Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


With particular gate electrode structure

Subclass of:

349 - Liquid crystal cells, elements and systems

349019000 - PARTICULAR EXCITATION OF LIQUID CRYSTAL

349033000 - Electrical excitation of liquid crystal (i.e., particular voltage pulses, AC vs. DC, threshold voltages, etc.)

349041000 - With particular switching device

349042000 - Transistor

349043000 - Structure of transistor

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
349047000 With gate electrode between liquid crystal and semiconductor layer 10
Entries
DocumentTitleDate
20100157188LIQUID CRYSTAL DISPLAY PANEL - A laminated spacer portion formed by laminating various thin films that constitute thin-film transistors is disposed in peripheral driver circuits. As a result, even in a structure in which part of a sealing member is disposed above the peripheral driver circuits, pressure exerted from spacers in the sealing member is concentrated on the laminated spacer portion, whereby destruction of a thin-film transistor of the peripheral driver circuits can be prevented caused by the pressure from the sealing portion.06-24-2010
20090122213THIN FILM TRANSISTOR FOR DRIVING GATE LINE AND LIQUID CRYSTAL DISPLAY HAVING THE SAME - A thin film transistor for driving a gate line and a liquid crystal display having the same are provided. The thin film transistor for driving a gate line includes a gate electrode, a semiconductor layer formed on the gate electrode, a drain electrode formed on the semiconductor layer, a source electrode formed on the semiconductor layer and separated from the drain electrode and being coupled to the gate line, and a ripple-prevention electrode formed on the drain electrode which overlaps at least a part of the drain electrode.05-14-2009
20100073588LIQUID CRYSTAL DISPLAY DEVICE - A display device includes a substrate, a gate line formed over the substrate, a first insulating film formed over the substrate and the gate line, a semiconductor film formed over the first insulating film, a drain electrode formed over the semiconductor film, a source electrode formed over the semiconductor film, a data line connected to the drain electrode and formed over the first insulating film, a second insulating film formed over the source electrode and the data line, a pixel electrode electrically connected to the source electrode and formed over the second insulating film, and a transparent conductive film connected to the data line through a contact hole formed in the second insulating film. The transparent conductive film includes a first portion which none of the first insulating film and the second insulating film underlie.03-25-2010
20120262642Active Matrix Substrate, Manufacturing Method Thereof, and Image Display Device - According to the first aspect of the present invention, a drain electrode and a pixel electrode are electrically connected to each other on a protective film formed on a semiconductor active layer, and thereby it is possible to easily connect the drain electrode and the pixel electrode to each other and to improve a yield.10-18-2012
20130027627THIN FILM TRANSISTOR SUBSTRATE, LIQUID CRYSTAL DISPLAY HAVING SAME, AND METHOD OF MANUFACTURING THE SAME - A display apparatus includes a thin film transistor substrate, a substrate facing the thin film transistor substrate, and a liquid crystal layer. The thin film transistor substrate includes an insulating substrate, a gate electrode disposed on a surface of the insulating substrate, a gate insulating layer covering the gate electrode, a semiconductor layer disposed on the gate insulating layer, a source electrode disposed on the semiconductor layer, and a drain electrode disposed on the semiconductor layer and spaced apart from the source electrode. One of the source electrode and the drain electrode is spaced apart from the gate electrode in a plan view. The gate electrode includes a side surface inclined with respect to the surface of the insulating substrate and is partially overlapped with a portion of the source electrode or the drain electrode in a direction perpendicular to the side surface of the gate electrode.01-31-2013
20100066935"Liquid crystal display device having first and second pixel electrodes overlapping a common electrode and connected for first and second switching elements respectively" - The present invention provides a liquid crystal display device which includes a pixel electrode and a counter electrode in a pixel formed on a surface of a substrate which faces liquid crystal, the counter electrode is formed below an insulation film, and the pixel electrode is formed above the insulation film, wherein the counter electrode is formed over a whole area of a center except for a slight periphery of at least the pixel, the pixel electrode is constituted of separate pixel electrodes to which a video signal which is supplied to the pixel is inputted through the separate switching elements at the same timing, and the separate pixel electrodes are respectively formed of a plurality of electrodes and the respective electrodes are alternately arranged.03-18-2010
20130208207DISPLAY DEVICE SUBSTRATE, METHOD FOR PRODUCING THE SAME, AND DISPLAY DEVICE - An active matrix substrate (08-15-2013
20130208206THIN FILM TRANSISTOR ARRAY PANEL AND LIQUID CRYSTAL DISPLAY DEVICE INCLUDING THE SAME - A thin film transistor array panel includes a first substrate; a gate line and a data line on the first substrate; a storage electrode line on the first substrate where a constant voltage is applied thereto; a first thin film transistor and a second thin film transistor which are connected to the gate line and the data line; a third thin film transistor which is connected to the gate line, the second thin film transistor and the storage electrode line; a first subpixel electrode which is connected to the first thin film transistor; and a second subpixel electrode which is connected to the second thin film transistor.08-15-2013
20100271564ACTIVE MATRIX SUBSTRATE, LIQUID CRYSTAL DISPLAY DEVICE HAVING THE SUBSTRATE, AND MANUFACTURING METHOD FOR THE ACTIVE MATRIX SUBSTRATE - The manufacturing method of the present invention is a manufacturing method for an active matrix substrate with use of photolithography. The method includes the steps of: (i) removing, in a region where each of terminal sections is to be formed in a non-display region (peripheral region), at least a part of a gate insulating film GI (first interlayer insulating layer) deposited on a gate metal film (first metal film), followed by depositing a source metal film (second metal film) so as to form a plurality of signal wirings (Step (2)); and (ii) etching, in a display region, a passivation film Pas (second interlayer insulating layer) deposited on a plurality of source wirings (signal wirings) and a semiconductor layer (i layer) formed into TFTs so that the passivation film Pas and the semiconductor layer (i layer) have a same pattern except a part of a drain electrode (10-28-2010
20130057797LIQUID CRYSTAL DISPLAY DEVICE - In a liquid crystal display device including multiple pixels, each pixel includes a thin-film transistor (TFT) including source and drain electrodes and a gate electrode; and a pixel unit including a common electrode and a pixel electrode. The common electrode is disposed over an inorganic passivation film formed over the pixel electrode and the source and drain electrodes. The gate electrode overlaps a pixel electrode of an adjacent pixel, thereby constituting a holding capacitance.03-07-2013
20130057798LIQUID CRYSTAL DISPLAY DEVICE AND ELECTRONIC APPARATUS - The present invention provides a liquid crystal display device including a liquid crystal layer disposed between a first substrate and a second substrate, a pixel electrode in a reflection region and a transmission region over the first substrate, a film for adjusting a cell gap in the reflection region over the first substrate, and an opposite electrode in the reflection region and the transmission region over the second substrate. The pixel electrode in the reflection region is provided over the film and reflects light. The pixel electrode in the transmission region transmits light. The pixel electrode in the reflection region and the transmission region includes a slit. The slit is overlapped with at least a part of a step portion which is provided by the film between the reflection region and the transmission region.03-07-2013
20090040411Liquid crystal display - A liquid crystal display, having an improved application of electric field to the molecules of liquid crystal, includes a substrate and a pixel array bonded to the surface of this substrate, and the pixel array includes at least a thin-film transistor and a pixel electrode connected with this thin-film transistor, and the pixel electrode is formed in a layer higher than the thin-film transistor in relation to the substrate.02-12-2009
20090091678ARRAY SUBSTRATE FOR A LIQUID CRYSTAL DISPLAY DEVICE AND MANUFACTURING METHOD OF THE SAME - An array substrate for a liquid crystal display device includes gate and data lines crossing on a substrate, common lines parallel to and between the gate lines, thin film transistors at crossing portions of the gate and data lines, and a pixel electrode. The common lines define pixel regions, which are each divided into first and second regions by the corresponding gate line. The thin film transistors each include a gate electrode in a first direction, a semiconductor layer on the gate electrode, and source and drain electrodes on the semiconductor layer in a second direction. The source and drain electrodes cross the gate electrode in each of the first and second regions. The pixel electrode is connected to the drain electrode.04-09-2009
20090091677LIQUID CRYSTAL DISPLAY AND METHOD FOR MANUFACTURING THE SAME - Disclosed herein are a liquid crystal display (LCD) device and a method for manufacturing the same, capable of preventing problems (i.e., movement of balls, damage to the surfaces that face spacers upon application of predetermined pressure, and variation in cell gap) associated with the use of the ball spacers. The liquid crystal display device includes a first substrate and a second substrate facing each other, a spacer formed on the first substrate, wherein the spacer includes a plurality of balls and a solid to aggregate the balls together and adhere the balls to the first substrate, a hard coating layer formed on the second substrate facing the spacer, and a liquid crystal layer filled between the first substrate and the second substrate.04-09-2009
20110037917LIQUID CRYSTAL DISPLAY DEVICE AND ELECTRONIC APPLIANCE - A pixel electrode or a common electrode is a light-transmissive conductive film; therefore, it is formed of ITO conventionally. Accordingly, the number of manufacturing steps and masks, and manufacturing cost have been increased. An object of the present invention is to provide a semiconductor device, a liquid crystal display device, and an electronic appliance each having a wide viewing angle, less numbers of manufacturing steps and masks, and low manufacturing cost compared with a conventional device. A semiconductor layer of a transistor, a pixel electrode, and a common electrode of a liquid crystal element are formed in the same step.02-17-2011
20110013107SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, LIQUID CRYSTAL DISPLAY DEVICE AND ELECTRONIC APPARATUS - A semiconductor device includes a supporting substrate; a semiconductor film on the supporting substrate; a gate insulating film on the semiconductor film; a gate electrode on the gate insulating film; and a source region and a drain region formed by introducing impurity elements to the semiconductor film. The thickness of the semiconductor film is within the range of 20 nm to 40 nm. Low-concentration regions are provided between the source region and a channel forming region, and between the drain region and the channel forming region, respectively. The low-concentration regions each have an impurity concentration smaller than that of the source region and that of the drain region, and the impurity concentration in a lower surface side region on the side of the supporting substrate is smaller than that of an upper surface side region on the opposite side.01-20-2011
