Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Including eye photography

Subclass of:

351 - Optics: eye examining, vision testing and correcting

351200000 - EYE EXAMINING OR TESTING INSTRUMENT

351205000 - Objective type

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
351208000 Having means to detect proper distance or alignment (i.e., eye to instrument) 75
351207000 Having spurious reflection blocking 9
Entries
DocumentTitleDate
20090231543Ocular light stimulus apparatus - A stimulus light from a stimulus light source is projected to the retina of an ocular fundus under examination to stimulate the retina in localized fashion to generate a bioelectric signal from the retina. The stimulus light source is mounted on a movable block, and an operating lever is used to move the stimulus light source to change the stimulus light on the retina. The size of the stimulus light can also be varied using a panel having a plurality of openings with different diameters for allowing the stimulus light to pass through. This assures a reliable local ERG examination because the bioelectrical signal can be produced in a wider area of the retina. The operating lever is further fixed by inserting a cap to keep the projected stimulus light unchanged. This allows the burden on the examiner to be reduced remarkably, assuring a reliable local ERG examination.09-17-2009
20110205490OPTICAL TOMOGRAPHIC IMAGE PHOTOGRAPHING APPARATUS - An aspect of the invention allows for enhancement of the visibility of a tomographic image movie-displayed on a monitor. An optical tomographic image photographing apparatus includes: an interference optical system for combining reflected light with reference light on an object to guide the combined light to a detector; a driving part for moving an optical member in an optical-axis direction in order to adjust an optical path difference between measurement light and the reference light; an image obtaining part for obtaining a tomographic image of the object based on a light receiving signal output from the detector; and a control unit configured to detect positional deviation with respect to a depth direction in the tomographic image and to correct a display position of the tomographic image such that the tomographic image is displayed in a predetermined position within a display region on a monitor.08-25-2011
20080259274PORTABLE DIGITAL MEDICAL CAMERA FOR CAPTURING IMAGES OF THE RETINA OR THE EXTERNAL AUDITORY CANAL, AND METHODS OF USE - A hand-held digital camera for obtaining images of a portion of a patient's body and having a hand-held housing, a visible light source located within the housing for providing light along an illumination path from the housing aperture to the patient's body, an image sensor located within the housing that detects light returning from the patient's body along an imaging path that passes into the housing aperture, an optical system located within the housing with separate illumination and imaging paths, an external optical aperture common to the illumination and imaging systems, wherein the illumination and imaging sub-apertures are wholly contained within the common external aperture, are longitudinally coincident, and are laterally separated and non-overlapping, a digital memory device for storing captured images, an output display carried by the housing, and the ability to electronically transmit stored images. The camera can be used for retinal imaging and for otoscopy.10-23-2008
20130077048INTEGRATED FIBER OPTIC OPHTHALMIC INTRAOCULAR SURGICAL DEVICE WITH CAMERA - A fiber optic ophthalmic surgical microscope with camera assembly comprises a fiber optic cable (03-28-2013
20130077046NORMALIZATION OF RETINAL NERVE FIBER LAYER THICKNESS MEASUREMENTS MADE BY TIME DOMAIN-OPTICAL COHERENCE TOMOGRAPHY - A scan location matching (SLM) method identifies conventional time domain optical coherence tomography (TD-OCT) circle scan locations within three-dimensional spectral domain OCT scan volumes. A technique uses both the SLM algorithm and a mathematical retinal nerve fiber bundle distribution (RNFBD) model, which is a simplified version of the anatomical retinal axon bundle distribution pattern, to normalize TD-OCT thickness measurements for the retinal nerve fiber layer (RNFL) of an off-centered TD-OCT circle scan to a virtual location, centered on the optic nerve head. The RNFBD model eliminates scan-to-scan RNFL thickness measurement variation caused by manual placement of TD-OCT circle scan.03-28-2013
20130077047IMAGING APPARATUS, CONTROL METHOD OF THE SAME, AND PROGRAM - An imaging apparatus includes an image sensor sensitive to infrared rays, and a control circuit. The control circuit determines whether the imaging apparatus is mounted on a fundus camera in a state where an image of a fundus of a subject's eye can be captured based on reflected light flux from the fundus, and controls a function of the imaging apparatus depending on the determination.03-28-2013
20100073633FUNDUS CAMERA - A fundus camera wherein when a photography start switch is selected, the optical axis of an eye examining section is aligned with the optical axis of an eye by a detection operation of an alignment optical system. After focusing of a fundus image is performed, the eye examining section is moved to a first recording mode position, and a first photograph of the fundus is taken by a stroboscopic tube. Subsequent to taking the first photograph of the fundus, a base length is changed and an alignment position is moved to a second recording mode position so that a second photograph of the fundus is taken.03-25-2010
20100073634Hybrid Spectral Domain Optical Coherence Tomography Line Scanning Laser Ophthalmoscope - An apparatus for imaging an eye includes a housing and a system of optical components disposed in the housing. The apparatus is capable of operating in a line scanning laser opthalmoscope (LSLO) mode and an optical coherence tomography (OCT) mode. The system of optical components can include a first source to provide a first beam of light for the OCT mode and a second source to provide a second beam of light for the LSLO mode. In the OCT mode, a first optic is used that (i) scans, using a first surface of the first optic, the first beam of light along a retina of an eye in a first dimension, and (ii) descans, using the first surface, a first light returning from the eye in the first dimension to a detection system in the OCT mode. In the LSLO mode, the first optic is used where the second beam of light passes through a second surface of the first optic.03-25-2010
20130038835MICROSCOPE FOR OPHTHALMOLOGIC SURGERY - The microscope for ophthalmologic surgery 02-14-2013
20130033677PORTABLE HIGH SPEED PUPIL DILATION TRACKING SYSTEM - A high speed pupil dilation tracking can be incorporated into a light-weight VOG system which includes at least one digital camera connected to and powered by a laptop computer through a firewire connection. An EOG system may be incorporated directly into a VOG system base. The digital camera may digitally center the pupil in both the X and Y directions. A calibration mechanism may be incorporated onto the VOG system base. The VOG system may track and record head position and VOG system base slippage. An animated eye display may provide data in a more meaningful fashion. The VOG system may be a modular design whereby the same goggle frame or base is used to build a variety of digital camera VOG systems.02-07-2013
20100103374CONNECTION ADAPTER, OPTICAL TOMOGRAPHIC IMAGING APPARATUS, PROGRAM FOR EXECUTING IMAGING METHOD AND MEMORY DEVICE FOR THE PROGRAM - Provided is a connection adapter that is capable of constituting an optical tomographic imaging apparatus having a small installation space and high use efficiency. A connection adapter is disposed between the fundus camera main body portion and a camera portion to be attached to the fundus camera main body portion for imaging a surface image of a fundus as an object in an optical tomographic imaging apparatus, and connects them in a detachable manner. The connection adapter includes: a first light guide unit for guiding tomographic image measuring beams guided from the fundus camera main body portion for imaging the tomographic image to a tomographic imaging portion; and a second light guide unit for guiding fundus image measuring beams guided from the fundus camera main body portion for imaging the surface image of the fundus to the camera portion.04-29-2010
20100097575OPHTHALMOLOGICAL PHOTOGRAPHIC APPARATUS - An opthalmological photographic apparatus includes an observation moving-image photographic unit configured to photograph an observation moving image of a subject's eye, a still-image photographic unit configured to photograph a still image of the subject's eye, an image display unit configured to display at least one of the observation moving image and the still image, and a display content control unit configured to cause the image display unit to display one of the observation moving image and the still image when the still-image photographic unit photographs a still image.04-22-2010
20100097573APPARATUS AND METHOD FOR IMAGING THE EYE - A slit lamp mounted eye imaging device for viewing wide field and/or magnified views of the retina or the anterior segment through an undilated or dilated pupil. The apparatus images posterior and anterior segments of the eye, and sections/focal planes in between and contains an illumination system that uses one or more LEDs, shifting optical elements, and/or aperture stops where the light can be delivered into the optical system on optical axis or off axis from center of optical system and return imaging path from the retina, thereby creating artifacts in different locations on retina. Image processing is employed to detect and eliminate artifacts from images. The device is well suited for retinal imaging through an undilated pupil, non-pharmacologically dilated, or a pupil as small as 2 mm. Two or more images with reflection artifacts can be created and subsequently recombined through image processing into a composite artifact-free image.04-22-2010
20100110376VARIABLE RESOLUTION OPTICAL COHERENCE TOMOGRAPHY SCANNER AND METHOD FOR USING SAME - The invention relates generally to optical tomographic imaging and in particular to systems and methods for adapting the resolution of imaging. One embodiment of the present invention is an apparatus for optical coherence tomography imaging, characterized by its ability to vary the axial resolution and scanning speed during imaging.05-06-2010
20130135582OPHTHALMIC APPARATUS AND RECORDING MEDIUM HAVING OPHTHALMIC PROGRAM STORED THEREIN - An ophthalmic apparatus includes: an input unit configured to obtain corneal incision information that is information on a corneal incision to be formed on a cornea of an examinee's eye; an imaging device configured to image an examinee's eye image; and a controller. The controller is configured to calculate first wavefront aberration distribution that is wavefront aberration distribution of the cornea before incision on the examinee's eye based on the examinee's eye image, obtain incision aberration information corresponding to the corneal incision information; calculate second wavefront aberration distribution that is wavefront aberration distribution after formation of the incision based on the first wavefront aberration distribution and the incision aberration information, and output guide information that guides an intraocular lens surgery based on the second wavefront aberration distribution.05-30-2013
20130135583OPHTHALMOLOGY - The invention provides an apparatus and method for scanning, imaging and treating the retina of an eye. The apparatus (05-30-2013
20100110374Apparatus and method for two eye imaging for iris identification - The apparatus represents a device having one or two sensors for capturing a single image or two images having the subject's eyes, in which a dimension, such as the horizontal axis, with respect to pixels in the single image or two first images characterizing zero head tilt, and processors in one or more of a housing with the one or two sensors or in a computer system which receives the single image or two images. Such processors determine a head tilt angle between a virtual line extending between the two eyes of the subject in accordance with predefined features, such as pupil or iris center, in the single image or two images and the dimension characterizing zero head tilt, segment left and right iris images from the single image or two images, and rotate the segmented left and right iris image in accordance with the angle to substantially remove head tilt when present. A database of identification data may be provided storing at least templates representative of right and left irises of a plurality of subjects without substantial head tilt, and the processors generate template(s) representative of the left and right irises of the subject, which are either added or compared to the identification data. The processor may also determine interpupillary distance (IPD) or IPD-to-iris ratio using the single image or two images, and as such may be used for comparative searching of the identification data having IPD or IPD-to-iris ratio of the plurality of subjects.05-06-2010
20130027664OPHTHALMOLOGIC APPARATUS, OPHTHALMOLOGIC PHOTOGRAPHING METHOD, AND PROGRAM - An ophthalmologic apparatus controls a second light source according to a fundus image corrected using sensitivity as to a first wavelength band and a light quantity of a first light source when a fundus image is captured.01-31-2013
20130027661MICROSCOPE FOR OPHTHALMOLOGIC SURGERY - A microscope for ophthalmologic surgery according to an embodiment comprises: an optical system that photographs a patient's eye; a main body part that stores at least part of the optical system; an attachment that is attached to the main body part and has multiple bright points arranged in a ring; a determination part that determines whether the eyelids of the patient's eye are open or closed by determining whether or not bright point images are depicted within a prescribed region in the frame of a first image obtained by using the optical system to photograph the patient's eye while the multiple bright points are projected thereto; and a calculation part that calculates astigmatism information of the patient's eye based on a second image obtained by using the optical system to photograph the patient's eye while the multiple bright points are projected thereto.01-31-2013
20130027663OPHTHALMOLOGIC APPARATUS - An ophthalmologic apparatus includes an integration unit which integrates a light emission amount of a light source illuminating an target eye, an integral capacitance changing unit which changes a value of an integral capacitance of the integration unit according to the light emission amount necessary for imaging the target eye, a comparison unit which compares a reference value with an integration value integrated by the integration unit using the value of the integral capacitance changed by the integral capacitance changing unit, and a light emission control unit which stops the light emission of the light source when the integration value exceeds the reference value as a result of the comparison by the comparison unit.01-31-2013
20130027662OPHTHALMOLOGIC APPARATUS - An ophthalmologic apparatus includes a first casing which includes a light source for emitting illumination light including at least one of ultraviolet light and far-infrared light so as to illuminate a fundus of an eye to be examined, and an attenuation unit attenuating at least one of the ultraviolet light and the far-infrared light included in the illumination light, and a second casing which includes at least a part of an illumination optical system for guiding the illumination light attenuated by the attenuation unit to the fundus or a part of an imaging optical system for guiding the light reflected from the fundus to an imaging unit for imaging the fundus, and which is formed of a material lighter than the material forming the first casing.01-31-2013
20130027660MICROSCOPE FOR OPHTHALMOLOGIC SURGERY - A microscope for ophthalmologic surgery is provided which can measure astigmatic axis angles with high accuracy regardless of the drawing positions of the patient's eye in an image frame. Astigmatism distribution information 01-31-2013
20130208241Methods and Apparatus for Retinal Imaging - In exemplary implementations, this invention comprises apparatus for retinal self-imaging. Visual stimuli help the user self-align his eye with a camera. Bi-ocular coupling induces the test eye to rotate into different positions. As the test eye rotates, a video is captured of different areas of the retina. Computational photography methods process this video into a mosaiced image of a large area of the retina. An LED is pressed against the skin near the eye, to provide indirect, diffuse illumination of the retina. The camera has a wide field of view, and can image part of the retina even when the eye is off-axis (when the eye's pupillary axis and camera's optical axis are not aligned). Alternately, the retina is illuminated directly through the pupil, and different parts of a large lens are used to image different parts of the retina. Alternately, a plenoptic camera is used for retinal imaging.08-15-2013
20130208240SEGMENTATION AND ENHANCED VISUALIZATION TECHNIQUES FOR FULL-RANGE FOURIER DOMAIN OPTICAL COHERENCE TOMOGRAPHY - Presented here are new processing techniques for optical coherence tomography (OCT) data that allow for improved visualization and use of full-range OCT images. These techniques minimize the central line artifact and the complex conjugate artifact without requiring additional system hardware or significantly increasing post-processing time. The central line artifact is minimized by normalizing each A-scan to account for ripples at the zero-delay position. The complex conjugate artifact is minimized by segmentation of a layer or layers that cross the zero-delay position, and in some embodiments by further segmentation of other surfaces based on the segmentation of the initial layer or layers. The segmentation information is then used to selectively attenuate the complex conjugate image. It may also be used for other purposes, such as dewarping.08-15-2013
20120182522SYSTEM AND METHOD OF SCAN CONTROLLED ILLUMINATION OF STRUCTURES WITHIN AN EYE - There is provided a system, apparatus and methods for enhancing the illumination of structures of the eye using predetermined scan patterns of an illuminating light beam. The systems, apparatus and methods further provide for obtaining enhanced single images of multiple structures of the eye.07-19-2012
20080278685PORTABLE MODULAR VIDEO OCULOGRAPHY SYSTEM AND VIDEO OCCULOGRAPHY SYSTEM WITH HEAD POSITION SENSOR AND VIDEO OCCULOGRAPHY SYSTEM WITH ANIMATED EYE DISPLAY - A goggle based light-weight VOG system includes at least one digital camera connected to and powered by a laptop computer through a firewire connection and allows for region of interest image processing. The VOG system is a modular design whereby the same goggle frame or base is used to build a variety of digital camera VOG systems. The VOG system may track and record head position and goggle slippage. An animated eye display may provide data in a more meaningful fashion. An EOG system may be incorporated directly into a goggle base. The digital camera may digitally center the pupil in both the X and Y directions. A calibration mechanism may be incorporated onto the goggle base. The VOG system may be a modular design whereby the same goggle frame or base is used to build a variety of digital camera VOG systems.11-13-2008
20130070201ASSESSMENT OF MICROVASCULAR CIRCULATION - Methods and compositions are disclosed to quantitatively measure in vivo blood vessel diameter, blood velocity, and other flow dynamics. Such methods and compositions can optimize therapeutic interventions designed to prevent or reduce the risk of cardiovascular and blood disorders. In one aspect, the methods and apparatus involve calculating blood vessel characteristics from a two dimensional image of a blood vessel in the conjunctiva of a subject's eye. In another aspect, a series of temporal images of a blood vessel are obtained to determine blood flow properties. The apparatus can include, for example, a biomicroscope, an illuminating light source and a high speed camera to acquire the series of temporal images with the data then analyzed by a programmed processor.03-21-2013
20130070202IMAGE PROCESSING APPARATUS, OPHTHALMOLOGIC IMAGING APPARATUS, IMAGE PROCESSING METHOD, AND STORAGE MEDIUM - An image processing apparatus includes an identification unit configured to identify periodicity of a fundus image obtained by capturing an image of a fundus of an eye, and an information acquisition unit configured to acquire information indicating an imaging state of photoreceptor cells in the fundus image based on the periodicity.03-21-2013
20130088685Iris Cameras - An iris camera comprising a lens system, an image sensor arranged to capture images of an eye acquired by the lens system, and a processing unit, is described. The processing unit comprises an image analysis module adapted to measure pupil dilation of an image of an eye captured by the image sensor; and a control module arranged to generate a control signal to control a light source for illuminating the eye, the control module being arranged to generate the control signal to activate the light source to illuminate the eye when the measured pupil dilation is greater than a predetermined threshold.04-11-2013
20130088686EYE IMAGE AND VIDEO CAPTURE SYSTEM AND ASSOCIATED METHODS - An eye image and video capture system (04-11-2013
20090323021MEDICAL IMAGING APPARATUS - A medical imaging apparatus capable of concurrently performing a plurality of imaging operations including an imaging sequence setting unit configured to set a sequence for each of the plurality of imaging operations, an overlapping determination unit configured to determine temporal overlapping between an imaging sequence of an imaging operation that is currently performed and an imaging sequence for an imaging operation that is to be started, and an imaging sequence adjustment unit configured to adjust, based on a result of determination made by the overlapping determination unit, the imaging sequence for the imaging operation that is to be started.12-31-2009
20090303438Ophthalmic photographing apparatus - An ophthalmic photographing apparatus comprising a photographing optical system for obtaining a regional image of an examinee's eye, comprising a light source, a focusing optical element movable in an optical-axis direction by a driving mechanism, and a photodetector, and a control unit controlling driving of the mechanism and obtain the image based on a signal from the photodetector, wherein the control unit further moves the optical element in predetermined steps/continuously to obtain the image at each position, calculates frequency distribution of luminance of each of the images to detect a change characteristic of luminance values having frequencies equal or exceeding a threshold value in the frequency distribution with respect to the optical element position, and detects a focus position of the optical element based on the change characteristics to move the optical element to a position corresponding to the detected focus position.12-10-2009
20090303437OPHTHALMOLOGICAL DEVICE AND OPHTHALMOLOGICAL MEASURING METHOD - An opthalmologic device and an opthalmologic measuring method in accordance with an embodiment of the present application in which, cross-sectional images of cross-sectional portions illuminated from different instrument positions by a light projector are captured in Scheimpflug configuration. Furthermore, corresponding top view images are also captured from the different instrument positions. At least one reference section and at least one comparative section are extracted from an initial instrument position or from an advanced instrument position, respectively. The displacement between the reference section and the comparative section is determined and the cross-sectional images are positioned relative to one another, based on the displacement. A coherent examination of the entire eye is made possible in which the relative movements of the eye with respect to the device, particularly rotational movements, are taken into consideration.12-10-2009
20100271594Device and Method for Axial Length Measurement Having Expanded Measuring Function in the Anterior Eye Segment - The present invention is directed to a solution for measuring geometric parameters in the eye which are required for calculating the refractive power of intraocular lenses. The device according to the invention for axial length measurement which acquires axial length, anterior corneal radii, anterior chamber depth, and other parameters in the anterior eye segment includes a control unit, a first measuring device for determining axial length, and an additional measuring device which acquires a plurality of structures in the anterior segment (such as the cornea, anterior chamber, and lens) and which has at least one illumination unit and at least one image recording unit. By determining additional partial-distance parameters of the anterior eye segments, the IOL can be calculated with high precision even after refractive surgery in which the natural relationship between the radii of the anterior and posterior corneal surfaces is extensively altered by corneal surgery.10-28-2010
20120218517IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING SYSTEM FOR DISPLAYING INFORMATION ABOUT OCULAR BLOOD FLOW - An image processing apparatus includes an identification unit configured to identify a retinal blood vessel based on a retinal image, a measurement unit configured to measure blood flow information for the blood vessel based on the retinal image, and a display control unit configured to display the measured blood flow information by at least one selected from a depth of the identified blood vessel, a size of the identified blood vessel, and a combination of both.08-30-2012
20120218516IMAGE PROCESSING DEVICE, IMAGING SYSTEM, IMAGE PROCESSING METHOD, AND PROGRAM FOR CAUSING COMPUTER TO PERFORM IMAGE PROCESSING - An image processing device includes a first identification unit configured to identify the spatial configuration of a vessel in an object to be imaged, a second identification unit configured to identify information on a blood flow rate of the vessel based on an SLO moving image obtained by signal light that has a focus position deeper than at least a part of the area of the vessel, and an acquisition unit configured to acquire information on a blood flow of the vessel based on the identified area and the information on the blood flow rate.08-30-2012
20120218515IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, IMAGE PROCESSING SYSTEM, SLO APPARATUS, AND PROGRAM - An image processing apparatus includes an SLO image acquisition unit configured to acquire a plurality of SLO images obtainable by an SLO apparatus that scans a target to be captured with signal light at various focus positions in an optical axis direction of the signal light. The image processing apparatus includes a structure acquisition unit configured to acquire a specific structure of the target to be captured. The image processing apparatus includes an object image acquisition unit configured to acquire an image of the specific structure from each of the plurality of SLO images captured at various focus positions according to the specific structure.08-30-2012
20130057826FUNDUS PHOTOGRAPHING APPARATUS WITH WAVEFRONT COMPENSATION - A fundus photographing apparatus with wavefront compensation, includes: a fundus photographing optical system for capturing a fundus image by receiving a reflected light from fundus of an examinee's eye; a wavefront compensation device placed in an optical path of the fundus photographing optical system to compensate a wavefront aberration of the examinee's eye by controlling an incident light wavefront; a wavefront aberration detection optical system for projecting a measurement light on the fundus of the examinee's eye to detect a reflected light of the measurement light from the fundus using a wavefront sensor; and a controller for controlling an effective region formed on the wavefront compensation device so as to correct a difference between the effective region formed on the wavefront compensation device where an aberration correction control is effective and a wavefront measurement region of the wavefront aberration detection optical system where the wavefront aberration is measured.03-07-2013
20130057827EYE PORTION DIAGNOSIS SUPPORT APPARATUS, METHOD THEREFOR, PROGRAM, AND RECORDING MEDIUM - There is provided a technique for efficiently acquiring a tomogram of an eye portion. A diagnosis support apparatus includes a wide-area image acquisition means for acquiring a wide-area image of an eye portion, a detection means for detecting a lesion candidate on the eye portion by analyzing the wide-area image acquired by the wide-area image acquisition means, a determination means for determining a parameter associated with acquisition of a tomogram of the eye portion, based on a lesion candidate detection result obtained by the detection means, and a tomogram acquisition means for acquiring a tomogram of the eye portion based on the parameter determined by the determination means.03-07-2013
20110013139FUNDUS CAMERA OBJECTIVE AND CAMERA HAVING SUCH FUNDUS CAMERA OBJECTIVE - The invention relates to a fundus camera objective for recording an eye fundus. The invention further relates to a camera (01-20-2011
20090268160FUNDUS CAMERA - A fundus camera includes a focus target projection unit including a focus target located at a position conjugate with a fundus of a subject's eye, a split optical element configured to split a light flux passing through the focus target, and a focus target illumination light source configured to illuminate the focus target, a fundus photographing optical system including a focusing lens, a focus link mechanism configured to interlockingly move the focus target projection unit and the focusing lens in a direction of an optical axis, at least two lenses located behind a plane optically conjugate with the imaging plane of the fundus photographing optical system and outside an optical axis of the fundus photographing optical system, image sensors respectively located behind the two lenses, and a phase difference detection unit configured to detect a phase difference between the focus target images based on signals output from the image sensors.10-29-2009
20120224142OCULAR FUNDUS CAMERA SYSTEM AND METHODOLOGY - An ocular fundus camera system and an associated methodology. The system includes (a) an image sensor disposed along a fundus-image reflection path adjacent that path's downstream end, and in optical communication with light carried in this path, (b) an aperture centered on the reflection path's long axis, operatively associated with, and stationary with respect to, the sensor at a location which is upstream from the sensor, and (c), for accomplishing (1) precision fundus-image focusing on the sensor, and additionally (2) autorefraction, optical, light-content shifting structure, operable selectively for producing, within that portion of the reflection path which is disposed downstream from the shifting structure, relative trans-axial displacement solely of any non-collimated light carried in that portion of the main path which is disposed upstream from the shifting structure.09-06-2012
20120224141FUNDUS PHOTOGRAPHING APPARATUS - A fundus photographing apparatus comprises: an anterior-segment observation optical system arranged to image an anterior-segment illuminated with infrared light to obtain an anterior-segment image; a fundus photographing optical system arranged to image a fundus illuminated with visible light emitted from a light source to obtain a fundus image; a display controller arranged to selectively display the fundus image and the anterior-segment image on a monitor; a photographing switch for inputting a photographing start signal to start photographing using the fundus photographing optical system; and a time informing part arranged to inform an elapsed time after the photographing start signal is input with the photographing switch or an elapsed time after the visible light is emitted from the light source, wherein the display controller displays the elapsed time informed by the time informing part together with the anterior-segment image on the monitor.09-06-2012
20130063698FUNDUS OBSERVATION APPARATUS - A fundus observation apparatus according to an embodiment comprises: a photographing part that photographs the fundus of a subject eye; a forming part comprising an optical system that irradiates signal light onto the fundus and interferes reflected light of the signal light from the fundus with reference light via a reference path and detects the resulting interference light, wherein the forming part forms a tomographic image of the fundus based on the detection result; and an analyzing part that analyzes a photographed image of the fundus from the photographing part to delete predetermined low-frequency components from the photographed image.03-14-2013
20130188142MEDICAL IMAGING APPARATUS - A medical imaging apparatus includes an imaging unit configured to capture an image of a subject, an imaging sequence registration unit configured to register an imaging sequence, and a display unit configured to display the imaging sequence registered by the imaging sequence registration unit.07-25-2013
20130188141IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND PROGRAM - To ensure display of a region of interest on a fundus image and a tomographic image of an eye to be inspected in a correspondence manner, an apparatus for processing images of an eye to be inspected includes: a unit that acquires a fundus image of an eye to be inspected; a unit that designates an arbitrary point on the fundus image; a unit that acquires a tomographic image of the eye to be inspected; a unit that calculates a point on the tomographic image corresponding to the arbitrary point; and a unit that converts a coordinate system for displaying the tomographic image and the fundus image in association with each other on the basis of positions of the arbitrary point and the corresponding point.07-25-2013
20130188136IMAGING APPARATUS - An imaging apparatus includes a planar image acquisition unit configured to acquire a planar image of a subject, a tomographic image acquisition unit configured to acquire a tomographic image of the subject, and a polarization adjustment member disposed in a common optical path of a portion of an optical system in the planar image acquisition unit and a portion of an optical system in the tomographic image acquisition unit and configured to adjust polarization states of a measuring beam for the planar image and a measuring beam for the tomographic image.07-25-2013
20130188137IMAGING APPARATUS AND METHOD FOR CONTROLLING THE SAME - An imaging apparatus includes a polarization adjustment member configured to adjust a polarization state of a measuring beam, a planar image acquisition unit configured to acquire, in a case where the polarization adjustment member is removed from an optical path of the measuring beam, a planar image of a subject, and a tomographic image acquisition unit configured to acquire, in a case where the polarization adjustment member is inserted in the optical path of the measuring beam, a tomographic image of the subject.07-25-2013
20130188138IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - An image processing apparatus includes a fundus image acquisition unit configured to acquire a fundus image of an eye, a tomographic image acquisition unit configured to acquire a polarization-sensitive tomographic image of the eye, and a display control unit configured to cause a display unit to display, superimposed on a position in the fundus image which corresponds to a discontinuous portion in a predetermined layer of the eye shown in the polarization-sensitive tomographic image, a display form indicating the discontinuous portion.07-25-2013
20120194783COMPUTER-AIDED DIAGNOSIS OF RETINAL PATHOLOGIES USING FRONTAL EN-FACE VIEWS OF OPTICAL COHERENCE TOMOGRAPHY - A system and methods of computer-aided diagnosis for ophthalmology are described that includes acquiring OCT data, determining an RPE fit from the OCT data, and displaying en face images based on the RPE fit.08-02-2012
20130162945OPHTHALMOLOGIC APPARATUS, AND OPHTHALMOLOGIC CONTROL METHOD AND PROGRAM - Provided is an ophthalmologic apparatus, which can easily and quickly find a part of a crystalline lens without opacity where specific information of an eye to be inspected can be acquired (for example, eye refractive power information can be measured), when changing to a transillumination observation mode. The ophthalmologic apparatus includes: a specific information acquiring unit which acquires specific information of the eye to be inspected through a first opening; a transillumination image acquiring unit which acquires a transillumination image of the eye to be inspected; and a control unit which changes the first opening to a second opening smaller than the first opening when acquiring the transillumination image.06-27-2013
20130162946OPHTHALMOLOGIC APPARATUS, AND OPHTHALMOLOGIC METHOD AND PROGRAM - Provided is an ophthalmologic apparatus which is capable of performing offset adjustment of an alignment position while performing transillumination observation by automatic alignment. The ophthalmologic apparatus includes an automatic alignment unit for automatically performing alignment between a measuring portion and an eye to be inspected, and an alignment position changing unit capable of moving an optical axis center position of the measuring portion to an arbitrary position in the transillumination observation.06-27-2013
20130162947METHOD AND DEVICE FOR DETERMINING THE EYE TORSION - The invention relates to a device for determining eye torsion, comprising a camera and an image processing unit, which is designed to carry out a method for determining eye torsion. In the method, at least two images of an eye are recorded and image data are produced from said images, and at least one characteristic feature of the eye is identified from the image data, for example a blood vessel. Direction histograms of the feature in both images are produced and compared with each other. The angle of the torsion of the eye is determined from the shift of the directions in the direction histograms.06-27-2013
20090046248Ocular scanning device with programmable patterns for scanning - A device that projects light rays and beams onto the eye in a predetermined pattern or arrangement of patterns, wherein the light rays or beams scatter in the eye tissues and which images of scatter are captured by video scanning cameras. The images are transferred into digital information for processing, storage, display or retrieval by a processing device which also determines the location, and position of the scattered light in space and prepares a mathematical representation of the light representing the shape, thickness, and relationship of the tissues of the eye.02-19-2009
20090268159AUTOMATED ASSESSMENT OF OPTIC NERVE HEAD WITH SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY - A fully automated optic nerve head assessment system, based on spectral domain optical coherence tomography, provides essential disc parameters for clinical analysis, early detection, and monitoring of progression.10-29-2009
20130128222Methods and Systems to Measure Corneal Epithelial Thickness and Power, Stromal Thickness, Subepithelial Corneal Power and Topography for Disease Diagnosis - This invention discloses methods and systems for measuring corneal epithelial thickness and power, stromal thickness, subepitheila corneal power and topography. The systems and methods disclosed herein are non-invasive, non-contact and automated imaging methods which preferably makes use of Fourier-domain optical tomography. Also disclosed herein are scanning patterns and image analysis methods for utilizing and analyzing Fourier-domain optical coherence tomography images to obtain information about conical epithelial and stromal properties as well as parameters useful for evaluating the properties. The methods and systems described herein are useful as eye disease diagnostic tools and eye surgery planning tools.05-23-2013
