Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Electroluminescent

Subclass of:

345 - Computer graphics processing and selective visual display systems

345030000 - PLURAL PHYSICAL DISPLAY ELEMENT CONTROL SYSTEM (E.G., NON-CRT)

345055000 - Display elements arranged in matrix (e.g., rows and columns)

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
345077000 Brightness or intensity control 95
345080000 Driving means integral to substrate 63
345078000 Having compensating pulse 4
20100156766DIGITAL-DRIVE ELECTROLUMINESCENT DISPLAY WITH AGING COMPENSATION - An electroluminescent (EL) subpixel driven by a digital-drive scheme has a readout transistor driven by a current source when the drive transistor is non-conducting. This produces an emitter-voltage signal from which an aging signal representing the efficiency of the EL emitter can be computed. The aging signal is used to determine the loss in current of the subpixel when active, and an input signal is adjusted to provide increased on-time to compensate for voltage rise and efficiency loss of the EL emitter. Variations due to temperature can also be compensated for.06-24-2010
20090174631Semiconductor Device and Driving Method Thereof - A semiconductor device in which a signal current can be written quickly in a current source circuit of a current input type. A signal current is written after performing a pre-charge operation, thus the writing is performed quickly. In the pre-charge operation, a current is supplied to a plurality of circuits. The current size is set according to the number of the circuits to be supplied the current, which means the steady state can be obtained quickly. Note that a current may be supplied to a circuit other than the one to be input a signal in the pre-charge operation.07-09-2009
20090135114ELECTROLUMINESCENT DISPLAY WITH INTERLEAVED 3T1C COMPENSATION - A method of compensating for changes in the characteristics of transistors and EL devices in an EL display, includes providing an EL display having a two-dimensional array of EL devices arranged in rows and columns, wherein each EL device is driven by a drive circuit in response to a drive signal; providing a first drive circuit for an EL device having three transistors and providing a second drive circuit for an EL device having only two transistors, and wherein a first column in the display includes at least one first drive circuit and an adjacent second column includes at least one second drive circuit; deriving a correction signal based on the characteristics of a transistor in a first drive circuit, or the EL device; and using the correction signal to adjust the drive signals applied to the first drive circuit and one or more adjacent second drive circuits.05-28-2009
20130009854PIXEL CIRCUIT, DISPLAY DEVICE, DRIVING METHOD OF PIXEL CIRCUIT, AND DRIVING METHOD OF DISPLAY DEVICE - A display device including pixel circuits arranged in a form of a matrix, with the pixel circuits respectively including an electro-optical element, a drive transistor, a sampling transistor, and a capacitive element. The sampling transistor samples a signal from the signal line in the capacitive element. The drive transistor and the electro-optical element are arranged in series to form a current path between a power supply line and a ground line. The drive transistor is configured to control a driving current through the current path according to a signal potential stored in the capacitive element. Compensation for driving current dependence on a characteristic of the drive transistor is provided, with such compensation being based upon a current through the current path occurring before a light emission period.01-10-2013
345081000 Optical addressing (e.g., photodetection) 2
20080231564DISPLAY APPARATUS AND METHOD FOR CONTROLLING THE SAME - Disclosed herein is a display apparatus including: a display panel having a display function and a light-receiving/imaging function; a first image processing section configured to generate a detection signal that indicates whether a to-be-detected object has been detected based on a result of first image processing performed on an image taken by the light-receiving/imaging function; a second image processing section configured to perform second image processing on the image processed by the first image processing section, the second image processing having a heavier processing load than the first image processing; and a control section configured to control an operation of the second image processing section in accordance with the detection signal generated by the first image processing section, and, when it is determined that the processing by the second image processing section is not necessary, control the second image processing section to enter a sleep state.09-25-2008
20090174632Laser Displays Using Phosphor Screens Emitting Visible Colored Light - Laser display systems using at least one scanning laser beam to excite one or more fluorescent materials on a screen which emit light to form images. The fluorescent materials may include phosphor materials.07-09-2009
345079000 Field period polarity reversal 1
20090046043Display and display driving method - There is provided a display device: a display unit including a plurality of scan electrodes arranged to extend in parallel to each other along a first direction, a plurality of data electrodes arranged to extend in parallel to each other along a second direction crossing the scan electrodes, and a plurality of pixels, each pixel at which a pair of the scan electrode and the data electrode cross each other, each pixel having a light emitting layer and a dielectric layer interposed between the scan electrode and the data electrode from a direction vertical to a face; and an erasing pulse supplying unit operable to supply attenuation voltage pulse, to the light emitting layer of each pixel, which starts at a voltage not more than an emission starting voltage at which the light emitting layer starts emission and in which polarity is alternately reversed between positive and negative.02-19-2009
Entries
DocumentTitleDate
20130044047SELF-LUMINOUS DISPLAY DEVICE AND DRIVING METHOD OF THE SAME - A self-luminous display device includes: pixel circuits; and a drive signal generating circuit, wherein each of the pixel circuits includes a light-emitting diode, a drive transistor connected to a drive current path of the light-emitting diode, and a holding capacitor coupled to a control node of the drive transistor, and the drive signal generating circuit generates the drive signal containing a second level signal adapted to stop the light emission without reverse-biasing the light-emitting diode, a first level signal, lower than the second level signal, adapted to reverse-bias the light-emitting diode, and a third level signal, higher than the second level signal, adapted to enable the light-emitting diode to emit light, the drive signal generating circuit supplying the drive signal to the pixel circuits.02-21-2013
20130044046DISPLAY PANEL - A display panel includes a substrate, a TFT device, a patterned dielectric layer, a patterned metal layer and a bridge line. The TFT device is disposed in a display region. The patterned dielectric layer includes an ILD layer disposed over the TFT device, and a sealant stage disposed in a peripheral region. The patterned metal layer includes a signal line disposed on the ILD layer, and a first connecting line and a second connecting line. The first connecting line is disposed in an inner side of the sealant stage facing the display region, and the first connecting line is electrically connected to the signal line. The second connecting line is disposed in an outer side of the sealant stage opposite to the display region. The bridge line is disposed under the sealant stage, and the first connecting line and the second connecting line are electrically connected through the bridge line.02-21-2013
20090231242ELECTRODE LAYOUT FOR A DISPLAY - The display device (09-17-2009
20090231241LIGHT EMITTING DISPLAY DEVICE - A light emitting display device using a drive circuit formed of only unipolar thin film transistors, which suppresses effects of characteristic shifts of transistors, and is applicable to large, high-resolution light emitting displays. The device includes a pixel having an organic EL device (LED) and a drive circuit thereof. In a current writing period, the drive circuit sets TFT09-17-2009
20120162051Display Device - A display device with high-definition, in which display unevenness due to a voltage drop in a wiring or display unevenness due to a variation in characteristics of TFTs are suppressed. The display device of the invention comprises a first wiring for transmitting a video signal and a second wiring for supplying a current to a light emitting element. The first wiring and the second wiring extend parallel to each other, and are formed so as to overlap with each other at least partly with an insulating layer interposed therebetween.06-28-2012
20100090932ORGANIC LIGHT EMITTING DIODE DISPLAY - Embodiments of the invention provide an organic light emitting diode (OLED) display capable of preventing a defect of picture quality by instability of an output voltage of a power IC in a low temperature environment. The OLED display comprises: a display panel having an effective display area in which pixels displaying a gray scale are formed and a non-display area in which a pixel monitoring part monitoring a degree of deterioration of the pixels is formed, wherein each of the pixels includes an organic light emitting diode and a driving element; a power IC supplying a driving voltage to the display panel; and a voltage limiting part connected between the pixel monitoring part and the power IC to restrict voltage levels of feedback voltages supplied from the pixel monitoring part.04-15-2010
20090195485Organic light emitting diode display - An OLED display that is enhanced in mechanical strength by improving a structure of a bezel supporting a panel assembly. The OLED display includes a panel assembly that includes a display region, a pad region, and a plurality of OLEDs arranged in the display region and a bezel coupled to the panel assembly, the bezel including synthetic resin, wherein, when a diagonal length of the display region is in the range of 25.4 to 101.6 mm, the bezel being designed to satisfy the following inequality t≧0.0003×a, where t(mm) is a thickness of the bezel and a(mm08-06-2009
20090195484ORGANIC LIGHT EMITTING DISPLAY AND DRIVING METHOD THEREOF - An organic light emitting display and a driving method thereof. The organic light emitting display includes a display unit for emitting light in response to a current flowing through the display unit from a first power supply to a second power supply. The current corresponds to a data signal and a scan signal. According to one embodiment, the organic light emitting display further includes a power supply unit having a first output terminal for outputting a first power of the first power supply and a second output terminal for outputting a second power of the second power supply to the display unit, and a driving voltage calculation unit for determining a voltage of the second power corresponding to the current, thereby the power consumption of the organic light emitting display may be reduced.08-06-2009
20090195483USING STANDARD CURRENT CURVES TO CORRECT NON-UNIFORMITY IN ACTIVE MATRIX EMISSIVE DISPLAYS - A plurality of gray level versus OLED current curves are generated by measuring many OLED panels from a stable manufacturing process, and those curves are stored as standard gray level versus OLED current curves. When a new OLED display is manufactured from the process, each of its sub-pixels is characterized as having the characteristics of one of the pre-generated standard gray level versus OLED current curves, based on a gray level versus OLED current measurement at a single gray level. This drastically reduces the time it takes to determine the TFT gate voltage versus OLED current characteristics of the sub-pixels in the OLED display. The OLED display can use the selected one of the pre-generated standard gray level versus OLED current curves to correct non-uniformities of the sub-pixels in the OLED display caused by non-uniform TFTs in the active matrix.08-06-2009
20100149077IMAGE DISPLAY PANEL, IMAGE DISPLAY DEVICE, AND MANUFACTURING METHOD OF THE IMAGE DISPLAY PANEL - An image display panel includes: a lower substrate; self-light emitting elements for image display that are arranged on the lower substrate in a matrix shape and form an image display unit; a self-light emitting element for monitoring that is arranged on the lower substrate and emits monitoring light for the image display unit; and an upper substrate that holds the self-light emitting elements for image display and the self-light emitting element for monitoring in conjunction with the lower substrate, wherein the self-light emitting elements for image display emit emission light to the lower substrate side or the upper substrate side, and the self-light emitting element for monitoring emits the monitoring light to at least the upper substrate side or the lower substrate side.06-17-2010
20080259006Driving Circuit of Organic Light Emitting Diode Display Panel and Precharging Method Using the Same - There is provided a driving circuit in which a voltage level can reach a full Vcc level when precharging and a precharging method using the same although a parasitic capacitance of an organic light emitting diode (OLED) panel increases.10-23-2008