20130063675THIN FILM TRANSISTOR SUBSTRATE - In an oxide semiconductor layer, a degree of oxidation S03-14-2013
20130063674LIQUID CRYSTAL DISPLAY DEVICE - According to one embodiment, a liquid crystal display device includes a first substrate including a pixel electrode disposed in a pixel having a greater length in a first direction than in a second direction crossing the first direction, the pixel electrode including a first main pixel electrode and a second main pixel electrode which extend in the second direction, a contact portion which is located between the first main pixel electrode and the second main pixel electrode and extends in the second direction, and a sub-pixel electrode which connects the first main pixel electrode, the second main pixel electrode and the contact portion.03-14-2013
20090237582SYSTEM FOR DISPLAYING IMAGES - A system for displaying images, having a display panel, comprising: a lower substrate with a first surface, wherein the first surface is divided into a pixel area and a driver area; a peripheral circuit within the driver area on the first surface; at least one thin film transistor is formed in the pixel area, wherein the thin film transistor comprises an active layer, a gate dielectric layer overlying the active layer, and a gate electrode overlying the gate dielectric layer, and the active layer has source and drain regions; a first transparent electrode layer directly overlapped on a portion of the drain region, electrically connected thereto; and a second transparent electrode pattern is disposed on the gate dielectric layer, opposing the first transparent electrode layer.09-24-2009
20090021663ELECTRO-OPTICAL DEVICE - An electro-optical device comprising a display drive system with the display timing related to the unit time t for writing-in a picture element and to the time F for writing-in one picture is disclosed. In the device, a gradated display corresponding to the ratio of the division can be obtained by time-sharing the signal during a write-in of time t without changing the time F.01-22-2009
20120236225DISPLAY DEVICE SUBSTRATE, MANUFACTURING METHOD OF DISPLAY DEVICE SUBSTRATE, DISPLAY DEVICE, AND MANUFACTURING METHOD OF DISPLAY DEVICE - A liquid crystal display device (09-20-2012
20130128175LIQUID CRYSTAL DISPLAY DEVICE, DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF - Image display device having an electrode forming layer which includes a plurality of gate lines, a plurality of drain lines, a plurality of switching elements and the a plurality of pixel electrodes, and having reference electrode layer between the electrode forming layer and a substrate where the electrode forming layer formed thereon, and the reference electrode layer and the electrode forming layer are insulated by insulating layer.05-23-2013
20090195724THIN FILM TRANSISTOR AND DISPLAY DEVICE HAVING THE SAME - A thin-film transistor (TFT) is provided. The TFT includes a gate electrode; a dielectric layer and an active layer which are formed on the gate electrode; and source and drain electrodes which are formed on the active layer, each of the source and drain electrodes including a plurality of protruding portions and an empty space between each protruding portion, wherein the source and drain electrodes are spaced apart from each other and engage with each other, and further wherein the gate and source electrodes overlap each other and the gate and drain electrodes overlap each other.08-06-2009
20090231505MULTI-DOMAIN VERTICAL ALIGNMENT (MVA) PIXEL STRUCTURE - Each Multi-domain Vertical Alignment (MVA) pixel structures on a display panel array includes at least two sub-pixels. By adjusting the channel W/L ratios of the transistors in the sub-pixels, the sub-pixels may have different display voltages so as to improve the display quality in a slant vision. A transistor is disposed between one of the sub-pixels and a common line (Vcs) as the dispersion path for remaining electric charges to improve the condition of burn-in.09-17-2009
20080266478LIQUID CRYSTAL DISPLAY DEVICE - A display device includes a substrate, a gate line formed over the substrate, a first insulating film formed over the substrate and the gate line, a semiconductor film formed over the first insulating film, a drain electrode formed over the semiconductor film, a source electrode formed over the semiconductor film, a data line connected to the drain electrode and formed over the first insulating film, a second insulating film formed over the source electrode and the data line, a pixel electrode electrically connected to the source electrode and formed over the second insulating film, and a transparent conductive film connected to the data line through a contact hole formed in the second insulating film. The transparent conductive film includes a first portion which none of the first insulating film and the second insulating film underlie.10-30-2008
20110299005ACTIVE MATRIX SUBSTRATE AND LIQUID CRYSTAL DEVICE - In an active matrix substrate, the source electrode side and/or the drain electrode side of a crystalline semiconductor film extends to an area located outside both the thin-film transistor and the gate electrode, and a metal light-shielding film is provided, in the same layer as the gate electrode, between the contacting portion between the source electrode or the source line and the crystalline semiconductor film and the gate electrode, and/or between the contacting portion between the drain electrode and the crystalline semiconductor film and the gate electrode. An impurity-implanted region implanted with n-type impurity may be formed between the contacting portion between the source electrode or the source line and the crystalline semiconductor film and the gate electrode, and/or between the contacting portion between the drain electrode and the crystalline semiconductor film and the gate electrode.12-08-2011
20110134354LIQUID CRYSTAL DISPLAY DEVICE - A reflective liquid crystal display (LCD) is provided for efficiently preventing white coordinates from being yellowish. The LCD includes a substrate having red color filters, green color filters, and blue color filters. The blue color filters have an overall area smaller than that of the red color filters and the green color filters while blocking green light better than the red color filters and blocking red light better than the green color filters.06-09-2011
20100002164PIXEL STRUCTURES AND FABRICATING METHODS THEREOF - A fabricating method of a pixel structure is provided, which uses the original processes of fabricating a thin film transistor to simultaneously fabricate a reflective layer with an uneven surface. In the fabrication process of the thin film transistor, a plurality of bumps are formed under the reflective layer which is to be formed later on. The bumps and a gate of the TFT are formed simultaneously or the bumps and a semiconductor layer of the TFT are formed simultaneously. In addition, by stacking layers on the bumps, the reflective layer formed on the bumps can have good uneven shapes on the surface thereon. Therefore, the fabricating method of a pixel structure has simple processes and low manufacturing costs, and can be used for fabricating a transflective pixel structure or a reflective pixel structure.01-07-2010
20090185094LIQUID CRYSTAL DISPLAY - A liquid crystal display includes a first substrate, a first signal line formed on the first substrate, the first signal line including a first portion and a second portion, wherein the second portion is thinner than the first portion, a second signal line insulated from the first signal line, the second signal line crossing the first signal line, a thin film transistor connected to the second signal line, a pixel electrode connected to the thin film transistor, an insulating layer formed on the first signal line, the second signal line, and the thin film transistor, the insulating layer including a first portion and a second portion, a first spacer formed on the first portion of the insulating layer, and a second spacer formed on the second portion of the insulating layer, wherein the second portion of the insulating layer overlaps the second portion of the first signal line, and the first portion and the second portion of the insulating layer have different surface heights.07-23-2009
20080266479Liquid crystal display panel and method for manufacturing the same - A fringe field switching liquid crystal display panel capable of increasing throughput by forming a gate electrode together with a pixel electrode at the lowermost layer to reduce the deposition height of a passivation film to a thickness of a gate insulation film such that particles generated during the deposition of the passivation film may be reduced, and a method for manufacturing the fringe field switching liquid crystal display panel are disclosed. The panel includes a gate line formed on a substrate; a pixel electrode formed on the same layer as the gate line; a gate insulation film for covering the gate line and pixel electrode; a data line formed to intersect with the gate line and having the gate insulation film arranged between the data line and gate line; a passivation film formed on the gate insulation film to cover a thin film transistor; and a common electrode formed to overlap the pixel electrode with the gate insulation film and passivation film arranged between the common electrode and the pixel electrode.10-30-2008
20080266477GATE DRIVING CIRCUIT AND LIQUID CRYSTAL DISPLAY HAVING THE SAME - A gate driving circuit has a first stage which includes: a pull-up driving unit which receives a first carry signal from a second stage and outputs a control signal having first, second, third and fourth voltages to a first node during a preliminary period, a gate active period, a first gate inactive period and a second gate inactive period, respectively; a pull-up unit which receives the control signal and outputs a gate-on signal to a second node during the gate active period; a carry output unit which receives the control signal and outputs a second carry signal to a third stage during the gate active period; and a pull-down unit which receives a gate-off signal and the second carry signal from the second stage and outputs the control signal having the fourth voltage level to the first node during the second gate inactive period.10-30-2008
20090310053LIQUID CRYSTAL DISPLAY DEVICE - A liquid crystal display device with enhanced brightness through improving a partial structure for applying potential to a pixel electrode is provided. The liquid crystal display device includes: a pixel electrode with a plurality of openings; an opposite electrode disposed to face the pixel electrode with an insulating layer in between; a liquid crystal layer disposed on an opposite side of the pixel electrode from the opposite electrode; a selection line utilized to select a pixel; a thin film transistor disposed on the opposite side of the opposite electrode from the pixel electrode as to drive the pixel and utilizing a part of the selection line as a gate thereof; and an interlayer conductor connecting between the thin film transistor and the pixel electrode. The opposite electrode has an opposite electrode hole which allows the interlayer conductor to pass therethrough, and the opposite electrode hole partly overlaps the selection line.12-17-2009