20100085538EYE FUNDUS CAMERA - A single-plate image pickup element picks up an eye fundus image. A tricolor separation color filter includes R, G, and B filter elements arranged in a mosaic so as to correspond to the pixels of the image pickup element. Each virtual pixel value of color image data is calculated from light detection data of adjacent pixels. Thus, image data of a color still image is generated. The R filter elements transmit near-infrared light. Each virtual pixel value is calculated from light detection data of pixels corresponding to B or G filter elements that are adjacent to the R filters and have sensitivity to near-infrared light. Thus, image data of a near-infrared light monochrome moving image is generated.04-08-2010
20090213329EVALUATING PUPILLARY RESPONSES TO LIGHT STIMULI - Solutions for evaluating the pupillary responses of a patient are disclosed. An illustrative method includes alternately exposing a first eye and a second eye of the patient to light stimulation in successive intervals, the light stimulation provided by at least one light source controlled by at least one computing device; concurrently capturing, with at least one image device controlled by the at least one computing device, image data of the first eye and the second eye during the exposing; and using the at least one computing device to perform the following: determine a center point of the first eye within the image data of the first eye and a center point of the second eye within the image data of the second eye; obtain image data of a first half of the first eye having an edge defined by a line of pixels intersecting the determined center point of the first eye; obtain image data of a second half of the second eye, the second half of the second eye opposing the first half of the first eye and having an edge defined by a line of pixels intersecting the determined center point of the second eye; create a composite image including the image data of the first half of the first eye and the image data of the second half of the second eye; and provide the composite image for evaluation.08-27-2009
20110032480OPHTHALMOLOGICAL MEASURING DEVICE AND MEASUREMENT METHOD - An opthalmological measuring device for determining geometric structures in an eye includes an optical, triangulating measurement system for determining at least one geometric reference in the eye by triangulation, and an optical, interferometric measurement system for determining geometric detailed structures in the eye by optical interferometry. The measuring device is designed to position the geometric detailed structures determined by the interferometric measurement system on the basis of the at least one geometric reference in the eye determined by the triangulating measurement system. This firstly allows the interferometric measurement system to register geometric detailed structures in the eye with a high optical resolution and at places that are not visible to the triangulating measurement system, and secondly allows the positioning of said geometric detailed structures in the eye on the basis of geometric references that are determined by the triangulating measurement system without significant movement artifacts.02-10-2011
20100171925METHOD OF EYE ALIVENESS TESTING AND DEVICE FOR EYE ALIVENESS TESTING - In compliance with the method, the measurement of the characteristic dimensions of the hypothetical pupil are taken on the basis of a sequence of images. The eye is stimulated with the light featuring a pre-defined intensity profile. For each image in this sequence, the characteristic dimensions of the hypothetical pupil are calculated by means of image processing methods. For a sequence of images, the system determines the function ƒ which defines the changes in the characteristic dimensions of the hypothetical pupil within the measurement period, and on the basis of the said changes as well as on the selected mathematical model, the aliveness parameters O of the eye are determined by means of estimation methods. The calculated aliveness parameters are compared with the statistical template by way of classification process.07-08-2010
20110279776SYSTEMS AND METHODS FOR WIDEFIELD MAPPING OF THE RETINA - Systems and methods for constructing a widefield image of the retina from a plurality of retinal images. In one aspect, the disclosure concerns constructing a widefield image of the retina from a plurality of retinal images, comprising a base image and a plurality of peripheral images. These techniques enable medical observations of retinal phenomena in patients, such retinal vein occlusion, artery occlusion, retinal detachments, intraocular inflammation, ocular tumors, and the like, that were difficult to detect and impossible to quantify under prior art approaches.11-17-2011
20080316426Fundus camera - A fundus camera having a function of measuring a retinal function, capable of picking up (obtaining) a sharp color image of a fundus suitable for a fundus examination and measuring a retinal function with high accuracy comprises an illumination optical system comprising a visible light source, an image-pickup optical system comprising an image-pickup element, a mode selection switch for performing switching between a fundus photographing mode and a retinal function measurement mode based on variance of an intrinsic signal of a retina made by retinal stimulation, and a control unit which controls the optical systems, wherein the unit lowers, when the retinal function measurement mode is selected, illumination intensity of the illumination optical system per unit time in illuminating the fundus than that in picking up the color fundus image, and controls the element to pick up first and second visible fundus images at different points in time.12-25-2008
20120188508Automatic Refracto-Keratometer - An auto refracto-keratometer not only produces a black-and-white image for observing the alignment of eyes to be examined using an infrared illumination light but also has a color observation optical system for observing a condition of eyes to be examined using color-illumination light. The auto refracto-keratometer comprises an infrared optical system for examining an alignment and corneal curvature of eyes to be examined; a fogging optical system for relaxing accommodation of the eyes; a measuring optical system for measuring refractive power of the eyes; and a color observation optical system having a visible light source for emitting at least one visible light to the eyes and a 2-dimensional imaging device for detecting image of visible light reflected by the eyes.07-26-2012
20110299036PORTABLE DIGITAL DIRECT OPHTHALMOSCOPE - A portable digital ophthalmoscope includes standard ophthalmoscope optics for viewing retinal images and a digital image sensor is optically coupled to the optics for providing a retinal image to a digital display and/or a storage device.12-08-2011
20100201944ADAPTIVE INFRARED RETINOSCOPIC DEVICE FOR DETECTING OCULAR ABERRATIONS - An ocular system for detecting ocular abnormalities and conditions creates photorefractive digital images of a patient's retinal reflex. The system includes a computer control system, a two-dimensional array of infrared irradiation sources and a digital infrared image sensor. The amount of light provided by the array of irradiation sources is adjusted by the computer so that ocular signals from the image sensor are within a targeted range. Enhanced, adaptive, photorefraction is used to observe and measure the optical effects of Keratoconus. Multiple near-infrared (NIR) sources are preferably used with the photorefractive configuration to quantitatively characterize the aberrations of the eye. The infrared light is invisible to a patient and makes the procedure more comfortable than current ocular examinations.08-12-2010
20100201943ILLUMINATING AN ORGAN - An examination device comprises at least one optical component, each being connectable to a camera unit. The optical component comprises at least one optical radiation source and at least one optical radiation control structure. The optical radiation source is configured to direct optical radiation to the at least one optical radiation control structure, which is located non-axially to the optical axis of the optical component. The optical radiation control structure is configured to direct optical radiation of the optical radiation source towards an organ in a direction diverging from the optical axis of the optical component.08-12-2010
20120099076IMAGING APPARATUS AND OPHTHALMIC APPARATUS - An imaging apparatus for obtaining a tomographic image of an object based on light obtained by combining returning light from the object, which is irradiated with measurement light, and reference light corresponding to that measurement light, the imaging apparatus comprising: a reference light splitting unit adapted to split the reference light into a plurality of reference light beams of different wavelength ranges, and a plurality of dispersion compensation units adapted to compensate dispersion in accordance with wavelength ranges of the plurality of reference light beams, the dispersion compensation units being provided in respective light paths of the plurality of reference light beams.04-26-2012
20110299035OPTICAL COHERENCE TOMOGRAPHY APPARATUS, OPTICAL COHERENCE TOMOGRAPHY METHOD, OPHTHALMIC APPARATUS, METHOD OF CONTROLLING OPHTHALMIC APPARATUS, AND STORAGE MEDIUM - An optical coherence tomography apparatus which acquires a tomogram of a target object based on a light intensity detected for each wavelength by combining return light of measurement light from the target object with reference light corresponding to the measurement light, the apparatus comprising: a normalization unit adapted to normalize the light intensity detected for the each wavelength based on a transfer function corresponding to the wavelength resolution; and an image formation unit adapted to form a tomogram of the target object from the light intensities normalized by the normalization unit.12-08-2011
20110292340OPHTHALMIC APPARATUS - An ophthalmic apparatus for guiding positioning an intraocular lens for astigmatism correction, includes: an obtaining unit for obtaining an anterior segment image of a patient's eye and an astigmatic axis of a patient's cornea; a feature point designating unit for defining a feature point of an iris or a sclera on the anterior segment image; and a display control unit for superimposing and displaying a gauge image that models a cornea gauge and an axis that represents the astigmatic axis of the cornea on the anterior segment image.12-01-2011
20120013848IMAGE ACQUISITION APPARATUS AND CONTROL METHOD THEREFOR - Provided is an image acquisition apparatus for acquiring a 3D retinal image with high resolution, which is capable of reducing a time period required for data transmission. In the image acquisition apparatus: a blink of a subject is detected; acquisition of image taking data is suspended thereafter until a line of sight becomes stable; and the data transmission to a computer is started at a timing at which a blink has been detected, thereby avoiding acquiring unnecessary data, allowing a capacity of a data buffer to be smaller, and making the data transmission efficient.01-19-2012
20110292339OPHTHALMOLOGIC APPARATUS, CONTROL METHOD FOR OPHTHALMOLOGIC APPARATUS, PROGRAM, AND STORAGE MEDIUM OF PROGRAM - A control unit, if insertion of a diopter correction lens or retraction of the diopter correction lens is detected, moves a focusing lens to a position according to an insertion or retraction state of the diopter correction lens corresponding to a position of the focusing lens detected by a focusing lens position detection unit.12-01-2011
20110292338OPHTHALMIC IMAGING APPARATUS AND CONTROL METHOD THEREOF - An ophthalmic imaging apparatus divides a frame image obtained by capturing a moving image into a plurality of regions grouping pixels, and acquires photometric values corresponding the plurality of the regions. Further, the ophthalmic imaging apparatus determines acknowledgement or dis-acknowledgement of capturing a still image based on temporal variation of the acquired photometric values or distribution of the acquired photometric values on a fundus image. The ophthalmic imaging apparatus inhibits to execute a still image capturing of the fundus if the dis-acknowledgement of capturing is determined.12-01-2011
20110292337OPHTHALMIC APPARATUS AND CONTROL METHOD THEREOF - In an ophthalmic apparatus, reflected light from an eye to be examined, illuminated by an observation light source of emitting continuous light is split into a light splitting unit and an optical viewfinder, and a fundus image where an examiner can observe is provided by the optical viewfinder. An imaging unit sets light quantity of the observation light source by using a moving image obtained by imaging the split and reflected light. After completing the setting of the light quantity, the imaging unit moves the light splitting unit from an optical axis, illuminates the fundus by driving the imaging light source, and obtains a still image.12-01-2011
20130215384IMAGING APPARATUS - Provided is an imaging apparatus for photographing an image by an intensity of return light obtained from an eye to be inspected irradiated with measuring light, the imaging apparatus including: a fixation target for the eye to be inspected to fixate, an illuminated position setting unit for setting an illuminated position of the fixation target; and an illuminated position controlling unit for controlling the illuminated position setting unit so as to move the illuminated position of the fixation target for a first observation area to an illuminated position of the fixation target for a second observation area, in which the imaging apparatus calculates a movement distance of the illuminated position of the fixation target on the basis of a diopter scale of the eye to be inspected.08-22-2013
20130215385IMAGING APPARATUS - In order to reduce a measurement range of an aberration of an eye to be inspected, provided is an imaging apparatus, including: a first image acquiring unit for acquiring a first image of the eye based on first return light from the eye irradiated with first measuring light via a first focus unit for focusing the first measuring light on the eye; a second image acquiring, by using an aberration correction unit, unit for acquiring a second image of an area corresponding to a part of the first image of the eye based on second return light from the object to be inspected irradiated with second measuring light via a second focus unit for focusing the second measuring light on the eye; and a focus adjustment unit for adjusting a focus condition of the second focus unit based on a focus condition of the first focus unit.08-22-2013
20100039615DEVICE FOR OBTAINING AN IRIS IMAGE - The invention is aimed at simplifying the structure, operating conditions and ensuring a required placement of an individual to be identified in the focal plane of the optical system, in order to obtain a sharp image of the iris. The above object has been achieved by the fact that a device for obtaining an iris image comprises an image recording means 02-18-2010
20110267582OPHTHALMIC APPARATUS - An ophthalmic apparatus includes an imaging optical system for imaging an anterior segment image including a pupil of an examinee's eye, a pupil detection unit for detecting a size of the pupil of the examinee's eye based on the imaged result by the imaging optical system, and an output unit configured to obtain size information of a far vision zone and a near vision zone for a multifocal intraocular lens and output the obtained size information and the size of the pupil detected by the pupil detection unit to be comparable. Accordingly, applicability of the multifocal intraocular lens can be determined accurately and easily.11-03-2011
20100033676APPARATUS AND METHOD FOR OBSERVING AN EYE, AS WELL AS OCT-MODULE - An apparatus for observing an eye comprises an imaging device (02-11-2010
20110261321LENSLET ARRAY FOR RETINAL OXIMETRY - The multi-aperture system of the present invention provides a retinal oximetry apparatus for determining the level of oxygen saturation in retinal vessels using a lenslet array comprising at least seven lenses for the simultaneous measurement of reflected light with at least three wavelengths and at least four polarization states. The multi-aperture system of the present invention further provides an apparatus for determining the level of oxygen saturation in retinal vessels using a lenslet array comprising at least ten lenses for the simultaneous measurement of reflected light with at least three wavelengths for oxygen measurement, at least three wavelengths for melanin content, and at least four polarization states. Methods of operating the same are also provided.10-27-2011
20090128775System for obtaining a fundus image - The present invention is related to a system for obtaining a fundus image, constituted by optical means implemented in an equipment to observe and photograph the image of the wall fundus (05-21-2009
20100007848Optical tomographic image photographing apparatus - An apparatus has an optical system detecting spectral information and having an optical scanner and a driving unit changing the optical path length by moving an optical member, a monitor, and a unit controlling the driving unit, obtaining a tomographic image by performing Fourier analysis on the information and displaying the obtained image, in which a front surface of an examined object is positioned on the back side of a depth position where optical path lengths of measurement light and reference light become equal to obtain a normal image of the tomographic image, the front surface of the examined object is positioned on the front side of the depth position to obtain an inverted image of the tomographic image, and at least one of dispersion correction processing corresponding to the information and image combining processing is performed on both normal and inverted images, and the images are displayed.01-14-2010
20090153799Vision Screener - An article and method for screening vision are described that does not require verbal input from a test person or the test person to maintain a fixed position during the screening. The article includes an image capture device, at least one test light, a processing unit that includes an interpretive program, and a display. The method comprises capturing an image of a person's eyes, verifying the image, studying the image, evaluating the image, and displaying the results. Conveniently, the article and method require no special training by an operator.06-18-2009
20090153798Device and method for monitoring, documenting and/or diagnosing the fundus - The present invention is directed to a device and a method for the observation, documentation and/or diagnosis of the fundus in which the diagnosis is carried out by evaluating the documented images of the fundus. The device according to the invention comprises an ophthalmological examination device, a multi-spectral sequential illumination module, an image recording module, a control and safety module, and an evaluating unit. The illumination module which is connected to the ophthalmologic examination device has at least two individual light sources and which can be regulated individually with respect to intensity and duration and which emit monochromatic light of different wavelengths. The light coming from the illumination module is imaged on the image recording module from the ophthalmologic examination device by the eye being examined. The control and safety module controls the chronological sequence, duration and intensity of the individual light sources and monitors the light stress. An evaluating unit evaluates the recordings of the fundus transmitted by the image recording module. The inventive solution serves to record monochromatic images of the retina, for example, red, green, blue, or also infrared, and to record fluorescence images.06-18-2009
20090153797Integrated Retinal Imager And Method - A system and method are presented for use in imaging the patient's retina. A light source unit is provided including a light emitting diode (LED) arrangement comprising multiple LEDs of different wavelength ranges. A light guide arrangement is used with the LEDs arrangement and is configured for coupling light from the LEDs and providing output light beams of a desired shape. The illuminating light is directed towards a region on the retina, and light returned from the illuminated region is collected and directed to an image detector unit. The invention enables the use of LED light at high intensity as required in the eye retina imaging, while maintaining the required high-quality imaging. Also, the invention provides for simultaneous or quasi-simultaneous as well as high-speed imaging in FA and ICG imaging procedures, thereby satisfying a long felt need in ophthalmology. Also, the invention provides for automated illumination or light exposure control to optimize overall light exposure to the patient eye and best acquired image quality in terms of brightness, contrast and image signal-to-noise ratio.06-18-2009
20090147217Apparatus, Methods and Systems for Non-Invasive Ocular Assessment of Neurological Function - A portable, non-invasive binocular scanning apparatus for rapid assessment of neurological function in cases of potential trauma, disease, and/or exposure to chemical treat agents. The scanning apparatus may utilize a combination of light sources for the measurement and assessment of pupillary response, retinal imagery, and/or other ophthalmologic biomarkers. The scanning apparatus can detect and assess a wide range of neurological and physiological conditions by obtaining pertinent measurements from the retina and pupil in real time.06-11-2009
20090086164Fundus imaging apparatus - A fundus imaging apparatus comprises: an irradiation optical system comprising a light source which emits a laser beam and a scanner which two-dimensionally scans the laser beam on a fundus of an examinee's eye, the irradiation optical system being adapted to focus the laser beam emitted from the light source on the fundus to form a confocal region; an imaging optical system comprising a photo-receiving element which receives reflection light of the laser beam reflected from the fundus, the imaging optical system being adapted to focus the reflection light from the fundus and receive the reflection light by the photo-receiving element; and a beam restriction member placed in an optical path of the imaging optical system, the beam restriction member comprising: one of an opening through which part of the reflection light from the fundus outside the confocal region is allowed to pass toward the photo-receiving element and a mirror part which reflects the part of the reflection light from the fundus outside the confocal region toward the photo-receiving element; and a light shielding part which shields the reflection light from the fundus in the confocal region and the part of the reflection light from the fundus outside the confocal region. The light shielding part includes a first light shielding part placed in a conjugate position with a focus point of the laser beam on the fundus and a second light shielding part placed in a nearly conjugate position with the fundus and adapted to shield part of an optical path of the reflection light, the second light shielding part is formed around the first light shielding part.04-02-2009
20110170063OPHTHALMOLOGIC IMAGING APPARATUS AND OPHTHALMOLOGIC IMAGING METHOD - An ophthalmologic imaging apparatus that captures an image of a subject's eye is provided. The apparatus includes a focusing unit configured to focus light returned from the subject's eye that is illuminated by the light of a first wavelength, onto an imaging unit, and a moving unit configured to move the focusing unit based on an optical path length difference between the light of the first wavelength and the light of a second wavelength that is different from the first wavelength when light returned from the subject's eye that is illuminated by the light of the second wavelength is focused onto the imaging unit.07-14-2011
20110170061Gaze Point Tracking Using Polarized Light - A process and a system that determine a glint position and a pupil position are disclosed. The process includes illuminating one eye to produce a glint on that eye, and obtaining a glint image of that eye showing that glint on that eye. A glint position is determined at least in part from that glint image. The process further includes illuminating that eye using polarized light, and obtaining, through a polarizer that can attenuate reflected polarized light, a pupil image of that eye. A pupil position is determined at least in part from that pupil image.07-14-2011
20080309872Ophthalmologic Instrument - The present invention provides an opthalmologic apparatus that can noninvasively measure the state of the lacrimal layer formed on the cornea surface and that can quantitatively measure the state of the lacrimal layer without utilizing a reflection image from the retina.12-18-2008
20080304011SAFE EYE DETECTION - An eye detection system for safe detection of the eye positions of a subject estimates the distance from the eye detection system to the subject and reduces the power level of at least one primary light source of the eye detection system if the subject is too close to the eye detection system. If the subject is not too close to the eye detection system, the power level of the at least one primary light source of the eye detection system is increased, provided the power level is below a predetermined maximum power level. Primary light from the at least one primary light source reflected from the subject is sensed by an imager to obtain one or more images, from which the eye positions of the subject are estimated.12-11-2008
20100259722Ocular surface interferometry (OSI) methods for imaging, processing, and/or displaying an ocular tear film - Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). The measured TFLT can be used to diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device can also be focused on the lipid layer of the tear film to capture a second image containing the background signal(s) present in the first image. The second image can be subtracted from the first image to reduce and/or eliminate the background signal(s) in the first image to produce a resulting image. The resulting image can be processed and analyzed to measure a tear film layer thickness (TFLT), including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT).10-14-2010
20080266520REFLECTANCE MEASUREMENT OF MACULAR PIGMENT USING MULTISPECTRAL IMAGING - Methods and apparatus are provided for accurately imaging, assessing and measuring a patient's macular pigment. A multiband filter is employed in combination with a color digital fundus camera to provide a method that operates with a single imaging exposure. The multiband filter has bandpass regions within spectral ranges of the red, green and blue detectors of the CCD array employed within the fundus camera, the bandpass regions being sufficiently sharply defined so as to avoid regions where the CCD detector responses spectrally overlap. This provides three discrete channels of grayscale data corresponding to the bandpass regions of the multiband filter, which can be used to calculate macular pigment topographically. Methods are also disclosed for calculating the optical density of the macular pigment and advantageously displaying the resulting data.10-30-2008
20100277690OPHTHALMOLOGIC PHOTOGRAPHING APPARATUS - An ophthalmologic photographing apparatus includes an imaging unit configured to capture a fundus image of a subject's eye to output an image signal, a projection unit configured to intermittently project an index light flux onto the subject's eye in synchronization with the image signal from the imaging unit, and an image recording unit configured to record the image signal from the imaging unit as a moving image.11-04-2010
20100123871FUNDUS CAMERA - A fundus camera includes an illumination unit which includes an optical element configured to irradiate an eye fundus with visible light from a position conjugate with an anterior eye portion of an eye to be examined, and an imaging unit configured to take an image of the eye fundus with light which is emitted from the illumination unit and reflected from the eye fundus, wherein the illumination unit includes a blue LED chip and a fluorescent member that is excited by light emitted from the blue LED chip and emits fluorescence, and the fluorescent member is irradiated again with apart of the light reflected by the optical element.05-20-2010
20120188509HYBRID OCT SCANNING DEVICE - The invention provides a hybrid OCT scanning device which improves OCT scanning of targets, including adaption for a ophthalmic targets (i.e. cornea, retina and fovea areas). The invention provides a movable beam modifying element which is adapted to be interposed in the probe radiation directed to the target, and the interposition of the movable element is synchronous with the periodicity of the OCT scan beam. The beam modifying element may include any of angular deflection regions, optical delay regions, or combinations of deflection and delay regions. Such regions of deflection and/or delay translate into a governable scan range, both lateral and depth, of a target region.07-26-2012
20100085539MENTAL FATIGUE DETECTING METHOD AND DEVICE - A mental fatigue detection device for detecting mental fatigue without arbitrariness using a flickering light includes: a light-emitting unit (04-08-2010
20110170060Gaze Tracking Using Polarized Light - A gaze-tracking system uses separate “glint” and “pupil” images to determine the position of the pupil relative to the position of the glint. Since separate images are obtained, the exposures can be independently optimized for each image's intended purpose (e.g., locating the glint or locating the pupil, respectively). Polarizers are used to eliminate the glint in one image. This more saliently reveals the pupil, allowing its position relative to the glint to be determined more precisely, and enhancing the accuracy and robustness of the system.07-14-2011
20110170062FUNDUS OBSERVATION APPARATUS - A fundus observation apparatus that is capable of assisting an examiner in judging the presence or absence of abnormality in an examinee's eye based on a fundus tomographic image. The fundus observation apparatus includes an optical coherence tomography device that has an optical scanner for setting an image pickup position on a fundus of an examinee's eye, and is arranged to obtain a tomographic image of the fundus, and an information display unit that is arranged to display on a monitor the tomographic image obtained by the optical coherence tomography device and assisting information for assisting an examiner in performing judgment on the tomographic image, and the information display unit is arranged to change the assisting information based on image pickup information on the tomographic image.07-14-2011
20130215383OPHTHALMIC INSTRUMENTS, SYSTEMS, PROGRAMS AND METHODS FOR MONITORING EYES - An automated ophthalmic monitoring system for monitoring an eye of a subject is provided. The system includes an eyelid refractor and an ophthalmic imaging device having an imaging sensor or camera. An automated control unit is in communication with the eyelid retractor and the ophthalmic imaging device, wherein the automated control unit controls the operation of the eyelid retractor and the ophthalmic imaging device.08-22-2013
20090201467FUNDUS PHOTO-STIMULATION SYSTEM AND METHOD - An eye examination device has a fundus observation system and an optical stimulation system. The optical stimulation system has an optical targeting subsystem and an optical stimulation subsystem, wherein the optical stimulation system is structured to be used to provide light stimulation to a portion of a fundus of an eye targeted by the optical targeting subsystem in conjunction with observations made with the fundus observation system.08-13-2009
20090279051FUNDUS CAMERA - A fundus camera includes a fundus photographing optical system including an image-recording image sensor for photographing a fundus image via a focusing lens, a focus target having a plurality of regions for forming light fluxes passing through a plurality of different areas on pupil of a subject's eye, and a focus drive unit for driving the focusing lens based on positions of a plurality of images of the focus target in an image captured by the image-recording image sensor and on contrast of the images.11-12-2009
20090262303FUNDUS CAMERA - A fundus camera includes an optical path splitting unit arranged between a focusing unit and an imaging unit. The optical path splitting unit has characteristics adapted to reflect light of a visible light region and to transmit near-infrared light. The optical path splitting unit retreats from an optical path when a still fundus image is photographed. A quick-return mirror having such characteristics is used as the optical path splitting unit. When near-infrared illumination light having a wavelength of about 850 nm is used, such light can be incident upon the imaging unit without loss of the amount of light. In addition, visible light output from an internal fixation target is projected onto a subject's eye. Further, a cornea diaphragm and a crystalline lens diaphragm are used for observing a fundus with invisible light. Each of the cornea diaphragm and the crystalline lens diaphragm can be changed to another one having a different diameter.10-22-2009
20100277691Methods for Diagnosing Glaucoma Utilizing Combinations of FD-OCT Measurements from Three Anatomical Regions of the Eye - This invention discloses methods and systems for diagnosing glaucoma by combining diagnostic parameters derived from optical coherence tomography images of three different anatomic regions of the eye, including the macular ganglion cell complex (mGCC), the peripapillary nerve fiber layer (ppNFL), and the optic nerve head (ONH). The combined diagnostic parameters form a reduced set of global parameters, which are then fed to pre-trained machine classifiers as input to arrive at a single diagnostic indicator for glaucoma. Also disclosed are methods for training a machine classifier to be used in methods and systems of this invention.11-04-2010
20120293770IMAGE ACQUISITION APPARATUS - An image acquisition apparatus irradiates light from a light source to an inspection object, obtains a tomographic image of the inspection object on the basis of a combined beam obtained by combining a return beam from the inspection object due to the irradiated light and a reference beam corresponding to the light, and obtains a plane image of the inspection object on the basis of the return beam from the inspection object due to the irradiated light. The apparatus performs a first scanning process to main-scan the irradiated light when the tomographic image is obtained, performs a second scanning process to main-scan the irradiated light at a speed higher than that in the first scanning process when the plane image is obtained, and performs a third scanning process to sub-scan the irradiated light when each of the tomographic image and the plane image is obtained.11-22-2012
20110194072COMPACT ADAPTIVE OPTIC-OPTICAL COHERENCE TOMOGRAPHY SYSTEM - Badal Optometer and rotating cylinders are inserted in the AO-OCT to correct large spectacle aberrations such as myopia, hyperopic and astigmatism for ease of clinical use and reduction. Spherical mirrors in the sets of the telescope are rotated orthogonally to reduce aberrations and beam displacement caused by the scanners. This produces greatly reduced AO registration errors and improved AO performance to enable high order aberration correction in a patient eyes.08-11-2011
20080212026Noninvasive ocular monitor and method for measuring and analyzing physiological data - A non-invasive device and methods for acquiring and analyzing ocular images from a subject is presented. Aspects of the method comprise of the acquisition of ocular image(s) and subsequent evaluation, classification and/or interpretation of these image(s). The ocular image(s) are acquired using ocular scanning instruments or suitable substitutes. Evaluation, classification, and/or interpretation are most easily accomplished automatically through the use of one or more algorithms.09-04-2008
20110199578Imaging System - According to certain embodiments, foveal array elements of a foveal region of a focal plane array are sampled at a faster sampling rate to yield foveal array data. Peripheral array elements of a peripheral region of the focal plane array are sampled at a slower sampling rate or sparser sampling density to yield peripheral array data. The foveal array data is processed to yield foveal image data for a foveal region of a display. The peripheral array data is processed to yield peripheral image data for a peripheral region of the display.08-18-2011
20120293771COMPENSATION OPTICAL APPARATUS AND IMAGE SENSING APPARATUS - A compensation optical apparatus for obtaining and image of an object without reduction in image quality irrespective of aberration compensation, includes: a division unit for dividing a return beam from a measured object; an aberration measurement unit for measuring an aberration caused by the measured object, with a divided beam from the division unit; an aberration compensation unit for performing aberration compensation based on the aberration measured by the aberration measurement unit; a projection unit for projecting a beam obtained by the aberration compensation in the aberration compensation unit to the measured object; an acquirement unit for acquiring a value exhibiting a state of the measured object based on the return beam from the measured object, which is obtained by the beam projected from the projection unit; and a control unit for retreating the division unit from an optical path based on the value acquired by the acquirement unit.11-22-2012
20100060854FINITE ELEMENT MODEL OF A KERATOCONIC CORNEA - A system and method for diagnosing the onset of keratoconus in a cornea requires subjecting the cornea of an eye to a pressure that changes its shape. A topography of the cornea's anterior surface (possibly, the posterior surface also) is mapped. The mapped topography is then fitted on a mathematical model of the cornea. Measurements corresponding to biomechanical parameters in the cornea are then taken from the model. Next, a computer is used to evaluate the biomechanical parameters to diagnose whether the cornea is keratoconic.03-11-2010
20100060853SYSTEM AND METHOD FOR IMAGING RETINAL TISSUE WITH TISSUE GENERATED LIGHT - A system and method for imaging retinal tissues in an eye generates an input light beam having ultra-short pulses and an input wavelength (λ03-11-2010
20100060855SYSTEM AND METHOD FOR AXIS IDENTIFICATION IN ASTIGMATIC CATARACT SURGERY - A method and system for identifying an astigmatic axis having a camera and light mounted to a slit lamp for taking a photo of a patient's eye. A template having a rotatable dial is set using a schematic diagram. The template is transferred to the photo and the correct axis is marked through slots on the template.03-11-2010