20080259005DISPLAY PANEL AND ELECTRONIC SYSTEM UTILIZING THE SAME - A display panel including a first sub-pixel, a second sub-pixel, and a processing unit is disclosed. The first sub-pixel includes a first storage capacitor for storing a first voltage. The second sub-pixel includes a second storage capacitor for storing a second voltage. The processing unit processes the first voltage and transmits the processed result to the first or the second capacitor according to a control signal group.10-23-2008
20080259004PASSIVE MATRIX ELECTRO-LUMINESCENT DISPLAY SYSTEM - A passive matrix, electro-luminescent display system has a passive matrix, electro-luminescent display having an orthogonally oriented array of column and row electrodes and an electro-luminescent layer located between the electrodes at the intersection of each column and row electrode forming an individual light-emitting element. Drivers provide separate signals at different times to different groups of row electrodes within the array of row electrodes; wherein the row electrodes of each group simultaneously receive at least two different level signals. A display driver receives and processes the input image signal to provide a presharpened image control signal. Column drivers respond to the presharpened image control signal for simultaneously providing a signal to the multiple column electrodes within the array of column electrodes at the same time signals are provided to the groups of row electrodes so that the concurrence of row and column signals causes individual light-emitting element to produce light.10-23-2008
20090121983ORGANIC LIGHT EMITTING DIODE DISPLAY AND METHOD FOR MANUFACTURING THE SAME - An organic light emitting device according to an exemplary embodiment of the present invention includes a plurality of first, second, and third pixels for displaying different colors, wherein the plurality of first and second pixels are alternately arranged in a first column, the plurality of third pixels are continuously arranged in a second column, and an interval between the third pixels is larger than an interval between the first pixel and the second pixel.05-14-2009
20090121982ORGANIC LIGHT EMITTING DIODE DISPLAY AND METHOD FOR MANUFACTURING THE SAME - An organic light emitting device according to one or more embodiments includes a gate line, a data line intersecting the gate line, a switching thin film transistor connected to the gate line and the data line, a driving thin film transistor connected to the switching thin film transistor, and a light emitting diode (LED) connected to the driving thin film transistor. The switching thin film transistor includes a control electrode connected to the gate line, a crystalline semiconductor overlapping the control electrode, and an input electrode and an output electrode are spaced apart from each other on the crystalline semiconductor, wherein the control electrode and the gate line are respectively disposed under and on the crystalline semiconductor and include different materials.05-14-2009
20090121981Organic light emitting display device and driving method using the same - An organic light emitting display device is disclosed. The pixels of the display emit light which is independent of the threshold voltage of the drive transistor for the pixel. The pixel is reset before each time new data is written thereto, and the luminance data stored in the pixel includes the threshold voltage of the drive transistor.05-14-2009
20090121980DISPLAY APPARATUS AND INFORMATION PROCESSING APPARATUS USING THE SAME - A display apparatus has a plurality of column-current generating circuits for supplying signal currents respectively to the corresponding columns of a plurality of EL devices that are arranged two-dimensionally. Each of the column-current generating circuits includes two or more transistor devices the gates, sources and drains of which are respectively connected in parallel so as to function as a single transistor. The transistor devices are arranged at a pitch equal to or n-times of the alignment period in the row direction of the EL devices and at a constant pitch equal to the alignment period in the column direction of the EL devices.05-14-2009
20100117937ORGANIC ELECTRO-LUMINESCENT DISPLAY DEVICE - An OLED device is disclosed. The OLED device disposes a voltage divider and a switch unit in the output stage of a power supplier, thereby lowering the level of a supply voltage VDD, which is applied to a driver IC in an emission interval, below that of the supply voltage which is applied to the driver IC in a non-emission interval. Accordingly, the OLED device can reduce electric power consumption.05-13-2010
20100117936ORGANIC LIGHT EMITTING DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME - An organic light emitting display device and a method of manufacturing the same are disclosed. The organic light emitting display device includes a substrate on which first, second and third pixel units are arranged in row and column directions. To simplify manufacturing and reduce defects, the first, second and third pixel units are arranged so that each column of the display is formed of only one of the first, second, and third pixel units.05-13-2010
20130082908INTEGRATED THERMAL SPREADING - Techniques are provided for removing thermal gradients from an organic light emitting diode (OLED) display. In one embodiment, an OLED display device includes a thermally conductive layer placed between electronic components housed within the device and the OLED display. Heat given off by the electronic components is transferred from warm to cold regions of the thermally conductive layer to create a more uniform ambient temperature across the back of the OLED display. Some embodiments indicate a position of the thermally conductive layer within layers of an OLED display stack (e.g., between a glass substrate and polyimide layer). Some embodiments include a specific range of thermal conductivities and/or thicknesses desired for the thermally conductive layer.04-04-2013
20100073268ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE AND PATTERNING METHOD - An organic electroluminescent display device includes a driving TFT and pixels which are formed by organic electroluminescent elements and provided in a pattern on a substrate of the TFT. The driving TFT includes at least a substrate, a gate electrode, a gate insulating film, an active layer, a source electrode, and a drain electrode; the driving TFT further includes a resistive layer between the active layer and at least one of the source electrode and the drain electrode; and the pixels are formed in a pattern by a laser transfer method. A patterning method by a laser transfer method for producing the fine pixels is also provided.03-25-2010
20100073267Image display device - Disclosed herewith an image display device capable of displaying high quality images and preferred for reducing the manufacturing cost. The image display device is provided with illuminating state controlling state for controlling the illuminating state or non-illuminating state and constant voltage supply for supplying a constant voltage to each pixel through a signal line when the illuminating state is selected for the pixel.03-25-2010
20100073266DISPLAY DEVICE AND METHOD OF DRIVING THE SAME - The present invention provides a display device and a method of driving the same. The display device includes: a light-emitting device; a first capacitor connected between a first contact point and a second contact point; a driving transistor including an input terminal connected to a first voltage, an output terminal, and a control terminal connected to the second contact point; a first switching transistor controlled by a first control signal and connected between a data voltage and the first contact point; a second switching transistor controlled by a second control signal and connected between a second voltage and the first contact point; a third switching transistor controlled by a third control signal and connected between the second contact point and the second voltage; a fourth switching transistor controlled by the first control signal and connected between the second contact point and the output terminal of the driving transistor; and a fifth switching transistor controlled by the second control signal and connected between the light-emitting device and the output terminal of the driving transistor.03-25-2010
20130076603DISPLAY APPARATUS - Disclosed herein is a display apparatus has a pixel array section including: pixel circuits which are each provided with a driving transistor and an electro-optical device and are laid out to form a matrix; and a draw wire provided in each of the pixel circuits to serve as a wire connecting the driving transistor to a power-supply providing line, wherein the resistance of the draw wire is relatively large in the pixel circuit close to a source applying a power-supply voltage to the power-supply providing line.03-28-2013
20130082911ELECTRO-OPTICAL DEVICE AND ELECTRONIC APPARATUS - An electro-optical device including: first display elements divided into at least a first region and a second region, for displaying a first image, and second display elements each divided into at least a third region and a fourth region, for displaying a second image, the first and second display elements being arranged such that each third region is disposed between the first region and the second region of the adjacent first display element and each second region is disposed between the third region and the fourth region of the adjacent second display element; a parallax barrier layer provided on a side of the display elements adjacent to a viewer, the parallax barrier having light transmitting regions at positions thereof corresponding to boundaries between adjoining first and third regions as well as between adjoining second and fourth regions; and a spacer layer separating the display elements from the parallax barrier layer.04-04-2013
20130082910ORGANIC LIGHT EMITTING DIODE DISPLAY DEVICE - An organic light emitting diode (OLED) display includes a display panel including data lines, scan lines crossing the data lines, and pixels which each include an organic light emitting diode and are arranged in a matrix form, a power generator which is enabled in a normal mode to generate a high potential power voltage for driving the display panel and is disabled in a low power mode, and a panel driving circuit which drives the data lines and the scan lines, disables the power generator in the low power mode to cut off an output of the power generator, and supplies an internal power less than the high potential power voltage to the display panel to reduce the high potential power voltage in the low power mode.04-04-2013
20130082909DISPLAY APPARATUS - A display apparatus includes a plurality of subpixels having different emission colors in a pixel, and each of the subpixels includes an organic EL device. A high-refractive-index transparent layer having a refractive index higher than that of an organic compound layer of the organic EL device is provided on a light exit side of the organic EL device, and further, a light extraction structure is arranged on an outer circumference of the subpixel on the light exit side of the high-refractive-index transparent layer. A distance between first electrodes of the subpixels closest to each other, which are respectively included in the two adjacent pixels, is set to be larger than that between the first electrodes of the two adjacent subpixels within the pixel.04-04-2013
20130033416ORGANIC COMPOUND AND ORGANIC LIGHT EMITTING DEVICE HAVING THE SAME - An organic compound contains indacenodiperylene as the basic skeleton.02-07-2013
20100045578DISPLAY DEVICE - The present invention is intended to suppress power consumption of an EL display. In accordance with the brightness of an image to be displayed in a pixel portion, the contrast of the image is determined whether to be inverted or not, and the number of bits of the digital video signal to be input into the pixel portion is reduced, and the magnitude of a current to flow through the EL element is allowed to be maintained at a constant level even when a temperature of an EL layer changes by providing the EL display with another EL element to be used for monitoring a temperature.02-25-2010
20100045577ACTIVE MATRIX DISPLAY DEVICE - In order to provide an active matrix display device in which parasitic capacitance or the like is suppressed by forming a thick insulating film around an organic semiconductor film and disconnection or the like does not occur in the opposing electrode formed on the upper layer of the thick insulating film, in an active matrix display device, first, a bank layer composed of a resist film is formed along data lines and scanning lines, and by depositing an opposing electrode of a thin film luminescent element on the upper layer side of the bank layer, capacitance that parasitizes the data lines can be suppressed. Additionally, a discontinuities portion is formed in the bank layer. Since the discontinuities portion is a planar section which does not have a step due to the bank layer, disconnection of the opposing electrode does not occur at this section. When an organic semiconductor film is formed by an ink jet process, a liquid material discharged from an ink jet head is blocked by the bank layer.02-25-2010
20100045575ORGANIC LIGHT EMITTING DIODE DISPLAY - Exemplary embodiments of the present invention relate to an OLED display. The OLED display according to exemplary embodiments of the present invention includes: a substrate; a plurality of pixel electrodes on the substrate; a pixel defining layer on the substrate and having a plurality of openings exposing the plurality of pixel electrodes; a plurality of organic emission layers on corresponding pixel electrodes of the plurality of pixel electrodes; a sealing member including a plurality of concave lens containers and covering the plurality of organic emission layers and the pixel defining layer; and at least one condenser in the plurality of lens containers. The at least one condenser is configured to form a condensing area on the pixel defining layer for each of the plurality of lens containers.02-25-2010
