Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


With photodetection

Subclass of:

356 - Optics: measuring and testing

356003000 - RANGE OR REMOTE DISTANCE FINDING

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
356500010 Of pulse transit time 186
356500100 Of CW phase delay 23
356500090 Of frequency difference 22
356400070 Of intensity proportional to distance 20
356400090 Of light interference fringes 7
356400020 Of a simulation or test 6
356400060 Of differential amplitude at two source or detector distances 5
20110075125IMAGE TAKING SYSTEM AND LENS APPARATUS - An image taking system including: a lens apparatus; an image pickup apparatus; an operation angle detection unit detecting an operation angle; a direction storage unit storing an object direction relative to the lens apparatus; an angle-of-field calculation unit calculating an image taking angle of field based on zoom and focus positions; a ranging area setting unit calculating a position of at least one object in a screen based on the operation angle detected by the operation angle detection unit, the object direction stored in the direction storage unit, and the image taking angle of field calculated by the angle-of-field calculation unit, to set a ranging area at the position of the at least one object; an object distance calculation unit calculating an object distance in the ranging area; and an output image generation unit generating an output image and information based on the object distance.03-31-2011
20100097597APPARATUS AND METHOD FOR DETECTING DEFORMATIONS ON A VEHICLE COMPONENT - An apparatus and a method for detecting deformations of a vehicle component on a motor vehicle are disclosed, which are capable of unambiguously determining the location and temporal progression of the deformation, as well as the severity of the deformation, within a very short time after the deformation of the vehicle component begins. An emitter unit together with a detector unit is displaced relative to an aperture component disposed on the vehicle component upon deformation of the vehicle component. A beam path of a light beam between the emitter unit and the detector unit is interrupted or opened when the aperture component is displaced relative to the emitter unit, thereby changing an illumination intensity detected by the detector unit. A signal representative of the illumination intensity is transmitted from the detector unit to an evaluation unit.04-22-2010
20120002188Optical Distance-Measuring Device - An optical distance-measuring device includes a light source and an interferometer unit having a measuring retroreflector, a stationary reference retroreflector, a beam-splitter element, a beam-recombiner unit and a detection unit. The beam of rays emitted by the light source is able to swivel about the center of the reference retroreflector. The beam of rays arriving from the light source is split via the beam-splitter element into at least one measuring beam of rays and one reference beam of rays. The at least one measuring beam of rays propagates in the direction of the measuring retroreflector, and the reference beam of rays propagates collinearly with respect to the measuring beam of rays in the direction of the reference retroreflector. The measuring beam of rays is reflected back by the measuring retroreflector and the reference beam of rays is reflected back by the reference retroreflector in the direction of the beam-recombiner unit, the measuring beam of rays traveling symmetrically relative to the reference retroreflector prior to and after reflection at the measuring retroreflector. The beam-recombiner unit brings the measuring beam of rays and the reference beam of rays to interference. Distance-dependent interference signals are ascertainable via the detection unit.01-05-2012
20110090482OPTICAL POSITION DETECTING DEVICE AND METHOD THEREOF - The present invention relates to an optical position detecting device and method thereof, comprising multiple light emitting components, a driving unit, at least one photo detecting unit, a position storing unit and a position determining unit. Each light emitting components disposed on a plane to form a sensing area respectively projects a light source into the sensing area. The disposing positions of light emitting components and photo detecting unit are recorded in the position determining unit. The driving unit drives light emitting components sequentially. When an object encounters the projected light source above the sensing area, thus sequentially creating a reflected light signal, the photo detecting unit respectively generates sensed signals based on the intensity of the reflected light signal. The position storing unit records the positions of light emitting components and photo detecting unit. The position determining unit determines the position of the object.04-21-2011
20120314200COUPLED MULTI-WAVELENGTH CONFOCAL SYSTEMS FOR DISTANCE MEASUREMENTS - A distance measurement method includes imaging a first light source emitting a first wavelength, on a region of a substrate with a dispersive confocal lens; imaging a second light source emitting a second wavelength with the dispersive confocal lens on the region of the substrate; measuring intensity of light reflection emitted from the first light source; measuring intensity of light reflection emitted from the second light source; and generating a first response function wherein the first response function represents reflected light intensity emitted from the first light source as a function of the distance.12-13-2012
356400040 Of degree of defocus 5
20080285007SYSTEM AND METHOD FOR MEASUREMENT OF THICKNESS OF THIN FILMS - A measurement system that uses a laser triangulation device to measure the thickness of transparent and/or opaque layers of a multilayer film. The triangulation device has a laser device that projects a beam perpendicularly to a surface of the multilayer film and first and second detectors that image first and second reflected rays of the beam at first and second distances offset from first and second optical axes to produce first and second measurement signals. A controller processes the measurement signals using a triangulation procedure and a simultaneous equation procedure to provide a thickness of an outer transparent layer. For a multilayer film having an opaque layer sandwiched between outer transparent layers, first and second triangulation devices are disposed on opposed sides of the film to measure the thickness of each outer film. Knowing the distance between the two devices, the thickness of the opaque layer can be derived.11-20-2008
20120069320OPTICAL RANGEFINDER AND IMAGING APPARATUS WITH CHIRAL OPTICAL ARRANGEMENT - An optical rangefinder having a photosensor adapted to transform the image projected thereon into an electronic image, an imaging system for projecting an image of an object on the photosensor, an optical arrangement to modulate the incoming light forming the image on the photosensor, means for providing the spatial spectrum of the image and means for deriving the distance from the object to the rangefinder on the degree of defocus of the image, wherein the optical arrangement is adapted to modulate the incoming light such that the degree of defocus of the image on the photosensor relative to the in-focus image plane results in displacement of the spatial spectrum of the image relative to a reference pattern and wherein the rangefinder has means for deriving the degree of defocus from the degree of displacement.03-22-2012
20110228250LENS CONFIGURATION FOR A THERMALLY COMPENSATED CHROMATIC CONFOCAL POINT SENSOR - A chromatically dispersive lens configuration including thermal compensation may be utilized in chromatic confocal point sensor optical pens for chromatic range sensing. The lens configuration may include a negative power doublet lens and a positive power lens portion. The positive power lens portion comprises at least two lens elements which compensate for the overall thermal sensitivity of a chromatic confocal point sensor optical pen. The lens elements of the positive power lens portion which compensate for thermal sensitivity have an average coefficient of thermal defocus which is in a range that is at lowest 10 ppm per 10° C. The lens configuration can be implemented with dimensions which fit a standard commercial chromatic confocal point sensor optical pen, while maintaining a level of optical performance sufficient for chromatic range sensing.09-22-2011
20120120383DISTANCE MEASURING DEVICE AND IMAGING DEVICE - A distance measuring device including a polarizing element disposed on a plane conjugate with a pupil of an objective lens, an optical rotatory plate rotating a polarizing axis of light which has passed through the polarizing element, a polarization separation element separating light which has passed through the optical rotatory plate into a first light beam and a second light beam, a first imaging element forming a first image by the first light beam, a second imaging element forming a second image by the second light beam, and a focus detector detecting a focus state based on relative deviation between the first image and the second image which correspond to a same region of a subject.05-17-2012
20100283989DYNAMIC COMPENSATION OF CHROMATIC POINT SENSOR INTENSITY PROFILE DATA SELECTION - In a chromatic point sensor, distance measurements are based on a distance-indicating subset of intensity profile data, which is selected in a manner that varies with a determined peak position index coordinate (PPIC) of the profile data. The PPIC indexes the position a profile data peak. For profile data having a particular PPIC, the distance-indicating subset of the profile data is selected based on particular index-specific data-limiting parameters that are indexed with that same particular PPIC. In various embodiments, each set of index-specific data-limiting parameters indexed with a particular PPIC characterizes a distance-indicating subset of data that was used during distance calibration operations corresponding to profile data having that PPIC. Distance-indicating subsets of data may be compensated to be similar to a corresponding distance-indicating subset of data that was used during calibration operations, regardless of overall intensity variations and detector bias signal level variations.11-11-2010
356400080 Of height relative to a light plane 4
20130038858MULTIPLE-WAVELENGTH CAPABLE LASER RECEIVER - A laser light receiver used to detect pulsed laser light that is produced by a rotating laser light source on a construction jobsite is disclosed. In this manner, the laser receiver acts as an elevation detector and provides an equipment operator, or a construction worker, with the current elevation status with respect to the plane of laser light. The laser receiver is a unitary device that can detect multiple light frequencies/wavelengths, including laser beams that are in the green, red, and infrared spectra. The laser receiver also is capable of discriminating between such laser beams and other interference light sources, particularly fluorescent light sources.02-14-2013
20120236289METHOD AND DEVICE FOR DETERMINING A DEFORMATION OF A DISK-SHAPED WORKPIECE, PARTICULARLY A MOLD WAFER - The present invention relates to a method and a device for determining a deformation of a disc-shaped workpiece, in particular a mould wafer. The device comprises a rotatable, height and laterally adjustable mounting unit for mounting an inner region of the disc-shaped workpiece; a determination unit for determining eccentricity of a centre axis of the disc-shaped workpiece from a centre axis of the mounting unit and for generating a suitable adjustment signal for the mounting unit; a deposit unit for depositing the disc-shaped workpiece during a process of lateral adjustment of the mounting unit; and a fixed-height detector unit for measuring a deviation of a plurality of measuring points, respectively, in a non-mounted outer region of the disc-shaped workpiece from a predetermined height position corresponding to the deformation by rotating the mounting unit or the detector unit at a predetermined height position of the mounting unit.09-20-2012
20080252875Laser beam projecting device - A laser beam projecting device, comprising a laser light source for emitting a laser beam, a wavelength selecting film for allowing the laser beam from the laser light source to. pass, and a birefringent optical member arranged on an optical axis closer to an exit side than the wavelength selecting film, wherein the wavelength selecting film is tilted so that an incident angle of the laser beam is in a range of 45° to 80°.10-16-2008
20080309915METHOD FOR CORRECTING DISTURBANCES IN A LEVEL SENSOR LIGHT PATH - The invention relates to a level sensor for determining a height of a substrate. The level sensor generates one or more measurement beam and directs the measurement beam to a measurement spot on the substrate and produces a reflected measurement beam. The level sensor also generates one or more reference beams. A detector detects both the reflected measurement beam and the reference beam, respectively, and produces a measurement signal and a reference signal, respectively, the measurement signal being indicative for the height at the measurement spot. A processor that receives these signals and corrects the measurement signal based on the reference signal. The level sensor has an optical arrangement in a predetermined area close to where the substrate is to be located. The measurement beam and the reference beam propagate along substantially equal optical paths of propagation in the predetermined area. The optical arrangement deviates the reference beam from the substantially equal optical paths of propagation in the predetermined area such that the at least one reference beam does not hit the substrate.12-18-2008
356400030 Of focused image size or dimensions 4
20090079957DISTANCE DETERMINATION AND VIRTUAL ENVIRONMENT CREATION USING CIRCLE OF CONFUSION - A data processing system, computer implemented method, and computer program product code determines distances to an object. Computer generated environments can be calculated therefrom. A light source is focused on an object at an unknown distance from an imaging device, creating a point-of-light. The imaging device, focused on a focal plane at a second location, records an out-of-focus image of the point-of-light at the first distance. From the out-of-focus image, the diameter of a circle of confusion for the point-of-light is identified. The distance between the object and the imaging device is then calculated from the circle of confusion.03-26-2009
20110304840DISTANCE MEASUREMENT SYSTEM AND METHOD THEREOF - A light source transmits detecting light toward an object. The object reflects the detecting light and forms a reflected light. A sensor is used for sensing the reflected light. Then, an exposure control unit coupled to the sensor performs luminance convergence on the reflected light according to luminance of the reflected light sensed by the sensor. And a distance measurement device coupled to the sensor detects a distance between the object and the light source and/or the sensor according to an image position of the reflected light on the sensor.12-15-2011
20110317146OPTICAL DISTANCE DETECTION SYSTEM - There is provided an optical distance detection system which includes a light source and a detection device. The light source is configured to illuminate a surface of an object. The detection device is configured to receive a reflected light from the surface of the object and to output a distance of the object according to the reflected light. The detection device includes a sensing module and a calculation module. The sensing module is configured to receive the reflected light to accordingly generate an image. The calculation module is for outputting the distance according to a light spot position and a light spot size of the reflected light forming on the image.12-29-2011
20130182240Range Finder - A range finder adapted for finding the object distance of a subject having a specific height includes a shell unit, an objective lens assembly, a magnifying unit having multiple selectable magnification ratios, and a range finding unit. The range finding unit includes a scale, a pointer, and a mark. The object distance of the subject is known by comparing the scale and the pointer in an imaging plane when an end of an image of the specific height of the subject formed on the imaging plane is aligned with the mark.07-18-2013
356400050 Of focal point search 2
20130162972CHROMATIC POINT SENSOR CONFIGURATION INCLUDING REAL TIME SPECTRUM COMPENSATION - A chromatic point sensor system configured to compensate for potential errors due to workpiece material effects comprises a first confocal optical path including a longitudinally dispersive element configured to focus different wavelengths at different distances proximate to a workpiece; a second optical path configured to focus different wavelengths at substantially the same distance proximate to the workpiece; a light source connected to the first confocal optical path; a light source connected to the second optical path; a first confocal optical path disabling element; a second optical path disabling element; and a CPS electronics comprising a CPS wavelength detector which provides output spectral profile data. The output spectral profile data from the second optical path is usable to compensate output spectral profile data from the first confocal optical path for a distance-independent profile component that includes errors due to workpiece material effects.06-27-2013
20090262329DISTANCE MEASURING SYSTEM - A distance measuring system includes a light source, an image capture apparatus, a light absorption member and a signal processing circuit. The image capture apparatus includes a first lens module, a second lens module and an image sensor. The lens modules respectively have a focus. The image sensor detects light from the light source at two optical spots of the two lens modules, respectively. The light absorption member is disposed generally between the two lens modules for absorbing light reflected from the lens modules and thereby reducing optical interference. The signal processing circuit is configured for calculating the ratios of the two distances to the focal lengths of the respective focuses. A perpendicular distance between the light source and a line passing through the centers of the first and second lens modules is obtained.10-22-2009
Entries
DocumentTitleDate
20080259311MEASUREMENT METHOD AND MEASUREMENT APPARATUS USING TRACKING TYPE LASER INTERFEROMETER - A tracking type laser interferometer including: a retro-reflector 10-23-2008
20110194097OPTICAL RANGING SENSOR AND ELECTRONIC EQUIPMENT - An optical ranging sensor includes a light emitting unit for projecting a light beam on an object to be measured, a light receiving unit on which a light spot of reflected light of the light beam from the object is formed, and a processing circuit unit for processing output signals from the light receiving unit and detecting a distance to the object. The light receiving unit includes an effective light receiving part having light receiving cells arranged in matrix form in a first direction in which a position of the light spot moves as the object moves along a direction of an optical axis of the light emitting unit, and in a second direction orthogonal to the first direction. A size of the effective light receiving part in the second direction is not smaller than a radius of the light spot but not larger than a diameter thereof.08-11-2011
20130077083OPTICAL BEAM SCANNER AND LASER RADAR UNIT - An optical beam scanner includes a light source, an optical scanner configured to scan a light beam irradiated from the light source, and an input optical system configured to direct the light beam irradiated from the light source to the optical scanner, wherein the optical scanner includes a rotating mirror configured to rotate around a rotational axis and reflect the light beam irradiated from the light source; the rotating mirror is rotated around the rotational axis so that the light beam is irradiated on differing positions of a mirror surface of the rotating mirror; and the mirror surface of the rotating mirror has a mirror surface inclining angle with respect to a direction parallel to the rotational axis that is arranged to gradually increase from a first side to a second side of the rotating mirror in a direction parallel to a plane perpendicular to the rotational axis.03-28-2013
20100073664LOOKDOWN AND LOITERING LADAR SYSTEM - A LADAR system and with lookdown and loitering capabilities is disclosed. In one aspect, an apparatus includes a LADAR sensor and a gimbal. The LADAR sensor is mounted to the gimbal, which is capable of scanning in azimuth sufficient to provide a look down and loitering capability. In another aspect, a method includes flying an airborne vehicle through an environment; and scanning a LADAR signal forward and to at least one side into a field of regard.03-25-2010
20130077082Device and Method for Determining the Distance to an Object - A method and apparatus for defining, from a first periodic signal, a second signal of same period, including the steps of: generating a third signal exhibiting detectable events; and synchronizing the second signal for each event.03-28-2013