20080239238OPTICAL IMAGE MEASUREMENT DEVICE AND OPTICAL IMAGE MEASUREMENT METHOD - An optical image measurement device comprises: an interference-light generator configured to generate an interference light by splitting a low-coherence light into a signal light and a reference light and superimposing the signal light having passed through an eye and the reference light having passed through a reference object; a detector configured to detect the generated interference light; a calculator configured to obtain intensity distribution of the interference light in the eye, based on a result of the detection by the detector; a determining part configured to determine a projection position of the signal light to the eye, based on the obtained intensity distribution; and an image forming part configured to form an image of the eye, based on a result of detection of a new interference light based on a new signal light projected toward the determined projection position and a new reference light having passed through the reference object.10-02-2008
20090002628METHOD AND APPARATUS IMPROVING VISION AND THE RESOLUTION OF RETINAL IMAGES - A method of and apparatus for improving vision and the resolution of retinal images is described in which a point source produced on the retina of a living eye by a laser beam is reflected from the retina and received at a lenslet array of a Hartmann-Shack wavefront sensor such that each of the lenslets in the lenslet array forms an aerial image of the retinal point source on a CCD camera located adjacent to the lenslet array. The output signal from the CCD camera is acquired by a computer which processes the signal and produces a correction signal which may be used to control a compensating optical or wavefront compensation device such as a deformable mirror. It may also be used to fabricate a contact lens or intraocular lens, or to guide a surgical procedure to correct the aberrations of the eye. Any of these methods could correct aberrations beyond defocus and astigmatism, allowing improved vision and improved imaging of the inside of the eye.01-01-2009
20090002629RETINAL CAMERA FILTER FOR MACULAR PIGMENT MEASUREMENTS - Apparatus for use in measuring the density and spatial distribution of macular pigment in an eye comprises a camera (01-01-2009
20090033870Ophthalmologic information processing apparatus and ophthalmologic examination apparatus - An ophthalmologic examination apparatus 02-05-2009
20090168019Non-Invasive Measurement of Tear Volume Systems and Methods - Devices systems, and methods can measure, diagnose and/or characterize an eye of a patient, including physiologic and optical properties, such as hydration and tear volume in relation to an optical surface of the eye, including topography of a corneal surface of the eye and/or a wavefront elevation map of the eye. The system forms an image of a tear meniscus along an eyelid. The eye can be illuminated so that the meniscus appears as a dark band in the image. Tear volume can be determined by measuring a height across the tear meniscus. The tear volume can be used to determine the optical properties of the tear of the eye and to diagnose conditions of the eye. The patient can be screened for treatment of the eye with refractive surgery using a measured pupil size, hydration and topography and/or wavefront.07-02-2009
20110267581OPHTHALMOLOGIC APPARATUS AND OPHTHALMOLOGIC OBSERVATION METHOD - To accurately detect a movement of an object based on an image distorted by the movement of an eye to be inspected, which is acquired by a scanning imaging system, provided is an ophthalmologic apparatus including: an extraction means for extracting a plurality of characteristic images from a first fundus image of the eye to be inspected; a fundus image acquisition means for acquiring a second fundus image of the eye to be inspected during a period different from a period during which the first fundus image is acquired; and a calculation means for calculating at least a rotation of movements of the eye to be inspected based on the plurality of characteristic images and the second fundus image.11-03-2011
20080273172AUTOFLUORESCENCE PHOTOGRAPHY USING A FUNDUS CAMERA - Methods and apparatus for taking autofluorescence images with a fundus camera capable of a field of view of at least 30 degrees and preferably 50 degrees or more using high quality thin film optical interference filters. In one embodiment, a filter set is disclosed for achieving this functionality. Using these methods and/or apparatus, a practitioner can (among other procedures, which are described) take high-quality autofluorescence images of the fundus using a CCD camera that does not have to be cooled, take such images without exciting damaging photochemical reactions in the retina, detect accumulation of fluorophores in the retina prior to the significant accumulation of fluorophores in the retinal pigment epithelium, and topographically localize and quantitate retinal abnormalities and retinal pigment epithelium abnormalities.11-06-2008
20120293769SYSTEMS AND METHODS OF PHASE DIVERSITY WAVEFRONT SENSING - A phase diversity wavefront sensor includes an optical system including at least one optical element for receiving a light beam; a diffractive optical element having a diffractive pattern defining a filter function, the diffractive optical element being arranged to produce, in conjunction with the optical system, images from the light beam associated with at least two diffraction orders; and a detector for detecting the images and outputting image data corresponding to the detected images. In one embodiment, the optical system, diffractive optical element, and detector are arranged to provide telecentric, pupil plane images of the light beam. A processor receives the image data from the detector, and executes a Gerchberg-Saxton phase retrieval algorithm to measure the wavefront of the light beam.11-22-2012
20080212027OPHTHALMOLOGIC PHOTOGRAPHING APPARATUS - An ophthalmologic photographing apparatus includes a light source having two or more types of light-emitting-diode (LED) light emitting elements configured to emit light of different wavelengths, an illumination optical system configured to illuminate a fundus of a subject's eye with light emitted by the light source, an imaging optical system configured to form a fundus image from light reflected from the fundus of the subject's eye illuminated by the illumination optical system, and a control unit configured to control the light source to emit light of different wavelengths, with which the fundus of the subject's eye is illuminated, between when the formed fundus image is observed and when the formed fundus image is captured as a still image.09-04-2008
20110007271OPHTHALMOLOGIC IMAGING APPARATUS AND OPHTHALMOLOGIC IMAGING METHOD - An opthalmologic imaging apparatus that captures a fundus image of a subject's eye includes a first extraction unit configured to extract, from a first fundus image photographed with a first light quantity, an image of a first area having intensity not less than predetermined intensity and an image of a second area other than the first area, a second extraction unit configured to extract an image of an area corresponding to the first area from a second fundus image photographed with a second light quantity based on the light quantity of the first area, a third extraction unit configured to extract an image of an area corresponding to the second area from a third fundus image photographed with a third light quantity based on the light quantity of the second area, and an image combining unit configured to combine the images extracted by the second and the third extraction units.01-13-2011
20110007273FUNDUS CAMERA - A fundus camera includes an illumination optical system, an observation photographic optical system, a photographic diaphragm unit located in a position conjugate with the subject's eye in the observation photographic optical system, and an imaging unit disposed in the observation photographic optical system. The photographic diaphragm unit includes a first photographic diaphragm fixed during capturing of a still image and a second photographic diaphragm movable during capturing of a moving image. The fundus camera further includes a diaphragm driving unit configured to move the second photographic diaphragm on a plane orthogonal to an optical axis, an image recording unit configured to capture, with the first photographic diaphragm, a still image based on an output of the imaging unit and, with the second photographic diaphragm, a moving image based on an output of the imaging unit, and a display unit configured to display an image captured by the imaging unit.01-13-2011
20100271593Apparatus for photographing the anterior segment and retina of the eye through the use of a camera attachment designed to fit onto a Welch Allyn PanOptic Ophthalmoscope - Apparatus for photographing the anterior segment and retina of the eye through the use of a camera attachment designed to snap-fit onto a Welch Allyn PanOptic Ophthalmoscope without permanently altering the ophthalmoscope itself. The plastic attachment houses a digital camera with video and still photo capabilities. A button on the camera allows for snapshots to be taken. The camera is connected to a laptop or stationary computer via a USB cable. The camera, which utilizes software for photo and video management, relays views to a computer and monitor, projecting the same view on the screen as a practitioner would see when using the Welch Allyn PanOptic traditionally.10-28-2010
20090027618Method and Arrangement for Automatic Detection and Interpretation of the Iris Structure for Determining Conditions of a Person - For automatic detection and interpretation of the iris structure for determining a condition of a person, two-dimensional recording and digitization of an eyeball with iris is realized by a recording device connected to a data processing system; selection of the iris; generation of the topography of the iris by dividing the image of the iris into images of circular ring sections; determination of features for the circular ring sections and/or of objects in the images of the circular ring sections by combining image pixels of same color or intensity to individual objects by an object isolation method; feature determination of the objects determined by the object isolation method; comparison of the determined features of the objects with features saved as classification knowledge in the data processing system; and correlation of the determined objects to body regions in accordance with the topography of the iris are performed.01-29-2009
20110205491MULTIFUNCTIONAL OPHTHALMIC TEST DEVICE - A configuration is adopted, which includes: a shallow-bottom hemispherical screen and a deep-bottom hemispherical screen, which are different in depth from each other. The deep-bottom hemispherical screen belongs to an entirety of a hemispherical screen composed of the shallow-bottom hemispherical screen and a peripheral edge portion of the hemispherical screen. In accordance with a type of an implemented ophthalmic test, a multifunctional ophthalmic test device drives the deep-bottom hemispherical screen or the shallow-bottom hemispherical screen so that either of the deep-bottom hemispherical screen and the shallow-bottom hemispherical screen can be located at a position onto which an ophthalmic test image is projected by a projector. In this state, the projector projects the ophthalmic test image onto either of the deep-bottom hemispherical screen and the shallow-bottom hemispherical screen. In such a way, a multifunctional ophthalmic test device is provided, which is capable of performing various types of ophthalmic tests by using a hemispherical screen.08-25-2011
20110267584EYE PORTION DIAGNOSIS SUPPORT APPARATUS, METHOD THEREFOR, PROGRAM, AND RECORDING MEDIUM - There is provided a technique for efficiently acquiring a tomogram of an eye portion. A diagnosis support apparatus includes a wide-area image acquisition means for acquiring a wide-area image of an eye portion, a detection means for detecting a lesion candidate on the eye portion by analyzing the wide-area image acquired by the wide-area image acquisition means, a determination means for determining a parameter associated with acquisition of a tomogram of the eye portion, based on a lesion candidate detection result obtained by the detection means, and a tomogram acquisition means for acquiring a tomogram of the eye portion based on the parameter determined by the determination means.11-03-2011
20110205489Optical observation device for observing an eye - An optical observation device (08-25-2011
20120140176Optical Coherence Imaging Systems Having a Mechanism for Shifting Focus and Scanning Modality - Some embodiments of the present invention provide adapters for use in posterior imaging systems. The adapters include lens set configured to adapt the posterior imaging system to operate as an anterior imaging system. Related optical coherence tomography systems and anterior imaging systems are also provided herein.06-07-2012
20090128776FUNCTIONAL IMAGING OF THE RETINA - An apparatus and a method for obtaining, in vivo, a measurement of retinal response to an optical stimuli. Light sources provide optical stimuli to the retina in accordance with predetermined stimulation sequences, and images of the retina are obtained and correlated with the predetermined stimulation sequences so as to determine responses of the retina to the optical stimuli. In one particular embodiment, optical stimuli are provided according to m-sequences and correlated with corresponding optical coherence tomography images to determine a functional response of the retina.05-21-2009
20130120710Portable Optical Coherence Tomography (OCT) Systems - Portable optical coherence tomography (OCT) devices including at least one mirror configured to scan at least two directions are provided. The portable OCT devices are configured to provide a portable interface to a sample that can be aligned to the sample without repositioning the sample. Related systems are also provided.05-16-2013
20130120711OCT-BASED OPHTHALMOLOGICAL MEASURING SYSTEM - An ophthalmological measuring system for determining distances and/or for tomographic imaging of ocular structures, based on an OCT method. The measuring system includes a light source with a spectral centroid (λ), an interferometric measuring device, a scanner system, which in addition to the lateral deflection of the sample beam also has axial modulations with a frequency (f) in the sample arm, and a control and evaluation unit. The scanner performs a lateral, two-dimensional deflection of the sample beam with the aid of one or even two separate mirror elements and can in particular have axial modulation amplitudes z05-16-2013
20120069299HYBRID LASER OPHTHALMOSCOPE - Provided is a hybrid laser ophthalmoscope comprising a laser light source, a LED light source, and a holographic diffuser, wherein the holographic diffuser is configured to shape a beam of light into a Maxwellian ring.03-22-2012
20120069298OCULAR MODELING METHODS AND APPARATUS - A method and apparatus for modeling a lens of an eye, comprising: measuring the anterior shape of the eye's cornea; determining direct optical measurements of at least one parameter of the cornea and at least one parameter of the lens; determining the refractive index of the cornea; correcting the optical measurements to account for the effect of the refractive index of the cornea on the direct optical measurements; measuring the aberration of the eye; calculating the refractive index of the lens by combining the corrected measurements and the measured aberration; and further correcting the optical measurements of the lens to account the effect of the refractive index of the lens on the direct optical measurements.03-22-2012
20090251665OPHTHALMOLOGIC PHOTOGRAPHING APPARATUS - An ophthalmologic photographing apparatus is disclosed which is capable of photographing a predetermined area of a subject's eye. The apparatus includes a light projecting unit configured to project visible light to a subject's eye, a detection unit configured to measure a pupil diameter, which is caused by the light projecting unit, and a control unit configured to determine the amount of change in diameter and to control a photographing operation based on the amount of change determined by the control unit.10-08-2009
20130215386IMAGING APPARATUS AND CONTROL METHOD THEREFOR - In order to solve the problem in that, when a fundus is irradiated with multiple beams, a load has been placed on a subject, an imaging apparatus for imaging an object to be inspected based on return light from a first area in the object to be inspected, which is irradiated with first light, including: a determination unit for determining a second area being narrower than the first area in the object to be inspected; and a control unit for restricting the irradiation with the first light in the second area, which is irradiated with second light.08-22-2013
20090079936DEVICE FOR TAKING PHOTOGRAPHS OF THE FUNDUS OF THE EYE (FUNDUS OCULI) - The device is used for taking photographs of the fundus of the eye (fundus oculi). It comprises: A) an illumination source (03-26-2009
20110228223SPECTRAL CONTRAST FOR GLAUCOMA IMAGING - A system for analyzing and detecting early stage damage to the retina related to glaucoma. The reflectance of different wavelengths of light by the retinal nerve fiber layer are compared. Changes in relative reflectance values indicate damage to the retinal nerve fibers and indicate early glaucomatous optical neuropathy.09-22-2011
20110141436FUNDUS CAMERA AND OPHTHALMOLOGIC IMAGE PROCESSING APPARATUS - A fundus camera includes an imaging unit configured to capture a fundus image formed via a photographic optical system, a portion information detection unit configured to detect information about a predetermined portion of a fundus from image data acquired from the imaging unit, and an image generation unit configured to generate an image according to a tone curve which is changed according to a result of a detection performed by the portion information detection unit of the fundus image.06-16-2011
20090096987Eye Measurement Apparatus and a Method of Using Same - An apparatus for measuring a subject's eye having an instrument axis, comprising an eye tracker apparatus comprising a first projector and a first camera, a slit projector rotatable about the instrument axis independent of the eye tracker apparatus, and a second camera rotatable about the instrument axis independent of the eye tracker.04-16-2009
20090096986Unit and Method for Internally Guiding Vision in Fundus Cameras - The present invention is directed to an optoelectronic unit for directing the eye gaze of the patient during examination or documentation of the fundus of the eye. The solution according to the invention for internal eye gaze guidance in fundus cameras provides a spatial light modulator for generating the fixation mark comprising imaging optics by which the displayed fixation mark is imaged on the eye fundus by a semitransparent mirror arranged in an observation beam path and via a swivel mirror arranged in a documentation beam path. The spatial light modulator is connected by a control unit to an actuating element for positioning the fixation mark. The device, which is preferably provided for fundus cameras, can facilitate the diagnosis of diseases of the eye fundus in that the documented recordings can be exactly reproduced and therefore exactly compared. In particular, the tracking and presentation of the course of diseases can be improved in this way.04-16-2009
20110228221APPARATUS AND METHOD FOR GENERATING TWO-DIMENSIONAL IMAGE OF OBJECT USING OPTICAL COHERENCE TOMOGRAPHY (OCT) OPTICAL SYSTEM - An apparatus for generating a two-dimensional image of an object using an optical coherence tomography (OCT) optical system, includes: the OCT optical system including: a light source; a splitter for splitting light emitted from the light source into a measurement optical path and a reference optical path; a scanner arranged in the measurement optical path for scanning the object in at least one of XY directions with the split light; and a detector for detecting a spectrum of combined light of the split light from the measurement optical path reflected on the object and the split light from the reference optical path each XY position of the light on the object, and a processor for generating the two-dimensional image of the object in the XY directions by converting the number of zero cross points of an interference signal contained in the spectrum at each XY position into a luminance value.09-22-2011
20110228220OPHTHALMOLOGIC IMAGING APPARATUS AND METHOD FOR CONTROLLING THE SAME - An ophthalmologic imaging apparatus includes: a control unit configured to control, based on a pixel value of the optic papilla in an infrared light image of the fundus of a subject's eye to which infrared light is radiated, the light amount of visible light to be radiated onto the subject's eye; and an imaging unit configured to capture an image of the fundus of the subject's eye to which visible light having the controlled light amount is radiated.09-22-2011
20090207376Apparatus for cross-sectional imaging of anterior ocular segment - An apparatus for cross-sectional imaging of an anterior ocular segment wherein a stationary cylindrical body disposed projecting out from a body of the apparatus, and an illuminating optical system and an imaging optical system are disposed within the cylindrical body with a front aperture of the cylindrical body as a common aperture thereof so as to be rotatable in unison about an eye-side optical axis of the illuminating optical system. At least one proximal direction reflecting mirror being disposed within an interior of the cylindrical body in proximity to the front aperture for reflecting scattered light by an examined eye on an optical axis of the imaging optical system to a direction proximate to an optical axis of the illuminating optical system.08-20-2009
20110228222IMAGING APPARATUS AND METHOD FOR TAKING IMAGE OF EYEGROUND BY OPTICAL COHERENCE TOMOGRAPHY - An optical unit concentrates light beams from measurement-light paths at first and second irradiation positions on an eyeground. Next, a control unit controls a scanning unit so that the light beams concentrated at the first and second irradiation positions are scanned in first and second scanning areas of the eyeground and so that the first and second scanning areas overlap to form an overlap area. A tomographic-information acquisition unit acquires first tomographic information and second tomographic information in the first and second scanning areas from interference light. Third tomographic information is acquired from the first tomographic information and the second tomographic information in the first and second scanning areas on the basis of the first tomographic information and the second tomographic information in the overlap area.09-22-2011
20090103049METHOD FOR CORRECTING PATIENT MOTION WHEN OBTAINING RETINA VOLUME USING OPTICAL COHERENCE TOMOGRAPHY - A computer-implemented method of correcting for motion of a sample during OCT imaging obtains a series of cross-sectional volume scans through the sample at different positions on a first coordinate axis, obtains at least two cross-sectional alignment scans in planes intersecting said volume scans at an angle, and stores the alignment scans and the volume scans in memory. The alignment scans are matched to the volume scans at lines of intersection thereof to determine the relative displacement of the volume scans to the sample due to sample motion. The relative displacement is used to correct for motion of the sample between successive volume scans.04-23-2009
20090244482LASER SCANNING DIGITAL CAMERA WITH SIMPLIFIED OPTICS AND POTENTIAL FOR MULTIPLY SCATTERED LIGHT IMAGING - A portable, lightweight digital imaging device uses a slit scanning arrangement to obtain an image of the eye, in particular the retina. The scanning arrangement reduces the amount of target area illuminated at a time, thereby reducing the amount of unwanted light scatter and providing a higher contrast image. A detection arrangement receives the light remitted from the retinal plane and produces an image. The device is operable under battery power and ambient light conditions, such as outdoor or room lighting. The device is noncontact and does not require that the pupil of the eye be dilated with drops. The device can be used by personnel who do not have specialized training in the eye, such as emergency personnel, pediatricians, general practitioners, or volunteer or otherwise unskilled screening personnel. Images can be viewed in the device or transmitted to a remote location. The device can also be used to provide images of the anterior segment of the eye, or other small structures. Visible wavelength light is not required to produce images of most important structures in the retina, thereby increasing the comfort and safety of the device. Flexible and moderate cost confocal and fluorescent imaging, multiply scattered light images, and image sharpening are further functionalities possible with the device.10-01-2009
20090213328Telecentric lens system and vision measuring instrument - A telecentric lens optical system includes: a front lens group; a rear lens group having a front focal point coinciding with a rear focal point of the front lens unit; and diaphragm mechanisms, each of which is disposed at a position where the rear focal point of the front lens unit and the front focal point of the rear lens unit coincide with each other. One of the front lens group and the rear lens group is provided by a plurality of variable magnification lens groups. The diaphragm mechanisms are provided corresponding to the variable magnification lens groups, respectively. A magnification switching mechanism is provided to selectively move a pair of one of the variable lens groups and one of the corresponding diaphragm mechanisms to be disposed on an optical axis of the other of the front lens group and the rear lens group.08-27-2009
20090257025Ophthalmological measuring apparatus - An opthalmological measurement apparatus (10-15-2009
20120194782IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD AND STORAGE MEDIUM - An image processing apparatus includes: an acquisition unit configured to acquire a tomogram of an eye portion of a patient to be examined; an information acquisition unit configured to acquire information of a predetermined portion and position information of a predetermined tissue structure from the tomogram; and a calculation unit configured to calculate an evaluation value based on a relationship between the information of the predetermined portion and a position of the predetermined tissue structure.08-02-2012
20090257024OPHTHALMOLOGICAL INSTRUMENT - A homogeneously illuminating ophthalmic instrument includes an illumination device having a source of illumination, a homogenizing unit and a projection device, at least one organic or inorganic source of radiation with spectrally selective emission being used as a source of illumination. The illumination generated in this way enables correspondingly adapted visual and/or digital observation, recording or display of the examined regions of the eye by a visualizing unit.10-15-2009
20100039616OPTICAL IMAGE MEASUREMENT DEVICE AND PROGRAM FOR CONTROLLING THE SAME - A fundus oculi observation device 02-18-2010
20100165291IMAGE ACQUISITION APPARATUS AND IMAGE ACQUISITION METHOD USING OPTICAL COHERENCE TOMOGRAPHY - An image acquisition apparatus that uses optical coherence tomography includes a scanning unit provided within a light path that guides signal light to be incident on an examination object towards the examination object and configured to scan the signal light in a main scanning direction; and a control unit configured to control the scanning unit such that an integration time of an optical interference signal per pixel in at least one predetermined area other than opposite ends, in the main scanning direction, of an image acquisition region scanned by a plurality of main scan lines is increased relative to that of an area other than the predetermined area.07-01-2010
20100149489FUNDUS OCULI OBSERVATION DEVICE AND PROGRAM FOR CONTROLLING THE SAME - A fundus oculi observation device 06-17-2010
20100149488APPARATUS AND METHOD FOR OBJECTIVE PERIMETRY VISUAL FIELD TEST - Apparatus for testing a subject's visual field includes a data processor, which can be provided by a general purpose computer, coupled to a pupil tracking system. The data processor is programmed to cause targets to be displayed at different locations on a display screen and to determine from the pupil tracking system whether the subject's pupil has moved in response to display of each target. In some embodiments, the pupil tracking system comprises an infrared camera.06-17-2010
20100149487SYSTEM AND METHOD FOR FAST RETINAL IMAGING - An optical system and measurement method for imaging three-dimensional objects with low light scatter comprising at least one source of radiation; a radiation projection means for creating a set of foci through a volume of an object; and a means for imaging the returned light from the set of foci on at least one camera, wherein the imaging of the volume of the object is at a different angle from the projection, allowing for detection of the returned light on separate camera pixels. The measurement method further comprises projecting a longitudinal grid of elongated foci through the volume of an object; imaging returned light from the object at a different angle on at least one camera, so as to avoid overlapping the elongated images; and analyzing the imaged, returned light to yield depth information of the object at a multiplicity of points.06-17-2010
20110228224METHODS, SYSTEMS, AND DEVICES FOR MONITORING ANISOCORIA AND ASYMMETRY OF PUPILLARY REACTION TO STIMULUS - A Pupillometer is disclosed. The Pupillometer has a display, an imaging apparatus that has a pupil finder and a microprocessor, and a memory in communication with the microprocessor. The display is sized to simultaneously display a video of y or more seconds in length of a left pupil and a video of y or more seconds in length of a right pupil. The pupil finder identifies the perimeter of a pupil. The imaging apparatus is capable of recording images of an individual's pupils at a rate of x image frames per second for a period of y or more seconds and playing back said image frames as a video at x image frames per second or at another rate that is faster or slower than x image frames per second. The memory has stored therein a program for enabling said microprocessor to do the following: (i) identify a center of the left pupil and a center of the right pupil for each image frame; (ii) synchronize each image frame of the two videos starting from the first frame; (iii) cause the display to display the two videos simultaneously such that each of the image frames of the video of the left eye is synchronized to a corresponding image frame of the video of the right eye when played back on the display; and (iv) cause the two videos to be displayed so that the center of the left pupil in each image frame is aligned on the display with the center of the right pupil for the corresponding image frame.09-22-2011
20100157246OPHTHALMIC SURGICAL SYSTEM - A system includes an optical system having two beam splitters (a dichroic beam splitter and a polarizing beam splitter), which are designed to provide three separate beam paths for observing an object. The dichroic beam splitter is designed to separate two beam paths depending on the wavelength of the light of the respective beam path. The polarizing beam splitter is designed such that two beam paths are separated depending on a direction of polarization of the light of the respective beam path. The measuring light is linearly polarized after having passed the polarizing beam splitter and may be influenced with respect to the state of polarization by a retarding plate. The returning measuring light incident on the polarizing beam splitter is linearly polarized and also polarized in such a direction that the returning measuring light is transported through the polarizing beam splitter towards the analyzing detector with a high efficiency.06-24-2010
20100259723Ocular surface interferometry (OSI) methods for imaging and measuring ocular tear film layer thickness(es) - Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). The measured TFLT can be used to diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device can also be focused on the lipid layer of the tear film to capture a second image containing the background signal(s) present in the first image. The second image can be subtracted from the first image to reduce and/or eliminate the background signal(s) in the first image to produce a resulting image. The resulting image can be processed and analyzed to measure a tear film layer thickness (TFLT), including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT).10-14-2010
20100157244Virtual Microscope System for Monitoring the Progress of Corneal Ablative Surgery and Associated Methods - A system for visualizing an eye of a patient during corneal surgery includes a processor and a first and second camera in signal communication with the processor. The cameras are positionable for focusing on a cornea positioned for surgery. A first and a second display and optics therefor are in signal communication with the processor and are positionable for viewing through a first and a second eyepiece of a stereo microscope, respectively. Software is resident on the processor for receiving a first and second corneal image from the first and second cameras, for processing the received first and second images for display, and for transmitting the processed first and second images to the first and the second displays, respectively, via the display optics. The displays can then be viewed by a surgeon through the microscope at least during the surgery.06-24-2010
20100014051OPHTHALMOLOGICAL MEASUREMENT APPARATUS AND MEASUREMENT METHOD - An ophthalmological measurement apparatus (01-21-2010
20130215387FUNDUS IMAGING APPARATUS AND METHOD - In order to suppress a load on a subject when a fundus is irradiated with multiple beams, a fundus imaging apparatus for forming an image of a first area in the object, includes: a determination unit for determining a second area other than the first area in the object to be inspected; a detection unit for detecting moving of the object to be inspected on the basis of return light from the second area, which is irradiated with second light; a correction unit for correcting the first area on the basis of the detected moving; and a forming unit for forming an image of the object to be inspected on the basis of the return light from the corrected first area, which is irradiated with the first light.08-22-2013
20130215388IMAGE PROCESSING APPARATUS, DIAGNOSTIC SUPPORT SYSTEM, AND IMAGE PROCESSING METHOD - An image processing apparatus includes a specification unit configured to specify a vascular region based on a movement of a blood cell in a moving image of an ocular portion captured by an ophthalmologic imaging apparatus including an adaptive optics system, and a determination unit configured to determine presence of an abnormality based on the specified vascular region.08-22-2013
20130215389CONTROL APPARATUS, CONTROL METHOD, AND OPHTHALMOLOGIC APPARATUS INCLUDING THE CONTROL APPARATUS - In an ophthalmologic apparatus in which a head part is moved at a speed according to a rotation speed of a rotational part of a joystick, in order to enable a moving amount of the head part to correspond to a rotation amount even when the rotation speed becomes higher, the rotation speed of the joystick is detected at predetermined intervals, and when a current rotation speed (count of an encoder during a predetermined period) is lower than a previous rotation speed, a speed obtained by subtracting a predetermined value from the previous rotation speed is compared to the current rotation speed. Then, a higher speed is set as the current rotation speed, and the head part is moved at the speed corresponding to the current rotation speed.08-22-2013
20100177279Vision modification with reflected image - Various embodiments of methods and systems for improving and enhancing vision are disclosed. Adjustable lenses or optical systems may be used to provide adaptive vision modification. In some embodiments, vision modification may be responsive to the current state of the user's visual system. Certain embodiments provide correction of the subject's near and far vision. Other embodiments provide enhancement of vision beyond the physiological ranges of focal length or magnification.07-15-2010
20100195048Adaptive Optics Line Scanning Ophthalmoscope - A first optical module scans a portion of an eye with a line of light, descans reflected light from the scanned portion of the eye and confocally provides output light in a line focus configuration. A detection device detects the output light and images the portion of the eye. A second optical module detects an optical distortion and corrects the optical distortion in the line of light scanned on the portion of the eye.08-05-2010
20100238402FUNDUS CAMERA - In a photographing optical system, an autofluorescence barrier filter having a characteristic of transmitting a light having an autofluorescence wavelength and a near-infrared wavelength, and a near-infrared light cut-off filter having a characteristic of transmitting the visible light and blocking the near-infrared light are disposed to be replaceable. In the case of observing a fundus, the fluorescence barrier filter is inserted into an optical path in an observation photographing optical system, so that observation can be performed by using a near-infrared illuminating light. In the case of autofluorescence photographing, the photographing can be performed without filter switching. In the case of color photographing, at the time of observation, the observation is performed using the fluorescence barrier filter, and at the time of photographing, the photographing can be performed using the replaced infrared light cut-off filter.09-23-2010
20100149490COMPACT ADAPTIVE OPTIC- OPTICAL COHERENCE TOMOGRAPHY SYSTEM - Badal Optometer and rotating cylinders are inserted in the AO-OCT to correct large spectacle aberrations such as myopia, hyperopic and astigmatism for ease of clinical use and reduction. Spherical mirrors in the sets of the telescope are rotated orthogonally to reduce aberrations and beam displacement caused by the scanners. This produces greatly reduced AO registration errors and improved AO performance to enable high order aberration correction in a patient eyes.06-17-2010
20100238401DEVICE AND METHOD FOR EXAMINING THE EYE FUNDUS, ESPECIALLY THE PHOTORECEPTORS - A device for examining the eye fundus and photoreceptors includes an illumination beam path having optical beam forming and/or guiding components, at least one illumination unit for providing a continuous illumination and a flash illumination, and an observation and imaging beam path having optical beam forming and/or guiding components and a device for varying the magnification, including a beam splitter for splitting the observation and imaging beam path. A rotatable diffraction grating is disposed in a plane in the observation and imaging beam path that is conjugate to the object plane and the movement of the grating is synchronized with the illumination unit that serves as the flash illumination so that an image recording sensor records a rapid sequence of images of the eye fundus at different positions of the grating and said sequence is forwarded to an existing evaluation unit.09-23-2010
20110109877METHOD AND SYSTEM FOR THE OBJECTIVE MEASUREMENT OF OCULAR ACCOMMODATION - The invention relates to a method and system for the objective measurement of ocular accommodation. A double-pass ophthalmoscopic system is used which incorporates a periscope allowing the patient to binocularly see real objects in an open field and images of the retinal plane to be recorded on a CCD camera. The method includes obtaining, for different values of accommodation stimulation, a set of retinal images corresponding to different focal values in the retina, obtaining the different focal positions in the retina by moving the two lenses incorporated in the ophthalmoscopic system. The image with the best optical quality is obtained for each set of images and by associating the selected image with the known value of the accommodation stimulation it is possible to objectively measure the accommodation.05-12-2011