20100123845ARRAY SUBSTRATE AND DISPLAY PANEL HAVING THE SAME - An array substrate includes; a thin-film transistor layer including; a gate line, a data line disposed substantially perpendicular to the gate line, and a switching element connected to the gate line and the data line, a gate insulation layer disposed on the gate line, a passivation layer disposed on the thin-film transistor layer, a shielding electrode disposed on the passivation layer, an insulation layer disposed on the shielding electrode; and a pixel electrode including a micro-slit pattern, the pixel electrode being disposed on the insulation layer and electrically connected to the switching element, wherein the shielding electrode is vertically aligned with the data line and the shielding electrode blocks an electromagnetic fringe field of the data line from effecting the pixel electrode.05-20-2010
20110187954LIQUID CRYSTAL DISPLAY DEVICE AND FABRICATING AND DRIVING METHOD THEREOF - A liquid crystal display device includes a liquid crystal panel divided into a non-display area and a display area where pixel cells are arranged in a matrix, a backlight for supplying light to the liquid crystal panel, and a photo-sensing device in the non-display area for sensing an external light to control light output from the backlight in accordance with the sensed the external light.08-04-2011
20090079891Integrated circuit, liquid crystal panel with same and method for testing integrated circuit - An integrated circuit for a liquid crystal panel (03-26-2009
20090051843THIN FILM TRANSISTOR, INTEGRATED CIRCUIT, LIQUID CRYSTAL DISPLAY, METHOD OF PRODUCING THIN FILM TRANSISTOR, AND METHOD OF EXPOSURE USING ATTENUATED TYPE MASK - A method of producing a thin film transistor comprises irradiating a resist on a glass base plate with a ray from a light source through a mask and, thereafter, developing the resist to form contact holes, using an i-ray as the ray.02-26-2009
20090279012ELECTRONIC DEVICE AND SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - It is conceivable that the problem that a signal is delayed by resistor of a wiring in producing a display which displays large area becomes remarkable. The present invention provides a manufacturing process using a droplet discharge method suitable for a large-sized substrate.11-12-2009
20090279010LIQUID CRYSTAL DISPLAY - Embodiments of the present invention relate to a liquid crystal display. A liquid crystal display according to an exemplary embodiment of the present invention includes a first substrate and a second substrate, a plurality of pixel electrodes formed on the first substrate and arranged in a matrix, a common electrode facing the pixel electrodes, and a liquid crystal layer interposed between the first substrate and the second substrate and including a plurality of liquid crystal molecules, wherein the liquid crystal layer includes a plurality of domains having different alignment directions of the liquid crystal molecules, and areas of effective display regions where the alignment directions of the liquid crystal molecules are uniform in the respective domains are the same as each other among the plurality of domains.11-12-2009
20090279011LIQUID CRYSTAL DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME - A liquid crystal display device and a method of manufacturing the same are disclosed. The liquid crystal display device includes a liquid crystal panel including gate pads connected to gate lines and data pads connected to data lines; at least one driving circuit mounted on a circuit substrate including poly-silicon thin-film transistors, formed by a low temperature poly-silicon (LTPS) process, and including circuit pads to be connected to the gate pads or data pads; and a conductive film to electrically connect the driving circuit and the gate pads or data pads.11-12-2009
20090262273LIQUID CRYSTAL DISPLAY DEVICE AND METHOD OF FABRICATING THE SAME - A liquid crystal display device and fabrication method is provided. The liquid crystal display device includes first and second substrates facing each other and a liquid crystal layer between the first and second substrates. Gate and data lines disposed on the first substrate cross each other to define a pixel region. A first protrusion extends from the gate line at a crossing of the gate line and the data line. A second protrusion extends from the data line at the crossing of the gate line and the data line. A thin film transistor is connected to the gate line and the data line. A pixel electrode in the pixel region is connected to the thin film transistor.10-22-2009
20090284678Pixel structure, liquid crystal display and operation method thereof - The present invention discloses a liquid crystal display containing a plurality of liquid crystals, a switching element, a plurality of alignment layers and a plurality of electrodes. The switching element comprises a gate, a drain and a source, and the drain/source forms a directional top portion. The gate and the source/drain form a lateral electric field. The alignment layer is disposed on the switching element and corresponds with the directional top portion. The plurality of liquid crystals are operated by the lateral electric field and located above the electrodes and the alignment layers. The alignment direction of plurality liquid crystals is following the directional top portion due to the enhancement of liquid crystal phase transition. Enhancement of the lateral electric field between the plurality of electrodes is helpful to reduce liquid crystal phase transition time.11-19-2009
20090284677Liquid crystal display device and method for fabricating the same - A liquid crystal display device includes a gate line on a substrate; a data line crossing the gate line with a gate insulating film interposed between the gate line and the data line to define a pixel region; a thin film transistor at the crossing of the gate line and the data line; a pixel electrode connected to the thin film transistor; a common electrode forming a horizontal electric field with the pixel electrode in the pixel region; a gate pad connected to the gate line; and a data pad connected to the data line, wherein the gate pad and the data pad includes a lower pad in the same layer as the gate line and made of the same material as the gate line, a lower contact hole through the gate insulating film to expose the lower pad, an upper pad in the same layer as the data line, made of the same material as the data line, and connected to the lower pad through the lower contact hole, and an upper contact hole through a passivation film protecting the thin film transistor to expose the upper pad, and a semiconductor layer of the thin film transistor overlaps with the gate electrode of the thin film transistor, and has a width smaller than that of a gate electrode of the thin film transistor.11-19-2009
20090290083Liquid crystal display device and fabrication method thereof - Disclosed is a method of fabricating a liquid crystal display (LCD) device in which a photosensitive film is selectively patterned using a half-tone mask, and then a portion of a passivation layer at a pixel area is selectively removed to secure an penetration path of a stripper. Additionally, a crack is generated on a conductive film formed on a photosensitive film pattern through a predetermined heat treatment to facilitate a lift-off process. Thus, the number of masks can be reduced to simplify the fabrication process of the LCD device and reduce fabrication costs.11-26-2009
20110170031Switching device of active display device and method of driving the switching device - Example embodiments are directed to a switching device of an active display device and a method of driving the switching device, such that electrical reliability of the active display device is improved. The switching device of the active display device includes a plurality of thin film transistors (TFTs) that are connected in series. Except for a refresh time duration during which the plurality of TFTs of the switching device are simultaneously turned ON, a positive voltage is applied to at least one of the plurality of TFTs of the switching device so that a reliability of the switching device may be improved.07-14-2011
20080211982Array substrate for a liquid crystal display device and method of manufacturing the same - An array substrate for a liquid crystal display device includes a substrate, a gate line elongated in one direction, a data line crossing over the gate line, a thin film transistor near a crossing point of the gate and data lines and connected to the gate and data lines, an independent portion under the data line at the crossing point, the portion being separated from the gate line, and a pixel electrode connected to the thin film transistor. The independent portion may be inside the gate line.09-04-2008
20100220254TFT-LCD ARRAY SUBSTRATE AND METHOD OF MANUFACTURING THE SAME - A thin film transistor liquid crystal display (TFT-LCD) array substrate comprising a gate line and a data line formed on a base substrate. The gate line and the data line intersect with each other to define a pixel region, in which a pixel electrode and a thin film transistor (TFT) are formed, and a first insulating layer and a second insulating layer are interposed between the gate line and the data line, and the pixel electrode is disposed between the first insulating layer and the second insulating layer. A method of manufacturing a TFT-LCD is also disclosed.09-02-2010
20080284935LIQUID CRYSTAL DISPLAY UNITS WITH DATA AND/OR ADDRESS LINES BEING FORMED OF COPPER ALLOY AND METHOD OF FABRICATING THE SAME - Disclosed is a liquid crystal display device having a signal line of low electrical resistivity and high adhesion with an underlayer, wherein a copper alloy film is formed on an underlayer, and an oxide film, silicide film or nitride film, which are additive metal elements of the copper alloy, is formed at the boundary between the underlayer and the copper alloy film whereby the signal line is formed with a multi-layer film of the copper alloy film and the oxide film, the silicide film, or the nitride film.11-20-2008
20080291349DISPLAY DEVICE - A display device includes a substrate, a display unit on the substrate, the display unit including a plurality of subpixels, a driver that applies a driving signal to the display unit, a pad unit that applies an electric signal received from the outside to the driver; a plurality of lines that connects the display unit to the driver or the pad unit to the driver; and a plurality of pad electrodes disposed at one ends of the lines connected to the driver. A width of one end of the pad electrode connected to the lines is narrower than widths of other areas of the pad electrode excepting the other end of the pad electrode.11-27-2008
20080303969Liquid crystal display device with pixel electrode voltage differential - An exemplary liquid crystal display (12-11-2008
20080303968SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - In an LCD driver, in a high voltage resistant MISFET, end portions of a gate electrode run onto electric field relaxing insulation regions. Wires to become source wires or drain wires are formed on an interlayer insulation film of the first layer over the high voltage resistant MISFET. At this moment, when a distance from an interface between a semiconductor substrate and a gate insulation film to an upper portion of the gate electrode is defined as “a”, and a distance from the upper portion of the gate electrode to an upper portion of the interlayer insulation film on which the wires are formed is defined as “b”, a relation of a>b is established. In such a high voltage resistant MISFET structured in this manner, the wires are arranged so as not to be overlapped planarly with the gate electrode of the high voltage resistant MISFET.12-11-2008
20080211981DISPLAY DEVICE - The present invention relates to a technique for preventing the occurrence of a contact defect or exfoliation caused by a Mo oxide layer that is produced on a surface of a conductive layer when a coating type insulating film is applied onto a conductive layer made of a Mo or Mo-alloy. A display device (e.g., a liquid crystal display device) of the present invention has a first substrate, wherein the first substrate includes a first conductive layer composed of a Mo or Mo-alloy layer, a coating type insulating film formed above the first conductive layer, and a second conductive layer composed of an Al or Al-alloy layer (or Ti or Ti-alloy layer) formed on the conductive layer and wherein the coating type insulating film is formed on the second conductive layer.09-04-2008