20090040501OBJECT-DETECTION DEVICE FOR VEHICLE - The object-detection device for vehicle provides a transmission-and-reception device; a reflection point calculation device; a segment setting device; a median point calculation device; and a relative speed calculation device, wherein the relative speed calculation device eliminates a calculation result of the relative speed in the car width direction, with respect to the reflection points calculated based on the electromagnetic waves which are irradiated to the most downward direction in the specified angle in the vertical direction, in case that the number of difference between the reflection points in the current processing and the reflection points in the previous processing is equal to or greater than a predetermined number.02-12-2009
20090153834Laser distance meter - An electro-optic laser distance meter (06-18-2009
20090135401OPTICAL DEVICE, AND METHOD OF MEASURING THE DIMENSION OF OBJECT USING OPTICAL DEVICE - A device and a method for measuring the sizes of a remote object, for example, concrete crack, without using a high-place work vehicle or a ladder. An optical apparatus (e.g. a measuring device (05-28-2009
20130208257OPTICAL PROXIMITY SENSORS USING ECHO CANCELLATION TECHNIQUES TO DETECT ONE OR MORE OBJECTS - An optical sensor includes a driver, light detector and echo canceller. The driver is adapted to selectively drive a light source. The light detector is adapted to produce a detection signal indicative of an intensity of light detected by the light detector. The echo canceller is adapted to produce an echo cancellation signal that is combined with the detection signal produced by the light detector to produce an echo cancelled detection signal having a predetermined target magnitude (e.g., zero). The echo canceller includes a coefficient generator that is adapted to produce echo cancellation coefficients indicative of distance(s) to one or more objects, if any, within the sense region of the optical sensor. The optical sensor can also include a proximity detector adapted to detect distance(s) to one or more objects within the sense region of the optical sensor based on the echo cancellation coefficients generated by the coefficient generator.08-15-2013
20130208256LDV with Diffractive Optical Element for Transceiver Lens - A transceiver device that includes one or more light sources configured to emit a light beam that includes one or more different wavelengths, and includes a diffractive optical element configured to initiate one or more wavelength specific responses from the light beam to form one or more transmission light beams and to direct the one or more transmission light beams substantially towards a target; and further includes one or more sensor devices configured to receive the one or more transmission light beams and one or more reception light beams that are reflected back from the target. The diffractive optical element (e.g., a holographic element) is used in either a monostatic, bistatic or multistatic design to reduce the required size and/or number of optical elements, lasers and receivers. The transceiver device may be used in a LIDAR system in order to measure air and wind parameters at multiple altitudes.08-15-2013
20120182540RANGE SENSOR AND RANGE IMAGE SENSOR - A range image sensor RS is provided with an imaging region consisting of a plurality of units arranged in a two-dimensional pattern, on a semiconductor substrate 07-19-2012
20120182539METHOD AND APPARATUS FOR CLASSIFYING PROXIMATE MATERIALS AND ESTIMATING RANGE - A mobile device may determine a material-type of a surface proximate to the device and/or a distance between the device and the proximate surface, in at least one implementation. In some implementations, proximate material-type information may be used to estimate a distance between a mobile device and a proximate surface. A material class may also be determined for a proximate surface in some implementations. Various context-based applications are disclosed for material-type, material class, and/or distance information in connection with a mobile device.07-19-2012
20090323047METHOD AND SYSTEM FOR DESIGNATING A TARGET AND GENERATING TARGET-RELATED ACTION - A system that includes a laser designator configured to continuously designate a target with a pulsed laser spot. The system includes a sensor and associated processing system configured to receive a reflection of the laser spot, convert the received energy to plurality of signals, processing the signals for detecting true reflected signals and process the true reflected signals for generating target related action. The sensor and associated processor are configured to detect the true signals notwithstanding an inherent low Signal/Noise ratio of below 4 of the received signals from due to low pulse power of the laser designator and distance to target.12-31-2009
20120218539Omni-directional imaging sensor - A method comprises generating a laser signal; scanning the laser signal into a field of view; and processing the return signal.08-30-2012
20100091263Laser surveying system and distance measuring method - A laser surveying system, comprising a light source for emitting a laser beam, a projection optical system for turning the laser beam from the light source to a parallel luminous flux, a scanning unit for projecting the luminous flux of the projected laser beam for scanning, a scanning direction detecting unit for detecting a scanning direction, a photodetection optical system for receiving a reflected light of the projected laser beam from an object to be measured, a photodetection element for performing photo-electric conversion of the reflected light received via the photodetection optical system, and a distance measuring unit for measuring a distance based on a signal from the photodetection element, wherein the projection optical system has a luminous flux diameter changing means, and a luminous flux diameter of the projected laser beam is enabled to be changed.04-15-2010
20110013172OBJECT MEASURING DEVICE AND METHOD FOR USE IN THE DEVICE - Provided is an object measuring device capable of avoiding unnecessary scanning of an object that is unlikely to be an obstacle. By detecting a reflected light of a laser light emitted to an entire emission region, objects, other than a road surface, existing within the emission region are identified. When the objects other than the road surface are identified, a spread angle of the laser light, which is required for measuring the identified objects with a necessary accuracy, is determined. When the spread angle is determined, the laser light is emitted, at the determined spread angle, to the objects other than the road surface, and thereby the respective objects are measured.01-20-2011
20090316134FIBER LASER LADAR - A laser radar system and a method for use in a laser radar system are disclosed. More particularly, the laser radar system includes a fiber laser capable of generating a laser signal; a first optical path through which the generated laser signal may be transmitted; a second optical path through which a reflection of the transmitted laser signal may be received; and a detector capable of detecting the received reflection. The method includes generating a laser signal from a fiber laser; transmitting the laser signal; receiving a reflection of the transmitted laser signal; and detecting the reflection.12-24-2009
20130162969DISTANCE DETECTING SENSOR AND CLOSE RANGE DETECTING METHOD - The present invention discloses a distance detecting sensor, comprising: a casing, focusing lenses, a circuit board mounted with several electronic elements, and an emitting device emitting infrared light and a receiving device receiving and sensing a reflected infrared light. Wherein, the casing comprises a main body and two round openings on the top surface of the main body. The lenses comprise an emitting lens and a receiving lens arranged at the openings of the casing. The circuit board is mounted in the main body of the casing; the emitting device is an infrared emitting diode (LED), emitting infrared light toward the emitting lens. The receiving device is a distance detecting sensor module, which senses the reflected light focused by the receiving lens. The distance detecting sensor further comprises an emitting light guide unit arranged between the emitting lens and the emitting device, and the emitting light guide unit comprises small round holes at the emitting tube core of the emitting device. The present invention has higher detection accuracy and improves the overall detection performance of the sensor.06-27-2013
20130162970DEVICE FOR MEASURING A DISTANCE TO A TARGET OBJECT - A measuring device for the measurement of a distance to a target object has a beam source which is designed as an electrical-optical component and which emits a transmission beam. A detector, which is designed as a further electrical-optical component, receives a reception beam that is reflected and/or scattered by the target object. A beam splitting lens is configured to deflect the transmission and/or reception beam. Alternatively or additionally, the measuring device includes a beam shaping lens is configured for shaping the transmission and/or reception beam. A lens support is configured to accommodate the electrical-optical components. The lens support also accommodates the beam splitting lens and/or the beam shaping lens. The lens support has a first wafer for accommodating the electrical-optical components and a second wafer for accommodating the beam splitting lens, and/or the beam shaping lens.06-27-2013
20130162971OPTICAL SYSTEM - An optical system is disclosed. The optical system includes a radiation device having a rotational pointer, in particular a rotary laser, for the contactless display of an azimuth plane on a circumferentially disposed target object, which is configured to generate a light signal rotating or turning in the azimuth plane when emitting optical pointer radiation. A control and computing unit, which is configured to put the rotational pointer into a first operating mode or a second operating mode, where a light signal rotating continuously over a round angle by the rotational pointer can be generated in the first operating mode and a light signal that is rotatable in a limited angular sector of a round angle can be generated in the second operating mode. A radiation receiver is configured to receive and/or reflect optical radiation.06-27-2013
20090237639MEASURING SYSTEM - A measuring system includes a measuring apparatus provided at an already-known point, a plurality of light-receiving apparatuses provided at measured points, and a main calculating apparatus for instructing to the measuring apparatus and to the light-receiving apparatus, the measuring apparatuses including a wireless communication section for communicating a measurement data with the light-receiving apparatus or with the main calculating apparatus, wherein the measurement data includes an angle detected by the emission-direction detecting section and a distance measured by the distance-measuring section, the light-receiving apparatus including a light-receiving side wireless communication section communicating the measurement data of the measured point with the measuring apparatus or with the main calculating section, the main calculating sections including a main memory collecting and storing the measurement data which is measured by the measuring apparatus and by the plurality of light-receiving apparatuses.09-24-2009
20090009747Device for Optically Measuring Distance and Method for Operating Said Type of Device - The invention relates to a device for optically measuring distance, in particular a hand-held device, comprising an transmission unit (01-08-2009
20120113407AUTOMATIC LASER RANGEFINDER AND METHOD OF AUTOMATICALLY ACTIVATING THE LASER RANGEFINDER TO MEASURE DISTANCE - The present invention provides a laser rangefinder and a method of activating the laser rangefinder to measure distance. The laser rangefinder has a first sensing to sense whether the user is aiming the laser rangefinder at a target and a second sensing device to sense an acceleration of the laser rangefinder and the acceleration has to be smaller than a preset value. The laser rangefinder will be automatically activated to measure distance when both of the first sensing device and the second device are checked.05-10-2012
20120236288Range Based Sensing - Ranging apparatus capable of projecting patterns of structured light tailored for use at particular ranges or depth regimes. Detected light points in a scene can be compared to pre-determined pattern templates to provide a simple and low cost gesture recognition system, for example as an interface to a smartphone or PDA. A structured light generator can be adapted to switch back and forth between said first and second structured patterns, either automatically according to a timing control, or adaptively in response to sensed information from the illuminated scene. Alternatively the structured light generator can be adapted to project the first and second patterns simultaneously. Separate light generators may be employed for the different patterns, or alternatively components can be shared.09-20-2012
20120236287EXTERNAL ENVIRONMENT VISUALIZATION APPARATUS AND METHOD - The present invention adjusts images received from plural cameras that are oriented to plural directions and combines the images with distance information. Thereafter, the circumstantial environment is visualized based on a moving object using an augmented reality technique to provide to a user. Specifically, the present invention adjusts images in plural directions and adds the distance information to improve the accuracy and uses a visualization method that displays the images with respect to the moving object.09-20-2012
20120236286ACCURATE GUN BORESIGHTING SYSTEM - A device including an optical laser radiation source that emits laser radiation having a radially symmetric intensity profile and a mounting structure that engages a weapon barrel. An optical receiver including photodetectors located equidistant from and surrounding a central target site is locatable remote from the weapon. The photodetectors are sensitive to the laser radiation and each photodetector generates an electrical signal proportional to an intensity of the laser radiation received from the laser radiation source. A signal processor processes the electrical signals from the photodetectors to generate an intensity gradient indicating comparative intensity of the laser radiation that is detected by the photodetectors. The intensity gradient presents a null point when the intensity detected by at least two compared photodetectors is equal. A communicative link exists between the optical laser radiation source and the optical receiver. Synchronous modulation-demodulation of the laser source and detectors assists in optical noise exclusion.09-20-2012
20110164241Rangefinder - A rangefinder. A main body includes a first end and a second end opposite to the first end. The second end includes at least one guide bar. A receiving lens is connected to the first end of the main body. A first adjusting wheel and a second adjusting wheel are rotatably connected to the second end of the main body. A movable board is movably fit on the guide bar of the second end of the main body and is disposed between the first and second adjusting wheels. A receiving member is connected to the movable board, receiving light beams received by the receiving lens. The movable board is moved by rotation of the first and second adjusting wheels, driving the receiving member to move on an optical axis.07-07-2011
20100171943Method for geodetic monitoring of rails - Method for geodetic monitoring of rails provided for conveying devices in that stationed at least in the area of one rail end is a tachymeter with spatial reference, placed on the rail to be checked is a rail measuring vehicle that travels the rail alone for measuring the rail when the rail is not loaded, and that for measuring the rail when loaded is driven at the same speed as the conveying device, the measuring points during the measurement being recorded continuously when the rail is loaded and/or unloaded.07-08-2010
20110279809STRUCTURAL ELEMENT FOR A FUSELAGE CELL STRUCTURE OF AN AIRCRAFT, COMPRISING AT LEAST ONE POSITIONING AID - A structural element for a fuselage cell structure of an aircraft, in particular a stringer profile or an annular former segment, the structural element being made from a composite material, in particular from a carbon-fibre-reinforced epoxy resin. The structural element comprises at least one positioning aid for facilitating position determination by means of a measuring system. A laser measuring system and/or a tactile measuring system may be used as a measuring system. As a result of the reflector which can be attached to the positioning aid without clearance as a target for the laser measuring system, which is preferably a laser tracker, a spatial position of the structural element in relation to a further component can be determined very precisely and without contact. Following position determination and orientation of the structural element, the reflector can be removed from the positioning aid.11-17-2011
20080231828Distance Measuring Equipment, and Method of Mounting an Electrooptical Unit on a Lead Frame Unit - The invention is based on a piece of distance measuring equipment, particularly a laser rangefinder (09-25-2008
20090122294LASER RADAR APPARATUS THAT MEASURES DIRECTION AND DISTANCE OF AN OBJECT - There is provided a laser radar apparatus including laser beam generating means, photo detecting means, a mirror assembly, light deflecting means, and rotation driving means. The laser beam generating means emits a laser beam having an axis thereof. The photo detecting means detects a reflected laser beam that is reflected back by an object. The mirror assembly includes a through-hole that transmits the laser beam and a reflecting surface that reflects a reflected laser beam reflected back by the object toward the photo detecting means. The light deflecting means has a flat mirror surface and a concave-shaped mirror surface, and reflects the laser beam toward a measurement range and deflects the reflected laser beam from the object toward the mirror assembly. The rotation driving means rotates the light deflecting means so as to direct the laser beam toward the measurement range.05-14-2009
20110285982METHOD AND ARRANGEMENT FOR OBTAINING INFORMATION ABOUT OBJECTS AROUND A VEHICLE - Arrangement and method for obtaining information about objects exterior of a vehicle in which a light source is mounted in the vehicle, structured light is projected into an area of interest exterior of the vehicle, rays of light forming the structured light originate from the light source, reflected light is detected at an image sensor at a position different than the position from which the structured light is projected, and the reflected light is analyzed relative to the projected structured light to obtain information about the object in the area of interest exterior of the vehicle. The structured light is designed to appear as if it comes from a source of light (virtual or actual) which is at a position different than the position of the image sensor.11-24-2011
20110285981Sensor Element and System Comprising Wide Field-of-View 3-D Imaging LIDAR - A LIDAR sensor element and system for wide field-of-view applications such as autonomous UAS landing site selection is disclosed. The sensor element and system have an imaging source such as a SWIR laser for imaging a field of regard or target with a beam having a predefined wavelength. The beam is scanned over the field of regard or target with a beam steering device such as Risley prism. The reflected beam is captured by the system by receiving optics which may comprise a Risley prism for receiving and imaging the reflected beam upon a photodetector array such as a focal plane array. The focal plane array may be bonded to and a part of a three-dimensional stack of integrated circuits, a plurality of which may comprise one or more read out integrated circuits.11-24-2011
20090201488BEAM IRRADIATION DEVICE, LASER RADAR SYSTEM, AND DETECTING DEVICE - A beam irradiation device includes: a first light source for emitting laser light; an actuator for moving a scanning section for receiving the laser light to scan a target area with the laser light; a second light source movable with the scanning section and adapted for emitting diffused light; a light receiving position detecting device for receiving the diffused light to output a signal depending on a position of receiving the diffused light; and a light projecting element, disposed at a position closer to the light receiving position detecting device with respect to an intermediate position between the second light source and the light receiving position detecting device, for projecting an emission position to be defined by the second light source on the light receiving position detecting device via a predetermined projection area.08-13-2009
20090002677TARGET LOCATOR SYSTEM - A target locator system comprises at least two target-locator cameras and a wireless communication system to communicatively couple the at least two target-locator cameras. Each target-locator camera includes a target sight to sight a target, a range finder, which is aligned with the target sight, configured to determine a distance to the target, a location sensor to determine a location associated with the range finder, at least one elevation angle sensor to determine an elevation angle of the axis of the target sight when sighting the target.01-01-2009
20110216305ELECTRIC DISTANCE METER - An electric distance meter is downsized by using a condensing optical member having a small outer diameter (effective diameter) as a condensing optical member in a light-receiving optical system of reflection light from an object, reducing a focal length of the condensing optical member without reducing a spread angle to a light-receiving optical fiber and reducing a diameter of the light-receiving optical fiber. An optical distance meter 09-08-2011