20110102740ADAPTIVE OPTICAL APPARATUS AND IMAGING APPARATUS HAVING THE SAME - An adaptive optical apparatus includes a wavelength separation unit configured to separate a beam emitted from a light source into a plurality of wavelength band beams, a plurality of light modulation units configured to modulate the respective plurality of wavelength band beams, a wavelength combining unit configured to combine the beams modulated by the plurality of light modulation units into a beam, and an illumination unit configured to illuminate a measured object with the beam output from the wavelength combining unit.05-05-2011
20100238403OPHTHALMIC OBSERVATION APPARATUS AND OPHTHALMIC OBSERVATION PROGRAM - An ophthalmic observation apparatus that is capable of performing follow-up of an examinee's eye efficiently and suitably. The ophthalmic observation apparatus for observing an image of an examinee's eye that is obtained by an ophthalmic photographing apparatus includes an input device arranged to output an operation signal given by an examiner, a monitor, and a display control unit arranged to display a first image and a second image of a same portion of the examinee's eye that are obtained at different dates and times of examination on the monitor in a comparable manner, and when changing a display region of the image of the examinee's eye based on the operation signal outputted from the input device, synchronize the change of the display region between the first image and the second image.09-23-2010
20100253907Ocular surface interferometery (OSI) devices and systems for imaging, processing, and/or displaying an ocular tear film - Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). The measured TFLT can be used to diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device can also be focused on the lipid layer of the tear film to capture a second image containing the background signal(s) present in the first image. The second image can be subtracted from the first image to reduce and/or eliminate the background signal(s) in the first image to produce a resulting image. The resulting image can be processed and analyzed to measure a tear film layer thickness (TFLT), including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT).10-07-2010
20100231856EYE VIEWING DEVICE COMPRISING VIDEO CAPTURE OPTICS - There is described in one embodiment an eye viewing device for viewing a structure of an eye such as a retina. The eye viewing device can include an image sensor. In one embodiment an eye viewing device can be adapted to facilitate both visual viewing of an eye structure and electronic image capture.09-16-2010
20100245765VIDEO INFRARED OPHTHALMOSCOPE - An opthalmoscope includes a wearable headset. The wearable headset has a light source, a beam splitter reflecting infrared radiation from the light source to an eye, a camera collecting radiation reflected by the eye through the beam splitter, an analog to digital convertor receiving a raw signal from the camera based on the collected radiation, the analog to digital convertor converting the raw signal to a digital signal; a black and white to color converter converting the digital signal into a color signal, a streaming video converter processing the color signal into a video signal, and a pair of video monitors displaying an image of the eye based on the video signal. The wearable headset also has a video transmitter, the video transmitter transmitting the video signal to a computer over a network, the computer extracting a plurality of images from the video signal.09-30-2010
20110058144APPARATUS, METHODS AND SYSTEMS FOR NON-INVASIVE OCULAR ASSESSMENT OF NEUROLOGICAL FUNCTION - A portable, non-invasive binocular scanning apparatus for rapid assessment of neurological function in cases of potential trauma, disease, and/or exposure to chemical treat agents. The scanning apparatus may utilize a combination of light sources for the measurement and assessment of pupillary response, retinal imagery, and/or other ophthalmologic biomarkers. The scanning apparatus can detect and assess a wide range of neurological and physiological conditions by obtaining pertinent measurements from the retina and pupil in real time.03-10-2011
20100208204EYE PORTION DIAGNOSIS SUPPORT APPARATUS, METHOD THEREFOR, PROGRAM, AND RECORDING MEDIUM - There is provided a technique for efficiently acquiring a tomogram of an eye portion. A diagnosis support apparatus includes a wide-area image acquisition means for acquiring a wide-area image of an eye portion, a detection means for detecting a lesion candidate on the eye portion by analyzing the wide-area image acquired by the wide-area image acquisition means, a determination means for determining a parameter associated with acquisition of a tomogram of the eye portion, based on a lesion candidate detection result obtained by the detection means, and a tomogram acquisition means for acquiring a tomogram of the eye portion based on the parameter determined by the determination means.08-19-2010
20100220287OPHTHALMIC IMAGING APPARATUS - An ophthalmic imaging apparatus comprises: a laser emitter that includes an ultrashort pulse light source and emits a laser beam with a tunable wavelength in a predetermined visible wavelength range; an irradiation optical system that includes a scanner for scanning the laser beam two-dimensionally and irradiates the laser beam emitted from the laser emitter to a predetermined portion of an examinee's eye; a light receiving optical system including an apertured plate placed in a substantially conjugate position of a focal point of the laser beam on the predetermined portion and a light receiving element for receiving the laser beam reflected by the predetermined portion and passed through the apertured plate; a controller that controls the laser emitter to continuously change a central wavelength of the laser beam in a predetermined visible wavelength range and controls the scanner in association with the wavelength change of the laser beam to two-dimensionally change an irradiation position of the laser beam; a memory that stores a light reception signal of the light receiving element associated with the wavelength change of the laser beam and the irradiation position change of the laser beam; and a display, the controller being adapted to display an image of the predetermined portion on the display based on the light reception signal stored in the memory.09-02-2010
20100253908Stabilized Retinal Imaging With Adaptive Optics - A system provides an optical image of an object. A first module tracks a reference feature of the object. A second module includes a source for an imaging beam, a scanning device to move the imaging beam along a portion of the object and a detection device receives a signal associated with an image of the portion of the object. The first module controls the position of the imaging beam relative to the reference feature to correct for the motion of the object. A third module detects a distortion of the object and compensates for the distortion.10-07-2010
20100220288EXPLICT RAYTRACING FOR GIMBAL-BASED GAZEPOINT TRACKERS - A system for determining a three-dimensional location and orientation of an eye within a camera frame of reference includes a camera, an illuminator, and a processor. The camera captures an image of the eye. The illuminator generates a reflection off of a corneal surface of the eye. The processor computes a first two-dimensional location of a pupil reflection image and a corneal reflection image from the image of the eye. The processor predicts a second two-dimensional location of a pupil reflection image and the corneal reflection image as a function of a set of three-dimensional position and orientation parameters of the eye within the camera frame of reference. The processor iteratively adjusts the set until the first two-dimensional location is substantially the same as the second two-dimensional location. The set is the three-dimensional location and orientation of an eye.09-02-2010
20090244483FUNDUS CAMERA - A fundus camera favorably performing focusing on a fundus of an examinee's eye without a black dot plate in a target projection optical system comprises an illumination optical system comprising a light source and an objective lens, a photographing optical system comprising a focusing lens movable in the optical axis direction and a diopter correction lens to correct a diopter of severe ametropia, a first moving mechanism comprising a first driving unit moving the focusing lens, a focus detection optical system comprising a projection optical system comprising a light source and a photo-receiving optical system comprising a photodetector, a second moving mechanism comprising a second driving unit moving a part of the detection optical system including at least one of the projection light source and the photodetector in the optical axis direction, a monitor, and a control unit controlling the second unit in conjunction with movement of the focusing lens.10-01-2009
20090073381IRIS IMAGING SYSTEM AND METHOD FOR THE SAME - An iris imaging system is provided. The iris imaging system includes at least one light source configured to illuminate an iris at a spectrum of light. The iris imaging system also includes at least one image capturing device including at least one of an indium-gallium-arsenide, lead sulphide, and lead selenide based detector and configured to capture an image of the iris via light reflected from the iris at the spectrum. The device is further configured to provide a signal representing one or more features of the iris in response to the light reflected from the iris.03-19-2009
20090115964Ophthalmic Photographing Apparatus - To provide an ophthalmic photographing apparatus capable of checking a measurement (photographing) position of a tomographic (cross-sectional) image of a fundus on a front (surface) image of the fundus.05-07-2009
20110032479IMAGE SENSING APPARATUS USING OPTICAL COHERENCE TOMOGRAPHY AND CONTROL METHOD THEREFOR - Tomographic images of a plurality of planes at a disease site of a fundus are taken exactly within a short period of time, and the tomographic images are respectively displayed so that the positional relationship thereof becomes clear. A low coherent optical tomographic image sensing apparatus for imaging a fundus includes a sensing unit which takes tomographic images of a plurality of planes intersecting each other in time division, a display unit which displays the taken tomographic images at separate sites on the identical screen, and a position indication unit which displays, in each tomographic image, an intersection position of the each tomographic image and another tomographic image intersecting each other.02-10-2011
20110032478UNIT FOR OBTAINING AND DISPLAYING FUNDUS IMAGE - A unit for obtaining and displaying fundus image is comprised of a memory that stores a plurality of fundus images wherein a positional relation between an optical axis of an eye ball to be examined and an optical axis of an objective is different, an image playback portion for producing a three-dimensional pseudo image by repeatedly displaying a plurality of fundus images on a display in order for a display time set on each fundus image, a CUP contour position designating means for designating a CUP contour position on the three-dimensional pseudo image, means for specifying the CUP contour position designated on the three dimensional pseudo image based upon a specific fundus image, and means for computing CUP contour based upon the specified CUP contour CD position and means for displaying the computed CUP contour.02-10-2011
20100302506OPTHALMOLOGY PHOTOGRAPHING APPARATUS - A fundus camera includes an illumination unit to illuminate an ocular fundus of a subject's eye, an autofluorescent exciter filter insertable into and retractable from an illumination optical path of the illumination unit, an observation and photographing unit to receive reflection light from the ocular fundus illuminated by the illumination unit and form an ocular fundus image, an autofluorescent barrier filter insertable into and retractable from an observation and photographing optical path, an image capturing unit to capture an ocular fundus image, and a calculation unit to calculate image data, wherein the calculation unit converts the ocular fundus image which is illuminated using the autofluorescent exciter filter and captured by a color image capturing unit as a color image, in a state that no autofluorescent barrier filter is inserted into the observation and photographing unit, into a monochromatic image from specific color data of each of the pixels.12-02-2010
20100302508Ophthalmic photographing apparatus - An ophthalmic photographing apparatus including an interference optical system for dividing light from a first light source into measurement light and reference light, directing measurement light to a fundus and reference light to a reference optical system, and photo-receiving by a first photodetector interference light, a first optical scanner disposed in a measurement light optical path and scanning measurement light in two dimensional directions, a driving unit moving an optical member in an optical path of measurement light or reference light to change an optical path length, a control unit controlling the driving unit to adjust an optical path length difference, controlling the optical scanner to scan measurement light at a given photographing view angle, and obtaining a tomographic image based on a photodetector signal, and a calculation unit converting a photographing range into an actual distance based on optical member positional information and view angle information.12-02-2010
20110116043IMAGING DEVICE AND IMAGING METHOD - An imaging device includes an illuminating unit configured to illuminate a measurement object with light from a light source; an aberration correcting unit configured to correct aberration of the measurement object occurring in light returning from the measurement object, the returning light being provided by light illuminating the measurement object through an area differing from a center axis of the illuminating unit; and an image obtaining unit configured to obtain an image of the measurement object on the basis of light returning from the measurement object, the returning light being provided by light that is provided after the aberration is corrected by the aberration correcting unit and that illuminates the measurement object through the center axis of the illuminating unit.05-19-2011
20100315592Optical Coherence Imaging Systems Having a Mechanism for Shifting Focus and Scanning Modality - Some embodiments of the present invention provide adapters for use in posterior imaging systems. The adapters include lens set configured to adapt the posterior imaging system to operate as an anterior imaging system. Related optical coherence tomography systems and anterior imaging systems are also provided herein.12-16-2010
20130141695Optical Imaging Systems Having Input Beam Shape Control and Path Length Control - Scanning optical beam imaging systems for imaging a surface with convex curvature are provided. The systems include a sphero-telecentric objective, wherein a scanning radius of curvature of the sphero-telecentric objective is greater than an apical radius of curvature of the surface and less than or equal to four times an apical radius of curvature of the surface.06-06-2013
20110242483REAL-TIME MEASUREMENT/DISPLAY/RECORD/PLAYBACK OF WAVEFRONT DATA FOR USE IN VISION CORRECTION PROCEDURES - One embodiment is an apparatus/system for providing feedback to a procedure. The apparatus includes a real time wavefront sensor for measuring the wavefront of an optical beam, a real time video camera for capturing a scene where the optical beam comes from, a computer for processing the captured wavefront data and synchronizing the data with the video and outputting the synchronized information to a display, and a display for simultaneously displaying the synchronized wavefront and video information. Another embodiment of the present invention is a method for providing feedback to a procedure. The method involves the steps of measuring the wavefront of an optical beam with a real time wavefront sensor; capturing a video of a scene from which the optical beam comes; processing the captured wavefront data and synchronizing it with the video; and simultaneously displaying the wavefront information with the video on the same display screen.10-06-2011
20110007270OBJECTIVE QUALITY METRIC FOR OCULAR WAVEFRONT MEASUREMENTS - A system and method for determining an objective quality metric for image data collected by a wavefront aberrometer. The method may include quantifying a plurality of characteristics of the image data and calculating the objective quality metric based on the quantified characteristics of the image data. The objective quality metric can be a weighted sum of the quantified characteristics of the image data. The weightings for the weighted sum can be determined based on subjective quality metrics assigned to a set of training image data by a human expert.01-13-2011
20110007272FUNDUS CAMERA - A fundus camera that obtains focus evaluation values by scanning, in which a focusing lens moves a predetermined distance according to a photographing mode before the focusing lens starts scanning for obtaining focus evaluation values.01-13-2011
20110019150Ophthalmologic visualization system - A method determines the position and/or radius of the limbus and/or the position and/or radius of the pupil of a patient eye. In the method, an image of the patient eye is obtained and a plurality of different ring-shaped comparison objects having respective radii and respective centers are provided. The image is correlated with the plurality of comparison objects to yield a local best match between the image and the comparison objects when there is a coincidence of one of the ring-shaped comparison objects and a ring-shaped jump in brightness in the image having the same radius and the same center. The comparison objects having a local best match with the image are determined. Thereafter, the position of the center of the comparison object having a local best match with the image is selected as the position of the center of the limbus and/or the position of the center of the pupil.01-27-2011
20100195049PUPILOMETER WITH PUPIL IRREGULARITY DETECTION, PUPIL TRACKING, AND PUPIL RESPONSE DETECTION CAPABILITY, GLAUCOMA SCREENING CAPABILITY, INTRACRANIAL PRESSURE DETECTION CAPABILITY, AND OCULAR ABERRATION MEASUREMENT CAPABILITY - A pupilometer that has image capturing means, a light source that emits light; and imaging software that processes image data obtained by the image capturing means and produces an output is described. The output comprises a single scalar value indicative of a neurological condition of a patient, wherein the scalar value can be applied to a scale indicative of a neurological condition. The image data comprises one or more components of the pupil's dynamic response to light emitted by the light source.08-05-2010
20110116044ADAPTIVE OPTICS APPARATUS, ADAPTIVE OPTICS METHOD, AND IMAGING APPARATUS - An adaptive optics apparatus includes an aberration measuring unit that measures an aberration caused by a test object, the aberration being measured on the basis of returning light that returns from the test object; an aberration correcting unit that performs aberration correction in accordance with the aberration measured by the aberration measuring unit; an irradiation unit that irradiates the test object with light corrected by the aberration correcting unit; and an acquiring unit that acquires information based on a transmittance of the test object on the basis of the aberration measured by the aberration measuring unit.05-19-2011
20110116042ADAPTIVE OPTICS APPARATUS, ADAPTIVE OPTICS METHOD, AND IMAGING APPARATUS - An adaptive optics apparatus includes an aberration measuring unit that measures an aberration caused by a subject's eye, the aberration being measured on the basis of returning light that returns from the subject's eye; an aberration correcting unit that performs aberration correction in accordance with the aberration measured by the aberration measuring unit; an irradiation unit that irradiates the subject's eye with light corrected by the aberration correcting unit; and an adjusting unit that maintains a correction characteristic of the aberration correcting unit when the subject's eye moves out of a predetermined area.05-19-2011
20110242486AUTISM DIAGNOSIS SUPPORT APPARATUS - An autism diagnosis support apparatus 10-06-2011
20110242484IMAGE PROCESSING APPARATUS AND METHOD - An image processing apparatus for supporting imaging diagnosis of an eye is provided. A layer boundary of a retina region is detected from a tomographic image. A position where the detected layer boundary intersects with an upper or lower limit position of the image in the depth direction of the tomographic image is determined as a dividing position. The tomographic image is divided at the determined dividing position by a scan line in the depth direction of the tomographic image. Subsequently, whether the detection is a false detection is judged for each divided region. An average density value of the image outside the retina region according to the detected result is calculated for each divided region, and the detection in the divided region is judged to be a false detection if the average density value is equal to or greater than a predetermined threshold.10-06-2011
20110116040OPHTHALMOLOGIC APPARATUS AND METHOD FOR THE OBSERVATION, EXAMINATION, DIAGNOSIS, AND/OR TREATMENT OF AN EYE - An ophthalmologic apparatus and a method for the contactless observation, examination, treatment, and/or diagnosis of an eye. The apparatus is structurally based on a fundus camera or an ophthalmoscope. An illumination beam path extends from a first illumination source to the eye and is fitted with a perforated mirror and imaging optics, and an observation beam path extends from the eye to a detector via the imaging optics and through the perforated mirror. The arrangement additionally comprises a beam path for scanning illumination which extends from a second illumination source to the eye and is fitted with a scanning unit, a lens, and a beam splitter in addition to the imaging optics. The scanning unit that is arranged in the beam path for scanning illumination is designed as (an) electrostatically or/and galvanometrically driven bidirectional or unidirectional tilting mirror(s).05-19-2011
20090033871Opthalmic optical coherence tomography (OCT) test station using a 1um fiber ASE source - A phosphate glass 1-μm fiber ASE source provides high power and broadband emission that covers wavelengths on the short side of Yb-doped silica. A single-mode fiber formed from phosphate glass is doped with highly elevated concentrations of Yb dopants 0.5-30 wt. % and typically 2-10 wt. %, far higher than either silica or germano-silicate. The high concentration of Yb dopant absorbs the pump in a short length, typically 10-150 cm instead of tens of meters, to provide high saturated output power and a shifted emission spectrum. The excess power allows the fiber ASE source to be configured to provide the output powers, emission bandwidth and stability desired by many applications. Furthermore, the ASE can be configured to emit a nearly Gaussian spectral profile without sacrificing power or bandwidth. The backward emission spectrum of Yb-doped phosphate glass is centered near 1020 nm instead of 1060, which allows the ASE source to cover wavelength on the short side of Yb-doped silica, which may be important in certain applications such as ophthalmic OCT where water absorption has a transparency window.02-05-2009
20110080558DIAGNOSTIC METHOD AND APPARATUS FOR PREDICTING POTENTIAL PRESERVED VISUAL ACUITY - A diagnostic method is disclosed wherein the potential preserved visual acuity in the retina of a patient is determined from the amount of tissue connecting the inner and outer plexiform layers remaining in the retina.04-07-2011
20100157245FUNDUS CAMERA - A fundus camera includes an illumination optical system including an illumination unit configured to illuminate a fundus of a subject's eye, a fundus observation photographing optical system including an image sensor and is configured to observe a fundus image, a focus index projection unit configured to project a focus index on a center region of a photographing portion of the fundus of the subject's eye, a display unit configured to display the fundus image captured by the image sensor, an enlargement unit configured to electrically enlarge the center region of the image captured by the image sensor on which the focus index is projected, an image synthesis unit configured to synthesize an output of the enlargement unit and an image output of a peripheral portion of the image captured by the image sensor, and an output unit configured to output an output of the image synthesis unit to the display unit.06-24-2010
20110242487OPTICAL TOMOGRAPHIC IMAGING APPARATUS - Provided is an optical tomographic imaging apparatus that can suppress variations of resolution, sensitivity, and the like and reduce the number of components for equalizing optical properties so that cost can be reduced, in a case of an OCT apparatus using a plurality of lights. The optical tomographic imaging apparatus for obtaining a tomographic image of an object includes an optical property adjusting unit for adjusting an optical property of at least one light of measurement lights, reference lights, and interference lights each comprised of a plurality of lights. The optical property adjusting unit is shared by each group including measurement lights having substantially the same distance from an optical axis of an irradiation optical system among the measurement lights comprised of a plurality of lights.10-06-2011
20110242485FLUORESCENCE IMAGE ACQUISITION METHOD, FLUORESCENCE IMAGE ACQUISITION PROGRAM, AND FLUORESCENCE IMAGE ACQUISITION APPARATUS - A fluorescence image acquisition method including: irradiating an eyeground with a short-pulse beam of light for exciting a fluorescent dye; setting the time point of emission of the light as a reference, measuring the intensities of luminescence of the fluorescent dye at two different times which are predetermined periods of time after the reference, determining the ratio between the intensities of luminescence at the two different times, and detecting the intensity of luminescence of the fluorescent dye having marked a target by using the ratio; and generating a fluorescence image of the fluorescent dye having marked the target, based on the results of detection by the detecting step.10-06-2011
20110211161Diagnostic, Prescriptive, And Data-Gathering System And Method For Macular Pigment Deficits And Other Eye Disorders - A macular health measurement and storage system comprises a plurality of macular-pigment measurement machine for measuring macular pigment density in humans, a plurality of computers each of which is associated with a corresponding one the macular-pigment measuring machines, and a central host. The plurality of macular-pigment measurement machines include a device for receiving macular pigment data from a patient, at least one data transfer port, and at least one processor that enables the transfer of the macular pigment data from the transfer port. The plurality of computers include a first port coupled to the data transfer port of the corresponding macular-pigment measurement machine for receiving the macular pigment data. Each of the computers includes a second port for transferring patient data. The central host is coupled to the second ports on each of the plurality of computers. The central host includes a storage device for storing the patient data.09-01-2011
20100259721Ocular surface interferometry (OSI) devices and systems for imaging and measuring ocular tear film layer thickness (ES) - Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). The measured TFLT can be used to diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device can also be focused on the lipid layer of the tear film to capture a second image containing the background signal(s) present in the first image. The second image can be subtracted from the first image to reduce and/or eliminate the background signal(s) in the first image to produce a resulting image. The resulting image can be processed and analyzed to measure a tear film layer thickness (TFLT), including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT).10-14-2010
20090323022MEDICAL IMAGING APPARATUS - A medical imaging apparatus includes an imaging unit configured to capture an image of a subject, an imaging sequence registration unit configured to register an imaging sequence, and a display unit configured to display the imaging sequence registered by the imaging sequence registration unit.12-31-2009
20100053553METHOD AND APPARATUS FOR RETINAL DIAGNOSIS - The invention relates to a method and an appliance for examination of the retina, with two-dimensional images of the retina being produced. The invention is based on the object of designing the method and the apparatus so as to allow comprehensive examination and diagnosis of the eye retina in a simple manner. The invention proposes that second data items and two-dimensional depth slice images be produced from the retina, and that the position of these second data items be known in the recorded two-dimensional image of the retina, and/or be predetermined on the basis of the two-dimensional image.03-04-2010
20110149244OPHTHALMOLOGICAL PHOTOGRAPHIC APPARATUS - An ophthalmological photographic apparatus includes an observation moving-image photographic unit configured to photograph an observation moving image of a subject's eye, a still-image photographic unit configured to photograph a still image of the subject's eye, an image display unit configured to display at least one of the observation moving image and the still image, and a display content control unit configured to cause the image display unit to display one of the observation moving image and the still image when the still-image photographic unit photographs a still image.06-23-2011
20110176109Fundus Camera - A hand camera for photographing an eye fundus is provided. The camera consists of a tube (07-21-2011
20110176110ARRANGEMENTS AND METHOD FOR MEASURING AN EYE MOVEMENT, PARTICULARLY A MOVEMENT OF THE FUNDUS OF THE EYE - In addition to a first detector for capturing a potential movement field of the eye in overview images, a second detector is used to capture a particular section of the eye in sectional images. From a displacement between two overview images and an intermediate displacement between two sectional images taken between said overview images, the eye movement is determined by linking said displacements. The sections are preferably illuminated by coherent light such that interfering light diffused on the eye produces a patch pattern. Alternatively, the sclera of the eye is illuminated with coherent light such that light diffused on the sclera produces a patch pattern, of which a particular part is captured using a spatially resolving detector in sectional images, on the basis of which an intermediate displacement is determined.07-21-2011
20110176108Image processing method and image processing device - An ocular fundus image is captured by a fundus camera. Blood vessel regions are erased from the ocular fundus image, and a luminance region greater than a prescribed luminance threshold value and having an area equivalent to a predetermined standard disc area is extracted as a region having a standard disc area. The region having the standard disc area is divided into a plurality of regions by a plurality of dividing lines extending radially from the center of gravity thereof, and divided regions are scanned radially from the center of gravity while angles are shifted to detect in each individual region a point at which luminance variation reaches a maximum. The contour line of the disc region is derived from these points.07-21-2011
20110176107OPTICAL TOMOGRAPHIC IMAGING APPARATUS AND CONTROL METHOD FOR THE SAME - There is provided an optical tomographic imaging apparatus for imaging a tomographic image capable of setting characteristics of an optical system to accommodate to different positions on an object. The apparatus using an OCT system, includes: a scanning device for scanning measuring beams, an irradiating device for irradiating a different irradiation area on the object with the measuring beams scanned by the scanning device, an adjusting device for adjusting an irradiation position on the object of the measuring beams irradiated by the irradiating device, and a detecting device for detecting each combined beam produced from light interference between each of the return beams and the reference beams, characterized in that: the detecting device includes spectroscopy devices and a sensor, and a spectral width of the combined beam acquired with the sensor through the spectroscopy devices is set at a different spectral width by the spectroscopy devices.07-21-2011
20110176106PORTABLE EYE MONITORING DEVICE AND METHODS FOR USING THE SAME - A portable device in the form of a mask (07-21-2011
20100134760SYSTEMS AND METHODS FOR IMPLANTING AND EXAMINING INTRAOCULAR LENS - Systems and methods for designing and implanting a customized intra-ocular lens (IOL) is disclosed. In one embodiment, a system includes an eye analysis module that analyzes a patient's eye and generates biometric information relating to the eye. The system also includes eye modeling and optimization modules to generate an optimized IOL model based upon the biometric information and other inputted parameters representative of patient preferences. The system further includes a manufacturing module configured manufacture the customized IOL based on the optimized IOL model. In addition, the system can include an intra-operative real time analyzer configured to measure and display topography and aberrometry information related to a patient's eye for assisting in proper implantation of the IOL.06-03-2010
20100134759DIGITAL IMAGING SYSTEM FOR EYE PROCEDURES - Described herein is a hand-held gonioscopic imaging system that can be used to continuously display, capture and record images of the iridocorneal angle within the eye during implantation procedures. The system can be used, for example, during device implantation procedures for the treatment of glaucoma such that landmark identification continues during implantation. Intuitive real-time images viewed through the imaging systems described herein appear to the user to move in the same horizontal orientation as the instrument is actually being moved. The systems described herein also provide independent illumination sources for the camera and the surgical microscope that also have independent illumination controls.06-03-2010
20120120368FUNDUS ANALYZING APPARTUS AND FUNDUS ANALYZING METHOD - A fundus analyzing apparatus 05-17-2012
20120147326THREE-DIMENSIONAL RETINA IMAGE GENERATION DEVICE - An optical coherence eye-fundus tomography device has a high resolution and a good operability, as well as be miniaturized and be produced at a low cost. The optical coherence eye-fundus tomography device includes: a light source unit which emits a source light beam; a reference-light unit which reflects a reference light beam; an inspection unit which illuminates an object with an object scanning light beam, reflected the object scanning light beam; and a detection unit which obtains a tomographic image of the object on the basis of the interference light beam produced by interfering the reflected reference light beam with the reflected object light beam. For example, the light source unit emits the outgoing light beam that has a depth of focus of not less than 300 μm, and resolution that is 6 μm×6 μm or higher in a planar direction perpendicular to a traveling direction of the outgoing light beam.06-14-2012
20110043756RETINAL FUNDUS SURVEILLANCE METHOD AND APPARATUS - A method and apparatus for quantitatively imaging the retinal fundus. The method for retinal health assessment comprises imaging the retinal fundus of a patient's eye at different wavelengths within a spectral range and determining spectral reflectivity of the retina for each pixel within a field of view (FOV). The retinal health is assessed based on the spectral reflectivity of the retina. The metabolic and anatomical activity of the eye is monitored to detect, at the earliest stage, activity that could lead to the onset of blinding eye diseases such as macular degeneration, diabetic retinopathy, glaucoma, cataracts, etc.02-24-2011
20110249237Pupilometer for Pupil Center Drift and Pupil Size Measurements at Different Viewing Distances - The present invention generally provides improved devices, systems, and methods for measuring characteristics of at least one eye, and particularly for measuring the physiological changes in eyes under different viewing conditions. An exemplary embodiment provides a pupilometer which measures any changes in location of a pupil center with changes in viewing distances. As the eye often moves significantly during viewing, the pupil center location will often be measured relative to a convenient reference of the eye such as an outer iris boundary. Pupil size may also be recorded, and the measurements from both eyes of a patient may be taken simultaneously. Exemplary embodiments may be configured so as to allow the vergence angle between the eyes to vary with differing viewing distances, regardless of whether one or both eyes are being measured.10-13-2011
20110211160OPHTHALMIC APPARATUS - An ophthalmic apparatus comprises: a main unit including a photographing device for photographing an examinee's eye; a monitor provided in the main unit, the monitor including a displaying device for displaying an image of the eye photographed by the photographing device and a setting device for setting a predetermined function; a rotation mechanism for rotating the monitor from an almost vertical position to an almost horizontal position with respect to the main unit; a first lock mechanism for locking the monitor at each predetermined tilt angle, the first lock mechanism being arranged to allow upward rotation of the monitor but restrict downward rotation of the monitor in the course of rotating the monitor from the almost vertical position to the almost horizontal position; and a first unlock mechanism arranged to release the restriction of the downward rotation of the monitor by the first lock mechanism based on further upward rotation of the monitor after the monitor is locked in a first maximum tilt lock position by the first lock mechanism.09-01-2011
20100315591METHOD AND DEVICE FOR TEAR FILM ANALYSIS - Tear film stability has an important role in the quality of vision. A system and method for performing Fluctuation Analysis of Spatial Image Correlation (FASIC) provides for a non-invasive system and method for evaluating the dynamics of the tear film surface using spatial autocorrelation analysis. With FASIC, a series of images are obtained using illumination and a camera. The spatial autocorrelation is calculated for image frames produced by the camera. A sinusoidal background appears in this correlation together with other features. The changes in the sinusoidal background of the spatial autocorrelation is extracted and monitored over time. The spatial period of this sinusoidal background correlates with the thickness of the tear film. In this regard, one is able to derive the tear film thickness from the period of this sinusoidal background.12-16-2010
20100302507METHOD AND SYSTEM FOR RETINAL HEALTH MANAGEMENT - A method for quantifying disease progression through retinal health assessment and management. The method comprises obtaining a first image of a retina or iris at a point in time; generating a first vascular map of the first image of the retina or the iris; obtaining a second image of the retina or the iris at a later point in time; generating a second vascular map of the second image of the retina or the iris; registering the first image and the second image on the basis of the first vascular map and the second vascular map; and displaying at least one difference between the registered first image and the second image to quantify a disease progression.12-02-2010