20100103083ORGANIC LIGHT EMITTING DEVICE, AND APPARATUS AND METHOD OF GENERATING MODIFICATION INFORMATION THEREFOR - An organic light emitting device including a display panel including a plurality of pixels respectively including a driving transistor and an organic light emitting element; a driving unit to supply a driving signal to the display panel; a signal controller to control the driving unit; a signal modification unit to modify an input image signal based on modification information to generate a modified image signal; and a modification controller to generate and provide the modification information to the signal modification unit. The signal modification unit includes a first modification unit to convert the input image signal into a first modified signal according to first modification information generated based on a characteristic deviation of the driving transistor, and a second modification unit to convert the first modified signal into a second modified signal according to second modification information generated based on a characteristic deviation of the organic light emitting element.04-29-2010
20100109985IMAGE DISPLAY DEVICE - An image display device in which a plurality of pixel circuits are arranged has a current light-emitting element, a driver transistor for flowing current in the current light-emitting element, a retention capacitor for retaining a voltage determining an amount of current flowed from the driver transistor, and a writing switch for writing a voltage depending on an image signal to the retention capacitor. Transistors configuring the respective pixel circuits are an N-channel type transistor, each of the pixel circuits further includes an enable switch, an initialization capacitor for initializing the voltage of the retention capacitor, and a separation switch.05-06-2010
20090140957Pixel and organic light emitting display using the same - A pixel circuit with stable lamination is disclosed. A leakage current which would otherwise cause the voltage at the gate of the drive transistor to change, resulting in a change in the current to the OLED, is compensated for by an additional transistor.06-04-2009
20100066653DISPLAY DEVICE AND ELECTRONIC DEVICE - It is an object of the present invention to provide a display device in which images can be seen under a dark place to intense external light. In the display device, display is performed by changing the gray scale number depending on external light intensity, and display modes can be switched depending on contents displayed on the screen. An analog mode and a digital mode are switched depending on external light intensity. In an analog digital switching circuit, when a video signal is an analog value, a signal is outputted to a pixel array without any change and, when the video signal is a digital value, the signal is outputted to a circuit that performs a digital operation such as a latch circuit. Consequently, display gray scales of a pixel are changed appropriately. Accordingly, a clear image can be displayed. For example, it is possible to ensure visibility in a wide range of a dark place or under indoor florescent light to outdoor sun light.03-18-2010
20100066652DISPLAY APPARATUS - A display device having a substrate, a power supply line, and a pixel electrode. The display device also having a transistor having a gate electrode and electrically coupled between the power supply line and the pixel electrode, a opposite electrode, and an organic semiconductor film disposed between the pixel electrode and the opposite electrode. The display device further having a holding capacitor having a first electrode electrically coupled to the gate electrode of the transistor, a second electrode, and a first insulation film disposed between the first electrode and second electrode and a second insulation film. The holding capacitor of the display device being disposed between the substrate and the second insulation film and at a part of the second insulation film being disposed between the pixel electrode and the substrate.03-18-2010
20130135183Display Device, Electronic Device and Method of Driving Display Device - The present invention provides a display device which can display characters clearly and display images smoothly. An area gray scale method is adopted and a configuration of one pixel is changed depending on a mode, by selecting one or more display regions in each pixel. When characters are needed to be displayed clearly, one pixel is configured by selecting a stripe arrangement. Thus, clear display can be conducted. When images are needed to be displayed, one pixel is configured by selecting an indented state. Thus, smooth display can be conducted.05-30-2013
20090046041Display device and electronic equipment - The present invention provides a display device including a pixel array section, the pixel array section having pixels arranged in a matrix form, each of the pixels including: an electro-optical element; a write transistor; a holding capacitance; a drive transistor; and a switching transistor; a write scan line disposed for each of pixel rows of the pixel array section and adapted to convey a write signal to be applied to the gate electrode of the write transistor; and a correction scan line, wherein the wiring structure of the write scan line does not intersect with the wiring pattern connected to the gate electrode of the drive transistor.02-19-2009
20130050066DISPLAY DEVICE AND FABRICATING METHOD THEREOF - An exemplary display device includes a substrate, a plurality of first and second pixel units, a first display layer, a second display layer, a spacer and a first color filter. The substrate has a first and a second display region. The first and second pixel units are disposed in the first and second display regions, respectively. The first display layer and the second display layer are disposed on the first and second pixel units, respectively. The first display region is surrounded by the spacer therefore the first display layer is separated from the second display layer. The first color filter is disposed on the first display layer. The first display layer and the second display layer are based on different displaying mechanisms. Therefore, the display device has the advantages of both the first display layer and the second display layer.02-28-2013
20130069851EL DISPLAY PANEL, ELECTRONIC APPARATUS AND EL DISPLAY PANEL DRIVING METHOD - An electro luminescence display panel adopting an active-matrix driving method and including pixel circuits, a capacitor control line, a coupling capacitor, and a pulse voltage source.03-21-2013
20130088416OLED Display Driver Circuits and Techniques - We describe a method of driving an OLED display. The OLED display comprises a plurality of pixel driver circuits on chiplets, each pixel driver circuit comprising an output transistor for driving a first connection of an associated OLED pixel. A cascode transistor on the chiplet is coupled between the output transistor and the first connection of said associated OLED pixel. A power supply is provided to the chiplet, defining a chiplet voltage range. A second connection of the associated OLED pixel is connected to an OLED voltage outside said chiplet voltage range. The OLED pixel is then driven using the pixel driver circuit on the chiplet over an OLED voltage range greater than said chiplet voltage range. In some preferred embodiments a drain connection of the cascode transistor is set at a voltage below a ground or negative (Vss) power supply to a chiplet.04-11-2013
20090303165ACTIVE MATRIX DISPLAY DEVICE - In order to provide an active matrix display device in which parasitic capacitance or the like is suppressed by forming a thick insulating film around an organic semiconductor film and disconnection or the like does not occur in the opposing electrode formed on the upper layer of the thick insulating film, in an active matrix display device, first, a bank layer composed of a resist film is formed along data lines and scanning lines, and by depositing an opposing electrode of a thin film luminescent element on the upper layer side of the bank layer, capacitance that parasitizes the data lines can be suppressed. Additionally, a discontinuities portion is formed in the bank layer. Since the discontinuities portion is a planar section which does not have a step due to the bank layer, disconnection of the opposing electrode does not occur at this section. When an organic semiconductor film is formed by an ink jet process, a liquid material discharged from an ink jet head is blocked by the bank layer.12-10-2009
20090303164Display Device - The invention provides an image display device capable of reducing the transmission delay of a scanning signal. A plurality of scanning signal lines are wired in one pixel circuit row. Pixel circuits of the pixel circuit row are connected to any of the plurality of scanning signal lines.12-10-2009
20090303162Image Display Device - Provided is an image display device in which deterioration of a self-light-emitting element within a pixel is corrected accurately. A driver transistor provided in each pixel to drive the self-light-emitting element is driven in a saturation region. A voltage detection unit detects a voltage across the self-light-emitting element of each pixel, which is observed when a constant current is supplied to the self-light-emitting element. When the voltage detected by the voltage detection unit exceeds a threshold voltage, one of a reference voltage and a power supply voltage is controlled to keep an operation region of the driver transistor to the saturation region in every one of a plurality of the pixels of the image display device.12-10-2009
20120218173DISPLAY PANEL APPARATUS AND MANUFACTURING METHOD OF DISPLAY PANEL APPARATUS - A display panel apparatus includes pixels. Each pixel includes an organic luminescent layer between an upper electrode and a lower electrode and is configured to emit a red, a green, or a blue light. A glass substrate is above the upper electrode. A lens sheet is between the pixels and the glass substrate and includes lenses and a base. Each lens corresponds to a pixel and protrudes from the base. Partitions are between the glass substrate and the lens sheet for partitioning the lenses. The partitions have a first height that is greater than a second height of the lenses. The base includes trenches between the lenses. The trenches are recessed in a direction opposite the lenses. The partitions are in the trenches. Each partition has a cross-section that includes an upper side that has a different length than a bottom side and lateral sides that are tilted.08-30-2012
20090040149MATRIX ARRAY DRIVE DEVICE, DISPLAY AND IMAGE SENSOR - A matrix array drive device according to the present invention includes: a horizontal scanning circuit controlling signal electrodes in a matrix array such that data signals corresponding to N rows of the matrix array are latched one row after another every horizontal scanning period of a predetermined length and a latch output for each row is continued to be produced for every horizontal scanning periods of N rows; and a vertical scanning circuit controlling scanning electrodes in the matrix array such that the matrix array is simultaneously driven N rows at a time and rows to be driven is shifted one row every horizontal scanning period.02-12-2009
20130057457PIXEL CIRCUIT, DISPLAY PANEL, DISPLAY UNIT, AND ELECTRONIC SYSTEM - A pixel circuit includes: a writing circuit that samples a voltage of a signal line; and a driving circuit that generates from the signal line a current that depends on an output of the writing circuit, and delivers the current to a light-emitting device of a current-drive type.03-07-2013
20130057458PIXEL CIRCUIT AND DISPLAY DEVICE, AND A METHOD OF MANUFACTURING PIXEL CIRCUIT - The display device including a pixel circuit has a first line, a transistor, a light emitting element, and a second line. The transistor is located between the second line and an electrode of the light emitting element. Either the first line or the second line is wired in a region that overlaps a light emitting region of the light emitting element in a lamination direction of layers. The second line intersects the first line outside of the light emitting region and overlaps a non-light emitting region of the light emitting element.03-07-2013
20130057456DISPLAY PANEL, DISPLAY, AND ELECTRONIC UNIT - A display panel includes a unit for each sub-pixel, the unit including a plurality of openings, the unit having an array structure in which the openings are arranged in a close packing manner. In the array structure of the unit, when a single virtual opening is placed within a peripheral region of the unit, and a center of the virtual opening and centers of a plurality of openings located adjacent to the virtual opening are connected to one another by straight lines, only one basic figure for the arrangement in the close packing manner is created but two basic figures therefor are not created.03-07-2013
20100127956ORGANIC LIGHT EMITTING DISPLAY DEVICE AND METHOD OF DRIVING THE SAME - An organic light emitting display device includes a scan driver for sequentially supplying a scan signal through scan lines; a data driver for supplying an initial power through data lines during a first period of a time period when the scan signal is supplied through a corresponding scan line of the scan lines, and for supplying data signals to the data lines during a second period of the time period when the scan signal is supplied through the corresponding scan line, the second period following the first period; and pixels at crossing regions of the scan lines and the data lines.05-27-2010