20110216304HIGH DEFINITION LIDAR SYSTEM - A LiDAR-based 3-D point cloud measuring system includes a base, a housing, a plurality of photon transmitters and photon detectors contained within the housing, a rotary motor that rotates the housing about the base, and a communication component that allows transmission of signals generated by the photon detectors to external components. In several versions of the invention, the system includes a vertically oriented motherboard, thin circuit boards such as ceramic hybrids for selectively mounting emitters and detectors, a conjoined D-shaped lens array, and preferred firing sequences.09-08-2011
20090213358METHOD, DEVICE, AND COMPUTER PROGRAM FOR DETERMINING A RANGE TO A TARGET - A method, device, and computer program for determining range to a target is disclosed. Specifically, the invention provides a method, device and computer program for determining a second range to a target based on a first range to the target and an angle to the target such that the parabolic trajectory of a projectile is accounted for in determining the second range. The device generally includes a range sensor for determining a first range to a target, a tilt sensor for determining an angle to the target, and a computing element for determining a second range to the target based on the first range and the determined angle.08-27-2009
20110194098BEAM IRRADIATION DEVICE - A beam irradiation device includes a laser light source which emits laser light; an actuator which causes the laser light to scan a targeted area; and a wiring portion which supplies a drive signal to the actuator. The actuator includes a first movable portion which is pivotally movable around a first axis, an optical element which is disposed on the first movable portion, and on which the laser light is entered, and a first coil which is disposed on the first movable portion. The wiring portion includes a wiring member which is electrically connected to the first coil, and has a spring property in a flexing direction. The wiring member is disposed at such a position as to urge the first movable portion toward a first scan start position around the first axis, using the spring property.08-11-2011
20120140202SENSOR ARRANGEMENT FOR OBJECT RECOGNITION - A sensor arrangement for object recognition in a monitored zone is provided having a first and second distance-measuring optoelectronic sensor whose fields of vision overlap, and having a common control unit which is formed for determining a position of a calibration target in the overlap region with respect to the first and second sensor to determine a transformation instruction between coordinate systems of the sensors in a registration mode so that measured points of the sensors can be combined in a common global coordinate system. The common control unit is designed to determine positions of the calibration target with respect to the first and second sensor and to determine that transformation instruction which brings a connection line between the positions with respect to the first sensor's coordinate system to cover the connection line between the positions with respect to second sensor's coordinate system.06-07-2012
20100026981ELASTIC BACKSCATTERING AND BACKREFLECTION LIDAR DEVICE FOR THE CHARACTERIZATION OF ATMOSPHERIC PARTICLES - A method is described for the characterization of atmospheric particles by means of a lidar device. The method provides to send a laser pulse in the atmosphere, a part of which is directly backscattered by the particles in the atmosphere. A reflecting optical device is provided, that is positioned at a predetermined distance d from the lidar device, whereby a part of the laser pulse that directly reaches the reflecting device is backreflected and is later backscattered by the particles in the atmosphere thus generating a counterpropagating backscattering signal directed towards the reflecting device, which signal reaches the reflecting device and is backreflected towards the lidar device. The lidar device detects the direct backscattering and counterpropagating signals. The optical characteristics of the particles are determined on the basis of the direct backscattering signal and the counterpropagating backscattering signal.02-04-2010
20080266541Method and apparatus for locating and measuring the distance to a target - Embodiments of the invention comprise an apparatus for use with a laser range finder configured to direct a laser beam toward a scene to measure the distance to a target in the scene and having a range finder display for displaying data, including data that is indicative of the distance to a target, wherein the apparatus comprises a protective housing, a camera module in the housing, the camera module including a lens mounted in a front end portion of the housing, and a light path through the lens to image sensor, an image sensor operatively connected to the camera module for receiving images acquired by the camera module, electronic memory for selectively storing data of images from the image sensor, circuitry for controlling the operation of the image sensor and the memory, a camera display in the housing operatively connected to the image sensor for receiving the image data and providing a visual display of the image, and a switch for storing image data in the memory. Other embodiments include a projector in the housing for projecting the data displayed by the second display onto the image sensor to thereby capture the image data of the scene and displayed distance data together.10-30-2008
20090310117Method for Detecting Objects With a Pivotable Sensor Device - A scan sensor emits detection beams for detecting objects in a scanning area within a scanning plane. The position of the scanning plane is changed by pivoting the sensor device in a scanning area, to produce multiple detection planes. Detection points of objects in the surroundings of the sensor device are detected by the detection beams in the detection planes. Lines are extracted from the detection points of a respective detection plan. Measuring points are determined at the intersection points of the lines with one or more predetermined measuring planes. The measuring points in a respective measuring plane are classified into blocks and lines are extracted on a block basis from the measuring points of the blocks generated, as a result of which structures of objects in the measuring planes are determined.12-17-2009
20110149267METHOD AND APPARATUS FOR ANALYZING TREE CANOPIES WITH LiDAR DATA - A system and method for analyzing a canopy of a forest by analyzing the spatial uniformity of LiDAR data point heights in a number of areas surrounding a tree top, where the areas are smaller than the expected size of the crown of the tree. In one embodiment, the spatial uniformity is quantified as a canopy closure vector based on an analysis of the LiDAR data point heights in a frequency domain. In one particular embodiment, the standard deviation of the frequency components in the cells of a number of rings centered around the average value in an FFT output matrix is used to quantify the spatial uniformity.06-23-2011
20100079744LASER APPARATUS AND DISTANCE MEASUREMENT APPARATUS - A technique for selecting two or more wavelengths of output light by a simpler structure is provided. A laser apparatus includes a laser oscillation portion for oscillating laser light; a nonlinear crystal inputting the laser light from the laser oscillation portion as a fundamental wave, the nonlinear crystal converting the fundamental wave into a second harmonic wave and changing conversion efficiency according to a temperature thereof, the nonlinear crystal having a periodically poled structure; and a ratio control means for controlling a ratio of the fundamental wave and the second harmonic wave outputting from the nonlinear crystal by controlling the temperature of the nonlinear crystal.04-01-2010
20100123893Laser distance measuring device - The laser distance measuring device of the present invention comprises an emitting part having a laser generating device with a first spectral bandwidth arranged on an emitting optical path and a collimating lens. The emitting part also has an optical filter with a second spectral bandwidth which is less than the first spectral bandwidth. The laser distance measuring device also has a receiving part having a photoelectric receiving and conversion device to receive the measuring beam reflected by the object to be measured and convert it into an electric signal. Using the optical filter, most of the unneeded portions of the laser beam emitted from the laser are filtered out so that the useful proportion of the measuring beam of the laser beam is improved and the ranging capability of the laser distance measuring device under a bright or strong light environment is enhanced.05-20-2010
20090201487MULTI SPECTRAL VISION SYSTEM - A MultiSpectral Vision Sensor (MSVS) that employs three detectors which detect optical radiation in different frequency bands to permit target detection in a wide range of lighting conditions.08-13-2009
20090284731Distance measuring sensor including double transfer gate and three dimensional color image sensor including the distance measuring sensor - Provided are a distance measuring sensor including a double transfer gate, and a three dimensional color image sensor including the distance measuring sensor. The distance measuring sensor may include first and second charge storage regions which are spaced apart from each other on a substrate doped with a first impurity, the first and second charge storage regions being doped with a second impurity; a photoelectric conversion region between the first and second charge storage regions on the substrate, being doped with the second impurity, and generating photo-charges by receiving light; and first and second transfer gates which are formed between the photoelectric conversion region and the first and second charge storage regions above the substrate to selectively transfer the photo-charges in the photoelectric conversion region to the first and second charge storage regions.11-19-2009
20090273769MEASURING DEVICE - The invention relates to a measuring instrument, particularly a hand-held instrument (11-05-2009
20090296070Systems and Methods for Targeting Directed Energy Devices - Systems and methods for targeting a directed energy system are provided. A particular system includes a first laser and a second laser. The system also includes a scanning system coupled to the first laser and the second laser. The scanning system is adapted to movably direct the second laser in a pattern around a pointing location of the first laser.12-03-2009
20100277711OPTICAL QUANTIZED DISTANCE MEASURING APPARATUS AND METHOD THEREOF - The present invention discloses an optical quantized distance measuring apparatus and a method thereof. The optical distance quantized measuring apparatus comprises an illuminating module, a sensing component array and a processing module. The illuminating module projects a light source onto an object to generate a reflecting light. The sensing component array receives the reflecting light, which generates a light source location on the sensing component array. The processing module determines the light source location, and determines an interval between the object and the sensing component array according to the light source location. The processing module determines the light source location with the binary search algorithm.11-04-2010
20100103406DEVICE FOR A LENGTH MEASUREMENT AND ADAPTER FOR ACCOMODATING A DEVICE FOR A LENGTH MEASUREMENT - The invention relates to a device for a length measurement providing a housing, a sending device for producing an optical measuring beam, a receiving device for detecting parts of the measuring beam that have beam scattered back from the measuring object and a redirecting device for redirecting the measuring beam that has been send out by the sending device and/or the receiving area of the receiving device. The invention relates also to an adapter for accommodating a device for a length measurement with a housing, a sending device for producing an optical measuring beam and a receiving device for detecting parts of the measuring beam that is scattered back from the measuring object, whereby the adapter provides frame for accommodating the device and a redirecting device for redirecting the measuring beam that has been send out by sending device and/or the receiving area of the receiving device.04-29-2010
20100283988SEMI-ACTIVE OPTICAL TRACKING SYSTEM - A system and method for tracking an airborne target including an illumination source (e.g., a diode laser array) is used to enhance a target signature and a detector (e.g., a passive high-speed camera) is used to detect to electromagnetic radiation (e.g., infrared radiation) reflected off the target. The received electromagnetic radiation may be processed by a digital computer and passed through a spatial filter that implements a band limited edge detection operation in the frequency domain. The filter may remove low spatial frequencies that attenuate soft edged clutter such as clouds and smoke as well as filter out artifacts and attenuated medium to high spatial frequencies to inhibit speckle noise from the detector as well as speckle from the laser return off the target.11-11-2010
20110141452RANGE SENSOR AND RANGE IMAGE SENSOR - The range image sensor is a range image sensor which is provided on a semiconductor substrate with an imaging region composed of a plurality of two-dimensionally arranged units (pixel P), thereby obtaining a range image on the basis of charge quantities Q06-16-2011
20100128245DISTANCE MEASUREMENT DEVICE - A distance measurement device having better measurement accuracy than conventional distance measurement devices. A stereo camera (05-27-2010
20090168045THREE-DIMENSIONAL SURROUND SCANNING DEVICE AND METHOD THEREOF - A three-dimensional surround scanning device and a method thereof are described, which are adopted to perform surround scanning on a scene area, so as to construct a three-dimensional model. The device includes an image acquisition element, a first moving mechanism, a range acquisition element, and a controller. The controller controls the image acquisition element, the range acquisition element, and the first moving mechanism to perform three-dimensional image acquisition, so as to obtain a two-dimensional image covering the scene area, depth information with three-dimensional coordinates, and corresponding position signals. The controller rearranges and combines the two-dimensional image, position signals, and depth information, so as to construct the three-dimensional model.07-02-2009
20080273191OPTICAL TRACKING DEVICE USING MICROMIRROR ARRAY LENSES - The optical tracking device of this invention comprises a lens unit, a control circuitry communicatively coupled to the lens unit, and an imaging unit optically coupled to the lens unit. The lens unit comprises at least one Micromirror Array Lens, wherein the Micromirror Array Lens comprises a plurality of micromirrors and is configured to have a plurality of optical surface profiles by controlling rotations or translations of the micromirrors. The optical tracking device of the invention further comprises an image processing unit, communicatively coupled to the imaging unit, configured to process the image information from the imaging unit and generates a control signal for the control circuit to control the lens unit. The optical tracking device of the present invention provides capability of tracking a target moving in a high speed, providing three-dimensional image information of the object, and compensating the aberration of the optical tracking device.11-06-2008
20080273190Polyspectral Rangefinder for Close-In Target Ranging and Identification of Incoming Threats - A computationless system 11-06-2008
20080309914METHOD FOR DETECTING OBJECTS WITH VISIBLE LIGHT - A method for detecting an object using visible light comprises providing a visible-light source having a function of illuminating an environment. The visible-light source is driven to emit visible light in a predetermined mode, with visible light in the predetermined mode being emitted such that the light source maintains said function of illuminating an environment. A reflection/backscatter of the emitted visible light is received from an object. The reflection/backscatter is filtered over a selected wavelength range as a function of a desired range of detection from the light source to obtain a light input. The presence or position of the object is identified with the desired range of detection as a function of the light input and of the predetermined mode.12-18-2008
20080304040Cargo Dimensional and Weight Analyzing System - A laser scanner apparatus is disclosed herein for measuring the geometry and physical dimensions of one or more objects in a specified location or platform. The specified location or platform is within a range less than a predetermined maximum object distance. The laser scanner includes a waveform generator that generates a predetermined reference waveform to an analog laser that provides an modulated laser beam responsive to the reference waveform, an optical scanning system which 1) transmits and scans the object with the modulated laser light beam and 2) includes a means for receiving reflected the modulated laser light from the surface of an object on the platform or specified location, an avalanche photo-detector positioned to receive the processed modulated light from the optical processing system, and convert energy in the incident light into an amplitude-modulated range signal, a mixer is provided to down-convert the frequency of the range signal into a lower (LF) frequency. In practice, a first electrical circuit receives the down-converted range signal and converts it into a converted waveform that has a sinusoidal wave falling and rising that correspond to the zero crossings. The reference waveform is also applied to a mixer that down-converts it to the LF frequency. A second electrical circuit receives the down-converted reference waveform and converts it a second converted waveform that has a sinusoidal wave falling and rising that correspond to the zero crossings. A computer receives the first and second converted waveforms and outputs a highly accurate signal indicative of the time delay there between. The time delay is used by the computer system to determine the physical dimension of the particular scanning.12-11-2008
20080304041Measuring system - A measuring system, comprising a surveying instrument for projecting a laser beam by rotary irradiation and a photodetection sensor device installed at a measuring point, wherein the surveying instrument comprises a first radio communication unit, the photodetection sensor device comprises a second radio communication unit, and communication can be performed between the surveying instrument and the photodetection sensor device, wherein the surveying instrument comprises an angle detecting means for detecting a horizontal angle in a projecting direction of the laser beam and a first arithmetic unit for controlling the angle detecting means based on a receiving signal from the first radio communication unit, and the photodetection sensor device comprises a photodetection unit for receiving the laser beam and a second arithmetic unit for performing transmission of a photodetection notifying signal to notify the receiving of the laser beam by the photodetection unit and also for performing transmission of a synchronization data by the second radio communication unit to the first radio communication unit, wherein the first arithmetic unit calculates a horizontal angle of the projection of the laser beam when the photodetection sensor device receives the laser beam based on the photodetection notifying signal and the synchronization data.12-11-2008
20110205521MULTI-CHANNEL LED OBJECT DETECTION SYSTEM AND METHOD - A method for detecting an object located in an environment and a multi-channel LED object detection system for detecting an object located in an environment are provided. The method includes providing a Light-Emitting-Diode (LED) light source having a wide field-of-illumination and orienting the LED light source for the wide field-of-illumination to encompass the width of the environment; providing an optical detector having a wide field-of-view and orienting the optical detector for the wide field-of-view to encompass the width of the environment, the optical detector having a plurality of sub-detectors, each having an individual narrow field-of-view, each individual narrow field-of-view creating a channel in the wide field-of-view; driving the LED light source into emitting light toward the environment, the width of the environment being illuminated by the light, the light having an emitted light waveform; receiving and acquiring an individual complete trace of a reflection/backscatter of the emitted light on the object in the environment at each sub-detector of the plurality, thereby combining the individual narrow field-of-view to create the wide field-of-view encompassing the width of the environment and thereby receiving and acquiring an individual complete trace for each channel; converting the acquired individual complete trace of the reflection/backscatter into an individual digital signal; and detecting and identifying at least one of a presence of an object in the environment, a position of the object in the environment, a distance between the object and the LED light source and a visibility in the environment, using the emitted light waveform and at least one of the individual digital signal.08-25-2011