20100118266SYSTEM, METHOD, AND COMPUTER SOFTWARE CODE FOR GRADING A CATARACT - A method for grading a cataract, the method including creating a three-dimensional image of at least most of a lens of an eye having a cataract from information received from an imaging system, comparing the three-dimensional image with a first template to determine an optical density of the lens, and determining a grade for the cataract based on the comparison of the optical density of the lens and a volume of the first template. A system and computer software code for grading a cataract are also disclosed.05-13-2010
20100097574OPHTHALMOLOGIC PHOTOGRAPHING APPARATUS - Upon detecting a selection of an examination start button, a start and completion management unit starts an examination. The control unit switches an observation state to an infrared light observation by an observation switching unit. Next, an examiner performs alignment while observing an eye to be examined, and photographs the eye to be examined with a photographing unit. The start and completion management unit determines whether the examination is completed according to a selection of an examination complete button, and repeats the alignment until it is determined that the examination is completed.04-22-2010
20120200824OPHTHALMIC PHOTOGRAPHING APPARATUS - An ophthalmic photographing apparatus includes: an interference optical system having a light source, a splitter for splitting light from the light source into measurement light traveling toward an examinee's eye and reference light, and an optical detector for receiving combined light of the measurement light reflected by the examinee's eye and the reference light; an optical scanner arranged in an optical path of the measurement light to scan a photographing region of the examinee's eye with the measurement light; a controller for obtaining a tomographic image of the photographing region by controlling the optical scanner and processing an output signal from the optical detector; and an image processor for obtaining a combined tomographic image by combining a plurality of tomographic images corresponding to a plurality of different incident angles.08-09-2012
20100321636Optical Coherence Imaging Systems Having a Mechanism for Shifting Focus and Scanning Modality and Related Adapters - Some embodiments of the present invention provide adapters for use in posterior imaging systems. The adapters include lens set configured to adapt the posterior imaging system to operate as an anterior imaging system. Related optical coherence tomography systems and anterior imaging systems are also provided herein.12-23-2010
20120229765IMAGE PHOTOGRAPHING APPARATUS AND IMAGE PHOTOGRAPHING METHOD - An image photographing apparatus includes; an acquiring unit configured to acquire an image of an eye to be inspected, a measuring unit configured to measure movement of the eye to be inspected based on the image, a predicting unit configured to predict the movement of the eye to be inspected based on a cycle of the movement of the eye to be inspected which has been measured by the measuring unit, and a control unit configured to control an acquisition position where the acquiring unit acquires the image based on the movement of the eye to be inspected which has been predicted by the predicting unit.09-13-2012
20120229764OPHTHALMOLOGIC APPARATUS AND CONTROL METHOD OF THE SAME - There is provided an ophthalmologic apparatus having a tracking function that can select a fundus image that is less affected by eye motion to reduce burdens on an operator/a patient in fundus imaging, wherein the ophthalmologic apparatus picks up a first fundus image (09-13-2012
20080204655FUNDUS OCULI OBSERVATION DEVICE AND FUNDUS OCULI IMAGE PROCESSING DEVICE - A fundus oculi observation device comprises: an image forming part configured to optically acquire data and form a tomographic image of a fundus oculi of an eye; a storage configured to store optical information representing a state of an ocular optical system of the eye; a calculator configured to calculate a magnification of the ocular optical system, based on the optical information; and an analyzer configured to analyze the tomographic image, based on the magnification.08-28-2008
20100165292Ophthalmic photographic apparatus - A timer function hold mode in which the timer continues the timing function is set in a mydriatic fluorescence mode by operating a timer switch for at least a fixed time, or by simultaneously operating a fluorescence filter switch and the timer switch. If the timer function hold mode is set in the mydriatic fluorescence mode, then the timing of the timer is continued even after the photography mode switches to another photography mode e.g. non-mydriatic or mydriatic color mode. When, on the other hand, the timer function hold mode is not set in the mydriatic fluorescence mode, the timer is caused to be stopped or reset when the mode is switched to the non-mydriatic or mydriatic color mode.07-01-2010
20110164218METHOD AND APPARATUS FOR OCULAR SURFACE IMAGING - The invention provides apparatuses and methods for detecting ocular surface defects. The methods and/or an apparatus of the invention can be used to detect ocular surface diseases, such as dry eye, uveitis, conjunctivitis, keratitis, keratoconjunctivitis, vernal keratoconjunctivitis (VKC), atopic keratoconjunctivitis (AKC), autoimmune disorders of the ocular surface, meibomianitis, conjunctival hyperemia, eyelid hyperemia, ocular rosacea, ocular inflammation, or eye lid swelling.07-07-2011
20110164219OPTHALMOLOGIC IMAGING APPARATUS AND OPTHALMOLOGIC IMAGING METHOD - An ophthalmologic imaging apparatus that captures a fundus image of a subject's eye includes a first extraction unit configured to extract, from a first fundus image photographed with a first light quantity, an image of a first area having intensity not less than predetermined intensity and an image of a second area other than the first area, a second extraction unit configured to extract an image of an area corresponding to the first area from a second fundus image photographed with a second light quantity based on the light quantity of the first area, a third extraction unit configured to extract an image of an area corresponding to the second area from a third fundus image photographed with a third light quantity based on the light quantity of the second area, and an image combining unit configured to combine the images extracted by the second and the third extraction units.07-07-2011
20100283970FUNDUS CAMERA - A fundus camera includes an observation photographing unit having a focusing lens to perform focusing of an imaging unit on a fundus of a subject's eye, a lens driving unit configured to drive the focusing lens in an optical axis direction, and a focusing control unit configured to calculate a focusing evaluation value based on image information of a predetermined area of a fundus image captured by the observation photographing unit, and drive the focusing lens based on the focusing evaluation value, thereby performing focusing, wherein the focusing control unit moves the focusing lens from a previous photographing position of the focusing lens by a predetermined moving amount, and then performs the focusing.11-11-2010
20110134393IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND PROGRAM STORAGE MEDIUM - An image generation unit generates a composite image based on a plurality of two-dimensional tomographic images captured while setting an imaging position in a target eye. A tomographic imaging apparatus captures a volume image based on the set imaging position.06-09-2011
20110134392IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - This invention can generate a high-resolution, low-noise tomogram while minimizing the influences of the flicks of the eyeballs, the movement of the head, and the like. The invention is an image processing apparatus which processes a tomogram of an eye to be examined and includes detection units to detect the motion amount of the eye by using a signal obtained by capturing the tomogram, and a decision unit to decide the number of scanning lines for capturing of the tomogram based on the motion amount detected by the detection units.06-09-2011
20110080559Ocular Imaging - A system for performing quasi-elastic light scattering and fluorescent ligand scanning on a subject's eye includes a light source configured to transmit light toward the subject's eye, a lens configured to focus light sent from the source and scattered by the subject's eye, a measurement reflector disposed to receive at least a portion of the focused light and configured to reflect a first portion of the received light, a camera configured and disposed to receive the first portion of the received light and configured to provide indicia of an image corresponding to the first portion of the received light, and a processor coupled to the camera and configured to analyze intensities of light in the image to determine a location of a reference point corresponding to an interface of a portion of the eye.04-07-2011
20110001927FUNDUS SCANNING APPARATUS - A combined fundus scanning apparatus for optical coherence tomography (OCT) and fundus imaging has an OCT unit (01-06-2011
20090201466Goggles - Goggles provide various features including skirt that mounts to a frame of the goggles. The skirt may be elastic and may include damper portions at least partially extending into the elastic skirt to allow the elastic skirt to have travel and to thereby better conform to the facial features of a subject. The goggles may include an overhead mounting location such as a chamber that encloses movement, such as infrared light sources and/or cameras. Furthermore, the goggles may include infrared mirrors that are retained by a bracket mounted to the frame, where the bracket has a portion affixed to the frame that retains another portion that is movable and that is affixed to the infrared mirrors.08-13-2009
20110096294NON-CONTACT OPTICAL COHERENCE TOMOGRAPHY IMAGING OF THE CENTRAL AND PERIPHERAL RETINA - A system for imaging of the central and peripheral retina of an eye, including one of a concave mirror and an elliptical mirror configured to focus a beam of light toward a primary focal point located inside pupil of the eye, and a scanner configured to obtain a non-contact wide angle optical coherence tomography-image of a portion of the central and peripheral retina, the scanner having a probe beam configured to rotate about the primary focal point between a first position and a second position, thereby permitting scanning light inside the eye to cover a predetermined peripheral field, so as to record a field of up to 200 degrees of a portion of the central and peripheral retina, thus creating a two dimensional or three dimensional image of the field.04-28-2011
20110096293ADAPTIVE OPTICS APPARATUS AND IMAGING APPARATUS INCLUDING THE SAME - An adaptive optics apparatus includes a first conversion unit configured to convert a polarization direction of one of two polarization components of light to a polarization direction of the other of the polarization components, the light being emitted by a light source; a light modulation unit configured to modulate the two polarization components of light converted by the first conversion unit in the polarization directions that have been converted; a second conversion unit configured to convert directions of polarization components of the light modulated by the light modulation unit to directions that intersect with each other; and an irradiation unit configured to irradiate the object with the light that is converted by the light modulation unit.04-28-2011
20110096292ADAPTIVE OPTICS APPARATUS THAT CORRECTS ABERRATION OF EXAMINATION OBJECT AND IMAGE TAKING APPARATUS INCLUDING ADAPTIVE OPTICS APPARATUS - An adaptive optics apparatus includes a first light modulating unit configured to perform modulation in a polarization direction of one of two polarized light components in light emitted from a light source, a changing unit configured to rotate the light modulated by the first light modulating unit by 90 degrees, a second light modulating unit configured to modulate the light changed by the changing unit in the polarization direction, and an irradiating unit configured to irradiate a measurement object with the light modulated by the second light modulating unit.04-28-2011
20110080560EYE PORTION DIAGNOSIS SUPPORT APPARATUS, METHOD THEREFOR, PROGRAM, AND RECORDING MEDIUM - There is provided a technique for efficiently acquiring a tomogram of an eye portion. A diagnosis support apparatus includes a wide-area image acquisition means for acquiring a wide-area image of an eye portion, a detection means for detecting a lesion candidate on the eye portion by analyzing the wide-area image acquired by the wide-area image acquisition means, a determination means for determining a parameter associated with acquisition of a tomogram of the eye portion, based on a lesion candidate detection result obtained by the detection means, and a tomogram acquisition means for acquiring a tomogram of the eye portion based on the parameter determined by the determination means.04-07-2011
20100110375OPTICAL IMAGE MEASUREMENT DEVICE - A device 1 is an OCT device that splits a low-coherence light L05-06-2010
20100214535FUNDUS CAMERA - A fundus camera includes an irradiation unit including a plurality of LED elements and a fluorescent material that emits light by being excited by light emitted from the LED elements and configured to emit light that is generated by combining light emitted from the LED elements and excitation light from the fluorescent material, an illumination optical system configured to irradiate an eye fundus of a subject's eye with the light emitted by the illumination unit, an observation unit configured to form an eye fundus image by receiving light, which is emitted from the illumination unit and reflected from the eye fundus, and an imaging unit configured to pick up the eye fundus image formed by the observation unit.08-26-2010
20100214534OPHTHALMIC SURGERY SYSTEM - An ophthalmic surgery system (08-26-2010
20100214533Spectrometer - A spectrometer is described, especially for an optical coherence tomograph (08-26-2010
20100214532METHODS, SYSTEMS, AND DEVICES FOR MONITORING ANISOCORIA AND ASYMMETRY OF PUPILLARY REACTION TO STIMULUS - A Pupillometer is disclosed. The Pupillometer has a display, an imaging apparatus that has a pupil finder and a microprocessor, and a memory in communication with the microprocessor. The display is sized to simultaneously display a video of y or more seconds in length of a left pupil and a video of y or more seconds in length of a right pupil. The pupil finder identifies the perimeter of a pupil. The imaging apparatus is capable of recording images of an individual's pupils at a rate of x image frames per second for a period of y or more seconds and playing back said image frames as a video at x image frames per second or at another rate that is faster or slower than x image frames per second. The memory has stored therein a program for enabling said microprocessor to do the following: (i) identify a center of the left pupil and a center of the right pupil for each image frame; (ii) synchronize each image frame of the two videos starting from the first frame; (iii) cause the display to display the two videos simultaneously such that each of the image frames of the video of the left eye is synchronized to a corresponding image frame of the video of the right eye when played back on the display; and (iv) cause the two videos to be displayed so that the center of the left pupil in each image frame is aligned on the display with the center of the right pupil for the corresponding image frame.08-26-2010
20110199577ARTICLE FOR USE IN AN OCT-METHOD AND INTRAOCULAR LENS - An article for use in an OCT method, the article comprising a solid substrate and nanoparticles dispersed in or on the substrate in at least one light transmissive portion of the article such that the nanoparticles result in an increased extinction of the light transmissive portion along a transmission direction of the light transmissive portion compared to the substrate being free of nanoparticles. The extinction of the light transmissive portion along the transmission direction is less than 6, wherein the extinction is defined as a negative decadic logarithm of a ratio of an intensity of light which is transmitted through the light transmissive portion to an intensity of light which is incident on the light transmissive portion, wherein the light is in at least one of a visible and a near infrared wavelength range.08-18-2011
20110261320ARRANGEMENT FOR ATTAINING HIGH-PRECISION MEASUREMENTS OF AN EYE - A solution for attaining high-precision and reproducible measurements during opthalmological biometry and imaging includes an illumination unit for producing a fixation marker, a device for transmitting the light of the produced fixation marker into the eye, a measurement device and a control unit. The illumination unit includes a device for the targeted change of the beam direction of the produced fixation marker. A camera for the detection of the line of vision of the eye is connected to the control unit. The control unit determines the sufficient congruity between detected line of vision and displayed beam direction of the produced fixation marker and, in dependence of the degree of probability of the congruity, triggers a measurement. The suggested arrangement is applicable for opthalmological diagnostic devices, which exhibit a camera and a measuring system, whereby measurements can be taken in all areas of the eye.10-27-2011
20110149242Artificial Eye and Measuring Instrument for Measuring the Accommodation of an Eye - A liquid lens system comprises a liquid drop 06-23-2011
20110051088FUNDUS OCULI OBSERVING DEVICE - A fundus oculi observing device 1 specifies a characteristic site of a fundus oculi Ef depicted in tomographic images of the fundus oculi Ef and, based on the position of the characteristic site within frames FH and FV of the tomographic images, changes a target position of a signal light LS so that the characteristic site is depicted in the center positions within the frames FH and FV and executes a main measurement, thereby forming a tomographic image and/or a three-dimensional image of the fundus oculi Ef.03-03-2011
20100026956OPHTHALMIC APPARATUS AND OPHTHALMIC METHOD FOR POSITIONING AN EYE OF A PATIENT IN A PREDETERMINED NOMINAL POSITION - An ophthalmic apparatus including a supporting device for a patient and an eye treatment device. The apparatus includes a contact element for spatially fixing an eye of the patient with respect to the treatment device, and a positioning device for shifting the supporting device and a contact element relative to each other in order to position the eye, before it is fixed using the contact element, at a predetermined nominal position relative to the contact elements. The ophthalmic apparatus includes a detection device, which records an image of the eye of the patient present on the supporting device and, on the basis of said recorded image, determines an indication concerning a relative shift of the supporting device with respect to the contact element, which shift is required to move the eye to the nominal position by means of the positioning device.02-04-2010
20110051087FUNDUS CAMERA - When pattern recognition of a fundus image is started in step S03-03-2011
20110051086OPHTHALMOLOGIC PHOTOGRAPHING APPARATUS, AND ITS PHOTOGRAPHING METHOD - An ophthalmologic photographing apparatus includes a light source configured to emit photographing light for illuminating a subject's eye through an illumination optical system, a changing unit configured to change a light emission amount of the light source, a selecting unit configured to select at least one of a plurality of photographing modes for photographing the subject's eye, a storage unit configured to store the changed light emission amount by the changing unit as a changed value during the photography in the photographing mode selected by the selecting unit, and a setting unit configured to set a light emission amount at a start of the photography to a light emission amount which is set beforehand as an initial state of the light source or to the changed value according to the plurality of photographing modes.03-03-2011
20110051085OPHTHALMOLOGIC IMAGING APPARATUS AND OPHTHALMOLOGIC IMAGING METHOD - An ophthalmologic imaging apparatus includes an observation light source configured to generate infrared light for illuminating a subject's eye via an illumination optical system, an imaging unit configured to receive light returned from the subject's eye via an imaging optical system, and an electronic shutter control unit configured to refresh charge generated caused by light received by the imaging unit in response to turning off of the observation light source.03-03-2011
20110051084OPHTHALMOLOGIC PHOTOGRAPHING APPARATUS AND PHOTOGRAPHING METHOD THEREFOR - An ophthalmologic photographing apparatus includes an illumination unit configured to illuminate a subject's eye with one of infrared light and visible light, an input unit configured to input a signal to the illumination unit, a measurement unit configured to measure an input time of the signal from the input unit, a detection unit configured to detect that the input time is a predetermined time or longer, and a control unit configured to control the illumination unit according to a detection result by the detection unit to switch from the infrared light to the visible light.03-03-2011
20120147327OPHTHALMOLOGIC PHOTOGRAPHING APPARATUS AND CAMERA FOR USE IN OPHTHALMOLOGIC PHOTOGRAPHING - A camera, which is removably mountable on an ophthalmologic photographing apparatus including an illumination optical system configured to illuminate a subject's eye with illumination light, includes an imaging unit configured to form an image from return light from the subject's eye through a photographing optical system in the ophthalmologic photographing apparatus, a development unit configured to develop a moving image or a still image of the subject's eye based on an output signal from the imaging unit with using a development parameter based on a wavelength range of the illumination light, and a display unit configured to display the moving image or the still image developed by the development unit.06-14-2012
20120147325Surgical microscope - A surgical microscope (06-14-2012
20110116041Ocular Imaging - A system for performing at least one of quasi-elastic light scattering and fluorescent ligand scanning on a subject's eye includes a light source configured to transmit light toward the subject's eye, a lens configured to focus light sent from the source and received from the subject's eye, a measurement reflector disposed to receive at least a portion of the focused light and configured to reflect a first portion of the received light, a camera configured and disposed to receive the first portion of the received light and configured to provide indicia of an image corresponding to the first portion of the received light, and a processor coupled to the camera and configured to analyze intensities of light in the image to determine a location of a reference point corresponding to an interface of a portion of the eye.05-19-2011
20120307206FUNDUS IMAGING APPARATUS AND METHOD THEREFOR - A fundus image is displayed, which enables accurate positioning and focusing to be easily performed with respect to an eye to be examined even on a small display unit by selecting a display magnification. At a first display magnification, an opening portion “m” of a mask specifying a predetermined angle of field of the fundus is displayed with no part missed in both of horizontal and vertical directions of a display unit 12-06-2012
20120307205COMPACT WAVEFRONT SENSOR MODULE AND ITS ATTACHMENT TO OR INTEGRATION WITH AN OPHTHALMIC INSTRUMENT - One embodiment disclosed is a compact wavefront sensor module to be attached to or integrated with an ophthalmic instrument for eye examination and/or vision correction procedures. The front lens for relaying the wavefront from the eye to a wavefront sampling plane is positioned at the optical input port of the wavefront sensor module. The front lens is shared by the wavefront sensor and the ophthalmic instrument, and the wavefront sensor module can be made very compact while still being able to cover a large eye wavefront measurement diopter range.12-06-2012
20110149243FUNDUS CAMERA - A fundus camera includes an illumination unit which includes an optical element configured to irradiate an eye fundus with visible light from a position conjugate with an anterior eye portion of an eye to be examined, and an imaging unit configured to take an image of the eye fundus with light which is emitted from the illumination unit and reflected from the eye fundus, wherein the illumination unit includes a blue LED chip and a fluorescent member that is excited by light emitted from the blue LED chip and emits fluorescence, and the fluorescent member is irradiated again with apart of the light reflected by the optical element.06-23-2011
20110304821OPHTHALMIC APPARATUS - An ophthalmic apparatus comprising: a fundus observation optical system; a designating part for designating an area of the fundus other than a macular area from a fundus image displayed on a monitor to make alignment of the fundus area of the fundus image displayed on the monitor with the fixation target displayed on a LCD display; a judging part for detecting an approaching state of the fixation target projected on the fundus and the designated fundus area based on positional information of the fundus area designated by the designating part on the monitor after movement and positional information of the fixation target displayed on the LCD display, and judging based on a detection result, whether or not the designated fundus area and the fixation target projected on the fundus are coincident in a predetermined allowable range; and a display control part for changing the display state of the fixation target based on a judgment result of the judging part.12-15-2011
20110304819Image-Guided Docking for Ophthalmic Surgical Systems - A docking method for an ophthalmic system may include the steps of aligning a docking unit of the ophthalmic system and an eye; generating an image of an internal structure of the eye by an imaging system; improving an alignment of the docking unit with the internal structure of the eye in relation to the generated image; and docking the docking unit to the eye. The generating the image step may include computing scanning data by a processor corresponding to a scanning pattern; storing the scanning data in a data buffer; transferring the scanning data by the data buffer to an output module; outputting scanning signals by the output module to one or more scanners based on the scanning data; and scanning an imaging beam with the one or more scanners according to the scanning signals.12-15-2011
20110304820METHOD AND DEVICE FOR IMAGING A TARGET - The present invention relates to a method and apparatus for forming a filtered image filtered with an at least partially negative filtering spectrum. In the method a plurality of exposure combinations of exposure times and wavelength channels are determined so that at least some of the wavelength channels are on the positive area of the filtering spectrum, on which area the exposure is essentially determined to correspond with the filtering spectrum, while at least some of the wavelength channels are on the negative area of the filtering spectrum, on which area the exposure is determined to essentially correspond with the inverted filtering spectrum. Partial images are formed of the target using the said combinations of exposure times and wavelength channels by illuminating the target with the light source, by filtering the light emitted by the source of light and by detecting the light reflected or transmitted. Finally, the said image filtered with a partially negative filtering spectrum is formed of the partial images by calculation.12-15-2011
20120038885DEVICES AND METHODS FOR POLARIZATION-SENSITIVE OPTICAL COHERENCE TOMOGRAPHY AND ADAPTIVE OPTICS - The present disclosure includes disclosure of devices, and methods to resolve microscopic structures. In at least one exemplary embodiment, a visualization apparatus comprises a source arm having a light source operable to emit a light beam, wherein the light beam defines a beam pathway, a reference arm comprising a reflecting surface positioned within the beam pathway, a sample arm comprising a wavefront sensor, an adaptive optics wavefront corrector, and a target, each of which are positioned within the beam pathway, wherein the adaptive optics wavefront sensor is operable to compensate for at least one aberration in the light beam, a detector arm comprising a beam detector positioned within the beam pathway, wherein the beam detector is operable to detect the reflected light beam from the reference arm and the target, and wherein the visualization apparatus is operable to minimize at least one aberration of the target.02-16-2012
20090168018OPTICAL SYSTEM FOR A FUNDUS CAMERA - The invention is directed to an optical system for a fundus camera in which lens pairs are tilted relative to the imaging beam path to prevent flare. This tilting is carried out in two planes and these planes are preferably oriented perpendicular to one another.07-02-2009
20080273173IRIS PATTERN RECOGNITION AND ALIGNMENT - Apparatus and methods are described for aligning diagnostic and therapeutic iris images, via iris pattern recognition, for effecting more accurate laser treatment of the eye. A method for aligning a dilated pupil diagnostic iris image associated with a diagnostic measurement for calculating a laser treatment, with a constricted pupil diagnostic iris image, by identifying an iris landmark that is not identifiable solely between the two images, includes a sequential plurality of diagnostic iris images of varying pupil size such that the iris landmark can be tracked between the two images. The aligned, constricted pupil diagnostic image can then be aligned with a constricted pupil treatment image and the ablation pattern rotated accordingly. Limbal edge detection is used in the diagnostic images to provide pupil center translation information for translational alignment of the laser treatment. An improved aberrometer is disclosed having a variable visible illumination fixation target for controlling pupil size for the diagnostic images. A diagnostic and therapeutic laser eye treatment system is described incorporating the apparatus and method embodiments of the invention.11-06-2008
20120044457IMAGING APPARATUS AND IMAGING METHOD - An imaging apparatus includes changing unit for changing a positional relation of irradiation positions of a plurality of measuring beams to be radiated onto an object. The imaging apparatus includes scanning unit for scanning the plurality of measuring beams in the positional relation which has been changed by the changing unit, and acquiring unit for acquiring an optical coherence tomographic image of the object on the basis of the plurality of measuring beams.02-23-2012
20120044456FUNDUS OBSERVATION APPARATUS - The controller 02-23-2012
20120044455OPTICAL IMAGING APPARATUS AND METHOD FOR IMAGING AN OPTICAL IMAGE - To provide an optical imaging apparatus capable of providing a high lateral resolution in a wide region and easily adjusting prior to imaging for imaging an optical image of an eye to be inspected which is an object, and a method for imaging an optical image. The optical imaging apparatus in which a beam from a light source is used as a measuring beam, and an image of an object is imaged based on intensity of a return beam formed of the measuring beam irradiated to the object has the following: first, an optical device for focusing the measuring beam on the object; next, a aberration detecting device for measuring a aberration of the return beam; and a focus adjusting device for adjusting the optical device based on the aberration detected by the aberration detecting device.02-23-2012
20120002164FUNDUS PHOTOGRAPHING APPARATUS - A fundus photographing apparatus for photographing a fundus of an examinee's eye includes: a fundus photographing optical system for obtaining a fundus image, including: an optical scanner that scans the fundus with measurement light including at least part of light emitted from a light source; and a light detector that receives light including reflected light from the fundus; a length information obtaining unit for obtaining length information on an axial direction of the eye; and a controller that adjusts driving information of the fundus photographing optical system in relation to a photographing range based on the length information obtained by the length information obtaining unit and controls the fundus photographing optical system based on the adjusted driving information to obtain a fundus image corresponding to a photographing range.01-05-2012
20120002165OPTICAL IMAGE ACQUISITION APPARATUS HAVING ADAPTIVE OPTICS AND CONTROL METHOD FOR THE SAME - The present invention provides an optical image acquisition apparatus, while controlling the amount of light within the range prescribed by safety standards, etc., decreasing in image acquisition time by using a simple configuration, as well as securing a high resolution of an optical image by using adaptive optics.01-05-2012
20120008092Information System and Method for Providing Information Using a Holographic Element - An information system and a method for providing information in correlation with light that is incident on an eye includes a holographic element disposed in front of the eye and a device capable of recording optical signals which detects light that is incident on the eye via the holographic element. The device capable of recording optical signals detects light which is diffracted by the holographic element before the light impinges on the eye such that the diffracted light does not enter the eye.01-12-2012
20120008093REFLECTANCE MEASUREMENT OF MACULAR PIGMENT USING MULTISPECTRAL IMAGING - Imaging apparatus and filters are provided for accurately imaging, assessing and measuring a patient's macular pigment. A multi-band filter is employed in combination with a color digital fundus camera to provide a method that operates with a single imaging exposure. The multiband filter has bandpass regions within spectral ranges of the red, green and blue detectors of the CCD array employed within the fundus camera, the bandpass regions being sufficiently sharply defined so as to avoid regions where the CCD detector responses spectrally overlap. This provides three discrete channels of grayscale data corresponding to the bandpass regions of the multiband filter, which can be used to calculate macular pigment topographically. Methods are also disclosed for calculating the optical density of the macular pigment and advantageously displaying the resulting data.01-12-2012
20120008091EVALUATING PUPILLARY RESPONSES TO LIGHT STIMULI - A solution for evaluating the pupillary responses of a patient is disclosed. The solution includes exposing one eye of a patient to flashes having varying patterns and concurrently recording the pupillary responses of both eyes of the patient to the flash. At least some of the patterns can be configured to stimulate/not stimulate the macula region of the patient's eye. The solution also can include reducing one or more non-visual stimuli experienced by the patient while the pupillary responses are being induced and recorded.01-12-2012
20090290124REFLECTANCE MEASUREMENT OF MACULAR PIGMENT USING MULTISPECTRAL IMAGING - Imaging apparatus and filters are provided for accurately imaging, assessing and measuring a patient's macular pigment. A multi-band filter is employed in combination with a color digital fundus camera to provide a method that operates with a single imaging exposure. The multiband filter has bandpass regions within spectral ranges of the red, green and blue detectors of the CCD array employed within the fundus camera, the bandpass regions being sufficiently sharply defined so as to avoid regions where the CCD detector responses spectrally overlap. This provides three discrete channels of grayscale data corresponding to the bandpass regions of the multiband filter, which can be used to calculate macular pigment topographically. Methods are also disclosed for calculating the optical density of the macular pigment and advantageously displaying the resulting data.11-26-2009
20120057127IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND PROGRAM - An image processing apparatus has an acquisition unit which acquires a second tomogram related to a first tomogram of an eye to be examined based on position information of an eye fundus of the eye to be examined according to a predetermined rule; and a display control unit which displays the first tomogram and the second tomogram on a display unit.03-08-2012
20120057126METHOD FOR ANALYZING TEAR FILM THERMOGRAPH OF CONTACTLESS TEAR FILM THERMAL IMAGER - A method for analyzing tear film thermograph of contactless tear film thermal imager has steps of sequentially loading multiple thermographs of a tear film, recording a maximum and a minimum of temperatures for a region of interest of each one of the thermographs, dividing the thermograph into at least one temperature zone in accordance with the maximum and minimum temperatures recorded in the last step, and recording a size, a location and a bordering temperature of each one of the at least one temperature zone, analyzing a pattern and temperature variation of each one of the at least one temperature zone, and classifying stability of the tear film. The patterns of the temperature zones can be identified through circularity computation, mosaic and temperature gradient analysis. Accordingly, tear film break up patterns can be classified with the method to facilitate doctors to diagnose a dry eye patient.03-08-2012
20110019151Microscopy system for eye surgery - The invention relates to an eye surgery microscopy system (01-27-2011
20120057128OPHTHALMOLOGIC PHOTOGRAPHING APPARATUS - When an observation state by an infrared LED 03-08-2012
20120026463OPTICAL COHERENCE TOMOGRAPHIC IMAGING APPARATUS - Optical coherence tomographic imaging apparatus creating tomographic image of inspection object includes light splitting means for splitting light from light source into a single reference light and a single sample light, optical path length changing means for changing optical path length of the single reference light, reference light splitting means for splitting the single reference light whose optical path length is changed into a plurality of reference lights, sample light splitting means for splitting the single sample light into a plurality of sample lights, irradiation means for irradiating the inspection object by leading the plurality of sample lights thereto, interference signal forming means for combining returning lights of the plurality of the sample lights from the inspection object irradiated by the irradiation means with the plurality of reference lights passed through the reference-light path, and interference signal obtaining means for obtaining an interference signal from the interference signal forming means.02-02-2012
20120154747OPHTHALMOLOGIC APPARATUS AND CONTROL METHOD THEREFOR - In order to solve problems that it takes time to take an image due to scanning and that measurement of a movement of an eyeball becomes difficult or less accurate with a lapse of time, which are inherent in a scanning-type fundus image photographing apparatus, there is provided a control method for an ophthalmologic apparatus, including: acquiring a fundus image by scanning a photographing area of a fundus with measuring light; extracting a characteristic point from the acquired fundus image; setting, in the photographing area, a partial area containing the characteristic point; acquiring an image of the partial area by scanning the partial area with the measuring light; and detecting a movement of the fundus by executing template matching based on the characteristic point and the image of the partial area.06-21-2012