20090190057THIN FILM TRANSISTOR, METHOD OF RECOVERING PERFORMANCE OF THE SAME, AND LIQUID CRYSTAL DISPLAY EMPLOYING THE SAME - A method of compensating performance of a thin film transistor including a gate electrode, source and drain electrodes that are spaced apart from each other and insulated from the gate electrode, and an active layer to form a channel between the source and drain electrodes, includes applying a negative voltage to the gate electrode to compensate deterioration of the active layer.07-30-2009
20110013106TFT-LCD ARRAY SUBSTRATE AND MANUFACTURING METHOD THEREOF - A thin film transistor liquid crystal display (TFT-LCD) array substrate comprises a plurality of gate lines and a plurality of data lines on a substrate. A plurality of pixel regions are defined by the gate lines and the data lines. Each of the pixel regions comprises a pixel electrode and a thin film transistor serving as a switch element. The gate electrode of the thin film transistor is connected with a corresponding gate line through a connection electrode, and the gate electrode is formed by a material layer different from that forming the gate lines.01-20-2011
20090128728Thin film transistor device, liquid crystal display device using the same, and method of fabricating the same - A liquid crystal display device includes a data line, a source electrode, a drain electrode, and a pixel electrode disposed on a lower substrate, an island-shaped semiconductor layer overlapping the source and drain electrodes, a gate insulating layer along an entire surface of the lower substrate including the semiconductor layer, a gate line and a gate electrode on the gate insulating layer, a passivation layer along an entire surface of the lower substrate including the gate line, an upper substrate facing the lower substrate, and a liquid crystal layer between the lower and upper substrates.05-21-2009
20130120683PIXEL STRUCTURE AND DISPLAY PANEL - A pixel structure including a substrate, at least one switch, at least one color filter, a passivation layer and at least one pixel electrode is provided. The substrate has at least one sub-area. The switch is disposed on the sub-area and has an gate insulator that covers the sub-area of the substrate. The switch is electrically connected to a scan line and a data line. The color filter is disposed on the gate insulator, wherein the color filter is in contact with the switch and the gate insulator. A contact via is formed in the color filter and the gate insulator such that a part of the switch is exposed thereby. The pixel electrode is disposed on the passivation layer and electrically connected to the switch through the contact via. A display panel including the above-mentioned pixel structure is also provided.05-16-2013
20130120684LIQUID CRYSTAL DISPLAY DEVICE - A liquid crystal display device includes a gate electrode formed on an upper surface of an insulating substrate, a gate insulating film laminated to cover the gate electrode, a drain electrode and a source electrode formed above the gate insulating film, a semiconductor layer laminated on an upper surface of the gate insulating film, and controlling a current between the source electrode and the drain electrode by an electric field developed by the gate electrode, a common electrode having an opening portion which is formed in a region corresponding to a channel region above the semiconductor layer, and an antistatic pattern arranged at a distance from the drain electrode and the source electrode. One end and the other end of the antistatic pattern are coupled to the common electrode.05-16-2013
20090128727LIQUID CRYSTAL DISPLAY DEVICE - A liquid crystal display device is provided that includes a plurality of pixels that forms a display unit. Each of the pixels includes at least a pair of substrates that is arranged opposite each other with a liquid crystal layer disposed therebetween; and a common electrode and a pixel electrode that are disposed on one substrate of the pair of substrates with an insulating film disposed therebetween so as to drive liquid crystal molecules of the liquid crystal layer. An electrode of the common electrode and the pixel electrode that is disposed closer to the liquid crystal layer has a slit having a predetermined tilt angle with respect to a longitudinal direction of each of the pixels and opposite outer edges that are in parallel to the slit.05-21-2009
20110221992ARRAY SUBSTRATE FOR USE IN DISPLAYS, AND METHOD OF MANUFACTURING THE SAME - An array substrate for displays, includes a first conductive film pattern, a first insulating layer, a second conductive film pattern, a second insulating layer, a contact hole, and a transparent conductive film. The first conductive film pattern is pattern-formed on a transparent substrate. The first insulating layer is formed on the first conductive film pattern. The second conductive film pattern is pattern-formed upper the first insulating layer and overlapping the first conductive film pattern. The second insulating layer is formed upper the first insulating layer and the second conductive film pattern. The contact hole is made from the first insulating layer to the second insulating layer. The transparent conductive film electrically connects the first conductive film pattern and the second conductive film pattern in the contact hole. The contact hole is made in a region where an edge of the second conductive film pattern overlaps the first conductive film pattern.09-15-2011
20130215354LIQUID CRYSTAL DISPLAY DEVICE AND METHOD FOR REPAIRING THE SAME - A liquid crystal display device including a cut portion at a position not overlapping the gate electrode such the pixel electrode is floating and does not receive a voltage from the source electrode via the active layer and the drain electrode; a second insulating layer above the first insulating layer; a plurality of common electrodes on the second insulating layer; and a welded portion at a region where a corresponding common electrode overlaps the drain electrode. Further, the drain electrode and the pixel electrode are electrically connected to each other via a connection pattern formed in a contact hole such that the welded portion floats the pixel electrode.08-22-2013
20090109365Liquid crystal display device and method for manufacturing the same - An LCD device and a method for manufacturing the same are disclosed, in which a width of a gate line is decreased by forming a storage capacitor of a high capacitance with a small area, and by improving an aperture ratio, thereby obtaining high picture quality.04-30-2009
20090109364EXPOSING DEVICE, METHODS FOR FORMING PATTERN, CHANNEL, AND HOLE BY USING THE SAME, AND LIQUID CRYSTAL DISPLAY DEVICE THEREWITH AND METHOD FOR FABRICATING THE SAME - The present invention relates to an exposing device which can form a micron pattern even with an exposing device having a low resolving power by changing a mask pattern, methods for forming a pattern, a channel, and a hole respectively, and a liquid crystal display device therewith and a method for fabricating the same. A method for forming a pattern includes the steps of forming a thin film on a substrate, coating a photoresist film on the thin film, aligning a mask over the photoresist film, the mask formed on a base material, including a light shielding portion having a linear supporting portion and an uneven portion at a boundary of the supporting portion, and a transmission portion defined at regions excluding the light shielding portion, exposing the photoresist film with the mask thereon to a UV beam of a wavelength greater than 300 nm to cause refraction in the vicinity of the uneven portion, and developing the photoresist film exposed thus to form a photoresist film pattern, and patterning the thin film by using the photoresist film pattern thus formed.04-30-2009
20090213289Liquid Crystal Display Device And Method For Manufacturing The Same - The present invention provides a liquid crystal display device to be operated at high speed and with high precision by improving performance of a thin-film transistor without increasing cross capacity of gate lines and data lines. On an upper layer of a gate insulator GI at an intersection of gate lines GL and data lines DL to be prepared on an active matrix substrate SUB08-27-2009
20090244423CONTACT STRUCTURE - There is disclosed a contact structure for electrically connecting conducting lines formed on a first substrate of an electrooptical device such as a liquid crystal display with conducting lines formed on a second substrate via conducting spacers while assuring a uniform cell gap among different cells if the interlayer dielectric film thickness is nonuniform across the cell or among different cells. A first conducting film and a dielectric film are deposited on the first substrate. Openings are formed in the dielectric film. A second conducting film covers the dielectric film left and the openings. The conducting spacers electrically connect the second conducting film over the first substrate with a third conducting film on the second substrate. The cell gap depends only on the size of the spacers, which maintain the cell gap.10-01-2009
20100149449VIEWING ANGLE-CONTROLLABLE LIQUID CRYSTAL DISPLAY DEVICE AND FABRICATION METHOD THEREOF - A viewing angle controllable liquid crystal display device including red, green and blue color pixels and a control pixel of an electrically controlled birefringence (ECB) mode and its fabrication method are disclosed. A gate insulating layer and a passivation layer at a pixel area of the ECB control pixel are removed by using a half-tone mask to additionally secure a cell gap to thus maximize efficiency of the ECB control pixel to improve a viewing angle control effect. In addition, a light leakage is prevented by reducing a step in the vicinity of the pixel area of the ECB control pixel.06-17-2010
20100177257LIQUID CRYSTAL DISPLAY - The present invention relates to a liquid crystal display that includes a substrate, gate lines formed on the substrate, storage electrode lines extending in the same direction as the gate lines, and data lines intersecting the gate lines. Pixel electrodes can be connected to the thin film transistors and can be arranged in a matrix. The pixel electrodes can include a first edge parallel to the gate lines and a second edge with a second length shorter than a first length of the first edge. The second edge can be parallel to the data lines. When a first pixel electrode and a second pixel electrode are disposed on two sides of a storage electrode line, one of the first edge of the first pixel electrode and the first edge of the second pixel electrode may overlap the storage electrode line.07-15-2010
20100157187TFT LCD ARRAY SUBSTRATE AND MANUFACTURING METHOD THEREOF - A TFT LCD array substrate and a manufacturing method thereof. The TFT LCD array substrate includes a substrate and a pixel array on the substrate. Each pixel has: a gate line and a gate electrode formed on the substrate; a gate insulating layer formed on the gate line and the gate electrode; a semiconductor layer formed on the gate insulating layer disposed on the gate electrode; an ohmic contact layer having two parts, which are disposed on two sides of the semiconductor layer respectively and are apart from one another; an isolation insulating dielectric layer covering the substrate and the gate insulating layer except a portion on which the semiconductor layer is formed; a pixel electrode formed on the isolation insulating dielectric layer and the ohmic contact layer over the semiconductor layer; a source/drain electrode formed on the pixel electrode over the ohmic contact layer, and a passivation layer at least covering the semiconductor layer. The TFT LCD array substrate can be manufactured with a 3Mask technology, thereby the process steps are reduced and the utilization ratio of the equipment is improved.06-24-2010