20110007300METHOD AND APPARATUS FOR COVERTLY MARKING TARGETS - An apparatus for covertly marking a target includes a housing sized and configured to simulate a portable electronic device; a reservoir positioned in the housing for holding a quantity of miniature markers; and a dispersing mechanism positioned in or on the housing for dispersing the markers onto the target.01-13-2011
20100141927PHOTODETECTOR AND SPATIAL INFORMATION DETECTING DEVICE USING THE SAME - A photodetector capable of improving dynamic range for input signals is provided. This photodetector includes a photoelectric converting portion, a charge separating portion, a charge accumulating portion, a barrier electrode formed the charge separating portion and the charge accumulating portion, and a barrier-height adjusting portion electrically connected to the barrier electrode. Undesired electric charges such as generated when environment light is incident on the photoelectric converting portion are removed by the charge separating portion. A potential barrier with an appropriate height is formed under the barrier electrode by applying a voltage to the barrier electrode according to an electric charge amount supplied from the charge separating portion to the barrier-height adjusting portion. Electric charges flowing from the charge separating portion into the charge accumulating portion over the potential barrier are provided as an output of the photodetector.06-10-2010
20080266542DISTANCE MEASURING DEVICE - A distance measuring device has a housing carrying a display, a distance measuring module, an inductive touch pad, a touch pad control circuit in communication with the touch pad, and a control circuit in communication with the display, the distance measuring module, and the touch pad control circuit. The touch pad control circuit provides signals to the control circuit representative of a touching of the touch pad.10-30-2008
20100271615System and Method for Generating Three Dimensional Images Using Lidar and Video Measurements - A system uses range and Doppler velocity measurements from a lidar system and images from a video system to estimate a six degree-of-freedom trajectory of a target. The system estimates this trajectory in two stages: a first stage in which the range and Doppler measurements from the lidar system along with various feature measurements obtained from the images from the video system are used to estimate first stage motion aspects of the target (i.e., the trajectory of the target); and a second stage in which the images from the video system and the first stage motion aspects of the target are used to estimate second stage motion aspects of the target. Once the second stage motion aspects of the target are estimated, a three-dimensional image of the target may be generated.10-28-2010
20090097011DISTANCE MEASURING DEVICE - A distance measuring device including a housing that contains a radiation emitting and receiving device, a switch for emitting the radiation and a control panel, where a first wall of the housing features an opening for radiation emission and reception, and the opposite wall or its outer surface forms a stop surface or a stop edge. In order to enable simple handling, it is proposed that a handle emerges from the housing which is displaceable in relation to the housing or can be reset and grasped laterally to the housing.04-16-2009
20100271614LIDAR system utilizing SOI-based opto-electronic components - A compact, integrated LIDAR system utilizes SOI-based opto-electronic components to provide for lower cost and higher reliability as compared to current LIDAR systems. Preferably, an SOI-based LIDAR transmitter and an SOI-based LIDAR receiver (both optical components and electrical components) are integrated within a single module. The various optical and electrical components are formed utilizing portions of the SOI layer and applying well-known CMOS fabrication processes (e.g., patterning, etching, doping), including the formation of additional layer(s) over the SOI layer to provide the required devices. A laser source itself is attached to the SOI arrangement and coupled through an integrated modulation device (such as a Mach-Zehnder interferometer, i.e., MZI) to provide the scanning laser output signal (the scan controlled by, for example, an electrical (encoder) input to the input to the MZI). The return, reflected optical signal is received by a photodetector integrated within the SOI arrangement, where it is thereafter converted into an electrical signal and subjected to various types of signal processing to perform the desired type(s) of signal characterization/signature analysis.10-28-2010
20090180099Distance Measuring System - The distance detector 07-16-2009
20100128244GIMBALED SYSTEM WITH OPTICAL COUDE PATH AND METHOD TRANSFERRING DATA - Embodiments of a gimbaled system with an optical coudé path and method for transferring data are generally described herein. In some embodiments, the gimbaled system includes optical coudé path to provide a data communication path with a gimbaled payload, an on-gimbal communication laser to transmit modulated camera data via the coudé path, and an off-gimbal communication detector to detect the camera data received via the coudé path. In some embodiments, the optical coudé path may include at least two mirrors to provide a bi-directional communication path through an azimuth axis and an elevation axis of the gimbaled payload.05-27-2010
20090161091DISTANCE MEASURING SYSTEM AND PROJECTOR - A projector includes a light source unit, a light source-side optical system for guiding light from the light source unit to a display device, the display device, a projection-side optical system for projecting an image emitted from the display device on to a screen, and a distance measuring system 06-25-2009
20120140201RANGEFINDER WITH INTEGRATED RED-DOT SIGHT - A laser range finder has a first laser oriented in a first direction and a laser range transmitter and a laser range receiver oriented in a second and opposite direction, all mounted on an optical bench. The first laser having a small divergence and used to aim the laser range transmitter and receiver at a target of interest in order to determine the distance to target. The optics and electronics being housed in a housing that can be coupled to a weapon. The housing supporting a plurality of adjustors in contact with the optical bench to align the first laser, the laser range transmitter, and laser range receiver with a scope or iron sights on a weapon.06-07-2012
20090027651System and Method for Improving Lidar Data Fidelity Using Pixel-Aligned Lidar/Electro-Optic Data - A lidar and digital camera system collect data and generate a three-dimensional image. A lidar generates a laser beam to form a lidar shot and to receive a reflected laser beam to provide range data. A digital camera includes an array of pixels to receive optical radiation and provide electro-optical data. An optical bench passes the laser beam, reflected laser beam, and optical radiation and is positioned to align each pixel to known positions within the lidar shot. Pixels are matched to form a lidar point-cloud which is used to generate an image.01-29-2009
20130120736THREE DIMENSIONAL SCANNING BEAM SYSTEM AND METHOD - A three dimensional scanning beam system (05-16-2013
20090185158DEVICE FOR OPTICAL DISTANCE MEASUREMENT - The invention relates to a device for optically measuring distance, in particular a hand-held device, comprising an transmitter unit (07-23-2009
20110222047AERIAL OBSERVATION SYSTEM - An aerial platform comprising a kite providing a level of directional stability when elevated by the wind, and an inflated balloon attached above the kite with a cord. The payload is attached to the kite. The physical separation of the balloon from the kite isolates the payload from shocks generated by the balloon. Additional isolation is provided by use of an elastic attachment cord. Electric power is supplied to the aerial platform by means of an optical fiber receiving optical power from a ground-based source, and conversion of the optical power to electrical power on board the platform. In order to provide a strong tether line, the optical fiber is plaited with a jacket braided from high tensile strength fibers. An aerial laser transmitter is described using a ground based laser source transmitting laser power through an optical fiber to an aerial platform for transmission from the platform.09-15-2011
20110222046RANGEFINDER FOR SHOOTING DEVICE AND METHOD OF ALIGNING RANGEFINDER TO SHOOTING DEVICE SIGHT - Embodiments of the present concept are directed to a rangefinder that can be aligned to a fixed sight on a shooting device so that a range can be accurately taken that corresponds to a fixed sight that is used to align the shooting device to a target. Other embodiments of this concept provide methods of aligning the rangefinder to the fixed sight of the shooting device.09-15-2011
20090079956Three-dimensional LADAR module with alignment reference insert circuitry comprising high density interconnect structure - A 3-D LADAR imaging system incorporating stacked microelectronic layers is provided. A light source such as a laser is imaged upon a target through beam shaping optics. Photons reflected from the target are collected and imaged upon a detector array through collection optics. The detector array signals are fed into a multilayer processing module wherein each layer includes detector signal processing circuitry. The detector array signals are amplified, compared to a user-defined threshold, digitized and fed into a high speed FIFO shift register range bin. Dependant on the value of the digit contained in the bins in the register, and the digit's bin location, the time of a photon reflection from a target surface can be determined. A T03-26-2009
20090079955Spatial information detection device and spatial information detection system using the same - A spatial information detection device is provided, which is capable of, even under the condition that an environmental light having intensity fluctuations exists in a target space, projecting a light intensity-modulated with a predetermined modulation signal from a light emitting source into the target space, receiving light from the target space with a photodetector, and detecting spatial information of the target space from a change between the light projected from the light emitting source and the light received by the photodetector. This device has a smoothing unit configured to integrate, over a predetermined integration period, a fluctuation component in a prescribed phase zone of the modulation signal with respect to an electric charge amount generated by receiving the environmental light in the electric charge amount generated at the photodetector by receiving the light from the target space, thereby smoothing the fluctuation component.03-26-2009
20090141261ELECTRO-OPTICAL OUTPUT UNIT AND MEASURING DEVICE COMPRISING SAID ELECTRO-OPTICAL OUTPUT UNIT - The invention relates to an electro-optical output unit (06-04-2009
20090086188OPTICAL MEMBER DRIVING APPARATUS FOR LASER RADAR - An optical-member driving apparatus for laser radar, comprising: an optical-member integrated portion including an optical member and an optical-member mounted portion having the optical member mounted thereon; first erection members supporting the optical-member integrated portion; a relay portion to which the first erection members is connected; second erection members: supporting the relay portion; and a fixed portion to which the second erection members are connected.04-02-2009
20110228249LASER IMAGING SYSTEM WITH UNIFORM LINE ILLUMINATION AND METHOD FOR GENERATING IMAGES - Embodiments of a laser imaging system with uniform line illumination and method for generating images are generally described herein. In some embodiments, the laser imaging system includes a polarizer beam splitter to angularly separate an input laser beam into a pair of overlapping cross-polarized beams having a first angular separation therebetween, and a diffraction optic beamlet generator to generate a plurality of beamlets of alternating polarization states with a second angular separation therebetween. The laser imaging system may also include a focal-plane array (FPA) having a field-of-view (FOV) to be illuminated by the plurality of beamlets.09-22-2011
20090201486SCANNED LASER DETECTION AND RANGING APPARATUS - A method and apparatus for obtaining information about an environment having objects located around a vehicle. The laser detection and ranging system comprises a fan beam generation unit, a streak unit, a telescope, a switch, and a detector unit. The fan beam generation unit transmits a fan beam. The streak unit streaks a received beam generated in response to the fan beam to form a streaked beam. The telescope propagates the fan beam to a portion of the environment around the vehicle. The switch directs the fan beam generated by the fan beam generation unit through the telescope along an azimuth onto the environment around the vehicle and directing a response signal to the fan beam to the streak unit. The detector unit detects the streaked beam and generating range and angle data to generate an image of the environment.08-13-2009
20090195769DISTANT MEASUREMENT METHOD AND DISTANT MEASUREMENT SYSTEM - A distant measurement method and a distant measurement system are provided. The distant measurement method includes the following steps: emitting a first light beam and a second light beam from an emitting terminal, wherein the first light beam travels toward a target; providing a switching sequence by a switch mechanism; placing a receiving terminal to receive the first light beam reflected from the target in accordance with the switching sequence and correspondingly provide a first electrical signal, and to receive the second light beam and correspondingly provide a second electrical signal; and utilizing a controlling terminal to receive the first and second electrical signals, and calculate distance between the distant measurement system and the target in accordance with a phase differential formed between the first and second electrical signals.08-06-2009
20090244514DISTANCE MEASURING SENSORS INCLUDING VERTICAL PHOTOGATE AND THREE-DIMENSIONAL COLOR IMAGE SENSORS INCLUDING DISTANCE MEASURING SENSORS - A distance measuring sensor may include: a photoelectric conversion region; first and second charge storage regions; first and second trenches; and/or first and second vertical photogates. The photoelectric conversion region may be in a substrate and/or may be doped with a first impurity in order to generate charges in response to received light. The first and second charge storage regions may be in the substrate and/or may be doped with a second impurity in order to collect charges. The first and second trenches may be formed to have depths in the substrate that correspond to the first and second charge storage regions, respectively. The first and second vertical photogates may be respectively in the first and second trenches. A three-dimensional color image sensor may include a plurality of unit pixels. Each unit pixel may include a plurality of color pixels and the distance measuring sensor.10-01-2009
20090244515SENSOR SYSTEM WITH A LIGHTING DEVICE AND A DETECTOR DEVICE - A sensor system with a lighting device and a detector device is specified. The lighting device is provided for emitting laser radiation of a first wavelength and laser radiation of a second wavelength different from the first. The detector device is provided for detecting electromagnetic radiation of the first and the second wavelength.10-01-2009
20100177297SYSTEMS AND METHODS FOR QUANTUM RECEIVERS FOR TARGET DETECTION USING A QUANTUM OPTICAL RADAR - A quantum-illumination receiver is described comprising a phase-conjugation and mixing system for mixing and/or conjugating the idler beam from an entangled light transmitter and the return beam from the target to produce an output beam that is representative of the presence or absence of the target, a light beam collector for receiving a return light beam from the target region and directing the return light beam from a target region to the phase-conjugation and mixing system input, an optical input for receiving an idler light beam from a transmitter and directing the idler light beam from the transmitter to the phase-conjugation and mixing system, a sensor for measuring the output of the phase-conjugation and mixing system, and a processor to process the output of the sensor to make an determination about the presence of the target.07-15-2010
20100177298 LASER RANGE FINDER FOR USE ON A GOLF COURSE - An improved range finder for use on a golf course. The improved range finder includes means for identifying the closest target in a field of view during a sweep operation of the field of view and means for presenting the distance of the closest target at the conclusion of the sweep operation of the field of view. The improved range finder preferably uses infrared light to detect a flagstick.07-15-2010
20100177296METHOD AND APPARATUS FOR POSITION OPTIMIZATION OF A FIELD GENERATOR - An electro-magnetic tracking system (07-15-2010
20100002223EXTERNAL MICROCONTROLLER FOR LED LIGHTING FIXTURE, LED LIGHTING FIXTURE WITH INTERNAL CONTROLLER, AND LED LIGHTING SYSTEM - A detector (01-07-2010
20100157279Distance Measuring Apparatus and Control Method Thereof - The invention provides a distance measuring apparatus for measuring distance to a target, having: a light emitter for emitting a measuring light; a light receiving system for receiving a reflected light reflected from the target and outputting a sensing signal; a comparator having a reference signal input terminal for receiving a reference signal, a sensing signal input terminal for receiving the sensing signal, and a comparison result signal output terminal for outputting a comparison result signal according to comparison results between the reference signal and the sensing signal; and a process and control module for providing the reference signal to the reference signal input terminal of the comparator and adjusting the reference signal according to the comparison signal.06-24-2010
20100165322Camera-style lidar setup - Separate reception/transmission apertures enhance pointing: reception is more efficient than transmission (kept smaller for MEMS steering). Apparatus aspects of the invention include lidar transmitters emitting laser beams, and scan mirrors (or assemblies) angularly adjustable to deflect the beams in orthogonal directions. In one aspect, afocal optics magnify deflection; a transmitter aperture transmits the beam; a lidar receiver doesn't share the transmitter aperture. In another aspect, auxiliary optics calibrate the deflection.07-01-2010
20100182587Energy Efficient Laser Detection and Ranging System - According to one embodiment, a laser detection and ranging system includes a beam forming element that is optically coupled to a light source. The light source generates a light beam that is split by the beam forming element into multiple beamlets and directed toward a target. At least one of the beamlets are reflected from the target as backscattered light that is received by a detector that generates a signal indicative of a characteristic of the target.07-22-2010
20100188648BEAM IRRADIATION DEVICE AND LASER RADAR SYSTEM - A beam irradiation device includes: a laser light source for emitting laser light; an actuator which scans a targeted area with the laser light; a servo optical system which changes a propagating direction of servo light in response to driving of the actuator; a photodetector which receives the servo light to output a signal depending on a light receiving position of the servo light; an actuator controlling section which controls the actuator based on the signal to be outputted from the photodetector; and a laser controlling section which controls the laser light source based on the signal to be outputted from the photodetector. The laser controlling section controls the laser light source to emit the laser light in a pulse manner at a timing when the light receiving position of the servo light coincides with a predetermined targeted position.07-29-2010
20100259746PROFILOMETER - A profilometer for measuring a surface profile of a measuring target has a lighting device for irradiating the measuring target with light, an imaging device for imaging a reflected light from the measuring target, and a normal calculation section for calculating a normal direction of a surface at each position of the measuring target from an imaged image. The lighting device has a light emission region of a predetermined extent. A radiance of center of gravity of a light source distribution of a point symmetric region coincides with a radiance of the center of the point symmetric region in an arbitrary point symmetric region of the light emission region.10-14-2010
20100157280METHOD AND SYSTEM FOR ALIGNING A LINE SCAN CAMERA WITH A LIDAR SCANNER FOR REAL TIME DATA FUSION IN THREE DIMENSIONS - An apparatus and method for aligning a line scan camera with a Light Detection and Ranging (LiDAR) scanner for real-time data fusion in three dimensions is provided. Imaging data is captured at a computer processor simultaneously from the line scan camera and the laser scanner from target object providing scanning targets defined in an imaging plane perpendicular to focal axes of the line scan camera and the LiDAR scanner. X-axis and Y-axis pixel locations of a centroid of each of the targets from captured imaging data is extracted. LiDAR return intensity versus scan angle is determined and scan angle locations of intensity peaks which correspond to individual targets is determined. Two axis parallax correction parameters are determined by applying a least squares. The correction parameters are provided to post processing software to correct for alignment differences between the imaging camera and LiDAR scanner for real-time colorization for acquired LiDAR data.06-24-2010