20080204656Image processing apparatus - A model eye that models the optical characteristics of a human eye and is endowed with a grayscale pattern on the ocular fundus model surface is stereographically photographed with a parallax via a stereo photographic optical system. Photographed images are processed to provide calibration data for correcting the shape distortions of the stereo photographic optical system. The calibration data is used to correct a distortion-affected shape data and parallax images obtained in stereographic photography of the actual ocular fundus of a subject's eye. The shape distortion-corrected parallax image is used for a three-dimensional measurement process and 3D display on a stereo monitor. This allows an accurate three-dimensional measurement to be carried out and an accurate fundus image to be produced. The examiner can accurately evaluate the stereo shape of the ocular fundus of the subject's eye.08-28-2008
20110085138Ophthalmological Diagnostic System - The present invention is an ophthalmological diagnostic system adapted for use in urgent care facilities, physicians' offices, hospitals, mobile treatment facilities, and in remote areas. The ophthalmological diagnostic system includes a component for securely holding a digital camera in optical communication with an ophthalmoscope and in various embodiments may include hardware and software for analysis and storage of images or video captured using the ophthalmological diagnostic system. The ophthalmological diagnostic system facilitates viewing of images and video by a single diagnostician or multiple diagnosticians.04-14-2011
20110085137RING LIGHT FUNDUS CAMERA - A fundus camera includes a viewing optical path, an imaging device, and an illuminating optical path including at least one LED and a pinhole mirror reflecting the at least one LED into the imaging device, wherein at least a portion of the illuminating optical path shares an optical axis with at least a portion of the viewing optical path, and wherein the at least one LED includes a plurality of LEDs disposed in a shape of a ring.04-14-2011
20110085136Hybrid Spectral Domain Optical Coherence Tomography Line Scanning Laser Ophthalmoscope - An apparatus for imaging an eye includes a housing and a system of optical components disposed in the housing. The apparatus is capable of operating in a line scanning laser ophthalmoscope (LSLO) mode and an optical coherence tomography (OCT) mode. The system of optical components can include a first source to provide a first beam of light for the OCT mode and a second source to provide a second beam of light for the LSLO mode. In the OCT mode, a first optic is used that (i) scans, using a first surface of the first optic, the first beam of light along a retina of an eye in a first dimension, and (ii) descans, using the first surface, a first light returning from the eye in the first dimension to a detection system in the OCT mode. In the LSLO mode, the first optic is used where the second beam of light passes through a second surface of the first optic.04-14-2011
20110085135Free space hands free ocular observation camera mount - The present invention provides a stable mount for a small video camera to be donned by a (but not limited to) a human subject in order to view and record the subjects eyes and adnexa (the area around the eyes including the lids and surrounding tissues which the orbicularis muscles reside beneath), without disturbing the subject's side vision. The preferred embodiment uses a reduced spectacle like frame or may use a headset, which does not obscure the side vision of the subject, and contains a boom or arm which extends forward, and again without interfering with the subjects side vision. The invention additionally does not interfere with the examiner's view of the subject's eyes and adnexa. Additionally, the subject is free to move the body in space, and is free to move the head in various positions.04-14-2011
20120026464OPTICAL COHERENCE TOMOGRAPHIC IMAGING APPARATUS AND TOMOGRAPHIC IMAGING METHOD - An optical coherence tomographic imaging apparatus includes a first measuring beam and a second measuring beam which differ from each other in center wavelength; first adjustment unit for adjusting focusing position of the first measuring beam; second adjustment unit for adjusting focusing position of the second measuring beam; first detecting unit for detecting an interference light generated from a first returning light and a first reference beam, where the first returning light results from the first measuring beam; and second detecting unit for detecting an interference light generated from a second returning light and a second reference beam, where the second returning light results from the second measuring beam reflected or scattered, in which the focusing positions of the first measuring beam and the second measuring beam can be adjusted by the first and second adjustment unit to be at different positions in a depth direction.02-02-2012
20120026462INTRAOPERATIVE IMAGING SYSTEM AND APPARATUS - Systems, methods and apparatuses for intraocular imaging system are disclosed comprising an optical coherence tomography (OCT) system. The OCT system has an imaging range that may enable substantial portions of an eye to be imaged. The OCT system may be coupled to an operation microscope, such that, for example, a surgeon can visualize ocular structures like the human crystalline lens and other ocular structures such as the cornea and/or vitreous while surgical instruments are in the field of view.02-02-2012
20120026461FUNDUS OPTICAL IMAGE DEVICE - A fundus optical image device includes a light source, a first optical element set and a second optical element set. The light emitted from the light source reaches the fundus through the first optical element set. The second optical element set has at least one curvature-adjustable lens. The light emitted from the light source is reflected by the fundus and then passes through the curvature-adjustable lens to present an image of the fundus.02-02-2012
20130010260LIGHT FIELD CAMERA FOR FUNDUS PHOTOGRAPHY - Systems and methods for applying the concept of lightfield sensors to fundus photography are presented. In one embodiment, the ability to isolate specific regions of the collected lightfield are used to reduce the effects of glare in a fundus image. Additional embodiments in which aberrations can be characterized and removed, an image from a particular plane in the collected light field is used to aid in instrument alignment, and dynamic optimization of collection pupil diameter is accomplished are also presented.01-10-2013
20130010259Region based vision tracking system for imaging of the eye for use in optical coherence tomography - For optical coherence tomography engines a method for eliminating the effects of the movement of the eye on the optical coherence tomography scan calculates the motion of the eye from an image from an auxiliary scanning system and compares a reference region to a corresponding region in the image associated with the next frame, with the change in position sensing the motion of the eye. This is followed by utilizing this sensed motion to generate accurate offsets for the scanning mirror patterns of the OCT engine. Additionally, scan skipping is utilized to obviate the effects of rapid eye movement that occur at rates faster than the image acquisition rate.01-10-2013
20120062841METHOD FOR FINDING THE LATERAL POSITION OF THE FOVEA IN AN SDOCT IMAGE VOLUME - Embodiments of the present invention provide methods for finding the lateral position of the fovea in an OCT image volume. In one instance, a cost function is developed whose minimum is located at or near the foveal center. This cost function includes one or more measures of retinal layer thickness and/or measures of distance from blood vessels or a priori locations.03-15-2012
20120062840Method and System for Performing Remote Treatment and Monitoring - The disclosure relates to medical databases, remote monitoring, diagnosis and treatment systems and methods. In one particular embodiment, a system for remote monitoring, diagnosis, or treatment of eye conditions, disorders and diseases is provided. This method generally includes administering a stream of droplets to the eye of a subject from an ejector device, and storing data related to the administration in a memory of the ejector device. The data may then be monitored and analyzed.03-15-2012
20120062839APPARATUS AND METHOD FOR ILLUMINATING AND IMAGING THE RETINA OF AN EYE OF A PATIENT - An apparatus for illuminating and imaging the retina of an eye of a patient utilizes an LED as source of illumination.03-15-2012
20110096291Systems for Extended Depth Fourier Domain Optical Coherence Tomography (FDOCT) and Related Methods - Systems for extended depth frequency domain optical coherence tomography are provided including a detection system configured to sample spectral elements at substantially equal frequency intervals, wherein a spectral width associated with the sampled spectral elements is not greater than one-half of the frequency interval. Related methods are also provided herein.04-28-2011
20120154749FUNDUS CAMERA - When pattern recognition of a fundus image is started in step S06-21-2012
20100141895 SCANNING OPHTHALMOSCOPES - A scanning opthalmoscope (06-10-2010
20090096988OPTOMECHANICAL AND DIGITAL OCULAR SENSOR READER SYSTEMS - System, methods, and devices are described for eye self-exam. In particular, optomechanical and digital ocular sensor reader systems are provided. The optomechanical system provides a device for viewing an ocular sensor implanted in one eye with the other eye. The digital ocular sensor system is a digital camera system for capturing an image of an eye, including an image of a sensor implanted in the eye.04-16-2009
20110080561OPTICAL IMAGE MEASURING DEVICE - An optical image measuring device 04-07-2011
20120154748FUNDUS CAMERA - If a position of a focus lens is greatly displaced from a focus state when automatic focusing is started, and pattern recognition cannot be performed, the process proceeds to step S06-21-2012
20120249960LIGHTING DEVICE FOR FUNDUS CAMERAS - The present invention relates to a lighting device comprising a light concentrator device operatively associated with a light source comprising a plurality of LED devices. The light concentrator device is composed of a solid transparent body comprising: a first surface (10-04-2012
20110090458TOMOGRAPHIC IMAGE CAPTURING APPARATUS, METHOD FOR CAPTURING TOMOGRAPHIC IMAGE, PROGRAM, AND STORAGE MEDIUM - A tomographic image capturing apparatus includes a fixation lamp configured to guide a line of sight of a subject's eye, and a control unit configured to control a projection position of measuring light according to a predetermined position on a fundus of the subject's eye and a projection position of the fixation lamp.04-21-2011
20110090457OPHTHALMIC IMAGING APPARATUS, IMAGING UNIT, INSPECTION APPARATUS, AND METHOD OF PRODUCING OPHTHALMIC IMAGING APPARATUS - A method of producing an ophthalmic imaging apparatus includes the steps of producing an imaging unit configured to capture an image of an image subject in visible light and infrared light; adjusting the color tone of the imaging unit using a color-tone adjustment unit having a first optical member configured to absorb infrared light; and connecting the adjusted imaging unit and an optical system having a second optical member whose characteristic is the same as a characteristic of the first optical member and configured to capture an optical image of an eye to be examined.04-21-2011
20110102743System for observing cornea for transplantation - The present invention is directed to a system for observing a cornea for transplantation which includes: an illumination means for illuminating the cornea for transplantation contained in a container; an entire-view imaging means for imaging the substantial entirety of the interior of the container; a position adjusting means for adjusting the position and angle of the cornea for transplantation; a magnified-view imaging means for imaging a magnified view of the cornea for transplantation illuminated by the illumination means; an image display means for displaying each image taken by the entire-view imaging means and the magnified-view imaging means; and an image control means for controlling each image.05-05-2011
20110102742APPARATUS, METHOD, AND PROGRAM FOR PROCESSING INFORMATION - An information processing apparatus includes a determination unit configured to determine an incident angle of a signal light beam made incident on an object to be imaged in accordance with a structure of the object to be imaged and an instruction unit configured to send an instruction to capture a tomographic image of the object to be imaged on the basis of the signal light beam made incident on the object to be imaged at the determined incident angle.05-05-2011
20110102741LIGHT IRRADIATION APPARATUS, ADAPTIVE OPTICS APPARATUS, AND IMAGING APPARATUS INCLUDING THE SAME - A light irradiation apparatus includes an optical power acquiring unit configured to acquire an optical power of light emitted by a light source and with which an object is irradiated; an optical power adjusting unit configured to adjust the optical power of light emitted by the light source to a predetermined optical power in accordance with an acquisition result obtained by the optical power acquiring unit; and an irradiation unit configured to irradiate the object with the light that is adjusted by the optical power adjusting unit.05-05-2011
20120300174OPHTHALMOLOGIC APPARATUS AND IMAGE CLASSIFICATION METHOD - An illumination light is projected onto a tear film lipid layer on a cornea of an eye to be examined, and the reflected light is received and the tear film lipid layer is imaged. The image of the tear film lipid layer that has been captured is processed, and the initial spread speed H′ of the tear film lipid layer at the time the eyelid has been opened is measured. The image of the tear film lipid layer that has been captured is processed, and the time until the tear film lipid layer is broken up after the eyelid has been opened and a dark area T appears is measured. The appearance time of the dark area is plotted on the Y-axis and the initial spread speed H′(0) of the tear film lipid layer is plotted on the X-axis, and the type of dry eye is classified. In such a configuration, since the type of dry eye can be classified and determined, diagnosis and treatment in accordance with the type of dry eye are made possible.11-29-2012
20120249957OPHTHALMIC PHOTOGRAPHING APPARATUS - An ophthalmic photographing apparatus includes: a first photographing unit for photographing an examinee's eye to obtain a first photography image of the examinee's eye; a second photographing unit for photographing the examinee's eye in a wider area than a photography view angle of the first photographing unit; a photography area setting unit configured to move a photography area, which is photographed by the first photographing unit, relative to the examinee's eye which is photographed by the second photographing unit; a photography position information acquisition unit configured to acquire photography position information of the first photography image of the examinee's eye from the photography area setting unit; and a storage unit configured to store the first photography image and the photography position information acquired by the photography position information acquisition unit in association with each other.10-04-2012
20120249958CORNEAL ENDOTHELIAL CELL PHOTOGRAPHING APPARATUS - A corneal endothelial cell photographing apparatus comprises: a main unit including: an illumination optical system for illuminating illumination light from an illumination light source toward a cornea of an examinee's eye from an oblique direction; an imaging optical system for obtaining a corneal endothelial cell image by receiving, through an imaging element, reflection light from the cornea including corneal endothelial cells; and a fixation optical system including a plurality of fixation targets and for guiding a fixation direction of the examinee's eye; a drive unit to relatively move the main unit with respect to the examinee's eye; a serial photographing unit to obtain endothelial images in series at different photographing positions in previously set up-and-down and right-and-left directions; and a monitor to display the obtained endothelial image.10-04-2012
20120249952CONTROL APPARATUS, OPHTHALMOLOGIC APPARATUS, SYSTEM, CONTROL METHOD, AND PROGRAM - A control apparatus includes a display control unit configured to cause a display unit to display an image of an anterior segment of a subject's eye captured by an imaging unit, and a control unit configured to output, based on an operation signal output from a mouse according to an operation on the mouse when an index indicating an arbitrary position on the display unit is located on the image of the anterior segment, a control signal indicating a change amount in an optical axis direction of the imaging unit of a focal position of the image of the anterior segment relative to the imaging unit.10-04-2012
20120249955Retro-illumination and eye front surface feature registration for corneal topography and ocular wavefront system - A method of obtaining a retro-illumination image using the beacon from an ocular wavefront path and the camera for the corneal topography path of the combined system. A digital image of the retro-illuminated view of the IOL, iris pattern and sclera is obtained. An interactive display of the retro-illuminated image is presented to the user to allow them to identify the orientation marks on the IOL. These marks identify the orientation of the IOL and an overlay line can be used to display this orientation. In addition, a 360 degree overlay can be used to enhance the display of this orientation line.10-04-2012
20120249953OPHTHALMIC IMAGING APPARATUS, METHOD OF CONTROLLING OPHTHALMIC IMAGING APPARATUS AND STORAGE MEDIUM - An ophthalmic imaging apparatus which obtains a tomographic image of an eye to be examined based on light obtained by combining return light from the eye irradiated with measurement light with reference light corresponding to the measurement light, the apparatus comprising: a scanning unit configured to scan the measurement light on the eye; and a control unit configured to control the number of times of scanning by the scanning unit in accordance with a scanning position of the scanning unit on the eye.10-04-2012
20100245766SYSTEMS AND METHODS FOR PHOTOACOUSTIC OPTHALMOSCOPY - Various embodiments of the present invention include systems and methods for multimodal functional imaging based upon photoacoustic and laser optical scanning microscopy. In particular, at least one embodiment of the present invention utilizes a contact lens in combination with an ultrasound transducer for purposes of acquiring photoacoustic microscopy data. Traditionally divergent imaging modalities such as confocal scanning laser ophthalmoscopy and photoacoustic microscopy are combined within a single laser system. Functional imaging of biological samples can be utilized for various medical and biological purposes.09-30-2010
20100245764APPARATUS AND METHOD FOR OPTICAL MEASUREMENTS - Disclosed are an apparatus and method for separately detecting and measuring specularly reflected light and diffusely reflected light following illumination of an eye by light. The apparatus and method of the present invention facilitates substantial separation of the diffusely reflected light from light specularly reflected from the eye after passing through one or more elements of the eye, for example, the cornea, lens, retinal vasculature, the nerve fibre layer and/or the photoreceptors. The collection of these separate streams of independent optical signals to appropriate detection systems provides specificity and accuracy in determination of optical properties of one or more elements of the eye.09-30-2010
20120127428OPHTHALMIC PHOTOGRAPHING APPARATUS - An ophthalmic photographing apparatus of the present invention is capable of favorably assisting an examiner when a three-dimensional tomographic image is obtained. The ophthalmic photographing apparatus includes an optical scanner for two-dimensionally scanning light from a measurement light source, a detector for detecting the state of interference of measurement light from the measurement light source and reference light, an optical coherence tomography device for obtaining a three-dimensional tomographic image of an examinee's eye, an observation optical system for obtaining a front observation image of the eye as a moving image, an arithmetic analyzing unit for specifying an abnormal portion by analyzing through image processing the three-dimensional tomographic image, and a display control unit for extracting a tomographic image corresponding to the abnormal portion from the three-dimensional image, and controls a monitor to display at the same time the extracted tomographic image and the moving image of the front observation image.05-24-2012
20120162601FUNDUS CAMERA - A fundus camera includes an illumination optical system, an observation photographic optical system, a photographic diaphragm unit located in a position conjugate with the subject's eye in the observation photographic optical system, and an imaging unit disposed in the observation photographic optical system. The photographic diaphragm unit includes a first photographic diaphragm fixed during capturing of a still image and a second photographic diaphragm movable during capturing of a moving image. The fundus camera further includes a diaphragm driving unit configured to move the second photographic diaphragm on a plane orthogonal to an optical axis, an image recording unit configured to capture, with the first photographic diaphragm, a still image based on an output of the imaging unit and, with the second photographic diaphragm, a moving image based on an output of the imaging unit, and a display unit configured to display an image captured by the imaging unit.06-28-2012
201201274273D RETINAL DISRUPTIONS DETECTION USING OPTICAL COHERENCE TOMOGRAPHY - System and method for 05-24-2012
20100208201ENHANCED OPTICAL COHERENCE TOMOGRAPHY FOR ANATOMICAL MAPPING - A system, method and apparatus for anatomical mapping utilizing optical coherence tomography. In the present invention, 3-dimensional fundus intensity imagery can be acquired from a scanning of light back-reflected from an eye. The scanning can include spectral domain scanning, as an example. A fundus intensity image can be acquired in real-time. The 3-dimensional data set can be reduced to generate an anatomical mapping, such as an edema mapping and a thickness mapping. Optionally, a partial fundus intensity image can be produced from the scanning of the eye to generate an en face view of the retinal structure of the eye without first requiring a full segmentation of the 3-D data set. Advantageously, the system, method and apparatus of the present invention can provide quantitative three-dimensional information about the spatial location and extent of macular edema and other pathologies. This three-dimensional information can be used to determine the need for treatment, monitor the effectiveness of treatment and identify the return of fluid that may signal the need for re-treatment.08-19-2010
20100208202FUNDUS CAMERA - A fundus camera includes an illumination unit configured to illuminate a fundus of a subject's eye with a visible light from a visible light source, an imaging unit which has sensitivity in a visible wavelength range and is configured to receive a reflected light from the fundus to capture a fundus image, and a light amount balance changing unit configured to independently change at least a part of a light amount emitted from LED elements wherein the visible light source includes a plurality of the LED elements discretely arranged into a ring shape.08-19-2010
20100208203Compact ocular wavefront system with long working distance - A compact ocular wavefront system with a long working distance is disclosed for use in reducing the overall optical path length for an ocular wavefront system while providing performance similar to that of a traditional system. The system incorporates a compact three-lens subsystem to relay the wavefront from the eye's pupil to a wavefront sensor. The wavefront sensor is placed in close proximity to a digital camera's sensor array. The combination of the compact relay system and the location of the wavefront sensor allows the total track of a traditional ocular wavefront system to be reduced significantly.08-19-2010
20120133888 SCANNING OPHTHALMOSCOPES - The invention provides a scanning ophthalmoscope for scanning the retina of an eye and method of operating the same. The scanning ophthalmoscope comprises a source of collimated light, a first scanning element and a second scanning element. The source of collimated light and the first and second scanning elements combine to provide a two-dimensional collimated light scan from an apparent point source. The scanning ophthalmoscope further comprises a scan transfer device, wherein the scan transfer device is a reflective element and has two foci and the apparent point source is provided at a first focus of the scan transfer device and an eye is accommodated at a second focus of the scan transfer device, and wherein the scan transfer device transfers the two-dimensional collimated light scan from the apparent point source into the eye. The first and second scanning elements have operating parameters which are selected to control the direction of the two-dimensional collimated light scan from the apparent point source and/or adjust the dimensions of the two-dimensional collimated light scan from the apparent point source.05-31-2012
20120133889FIXATION CONTROL DEVICE AND METHOD FOR CONTROLLING THE FIXATION OF AN EYE - With some ophthalmological instruments, the patient to be examined or treated needs to gaze in a defined direction. Accordingly, the operator needs the most objective possible information as to whether the patient actually fixates the fixating target or when this may no longer be the case. The invention makes it possible to monitor fixation economically with a short reaction time and with high accuracy. Monitoring of the fixation of an eye is accomplished in an economical manner with a short reaction time and high accuracy through spectroscopic detection of fixation, particularly by identifying a reflection at the fovea or foveola based on different reflectance factors compared to the rest of the retina.05-31-2012
20120133887TEAR FILM AND TEAR MENISCUS DYNAMICS WITH TIME-LAPSE OPTICAL COHERENCE TOMOGRAPHY - In accordance with some embodiments of the present inventions, an imaging device includes an OCT imager, a trigger, a computer coupled to the OCT imager and the trigger, the computer executing instructions for: generating a first signal at the trigger to initiate closing of an object at a first time, generating a second signal at the trigger to initiate opening of an object at a second time following the first time, acquiring a plurality of OCT data scans with the OCT imager at different time intervals following the second time, identifying an area of interest in the plurality of OCT data scans, identifying layers in the area of interest, calculating thickness measurements of the layers from the OCT data scans, and displaying the thickness measurements.05-31-2012
20090059169Eye refractive power measurement apparatus - An eye refractive power measurement apparatus capable of performing analysis of an examinee's eye for irregular astigmatism with accuracy comprises a measurement optical system comprising an optical system projecting measurement light onto an examinee's fundus and an optical system photo-receiving the measurement light as a ring or substantially-ring fundus reflection image, a light deflection member placed in the optical systems, a unit rotating the deflection member, a memory storing the photo-received image as a measurement image, an analysis unit performing analysis of the measurement image, and an output unit, wherein the analysis unit detects the number of images or a width of an image in each meridian direction in the measurement image and judges the eye has irregular astigmatism when a portion in which the number of the images is two or a portion in which the width of the image goes beyond a predetermined level is detected.03-05-2009
20120169995METHOD AND DEVICE FOR PRODUCING HIGH-QUALITY FUNDUS IMAGES - To produce a color fundus image, the eye is illuminated with light pulses of defined wavelengths. Light reflected is recorded by a sensor and transmitted to a control unit. At least three monochromatic images at very short temporal intervals and a dark image of the fundus are recorded. After activation of a spectral-selective optical element, a color intensity distribution of the fundus is recorded by the sensor at white illumination. The monochromatic images are combined by the control unit to obtain a resulting color fundus image, wherein the color intensity distribution is used for the correction of color composition and the dark image is used for taking into account the noise of the sensor. The solution permits monitoring, documenting and/or diagnosing of the fundus and can also be executed with ophthalmological systems based on the principle of optical coherence and/or confocal imaging.07-05-2012
20090103048METHOD AND SYSTEM FOR PUPIL DETECTION - A method for detecting a location of a pupil. The method involves projecting a modulated light at a first phase towards a face from a lighting source located near an optical axis of a modulated light camera, concurrently projecting a modulated light at a second phase towards the face from a lighting source located off the optical axis of the modulated light camera, where the first phase and the second phase are different; receiving a light reflected from the face; and generating an image from the light reflected from the face, where the image indicates the location of the pupil.04-23-2009
20120075584METHODS FOR MAPPING TISSUE WITH OPTICAL COHERENCE TOMOGRAPHY DATA - Various methods are disclosed for mapping optical coherence tomography (OCT) data to facilitate review and diagnosis. In one aspect, high resolution 2D line scans are obtained along with lower density 3D cube scans and displayed in a manner to provide context to the clinician. In another aspect, OCT data is analyzed to provide information about non-uniformities of the tissue. Binary image maps of maps useful for determining tautness of membranes are also disclosed.03-29-2012
20120075583PHOTOMETRY DEVICE - In a photometry device, photopic vision luminance Lp is measured by a first luminance measuring unit including a first light filter 03-29-2012
20120236261FUNDUS CAMERA - A fundus camera that obtains focus evaluation values by scanning, in which a focusing lens moves a predetermined distance according to a photographing mode before the focusing lens starts scanning for obtaining focus evaluation values.09-20-2012
20120236260TEAR FILM MEASUREMENT - A method for measuring the relative thickness of the lipid layer component of the precorneal tear film on the surface of an eye. Light is directed to the lipid layer of a patient's eye with an illuminator that is a broad spectrum light source covering the visible region and is a lambertion light emitter such that the light source is specularly reflected from the lipid layer and undergoes constructive and destructive interference in the lipid layer. The specularly reflected light is collected and focused using a collector such that the interference patterns on the tear film lipid layer are observable. The collector also produces an output signal representative of the specularly reflected light which is suitable for further analysis.09-20-2012
20120236259AUTOMATED DETERMINATION OF ARTERIOVENOUS RATIO IN IMAGES OF BLOOD VESSELS - The methods and systems provided can automatically determine an Arteriolar-to-Venular diameter Ratio, AVR, in blood vessels, such as retinal blood vessels and other blood vessels in vertebrates. The AVR is an important predictor of increases in the risk for stroke, cerebral atrophy, cognitive decline, and myocardial infarct.09-20-2012
20120257163Video Infrared Ophthalmoscope - An ophthalmoscope includes a wearable headset. The wearable headset has a light source, a beam splitter reflecting infrared radiation from the light source to an eye, a camera collecting radiation reflected by the eye through the beam splitter, an analog to digital convertor receiving a raw signal from the camera based on the collected radiation, the analog to digital convertor converting the raw signal to a digital signal; a black and white to color converter converting the digital signal into a color signal, a streaming video converter processing the color signal into a video signal, and a pair of video monitors displaying an image of the eye based on the video signal. The wearable headset also has a video transmitter, the video transmitter transmitting the video signal to a computer over a network, the computer extracting a plurality of images from the video signal.10-11-2012
20120257165OPTICAL COHERENCE TOMOGRAPHIC IMAGING METHOD AND OPTICAL COHERENCE TOMOGRAPHIC IMAGING APPARATUS - An optical tomographic diagnostic apparatus is characterized by executing a first step (S10-11-2012
20120257164METHOD AND DEVICE FOR RETINAL IMAGE ANALYSIS - The present application provides methods and devices for diagnosing and/or predicting the presence, progression and/or treatment effect of a disease characterized by retinal pathological changes in a subject.10-11-2012
20120327365OPHTHALMOLOGIC APPARATUS AND CONTROL METHOD FOR THE SAME - A conventional method in which an amount of movement of an eye ball between acquired images is calculated by extracting characteristic images of the fundus and comparing the images is excellent in precision, reproducibility and stability, but requires time for image processing. The aforementioned problem can be solved by using a tracking apparatus including: a fundus imaging apparatus for acquiring a fundus image; and a measurement unit that extracts a characteristic image of a fundus image from a first fundus image captured by the fundus imaging apparatus, detects the characteristic image from a second fundus image that is different from the fundus image, and measures a position change in the fundus images from coordinates of the extracted characteristic image and the detected characteristic image in the respective fundus images, wherein a region in which the characteristic image is detected from the second fundus image is determined so that a region searched for the characteristic image from the first image includes the extracted characteristic image and is broader than a range of movement of the characteristic image resulting from movements of the eye ball within measurement time.12-27-2012
20120081665FUNDUS CAMERA - A fundus camera includes an optical path splitting unit arranged between a focusing unit and an imaging unit. The splitting unit has characteristics adapted to reflect light of a visible light region and to transmit near-infrared light. The splitting unit retreats from an optical path when a still fundus image is photographed. A quick-return mirror having such characteristics is used as the splitting unit. When near-infrared illumination light having a wavelength of about 850 nm is used, such light can be incident upon the imaging unit without loss of the amount of light. Visible light output from an internal fixation target is projected onto a subject's eye. A cornea diaphragm and a crystalline lens diaphragm are used for observing a fundus with invisible light. Each of the cornea diaphragm and crystalline lens diaphragm can be changed to another one having a different diameter.04-05-2012
20120081664OPTHALMOLOGY PHOTOGRAPHING APPARATUS - A fundus camera includes an illumination unit to illuminate an ocular fundus of a subject's eye, an autofluorescent exciter filter insertable into and retractable from an illumination optical path of the illumination unit, an observation and photographing unit to receive reflection light from the ocular fundus illuminated by the illumination unit and form an ocular fundus image, an autofluorescent barrier filter insertable into and retractable from an observation and photographing optical path, an image capturing unit to capture an ocular fundus image, and a calculation unit to calculate image data, wherein the calculation unit converts the ocular fundus image which is illuminated using the autofluorescent exciter filter and captured by a color image capturing unit as a color image, in a state that no autofluorescent barrier filter is inserted into the observation and photographing unit, into a monochromatic image from specific color data of each of the pixels.04-05-2012
20120229763OPTICAL TOMOGRAPHIC IMAGE PHOTOGRAPHING APPARATUS AND CONTROL METHOD THEREFOR - An optical tomographic image photographing apparatus having a tracking function, capable of appropriately controlling a scan in acquiring a tomographic image. The optical tomographic image photographing apparatus according to the invention includes a fundus image photographing section which photographs fundus images of an eye to be inspected and a tomographic image photographing section which photographs tomographic images of the eye to be inspected. A control method of the optical tomographic image photographing apparatus includes the steps of: calculating coordinate values matching a plurality of previously-acquired characteristic areas in the fundus image; calculating a spatial variation between the plurality of coordinate values; and controlling the scan of a measuring light by the tomographic image photographing section for acquiring the tomographic images on the basis of a result of the calculation.09-13-2012
20120229762PHOTOGRAPHING APPARATUS AND IMAGE PROCESSING METHOD - To provide appropriate position information to a tomographic image of fundus in an ophthalmology apparatus for acquiring fundus tomographic images and fundus images. A calculation unit that calculates movement information of an eyeball from fundus images and a matching unit that matches the calculated movement information with fundus tomographic images are provided to the ophthalmology apparatus including a fundus image pickup apparatus to acquire an amount of movement of an eye to be inspected, wherein the calculation unit calculates movement information for the fundus tomographic image having no movement information to be further matched from the movement information of tomographic images before and after the fundus tomographic image so that movement information to be matched with the fundus tomographic image originally having no movement information is calculated from the movement information of tomographic images before and after the fundus tomographic image.09-13-2012
20120229761PHOTOGRAPHING APPARATUS AND PHOTOGRAPHING METHOD - The present invention provides an ophthalmological apparatus capable of displaying a plurality of fundus tomographic images. A photographing apparatus includes a fundus imaging unit adapted to capture a fundus image of a subject's eye, a scanning unit adapted to scan a desired position of the fundus of the subject's eye to capture tomographic images of the subject's eye, a measuring unit adapted to measure movement amounts of the fundus of the subject's eye by performing pattern matching between a plurality of feature points in the acquired fundus image and feature points in another fundus image newly acquired at a different time, and a control unit adapted to control the scanning unit based on the measured movement amounts.09-13-2012