20100182527LIQUID CRYSTAL DISPLAY DEVICE AND METHOD OF MANUFACTURING LIQUID CRYSTAL DISPLAY DEVICE - A reflection-type or transflective-type liquid crystal display device having a high image quality, which has an excellent efficiency of utility of reflected light, is provided at low cost.07-22-2010
20100220255ARRAY SUBSTRATE FOR FRINGE FIELD SWITCHING MODE LIQUID CRYSTAL DISPLAY DEVICE - An array substrate for a fringe field switching mode liquid crystal display device includes: a substrate; a gate line on the substrate; a gate insulating layer on the gate line; a data line on the gate insulating layer, the data line crossing the gate line to define a pixel region; a thin film transistor connected to the gate line and the data line; a pixel electrode in the pixel region, the pixel electrode having a plate shape and connected to the thin film transistor; a first passivation layer on the pixel electrode; and a common electrode including a plurality of open portions on the first passivation layer, each of the plurality of open portions having a bar shape including a bent part.09-02-2010
20090290084Liquid crystal display device and method of fabricating same - A liquid crystal display device is provided that comprises a gate line; a first insulating film on the gate line; a data line crossing the gate line to define a pixel region, the pixel region having a transmissive area and a reflective area; a thin film transistor connected to the gate line and the data line; a pixel electrode formed in the pixel region; a second insulating film on the thin film transistor; a storage capacitor including a storage upper electrode overlapping the gate line; a transmission hole exposing at least a portion of the pixel electrode, and a reflective electrode formed in the reflective area of the pixel region, the reflective electrode connecting the pixel electrode with thin film transistor and the storage upper electrode, wherein the gate line and the pixel electrode include a first transparent conductive layer.11-26-2009
20120194758LIQUID CRYSTAL DISPLAY DEVICE - It is an object of the present invention to apply a sufficient electrical field to a liquid crystal material in a horizontal electrical field liquid crystal display device typified by an FFS type. In a horizontal electrical field liquid crystal display, an electrical field is applied to a liquid crystal material right above a common electrode and a pixel electrode using plural pairs of electrodes rather than one pair of electrodes. One pair of electrodes includes a comb-shaped common electrode and a comb-shaped pixel electrode. Another pair of electrodes includes a common electrode provided in a pixel portion and the comb-shaped pixel electrode.08-02-2012
20090322976ARRAY SUBSTRATE FOR TRANSFLECTIVE LIQUID CRYSTAL DISPLAY DEVICE AND FABRICATION METHOD THEREOF - An array substrate for a transflective liquid crystal display device and its fabrication method are discussed. In one embodiment, an array substrate for a transflective liquid crystal display device includes a gate pad on a base substrate, a gate insulator on the gate pad and having an opening exposing a portion of the gate pad, an auxiliary pad pattern on the gate insulator and made of an intrinsic amorphous silicon layer, and a conductive layer on the auxiliary pad pattern and contacting the gate pad through the opening.12-31-2009
20090322975Array substrate for fringe field switching mode liquid crystal display device and fringe field switching mode liquid crystal display device including the same - An array substrate for a fringe field switching mode liquid crystal display device includes a plurality of gate lines on a substrate; a gate insulating layer on the plurality of gate lines; a plurality of data lines on the gate insulating layer and crossing the plurality of gate lines to define a plurality of pixel regions; a thin film transistor electrically connected to the gate and data lines and in each pixel region; a pixel electrode having a plate shape and in the each pixel region, the pixel electrode connected to a portion of the thin film transistor; a first passivation layer on the pixel electrode and over the thin film transistor; and a common electrode on the first passivation layer and having a plurality of openings of a bar shape in the each pixel region, each of the openings having a major axis along the data line and a minor axis along the gate line, wherein a center portion of each opening overlaps the pixel electrode, and both ends along the major axis of each opening protrude beyond the pixel electrode.12-31-2009
20090141207THIN FILM TRANSISTOR SUBSTRATE - In a thin film transistor, first and second thin film transistors are connected to an N06-04-2009
20110234936HIGH LIGHT TRANSMITTANCE IN-PLANE SWITCHING LIQUID CRYSTAL DISPLAY DEVICE AND METHOD FOR MANUFACTURING THE SAME - The present disclosure relates to a horizontal electric field type liquid crystal display device having the horizontal electric fields over the pixel electrodes and the common electrodes which are disposed on the same level plane, and a method for manufacturing the same. The horizontal electric field type liquid crystal display device comprising: a substrate; a gate line and a data line crossing each other with a gate insulating layer therebetween, and defining a pixel area on the substrate; a thin film transistor formed where the gate line and the data line is crossing; a pixel electrode contacting the thin film transistor on the gate insulating layer; a common electrode disposed in parallel with the pixel electrode having a predetermined distance; and a passivation layer covering whole surface of the substrate including the pixel electrode and the common electrode. According to the present disclosure, as all liquid crystal molecules including molecules disposed right over the pixel electrodes and the common electrodes are driven by the horizontal electric field, the light transmittance and the aperture ratio are enhanced.09-29-2011
20090066872TFT SUBSTRATE, LIQUID CRYSTAL DISPLAY PANEL AND LIQUID CRYSTAL DISPLAY DEVICE HAVING THE SUBSTRATE, AND METHOD OF MANUFACTURING TFT SUBSTRATE - In a pixel (03-12-2009
20090251630Liquid crystal display device and fabrication method thereof - A method for fabricating a liquid crystal display (LCD) device includes providing a first substrate including a pixel portion and a circuit portion, the circuit portion having first and second regions; forming an active pattern and a first gate insulation film at the pixel portion and the circuit portion and forming a storage electrode on a portion of the active pattern of the pixel portion; forming a second gate insulation film on the first substrate; forming a gate electrode at the first region and forming p+ source and drain regions at portions of the active pattern of the first region; forming a gate electrode at the pixel portion and the second region, and forming a common line at the pixel portion; forming n+ source and drain regions at the pixel portion and at a portion of the active pattern of the second region; and joining the first and second substrates.10-08-2009
20100039576LIQUID CRYSTAL DISPLAY - A liquid crystal display with better visibility and transmittance. The liquid crystal display includes a first plate having a first field-generating electrode, disposed in a pixel area on an insulating substrate, comprising a plurality of sub-electrodes which are separated from each other by a predetermined distance and arranged parallel to each other, and a connecting electrode electrically connecting the sub-electrodes. An alignment film that is rubbed in a first direction covers a first field-generating electrode and an alignment film that is rubbed in a second direction covers a second field-generating electrode to achieve a predetermined orientation of the liquid crystals when no field is applied and more uniform rotation of the liquid crystal molecules when a field is applied.02-18-2010
20090033820Liquid crystal display - A liquid crystal display to prevent light leakage with an improvement of aperture ratio and a reduction of load of a data line is provided. The liquid crystal display includes a gate line and a storage electrode line formed on a insulating substrate and apart from each other, a first data line and a second data line intersecting the gate line, a first pixel electrode defined by the gate line and the first data line, and a second pixel electrode defined by the gate line and the second data line and neighboring the first pixel electrode. Also, a blocking electrode between the first pixel electrode and the second pixel electrode is included, wherein at least portion of the first data line is disposed under the first pixel electrode, and at least portion of the blocking electrode is disposed under the second pixel electrode and apart from the first data line.02-05-2009
20100134710LIQUID CRYSTAL DISPLAY DEVICE - A liquid crystal display device is provided, which includes a thin film transistor including an oxide semiconductor layer, a first electrode layer, a second electrode layer having an opening, a light-transmitting chromatic-color resin layer between the thin film transistor and the second electrode layer, and a liquid crystal layer. One of the first electrode layer and the second electrode layer is a pixel electrode layer which is electrically connected to the thin film transistor, and the other of the first electrode layer and the second electrode layer is a common electrode layer. The light-transmitting chromatic-color resin layer is overlapped with the pixel electrode layer and the oxide semiconductor layer of the thin film transistor.06-03-2010
20100128192LIQUID CRYSTAL DISPLAY AND METHOD OF MANUFACTURING THE SAME - An LCD is manufactured to provide a wide viewing angle device and may reduce manufacturing costs according to an embodiment. The LCD includes a substrate, a gate line disposed on the substrate, a gate insulating layer disposed on the gate line, a semiconductor layer disposed on the gate insulating layer, a data line contacting the semiconductor layer, a drain electrode contacting the semiconductor layer and separated from the data line, a pixel electrode contacting the drain electrode, a passivation layer disposed on the pixel electrode, and a common electrode disposed on the passivation layer and including a branch electrode overlapping the pixel electrode. In one embodiment, the pixel electrode contacts an end portion of a thin film transistor. The LCD manufacturing process may be shortened and may save manufacturing costs because the LCD process need not make contact holes to connect the pixel electrode and the TFT.05-27-2010
20110001897LIQUID CRYSTAL DISPLAY DEVICE - A liquid crystal display device having thin film transistors which can alleviate the required alignment accuracy of a semiconductor film while suppressing the generation of an optical leak current is provided. The liquid crystal display device includes: a transparent substrate; gate electrodes which are stacked above the transparent substrate; source electrodes and drain electrodes which are stacked above the gate electrodes; and semiconductor films each of which is stacked above the gate electrode and controls an electric current between the source electrode and the drain electrode based on an electric field generated by the gate electrode, wherein the semiconductor film is formed into a planar shape, and includes a first region which overlaps with the gate electrode in plane and a second region which does not overlap with the gate electrode in plane, and the source electrode and the drain electrode are not connected to the semiconductor film in the second region, and are connected to the semiconductor film in the first region.01-06-2011