20110037684SWITCH MATRIX AND DISPLAY MATRIX OF DISPLAY DEVICE - The invention provides a switch matrix and display matrix of a display device. The display matrix of a display device includes: a switch matrix including M×N MEMS switches, wherein M is the number of rows and N is the number of columns, and MEMS switches in each row are controlled by a corresponding row drive signal to output respective column data signals; and a pixel matrix including M×N pixel units each of which is coupled with a corresponding one of the M×N MEMS switches and displays in response to the column data signal output from the corresponding MEMS switch. The switch matrix can simplify pixel design and reduce layout area of each pixel. Moreover, conventional design needs special process to handle high voltage of source driver. This invention can realize a display device with one common process while source driver uses high voltage process conventionally.02-17-2011
20090267874ACTIVE MATRIX TYPE DISPLAY APPARATUS - An active matrix type display apparatus includes a plurality of pixels arranged in a matrix on a substrate, each pixel including, a display element, a driving transistor which controls the light emitting current, a first capacitor, a second capacitor, a first switch which is on/off controlled by a first control signal, a second switch which is on/off controlled by a second control signal, a third switch which is on/off controlled by a third control signal, a fourth switch which is on/off controlled by a fourth control signal, and a fifth switch which is on/off controlled by a fifth control signal, and at least one power source which is disposed arbitrarily separately to correspond to a light emission color assigned to the display element and is connected to the high potential power source line.10-29-2009
20090267873ELECTROOPTIC APPARATUS SUBSTRATE AND EXAMINING METHOD THEREFOR AND ELECTROOPTIC APPARATUS AND ELECTRONIC EQUIPMENT - An electrooptic apparatus substrate and examination method therefor can be provided which can implement an examination without requiring bringing a probe into contact thereto from the outside and with satisfactory measuring accuracy. A substrate 10-29-2009
20110012816Organic light emitting diode display - An organic light emitting diode display including a plurality of pixel areas and a transparent area interposed between the plurality of pixel areas, the display includes a substrate member, thin film transistors and capacitor elements on the substrate member, the thin film transistor and the capacitor elements overlapping with the pixel areas, a gate line, a data line, and a common power supply line on the substrate member, the gate line, the data line, and the common power supply line overlapping with the pixel areas and the transparent area, and being connected to corresponding ones of the thin film transistors and/or the capacitor elements, and pixel electrodes on the substrate member, the pixel electrodes overlapping with all of the thin film transistors and capacitor elements, and with respective portions of the gate line, the data line, and the common power supply line that overlap with the pixel areas.01-20-2011
20120223873DISPLAY PANEL APPARATUS AND MANUFACTURING METHOD OF DISPLAY PANEL APPARATUS - A display panel apparatus includes a substrate and an organic electro-luminescence unit that includes an array. The array is above the substrate and includes a red, a green, and a blue pixel. A glass layer is above the organic electro-luminescence unit. A resin layer is between the glass layer and the organic electro-luminescence unit. A surface of the resin layer that is on a side toward the organic electro-luminescence unit includes concaves. Each of the concaves is concaved toward the glass layer and corresponds to one of the pixels. Lens resins are each in one of the concaves and include a surface that is substantially coplanar with the surface of the resin layer. A refractive index of the lens resin in the concave that corresponds to the blue pixel is greater than a refractive index of the lens resin in the concave that corresponds to the red pixel.09-06-2012
20110063196ELECTRONIC PAPER DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF - There is provided an electronic paper display device and a manufacturing method thereof. The electronic paper display device includes a first substrate formed of a light transmitting material; a second substrate disposed to face the first substrate having a predetermined gap therebetween; at least one or more rotatable balls disposed between the first and second substrates and having electrical and optical anisotropy; and partitions dividing a space between the first and second substrates into a plurality of cell spaces accommodating the rotatable balls. The partitions are disposed to be spaced apart from each other with differing gaps therebetween in order to allow the cell spaces to have different sizes. When the same magnitude of voltage is applied to the rotatable balls disposed in the differently sized cell spaces, respective rotation angles of the rotatable balls become different, and accordingly a wide range of contrast levels is displayed.03-17-2011
20090262048Flat panel display device, method of aging the same, and method of testing lighting of the same - A flat panel display device formed in a pentile structure is provided, which includes a pixel portion and a lighting tester. The pixel portion includes a first pixel column, a second pixel column and a third pixel column. In the first pixel column, first pixels for displaying a first color and second pixels for displaying a second color are alternately arranged in a direction the data lines. In the second pixel column, first and second pixels arranged in reverse order of the first pixel column in a direction parallel to the data lines. In the third pixel column, third pixels for displaying a third color are arranged in a direction parallel to the data lines. The lighting tester applies a first voltage to the first pixel column and applies a second voltage to the second pixel column during a first time period. The lighting tester applies the second voltage to the first pixel column and applies the first voltage to the second pixel column during a second time period.10-22-2009
20100123649COMPENSATED DRIVE SIGNAL FOR ELECTROLUMINESCENT DISPLAY - Compensation is performed for initial nonuniformity or aging of drive transistors and electroluminescent (EL) emitters in 3T1C EL subpixels of an EL display, such as an organic light-emitting diode (OLED) display. A readout transistor connected to the EL emitter is used to readout the voltage of the emitter and compensation for ΔV05-20-2010
20090237333VOLTAGE SELECTION CIRCUIT, ELECTROPHORETIC DISPLAY APPARATUS, AND ELECTRONIC DEVICE - Provided is a voltage selection circuit for outputting a potential selected from a plurality of input potentials, the voltage selection circuit capable of selectively outputting a first high-level potential being a highest potential, a second high-level potential, or a third high-level potential being a lowest potential from an output terminal thereof. The voltage selection circuit includes a first switching circuit that supplies the first high-level potential to the output terminal, a second switching circuit that supplies the second high-level potential to the output terminal, and a third switching circuit that supplies the third high-level potential to the output terminal. The first switching circuit includes a high-voltage transistor and a level shifter connected to a gate terminal of the high-voltage transistor. The second switching circuit includes a first low-voltage transistor, a level shifter connected to a gate terminal of the first low-voltage transistor, and a diode disposed between the first low-voltage transistor and the output terminal. The third switching circuit includes a second low-voltage transistor and a diode disposed between the second low-voltage transistor and the output terminal.09-24-2009
20090237332PIXEL AND ORGANIC LIGHT EMITTING DISPLAY DEVICE USING THE SAME - A pixel for use in a light emitting display capable of being stably initialized without a separate initialization power. An exemplary embodiment of the pixel includes six transistors, a storage capacitor, and an organic light emitting diode OLED. A data signal supplied through a data line is transmitted into the pixel in response to a current scan signal supplied through a current scan line. A drive current corresponding to the data signal drives the OLED. One transistor is utilized to diode-connect the driving transistor in response to the current scan signal, compensating for variability in the threshold voltage of the driving transistor. The storage capacitor stores the data signal. The storage capacitor is initialized to a low voltage in response to a previous scan signal supplied before the current scan signal. The organic light emitting diode OLED emits light corresponding to the drive current supplied from the driving transistor.09-24-2009
20090027312ORGANIC LIGHT EMITTING DISPLAY - An organic light emitting display that can minimize degradation of a drive transistor comprising a first switching element whose control electrode is electrically coupled to a scan line, being electrically coupled between a data line and a first voltage line for transmitting a data signal; a drive transistor whose control electrode is electrically coupled to the first switching element, being electrically coupled between the first and second voltage lines; an organic light emitting diode electrically coupled to the drive transistor, displaying an image by a current supplied through the drive transistor; a first capacitive element electrically coupled between the control electrode of the drive transistor and the first switching element; a second capacitive element electrically coupled between the first capacitive element and the second voltage line; a second switching element electrically coupled between the first voltage line and the control electrode of the drive transistor; a third switching element electrically coupled between the first switching element and the drive transistor; a fourth switching element electrically coupled between the control electrode of the drive transistor and the second voltage line; and a fifth switching element electrically coupled between the drive transistor and the second voltage line.01-29-2009
20090009440DISPLAY DEVICE INCLUDING AN ORGANIC EL DEVICE - A self-luminescence display device, in which dispersion in display among a plurality of pixels, caused by dispersion in characteristics among drive thin-film transistors, is decreased and uniform display free of unevenness can be obtained. The device includes a plurality of pixels having current drive type luminescent elements, and parallel-connected n (n≧2) thin-film transistors to feed a drive current to the respective current drive type luminescent elements. The transistors are arranged in different pixels, respectively, for example, in a first region of pixels adjacent to one another along a first direction. A second region of dummy pixels can be provided on at least one side of said first region along said first direction.01-08-2009
20100085279INTERACTIVE DISPLAY BRACELET - A bracelet worn by a user displays images, including direct advertisements, received from a remote device. Structurally, the bracelet forms a circumference about a void for receiving the user's wrist. Further, the bracelet includes a wireless communication receiver for receiving signals from the remote device. Also, the bracelet includes a display element positioned along the circumference for displaying images defined by the signals. Typically, the display element will comprise light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), liquid crystal display (LCD) panels, and/or fiber optics.04-08-2010
20100085281ELECTRO-OPTICAL DEVICE, ELECTRONIC APPARATUS, AND PROJECTION DISPLAY - An electro-optical device includes an element substrate having a first signal line; a second signal line extending in a second direction crossing the first signal line; a first field-effect transistor including a first semiconductor layer extending in a direction crossing the second direction; a second field-effect transistor including a second semiconductor layer extending in the direction crossing the second direction; a first pixel electrode is adjacent to a second pixel electrode. The first semiconductor layer and the second semiconductor layer are displaced from each other in the second direction. An end of the first semiconductor layer facing toward the second pixel electrode is closer to the second pixel electrode than an end of the second semiconductor layer facing toward the first pixel electrode.04-08-2010
20080297448Oled Display Apparatus - An organic light emitting diode (OLED) display apparatus having four types of light producing dots, including R (red), G (green), B (blue), and W (white) dots, includes detecting the amount of high frequency components of a portion of a color image to be displayed, or calculating average brightness or power of display from input image data; or detecting the amount of current flowing in display; or responding to a user input instruction; or responding to a battery capacity; and adaptively changing the usage ratio of W dots accordingly.12-04-2008