20100225896DISTANCE MEASURING UNIT - The invention relates to a distance measuring unit (09-09-2010
20090002678Laser radar apparatus for three-dimensional detection of objects - In a laser radar apparatus, a laser beam generator that generates a laser beam and an optical detector that detects reflected light that has been reflected by an object in a field to be observed. A deflection performing means, provided with one or more deflection means each rotatable on a given central axis thereof, for enabling the deflection means to deflect the laser beam to the field and to deflect the reflected light toward the optical detector. A drive means driven to rotate the deflection means. A direction changing means changes a direction of the laser beam from the deflection means is changed in a direction of the central axis. A control means controls an operation of the direction changing means.01-01-2009
20100253931COORDINATE MEASUREMENT INSTRUMENT - A coordinate measurement instrument includes an optical distance measurement device (10-07-2010
20120033196Method for Enhancing a Three Dimensional Image from a Plurality of Frames of Flash Lidar Data - A method for enhancing a three dimensional image from frames of flash LIDAR data includes generating a first distance R02-09-2012
20080316463Laser radar apparatus that measures direction and distance of an object - There is provided a laser radar including laser beam generating means, photo detecting means, a mirror, light deflecting means, and rotation driving means. The laser beam generating means emits a laser beam having an axis thereof. The photo detecting means detects a reflected laser beam that is reflected back by an object. The mirror includes a through-hole that passes the laser beam and a reflecting surface that reflects a reflected laser beam reflected back by the object toward the photo detecting means. The light deflecting means deflects the laser beam toward a measuring region and reflects the reflected laser beam from the object toward the mirror. The rotation driving means rotates the light deflecting means so as to direct the laser beam toward the measuring region.12-25-2008
20130135604MEASURING DEVICE FOR MEASURING DISTANCE - A measuring device and a method for adjusting the measuring device is disclosed. The device includes a first electro-optical component, a second electro-optical component, a beam-shaping optical element, an optics carrier, and a printed circuit board. The optics carrier includes a first receptacle, where the first electro-optical component is mounted in the first receptacle, and a second receptacle, where the beam-shaping optical element is mounted in the second receptacle. The printed circuit board includes a third receptacle, where the second electro-optical component is mounted in the third receptacle. The first electro-optical component and the beam-shaping optical element are adjustable relative to the optics carrier in a direction of a respective optical axis of the first electro-optical component and the beam-shaping optical element and the second electro-optical component is adjustable and fixable in a plane essentially perpendicular to an optical axis of the second electro-optical element.05-30-2013
20130135605OPTICAL RANGING DEVICE AND ELECTRONIC EQUIPMENT INSTALLED WITH THE SAME - An optical ranging device has a light emitting element, a light receiving element, a light emitting lens, and a light receiving lens. Provided between the light receiving lens and the light receiving element are a first reflection surface and a second reflection surface for changing a direction of an optical axis of a light beam condensed by the light receiving lens and guiding the light beam to the light receiving element. A single medium exists between the first reflection surface and the second reflection surface.05-30-2013
20110128525Light scanning device, laser radar device, and light scanning method - An on-vehicle laser radar device scans laser light in front and side zones through the windshield glass of a vehicle in a horizontal direction in order to detect an obstacle. When projecting the laser light emitted from the light source to the windshield glass, the device rotates a polarization plane of the laser light according to the angle of inclination of the windshield glass and an azimuth angle in the horizontal direction, and outputs the polarized laser light through the windshield glass in order to scan the laser light toward front and side visual zones of the vehicle.06-02-2011
20100302527LASER INSTRUMENT FOR ELECTRO-OPTICAL DISTANCE MEASUREMENT - A laser instrument for electro-optical measurement of the distance of a target object to a reference mark is disclosed. The instrument includes a housing, a measuring device which emits a laser beam and determines a distance value from the receiving beam coming from the target object, an outlet opening to couple out the laser beam from the housing, a display device to display the distance value and an operating device to operate the laser instrument and to start a distance measurement. The display and operating devices are arranged on an upper side of the housing. The outlet opening is arranged in the upper side, in the lower side opposite from the upper side or in a side surface of the housing.12-02-2010
20100321668Distance/speed meter and distance/speed measuring method - In a distance/speed meter, first and second semiconductor lasers emit parallel laser light beams to a measurement target. A first laser driver drives the first semiconductor laser such that the oscillation interval in which at least the oscillation wavelength monotonically increases repeatedly exists. A second laser driver drives the second semiconductor laser such that the oscillation wavelength increases/decreases inversely to the oscillation wavelength of the first semiconductor laser. First and second light-receiving devices convert optical outputs from the first and second semiconductor lasers into electrical signals. A counting unit counts the numbers of interference waveforms generated by the first and second laser light beams and return light beams of the first and second laser light beams. A computing device computes the distance to the measurement target and the speed of the measurement target from the minimum and maximum oscillation wavelengths of the first and second semiconductor lasers and the counting result obtained by the counting unit.12-23-2010
20110001958LASER-BASED COORDINATE MEASURING DEVICE AND LASER-BASED METHOD FOR MEASURING COORDINATES - A laser based coordinate measuring device measures a position of a remote target. The laser based coordinate measuring device includes a stationary portion, a rotatable portion, and at least a first optical fiber. The stationary portion has at least a first laser radiation source and at least a first optical detector, and the rotatable portion is rotatable with respect to the stationary portion. The first optical fiber system, which optically interconnects the first laser radiation source and the first optical detector with an emission end of the first optical fiber system, has the emission end disposed on the rotatable portion. The emission end emits laser radiation to the remote target and receives laser radiation reflected from the remote target with the emission direction of the laser radiation being controlled according to the rotation of the rotatable portion.01-06-2011
20110001957DISTANCE-MEASURING OPTOELECTRONIC SENSOR - A distance-measuring optoelectronic sensor for the monitoring of a working zone is provided which is located within a detection zone of the sensor and at a first distance from the sensor, wherein the sensor has a lighting unit having a light source to illuminate the working zone at least partly as well as an object detection unit by means of which unauthorized objects in the working zone can be detected. In this respect, an illumination control is designed, in a switching-on phase, 01-06-2011
20110128524LIGHT DETECTION AND RANGING SYSTEM - A method of light detection includes emitting a pulsed light beam from a pulsed light source; splitting the pulsed light beam with a beam splitting device into at least two light beam ray sets, wherein at least one of the ray sets collide with airborne particulates, resulting in backscattered light; which is received through an aperture(s); and detecting the received backscattered light at a detector. A light detection and ranging system is also disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.06-02-2011
20090033910SYSTEM AND METHOD FOR STEREO PHOTOGRAPHY - A system and method for stereo photography is provided. The system comprises a first light source, a second light source and a photodetector. The first light source is configured to illuminate one or more first non-white colors on an object. The second light source is configured to illuminate one or more second non-white colors that are different from the first non-white colors on the object. The photodetector is configured to detect a three dimensional representation of the object at a single moment in time in response to the first light source illuminating the first non-white colors and the second light source illuminating the second non-white colors on the object.02-05-2009
20120242973Stabilisation of the Repetition Rate of a Passively Q-Switched Laser by Means of Coupled Resonators - The invention relates to a Q-switched laser comprised of a pump light source (09-27-2012
20110211187RESONANT SCANNER FOR 3D MAPPING - A system, apparatus, and method are disclosed for a resonant scanner for three-dimensional (3D) mapping. The system, apparatus, and method employ a small, lightweight articulating device that performs as a 3D Laser Detection and Ranging (LADAR) laser from a moving scanner platform in a way that provides geolocation and takes advantage of mechanical resonance to amplify motion in the tilt axis. The device is used to map terrain in 3D space. The disclosed method involves resonating the scanner platform of the device with a spring about a pivot. The method further involves determining with a position sensor the tilt position and/or resonance rate of the scanner platform. Further, the method involves applying torque with an actuator to the scanner platform, and controlling with a controller the resonance of the scanner platform.09-01-2011
20110242521SYSTEM AND METHOD FOR IDENTIFYING INDIVIDUAL TREES IN LIDAR DATA USING LOCAL VIEW - A method and apparatus for identifying individual trees and its canopy shape in LiDAR data determines if the view of each LiDAR data point is blocked by one or more neighboring LiDAR data points. LiDAR data points that do not have neighboring LiDAR data points that block the view are considered to be a central part of a tree canopy. In one embodiment, those LiDAR data points that are central part of a canopy are added to an output file that stores clusters of data points for each canopy detected. The central part of the canopy area can be analyzed to predict one or more characteristics of the tree.10-06-2011
20110085154FIBER OPTIC SCANNER - Fiber optic scanner and method for transmitting and receiving optical signals and range imaging camera including fiber optic scanner. The fiber optic scanner includes a light guide array including individual light guides arranged such that a first end has first ends of the individual light guides arranged in an image plane of collimating optics and a second end has second ends of the individual light guides arranged in a circular manner. A central light guide includes a first end arranged at a center of the circularly arranged second ends of the individual light guides and a motor driven reflector arranged to guide light emerging from the circularly arranged ends of the individual light guides into the central light guide. The central light guide further includes two coaxially arranged cross sectional areas that are structured and arranged to guide transmitted light through a central one of the two coaxially arranged cross sectional areas and to guide received light through an outer one of the two coaxially arranged cross sectional areas.04-14-2011
20090323046SYSTEM AND METHOD TO DETECT FOREIGN OBJECTS ON A SURFACE - A detection system and method are disclosed for detecting a foreign object on a surface, such as an airport runway or a racetrack. The detection system includes a plurality of detectors mounted on the vehicle and capable of receiving light reflected from the object on the surface, and producing data that indicates the presence of said object as said vehicle moves along the surface; and a computer electrically coupled to each of the plurality of detectors, said computer being capable of processing said data and generating an alarm to alert an operator of said vehicle to a presence of said object. In low light conditions, the system may further include a plurality of light sources mounted on a vehicle and capable of illuminating at least one monitored area of the surface with light.12-31-2009
20120242972Vehicular Ranging System and Method of Operation - A vehicular object ranging system having a long-range sensor having a long-range field of view and a short-range sensor having a short-range field of view overlapping and exceeding said long-range field of view and having an angular resolution capability. The sampling rate of one of the long-range sensor and short-range sensor can be varied depending of the signal provided by the other.09-27-2012
20100053592METHOD, DEVICE AND SYSTEM FOR IMAGING - There is provided a novel method, device and system for imaging. According to some embodiments of the present invention, a visible light image sensor array (e.g. Charge-Couple Device (“CCD”) or Complementary Metal-Oxide-Semiconductor (“CMOS”)) and arranging sensor array may be arranged substantially facing the same direction and having a substantially overlapping field of view. According to further embodiments of the present invention, a range value derived from one or more ranging sensor elements within the ranging sensor array may be correlated with one or more imaging elements within the visible sensor array. Image processing logic may correlate the derived ranging value with the one or more imaging elements as a function of the derived range.03-04-2010
20110085153DISTANCE MEASURING DEVICE - A distance measuring device is provided. The distance measuring device includes: a distance sensing unit, for sensing a distance value of a target object; a drive unit, for driving the distance sensing unit to rotate according to a rotation angle; and a compensation unit, for providing a compensation value according to the rotation angle and obtaining an actual distance according to the compensation value and the distance value.04-14-2011
20090027652Integrated ambient light sensor and distance sensor - An integrated proximity and light sensor includes an indicating light-emitting device (“ILD”), a projecting light-emitting device (“PLD”), and a light sensing integrated circuit (“LSIC”) configured as a single package. The LSIC controls each of the ILD and the PLD to emit light therefrom and the LSIC is configured to detect an ambient light level and also to detect a reflection of the light projected by the PLD from a surface for proximity detection.01-29-2009
20110037966System for Measuring a Physical Quantity and for the Map Representation of Said Measures - The present invention relates to a system for measuring a physical magnitude and for the mapping representation of these measurements. The system for measuring a physical magnitude at different points of a zone to be examined, each measurement being located spatially, the system comprising a probe for measuring said physical magnitude, the system comprising a tachymeter associated with a target, said target being attached to the probe, the tachymeter determining the location of the target during each measurement in order to ascertain the position of the probe at the time of the measurement. The invention applies notably to the mapping of electromagnetic fields.02-17-2011
20110037965Combined Coherent and Incoherent Imaging LADAR - The present invention relates generally to a long range eye-safe laser radar (LADAR) system for use in an environment where real-time non-cooperative identification of an object is required. In particular, a laser beam is aimed at an object, the laser energy reflected from the object is collected by a detector array for use in generating a composite of both a high resolution 3-Dimensional (3D) shape of the object and the object's high resolution micro-Doppler vibration spectrum, a characteristic of the object as unique as a fingerprint. The composite is then used to automatically identify the object by comparison to a database of similar composite sets of 3D shape and vibration spectrum information with the results of the identification conveyed to the user.02-17-2011
20110255070TRAFFIC SCANNING LIDAR - A system for determining the speed and position of objects comprises a beam source, a transmit reflection device, a beam receiver, a receive reflection device, and a controller. The beam source may generate a beam. The transmit reflection device may reflect the beam at the objects and may include a plurality of transmit faces with each transmit face oriented at a different angle and operable to reflect the beam at a different height. The beam receiver may detect the beam. The receive reflection device may include a plurality of receive faces with each receive face oriented at a different angle and operable to focus the beam reflected from objects at different heights onto the beam receiver. The controller may determine the position of the objects over time and calculate the speed of the objects based on a change in the position of the objects.10-20-2011
20100296077THREE-DIMENSIONAL RANGE IMAGING APPARATUS AND METHOD - A three-dimensional range imager includes a light source for providing a modulated light signal, a multiplexer, an optical fiber connecting the light source to the multiplexer, a plurality of optical fibers connected at first ends to the multiplexer and at second ends to a first fiber array, and a transmitter optic disposed adjacent the first fiber array for projecting a pixel pattern of the array onto a target.11-25-2010
20100002222LIDAR WITH STREAK-TUBE IMAGING, INCLUDING HAZARD DETECTION IN MARINE APPLICATIONS; RELATED OPTICS - The system and method relate to detection of objects that are submerged, or partially submerged (e.g. floating), relative to a water surface. One aspect of the invention emits LIDAR fan-beam pulses and analyzes return-pulse portions to determine water-surface orientations and derive submerged-object images corrected for refractive distortion. Another defines simulated images of submerged objects as seen through waves in a water surface, prepares an algorithm for applying a three-dimensional image of the water surface in refractive correction of LIDAR imaging through waves—and also models application of the algorithm to the images, and finally specifies the LIDAR-system optics. Yet another emits nearly horizontal pulses to illuminate small exposed objects at tens of kilometers, detects reflected portions and images successive such portions with a streak-tube subsystem. Still others make special provisions for airborne objects.01-07-2010
20120033195Multipurpose Aiming Sight with Head-Up Display Module - A multipurpose sighting device includes a viewing window, an illuminated display, a beam combiner positioned to transmit light from a target scene and reflect light from the illuminated display through the viewing window, and projection optics having a plurality of optical elements to direct light from the display toward the beam combiner, the projection optics projecting an image of the display through the viewing window at a distance to be in focus with the target scene.02-09-2012
20120176593LASER RANGE FINDER AND METHOD FOR INTRUSION DETECTION - A scanning beam laser range finder and a method are provided for detecting an intrusion into a protected area by enhancing the capability of detecting an intruded attempting to blend with the area background. The laser range finder and method include an Emitter/Receiver configured to emit laser pulses towards each point out of the plurality of points and to receive therefrom reflected laser pulses. Further included is a processor coupled to the Emitter/Receiver and configured to derive an initial distance separating the laser range finder away from each point, the initial distance having an initial measurement error. At least one amplitude comparator is coupled to the Emitter/Receiver and to the processor, which is configured to derive a corrected distance to each point, the corrected distance having a corrected measurement error smaller than the initial measurement error.07-12-2012
20080204699Method and System for Determining the Position of a Receiver Unit - Disclosed are a method and a system for determining the position of a receiver unit (08-28-2008