20080204620Transflective Liquid Crystal Device and Method of Manufacturing the Same - The construction of electrodes for liquid-crystal displays using larger grain lower absorption (LGLA) poly-Si showing an absorptivity below 20% in the visible light region is described. Integration in the manufacturing of substrates for active-matrix LCDs is shown. Source, drain and channel region (08-28-2008
20110164198LIQUID CRYSTAL DISPLAY AND METHOD OF MANUFACTURING THE SAME - A vertical alignment liquid crystal display includes a first substrate and a second substrate disposed opposite the first substrate. The first substrate includes a first insulation substrate, as well as a first pixel electrode and a second pixel electrode disposed in a same layer with the first pixel electrode on the first insulation substrate. The second substrate includes a second insulation substrate, a first patterned conductive layer disposed on only a portion of the second insulation substrate which is above the first pixel electrode, and a second patterned conductive layer disposed on only a portion of the second insulation substrate which is above the second pixel electrode.07-07-2011
20120229725SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - A display device includes a main body, a support stand, and a display portion. The display portion includes a pixel having a TFT and a capacitor. The capacitor includes a capacitor electrode on an insulating surface, an insulating film on the capacitor electrode, and a pixel electrode of the TFT on the insulating film.09-13-2012
20100283932DISPLAY SUBSTRATE AND METHOD OF MANUFACTURING THE SAME - A display substrate includes a first metal pattern, a first insulating layer, a first electrode, and a second metal pattern. The first metal pattern includes a gate line and a signal line. The first insulating layer is disposed on a substrate having the first metal pattern formed thereon. A first opening passes through the first insulating layer to partially expose the signal line. The first electrode is disposed on the first insulating layer corresponding to a unit pixel. The second metal pattern includes a connection electrode contacting the first electrode and the signal line through the first opening and a data line.11-11-2010
20100283931TFT ARRAY SUBSTRATE AND LIQUID CRYSTAL DISPLAY DEVICE - In a TFT array substrate (11-11-2010
20100283930LIQUID CRYSTAL DISPLAY DEVICE AND METHOD FOR FABRICATING THE SAME - The present invention relates to a liquid crystal display device and a method of fabricating the same, and more particularly, to a liquid crystal display device having enhanced transmittance and a method of fabricating the same. The present invention may be accomplished by providing a liquid crystal display device including a first substrate and a second substrate; a gate line and a data line formed to intersect vertically and horizontally with each other on the first substrate for defining a plurality of color display pixels and a viewing angle control pixel; a thin-film transistor having a gate electrode, a source electrode, and a drain electrode, which is formed at each region intersected by the gate line and the data line on the first substrate; a backlight shielding pattern formed at a circumferential region of the viewing angle control pixel; a first pixel electrode connected to the drain electrode of the thin-film transistor, which is formed at the color display pixels on the first substrate; a second pixel electrode connected to the drain electrode of the thin-film transistor, which is formed at the viewing angle control pixel on the first substrate; a protective film formed on the gate line, the data line, the thin-film transistor, the first electrode, and the second pixel electrode, wherein a first contact hole is formed to expose part of the backlight shielding pattern; a first common electrode connected to the backlight shielding pattern through a first contact hole of the protective film, which is formed to be overlapped with at least part of the first pixel electrode, part of the thin-film transistor, and part of the backlight shielding pattern, wherein a plurality of slits overlapped with the first pixel electrode are formed; and a second common electrode formed by corresponding to the first pixel electrode on the second substrate.11-11-2010
20110134353Liquid Crystal Display Device - It is an object of the present invention to apply a sufficient electrical field to a liquid crystal material in a horizontal electrical field liquid crystal display device typified by an FFS type. In a horizontal electrical field liquid crystal display, an electrical field is applied to a liquid crystal material right above a common electrode and a pixel electrode using plural pairs of electrodes rather than one pair of electrodes. One pair of electrodes includes a comb-shaped common electrode and a comb-shaped pixel electrode. Another pair of electrodes includes a common electrode provided in a pixel portion and the comb-shaped pixel electrode.06-09-2011
20100110322STRUCTURE OF THIN FILM TRANSISTORS AND LIQUID CRYSTAL DISPLAY DEVICE HAVING THE SAME - A structure of a plurality of thin film transistors wherein a peripheral circuit on a glass substrate of a liquid crystal display panel; and each of polycrystalline silicon thin film 05-06-2010
20100110323ARRAY SUBSTRATE OF LCD WITH WIDE VIEWING ANGLE AND METHOD FOR MANUFACTURING THE SAME - The present invention relates to an array substrate of an LCD with a wide viewing angle and a method for manufacturing the same. The array substrate includes: gate lines and data lines formed on a substrate, and TFTs and pixel electrodes formed in pixel areas defined by the gate lines and the data lines, wherein at least one shaft for inducing liquid crystal to form a multi-domain structure is formed on each of the pixel electrodes. The method includes: forming a pattern containing gate lines, gate electrodes, data lines, source electrodes, drain electrodes and TFT channels on a substrate; depositing a passivation layer, opening a first via hole for connecting each of the drain electrodes to each of pixel electrodes and a second via hole for forming a shaft; and depositing a transparent conductive film, forming a pattern containing the pixel electrodes within pixel areas, and forming a shaft at the second via hole for inducing liquid crystal to form a multi-domain structure. The present invention uses a shaft structure to induce liquid crystal to form a multi-domain structure, which not only realizes a symmetric wide viewing angle, but also simplifies the structure and manufacturing process of an array substrate.05-06-2010
20100195013LIQUID CRYSTAL DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF - An electro-optical device typified by an active matrix type liquid crystal display device, is manufactured by cutting a rubbing process, and in addition, a reduction in the manufacturing cost and an improvement in the yield are realized by reducing the number of process steps to manufacture a TFT. By forming a pixel TFT portion having a reverse stagger type n-channel TFT, and a storage capacitor, by performing three photolithography steps using three photomasks, and in addition, by having a uniform cell gap by forming wall-like spacers by performing one photolithography step, without performing a rubbing process, a multi-domain perpendicular orientation type liquid crystal display device having a wide viewing angle display, and in which a switching direction of the liquid crystal molecules is controlled, can be realized.08-05-2010
20110181806DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF - Disclosed is a display device including a transistor showing extremely low off current. In order to reduce the off current, a semiconductor material whose band gap is greater than that of a silicon semiconductor is used for forming a transistor, and the concentration of an impurity which serves as a carrier donor of the semiconductor material is reduced. Specifically, an oxide semiconductor whose band gap is greater than or equal to 2 eV, preferably greater than or equal to 2.5 eV, more preferably greater than or equal to 3 eV is used for a semiconductor layer of a transistor, and the concentration of an impurity which serves as a carrier donor included is reduced. Consequently, the off current of the transistor per micrometer in channel width can be reduced to lower than 10 zA/μm at room temperature and lower than 100 zA/μm at 85° C.07-28-2011
20090174835LIQUID CRYSTAL DISPLAY AND METHOD OF FABRICATING THE SAME TO HAVE TFT'S WITH PIXEL ELECTRODES INTEGRALLY EXTENDING FROM ONE OF THE SOURCE/DRAIN ELECTRODES - A liquid crystal display (LCD) includes thin film transistors (TFTs) each having spaced apart source/drain electrodes and an oxide-type semiconductive film disposed over and between the source/drain electrodes to define an active layer. Each of the source/drain electrodes includes a portion of a subdivided transparent conductive layer where one subdivision of the transparent conductive layer continues from within its one of the source/drain electrodes to define an optically exposed pixel-electrode that is reliably connected integrally to the one source/drain electrode. Mass production costs can be reduced and production reliability increased because a fewer number of photolithographic masks can be used to form the TFTs.07-09-2009
20090174834LIQUID CRYSTAL DISPLAY AND METHOD OF FABRICATING THE SAME - One or more embodiments provide a liquid crystal display (LCD) including a thin-film transistor (TFT) with improved performance and a method of fabricating the LCD. In one embodiment, the LCD includes a gate electrode which is formed on an insulating substrate; an active layer which is formed on the gate electrode; an organic layer which is formed on the active layer and includes a first hole that exposes a source region and a second hole that exposes a drain region; a source electrode which fills the first hole; and a drain electrode which fills the second hole.07-09-2009
20100020258THIN FILM TRANSISTOR SUBSTRATE, METHOD OF MANUFACTURING THEREOF AND LIQUID CRYSTAL DISPLAY DEVICE - A method for manufacturing a thin film transistor substrate includes forming a thin film transistor array comprising gate lines, data lines and a semiconductor layer on a substrate, applying an organic layer on the thin film transistor array, pressing the organic layer with a mold comprising a prescribed pattern, removing the mold from the organic layer; and hardening the organic layer to form a passivation layer comprising a contact hole and a bank connected to the contact hole.01-28-2010
20120038845LIQUID CRYSTAL DISPLAY PANEL - A liquid crystal display panel having improved lateral visibility. The liquid crystal display panel includes a first substrate including a pixel electrode formed on a pixel area including a first sub-pixel area and a second sub-pixel area; and a second substrate coupled to the first substrate with a liquid crystal layer accommodated between the first substrate and the second substrate, and including a common electrode formed on an area corresponding to the pixel area, wherein the pixel electrode includes a first sub-pixel electrode formed on the first sub-pixel area; a second sub-pixel electrode formed on the second sub-pixel area; and a contact electrode formed between the first sub-pixel area and the second sub-pixel area, and wherein the first sub-pixel electrode and the contact electrode are spaced apart from each other by a predetermined distance.02-16-2012
20110109828RECESSED CHANNEL TRANSISTOR DEVICES, DISPLAY APPARATUSES INCLUDING RECESSED CHANNEL TRANSISTOR DEVICES, AND METHODS OF FABRICATING RECESSED CHANNEL TRANSISTOR DEVICES - Recessed channel transistor (RCT) devices, methods of manufacturing the RCT devices, and a display apparatuses including the RCT devices. A RCT device includes a substrate, a first trench in the substrate and having a first width; a first gate insulating layer on an inner wall of the first trench; a first recess gate on the first gate insulating layer and having a groove in a center portion of an upper surface of the first recess gate; and a source and drain in the substrate on both sides of the first recess gate.05-12-2011
