISPERSION - A method for measuring dispersion in an optical fiber is provided and includes the following steps. A periodic wavelength variation pulse light signal is generated by a periodic frequency-swept pulse light source, in which the periodic wavelength variation pulse light signal has periodic wavelength variations. The periodic wavelength variation pulse light signal is transmitted into a test optical fiber. The periodic wavelength variation pulse light signal propagating through the test optical fiber is detected to generate a sensing signal. The sensing signal is transformed into an RF spectrum to obtain a slow periodic pulse timing variation of the periodic wavelength variation pulse light signal in accordance with the RF spectrum. A dispersion value of the test optical fiber is obtained in accordance with the slow periodic pulse timing variation. A system for measuring dispersion in a fiber is also disclosed herein.12-09-2010
20100315621PHASE MODULATOR, PHASE MODULATOR ASSEMBLY, AND PHOTOSENSOR - The present invention provides a photosensor that uses a phase modulation technique for optical detection and conducts a highly accurate measurement. The photosensor uses a phase change difference of light propagated through a polarization preserving fiber with respect to tensile stress and employs proper polarization preserving fibers for a phase modulator 12-16-2010
20120281205METHOD AND APPARATUS FOR MEASURING FIBER TWIST BY POLARIZATION TRACKING - A method of measuring fiber twist in a multi-core optical fiber bearing an FBG with polarization dependent reflectivity. The state of polarization of the launched light is adjusted until the reflected FBG wavelength is maximal, indicating that light reaching the FBG is linearly polarized, and the polarization axis of the light reaching the FBG is aligned with the slow birefringent axis of the FBG; the SOP of launched light is now measured. Bending experienced by the fiber is measured conventionally, and birefringence produced by bending of the multi-core optical fiber is calculated. A candidate amount of twist between the launch location and the FBG is proposed, and the corresponding twist-induced birefringence is calculated. When calculations show that light with the launched SOP becomes linearly polarized and aligned with the FBG after traversing a fiber section with the calculated birefringences and proposed rotation, the amount of twist has been properly identified.11-08-2012
20130182243SYSTEM AND METHOD FOR MEASURING AN OPTICAL FIBER - Subject matter disclosed herein relates to measuring optical fibers, and, in particular, to measuring spontaneous emission produced in an optical fiber.07-18-2013
20130182244OPTICAL DIFFERENTIAL DELAY TESTER - The present invention relates to a device and method for measuring the differential delay in a computer system having a disaster recovery secondary site. The device includes a transmitter for use at a primary site, the transmitter having a first laser and a second laser. The first laser is optically connected to an end of the transmission path and the second laser is optically connected to an end of the receive path. A receiver is located at the secondary site. The receiver has a first optical receiver optically connected to an end of the transmission path and a second optical receiver optically connected to an end of the receive path. The receiver includes a microprocessor to count the number of cycles between the receipt of light pulses simultaneously emitted from the first and second lasers. From this cycle count, the differential delay between the transmission and receive path is calculated.07-18-2013
20130155391METHOD FOR THE CHARACTERIZATION OF OPTICAL PROPERTIES OF AN OPTICAL FIBER - A method for determining optical properties of an optical fiber including providing optical fibers having varying values of an optical property, measuring values of the optical property of the fibers, selecting one of the fibers as a reference fiber, determining the relative backscatter coefficient of the fibers compared to the reference optical fiber, correlating data obtained in step ii) with data obtained in step iv) to obtain a calibration curve showing a correlation between the Rrel and the values of the optical property of the optical fibers, measuring the Rrel of another optical fiber compared to the reference fiber, and determining a value of the optical property of the another optical fiber based on the calibration curve obtained in step v).06-20-2013
20130188174Configurable Chiral Fiber Sensor - The inventive configurable chiral fiber sensor is readily configurable for use in a variety of applications (such as applications involving pressure and/or temperature sensing), and which is particularly suitable for applications in which the sensing of a presence or absence of the target sensed event (e.g., specific minimum pressure or minimum temperature) is required. Advantageously, the inventive configurable chiral fiber sensor utilizes light sources, photodetectors, and related devices for sensor interrogation.07-25-2013
20130188175Configurable Chiral Fiber Tip-Positioned Sensor - The inventive configurable chiral fiber sensor with a tip-positioned sensing element, is readily configurable for use in a variety of applications (such as applications involving pressure, temperature, and even axial twist sensing), and is particularly suitable for applications requiring highly precise and accurate sensor readings within corresponding predefined limited sensing ranges. Advantageously, the inventive configurable chiral fiber sensor with a tip-positioned sensing element, is operable to utilize a wide variety of light sources, photodetectors, and related devices for sensor interrogation.07-25-2013