20080204698Phase Noise Compensation For Interferometric Absolute Rangefinders - The invention relates to a method for interferometric absolute distance measuring by a frequency modulation electromagnetic radiation on at least one measurable target and for subsequently receiving a retransmitted radiation with a heterodyne mixture, wherein the radiation is guided in a parallel direction via a reference interferometric length. In such a way, a first digitised interferogram of the radiation retransmitted by the target and a second digitised interferogram of the radiation guided on the reference length are obtainable at a reception. According to phase progression data of the second interferogram, a virtual interferogram or a phase progression thereof is synthesised and the distance determination is carried out by comparing the progression face data of the first interferogram with the progression face data of the virtual interferogram.08-28-2008
20110051117OBSERVATION DEVICE WITH RANGE FINDER - The invention relates to a binocular observation device, in particular binoculars, having two visual beam paths and a laser range finder with a laser transmitter and a laser receiver and with an opto-electronic display element. A part of one of the beam paths of the laser transmitter is integrated into a first visual beam path, wherein a part of one beam path of the laser receiver is furthermore also integrated into the first visual beam path.03-03-2011
20120133918SURVEYING DEVICE AND COMMUNICATION SYSTEM FOR THE SAME - A surveying device includes a surveying unit configured to measure a direction and a distance to a target object, a control unit configured to control the surveying unit, a communication unit configured to allow the control unit to communicate with an outside network, and a status input unit with which operation status information on the surveying unit is input, wherein the control unit transmits the operation status information input with the status input unit to the outside network via the communication unit.05-31-2012
20100110413DISTANCE DETECTING SENSOR AND CLOSE RANGE DETECTING METHOD - The present invention discloses a distance detecting sensor, comprising: a casing, focusing lenses, a circuit board mounted with several electronic elements, and an emitting device emitting infrared light and a receiving device receiving and sensing a reflected infrared light. Wherein, the casing comprises a main body and two round openings on the top surface of the main body. The lenses comprise an emitting lens and a receiving lens arranged at the openings of the casing. The circuit board is mounted in the main body of the casing; the emitting device is an infrared emitting diode (LED), emitting infrared light toward the emitting lens. The receiving device is a distance detecting sensor module, which senses the reflected light focused by the receiving lens. The distance detecting sensor further comprises an emitting light guide unit arranged between the emitting lens and the emitting device, and the emitting light guide unit comprises small round holes at the emitting tube core of the emitting device. The present invention has higher detection accuracy and improves the overall detection performance of the sensor.05-06-2010
20100066993Method of scanning a scene and corresponding scanning device - The present invention provides devices and methods for multi-dimensional scanning of a scene. In particular, this invention provides scanning devices and methods employing controllable light beam scanning devices capable of sending a light beam onto a scene, and of receiving corresponding light returned from the scene, and controllers capable of operating the scanning device at selected beam orientations, and of gaining distance information from the scanning device at the beam orientations. The controller can dynamically define beam orientations using the distance information gained from preceding beam orientations.03-18-2010
20110188024DOOR LATCH MISALIGHMENT MEASURING ARRANGEMENT AND METHOD - A pair of laser distance sensors are arranged to impinge a respective laser beam on a respective one of a pair of surfaces on a reference target installed on a car door to determine the extent of misalignment of a door latch and striker by determining the extent of any vertical door movement induced by such misalignment. The use of oppositely inclined surfaces eliminates the effect of small mispositioning of the reference target surfaces and the laser distance sensors. A side by side arrangement of the laser distance sensors can also be used to determine the door closing speed.08-04-2011
20100026982OPTICAL INSTRUMENT AND METHOD FOR OBTAINING DISTANCE AND IMAGE INFORMATION - An optical instrument and a method for obtaining distance and image information of an object is disclosed to improve the speed and accuracy of data acquisition. The instrument comprises a camera, positioning unit, distance measuring unit, lens arrangement and control unit. The camera acquires images of an object and the control unit defines an area to be scanned and measurement pixels of an object in the image, wherein the measurement pixels are converted into an approximation of coordinates of positions to be measured assuming a default distance to the positions, and the optical axis of the lens arrangement is adjusted sequentially onto the positions to be measured. After measuring the distances to the positions, the coordinates are recalculated increasing the accuracy of the coordinates.02-04-2010
20100321669RANGE FINDER - A laser range finder 12-23-2010
20110149266Position and Orientation Determination Using Movement Data - Position determining systems and methods are provided. A particular portable device includes a calibration component to communicate with a local positioning system to determine an initial position and orientation of the portable device within a local coordinate system associated with a target structure. The portable device also includes at least one movement sensor to detect movement of the portable device. The portable device further includes a processor to determine a measured position and orientation of the portable device based on the initial position and orientation of the portable device within the local coordinate system and based on the detected movement of the portable device.06-23-2011
20100123892LAYOUT METHOD - The location of one of a series of construction points at an indoor construction site is established using a robotic total station and a handheld device. Construction data is inputted into the handheld device with the construction data defining a plurality of construction points at the construction site. One of the plurality of construction points is selected with the handheld device. Data regarding the selected construction point is then transmitted wirelessly from the handheld device to a robotic total station. The robotic total station generates a beam of laser light, and directs the beam of laser light from the robotic total station to the construction point. The construction point is defined by x and y coordinates, and by an assumed z coordinate. The actual z coordinate is that of a point on a horizontal surface, such as a ceiling or floor, having the same x and y coordinates. Through an iterative process, the location of the construction point is established.05-20-2010
20120069319BEAM IRRADIATION DEVICE AND LASER RADAR SYSTEM - A beam irradiation device is provided with a laser light source which emits laser light, a mirror actuator which causes the laser light to scan a targeted area, and an emission window through which laser light reflected on a mirror of the mirror actuator is transmitted. The emission window is formed with an anti-reflection film for suppressing surface reflection. The anti-reflection film has an angle dependence such that a lower limit of a reflectance is maintained in an incident angle range (0 to 20°) of the laser light at least corresponding to a scanning range of the laser light.03-22-2012
20100149518METHODS AND INSTRUMENTS FOR ESTIMATING TARGET MOTION - The present invention relates to a measuring instrument and methods for such a measuring instrument for tracking a moving object, measuring a distance to an object. According to the invention, sets of target position data including at least horizontal (Ha) and vertical angle (Va) between the measuring instrument (06-17-2010
20120038901OPTICAL PAYLOAD WITH INTEGRATED LASER RANGEFINDER AND TARGET DESIGNATOR - A compact optical payload for an unmanned aircraft includes two infrared cameras for wide and narrow field viewing, a daylight color camera, a laser pointer and a laser range finder.02-16-2012
20100045963OPTICAL DISTANCE MEASURING SENSOR AND ELECTRONIC DEVICE - An optical distance measuring sensor includes a light receiving element arranged on the same plane as a light emitting element. The light receiving element includes a light receiving unit having a plurality of cells and collecting the light emitted from the light emitting element and reflected by a target object, a flash memory unit storing a predetermined position on the light receiving unit, and a signal processing circuit unit sensing the collection position of the light on the light receiving unit, and measuring the distance to the target object based on a relative positional relationship between the predetermined position stored in the flash memory unit and the collection position of the light on light receiving unit.02-25-2010
20110170086RANGING DEVICE AND RANGING MODULE AND IMAGE-CAPTURING DEVICE USING THE RANGING DEVICE OR THE RANGING MODULE - A ranging device including: a lens array member which has first and second ranging lenses, optical axes of the pair of ranging lenses being parallel to each other, and first and second optical images of a subject being formed by the first and the second ranging lenses respectively; a mirror array member which has first and second reflecting members, each of the pair of reflecting members being provided with a reflecting plane; a medium mirror member which has first and second reflecting planes, the medium mirror member being arranged between the pair of reflecting members; an imaging element which is configured to convert the first and the second optical images to electronic signals; and an electronic circuit which is configured to calculate a distance to the subject based on the electronic signals output from the imaging element.07-14-2011
20120113408Radiation Sensor for Detecting the Position and Intensity of a Radiation Source - A radiation sensor is provided for detecting the position and intensity of a radiation source. The radiation sensor includes at least one photodetector having a radiation-sensitive surface. Furthermore, the radiation sensor includes a reflector that reflects the radiation emitted by a radiation source from specific directions at least partly in the direction of the radiation-sensitive surface of the photodetector. The reflector is arranged on that side of the radiation sensor that is remote from the radiation source.05-10-2012
20120044476SYSTEMS AND METHODS OF SCENE AND ACTION CAPTURE USING IMAGING SYSTEM INCORPORATING 3D LIDAR - The present invention pertains to systems and methods for the capture of information regarding scenes using single or multiple three-dimensional LADAR systems. Where multiple systems are included, those systems can be placed in different positions about the imaged scene such that each LADAR system provides different viewing perspectives and/or angles. In accordance with further embodiments, the single or multiple LADAR systems can include two-dimensional focal plane arrays, in addition to three-dimensional focal plane arrays, and associated light sources for obtaining three-dimensional information about a scene, including information regarding the contours of the objects within the scene. Processing of captured image information can be performed in real time, and processed scene information can include data frames that comprise three-dimensional and two-dimensional image data.02-23-2012
20120062867LASER DISTANCE MEASUREMENT APPARATUS - A laser-radar distance measurement apparatus for measuring the distance between two arbitrary points on a measurement target in a non-contact fashion has a light emitter, a light receiver, a scanner, and a calculation controller. The light emitter emits laser light. The scanner deflects the laser light from the light emitter to irradiate with the laser light the two arbitrary points on the measurement target one after the other, and performs one-dimensional scanning along a straight line including the two arbitrary points. The light receiver receives the laser light reflected from the two arbitrary points to output signals respectively. The calculation controller calculates the distance between the two arbitrary points based on the signals output from the light receiver and operation information on the scanner.03-15-2012
20080309913SYSTEMS AND METHODS FOR LASER RADAR IMAGING FOR THE BLIND AND VISUALLY IMPAIRED - A 3D imaging ladar system comprises a solid state laser and geiger-mode avalanche photodiodes utilizing a scanning imaging system in conjunction with a user interface to provide 3D spatial object information for vision augmentation for the blind. Depth and located object information is presented acoustically by: 1) generating an audio acoustic field to present depth as amplitude and the audio image as a 2D location. 2) holographic acoustical imaging for a 3D sweep of the acoustic field. 3) a 2D acoustic sweep combined with acoustic frequency information to create a 3D presentation.12-18-2008
20130148095DOPPLER COMPENSATION FOR A COHERENT LADAR - In one aspect, a method includes representing a range of Doppler frequency offsets as a local oscillator waveform comprising a plurality of digital waveform samples, selecting a portion of the plurality of digital waveform samples using a Doppler value to form an optical heterodyne; and generating a signal associated with a target within a bandwidth of a receiver using the optical heterodyne.06-13-2013
20120206709Apparatus and Method for Sensing Distance - The apparatus for sensing a distance from an object includes an emitter, a first receiver, and a second receiver. The emitter emits a light along an emitting direction toward the object. The first receiver is disposed on a side of the emitter and has a first light incident surface, wherein the first receiver receives the light reflected from the object to generate a first signal. The second receiver is disposed between the emitter and the first receiver and has a second light incident surface, wherein the second receiver receives the light reflected from the object to generate a second signal. The first receiver has a first signal-to-distance curve with a first peak, the second receiver has a second signal-to-distance curve with a second peak, and a distance corresponding to the first peak is larger than a distance corresponding to the second peak.08-16-2012
20120013886Distance Measuring Module And Electronic Device Including The Same - Provided is a distance measuring module including an imaging lens imaging an object, a light source part emitting reference light to the object through the imaging lens, and a light receiving part receiving reflected light reflected by the object and made incident thereupon through the imaging lens, wherein a distance from the object is measured on the basis of a time of flight of the reflected light having reached the light receiving part.01-19-2012
20120013885DISTANCE MEASURING DEVICE AND METHOD FOR MEASURING DISTANCE - A distance measuring device having a measuring range and configured for measuring a distance of at least an object located in the measuring range is provided. The distance measuring device includes a light emitting component, a diffusing component, an adjusting component and an image sensing component. The light emitting component is configured for emitting a light beam. The diffusing component is disposed on a transmission path of the light beam and is configured for transforming the light beam into a measuring light beam with a specific pattern to irradiate the object. The adjusting component is configured for adjusting an incidence angle and an incidence location of the light beam striking at the diffusing component. The image sensing component has a field of view covering the measuring range. The distance measuring device has a far measurable distance. A method for measuring distance and another distance measuring device are also provided.01-19-2012
20120206708METHOD AND CONTROL UNIT FOR ROBUSTLY DETECTING A LANE CHANGE OF A VEHICLE - A method for detecting a lane change of a vehicle or for providing a curvature of a target line for lane guidance of a vehicle is described, the method including a step of receiving a first piece of traffic lane information which represents an optically detected first traffic lane boundary adjacent to or in front of a left-hand vehicle side and/or receiving a second piece of traffic lane information which represents an optically detected second lane boundary adjacent to or in front of a right-hand vehicle side. The method further includes a step of detecting a lane change if the first and/or the second piece(s) of traffic lane information represent(s) a traffic lane boundary which is less than a predetermined lateral distance to a vehicle side, or ascertaining a curvature of a desired target line for lane guidance of a vehicle from the first piece of traffic lane information weighted using a first weighting factor and the second piece of traffic lane information weighted using a second weighting factor, on the basis of a correlation observation.08-16-2012
20090097010OPTICAL RANGE-FINDING SENSOR, OBJECT DETECTION DEVICE, SELF-CLEANING TOILET SEAT, AND METHOD FOR MANUFACTURING OPTICAL RANGE-FINDING SENSOR - An optical range-finding sensor according to an embodiment of the present invention includes a light-emitting element that emits irradiation light, a light-emitting side lens that collects the irradiation light and irradiates the light to a range-finding object, a light-receiving side lens that collects reflected light of the irradiation light reflected by the range-finding object, a position detecting light-receiving element that receives the collected reflected light and detects a position of the range-finding object, and a control processing integrated circuit that controls light emission of the light-emitting element and processes a detection current of the position detecting light-receiving element. The light-emitting element is configured of a vertical cavity surface emitting laser.04-16-2009
20120154783COMPACT MONOSTATIC OPTICAL RECEIVER AND TRANSMITTER - A compact monostatic optical transmitter/receiver device simultaneously transmits an optical beam and collects returning light using a single lens or optical aperture. The system provides automatic alignment of the transmit and receive aperture and is compatible with fiber-coupled laser sources. Transmit light is emitted from a double-cladding fiber core while received light is coupled into the inner cladding of the same fiber. The transmit light propagating in the core and the received light propagating in the inner cladding are separated by the means of a diplexer comprised of a fused fiber coupler or a fiber-coupled micro-optic device.06-21-2012
20120026481DETECTOR DEVICE AND MOBILE ROBOT HAVING THE SAME - A detector device includes a detector module and a lens module. The detector module includes an optical emitter and a photon detector spaced apart from the optical emitter. The lens body includes a first light-transmissive surface, a second light-transmissive surface, and a third light-transmissive surface. The optical emitter is operable to emit a light beam passing through the first light-transmissive surface and the second light-transmissive surface toward a surface so as to define a field of emission on the surface. The photon detector is aligned with the first and third light-transmissive surfaces so as to define a field of view on the surface. An extent of overlap between the field of view and the field of emission varies in accordance with a distance between the optical emitter and the surface.02-02-2012
20090128797Retro detector system - A light detection system duplicates the dynamic range of low intensity non-cooperative targets for high intensity cooperative targets. Both dynamic ranges of return light pulses are supported at the same time. In one embodiment, two beam splitters are used to reduce the intensity of reflected light that is received from high intensity sources to levels that can be accurately ranged. Ambiguity between the two paths is resolved by using an additional detector. Alternatively, one beam splitter is used to reduce the intensity of reflected light that is received from high intensity sources to levels that can be accurately ranged. The beam splitter system increases the effective dynamic range of the detection and ranging system passively without any need to reconfigure the system.05-21-2009
20120062868OPTICAL INSTRUMENT AND METHOD FOR OBTAINING DISTANCE AND IMAGE INFORMATION - An optical instrument and a method for obtaining distance and image information of an object is disclosed to improve the speed and accuracy of data acquisition. The instrument comprises a camera, positioning unit, distance measuring unit, lens arrangement and control unit. The camera acquires images of an object and the control unit defines an area to be scanned and measurement pixels of an object in the image, wherein the measurement pixels are converted into an approximation of coordinates of positions to be measured assuming a default distance to the positions, and the optical axis of the lens arrangement is adjusted sequentially onto the positions to be measured. After measuring the distances to the positions, the coordinates are recalculated increasing the accuracy of the coordinates.03-15-2012