20120112988DISPLAY DEVICE - Luminance ununiformity and color shading are prevented in a display area of an irregular hexagonal shape formed by cutting-off a corner from a rectangular shape.05-10-2012
20120235888NEW BENZO[c]PHENANTHRENE COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE CONTAINING SAME - There is provided a benzo[c]phenanthrene compound represented by formula [1]:09-20-2012
20110025586ORGANIC LIGHT EMITTING DISPLAY AND DRIVING METHOD THEREOF - An organic light emitting display is driven in a simultaneous (or concurrent) emission scheme. The organic light emitting display includes: a display unit including a plurality of pixels coupled to scan lines, control lines, and data lines; a control line driver for providing control signals to the pixels through the control lines; and a power driver for applying a power at different levels to the pixels of the display unit during a plurality of periods of one frame. The control signals and the power are concurrently provided to the pixels included in the display unit.02-03-2011
20110025585PIXEL AND ORGANIC LIGHT EMITTING DISPLAY DEVICE HAVING THE SAME - A pixel including: an organic light emitting diode that is coupled between a first power supply and a second power supply; a first transistor that is coupled between the first power supply and the organic light emitting diode and whose gate is connected to a first node; a second transistor that is coupled between the first node and a data line and whose gate electrode is coupled to a scan line; and a storage capacitor whose first electrode is coupled to the first node and second electrode is coupled to the first power supply, wherein the storage capacitor includes: a semiconductor layer that is positioned on a different layer from that of the data line and that expands to a region where the semiconductor layer overlaps with the data line and constitutes the first electrode, a first dielectric layer that is formed on the semiconductor layer, a first conductive layer that is formed on the first dielectric layer and constitutes the second electrode, a second dielectric layer that is formed on the first conductive layer, and a second conductive layer that is formed on the second dielectric layer and constitutes the first electrode together with the semiconductor layer, the first conductive layer being positioned between the data line and the semiconductor layer in order to cover the upper part of the region where it overlaps with the data line of the semiconductor layer.02-03-2011
20110025584LIGHT-EMITTING DIODE HEADS-UP DISPLAY FOR A VEHICLE - A display system for a vehicle is provided. The vehicle comprises a windshield and the display system comprises a substantially transparent organic light-emitting diode (OLED) display coupled to the windshield, the OLED display adapted to display information to an operator of the vehicle, and a control device coupled to the OLED display, the control device adapted to operate the OLED display to present information to the operator of the vehicle.02-03-2011
20090174630Organic light emitting display (OLED) devise, modules, and electronic devices - An organic light emitting display device is disclosed, which including an active matrix substrate with an array of active elements disposed in an active region and a control circuit disposed in a peripheral region. A color filter substrate is oppositely disposed to the active matrix substrate, including color filter elements with different colors enclosed by a black matrix layer in a region corresponding to the active region and an extension of the black matrix layer in a region corresponding to the peripheral region. An array of OLED pixel is interposed between the active matrix substrate and the color filter substrate on the active region. Each of the OLED pixels includes an anode, an organic electroluminescent layer, and a cathode. A first conductive component electrically connects the control circuit and the extension of the black matrix layer. A second conductive component electrically connects the black matrix layer and the cathode.07-09-2009
20090273548DISPLAY DEVICE - A display device includes: a display element including a plurality of sub-elements connected to retention capacities, respectively; a plurality of writing transistors arranged corresponding to the sub-elements, respectively, and writing an image signal to the retention capacities; and a plurality of driving transistors driving the sub-elements, respectively based on the image signal written through the writing transistors. The writing transistors, the driving transistors or both of them are aligned along a source-drain alignment direction in which a drain electrode and a source electrode of each transistor in the writing transistors and driving transistors are aligned, and the writing transistors, the driving transistors or both of them are arranged so that drain electrodes or source electrodes in a pair of transistors are immediately adjacent to each other, the pair of transistors being a pair of the writing transistors or the driving transistors, and being immediately adjacent to each other.11-05-2009
20110279356ELECTRO-OPTICAL DISPLAY DEVICE AND DISPLAY METHOD THEREOF - A method of reducing power consumption of an electro-optical display device which can display a still image with the use of analog signals. A circuit in which a small amount of leakage current flows between a source and a drain of a selection transistor when the selection transistor is off; the source of the selection transistor is connected to a gate of an N-channel driving transistor, a gate of a P-channel driving transistor, and one electrode of a capacitor; and a source of each of the N-channel driving transistor and the P-channel driving transistor is connected to one electrode of a display element is provided in each pixel. The longest time of one frame is set to 100 seconds or longer with the use of such a circuit, whereby power consumption at the time of rewriting is reduced.11-17-2011
20090309815FLEXIBLE REFLECTIVE DISPLAY DEVICE - A flexible reflective display device capable of improving display quality by using a reflective electrode employing carbon nanotubes. In an exemplary embodiment, a flexible reflective display device includes a substrate, a thin film transistor, a first electrode, an electrophoretic layer and a second electrode layer. The thin film transistor is provided on the substrate. The first electrode includes carbon nanotubes and is electrically connected to the thin film transistor to display black color by reflecting external light.12-17-2009
20090309816ORGANIC LIGHT EMITTING DISPLAY DEVICE - An organic light emitting display device that is capable of compensating for deterioration of organic light emitting diodes includes: a scan driver driving scan lines, compensation control lines, and light emission control lines; a data driver supplying initialization voltage to data lines during a first subperiod of a horizontal period and supplying data signals to the data lines during a second subperiod of the horizontal period; and pixels positioned at crossing areas of the scan lines and the data lines. Each pixel includes: an organic light emitting diode; a pixel circuit including a driving transistor controlling current flowing through the organic light emitting diode; and a compensation unit adjusting voltage of the gate electrode of the driving transistor based on deterioration of the organic light emitting diode. The compensation unit includes a transistor and a capacitor serially coupled between the gate and source of the driving transistor.12-17-2009
20090309817ORGANIC LIGHT EMITTING DISPLAY DEVICE - An organic light emitting display device capable of maintaining a voltage of a driving power of a display panel in a substantially constant manner. The organic light emitting display device includes a display panel for receiving an image data and an input voltage to display an image; a driving IC for supplying the image data to the display panel, receiving the input voltage, and outputting an offset control signal in accordance with the received input voltage; and a power supply for controlling the input voltage in accordance with the offset control signal, and supplying the controlled input voltage to the display panel.12-17-2009
20090207107Electro-luminescence display device - An electro-luminescence display device and a method of driving the same for controlling a full white brightness depending upon a brightness of the external environment and thus controlling a brightness mode is disclosed. An electro-luminescence display device according to the present invention comprising: a display panel having pixels light-emitted by a supplied current; a data driver for applying a data voltage corresponding to said current to the pixels; and a timing controller for dividing one frame into a plurality of sub-frames and applying said data voltage corresponding to each of the plurality of sub-frames to the data driver and for controlling an emission time of each frame.08-20-2009
20090207104DEMULTIPLEXER AND ORGANIC LIGHT EMITTING DISPLAY DEVICE USING THE SAME - An organic light emitting display device, wherein the device includes a scan driver for supplying a scan signal to scan lines during a frame time-divided into a plurality of subframes, a data driver coupled to output lines for supplying data signals on each of the output lines, demultiplexers coupled to the output lines for supplying the data signals to data lines, and pixels located at crossing regions of the data lines and the scan lines. Each of the demultiplexers includes a switch coupled between a corresponding one of the output lines and a first data line of the data lines, and a second data line of the data lines is directly coupled to the corresponding one of the output lines.08-20-2009
20100220038Pixel and Organic Light Emitting Display Device Including the Same - A pixel includes: an organic light emitting diode coupled between a first power supply and a second power supply; a first transistor coupled between the organic light emitting diode and the second power supply; a second transistor coupled to a first node to which a gate electrode of the first transistor is coupled; a first capacitor coupled between the first node and a second node; a third transistor coupled between the second node and a data line; a fourth transistor coupled between the first node and the second node; a fifth transistor coupled between the first transistor and the second power supply; and a second capacitor coupled between the second node and a third node between the first transistor and the fifth transistor.09-02-2010
20110298694ELECTROLUMINESCENT DISPLAY PANEL AND PIXEL STRUCTURE THEREOF - An electroluminescent (EL) display panel includes a blue EL device, a red EL device, a green EL device, a first power line electrically connected to the blue EL device, a second power line electrically connected to the red EL device, and a third power line electrically connected to the green EL device. The first power line has a first width, the second power line has a second width, and the third power line has a third width, wherein the first width is larger than the second width and the first width is larger than the third width.12-08-2011
20120098737Organic light-emitting diode display device - An organic light-emitting diode (OLED) includes a substrate partitioned into a plurality of pixel regions, and a first electrode in each of the pixel regions on the substrate. The first electrode is partitioned into a first emission region and a second emission region. The OLED includes a first intermediate layer in the first emission region of the first electrode, a second intermediate layer in the second emission region of the first electrode, a second electrode interposed between the first electrode and the second intermediate layer, and a third electrode disposed on the first and second intermediate layers. Light generated by the first intermediate layer is transmitted through the first and third electrodes, and light generated by the second intermediate layer is transmitted through the third electrode.04-26-2012
20120098736ORGANIC LIGHT EMITTING DIODE (OLED) DISPLAY - An organic light emitting diode (OLED) display is disclosed. In one embodiment, the display includes 1) a display panel including i) a display area configured to display an image and ii) a pad area adjacent to the display area and configured not to display an image, 2) a bezel configured to receive the display panel and 3) a reinforcing member positioned between the pad area of the display panel and the bezel. According to at least one embodiment, the deformation of the portion corresponding to the pad area of the display panel among the bezel may be prevented during an external impact, and thereby the twisting strength and the bending strength may be improved.04-26-2012
20090273546ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE AND DRIVING METHOD OF THE SAME - An organic electroluminescent display device includes a power supply unit outputting a driving voltage, a base voltage and a reference voltage, a source driving unit outputting a data voltage, a gate driving unit outputting a positive scan signal and a negative scan signal, a timing control unit controlling the source driving unit and the gate driving unit, and a display unit receiving the driving voltage, the base voltage, the reference voltage, the positive scan signal and the negative scan signal, the display unit including an organic light-emitting diode that has driving currents depending on the data voltage.11-05-2009