20130188176MONITORING FOR DISTURBANCE OF OPTICAL FIBER - Problems of excessive fading in systems for monitoring single-mode optical fiber for physical disturbances are addressed by launching into the fiber polarized light having at least two different predetermined launch states of polarization whose respective Stokes vectors are linearly-independent of each other; downstream from the first location, receiving the light from the fiber; analyzing the received light using polarization state analyzer means having at least two different analyzer states of polarization that are characterized by respective Stokes vectors that are linearly-independent of each other and detecting the analyzed light to provide corresponding detection signals; deriving from the detection signals measures of changes in polarization transformation properties of the fiber between different times that are substantially independent of said launch states and said detection states; and, on the basis of predefined acceptable physical disturbance criteria determining whether or not the measures are indicative of a reportable physical disturbance.07-25-2013
20130188177MONITORING FOR DISTURBANCE OF OPTICAL FIBER - Problems of excessive fading in systems for monitoring single-mode optical fiber for disturbances are addressed by launching into the fiber polarized light having at least two different predetermined launch states of polarization whose respective Stokes vectors are linearly-independent of each other; downstream from the first location, receiving the light from the fiber; analyzing the received light using polarization state analyzer having at least two different analyzer states of polarization that are characterized by respective Stokes vectors that are linearly-independent and detecting the analyzed light to provide corresponding detection signals; deriving from the detection signals measures of changes in polarization transformation properties of the fiber between different times that are invariant under a non-reflective unitary transformation on either the launch states or the detection states; and, on the basis of predefined acceptable physical disturbance criteria determining whether or not the measures are indicative of a reportable physical disturbance.07-25-2013
20120019810MULTI-CHANNEL OPTICAL SIGNAL MONITORING DEVICE AND METHOD - A light detector measures optical power of light incident thereon. Using a beam steering device that is rotatable about two orthogonal axes, wavelength components of different channels are scanned onto the light detector in accordance with programmable parameters. The programmable parameters specify the light detector to which the wavelength components are directed, the order the wavelength components are monitored by the light detector, and the time duration over which each of the wavelength components is monitored by the light detector.01-26-2012
20120033205SENSOR HEAD AND OPTICAL SENSOR - A sensor head for an optical pressure sensor according to the present invention includes: a light-emitting optical fiber for transmitting light emitted from a light source; a reflecting plate whose position relative to an end surface of the light-emitting optical fiber moves in accordance with a pressure and which reflects the light emitted from the end surface of the light-emitting optical fiber; a first optical fiber and a second optical fiber, each of which has an end surface that the light reflected by the reflecting plate enters, the first optical fiber transmitting the light thus entered to a first photodetector and the second optical fiber transmitting the light thus entered to a second photodetector; and a light-intensity variation section that changes a transmission loss in the light-emitting optical fiber in accordance with a change in humidity in the sensor head.02-09-2012
20130201473POLARIZATION MODE DISPERSION MEASUREMENT BY OBSERVATION OF DATA-BEARING SIGNALS - Embodiments of the invention include systems and methods for measuring or otherwise calculating polarization mode dispersion (PMD) of an optical fiber, or other device, by comparing the optical signal through the PMD element with the optical signal obtained directly from the transmitter, and calculating the PMD from the discrepancy between the two. Any distortions on the transmitter signal are effectively calibrated out, increasing measurement accuracy over conventional approaches.08-08-2013
20130201472SYSTEMS AND METHODS FOR CANCELING ELECTRICAL CROSSTALK FROM MEASUREMENTS OF OPTICAL SIGNALS - An exemplary optical transmission system comprises an optical subassembly (OSA) coupled to an optical receiver via an optical fiber. The OSA comprises a laser diode configured to transmit optical signals across the optical fiber, and the OSA further comprises an avalanche photodiode (APD) configured to receive optical return signals from the optical fiber. The system further comprises a crosstalk canceller configured to estimate an amount of electrical crosstalk affecting measurements of the return signals in order to cancel such crosstalk from measurements of subsequent optical signals received by the APD.08-08-2013
20120062875SYSTEM FOR IMPROVING THE DYNAMIC RANGE AND REDUCING MEASUREMENT UNCERTAINTY IN FIBRE OPTIC DISTRIBUTED SENSORS AND FIBRE OPTIC DISTRIBUTED MEASUREMENT EQUIPMENT - The present disclosure is based on distributed amplification based on the Raman Effect, consisting of one or more pump lasers (03-15-2012
20120086935IDENTIFIABLE VISIBLE LIGHT SOURCES FOR FIBER OPTIC CABLES - A system that incorporates teachings of the present disclosure may include, for example, a method including generating a plurality of identifiable visible light sources having at least one constant visible light source and at least one oscillating visible light source and selectively applying, such as one at a time, at least two identifiable visible light sources among the plurality of identifiable visible light sources to a fiber optic cable strand in order to remotely test a fiber optic cable having a plurality of strands including the fiber optic cable strand. Other embodiments are disclosed.04-12-2012
20130208264INTEGRATED OPTICAL TIME DOMAIN REFLECTOMETER - An optical time domain reflectometry system is described which provides low-power, low weight, optical fiber system integrity measurements in an in-situ optical fiber system. The system can be integrated within the transmitter component to allow both data transmission and OTDR measurement functions. A method of providing several different modes of OTDR measurement through external control is also disclosed.08-15-2013

Patent applications in class FOR OPTICAL FIBER OR WAVEGUIDE INSPECTION