20120154784LASER RADAR PROJECTION WITH OBJECT FEATURE DETECTION AND RANGING - A laser projection system is disclosed. The system includes a laser projector that projects a light beam to the surface of an object and scans that projected light beam over at least a portion of the surface, wherein a portion of the projected beam is diffusely reflected from the surface back to the system. The system further includes an optical signal detector that receives the feedback light beam and converts it to an image signal, a light suppression means for suppressing unwanted light from entering the optical signal detector, and a computer for producing a measurement of the distance from the projector to the object surface, and controlling the system to buck the laser projector into a coordinate system of the object using three or more features on the object, wherein at least one of the three or more features serves as a targetless fiducial point.06-21-2012
20090135402COMPUTERIZED IMAGING OF TARGET ANIMALS - A method of generating and storing three-dimensional digital data indicative of a sporting trophy is provided. The method may be implemented in relation to a wide variety of sporting trophy applications. A sportsman can provide a sporting trophy to a scanning system to obtain three-dimensional image data relative to the sporting trophy. Sporting-relevant measurements can be computed based on the stored three-dimensional image data.05-28-2009
20110090481MULTIPLE-WAVELENGTH CAPABLE LASER RECEIVER - A laser light receiver used to detect pulsed laser light that is produced by a rotating laser light source on a construction jobsite is disclosed. In this manner, the laser receiver acts as an elevation detector and provides an equipment operator, or a construction worker, with the current elevation status with respect to the plane of laser light. The laser receiver is a unitary device that can detect multiple light frequencies/wavelengths, including laser beams that are in the green, red, and infrared spectra. The laser receiver also is capable of discriminating between such laser beams and other interference light sources, particularly fluorescent light sources.04-21-2011
20110102763Three Dimensional Imaging Device, System and Method - A 3D imaging system projects a light spot on an object and images the light spot with a 2D image sensor. The position of the light spot within the field of view of the 2D image sensor is used to determine the distance to the object.05-05-2011
20120300190MEASURING DEVICE FOR DISTANCE MEASUREMENT - A measuring device for measuring a distance between a reference mark and a target object is disclosed. The device includes a beam source, which is embodied as an electro-optical component and emits a laser beam along an optical axis, a detector, which is embodied as an additional electro-optical component and receives a reception beam reflected and/or scattered by the target object along an optical axis, a beam forming optics, which forms the laser beam and the reception beam along an optical axis, and a beam splitting optics, which deflects the laser beam or the reception beam. An optics carrier is provided with a first receptacle for mounting a first of the electro-optical components and a second receptacle for mounting the beam forming optics. The optics carrier is monolithic.11-29-2012
20120120382MULTI-DIRECTIONAL ACTIVE SENSOR - A multi-directional sensor system includes a light source configured to generate a beam of electromagnetic radiation; and a transmitter configured to transmit the beam of electromagnetic radiation to a target. The transmitter may include (i) a plurality of optical fibers, wherein one or more of the optical fibers are configured to receive the beam of electromagnetic radiation, and (ii) a surface on which one end of each of the plurality of optical fibers terminate in a different direction and/or orientation thereof to emit electromagnetic radiation. A detector is configured to detect electromagnetic radiation responsive to electromagnetic radiation transmitted to the target. A method of sensing is also disclosed.05-17-2012
20100290026Radiation Sensor for Detecting the Position and Intensity of a Radiation Source - A description is given of a radiation sensor for detecting the position and intensity of a radiation source. The radiation sensor includes at least one photodetector having a radiation-sensitive surface. Furthermore, the radiation sensor includes a reflector that reflects the radiation emitted by a radiation source from specific directions at least partly in the direction of the radiation-sensitive surface of the photodetector. The reflector is arranged on that side of the radiation sensor that is remote from the radiation source.11-18-2010
20100220309SOLAR POWERED RANGEFINDER - A rangefinder for measuring a distance to a target includes a housing having a front wall, an opposed rear wall, first and second side walls disposed between the front and rear walls, an upper wall, and an opposed lower wall. The rangefinder also includes a transmission device for transmitting a signal towards a target, a receiving device for receiving a reflected signal from the target, and a distance measuring mechanism for determining the distance to the target using the transmitted signal and the reflected signal. A display device is in communication with the distance measuring mechanism for displaying the determined distance to the target. A solar power supply mechanism supplies solar power to operate the rangefinder, and includes a solar energy collector positioned on an outer surface of the housing that is operatively in communication with an energy storage device.09-02-2010
20100208231LIGHT WAVE DISTANCE MEASURING SYSTEM AND DISTANCE MEASURING DEVICE - Object is to provide a light wave distance measuring system and a light wave distance measuring device which are capable of realizing prolonged measurable distance as well as improved distance measuring accuracy and which enable a distance measuring device to be constructed inexpensively.08-19-2010
20110181862OPTICAL SIGHT HAVING A RANGE-FINDING FUNCTION - An optical sight includes an outer barrel unit, an objective lens unit, an ocular lens unit, a magnification unit, amounting unit, and a range-finding module. The outer barrel unit extends about an axis and has a front end and a rear end. The objective lens unit is mounted to the front end of the outer barrel unit. The ocular lens unit is mounted to the rear end of the outer barrel unit. The magnification unit is disposed between the objective lens unit and the ocular lens unit. The mounting unit is disposed in the outer barrel unit between the objective lens unit and the magnification unit, and has an outer peripheral surface, and an inner passage extending along the axis. The range-finding module is disposed in the outer barrel unit, and includes a light emitter, a light receiver, and a circuit board unit.07-28-2011
20120133917DISTANCE MEASURING DEVICE AND SURVEYING SYSTEM - A distance-measuring device for contactless measurement of a distance to an object, including a housing; a contactless measuring apparatus utilizing an optical measuring beam arranged in the housing and having a radiation unit, an optical unit with optical elements encompassing at least a transmitting and receiving lens system, an optical transmitting path with an optical axis for emitting a measuring beam onto the target object, an optical receiving path with an optical axis for receiving a measuring beam that is reflected and/or scattered by the target object. At least one optical element is movable relative to an initial position; a motion sensor detects a movement of the object, the optical element movable out of the initial position into a variable compensation position so that the transmitting path can be stabilized at a spatially fixed position.05-31-2012
20120176594Phase Measurement Calibrating Method And Calibrating Device Based on Liquid Crystal Light Valve Principle - Phase measurement calibrating method, calibrating device and ranging device based on the liquid crystal shutter principle are disclosed. A light wave is emitted by a light wave emitter (07-12-2012
20120314199DISTANCE DETECTING SENSOR AND CLOSE RANGE DETECTING METHOD - The present invention discloses a distance detecting sensor. The distance detecting sensor includes a casing, a focusing lenses, a circuit board mounted with several electronic elements, an emitting device for emitting infrared light, and a receiving device for receiving and sensing a reflected infrared light. The distance detecting sensor is configured to have a high detection accuracy and improved detection performance.12-13-2012
20090021720SENSOR DEVICE FOR MEASURING THE COMPRESSION TRAVEL AND/OR THE COMPRESSION RATE OF WHEELS AND/OR AXLES OF VEHICLES - A sensor device for measuring the compression travel and/or the compression rate of wheels and/or axles of vehicles, in particular of commercial vehicles, may include at least one sensor measuring in a contactless manner. The sensor device may include a radar and/or high-frequency sensor generating a beam, which is emitted and received after reflection at a reference and reflection surface.01-22-2009
20120262696Optical Distance Measuring Device - A measuring device for optically measuring a distance to a target object including an emitter device for emitting an optical measuring beam to the target object, a capturing device comprising a detection surface for detecting an optical beam returned by the target object, and an evaluation device. The detection surface has a plurality of pixels, each pixel having at least one light-sensitive element and each of the plurality of pixels is connected to the evaluation device. The emitting device and the capturing device are configured in such a manner that the optical measurement beam returned by the target object simultaneously illuminates a plurality of pixels. The evaluation device is configured in such a manner that detection signals of a plurality of pixels are guided to at least one of the plurality of distance determining devices.10-18-2012
20120262697ABSOLUTE DISTANCE METER BASED ON AN UNDERSAMPLING METHOD - A measurement system includes a signal generator producing an RF modulation frequency and sampling frequency and sending the sampling frequency to an ADC, and sending the RF frequency to modulate a first light source to produce a first light; an optical system sending a portion of the first light to a reference optical detector a portion of the first light out a measurement device to a target that returns a second light to the optical system which sends the second light to a measure optical detector, the reference and measure optical detectors converting the optical signals into corresponding electrical signals; a first ADC channel receiving the electrical measure signal and producing digital measure values; a second ADC channel receiving the electrical reference signal and producing digital reference values; and a processor receiving the digital measure and reference values and calculating the device to target distance.10-18-2012
20120081690Measuring Method And Measuring Instrument - The invention provides a measuring instrument, comprising a telescope, a distance measuring unit, an image pickup unit, angle detecting units for detecting a vertical and horizontal angle in the sighting direction, an automatic sighting unit, an arithmetic unit, and a storage unit. The arithmetic unit makes the telescope rotate in horizontal and vertical direction and perform scanning over a predetermined range so that a plurality of objects to be measured are included and makes the image pickup unit acquire digital images during the scanning process. The arithmetic unit detects the objects in the digital images, calculates a vertical and horizontal angle of the objects based on the angle detector and a deviation of each of the objects from sighting axis, associates the calculated angles with each of the objects, and makes the storage unit store the vertical and horizontal angles of the objects as target values for automatic sighting.04-05-2012
20120081692Distance Measuring Instrument - The invention provides a distance measuring instrument, comprising a light emitting unit 04-05-2012
20120081691Measuring Method And Measuring Instrument - The invention provides the measuring method for performing monitoring measurement on a plurality of measuring points by using a measuring instrument 04-05-2012
20120229788DEVICE FOR OPTICALLY SCANNING AND MEASURING AN ENVIRONMENT - In a device for optically scanning and measuring an environment, which device is designed as a laser scanner, with a light emitter, which, by means of a rotary mirror, emits an emission light beam, with a light receiver which receives a reception light beam which is reflected from an object in the environment of the laser scanner, and with a control and evaluation unit which, for a multitude of measuring points, determines at least the distance to the object, the rotary mirror is part of a rotor, which is configured as a hybrid structure.09-13-2012
20120320363DETERMINING THRESHOLDS TO FILTER NOISE IN GMAPD LADAR DATA - In one aspect, a computerized method to automatically determine thresholds includes receiving data generated from a Geiger-mode avalanche photodiode (GmAPD) laser detecting and ranging (LADAR) sensor of a scene, determining an overall threshold value for the scene using a binomial distribution and determining post threshold values for each x-y position in the scene. The computerized method also includes, for each x-y position, using a maximum value of the post threshold values and the overall threshold value to filter the data from the scene.12-20-2012
20120262701SEMICONDUCTOR OPTOELECTRONIC DEVICE - A manufacture having an electrical response to incident photons includes a semiconductor substrate; a chalcogen-doped semiconductor active layer on a first side of the substrate; a first contact in electrical contact with the active layer; and a second contact in electrical contact with the substrate; wherein, photons incident upon the active layer cause a variation in current between the first and second contacts.10-18-2012
20120262699LASER TRACKER WITH ENHANCED ILLUMINATION INDICATORS - A coordinate measurement device includes: first and second angle measuring devices; a distance meter; a position detector; a first collection of illuminators rotatable about the first axis and fixed with respect to the second axis, the first collection configured to provide a first light selected from among at least two different colors of light in a visible spectrum, the first collection configured to make the first light visible from first and second points along the second axis and external to the device, the first and second points on opposite sides of the device; a second collection of illuminators rotatable about the first and second axes, the second collection configured to provide at least a second light selected from among two different colors of illumination in the visible spectrum; and a processor configured to provide a pattern of illumination for the first and second collections.10-18-2012
20120262700DEVICE FOR OPTICALLY SCANNING AND MEASURING AN ENVIRONMENT - In a device for optically scanning and measuring an environment, where the device is a laser scanner having a light emitter which, by a rotary mirror, emits an emission light beam, with a light receiver which receives a reception light beam, which, after passing the rotary mirror and a receiver lens which has an optical axis, is reflected from an object in the environment of the laser scanner. The laser scanner also includes a control and evaluation unit which, for a multitude of measuring points, determines the distance to the object. Also, a rear mirror is provided on the optical axis behind the receiver lens, where the rear mirror reflects towards the receiver lens the reception light beam which is refracted by the receiver lens.10-18-2012
20120262698GIMBAL INSTRUMENT HAVING A PREALIGNED AND REPLACEABLE OPTICS BENCH - A method includes providing: an optics assembly including a housing, a beam splitter, and a position detector; and an alignment fixture; placing the assembly on the fixture which makes contact with the assembly on the first region; projecting the third beam of light onto a first surface; rotating the assembly about the sixth axis on the fixture; sensing a change in a position of the third beam of light in response to rotation of the assembly about the sixth axis; adjusting the first path to align the third beam of light to the sixth axis; attaching the assembly to a dimensional measurement device; directing the third beam of light to a retroreflector target; reflecting a portion of the third beam from the target as a fourth beam of light; and sending a third portion of the fourth beam from the beam splitter to the position detector.10-18-2012
20080297760Geodesic Measuring Instrument with a Piezo Drive - In a geodesic measuring instrument (12-04-2008
20120320364DEVICE AND A METHOD FOR DETERMINING A DISTANCE TO A SURFACE OF A WORKPIECE AND AN ARRANGEMENT AND A METHOD FOR EFFECTING A WORKPIECE - A device for determining a distance to a surface of a workpiece includes an arrangement for emitting an energy beam towards the surface. The device includes a contact member with a first surface configured to contact the surface of the workpiece and a second surface facing the energy beam emitting means. The energy beam emitting arrangement is arranged for directing the energy beam to the second surface of the contact member.12-20-2012
20110211188COMPACT LASER RANGEFINDER - A laser distance measuring device comprising a transmitter channel (09-01-2011
20110235017PHYSICAL INFORMATION ACQUISITION DEVICE, SOLID-STATE IMAGING DEVICE AND PHYSICAL INFORMATION ACQUISITION METHOD - Disclosed herein is a physical information acquisition device including an electromagnetic wave output section, a first detection section, and a signal processing section. The electromagnetic wave output section is adapted to generate electromagnetic wave at a wavelength equivalent to a specific wavelength when, for a first wavelength range of electromagnetic wave, a wavelength where electromagnetic wave energy is lower than at other wavelengths is determined to be the specific wavelength. The first detection section is adapted to detect electromagnetic wave at the specific wavelength. The signal processing section is adapted to perform signal processing based on detection information acquired from the first detection section.09-29-2011
20110279808FOLDED PATH LASER RANGEFINDER ARCHITECTURE AND TECHNIQUE INCORPORATING A SINGLE CIRCUIT BOARD FOR MOUNTING OF BOTH LASER EMITTING AND DETECTING ELEMENTS - A handheld, folded-path, laser rangefinder architecture and technique incorporating a single circuit board for mounting of both the laser emitting and detecting elements is disclosed. The architecture disclosed provides an efficient and low cost design for a laser rangefinder, and by eliminating the conventional provision of separate circuit boards for the laser transmitting and receiving elements, reduces the overall size of the unit and its cost of manufacture by concomitantly eliminating unnecessary interconnecting cables and the like.11-17-2011
20120092643SYSTEM FOR THE IDENTIFICATION AND/OR LOCATION DETERMINATION OF A CONTAINER HANDLING MACHINE - The invention relates to a system capable of determining in which lane a container handling machine is present below a quay crane or the like crane and/or capable of determining the correct location of a container handling machine in its driving direction (y) with respect to a quay crane or the like crane as containers are delivered to the crane or containers are retrieved from the crane by the container handling machine. The crane is fitted with at least one scanning laser distance sensor or the like range finder, and the container handling machines are fitted with one or more reflectors whose height profile is used for the determination of a correct location and/or for the identification of a container handling machine and for the distinction thereof from other container handling machines.04-19-2012
20120092642DISTANCE-MEASURING SYSTEM - A distance-measuring system includes a light source, a light detector, and measuring optics for projecting light emitted by the light source to a target and for guiding light reflected from said target towards the light detector. The distance-measuring system also includes reference optics for guiding light emitted by the light source within the system towards the light detector as internal reference light and a variable attenuator for adjusting intensity of light incident on the light detector. The variable attenuator includes an attenuating filter arranged in a beam path between the measuring optics and the light detector and an actuator coupled to the attenuating filter for moving the attenuating filter. The distance-measuring system further includes an optical selector coupled to at least one of the actuator or the attenuating filter and moved by the actuator together with the attenuating filter.04-19-2012
20130010278DISTANCE MEASURING APPARATUS - The present application provides a distance measuring apparatus that can measure a distance with accuracy even when a light receiving level of a reflected light becomes saturated. A light emitting section of the distance measuring apparatus emits a measuring light toward an object to be measured. A light receiving section receives the reflected light being reflected from the object to be measured. A distance calculating section obtains a distance to the object to be measured based on an elapsed time which is from a point the measuring light is emitted until a point a light receiving level of the reflected light indicates a peak thereof. A distance correcting section corrects a value of the distance to the object to be measured depending on a length of saturation time of the light receiving level when the light receiving level becomes saturated and the peak is impossible to identify.01-10-2013