20120026074Display device and organic light emitting diode display - A display device includes: a display substrate; a display unit formed on the display substrate and a sealing substrate affixed to the display substrate by an adhering layer that surrounds the display unit. The sealing substrate includes a composite member including a resin and a plurality of carbon fibers and an insulating member attached to the composite member. The insulating member includes a through hole. A metal film is disposed at one side of the sealing substrate, facing the display substrate; and a conductive connection portion contact the metal film through the through hole.02-02-2012
20090278770Active matrix organic light emitting display (amoled) device - The present invention relates to an active matrix OLED (Organic Light Emitting Display) device. It comprises a matrix of luminous elements associated to different colour components (red, green, blue). According to the invention, the connection of the row driver and/or data driver to the luminous elements of the matrix is modified. Each output of the row driver is connected to luminous element associated to a same colour component (red or green or blue).11-12-2009
20090278771EL display panel, electronic instrument and panel driving method - Disclosed herein is an organic electro luminescence display panel provided with a pixel structure and a wiring structure which are adapted to an active matrix driving method; and driven by an electric potential asserted on each multi-consecutive-row bundle composed of adjacent power-supply lines, which are electrically tied to each other, each stretched in a horizontal direction and each used for supplying a driving current to an organic electro luminescence light emitting device employed in every pixel circuit of said organic electro luminescence display panel, to serve as an electric potential having two or more different magnitudes.11-12-2009
20090109145IMAGE DISPLAY DEVICE AND CONTROL METHOD THEREOF - When not receiving the next display-switch starting signal even after a specified time elapses from the application of a previous display driving voltage, a driving unit applies another preparatory driving voltage for generating a preparatory electric field capable of improving the response of colored particles to a driving electric field to an extent so as not to change the arrangement of the colored particles between pixel electrodes and a transparent electrode for a preparatory driving time.04-30-2009
20100090931DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF - A display device formed by arranging pixel circuits in a matrix, wherein each pixel circuit includes a self-emissive element; a drive transistor for driving the self-emissive element; and a resistor element serially connected between the self-emissive element and the drive transistor.04-15-2010
20100090933DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF - A bank for defining the regions in which pixels are formed has a stacked structure including: a base layer on the low level which also serves as an interlayer insulating film between the pixel forming regions; a middle bank layer on the middle level which serves to improve the fixation of an organic compound material (i.e., improve the uniformity of the film thickness of a positive hole transporting layer and an electron-transporting light emitting layer) in forming an organic EL layer; and a bank metal layer on the upper level which is made of a conductive material and serves also as a common voltage line (cathode line).04-15-2010
20090002284Image Display Apparatus - It is an object of the invention to provide an image display apparatus in which noticeability of image persistence of a self-luminous device can be suppressed to a low level without performing an electric control and by a simple configuration.01-01-2009
20090033599ACTIVE MATRIX DISPLAY APPARATUS AND DRIVING METHOD THEREOF - An active matrix display apparatus comprising two-dimensional arranged pixel circuits each including a display element connected with a signal line for supplying a current thereto and a scanning line, and further including a drive transistor and a capacitor, one terminal thereof being connected to a control terminal of the drive transistor, wherein a first main conductive terminal of the drive transistor and the other terminal of the capacitor are connected to a lighting power source for supplying a current to the display element, and wherein at the current writing operation, the current supplied to the signal line is conducted to the drive transistor and at the lighting operation, the conductive current is injected into the display element so that before completion of the write operation, a voltage drop by a predetermined value is started to the voltage of the lighting power source and is kept continued for a predetermined period.02-05-2009
20080309595Display apparatus, driving method for display apparatus and electronic apparatus - Disclosed herein is a display apparatus, including: a pixel array section including a plurality of pixels, a writing transistor, a driving transistor, a first switching transistor, a holding capacitor, and a second switching transistor; a first scanning section configured to drive the writing transistor in a unit of a row of the pixels; a second scanning section configured to drive the switching transistors in synchronism with scanning by the first scanning section; and a third scanning section configured to control the second switching transistors to a non-conducting state within a period after the image signal is written by the writing transistor until the signal writing period of the same row of the pixels ends but to a conducting state within any other period.12-18-2008
20080309594CONTROL OF AN ELECTROLUMINESCENT DISPLAY - A device for controlling an electroluminescent matrix display by successive selection of its lines, including a column control circuit having circuitry capable of placing, at the beginning of the selection of a line, the display column at a precharge voltage based on the operating voltage of the previous line, the column control circuit also having circuitry capable of modifying the precharge voltage according to the difference between luminance instructions of the previous line and those of the selected line.12-18-2008
20090160740ELECTROLUMINESCENT DISPLAY COMPENSATED ANALOG TRANSISTOR DRIVE SIGNAL - Apparatus for providing an analog drive transistor control signal to the gate electrode of a drive transistor in a drive circuit that applies current to an EL device, the drive circuit including a first supply electrode of the drive transistor and the EL device connected to a second supply electrode of the drive transistor, comprising a measuring circuit for measuring the current passing through the supply electrodes at different times to provide an aging signal representing variations in the characteristics of the drive transistor and EL device caused by operation of the drive transistor and EL device over time; a compensator for changing a linear code value in response to the aging signal to compensate for the variations in the characteristics of the drive transistor and EL device; and a linear source driver for producing the analog drive transistor control signal in response to the changed linear code value.06-25-2009
20090140956ORGANIC LIGHT EMITTING DISPLAY AND DRIVING METHOD THEREOF - An organic light emitting display and a driving method thereof capable of reducing power consumption. A driving transistor controls a current through an organic light emitting diode of the display. A voltage controller supplies a first voltage to the anode of the OLED of at least one specific pixel and controls the cathode voltage of the OLED in correspondence to a second current through the OLED, such that the cathode voltage corresponds to the first voltage supplied to the OLED. Thus, the driving transistor can be driven in saturation mode with consistent current in spite of process variations, with a reduced power consumption.06-04-2009
20100033407ORGANIC EL DISPLAY APPARATUS AND MANUFACTURE METHOD THEREOF - [Problems] To enhance production efficiency of an organic EL display apparatus active-driven with an organic EL element and an organic transistor.02-11-2010
20100033409ORGANIC LIGHT EMITTING DISPLAY DEVICE - An organic light emitting display device including a power generator for sending a plurality of voltages to a display unit. The display unit receives a scan signal, a light emitting control signal, and a data signal, which enable a current corresponding to the data signal to flow from a first power supply to a second power supply. The display unit includes a pixel circuit that includes a storage capacitor adapted to store the data signal and to stabilize the stored data signal utilizing a third power supply. A driver IC includes a signal generator for generating the data signal, the scan signal, and the light emitting control signal, and further includes a power generator for generating the first power, the second power, and the third power, wherein the second power and the third power are at a lower voltage than that of the first power.02-11-2010
20100033408EL DISPLAY DEVICE FOR REDUCING PSEUDO CONTOUR - An organic EL display device capable of preventing generation of pseudo contours is provided. Digital data of pixels in one frame is stored in a frame memory, and display is performed according to the stored digital data. One frame is divided into a plurality of unit frames, each of which is divided into a plurality of sub-frames. In each of the sub-frames, display is performed for a bit corresponding to the digital data.02-11-2010
20090278772ORGANIC LIGHT EMITTING DISPLAY AND METHOD FOR DRIVING THE SAME - An organic light emitting display and a method for driving the same. An organic light emitting display includes: a frame memory having a first portion configured to store a first portion of image signals that is the same in an n−111-12-2009
20090231240ORGANIC ELECTROLUMINESCENT ELEMENT AND DISPLAY DEVICE - An organic electroluminescent element comprising an anode and a cathode that form a pair of electrodes, and at least one organic compound layer sandwiched between the pair of electrodes, at least one of the electrodes being transparent or translucent, and the organic compound layer(s) containing, at least one charge-transporting polyester composed of repeating units represented by Formula (I-1) and Formula (I-2) as a partial structure (wherein X is represented by Formula (III)), and a display device including the same are provided.09-17-2009
20090179833DISPLAY DEVICE AND ELECTRONIC APPLIANCE - A display device having a light emission time necessary for performing impulse-type display which is suitable for motion image display comprises a resistor element including a first terminal and a second terminal, a transistor including a gate terminal which is electrically connected to a signal line, and a source terminal and a drain terminal, one of which is electrically connected to a power supply line, a capacitor element including a first terminal and a second terminal, one of which is electrically connected to one of the first terminal and the second terminal of the resistor element and the other of the source terminal and the drain terminal of the transistor, a light-emitting element including a first terminal and a second terminal, one of which is electrically connected the other of the first terminal and the second terminal of the resistor element.07-16-2009
20100001931DISPLAY DEVICE AND ELECTRONIC DEVICE USING THE SAME - A display device with a compensation circuit that applies a fixed potential constantly to a gate electrode of a driving transistor for a certain period is provided. Specifically, each difference voltage value between an anode and a cathode of the light emitting element is utilized in the case where the light emitting element emits light and emits no light. In a case where the light emitting element emits light, a potential of the gate electrode of the driving transistor is to be held; and in a case where the light emitting element emits no light, a potential that certainly turns off the gate electrode of the driving transistor is kept on applying to the gate electrode of the driving transistor.01-07-2010
20100013747Light-Emitting Device and Driving Method Thereof - Charge corresponding to a potential difference between electrodes of an electroluminescence element is accumulated in a period in which the electroluminescence element emits light; the potential difference is detected without decrease in the luminance at the time of light emission of the electroluminescence element; and a reference potential of one electrode of the electroluminescence element is changed based on the detected potential difference, so that reduction in luminance of the electroluminescence element due to deterioration of the electroluminescence element is compensated.01-21-2010
20100103082ELECTROLUMINESCENT DISPLAY WITH INITIAL NONUNIFORMITY COMPENSATION - A method of compensating for differences in characteristics of a plurality of electroluminescent (EL) subpixels having readout transistors, includes providing a first voltage source connected through a first switch to each subpixel's drive transistor and a second voltage source connected through a second switch to each subpixel's EL emitter; providing a current source connected through a third switch, and a current sink connected through a fourth switch, to the readout transistor; providing a test voltage to a subpixel; closing only the first and fourth switches and measuring the readout transistor voltage to provide a first signal representative of characteristics of the drive transistor; closing only the second and third switches and measuring the voltage to provide a second signal representative of characteristics of the EL emitter; repeating for each subpixel; and using the first and second signals for each subpixel to compensate for differences in characteristics of the EL subpixels.04-29-2010