20120229766METHOD AND DEVICE FOR DETECTING DEPOSITS IN THE EYE - A method and devices for detecting deposits, in particular amyloid plaques, in the eye, in particular in the human eye. The subject is an optical method for detecting deposits, in particular β-amyloid, in the retina, which is locally resolved and wherein the local resolution is better than the layer thickness of individual layers of the retina. The invention includes a device for optically detecting β-amyloid in the retina, which generates a locally resolved image of the retina and wherein the local resolution is better than the layer thickness of individual layers of the retina.09-13-2012
20110122365Eye Surgery System and Methods of Preparing and Performing an Eye Surgery - A method for carrying out eye surgery comprises a comparison of images recorded before surgery with images recorded during surgery in order to generate a marker which represents a target orientation of an intraocular lens or a difference between a current orientation and the target orientation of the intraocular lens. An eye surgery system respectively comprises an imaging system which is used during a surgery and has a camera, and a diagnostic system which is used before surgery and which also has a camera. The imaging system used during surgery comprises an image processing device in order to perform a computation based on the recorded images, and in order to determine a respective orientation value, from which a representation of a marker representing the target orientation of the intraocular lens is obtained.05-26-2011
20100328607OPHTHALMOLOGICAL MEASURING SYSTEM AND METHOD FOR DETERMINING THE BIOMETRIC DATA OF AN EYE - An ophthalmological measuring system for obtaining biometric data of an eye with a view to the pre-operative determination of a replacement lens or supplementary lens or refractive operations. The invention includes a combination of a measuring instrument based on ultrasound, an optical measuring instrument, and an evaluation unit, measuring values of the optical measuring instrument and/or of the measuring instrument based on ultrasound being used by the evaluation unit for determining the biometric data of an eye. Furthermore, keratometric and/or pachymetric measurements can also be carried out. The combination of different measuring systems enables a complete examination or diagnosis of a patient on a measuring table, so that the patient does not need to be moved, or have to come back at a later date for more measurements.12-30-2010
20100328606NON-CONTACT OPTICAL COHERENCE TOMOGRAPHY IMAGING OF THE CENTRAL AND PERIPHERAL RETINA - A system for imaging of the central and peripheral retina, includes one of a concave mirror and an elliptical mirror having an axis and being configured to rotate around the axis and a scanner configured to using a spectral domain optical coherence tomography system to obtain a non-contact wide angle OCT-image of a large portion of the central and peripheral retina.12-30-2010
20120320337SYSTEMS AND METHODS FOR IMPLANTING AND EXAMINING INTRAOCULAR LENS - Systems and methods for designing and implanting a customized intra-ocular lens (IOL) is disclosed. In one embodiment, a system includes an eye analysis module that analyzes a patient's eye and generates biometric information relating to the eye. The system also includes eye modeling and optimization modules to generate an optimized IOL model based upon the biometric information and other inputted parameters representative of patient preferences. The system further includes a manufacturing module configured manufacture the customized IOL based on the optimized IOL model. In addition, the system can include an intra-operative real time analyzer configured to measure and display topography and aberrometry information related to a patient's eye for assisting in proper implantation of the IOL.12-20-2012
20120268715Pupilometer With Pupil Irregularity Detection, Pupil Tracking, And Pupil Response Detection Capability, Glaucoma Screening Capability, Intracranial Pressure Detection Capability, And Ocular Aberration Measurement Capability - A system for use during a medical procedure. The system includes a pupilometer for obtaining data descriptive of one or more pupilary characteristics from an eye of a subject, and means for delivering a noxious stimulus. The means for delivering a noxious stimulus is in communication with the pupilometer and is activated by the pupilometer thereby sending a noxious stimulus to an anatomical structure of the patient.10-25-2012
20120268714Non-Invasive Ocular Analyte Sensing System - A noninvasive method and apparatus for determining analyte concentration (e.g., glucose) in a subject that includes measuring light refraction from at least a portion one or more structures. One example of such structure is the subject's iris.10-25-2012
20120320338OPHTHALMOLOGIC IMAGING APPARATUS - Provided is an ophthalmologic imaging apparatus required by the position adjustment of a fixation lamp to be turned on, by a simple operation which includes: a scanning unit; an irradiation unit for irradiating an eye to be inspected with a measuring beam through the scanning unit; a fixation lamp; a lighting position changing unit for changing a lighting position of the fixation lamp; an optical path length difference changing unit for changing an optical path length difference between the measuring beam and a reference beam corresponding to the measuring beam based on the lighting position of the fixation lamp which is changed by the lighting position changing unit; and an acquisition unit for acquiring a tomographic image of the eye to be inspected based on a beam obtained by superimposing, on the reference beam, a return beam from the eye to be inspected, which is irradiated with the measuring beam.12-20-2012
20110234976RETINAL IMAGING SYSTEM FOR THE MOUSE OR RAT OR OTHER SMALL ANIMALS - A small animal imaging system comprising a base element and a camera coupled to the base element, the camera being sized to image the eye of a small animal. A light-emitting diode is also included coupled to the base element. An OCT imaging apparatus is also included coupled to the base element. An X-Y scanner is also included coupled to the base element in communication with the OCT imaging apparatus.09-29-2011
20110234975OPTICAL TOMOGRAPHIC IMAGING APPARATUS AND IMAGING METHOD FOR OPTICAL TOMOGRAPHIC IMAGE - Provided are an optical tomographic imaging apparatus and an imaging method for an optical tomographic image, in which high measurement sensitivity and high lateral resolution of a specific portion of an object may be obtained with a simple structure. The optical tomographic imaging apparatus of a Fourier-domain method includes: an optical path length adjustment portion for adjusting an optical path length of the reference beam; a position adjustment portion for adjusting a position of a focusing device for focusing the measuring beam onto the object; and a drive control portion for controlling drive of the optical path length adjustment portion and the position adjustment portion. The drive control portion is controlled based on information from a layer constituting a cross section from cross section information that is obtained in advance for a portion to be imaged of the object.09-29-2011
20100231857Pupilometer For Pupil Center Drift and Pupil Size Measurements at Differing Viewing Distances - The present invention generally provides improved devices, systems, and methods for measuring characteristics of at least one eye, and particularly for measuring the physiological changes in eyes under different viewing conditions. An exemplary embodiment provides a pupilometer which measures any changes in location of a pupil center with changes in viewing distances. As the eye often moves significantly during viewing, the pupil center location will often be measured relative to a convenient reference of the eye such as an outer iris boundary. Pupil size may also be recorded, and the measurements from both eyes of a patient may be taken simultaneously. Exemplary embodiments may be configured so as to allow the vergence angle between the eyes to vary with differing viewing distances, regardless of whether one or both eyes are being measured.09-16-2010
20120092617EYEGROUND IMAGING APPARATUS AND CONTROL METHOD THEREFOR - A tomographic-image pickup unit is controlled so as to capture a tomographic image in response to a signal input from a signal input unit. Then, a display unit is controlled so as to display the captured. tomographic image. An eyeground-image pickup unit is controlled so as to capture a two-dimensional image in response to a signal input from the signal input unit while the tomographic image. is displayed on the display unit. Therewith, the user can more easily perform imaging, and the time load on the subject is reduced.04-19-2012
20120092616NON-CONTACT OPTICAL COHERENCE TOMOGRAPHY IMAGING OF THE CENTRAL AND PERIPHERAL RETINA - A system includes a mirror having an axis extending through a central portion thereof, and a portion of the mirror being configured to repeatedly oscillate between a first position and a second position around the axis, so as to record a field of up to 200 degrees of a portion of the central and peripheral retina, a first scanner configured to use a spectral domain optical coherence tomography system to obtain a non-contact wide angle optical coherence tomography-image of the portion of the central and peripheral retina, and a second scanner configured to obtain an image of the retina, wherein the mirror is configured to oscillate so as to move the focal point of the mirror from one side of a pupil to another side, thereby permitting scanning light inside the eye to cover a predetermined peripheral field, thus creating a two dimensional or three dimensional image of the field.04-19-2012
20120092615Systems and Methods for Surgical Microscope and Optical Coherence Tomography (OCT) Imaging - A surgical microscope assembly includes a microscope main objective and microscope imaging optics. The microscope main objective and microscope imaging optics define a viewing beam path that passes from a sample through the microscope main objective and the microscope imaging optics. The assembly includes an optical coherence tomography (OCT) unit having an illumination beam and a collection beam and a beamsplitter between the microscope main objective and the microscope imaging optics. The beamsplitter is configured to direct a portion of light from the microscope main objective to the microscope imaging optics and to direct another portion of light from the microscope main objective to the OCT unit collection beam. The beamsplitter is further configured to direct an illumination beam from the OCT unit to the microscope main objective and to the sample. A beam forming unit is between the OCT unit and the beamsplitter. The beam forming unit is configured to form the illumination beam of the OCT unit so as to generally correspond to a size of the microscope main objective.04-19-2012
20120287399SYSTEM AND METHOD FOR THE NON-CONTACTING MEASUREMENTS OF THE EYE - Combined equipment for non-contacting determination of axial length (AL), anterior chamber depth (VKT) and corneal curvature (HHK) of the eye, are also important for the selection of the intraocular lens IOL to be implanted, particularly the selection of an intraocular lens (IOL) to be implanted, preferably with fixation of the eye by means of a fixating lamp and/or illumination through light sources grouped eccentrically about the observation axis.11-15-2012
20120287400ABERRATION CORRECTION METHOD, PHOTOGRAPHING METHOD AND PHOTOGRAPHING APPARATUS - A fundus image photographing apparatus with adaptive optics generally corrects an aberration by feedback control using a wave front sensor and a wave front correction device. The reduction in the time required to correct the aberration to a high-resolution photographing level is demanded. Aberration correction information of last photographing is stored for each subject, and a stored correction value is used to correct the aberration to reduce the time before the completion of the aberration correction. If there is no stored information, a correction value for a preset reference aberration amount is used.11-15-2012
20120287401INTEGRATION AND FUSION OF DATA FROM DIAGNOSTIC MEASUREMENTS FOR GLAUCOMA DETECTION AND PROGRESSION ANALYSIS - Systems and methods for improving the reliability of glaucoma diagnosis and progression analysis are described. The measurements made from one type of diagnostic device are adjusted based on another measurement using a priori knowledge of the relationship between the two measurements including the relationship between structure and function, knowledge of disease progression, and knowledge of instrument performance at specific locations in the eye. The adjusted or fused measurement values can be displayed to the clinician, compared to normative data, or used as input in a machine learning classifier to enhance the diagnostic and progression analysis of the disease.11-15-2012
20120287402SLIT LAMP ADAPTOR FOR PORTABLE CAMERA - An adaptor for a slit lamp holds a portable camera, such as a cell phone, in place relative to a slit lamp. The adaptor is adjustable to accommodate virtually any size of portable camera through the use of screws, washers, spacers, and other adjustment mechanisms. The adaptor can be formed in two parts: an ocular engaging portion and a camera support. The two portions can be coupled together to position the camera relative to the slit lamp to photograph a patient's eye.11-15-2012
20100214536OPHTHALMOLOGIC PHOTOGRAPHING APPARATUS - An ophthalmologic photographing apparatus includes a photographing mode selection unit configured to select one of a plurality of photographing modes respectively corresponding to different photographing conditions, an imaging unit configured to capture an image of a subject's eye, an original image data generation unit configured to process electronic data of the image captured by the imaging unit according to the selected photographing mode and to generate a plurality of original image data differing from one another in spatial resolution and gradation resolution, and an image processing unit configured to generate a electronic image for diagnosis, which has similar gradation resolution to that of each of the plurality of original image data generated by the original image data generation unit.08-26-2010
20120140179TOMOGRAPHY APPARATUS, CONTROL METHOD FOR THE SAME, PROGRAM, AND STORAGE MEDIUM - In a tomography apparatus that captures tomograms of a fundus through optical coherence tomography, when a measurement area in which tomograms are to be captured is set on the fundus, tomograms are acquired with use of the optical coherence tomography at a plurality of predetermined positions in the set measurement area, the number of predetermined positions being smaller than in the case of imaging for diagnosis. The acquired tomograms are then displayed inline on the screen of a display apparatus in real-time.06-07-2012
20120140178System and Method for Assessing Risk of Glaucoma Onset - A system and method for predicting the onset of glaucoma uses a Finite Element Model (FEM) to obtain a response profile of the Optical Nerve Head (ONH) inside an eye. To do this, the FEM is programmed with data from first and second images of the ONH that are respectively taken at the beginning and the end of an imposed pressure differential (e.g. over a range of about 8 kPa). The FEM is then subjected to a sequence of pressure increments and the resultant profile is compared with empirical data to predict an onset of glaucoma.06-07-2012
20120140177IMAGING CONTROL APPARATUS FOR CAPTURING TOMOGRAM OF FUNDUS, IMAGING APPARATUS, IMAGING CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM - An imaging control apparatus which controls an imaging unit configured to capture a tomogram of the fundus of a target eye includes an acquisition unit configured to acquire information representing the direction of a fundus movement of the target eye, an analysis unit configured to analyze the direction of the fundus movement based on the information acquired by the acquisition unit, and a control unit configured to control the imaging unit so as to align the direction of imaging of the imaging unit with the direction of the fundus movement based on the analysis result of the analysis unit.06-07-2012
20120140175METHOD OF MOTION CORRECTION IN OPTICAL COHERENCE TOMOGRAPHY IMAGING - An image data set acquired by an optical coherence tomography (OCT) system is corrected for effects due to motion of the sample. A first set of A-scans is acquired within a time short enough to avoid any significant motion of the sample. A second more extensive set of A-scans is acquired over an overlapping region on the sample. A-scans from the first set are matched with A-scans from the second set. Comparison of the OCT scanner coordinates that produced each A-scan in a matching pair reveals the displacement of the sample between acquisition of the first and second A-scans in the pair. Estimates of the sample displacement are used to correct the transverse and longitudinal coordinates of the A-scans in the second set, to form a motion-corrected OCT data set.06-07-2012
20120140174SCANNING AND PROCESSING USING OPTICAL COHERENCE TOMOGRAPHY - In accordance with some embodiments, a method of eye examination includes acquiring OCT data with a scan pattern centered on an eye cornea that includes n radial scans repeated r times, c circular scans repeated r times, and n* raster scans where the scan pattern is repeated m times, where each scan includes a A-scans, and where n is an integer that is 0 or greater, r is an integer that is 1 or greater, c is an integer that is 0 or greater, n* is an integer that is 0 or greater, m is an integer that is 1 or greater, and a is an integer greater than 1, the values of n, r, c, n*, and m being chosen to provide OCT data for a target measurement, and processing the OCT data to obtain the target measurement.06-07-2012
20120140173Intraoperative Imaging System and Apparatus - Systems, methods and apparatuses for an intraocular imaging system are disclosed comprising an optical coherence tomography (OCT) system. The OCT system has an imaging range that may enable substantial portions of an eye or even a whole eye to be imaged. The OCT system may be coupled to an operation microscope, such that, for example, a surgeon can visualize ocular structures like the human crystalline lens and other ocular structures such as the cornea and/or vitreous while surgical instruments are in the field of view.06-07-2012
20120140172FUNDUS PHOTOGRAPHING APPARATUS - An ophthalmic photographing apparatus includes an optical coherence tomography device provided to imaging a tomographic image of an examinee's eye. The device includes: an irradiation position changing unit for changing an irradiation position of measurement light emitted from a light source on the eye to change an imaging position on the eye; and a detector for detecting a interference state between the measurement light reflected from the eye and reference light, and a displacement detecting unit provided to detect displacement in continuity between a tomographic image having already been obtained in a first imaging region and a tomographic image to be obtained in a second imaging region different from the first imaging region.06-07-2012
20120140171OPHTHALMOLOGIC APPARATUS AND BLOOD FLOW VELOCITY CALCULATION METHOD - An ophthalmologic apparatus includes an irradiation unit irradiating a subject's eye with a measuring beam emitted by a scanning unit that performs scanning, a first acquisition unit acquiring a first image of the subject's eye based on the returned measuring beam from the subject's eye when the scanning unit performs scanning in a first sub scanning direction, a second acquisition unit acquiring a second image of the subject's eye based on the returned measuring beam travelling from the subject's eye, at timing different from that for the first image, while the scanning unit performs scanning in a second sub scanning direction opposite to the first sub scanning direction, and a calculation unit calculating blood flow velocity of the subject's eye based on a blood cell position in the first image, a blood cell position in the second image, and the sub scanning direction of the scanning unit.06-07-2012
20120140170OPHTHALMIC APPARATUS, OPHTHALMIC SYSTEM, PROCESSING APPARATUS, AND BLOOD FLOW VELOCITY CALCULATION METHOD - An ophthalmic apparatus includes an irradiation unit configured to irradiate a subject's eye with a measurement beam scanned by a scanning unit, an acquisition unit configured to acquire an image of the subject's eye based on a return beam returned from the subject's eye, of the measurement beam irradiated by the irradiation unit, and a calculation unit configured to calculate a blood flow velocity of the subject's eye based on a displacement between a position of a blood cell in a first image obtained by the acquisition unit and a position of the blood cell in a second image obtained by the acquisition unit at a different time from the first image and on a difference between time when an image of the blood cell in the first image is obtained and time when an image of the blood cell in the second image is obtained.06-07-2012
20130010261FUNDUS CAMERA - The present invention refers to a fundus camera comprising: 01-10-2013
20130010262IMAGING APPARATUS AND IMAGING METHOD - An imaging apparatus capturing optical coherence tomographic images of a test object based on a plurality of combined light beams that are obtained by combining a plurality of return light beams from the test object irradiated with a plurality of measurement light beams and a plurality of reference light beams respectively corresponding to the plurality of measurement light beams, the apparatus including: an instruction unit configured to give instructions about amounts of changes in respective optical path length differences between the plurality of reference beams and the plurality of return light beams; and a change unit configured to change the optical path length differences based on the amounts of changes instructed by the instruction unit.01-10-2013
20130016319RETINAL IMAGING SYSTEMS WITH IMPROVED RESOLUTIONAANM Vohnsen; BrianAACI The Grange StillorganAACO IEAAGP Vohnsen; Brian The Grange Stillorgan IEAANM Milan; Diego Jose RativaAACI Kings Court SmithfieldAACO IEAAGP Milan; Diego Jose Rativa Kings Court Smithfield IE - A scanning ophthalmoscope focuses coherent light to a target area in which a subject's eye is located. One or more scanning stages direct the light in a scanning pattern within the target area, and an imaging detector receives a reflected light signal returned following retinal reflection in the subject's eye. Adaptive optics compensate for aberrations in the wavefront. The light is provided as an annular beam at a plane which is conjugate with the pupil of a subject whose eye is located in the target area, whereby the annular beam is focused from an annulus at the pupil of the eye to a spot at the fundus of the eye. The spot size resulting from using an annular beam in this way is significantly reduced providing enhanced resolution.01-17-2013
20110157551DEVICE AND METHOD FOR OPTICALLY MEASURING THE TRANSMISSION AND DIFFUSION OF OCULAR MEDIA - An optical device for measuring the transmission and diffusion of a tissue of the front segment of an eye, includes: a light source; an optical collimation system for directing the collimated light beam towards a tissue of the front segment of an eye to be characterized; an optical mire placed on the optical path between the optical collimation system and the tissue; an optical imaging system capable of receiving a light beam transmitted by the mire and the tissue and capable of forming an image of the mire on an image detector; and an image processing system capable of calculating a modulation transfer function for the tissue from an image of the mire through the ocular medium. The optical mire includes a set of alternately light and dark angular sectors radially distributed from a central point. Different image processing methods for extracting a function representing the transmission and diffusion characteristics of the tissue are described.06-30-2011
20110157550Adaptive Photoscreening System - Briefly described, one embodiment of the system, among others, can be implemented as follows. The system includes a computer control system and an environmental light source that is controlled by the computer control system such that an amount of light provided by the environmental light source is adjusted by the computer control so that ocular parameters of an examinee are within a targeted range. Further, the system includes an irradiation system that provides multiple angle and axial eccentricity illuminations and selective wavelength irradiation based upon instructions received from the computer control system, wherein the computer control system instructs the irradiation system to provide different irradiation characteristics for different screening procedures. Also, the system includes an image detection system that captures ocular images of the examinee, wherein the computer control system analyzes captured images and provides results of in-situ analysis. The system can further include a device, for example a lens or lens system, positioned in the system to be between the eye of the examinee and the image detection system during photoscreening for shifting the neutralization of the system to a desired region for a specific population of examinees. Other systems and methods are also provided.06-30-2011
20130021575OPTICAL TOMOGRAPHIC IMAGING APPARATUS - Provided is an optical tomographic imaging apparatus which enables simplification and cost reduction without reducing accuracy when moving part of an object is moved in an optical axis direction of measuring beam. The apparatus using return beam of measuring beam reflected or scattered by an object and reference beam reflected by a reference mirror to image the tomographic image, includes: a reflecting position controlling device for controlling the reflecting position of the reference mirror; a detecting device for a position in a moving part having an optical system for observing the moving part illuminated by an optical system imaging the same on an area sensor based on the Scheimpflug principle and detects position information that the moving part is moved in the direction; and a device for driving the reflecting position controlling device to control the optical path length of the reference beam based on the position information.01-24-2013
20130021576OCULAR OPTICAL SYSTEM - Provided is an ocular optical system, which permits a measuring beam scanned by two scanning units disposed close to each other to enter an anterior ocular segment of an eye to be inspected and to irradiate a fundus. The ocular optical system includes an optical unit which is disposed at a position of an intermediate image, which is optically conjugate to the fundus, and has a surface having different optical powers corresponding to scan directions of the two scanning units.01-24-2013
20080231803COMPACT OCULAR FUNDUS CAMERA - Embodiments of a compact camera for imaging the ocular fundus are described. In some embodiments, the camera is a light, handheld camera that acquires a plurality of images of the fundus. The camera can be configured to acquire images manually or automatically. A movable imaging lens or movable image detector provides the images in a series to obtain an image with optimal focus. The camera can acquire a series of images and allow selection of an optimal image either manually, or automatically. In some embodiments, the camera is part of an imaging system that includes a base station. The base station exchanges data with the camera and can receive image data generated by the image detector of the camera. The base can further include networking capability, such that image data can be distributed over a network or to other communication or computing devices.09-25-2008
20080225230WAVEFRONT ABERRATION COMPENSATING APPARATUS AND OPHTHALMOLOGIC UNIT HAVING THE SAME - A wavefront aberration compensating apparatus, which includes: a deformable mirror having electrodes and a thin-film mirror; an optical system provided with the deformable mirror and including an object; a wavefront sensor which measures a wavefront aberration of a light flux; and a controller configured to: calculate a first voltage value applied to each of the electrodes, on the basis of differences between application points on the thin-film mirror and target points both corresponding to the electrodes respectively; determine a superposition amplitude value of each expansion mode according to a polynomial of wavefront aberration, and calculate a second voltage value applied to each of the electrodes by using voltage templates previously stored, such that the wavefront aberration obtained by the wavefront sensor becomes a desired aberration; determine the voltage value applied to each of the electrodes, by mainly using the second voltage value in an initial stage of compensation of the configuration of the thin-film mirror and by mainly using the first voltage value in an end stage of the compensation; and repeat the compensation on the basis of the determined voltage value, such that the wavefront aberration of the light flux is suppressed.09-18-2008
20080225229WAVEFRONT ABERRATION COMPENSATING APPARATUS AND OPTHALMOLOGIC UNIT HAVING THE SAME - A wavefront aberration compensating apparatus includes: a deformable mirror which compensates a wavefront aberration of a light flux entered, the deformable mirror including a plurality of electrodes, and a thin-film mirror which changes a configuration thereof in accordance with a voltage value applied to each of the electrodes; an optical system provided with the deformable mirror, and including an object subjected to aberration compensation; a wavefront sensor which receives the light flux traveled through the object and the deformable mirror, and which measures the wavefront aberration of the light flux; and a controller configured to calculate the voltage value applied to each of the electrodes, on the basis of differences, from a signal outputted from the wavefront sensor, between application points on the thin-film mirror and target points both corresponding to the electrodes, respectively, and to repeat compensation of the configuration of the thin-film mirror of the deformable mirror on the basis of the calculated voltage value, such that the wavefront aberration of the light flux measured by the wavefront sensor is suppressed.09-18-2008
20080225228WAVEFRONT ABERRATION COMPENSATING APPARATUS AND OPHTHALMOLOGIC UNIT HAVING THE SAME - A wavefront aberration compensating apparatus, including: a deformable mirror which compensates a wavefront aberration of a light flux and includes electrodes, and a thin-film mirror which changes a configuration thereof in accordance with a voltage value applied to each of the electrodes; an optical system provided with the deformable mirror and including an object subjected to aberration compensation; a wavefront sensor which measures the wavefront aberration of the light flux; a memory which stores therein a voltage template provided for each expansion mode according to a polynomial of wavefront aberration, as a voltage alignment data for the electrodes which induces the corresponding expansion mode; and a controller configured to determine a superposition amplitude value of each of the expansion modes and calculate the voltage value applied to each of the electrodes by using the voltage templates stored such that the wavefront aberration obtained by the wavefront sensor becomes a desired aberration, and to repeat compensation of the configuration of the thin-film mirror on the basis of the calculated voltage value, such that the wavefront aberration of the light flux measured by the wavefront sensor is suppressed.09-18-2008
20080225227Apparatus and Method for Correcting for Aberrations in a Lens System - A method and apparatus for compensating for aberrations or distortions of an optical system such as an eye of a patient which is to be imaged by a camera is disclosed. Light passing through the optical system is detected by a charge coupled device (09-18-2008
20130141696METHOD AND DEVICE FOR OCULAR ALIGNMENT AND COUPLING OF OCULAR STRUCTURES - Embodiments provide method and systems for determining or measuring objective eye alignment in an external-coordinate system so as to define a reference axis. Additional embodiments provide a method and system of aligning an objectively determined reference axis of the eye in a selected relationship to a therapeutic axis of an ophthalmic therapeutic apparatus and/or a diagnostic axis of an ophthalmic diagnostic apparatus. Embodiments provide a method and system for planning an ophthalmic treatment procedure based on objective eye alignment in an external-coordinate system so as to define a reference axis of an eye to be treated. The reference axis may be used to position a therapeutic energy component, for example, an orthovoltage X-ray treatment device, e.g., positioned to provide treatment to tissue on the retina, such as the macula.06-06-2013
20130176531SYSTEM AND METHOD FOR FAST RETINAL IMAGING - An optical system and measurement method for imaging three-dimensional objects with low light scatter comprising at least one source of radiation; a radiation projection means for creating a set of foci through a volume of an object; and a means for imaging the returned light from the set of foci on at least one camera, wherein the imaging of the volume of the object is at a different angle from the projection, allowing for detection of the returned light on separate camera pixels. The measurement method further comprises projecting a longitudinal grid of elongated foci through the volume of an object; imaging returned light from the object at a different angle on at least one camera, so as to avoid overlapping the elongated images; and analyzing the imaged, returned light to yield depth information of the object at a multiplicity of points.07-11-2013
20130176532DATA ACQUISITION METHODS FOR REDUCED MOTION ARTIFACTS AND APPLICATIONS IN OCT ANGIOGRAPHY - Systems and methods for reducing the effects of motion on functional optical coherence tomography (OCT) imaging are described. Embodiments including post-processing and motion tracking are presented. A preferred embodiment in which functional OCT data is collected and analyzed for motion as a multiple scan unit is described. An extension of the invention to the collection of large field of view or montaged functional OCT data sets is also presented.07-11-2013
20080218694High-resolution Adaptive Optics Scanning Laser Ophthalmoscope with Multiple Deformable Mirrors - An adaptive optics scanning laser opthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.09-11-2008
20120249959APPARATUS AND METHOD FOR NON-INVASIVE DIABETIC RETINOPATHY DETECTION AND MONITORING - A fundus camera using infrared light sources, which included an imaging optical path and an optical path for focusing and positioning and two optical paths share a common set of retina objective lens, and a computer-assisted method for retinal vessel segmentation in general and diabetic retinopathy (DR) image segmentation in particular. The method is primarily based on Multiscale Production of the Matched Filter (MPMF) scheme, which together the fundus camera, is useful for non-invasive diabetic retinopathy detection and monitoring.10-04-2012
20120249956SYSTEMS AND METHODS FOR EFFICIENTLY OBTAINING MEASUREMENTS OF THE HUMAN EYE USING TRACKING - Systems and methods for efficiently obtaining optical coherence tomography (OCT) measurement data with reduced effects of motion are presented. One embodiment involves determining the amount of motion present during the collection of an OCT data set based on images of the eye collected at the same time as the OCT data, and recollecting select portions of the OCT data set when the amount of eye motion is determined to exceed a predetermined threshold. Another embodiment includes enabling or disabling a tracking feature based on the quality of the images available for tracking. Another embodiment includes reducing the effect of motion in the axial direction based on a comparison to a model of the eye constructed from OCT data. The method can also be used to reduce the presence of mirror image artifacts in an OCT image.10-04-2012
20120249954OPTICAL COHERENCE TOMOGRAPHY APPARATUS, METHOD OF CONTROLLING OPTICAL COHERENCE TOMOGRAPHY APPARATUS, STORAGE MEDIUM, AND OPHTHALMIC SYSTEM - An optical coherence tomography apparatus includes: an acquisition unit configured to split light from a light source into measurement light and reference light, and acquire a tomogram of an eye to be examined based on interfering light obtained by interference between the reference light and return light from the eye; a positional relationship changing unit configured to change a positional relationship between the eye and an optical system including an optical path of the measurement light; and a control unit configured to control the changing unit based on a difference in slant information of the eye between two tomograms acquired by the acquisition unit.10-04-2012
20130114042Ocular Imaging - A system for performing quasi-elastic light scattering and fluorescent ligand scanning on a subject's eye includes a light source configured to transmit light toward the subject's eye, a lens configured to focus light sent from the source and scattered by the subject's eye, a measurement reflector disposed to receive at least a portion of the focused light and configured to reflect a first portion of the received light, a camera configured and disposed to receive the first portion of the received light and configured to provide indicia of an image corresponding to the first portion of the received light, and a processor coupled to the camera and configured to analyze intensities of light in the image to determine a location of a reference point corresponding to an interface of a portion of the eye.05-09-2013
20130114041SYSTEMS, METHODS, AND COMPUTER-READABLE MEDIA FOR DETECTING AND PREDICTING A PROGRESSION OF RETINAL PATHOLOGIES - One aspect of the invention provides a method for training a classification algorithm to detect a retinal pathology. The method includes: for a plurality of pseudo two-dimensional data sets of one-dimensional data points, each pseudo two-dimensional data point representing RNFL thickness values for a subject and corresponding index values for the data points: performing fractal analysis on the data set to calculate a plurality of fractal dimensions and calculating a plurality of slopes between each fractal dimension; combining the plurality of slopes for subjects labeled as pathologic into a pathologic data set; combining the plurality of slopes for subjects labeled as healthy into a healthy data set; and applying a linear discriminant function the pathologic data set and the healthy data set; thereby training a classification algorithm to detect the retinal pathology.05-09-2013
20130201449OPTICAL COHERENCE TOMOGRAPHY DEVICE, METHOD, AND SYSTEM - In accordance with one aspect of the present invention, an optical coherence tomography instrument comprises an eyepiece for receiving at least one eye of a user is provided; a light source that outputs light that is directed through the eyepiece into the user's eye; an interferometer configured to produce optical interference using light reflected from the user's eye; an optical detector disposed so as to detect said optical interference; and electronics coupled to the detector. The electronics can be configured to perform a risk assessment analysis based on optical coherence tomography measurements obtained using the interferometer. An output device can be electrically coupled to the electronics, and may be configured to output the risk assessment to the user through the output device. The optical coherence tomography instrument can be self-administered, and the eyepiece can be a monocular system or a binocular system.08-08-2013