20130010279OMNIDIRECTIONAL LENS, OPTICAL DEVICES UTILIZING THE LENS AND METHOD FOR OPTICAL MEASUREMENT - The invention relates to an omnidirectional lens, an optical measuring device, and a method for optical measurement. The lens comprises a central portion, collecting optically in a first direction, and an edge portion, which surrounds the central portion, and which is arranged to guide the light arriving at the edge portion omnidirectionally relative to the said first direction essentially transversely relative to the said first direction. According to the invention, the edge portion is arranged to guide the light through the central portion. With the aid of the invention, it is possible to create, for example, a simpler laser radar.01-10-2013
20130021595THREE DIMENSIONAL MEASUREMENT SYSTEM - A system for making distance measurements of remote points using a phenomenon related to the time of flight of an illuminating beam. A modulated beam of light is directed at the target area. The modulated beam has temporally varying information impressed upon it, such that the time of flight of the beam to the target and back can be related to the temporal signature of the received beam. An acousto-optic modulator is used to perform frequency conversion of the modulated light reflected from points in the field, before that light impinges on the pixels of a detector array. The AO modulation frequency is close to the illuminating light modulation frequency, so that the converted mixed frequency falls within the limited parallel reading rate range of the detector array, and contains the temporal signature information of the modulated light received from the target within signals of manageable frequencies.01-24-2013
20120242971Omnidirectional Image Detection System With Range Information - An omnidirectional image detection system, which uses a single camera to acquire distance information from dual images. In addition to the camera, an upper mirror and a lower mirror are all arranged coaxially. Both mirrors have reflective outer surfaces, symmetric about the axis, and both are generally conical in shape, with the apex toward the camera. The lower mirror (nearest the camera) is truncated at the apex and has an opening in its center that permits light from the upper mirror to pass to the camera. The camera receives an image from each mirror, and these images form a concentric dual image. The disparity between the images can be used to provide distance data or to generate a three-dimensional image.09-27-2012
20080231829USER-WORN RANGEFINDER SYSTEM AND METHODS - Embodiments of an arm-worn rangefinder device includes a rangefinder body and a switch. The rangefinder body is shaped for coupling to a user's arm and has an electronic rangefinder circuit operable to emit an energy beam directed at a selected target, to receive a reflected beam from the target, and to calculate the target's approximate range based on properties of the reflected beam and indicate the calculated approximate range to the user. The switch is coupled to the rangefinder body, and the user can use the switch to selectively actuate the rangefinder circuit.09-25-2008
20080225263SENSOR DEVICE - A sensor device including a source for electromagnetic radiation, a receiver and a control device, the control device being designed for emitting electromagnetic radiation by means of the source and for determining a distance that is covered by the electromagnetic radiation emitted by the source from a reflection surface of an object to the receiver, doing so by evaluating a propagation time of the radiation or a phase of an oscillation modulated onto the radiation. According to the invention, the control device provides an economy mode in which the power of the source is lower in a prescribed time interval by comparison with a normal object detection mode, means being provided to ensure switching back into the normal object detection mode in the event of a predefined object situation.09-18-2008
20080225262Displacement Measurement System - A displacement measurement apparatus includes a light source, a splitter grating, a measurement grating, and first a second detector arrays. The splitter grating splits a light beam into first and second measurement channels that each illuminates the measurement grating. The first and second measurement channels split into 009-18-2008
20120249997Laser Scanner And Method For Detecting Mobile Object - A laser scanner comprises a light projecting optical system for projecting a distance measuring light, a deflecting optical member for deflecting and projecting the distance measuring light to a measurement area, a distance measuring unit for carrying out measurement based on a reflection light and for acquiring distance data of the measurement area, a second image pickup unit capable of continuously acquiring image data including the measurement area, and a control unit. The control unit has a first image processing unit for acquiring a three-dimensional image based on the image data and on the distance data, and also has a second image processing unit for detecting a mobile object by comparing image data being adjacent to each other in terms of time. The control unit controls the distance measuring unit so that measurement of the mobile object detected in the measurement area is restricted by the second image processing unit.10-04-2012
20120249996LASER RADAR FOR THREE-DIMENSIONAL SCANNING - In a laser radar, a first scanning member scans a laser beam in a virtual plane passing through an axis. A control means controls displacements of the first scanning member to change a scan beam angle in the plane. A second scanning member deflects the scanned laser beam and again scans the deflected laser beam toward an external space. A light collecting means collects reflected light. A driving means rotates both the second scanning member and the light collecting means about the axis. The second scanning member has a deflecting surface to deflect the laser beam. The deflecting surface is formed around the axis and has a plurality of reflecting surfaces coaxially arranged centering on the axis. The reflecting surfaces have different inclinations with respect to a horizontal plane perpendicular to the axis.10-04-2012
20130114063RANGE FINDER - A laser range finder 05-09-2013
20130094011DISTANCE MEASUREMENT USING INCOHERENT OPTICAL REFLECTOMETRY - A method for estimating a distance includes: generating an optical signal having a wavelength that is within a wavelength range, the optical signal modulated via a modulation signal having a modulation frequency; transmitting the modulated optical signal from a light source into the optical fiber, the optical fiber in contact with a moveable strain inducing element located at the position along the optical fiber, the optical fiber including a plurality of sensing locations configured to reflect light within the wavelength range when under strain from the strain inducing element and transmit light within the wavelength range when not under strain from the strain inducing element; receiving a reflected signal including light reflected from at least one of the sensing locations; demodulating the reflected signal with a reference signal to generate reflected signal data; and determining the distance to the position along the optical fiber based on the reflected signal data.04-18-2013
20130128257AUTOMATIC RANGE CORRECTED FLASH LADAR CAMERA - A three dimensional imaging camera comprises a system controller, pulsed laser transmitter, receiving optics, an infrared focal plane array light detector, and an image processor. The described invention is capable of developing a complete 3-D scene from a single point of view. The 3-D imaging camera utilizes a pulsed laser transmitter capable of illuminating an entire scene with a single high power flash of light. The 3-D imaging camera employs a system controller to trigger a pulse of high intensity light from the pulsed laser transmitter, and counts the time from the start of the transmitter light pulse. The light reflected from the illuminated scene impinges on a receiving optics and is detected by a focal plane array optical detector. An image processor applies image enhancing algorithms to improve the image quality and develop object data for subjects in the field of view of the flash ladar imaging camera.05-23-2013
20130128259RANGE SENSOR AND RANGE IMAGE SENSOR - A photogate electrode has a planar shape of a rectangular shape having first and second long sides opposed to each other and first and second short sides opposed to each other. First and second semiconductor regions are arranged opposite to each other with the photogate electrode in between in a direction in which the first and second long sides are opposed. Third semiconductor regions are arranged opposite to each other with the photogate electrode in between in a direction in which the first and second short sides are opposed. The third semiconductor regions make a potential on the sides of the first and second short sides higher than a potential in a region located between the first and second semiconductor regions in a region immediately below the photogate electrode.05-23-2013
20130128258HELICOPTER OBSTACLE DETECTION AND INFORMATION SYSTEM - A helicopter obstacle detection and information system arranged to be transmitting laser light and receiving reflected laser light from obstacles for detecting and informing the pilot of a helicopter of obstacles in proximity of the helicopter. An obstacle detection sensor unit is arranged to be mounted on a rotor head of a helicopter such that the obstacle detection sensor unit is arranged to rotate with the rotor head when mounted. The system also includes an information unit. The transmitted laser light is arranged to cover a sector volume around a rotor head axis having a coverage defined as a radial extension in a sector plane around the rotor head axis and an angular extension perpendicular to the sector plane. A communication unit is arranged for communication between the sensor unit and the information unit.05-23-2013
20080198356LASER RANGE FINDER FOR USE ON A GOLF COURSE - An improved range finder for use on a golf course. The improved range finder includes means for identifying the closest target in a field of view during a sweep operation of the field of view and means for presenting the distance of the closest target at the conclusion of the sweep operation of the field of view. The improved range finder preferably uses infrared light to detect a flagstick.08-21-2008
20130148099OPTICAL MEASUREMENT SYSTEM FOR DETERMINING DISTANCES - A measuring system for determining a distance between a sensor device and a measured object, wherein the sensor device comprises a light source for generating an illumination light beam and a detector for detecting a portion of the illumination light beam reflected on the surface of the measured object and wherein the measured object is designed so it is transparent at least for a wavelength range of the visible light, is designed and further developed under consideration of the most reliable distance measurement possible in all types of measuring situations, that the illumination light beam has a wavelength in the violet or ultraviolet range and that the measured object is designed in such a way that the illumination light beam is diffusely reflected on the surface of the measured object. In addition, a corresponding measuring system is specified for measuring measured objects that are essentially impermeable to light.06-13-2013
20130148098Manual Distance Measuring Apparatus - A manual distance measuring apparatus includes at least one computing unit, an image acquisition means and a laser measuring device, which determines a distance of a measurement point on a measurement object in a measurement direction during a measuring process. The computing unit is configured to control, at least by open-loop control, the measurement direction depending at least on an output characteristic variable of the image acquisition means.06-13-2013
20130148096RANGEFINDER - A rangefinder for measuring a distance of an object includes a case, in which a refractor, a measuring light source, a light receiver, a receiving lens, a reference light source, and a reflector are provided. The measuring light source emits measuring light to the refractor, and the refractor refracts the measuring light to the object. The measuring light reflected by the object emits to the light receiver through the receiving lens. The reference light emits reference light to the reflector, and the reflector reflects the reference light to the light receiver. The refractor and the reflector may be turned for calibration.06-13-2013
20130148097DISTANCE MEASURING SENSOR - A distance measuring sensor includes a substrate doped with a first impurity, first and second charge storage regions spaced apart from each other in the substrate and doped with a second impurity, a photoelectric conversion region doped with the second impurity between the first and the second charge storage regions and configured to receive light to generate charges, a first dielectric layer covering the first and second charge storage regions and the photoelectric conversion region, a second dielectric layer on the first dielectric layer, and first and second transfer gates spaced apart from each other on the first dielectric layer and between the first and second charge storage regions. Each of the first and second transfer gates may cover a portion of the second dielectric layer and may be configured to selectively transfer the charges generated in the photoelectric conversion region to the first and second charge storage regions.06-13-2013
20100309453LASER INSTRUMENT FOR ELECTRO-OPTICAL DISTANCE MEASUREMENT - A laser instrument for electro-optical measurement of the distance of a target object to a reference mark is disclosed. The instrument includes a housing, where the housing has an outlet opening to couple out a laser beam from the laser instrument, a measuring device which emits a laser beam and determines a distance value from the receiving beam coming from the target object, a display device to display the distance value, an operating device to operate the laser instrument and to start the distance measurement, and an optical sighting device to align the laser beam on the target object. The direction in which a user looks into the optical sighting device is aligned parallel to the optical axis of the laser beam coupled out of the laser instrument via the outlet opening.12-09-2010
20130182238OPTOELECTRONIC DEVICE FOR OBSERVING AND/OR AIMING AT A SCENE, COMPRISING A RANGEFINDER, AND RELATED RANGE-FINDING METHOD - The invention concerns an opto-electronic device for observing and/or aiming at a scene comprising a target (C), comprising 07-18-2013
20120281199Systems and Methods for Generating an Optical Pulse - A system for providing a sliced optical pulse is disclosed. The system can comprise a master oscillator (MO) configured to generate an optical pulse at a first spectral bandwidth. The system can also comprise a semiconductor optical amplifier (SOA) configured to slice the optical pulse to generate a sliced optical pulse that has a second spectral bandwidth. The second spectral bandwidth can be smaller than the first spectral bandwidth.11-08-2012
20130182239Lidar Imager - A lidar imager for acquiring a range image of a scene comprises a light source for emitting a light beam, a scanning device for scanning the light beam across the scene and a light sensor for receiving light reflected from the scene. The scanning device comprises a spatial light modulator (SLM) configured to display holograms that deflect the light beam into different directions within the scene to be imaged.07-18-2013
20130155386LASER TRACKER USED WITH SIX DEGREE-OF-FREEDOM PROBE HAVING SEPARABLE SPHERICAL RETROREFLECTOR - A method for measuring three-dimensional coordinates of a probe center includes: providing a spherically mounted retroreflector; providing a probe assembly; providing an orientation sensor; providing a coordinate measurement device; placing the spherically mounted retroreflector on the probe head; directing the first beam of light from the coordinate measurement device to the spherically mounted retroreflector; measuring the first distance; measuring the first angle of rotation; measuring the second angle of rotation; measuring the three orientational degrees of freedom based at least in part on information provided by the orientation sensor; calculating the three-dimensional coordinates of the probe center based at least in part on the first distance, the first angle of rotation, the second angle of rotation, and the three orientational degrees of freedom; and storing the three-dimensional coordinates of the probe center.06-20-2013
20130120735RANGE SENSOR AND RANGE IMAGE SENSOR - A light receiving region has a planar shape of a rectangular shape having a pair of long sides opposed to each other in a first direction and a pair of short sides opposed to each other in a second direction. First and second semiconductor regions are arranged as spatially separated from each other along the respective long sides. First and second gate electrodes are arranged each between the corresponding semiconductor region and the light receiving region. Third gate electrodes are arranged as spatially separated from each other between the first and second gate electrodes arranged along the long sides. Each of the third gate electrodes has a first electrode portion located between a third semiconductor region and the light receiving region, and a second electrode portion overlapping with the light receiving region and having a width in the second direction smaller than that of the first electrode portion.05-16-2013
20130120734LASER RADAR APPARATUS - A laser radar apparatus includes a light source; a light scanning unit configured to scan light irradiated from the light source; a light receiving unit configured to receive light that is reflected by an object, the light being irradiated from the light scanning unit onto the object and reflected by the object; and a porous member arranged between the object and the light receiving unit, the porous member including plural through holes.05-16-2013
20130188167Using Multiple Waveforms From A Coherent Ladar For Target Acquisition - In one aspect, a method includes transmitting a tone waveform from a laser detection and ranging (LADAR) sensor, detecting a target using an echo of the tone waveform reflected from the target, determining a radial velocity of the target using the echo of the monotone waveform from the target, transmitting, from the LADAR sensor, linear frequency modulation (FM) chirp signals and determining a range to target using to echoes from the linear FM chirp signals.07-25-2013
20120019806DEVICE FOR OPTICALLY SCANNING AND MEASURING AN ENVIRONMENT - A device for optically scanning and measuring an environment, which is designed as a laser scanner, with a light emitter, which emits an emission light beam, with a light receiver which receives a reception light beam which is reflected from an object (O) in the environment of the laser scanner or scattered otherwise, and with a control and evaluation unit which, for a multitude of measuring points (X), determines at least the distance to the object (O), the laser scanner has a swivel-axis module which, as a pre-assembled assembly, on the one hand is provided with a base resting in the stationary reference system of the laser scanner and, on the other hand, with parts which can be fixed to a carrying structure of the measuring head which is rotatable relative to the base.01-26-2012
20130194563OPTICAL ASSEMBLY FOR LASER RADAR - A compact optical assembly for a laser radar system is provided, that is configured to move as a unit with a laser radar system as the laser radar system is pointed at a target and eliminates the need for a large scanning (pointing) mirror that is moveable relative to other parts of the laser radar. The optical assembly comprises a light source, a lens, a scanning reflector and a fixed reflector that are oriented relative to each other such that: (i) a beam from the light source is reflected by the scanning reflector to the fixed reflector; (ii) reflected light from the fixed reflector is reflected again by the scanning reflector and directed along A line of sight through the lens; and (iii) the scanning reflector is moveable relative to the source, the lens and the fixed reflector, to adjust the focus of the beam along the line of sight.08-01-2013
20120038902ENHANCEMENT OF RANGE MEASUREMENT RESOLUTION USING IMAGERY - This invention provides a method for computing hybrid range measurements wherein range measurements of a target are obtained along with at least two images of the target and the location and the orientation of the images. Hybrid range measurements are computed based on the range measurements and the images.02-16-2012
20090190119Light meter apparatus and system - A light meter for measuring photometric quantities includes a telephotometer having a photo detector to receive light energy entering the telephotometer. A light metering valve, for the purpose of providing a variable field of view, is located in the body of the telephotometer generally at the focal plane of the objective lens of the telephotometer. A controller, which includes a digital processor in communication with the photo detector will process information from the photo detector and from a range finder included in the system to output light intensity of a target light source.07-30-2009

Patent applications in class With photodetection

Patent applications in all subclasses With photodetection