20120139819ORGANIC LIGHT EMITTING DIODE PIXEL ARRAY - An organic light emitting diode (OLED) pixel array includes a plurality of first signal lines, a plurality of second signal lines, and a plurality of pixel array units. The pixel array units are arranged in array on a substrate. Each of the pixel array units includes a plurality of OLED pixels. The OLED pixels are connected to the same first signal line and respectively connected to a first portion and a second portion of the second signal lines. At least two of the OLED pixels are located between the first portion and the second portion. A transmittance region is surrounded by the first portion, the second portion, and the OLED pixels, and the first portion and the second portion are respectively located at two opposite sides of the transmittance region.06-07-2012
20090153446DRIVING CIRCUIT FOR DISPLAY DEVICE, AND DISPLAY DEVICE - A driving circuit of display device includes digital/current converting (DCC) circuits one for each data line. The DCC circuit operates to charge a capacitor with a reference current according to a supplied signal from a shift register. The DCC circuit stores a current value of the reference current and outputs it to a data line via a switching element that has been turned on by a digital image data signal (H) of a single line supplied from a line latch. The output value of each DCC circuit is reset one after another in every select scan period in which an OFF signal is sent to all the data lines. In this way, the reset of the output value and the output of the image data signal can be successively carried out within one frame period, enabling the data to be applied to the pixel circuit with the DCC circuits provided one for each data line. This simplifies the driving circuit that drives the pixel circuits provided with an electro-optic element and disposed in a matrix.06-18-2009
20090146927METHOD FOR MANUFACTURING THIN FILM TRANSISTOR (TFT) AND OLED DISPLAY HAVING TFTS MANUFACTURED BY THE SAME - An organic light emitting diode (OLED) display and thin film transistor (TFT) manufacturing method thereof are disclosed. According to the present invention, poly-silicon layers for forming active areas of non-driving TFT (e.g. peripheral circuit TFT and switch TFT) and driving TFT used in the OLED display are respectively made by using standard laser crystallization method and non-laser crystallization method or low energy laser crystallization method. Therefore, the peripheral circuit TFT has excellent electrical performance such as high carrier mobility, while the OLED-driving TFT has good stability so that the resultant display can operate with improved luminance uniformity.06-11-2009
20090146928Organic Electroluminescence Display Device - Before a reset operation in which a threshold voltage Vth of an organic light emitting diode (OLED) driving thin film transistor (TFT) is compensated is performed by a first reset TFT switch, a second reset TFT switch is turned on to apply a reset reference potential to a gate of the OLED driving TFT. Accordingly, an operation point of the OLED driving TFT can be stably set even when a power supply is low. In the reset operation, it is unnecessary to close a lighting TFT switch and cause an OLED element to emit light, whereby constant can be improved.06-11-2009
20090146926DRIVING APPARATUS AND DRIVING METHOD FOR AN ORGANIC LIGHT EMITTING DEVICE - A driving apparatus for an organic light emitting device including pixels with light-emitting devices and a method of making such apparatus are presented. The uniform values based on voltages for each frame corresponding to grays of input image signals are calculated and summed, and data voltages are increased when the sum exceeds a predetermined value. The apparatus helps maintain the desired brightness in an organic light emitting diode (OLED) display device through the lifespan of the device.06-11-2009
20100117935ORGANIC LIGHT EMITTING DIODE DISPLAY - An organic light emitting diode (OLED) display is disclosed. The OLED display includes a display panel, a gate drive circuit, a data converter that divides video data corresponding to 1 frame into a plurality of bit-planes each having a different bitrate, maps bit-planes having a relatively large value of assigned time to first subfields, and maps bit-planes having a relatively small value of assigned time to second subfields arranged between the first subfields, so that time assigned values of successively arranged subfields have a zigzag pattern and a last subfield of the successively arranged subfields has a maximum time assigned value, and a data drive circuit.05-13-2010
20100123648TONESCALE COMPRESSION FOR ELECTROLUMINESCENT DISPLAY - A method for controlling an electroluminescent display to produce an image for display that has reduced luminance to reduce burn-in on the display while maintaining visible contrast, includes providing the electroluminescent (EL) display having a plurality of EL emitters, the luminance of the light produced by each EL emitter being responsive to a respective drive signal; receiving a respective input image signal for each EL emitter; and transforming the input image signals to a plurality of drive signals that have a reduced peak frame luminance value but maintains contrast in the displayed image to reduce burn-in by adjusting the drive signals to have reduced luminance provided by each pixel with the luminance decrease in a shadow range being less than the luminance decrease in a non-shadow range.05-20-2010
20100123650Portable Electronic Device - A portable electronic device used for connecting to a remote server includes an identification module, a signal transceiver module, an electro-phoretic display (EPD) and a power supply module. The signal transceiver module is used for transmitting an identified data received by the identification module to the remote server and receiving a data signal from the remote server. The EPD is used for displaying the data signal received by the signal transceiver module. The power supply module is electrically connected to the identification module, the signal transceiver module and the EPD for supplying power to them. The portable electronic device may connect to different financial locations according to user choices, so the latest financial information of user may be provided by the portable electronic device.05-20-2010
20110193768PIXEL AND ORGANIC LIGHT EMITTING DISPLAY DEVICE USING THE SAME - A pixel includes: an OLED; a first transistor having a first electrode coupled to a power source and a second electrode coupled to the OLED and configured to control a magnitude of current supplied to the OLED; a third transistor having a first electrode coupled a first node and a second electrode coupled to a gate electrode of the first transistor; a capacitor coupled between the first node and a second electrode of the first transistor; a second transistor having a first electrode coupled to the first node and a second electrode coupled to a data line and configured to be turned on when the third transistor is turned off; and a fourth transistor having a first electrode coupled to a gate electrode of the first transistor and a second electrode coupled to a reference power source and configured to be turned on and off concurrently with the second transistor.08-11-2011
20100013745ORGANIC LIGHT EMITTING DISPLAY DEVICE - An organic light emitting display device having an electrostatic capacitive type touch panel function with reduced thickness and improved luminance. A display panel of the organic light emitting display device includes a substrate, a display unit having a plurality of pixels on the substrate, and a touch sensing unit on the display unit. The touch sensing unit includes an encapsulation substrate and a capacitive pattern layer on a side of the encapsulation substrate facing the display unit. The capacitive pattern layer has a plurality of openings corresponding in position to the plurality of pixels.01-21-2010
20090213047ELECTROPHORETIC DISPLAY DEVICE AND METHOD OF MANUFACTURING ELECTROPHORETIC DISPLAY DEVICE - An electrophoretic display device includes pixels each including an electrophoretic element that has a pixel electrode, an opposing electrode that faces the pixel electrode, and an electrophoretic layer that is configured by electrophoretic particles disposed between the pixel electrode and the opposing electrode. The pixels are arranged two-dimensionally, and an insulating layer formed of a photosensitive insulating material is disposed in areas between the adjacent pixel electrodes.08-27-2009
20090213045Display device and driving method thereof - It is provided a display device that prevents, when applying a reverse bias, an anode line and a power supply line included in a signal line driver circuit from being short-circuited, and a driving method thereof. According to the invention, a reverse bias applying circuit is provided in a scan line driver circuit or a signal line driver circuit, a signal from the reverse bias applying circuit is supplied to a transistor disposed between a signal line and an anode line, and thereby the transistor is turned off. The reverse bias applying circuit comprises an analog switch or a clocked inverter and a biasing transistor, and drives so as to invert potentials of the anode line and a cathode line and apply a reverse bias to a light emitting element, while turn off the analog switch and turn on the biasing transistor. Then, a potential of the anode line becomes equal to that of a scan line, and thereby turning off the transistor between the anode line and the signal line assuredly.08-27-2009
20100117938Pixel circuit, display device, and electroinc appliance - A pixel circuit provided on a substrate on which a signal line, first and second scanning lines supplying first and second control pulse signals, a fixed power line, and a variable power line are arranged includes a capacitance element, a sampling transistor connected between the signal line and one of ends of the capacitance element, where the gate of the sampling transistor is connected to the first scanning line, a drive transistor of which gate is connected to the other end, where one of a drain and a source of the drive transistor is connected to the fixed power line, an initializing transistor of which gate is connected to the second scanning line, which is connected between the other end and the other of the drain and the source, and a light emitting element connected between the variable power line and the other of the drain and the source.05-13-2010
20100085282ORGANIC LIGHT EMITTING DIODE DISPLAY - An organic light emitting diode (OLED) display is disclosed. The OLED display includes a display panel including a plurality of pairs of data lines, a plurality of gate line groups crossing the pairs of data lines, and a plurality of pixels each having a drive thin film transistor (TFT) and an organic light emitting diode at each of crossings of the pairs of data lines and the gate line groups, a timing controller generating a non-overlap signal, and a sample and hold block that removes an overlap period between adjacently generated first holding clocks using the non-overlap signal to generate second holding clocks that do not overlap each other, applies sampled threshold voltages of the drive TFTs of the pixels to an output node in response to the second holding clocks, and discharges the output node in the overlap period in response to the non-overlap signal.04-08-2010
20100085280Display system and method therefor - A display system and method thereof are provided, wherein the system includes a display device configured to produce a display and a controller in communication with the display device. The display device includes a first portion and a second portion. The controller updates the first portion of the display device at a higher rate than the second portion of the display device.04-08-2010
20100079360Medical Devices Using Bistable Displays - The invention relates to a novel display system for a drug delivery device that reduces power consumption and permits the user of the device to see messages when the device is not in a powered state or when the device has encountered an error condition. By using a bistable display, the medical device is able to maintain messages that can been seen by the user even when the device's power supply is exhausted or when the device has encountered an error that interrupts its normal operation. The use of such a display also improves the battery life by eliminating the need to provide power to the display screen when it is not being updated.04-01-2010
20090207106ORGANIC EL DISPLAY MODULE AND MANUFACTURING METHOD OF THE SAME - On a panel, a plurality of PVDD lines, each of which corresponds to a horizontal line of pixels and supplies power to the pixels of the horizontal line, are provided. A voltage drop correction unit that obtains a voltage drop before reaching the pixel, based on resistance in the plurality of power supply lines and currents flowing therein, and corrects display data so as to cancel the obtained voltage drop of the pixel. A display unevenness correction unit that corrects uneven brightness caused by a variation in a TFT characteristic of the pixel by performing a calculation using display data of the pixel and obtained correction data of the pixel.08-20-2009