20100123846DISPLAY SUBSTRATE AND DISPLAY DEVICE HAVING THE SAME - A display substrate includes a pixel, a first pad part and a second pad part. The pixel is disposed in a display area and includes a switching element connected to a gate line and a data line and a pixel electrode electrically connected to the switching element. The first pad part is disposed in a peripheral area outside the display area. The first pad part includes a first pad having a first conductive pattern formed from a first conductive layer, a second conductive pattern overlapped with the first conductive pattern and formed from a second conductive layer and an insulation layer disposed between the first and second conductive patterns. The second pad part is disposed in the peripheral area. The second pad part includes a second pad having a third conductive pattern connected to the first conductive pattern of the first pad.05-20-2010
20120154705Liquid crystal display device - A liquid crystal display device includes a pixel region defined by a gate line and a data line, a thin film transistor in the pixel region, and a storage line in the pixel region. The storage line includes a first portion extending in a direction parallel to the gate line, and a second portion split from the first portion in a direction toward the pixel electrode and extending in a direction parallel to the data line. A common electrode corresponds to the pixel region on a second substrate combined with a first substrate to accommodate a liquid crystal layer, and an opening in the common electrode corresponds to a pixel electrode. The drain electrode includes a first region overlapping the first portion of the storage line and a second region overlapping the second portion of the storage line. The second portion of the storage line and the second region of the drain electrode correspond to the opening.06-21-2012
20090135326Liquid Crystal Display Device - A liquid crystal display includes a pair of transparent substrates opposed to each other with liquid crystal therebetween, one of the pair of transparent substrates having a plurality of drain signal lines and a plurality of gate signal lines, and a plurality of pixel areas defined by the drain signal lines and the gate signal lines. The pixel areas includes a pixel electrode formed of a transparent electrode having a plurality of slits including a slit opened in a first direction and a slit opened in a second direction, and a counter electrode formed of a transparent electrode disposed between the transparent electrode of the pixel electrode having the plurality of slits and the one substrate.05-28-2009
20120249916LIQUID CRYSTAL DISPLAY APPARATUS - A liquid crystal display apparatus includes: an array substrate; a seal material; and an opposite substrate, wherein the array substrate includes: a plurality of thin film transistors formed in correspondence to respective intersection parts of a plurality of gate wirings and a plurality of source wirings; a pixel electrode connected to the thin film transistor; an opposite electrode formed to face the pixel electrode; a gate extraction wiring that connects the gate wirings and a connection terminal formed in an outer area of the seal material; a conductive film that covers the gate extraction wiring with sandwiching a first insulation film therebetween; and a second insulation film that covers the conductive film in at least part of the outer area of the seal material, and wherein the conductive film is applied with an electrical potential of the opposite electrode.10-04-2012
20100245699LIQUID CRYSTAL DISPLAY DEVICE - A liquid crystal display device and a manufacturing method thereof which can suppress chipping of an alignment film or the like are provided. A liquid crystal display device and a manufacturing method thereof which can obviate the complication of manufacturing steps and the increase of a manufacturing cost are also provided. A liquid crystal display device includes: a TFT substrate; a counter substrate; and liquid crystal sandwiched between the TFT substrate and the counter substrate. A plurality of color filters are arranged on the counter substrate, and spacers are formed by stacking the plurality of color filters and by covering a surface of stacked color filters with an overcoat layer. Pedestals are formed on the TFT substrate in a state where the pedestal faces the spacer in an opposed manner. The pedestal is formed by stacking at least a semiconductor layer and a metal layer formed which are simultaneously with a thin film transistor on the TFT substrate. A width of a pedestal portion constituted of the semiconductor layer is substantially equal to a width of the spacer.09-30-2010
20100245698LIQUID CRYSTAL DISPLAY DEVICE - The present invention relates to a liquid crystal display. The liquid crystal display has a lower panel including a first pixel area having a first pixel electrode and a first light leakage preventing member, a final pixel area having a second pixel electrode and a second light leakage preventing member, and middle pixel areas disposed between the first pixel area and the final pixel area, each of the middle pixel areas including a first middle pixel electrode and a second middle pixel electrode. Accordingly, light leakage may be effectively prevented at the first pixel area and the final pixel area that are disposed on the edge.09-30-2010
20100208156TFT-LCD ARRAY SUBSTRATE AND METHOD OF MANUFACTURING THE SAME - An embodiment of the invention provides a thin film transistor liquid crystal display (TFT-LCD) array substrate comprising: a gate line and a data line that intersect with each other to define a pixel region; and a pixel electrode and a thin film transistor formed in the pixel region. The thin film transistor comprises: a gate electrode connected with the gate line; a semiconductor island positioned above the gate electrode; and a source electrode and a drain electrode that are formed on the semiconductor island. A surface of the semiconductor island contacting with the source electrode and the drain electrode comprises ohmic contact regions subject to a surface treatment and a region of the semiconductor layer between the source electrode and the drain electrode is covered with a barrier layer. Another embodiment of the invention provides a method of manufacturing a thin film transistor liquid crystal display (TFT-LCD) array substrate.08-19-2010
20090059111LCD DRIVER IC AND METHOD FOR MANUFACTURING THE SAME - Disclosed is an LCD driver IC. The LCD driver IC can include a first conductive type well formed in a substrate, a second conductive type drift region formed in the first conductive type well, a first isolation layer formed in the second conductive type drift region, a gate formed on the substrate at a first side of the first isolation layer, and a second conductive type first ion implantation region formed in the second conductive type drift region between the first isolation layer and the gate.03-05-2009
20120176561Liquid crystal display - A liquid crystal display includes a gate line and a data line on a substrate and intersecting each other, a pixel region defined by the gate line and the data line, a pixel electrode in the pixel region, a thin-film transistor (TFT) in the pixel region, and a common electrode over or under the pixel electrode. The TFT is configured to apply a voltage to the pixel electrode. The common electrode is configured to generate an electric field with the pixel electrode and is on a higher layer than the data line. The common electrode is excluded in a region of the higher layer that overlaps the data line.07-12-2012
20090021662LIQUID CRYSTAL DISPLAY - A liquid crystal display including a LC panel including a first display panel having first to n-th gate lines (n>2) and data lines crossing the gate lines and forming a pixel, and a second display panel which faces the first display panel, the aperture ratio of a first pixel line electrically connected to the first gate line is smaller than that of a second to a n-th pixel line electrically connected to the second to the n-th gate line, respectively, and a gate driver having first and the second pull-down transistors which decrease the voltage of each gate line to a low level, the first and second pull-down transistors are connected to start and end terminals of the each gate line, a width-to-length ratio of a channel of the second pull-down transistor is 0.8 to 3 times as large as that of a channel of the first pull-down transistor.01-22-2009
20100328567LIQUID CRYSTAL DISPLAY DEVICE AND METHOD OF FABRICATING THE SAME - A method of fabricating an LCD device includes forming a gate line, a gate electrode, a gate pad electrode at an end of the gate line, and a common line on a substrate; forming a gate insulating layer on the gate electrode; forming an active layer on the gate insulating layer; forming an etch stopper on the active layer; forming first and second ohmic contact layers spaced apart from each other on the active layer and an impurity-doped amorphous silicon pattern contacting the gate insulating layer therebelow, outer sides of the first and second ohmic contact layers being outside the active layer; forming a data line crossing the gate line to define a pixel region, a data pad electrode at an end of the data line, and source and drain electrodes on the first and second ohmic contact layers, respectively; forming a pixel electrode and a common electrode in the pixel region to induce an in-plane electric field; and forming a gate pad terminal electrode on the gate pad electrode. At least one of the data line, the pixel electrode and the common electrode contacts the impurity-doped amorphous silicon pattern therebelow.12-30-2010
20110037916FLEXIBLE DISPLAY AND MANUFACTURING METHOD OF THE SAME - A flexible display of the present invention is an active matrix flexible display in which a TFT is provided for each pixel. In the flexible display, an adhesive layer, a protective layer, a gate electrode for the TFT, which is buried in the protective layer, a gate insulating layer for the TFT, source and drain electrodes for the TFT, a pixel electrode electrically connected to the drain electrode, an organic active layer for the TFT, an organic EL layer including a red (R) emitting layer, a green (G) emitting layer and a blue (B) emitting layer, which are formed on a plurality of the pixel electrodes, a metal electrode, and a sealing layer are formed on a plastic film.02-17-2011
20120086881ARRAY SUBSTRATE FOR LIQUID CRYSTAL DISPLAY DEVICE AND FABRICATION METHOD THEREOF - An array substrate for a liquid crystal display (LCD) device include: a substrate; a gate line formed in one direction on one surface of the substrate; a data line crossing the gate line to define a pixel area; a thin film transistor (TFT) configured at a crossing of the gate line and the data line; a pixel electrode formed at a pixel region of the substrate; an insulating film formed on the entire surface of the substrate including the pixel electrode and the TFT, including a first insulating film formed of a high temperature silicon nitride film and a second insulating film formed of a low temperature silicon nitride film, and having a contact hole having an undercut shape exposing the pixel electrode; a pixel electrode connection pattern formed within the contact hole having an undercut shape and connected with the pixel electrode and the TFT; and a plurality of common electrodes separately formed on the insulating film.04-12-2012