20130093996Scanning Ophthalmoscopes - The present invention provides a scanning ophthalmoscope for scanning the retina of an eye and a method of scanning the retina of an eye. The ophthalmoscope (04-18-2013
20130093997OPTICAL COHERENCE TOMOGRAPHY AND METHOD THEREOF - The image sensing apparatus comprises a first scan unit for scanning light from an OCT light source and light from an SLO light source in a first direction of a test object, and a second scan unit for scanning the light from the OCT light source in a second direction different from the first direction of the test object. The image sensing apparatus acquires tomographic images of the test object along the first direction when the first scan unit scans the light from the OCT light source, and acquires cross-over images of the test object corresponding to the tomographic images when the first scan unit scans the light from the SLO light source.04-18-2013
20130093995OPHTHALMIC APPARATUS, OPHTHALMIC IMAGE PROCESSING METHOD, AND RECORDING MEDIUM - An ophthalmic apparatus includes a first acquisition unit configured to acquire a first tomogram of a subject's eye, a three-dimensional image acquisition unit configured to acquire a three-dimensional image of the subject's eye after the first tomogram is acquired, a second acquisition unit configured to acquire a second tomogram of the subject's eye corresponding to the first tomogram after the three-dimensional image is acquired, and a correction unit configured to correct a gradation of the second tomogram based on a gradation of the first tomogram.04-18-2013
20130100405WAVEFRONT SENSORLESS ADAPTIVE CORRECTION OF THE WAVE ABERRATION FOR AN EYE - Embodiments of the invention generally provide apparatuses and methods utilized in optics, and more specifically to apparatuses and methods for adaptive optics correction and imaging. Real-time wavefront sensorless adaptive optics correction and imaging is used with the living human eye to produce optical quality rivaling that of wavefront sensor based control in the similar systems. Using an optimization algorithm that is based on an image quality metric, the apparatus and method optimize the optical quality in ocular image frames acquired with an adaptive optics system.04-25-2013
20130100404AUTOMATED DETECTION OF UVEITIS USING OPTICAL COHERENCE TOMOGRAPHY - Systems and methods for automatically detecting, classifying and quantifying clumps indicative of inflammation in the eye using optical coherence tomography images are described. Clump detection relies on both intensity and geometric thresholding. Applications of the invention include improved diagnosis, classification and monitoring of inflammatory disease.04-25-2013
20110267583OPTICAL IMAGE MEASURING DEVICE AND CONTROL METHOD THEREOF - A low-coherence light is split into a signal light and a reference light. The optical path length of the reference light is switched to optical path lengths that correspond to a first depth zone and a second depth zone. When forming a tomographic image of the second depth zone, in an optical system that condenses the signal light to the first depth zone when a measured object and an objective lens are located at a predetermined working distance, while being positioned at the working distance, a depth zone switching lens that transitions the depth at which the signal light is condensed to the second depth zone is inserted.11-03-2011
20110267580CHARACTERISTIC IMAGE EXTRACTION METHOD AND OPHTHALMOLOGIC APPARATUS - Provided is an ophthalmologic apparatus for detecting an eye movement from movements of a plurality of characteristic points within a fundus image. It is determined whether or not the plurality of characteristic points are included in a new fundus image when a position of a fixation index is changed, based on a relationship between a displacement amount of the fixation index and positions of the characteristic points within a fundus plane. If it is determined that at least one of the plurality of characteristic points is not included in the new fundus image, new characteristic points are extracted from a limited range within a new fundus plane image. Accordingly, the characteristic points can be efficiently reacquired for eye movement detection performed when an imaging target region of an eye to be inspected is changed by the fixation index.11-03-2011
20130169932ADAPTIVE OPTICS APPARATUS THAT CORRECTS ABERRATION OF EXAMINATION OBJECT AND IMAGE TAKING APPARATUS INCLUDING ADAPTIVE OPTICS APPARATUS - An adaptive optics apparatus includes a first light modulating unit configured to perform modulation in a polarization direction of one of two polarized light components in light emitted from a light source, a changing unit configured to rotate the light modulated by the first light modulating unit by 90 degrees, a second light modulating unit configured to modulate the light changed by the changing unit in the polarization direction, and an irradiating unit configured to irradiate a measurement object with the light modulated by the second light modulating unit.07-04-2013
20130169931AUTO-FOCUSING DIAGNOSTIC EQUIPMENT - A diagnostic equipment having an auto-focusing function comprising a image detection device, a first scanning device, a mobile optical lens assembly, a focusing detection device and a first splitter assembly is provided. The image detection device comprises a first light source and a first photo detector. The first light source provides a first incident light and the first incident light incident to an object and becomes a first signal light. The first photo detector is for receiving the first signal light. The first scanning device is for adjusting a path of the first incident light and to scan the object. The mobile optical lens assembly has a lens and a mobile platform. The first splitter assembly is for transmitting the first and the second signal light to the first and the second photo detector, respectively.07-04-2013
20130128226OPHTHALMOLOGIC IMAGING DEVICE - An ophthalmologic imaging device includes an optical illumination system having a cornea aperture, an iris aperture, and a lens aperture and an split mark projection system for focusing on the fundus of the subject eye. A light source is controlled by a controller to emit light for being able to obtain at least two consecutive fundus images. An inner aperture image corresponding to the lens aperture is projected on the posterior surface of the lens. The controller controls the lens aperture so that for obtaining a second fundus image, the inner aperture image is projected at a position shifted relative to the optical axis of an optical observatory or imaging system from a position at which the aperture image is projected for obtaining a first fundus image.05-23-2013
20130128225OPHTHALMOLOGY - The invention provides an apparatus and method for illuminating, imaging and treating the retina of an eye. The apparatus (05-23-2013
20130128224Ophthalmology - The invention provides an apparatus and method for illuminating, imaging and treating the retina of an eye. The apparatus (05-23-2013
20130128223DIGITAL-BASED MEDICAL DEVICES - A hand held ophthalmic examination instrument uses an illumination system that provides amber colored light from a first light source and white light from a second light source to illuminate a target of interest. An imaging system in cooperation with the illumination system captures digital images of the target of interest as illuminated by the light sources.05-23-2013
20130135584EXAMINATION INSTRUMENT - Light from an exit pupil (05-30-2013
20110273668OPTICAL TOMOGRAPHIC IMAGING APPARATUS AND IMAGING METHOD FOR AN OPTICAL TOMOGRAPHIC IMAGE - Provided is an optical tomographic imaging apparatus capable of, when imaging a tomographic image of an object, monitoring an incident state represented by an incident position and an incident angle of a measuring beam group with respect to the object, causing the measuring beam group to form an image at a predetermined position of the object, and obtaining the tomographic image at high speed. The optical tomographic imaging apparatus is featured in that one of multiple beams emitted from a light source to be split and multiple beams emitted from multiple light sources are split into a measuring beam group and a reference beam group, and the optical tomographic imaging apparatus includes a monitoring device for obtaining a monitoring image of the object, thereby capable of monitoring an incident state represented by an incident position and an incident angle of the measuring beam group with respect to the object.11-10-2011
20110273667ENHANCED OPTICAL COHERENCE TOMOGRAPHY FOR ANATOMICAL MAPPING - A system, method and apparatus for anatomical mapping utilizing optical coherence tomography. In the present invention, 3-dimensional fundus intensity imagery can be acquired from a scanning of light back-reflected from an eye. The scanning can include spectral domain scanning, as an example. A fundus intensity image can be acquired in real-time. The 3-dimensional data set can be reduced to generate an anatomical mapping, such as an edema mapping and a thickness mapping. Optionally, a partial fundus intensity image can be produced from the scanning of the eye to generate an en face view of the retinal structure of the eye without first requiring a full segmentation of the 3-D data set. Advantageously, the system, method and apparatus of the present invention can provide quantitative three-dimensional information about the spatial location and extent of macular edema and other pathologies. This three-dimensional information can be used to determine the need for treatment, monitor the effectiveness of treatment and identify the return of fluid that may signal the need for re-treatment.11-10-2011
20130148080SURGICAL MICROSCOPE SYSTEM FOR OPHTHALMOLOGY, AND ASSOCIATED DETECTION UNIT - A surgical microscope system (06-13-2013
20130148081VISUAL FIELD EXAMINATION SYSTEM - A stimulus is presented at a predetermined position of a visual field coordinate system set on a visual field dome (06-13-2013
20100290005Circular Profile Mapping and Display of Retinal Parameters - Certain diseases of the retina are diagnosed by circular profile analysis of retinal parameters, such as thickness. Retinal thickness around a user-defined circle on the retina is measured by various ophthalmological techniques and ±mapped to a circular profile map. The circular profile map does not use segmentation of measurement data into arbitrary arcs, and thickness is mapped to a quasi-continuous range of display bands. The circular profile map is superimposed on a fundus image, or other two-dimensional image of the retina, allowing association of the circular profile map with the presence of blood vessels and other anatomical features. The simultaneous display of a series of circular profile maps generated from sets of measurement data taken at different times permits the ready visualization of the progression of retinal abnormalities.11-18-2010
20100296056FUNDUS PHOTOGRAPHING APPARATUS - A fundus photographing apparatus includes an imaging unit configured to capture a fundus image of an subject's eye via a photographing optical system, an imaging magnification output unit configured to output imaging magnification of the photographing optical system, a fixation target presenting unit configured to make the subject's eye to look firmly at a fixation target, a fixation target presenting position detection unit configured to detect a presenting position of the fixation target presenting unit, a matching area determination unit configured to determine an area for matching a fundus image based on the imaging magnification and the presenting position of the fixation target, and a correlation value calculation unit configured to calculate a correlation value between a plurality of fundus images captured by the imaging unit based on the matching area determined by the matching area determination unit.11-25-2010
20120274902METHOD AND A DEVICE FOR AUTOMATICALLY MEASURING AT LEAST ONE REFRACTIVE CHARACTERISTIC OF BOTH EYES OF AN INDIVIDUAL - A method for automatically measuring at least one refractive characteristic of both eyes of a person, includes: a) adjusting at least one position of a person's head, in a reference system connected to an image capture apparatus set up to convert each captured image into a signal representing the image; b) illuminating both eyes with at least one light source, whose position is known within the reference system; c) measuring at least one sight direction parameter connected to the sight direction of the person within a reference system connected to the head thereof; d) capturing at least one retinal reflection image from the light source onto the retina of both eyes; f) determining, from the captured image in Step d), the refractive characteristic of the eyes; and h) storing the sight direction parameter in relation to the predetermined refractive characteristic during the image capture in Step c).11-01-2012
20120274901OPHTHALMOSCOPE FOR OBSERVING AN EYE - An ophthalmoscope for observing an eye comprises a converging first lens system for generating a real intermediate image of a region in the eye in an intermediate image plane as well as an observation apparatus having an imaging optics for imaging the real intermediate image in an imaging plane in the observation apparatus and for imaging an aperture of the observation apparatus in a pupil of the eye. Between the first lens system and the imaging optics of the observation apparatus, a diverging second lens system is provided for enlarging a working distance between the first lens system and the pupil and for enlarging a field angle.11-01-2012
20120274900ULTRA WIDE-FIELD OPTICAL COHERENCE TOMOGRAPHY - Systems and methods for expanding the field-of-view of ophthalmic scanning devices are presented. An ophthalmic scanning device is designed such that the pivot point of the scanning optics is maintained at a fixed location in the pupil while the scanning optics are rotated about the eye to obtain imaging data over an increased field-of-view than can be achieved by the scanning optics alone. The rotation can be achieved using a singular rotational motion of the scanning optics about a rotational axes coincident with the scanning pivot point or can be achieved using a combination of rotational motion with a second motion either rotational or translational to maintain the scanning pivot point at the fixed location. Embodiments related to optical coherence tomography and scanning laser ophthalmoscopy are described.11-01-2012
20120274899PORTABLE FUNDUS OBSERVATION APPARATUS - A portable fundus observation apparatus includes a body, at least one optical detecting module, and a data processing unit. The body includes a fixing part for fixing the body onto the ocular region of a subject. The optical detecting module includes a light source, an optical lens module, and an image capturing unit. The optical detecting module is separably fixed onto the body. The data processing unit electrically couples with the optical detecting module and processes the fundus image captured by the image capturing unit.11-01-2012
20120274898SYSTEMS AND METHODS FOR AUTOMATED CLASSIFICATION OF ABNORMALITIES IN OPTICAL COHERENCE TOMOGRAPHY IMAGES OF THE EYE - Systems and methods for classifying abnormalities within optical coherence tomography images of the eye are presented. One embodiment of the present invention is the classification of pigment epithelial detachments (PEDs) based on characteristics of their internal reflectivity, size and shape. The classification can be based on selected subsets of the data located within or surrounding the abnormalities. Training data can be used to generate the classification scheme and the classification can be weighted to highlight specific classes of particular clinical interest.11-01-2012
20120274897SYSTEMS AND METHODS FOR IMPROVED OPHTHALMIC IMAGING - Systems and methods for improving ophthalmic imaging by correlating the location of a measurement on the pupil of the eye with a quality of the measurement and further controlling subsequent measurements based on the quality are presented. Aspects of the invention include obtaining optical coherence tomography (OCT) measurements through cataracts or other media opacities, obtaining B-scans with minimized tilt, and automated OCT data acquisition of select structures in the eye. Embodiments of the invention directed towards imaging tissues with angle dependent layer contrast and mapping the size and location of cataracts in the eye are also described.11-01-2012
20100309431FUNDUS CAMERA - A fundus camera includes an optical path splitting unit arranged between a focusing unit and an imaging unit. The splitting unit has characteristics adapted to reflect light of a visible light region and to transmit near-infrared light. The splitting unit retreats from an optical path when a still fundus image is photographed. A quick-return mirror having such characteristics is used as the splitting unit. When near-infrared illumination light having a wavelength of about 850 nm is used, such light can be incident upon the imaging unit without loss of the amount of light. Visible light output from an internal fixation target is projected onto a subject's eye. A cornea diaphragm and a crystalline lens diaphragm are used for observing a fundus with invisible light. Each of the cornea diaphragm and crystalline lens diaphragm can be changed to another one having a different diameter.12-09-2010
20130182218PHOTOGRAPHING APPARATUS AND PHOTOGRAPHING METHOD - In order to place a coherence gate as close as possible to a object, provided is a tomographic image photographing apparatus including: a moving unit for moving the coherence gate corresponding to a difference between an optical path length of measuring light and an optical path length of reference light; and a control unit for controlling the moving unit so as to further move the coherence gate from a second position based on first combined light and second combined light of the object, which are respectively acquired at a first position of the coherence gate and the second position at which the coherence gate is placed after being moved from the first position to the object side by the moving unit.07-18-2013
20130182219OPHTHALMOLOGIC IMAGE PICKUP APPARATUS AND CONTROL METHOD THEREFOR - Provided is an ophthalmologic image pickup apparatus for measuring movement of an eye to be inspected at higher speed than a conventional one. The ophthalmologic image pickup apparatus for acquiring an image of an eye to be inspected based on return light from the eye to be inspected which is irradiated with measuring light via a scanning unit, includes: a position acquiring unit for acquiring a plurality of positions of characteristic portions in the image of the eye to be inspected based on the return light from the eye to be inspected corresponding respectively to a plurality of scanning lines of the scanning unit in the image of the eye to be inspected; and a measuring unit for measuring movement of the eye to be inspected based on the plurality of positions.07-18-2013
20130182221APPARATUS FOR INSPECTING THE FUNDUS OF THE EYE - The present invention relates to an apparatus for inspecting the fundus of the eye, comprising:—lighting means configured to project a light beam for illuminating the retina of one eye; and—an optical path comprising one or more lenses configured to optically conjugate the retina with a receiving surface of acquisition means configured to acquire one or more images of the retina; and—a beam splitter device configured to divert a part of the light, which is reflected by the retina and directed towards said acquisition means, towards first photosensitive elements; and—a control unit operatively associated with said first photosensitive elements, said acquisition means and said lighting means, said control unit deactivating said lighting means when the light energy received from said first photosensitive elements overcomes a predefined threshold value; and—first LED devices configured to project light targets onto the retina, which the patient must stare to keep the eye still during the examination. The mentioned first photosensitive elements and first LED devices are arranged together in a single integrated optical unit configured to receive light from the retina and to project light onto the retina through said beam splitter device.07-18-2013
20100315590Ophthalmic photographing apparatus - To provide an ophthalmic photographing apparatus capable of checking a measurement (photographing) position of a tomographic (cross-sectional) image of a fundus on a front (surface) image of the fundus.12-16-2010
20130182217FUNDUS CAMERA - An ophthalmic imaging apparatus is provided. The apparatus includes a fundus illumination system, the fundus illumination system includes a spatially interlaced light source array of one or more wavelength bands and a focus index illumination light source where the focus index illumination light source is mounted on a non-moving part of the ophthalmic imaging apparatus, a focus index optical assembly, and a fundus imaging system.07-18-2013
20120281184METHOD FOR MONITORING IMAGE OF EXAMINEE'S EYE AND MONITORING SYSTEM - A method for monitoring an image of an examinee's eye includes: obtaining first image data including a first examinee's eye image captured by a first ophthalmologic photographing apparatus, and additional information including type information on the first examinee's eye image; obtaining second image data including a second examinee's eye image captured by a second ophthalmologic photographing apparatus different from the first ophthalmologic photographing apparatus, and additional information including type information on the second examinee's eye image; recognizing the first examinee's eye image and the second examinee's eye image as the same type of images, based on the additional information; and correcting a difference between the first examinee's eye image and the second examinee's eye image.11-08-2012
20130182220IMAGE FORMING METHOD AND IMAGE FORMING APPARATUS - Provided is an image forming method of forming an object image by combining a plurality of tomographic images acquired by using an optical coherence tomographic method, including: acquiring, within a first predetermined period, a first three-dimensional image of a first area including a characteristic portion of the object and first tomographic images as a part of the plurality of tomographic images of a second area different from the first area; acquiring, within a second predetermined period, a second three-dimensional image of the first area and second tomographic images as a part of the plurality of tomographic images of the second area, the second tomographic images being different from the first tomographic images; and aligning positions of the first tomographic images and the second tomographic images by using, as references, the characteristic portion included in the first three-dimensional image and the characteristic portion included in the second three-dimensional image.07-18-2013
20110279775Apparatus and Method for Diagnosing Disease Involving Optic Nerve - An apparatus and a method for diagnosing optic neuropathic diseases including glaucoma, are provided. The apparatus for diagnosing optical neuropathic diseases measures a thickness of a retinal nerve fiber layer (RNFL) using methods such as optical coherence tomography (OCT) and scanning laser polarimetry, and includes a scanning unit which scans along an optic nerve margin in the proximity of an optic nerve head, a pattern analyzing unit which analyzes a pattern of the RNFL scanned by the scanning unit, and a disease determining unit which determines a presence of the disease based on the pattern of the RNFL analyzed by the pattern analyzing unit.11-17-2011
20110299034OPTICAL COHERENCE TOMOGRAPHY- BASED OPHTHALMIC TESTING METHODS, DEVICES AND SYSTEMS - In accordance with one aspect of the present invention, an optical coherence tomography-based ophthalmic testing center system includes an optical coherence tomography instrument comprising an eyepiece for receiving at least one eye of a user or subject; a light source that outputs light that is directed through the eyepiece into the user's or subject's eye, an interferometer configured to produce optical interference using light reflected from the user's/subject's eye, an optical detector disposed so as to detect said optical interference; and a processing unit coupled to the detector. The ophthalmic testing center system can be configured to perform a multitude of self-administered functional and/or structural ophthalmic tests and output the test data12-08-2011
20130188129OPHTHALMOLOGIC APPARATUS, CONTROL METHOD THEREFORE, AND RECORDING MEDIUM STORING METHOD - Provided is an ophthalmologic apparatus including: a first control unit which controls a scanning unit for scanning an eye to be inspected with light emitted from a light source; a memory unit which stores control information for causing the first control unit to control the scanning unit to sequentially perform a first scan and a second scan after the first scan; and a second control unit which decreases a light amount irradiating the eye to be inspected after finishing the first scan and before starting the second scan, which are performed based on the control information.07-25-2013
20130188130OPHTHALMOLOGIC APPARATUS, CONTROL METHOD THEREFORE, AND RECORDING MEDIUM STORING METHOD - Provided is an ophthalmologic apparatus that can realize alignment with high stability when performing continuous automatic alignment. The ophthalmologic apparatus includes: an acquiring portion which acquires specific information of an eye to be inspected; a moving unit which moves the acquiring portion relatively to the eye to be inspected; a first positioning unit which performs positioning between the acquiring portion and the eye to be inspected by controlling the moving unit to move the acquiring portion relatively to the eye to be inspected within a first moving area; and a restriction unit which restricts a moving area of the acquiring portion by the moving unit to a second moving area smaller than the first moving area by controlling the moving unit, when a position relationship between the acquiring portion and the eye to be inspected satisfies a first condition by the first positioning unit.07-25-2013
20130188132STANDARDIZED DISPLAY OF OPTICAL COHERENCE TOMOGRAPHY IMAGING DATA - Systems and methods for efficiently displaying large volumes of medical imaging data using pre-defined dynamic displays to illustrate key anatomic features are described. In a preferred embodiment, one or more pulse files comprising en face images of sub sections of the volume are displayed sequentially to the user in a playback loop. These displays can aid in navigation of data for review and future data acquisition. Additional images generated from the data can be displayed next to or overlaid on the pulse files.07-25-2013
20130188133IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - An image processing apparatus includes a planar image acquisition unit configured to acquire a planar image of a subject, a tomographic image acquisition unit configured to acquire a tomographic image indicating a polarization state of the subject, and a display control unit configured to cause a display unit to display the planar image and the tomographic image indicating the polarization state side by side.07-25-2013
20130188134IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - An image processing apparatus includes a tomographic image acquisition unit configured to acquire a polarization-sensitive tomographic image of a subject by using a polarization adjustment member which adjusts a polarization state of a measuring beam, and a display control unit configured to cause a display unit to display the polarization-sensitive tomographic image and a display form indicating a state of the polarization adjustment member.07-25-2013
20130188135IMAGE PROCESSING APPARATUS AND IMAGE PROCESSING METHOD - An image processing apparatus includes a tomographic image acquisition unit configured to acquire a polarization-sensitive tomographic image of a subject, and an extraction unit configured to extract, from the polarization-sensitive tomographic image of the subject, a region in which a polarization state is scrambled.07-25-2013
20130188139IMAGING APPARATUS, IMAGING METHOD, AND STORAGE MEDIUM - An imaging apparatus includes a tomographic image acquisition unit configured to acquire a tomographic image indicating a polarization state of a subject based on beams of different polarizations obtained by splitting a beam into which a return beam from the subject irradiated with a measuring beam and a reference beam corresponding to the measuring beam have been combined, and a control unit configured to control an optical path length difference between the return beam and the reference beam according to positional information of a predetermined region in the tomographic image indicating the polarization state of the subject.07-25-2013
20130188140SYSTEMS AND METHODS FOR ENHANCED ACCURACY IN OCT IMAGING OF THE CORNEA - Systems and methods for enhanced accuracy in optical coherence tomography imaging of the cornea are presented, including approaches for more accurate corneal surface modeling, pachymetry maps, keratometric values, and corneal power. These methods involve new scan patterns, an eye tracking mechanism for transverse motion feedback, and advanced motion correction algorithms. In one embodiment the methods comprise acquiring a first sparse set of data, using that data to create a corneal surface model, and then using the model to register a second set of denser data acquisition. This second set of data is used to create a more accurate, motion-corrected model of the cornea, from which pachymetry maps, keratometric values, and corneal power information can be generated. In addition, methods are presented for determining simulated keratometry values from optical coherence tomography data, and for better tracking and registration by using both rotation about three axes and the corneal apex.07-25-2013
20130188131SYSTEM AND METHOD FOR CHARACTERISING THE OPTICAL QUALITY AND THE PSEUDO-ACCOMMODATION RANGE OF MULTIFOCAL MEANS USED FOR CORRECTING VISUAL DEFECTS - It is applied to bifocal, multifocal or progressive intraocular lenses or contact lenses, multifocal corneal ablation or other multifocal configurations, comprising means for projecting the image of a point light source on the retina of a patient and an assembly for directly recording the light reflected in said retina after the double passage of the light through the ocular means, integrating a first focus corrector device inserted in the path of the light beam guided towards the retina and a second focus correction device inserted in the light beam reflected from the retina, to be guided towards the mentioned recording means, each of said focus correction devices having independent control means for controlling the operation thereof.07-25-2013
20120019778EYE REFRACTIVE POWER MEASUREMENT APPARATUS - An eye refractive power measurement apparatus includes: a measuring optical system for projecting measurement light onto a fundus of an examinee's eye, and causing a two-dimensional imaging device to capture the measurement light to be reflected from the fundus as a plurality of target pattern images at different distances from a measurement optical axis; a light deflecting member arranged at a position out of a conjugate position with a pupil of the examinee's eye on an optical path of the measuring optical system; a rotor for rotating the light deflecting member about an optical axis of the measuring optical system to allow a plurality of pattern light beams to be eccentrically rotated on the pupil; and a calculator for measuring an eye refractive power of the examinee's eye based on a target pattern image to be captured by the two-dimensional imaging device.01-26-2012
20120019777System and Method for Visualizing Objects - A method of visualizing objects using an optical system including an OCT system configured to obtain OCT data from voxels within a first volume having a first lateral extent includes obtaining position data indicative of a position of a predetermined portion of a movable instrument relative to the optical system and determining a first set of voxels from the voxels of the first volume based on the determined position such that at least 80% of the first set of voxels is located within a second volume having a second lateral extent with a size at least half the size of the first lateral extent. The method also includes obtaining OCT data of the first set of voxels, visualizing a representation of the OCT data of the first set of voxels, and repeating the steps of the method at a first repetition rate higher than 5 times per second.01-26-2012
20130194541OPTICAL TOMOGRAPHIC APPARATUS AND CONTROL METHOD THEREOF - In order to change a size of an imaging area of a tomographic image of an object to be inspected easily, provided is an optical tomographic apparatus for acquiring a tomographic image of an object to be inspected, the optical tomographic apparatus including a control unit for controlling a measuring light path length changing unit to change an optical path length of measuring light in a case where the size of the imaging area of the tomographic image is changed, and for controlling a movable unit for moving a focus lens for focusing the measuring light to the object to be inspected along an optical path to move the focus lens in association with the change in the optical path length of the measuring light.08-01-2013
20130194542OPTICAL TOMOGRAPHIC APPARATUS AND CONTROL METHOD THEREOF - In order to change a size of an imaging area of a tomographic image of an object to be inspected easily, provided is an optical tomographic apparatus for acquiring a tomographic image of an object to be inspected, the optical tomographic apparatus including a control unit for controlling a measuring light path length changing unit to change an optical path length of measuring light in a case where the size of the imaging area of the tomographic image is changed, and for controlling a reference light path length changing unit to change an optical path length of reference light in association with the change in the optical path length of the measuring light.08-01-2013
20130194543IMAGE PROCESSING APPARATUS, IMAGE PROCESSING APPARATUS CONTROL METHOD, OPHTHALMOLOGIC APPARATUS, OPHTHALMOLOGIC APPARATUS CONTROL METHOD, OPHTHALMOLOGIC SYSTEM, AND STORAGE MEDIUM - An image processing apparatus comprises: a fundus image obtaining unit configured to obtain a fundus image of an eye to be examined; a detection unit configured to detect positions of an optic papilla and macular region of the eye to be examined from the fundus image; and an obtaining position determination unit configured to determine, as an obtaining position where a tomographic image of the optic papilla of the eye to be examined is obtained, a position crossing a line passing through the position of the optic papilla and the position of the macular region.08-01-2013
20130194544IMAGE PROCESSING SYSTEM, PROCESSING METHOD, AND STORAGE MEDIUM - An image processing system includes: an obtaining unit configured to obtain a tomographic image of an eye to be examined; an analysis unit configured to execute analysis required to obtain information indicating a degree of curvature of a retina from the tomographic image of the eye to be examined according to an imaging mode upon capturing an image of the eye to be examined; and a display control unit configured to display three-dimensional shape data of a retinal layer generated to obtain the information on a display device.08-01-2013
20130194545OPHTHALMIC APPARATUS, OPHTHALMIC APPARATUS CONTROL METHOD AND STORAGE MEDIUM - An ophthalmic apparatus comprises: an image obtaining unit configured to obtain a fundus image of an eye to be examined; an information obtaining unit configured to obtain, from the fundus image, information about the eye to be examined; a fixation target display unit configured to display a fixation target pattern; and a change unit configured to change, in accordance with the information about the eye to be examined, the fixation target pattern displayed by the fixation target display unit.08-01-2013
20130194546IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND PROGRAM - Although a lamina cribrosa is deformed in glaucoma, in a method in a related art, a thickness of retinal layer or choroid is measured and a deformation of the lamina cribrosa is not detected. When glaucoma is diagnosed, it is desirable to analyze a shape of the lamina cribrosa and present its analysis result at a high visibility. An image processing apparatus is provided that comprises: an image obtaining unit that obtains a tomographic image of a subject's eye; an extracting unit that extracts a lamina cribrosa from the tomographic image; and a display control unit that controls a display means to display a display form showing a shape of the extracted lamina cribrosa.08-01-2013
20130194547Diagnostic, Prescriptive, And Data-Gathering System And Method For Macular Pigment Deficits And Other Eye Disorders - A macular health measurement and storage system comprises a plurality of macular-pigment measurement machine for measuring macular pigment density in humans, a plurality of computers each of which is associated with a corresponding one the macular-pigment measuring machines, and a central host. The plurality of macular-pigment measurement machines include a device for receiving macular pigment data from a patient, at least one data transfer port, and at least one processor that enables the transfer of the macular pigment data from the transfer port. The plurality of computers include a first port coupled to the data transfer port of the corresponding macular-pigment measurement machine for receiving the macular pigment data. Each of the computers includes a second port for transferring patient data. The central host is coupled to the second ports on each of the plurality of computers. The central host includes a storage device for storing the patient data.08-01-2013
20120033179METHOD AND APPARATUS FOR DETERMINING THE LOCATION OF THE OCULAR PIVOT POINT - The invention relates to a method for determining the location of the ocular pivot point (ADL) in an eye (02-09-2012
20130201450DETECTION AND MEASUREMENT OF TISSUE IMAGES - A system and method of measuring a tissue structure is provided. The method includes obtaining image data of the tissue structure. Also, an anatomical landmark in the image data is identified. A first geometric shape is applied to the image data of the tissue structure based on the anatomical landmark. For example, the geometric shape may have a linear portion, such as a square or diamond. The method also includes applying a second geometric shape to the image data of the tissue structure based on the anatomical landmark. The second geometric shape may be different than the first geometric shape, such as an arc or parabola. The method also includes segmenting a first substructure of the image data from a second substructure of the image data. These substructures may be, for example, a sclera and ciliary body of an eye.08-08-2013
20130100406Systems for Extended Depth Frequency Domain Optical Coherence Tomography (FDOCT) and Related Methods - Systems for extended depth frequency domain optical coherence tomography are provided including a detection system configured to sample spectral elements at substantially equal frequency intervals, wherein a spectral width associated with the sampled spectral elements is not greater than one-half of the frequency interval. Related methods are also provided herein.04-25-2013
20120069300OPHTHALMIC PHOTOGRAPHY APPARATUS - Positioning control relating to a two-aperture stop necessary for stereoscopic photography can be performed accurately and securely using a simple, inexpensive, compact, and lightweight structure. The apparatus comprises a two-aperture stop (03-22-2012

Patent applications in class Including eye photography

Patent applications in all subclasses Including eye photography