20130016297LIQUID CRYSTAL DISPLAY DEVICEAANM NAKAMURA; MasatoAACI Fukaya-shiAACO JPAAGP NAKAMURA; Masato Fukaya-shi JP - According to one embodiment, a liquid crystal display device includes an insulation film disposed over a gate line, a storage capacitance line, a source line, and first main common electrodes disposed on the insulation film. The first main common electrodes include a discontinuous part in at least one of a first intersection part at an intersection between the storage capacitance line and the first source line and a second intersection part at an intersection between the storage capacitance line and the second source line. The liquid crystal display device also includes a main pixel electrode and a sub-pixel electrode which are disposed on the insulation film.01-17-2013
20080239189Thin film transistor array, method for manufacturing the same and active matrix display - One embodiment of the present invention is a thin film transistor array including an insulating substrate, a plurality of thin film transistors and a sealing layer. The sealing layer is stripe-shaped and covers a plurality of the thin film transistors. The sealing layer is formed over the insulating substrate.10-02-2008
20080239188DISPLAY SUBSTRATE, LIQUID CRYSTAL DISPLAY DEVICE HAVING THE SAME AND METHOD OF MANUFACTURING THE SAME - A display substrate includes a base substrate, a thin-film transistor (TFT), a pixel electrode, a pad part, and a cell-gap compensating part. The base substrate has a display region, a seal region surrounding the display region, and a peripheral region surrounding the seal region. The TFT is in the display region. The pixel electrode is connected to a drain electrode of the TFT and contacts the base substrate. The pad part is interposed between a first side of the base substrate and the seal region and is connected to the TFT through a first transmission line. The cell-gap compensating part is in the seal region and includes a compensating pattern adjacent to a second side of the base substrate and an insulating pattern on the compensating pattern.10-02-2008
20080225195DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF - The present invention allows decreasing the uneven image quality in a liquid crystal display device. The display device in accordance with the present invention includes plural scan signal lines, plural video signal lines, plural TFTs placed in a matrix structure, and plural pixel electrodes, when the width of the scan signal line in a region to place one TFT is different from the width of the scan signal line in a region to place another TFT which is different from the one TFT, the channel width and the channel length of the one TFT is almost equal to the channel width and the channel length of the another TFT, and the surface area of the region overlapping the source electrode with the scan signal line of the one TFT when viewing in plan view is almost equal to the surface area of the region overlapping the source electrode with the scan signal line of the another TFT when viewing in plan view.09-18-2008
20080225194Liquid crystal device - A liquid crystal device includes a first substrate and a second substrate opposite each other with a liquid crystal layer interposed therebetween, wherein the first substrate includes a signal line, a switching element electrically connected to the signal line, a first electrode electrically connected to the switching element, a wiring line, a dielectric film covering the first electrode, the switching element, and the wiring line, and a second electrode disposed on the dielectric film so as to be opposite the first electrode, and wherein the second electrode is drawn from the dielectric film toward an area where the dielectric film does not exist and is electrically connected to the wiring line through the area where the dielectric film does not exist.09-18-2008
20130093974Liquid Crystal Electro-Optic Device - In a horizontal electric field drive type liquid crystal electro-optic device, a gate electrode, a source electrode, a drain electrode, a semiconductor film and a common electrode are formed on a glass substrate and a liquid crystal material is driven by controlling the strength of an electric field substantially parallel to the glass substrate. The electrodes and the semiconductor film are made curved, for example semi-circular or semi-elliptical, in sectional profile. These curved sectional profiles can be formed by suitably selecting and combining various patterning and etching methods.04-18-2013
20130128176LIQUID CRYSTAL DISPLAY DEVICE - According to one embodiment, a liquid crystal display device includes a main pixel electrode having a first width in a first direction and a first edge extending in a second direction, and a sub-pixel electrode. The sub-pixel electrode has a second width, which is greater than the first width in the first direction, has a third width, which is a maximum width in the first direction at a central portion of the sub-pixel electrode, has a fourth width in the second direction at a position with a first distance from the first edge in the first direction, and has a fifth width, which is less than the fourth width at a position with a second distance, which is greater than the first distance, from the first edge in the first direction.05-23-2013
20130135550Digital Circuit Having Correcting Circuit and Electronic Apparatus Thereof - Provided is a digital circuit (05-30-2013
20110211137LIQUID CRYSTAL DISPLAY - A pixel electrode and a direction control electrode capacitively coupled to the pixel electrode are provided in a pixel. A pixel thin film transistor is connected to a gate line, a data line, and the pixel electrode. A direction control electrode thin film transistor is connected to a previous gate line, a previous data lines or a next data line, and the direction control electrode. The gate lines are supplied with scanning signals, and each scanning signal includes first and second pulses in a frame. The first pulse of a scanning signal is synchronized with the second pulse of a previous scanning signal.09-01-2011
20080198289Liquid crystal display device - In the invention, a liquid crystal display device having a configuration for preventing breakage of a liquid crystal display panel when outer dimensions and thickness of a liquid crystal display device for cellular phone are reduced is disclosed.08-21-2008
20080198288LIQUID CRYSTAL DISPLAY AND MANUFACTURING METHOD FOR THE SAME - According to an aspect of the present invention, there is provided a liquid crystal display that includes a gate electrode and line formed on a transparent insulating substrate, a gate insulating film covering the gate electrode and line, a semiconductor layer formed on the gate insulating film, a source electrode, a source line, and a drain electrode formed on the semiconductor layer, and a pixel electrode connected to the drain electrode. The semiconductor layer is integrally formed of three portions which are a crossover portion of the source line and the drain line, a TFT portion, and a connecting portion connecting the crossover portion to the TFT portion. A part of the crossover portion on the connecting portion side and the whole connecting portion are covered by the source electrode and the source line.08-21-2008
20110221991Thin Film Transistor, Method of Manufacturing the Same, and Display Device Having Thin Film Transistor - A thin film transistor, a manufacturing method thereof, and a display device having the same are disclosed. The thin film transistor includes a semiconductor layer formed on a substrate, a gate insulating layer formed on the substrate including the semiconductor layer, a gate electrode formed on the gate insulating above the semiconductor layer, source and drain electrodes connected to the semiconductor layer, and 3.5 to 4.5 protrusions formed on the semiconductor layer overlapped with the gate electrode. Malfunction of the thin film transistor and inferior image quality of the display device can be prevented by adjusting the number of protrusions to minimize leakage current and defects.09-15-2011
20120274869LCD PANEL AND METHOD FOR FORMING THE SAME - The present invention discloses a liquid crystal display (LCD) panel and method for forming the same. In the LCD panel, the TFT includes a source and a drain formed by a transparent conducting layer, and a gate formed by a metal layer. The source is electrically connected with a data line through a via hole over the data line. The source connects to the drain via an active layer. Whatever the number of data lines are, each pixel corresponds to an associated via hole, so the number of via holes does not increase, and not reduce the aperture ratio. Therefore, the present invention is very proper to a design using more data lines and working in a high frequency. Moreover, the matrix circuitry of LCD of the present invention is well applied in a display which not only increases a density of data lines to raise the frame rate, but also maintains the aperture ratio and brightness.11-01-2012
20130155345DISPLAY PANEL AND METHOD FOR PRODUCING THE SAME - A display panel has a plurality of gate terminals that are formed of a gate metal layer and a plurality of source terminals that are formed of a source metal layer, disposed alternately as seen in a plane. From each of the source terminals an intermediate region and a terminal region are provided with inorganic insulating film such that a source terminal lead formed of the source metal layer is covered therewith. The intermediate region is provided with organic insulating film such that the inorganic insulating film is covered therewith. The inorganic insulating film is smaller in thickness in the terminal region than in the intermediate region. The inorganic insulating film has an opening in the terminal region to expose at least a portion of a surface of the source terminal.06-20-2013
20110285931Liquid Crystal Display Device - It is an object of the present invention to provide a liquid crystal display device which has a wide viewing angle and less color-shift depending on an angle at which a display screen is seen and can display an image favorably recognized both outdoors in sunlight and dark indoors (or outdoors at night). The liquid crystal display device includes a first portion where display is performed by transmission of light and a second portion where display is performed by reflection of light. Further, a liquid crystal layer includes a liquid crystal molecule which rotates parallel to an electrode plane when a potential difference is generated between two electrodes of a liquid crystal element provided below the liquid crystal layer.11-24-2011
20110310323THIN FILM TRANSISTOR SUBSTRATE, LIQUID CRYSTAL DISPLAY HAVING THE SAME, AND METHOD OF MANUFACTURING THE SAME - In a thin film transistor, first and second thin film transistors are connected to an N12-22-2011
20130188109SUB-PIXEL STRUCTURE OF THIN FILM TRANSISTOR LIQUID CRYSTAL DISPLAY AND LIQUID CRYSTAL DISPLAY - According to embodiments of the present invention, there are provided a sub-pixel structure of a thin film transistor liquid crystal display and a liquid crystal display. The sub-pixel structure comprises: a gate line, a data line, a thin film transistor, a sub-pixel electrode, and a common electrode, which are formed on an array substrate, wherein a liquid crystal electric field in a first domain and a liquid crystal electric field in a second domain, which are located on both sides of the gate line, respectively, are created between the sub-pixel electrode and the common electrode, and the angle between the direction of the liquid crystal electric field in the first domain and the direction of the liquid crystal electric field in the second domain is larger than 0° and smaller than 180°.07-25-2013
20130188110THIN FILM TRANSISTOR SUBSTRATE, METHOD FOR PRODUCING THE SAME, AND DISPLAY DEVICE - An active matrix substrate (07-25-2013
20130201420THIN FILM TRANSISTOR SUBSTRATE AND LIQUID CRYSTAL DISPLAY DEVICE PROVIDED WITH SAME - A source section (S) is made of a source metal (08-08-2013

Patent applications in class With particular gate electrode structure

Patent applications in all subclasses With particular gate electrode structure