20090207105Organic light emitting diode display - An organic light emitting diode (OLED) display including a plurality of data lines to which a data voltage is supplied, a plurality of pairs of gate lines each comprising a first gate lines to which a first scan pulse is supplied and a second gate lines to which a second scan pulse partially overlapping the first scan pulse in an opposed phase is supplied, an OLED that emits light by current that flows between the high potential driving voltage source and the low potential driving voltage source, a driving device for controlling the current that flows through the OLED in accordance with a gate-source voltage applied between a gate electrode connected to a first node and a source electrode connected to the low potential driving voltage source, a storage capacitor connected between the first node and the second node, and a switch circuit.08-20-2009
20090284450LIGHT-EMITTING APPARATUS - When the degradation of a light-emitting device is detected and the luminance is compensated, because the lowering in current efficiency involved in the degradation varies for each luminance, use of the same compensation coefficient provides a luminance region in which the compensation is insufficient. A light-emitting apparatus includes a light-emitting device; a control unit for changing a display luminance of the light-emitting device depending on an input signal; a degradation detection unit for detecting a degradation amount of the light-emitting device; and a correction unit for correcting the input signal depending on a detected degradation amount, wherein the correction unit corrects the input signal depending on the degradation amount of the light-emitting device and the display luminance determined by the input signal.11-19-2009
20090256784INVERTER AND DISPLAY DEVICE INCLUDING THE SAME - An inverter includes a first PMOS transistor having a gate electrode coupled to a first input port, a first electrode coupled to a first node and a second electrode coupled to the gate electrode or a second power source; a second PMOS transistor having a gate electrode coupled to the first input port, and first and second electrodes coupled respectively to a first power source and an output port; a third PMOS transistor having a gate electrode coupled to the first node, first and second electrodes coupled respectively to the output port and a second input port; and a capacitor coupled between the first node and the output port.10-15-2009
20090256782Image display device and method of driving the same - An image display device includes a display portion formed by disposing pixel circuits in a matrix, and a signal line driving circuit and a scanning line driving circuit for driving the pixel circuits through signal lines and scanning lines of the display portion. The pixel circuit includes at least: a light emitting element; a drive transistor for current-driving the light emitting element by a drive current corresponding to a gate-to-source voltage thereof; a hold capacitor composed of either one capacitor or a plurality of coupling capacitors for holding therein the gate-to-source voltage; and a write transistor adapted to be turned ON/OFF in accordance with a write signal outputted from the scanning line driving circuit, thereby setting a voltage developed across terminals of the hold capacitor at a voltage of corresponding one of the signal line.10-15-2009
20090085843ELECTRONIC DEVICE, MANUFACTURING METHOD OF THE SAME AND ELECTRONIC APPARATUS - Disclosed herein is an electronic device including, an active matrix region, a short-circuit line, electrostatic protection elements, and a light-shielding film.04-02-2009
20090085844Display device, driving method of the same and electronic apparatus using the same - A display device includes a pixel array section and a driving section. The pixel array section includes scanning lines arranged in rows, signal lines arranged in columns, and pixels arranged in a matrix. Each of the pixels includes at least a sampling transistor, a drive transistor, a holding capacitance, and a light-emitting device. The sampling transistor has its control terminal connected to the scanning line and its pair of current terminals connected between the signal line and the control terminal of the drive transistor. The drive transistor has one of its pair of current terminals connected to the light-emitting device and the other of its pair of current terminals connected to a power source. The holding capacitance is connected between the control and current terminals of the drive transistor.04-02-2009
20090167645EL Display Device - A power source line 07-02-2009
20090046040DISPLAY DEVICE AND ELECTRONIC EQUIPMENT - Disclosed herein is a display device including a pixel array section; power supply lines; and auxiliary electrodes, wherein the pixels each have an auxiliary capacitance, and one of electrodes of the auxiliary capacitance is connected to the source electrode of the drive transistor, and an other electrode connected to the auxiliary electrode for each pixel.02-19-2009
20090201230Active Matrix Organic Electro-Optic Devices - This invention generally relates to active matrix organic electro-optic devices and to related display driving methods. In embodiments the invention relates to top-emitting OLED (Organic Light Emitting Diode) displays including additional circuitry which may be employed for display driving or other functions.08-13-2009
20090201232LIGHT EMITTING DISPLAY APPARATUS AND DRIVING METHOD THEREOF - A light emitting display apparatus, capable of protecting light emitting elements by preventing overcurrent from flowing into the elements, and a method of driving the light emitting display apparatus are disclosed. In one embodiment, the light emitting display apparatus comprises a pixel portion comprising a plurality of pixels for emitting light in response to a data signal and a scan signal, a data driver for generating and transmitting the data signal to the pixel portion; a scan driver for generating and transmitting the scan signal to the pixel portion, a timing controller for controlling the data driver and the scan driver, and a controller for detecting a current flowing through each of the pixels and blocking light emission of the pixel portion in case that the detected current is greater than a predetermined value.08-13-2009
20090201231EL DISPLAY DEVICE - An EL display device includes: a source driver circuit to output a video signal voltage; a gate driver circuit to select a pixel in a display screen; a first capacitor to maintain the video signal voltage; and a drive transistor to supply current to an EL element of a pixel. The video signal voltage is applied to the drive transistor to perform a predetermined operation, and written into the first capacitor. The video signal voltage maintained in the first capacitor is used to perform an offset cancel operation.08-13-2009
20080211744Organic light emitting display and driving circuit thereof - An organic light emitting display includes a first light emitting control driver electrically coupled to a clock line, a negative clock line, and an initial driving line, and adapted to output a first light emitting control signal via a first light emitting control line, a first pixel unit electrically coupled to the first light emitting control line, a second pixel unit electrically coupled to the first light emitting control line; and a third pixel unit electrically coupled to the first light emitting control line.09-04-2008
20110169720ORGANIC LIGHT EMITTING DISPLAY DEVICE - An organic light emitting display device that can prevent distortion of an image transmitted therethrough by preventing light scattering. The organic light emitting display device includes a substrate in which a plurality of transmitting regions and a plurality of pixel regions are defined. The plurality of pixel regions are spaced apart from each other by the transmitting regions. A passivation layer is formed in all the plurality of transmitting regions and the plurality of pixel regions. A first aperture is formed in a location on the passivation layer, which corresponds to an at least part of the plurality of transmitting regions; a plurality of pixel electrodes that are formed on the passivation layer and are disposed to overlap and cover the thin film transistors. An opposite electrode formed to face the plurality of pixel electrodes and to allow light to pass therethrough. An organic emission layer is interposed between the plurality of pixel electrodes and the opposite electrode to emit light.07-14-2011
20090109149Image display device - An image display device having a plurality of pixel, a plurality of signal lines for inputting an image voltage to each of the plurality of pixels, and a pixel selecting unit for selecting from the plurality of pixels a pixel into which the image voltage is to be written, in which each of the pixels has a light emitting device of a current driving-type, a driving transistor connected between a power line and the light emitting device, and a capacitance device having one end connected to a gate electrode of the driving transistor, the image voltage is input to the other end of the capacitance device during the writing period, an inclined wave voltage which changes a voltage level thereof according to time is input to the other end of the capacitance device during a light emission period following the writing period.04-30-2009
20090278769Digital picture frame system - A digital picture frame system includes a storage unit, a display unit, a control unit, a first port, a first user interface and a power supply unit. The control unit is electrically connected with the storage unit and the display unit to access the storage unit and deliver a picture to the display unit to display. The first port electrically connected to the control unit is used for electrically connecting to an external electronic device. The first user interface electrically connected to the control unit is used for sensing motion of the digital picture frame system or voice to operate the digital picture frame system. The power supply unit electrically connected to the control unit is used for providing a power required for the operation of the digital picture frame system. The above-mentioned digital picture frame system is operated by shaking or voice activation, in a preferred embodiment, further can process picture with special efficacy, therefore there are increased interaction and interest.11-12-2009
20090289875Electro-optical device and electronic apparatus - The invention provides an electro-optical device that has luminescent elements of a long lifetime by preventing oxygen or moisture from entering to luminescent layers or electrodes even in case of an electrode-optical device provided with a number of luminescent layers and an electronic apparatus provided with the electro-optical device. The invention can include an electro-optical device having first electrodes on a base body, a plurality of element areas including element layers including at least one functional layers disposed above the first electrodes, a second electrode formed above the element layers, a surrounding sections disposed on the base body so as to cover outer sides of the element layers included the element areas in the nearest proximity of the periphery of the base body, and a gas-barrier layer covering over the second electrode. Outer sides of the surrounding sections can be covered with the second electrode, and the gas-barrier layer can be in contact with the base body.11-26-2009
20090295689TWO AND THREE DIMENSIONAL VIEW DISPLAY - A display device (12-03-2009
20090295690Electronic circuit and panel having the same - Disclosed herein is an electronic circuit, including: a light emitting element, having diode characteristics, for emitting a light in accordance with a drive current; a sampling transistor for sampling a video signal; a driving transistor for supplying the drive current to the light emitting element; and a hold capacitor for holding therein a predetermined potential, the hold capacitor being connected to each of an anode side of the light emitting element, and a gate of the driving transistor; wherein a laminated portion of a first metallic layer serving as a gate of the sampling transistor, and a second metallic layer serving as a source of the sampling transistor is formed so as to have an area equal to or smaller than a predetermined area.12-03-2009
20090262050Display Device - A display device in which the current load of wirings are distributed and display variations due to voltage drop are suppressed. An active matrix display device of the invention comprises a first current input terminal, a second current input terminal, and a plurality of current supply lines extending parallel to each other. Each current supply line is connected to a plurality of driving transistors in a line. One end of each current supply line is connected to the first current input terminal via a first wiring intersecting with the current supply lines, and the other end thereof is connected to the second current input terminal via a second wiring intersecting with the current supply lines. Accordingly, a current is supplied to each current supply line from both the first and the second current input terminals. The first and the second current input terminals are provided separately from each other.10-22-2009
20090262049ORGANIC LIGHT-EMITTING SUBSTRATE, METHOD OF MANUFACTURING THE SAME, AND ORGANIC LIGHT-EMITTING DISPLAY DEVICE HAVING THE SAME - An organic light-emitting substrate includes a base substrate, a gate line, a data line, a bias line, an organic light-emitting diode, a switching transistor, a driving transistor and a repair line. The bias line is spaced apart from the gate line and the data line. The organic light-emitting diode includes a pixel electrode, a common electrode and an organic light-emitting part. The switching transistor is connected to the gate line and the data line. The driving transistor is connected to the bias line, the pixel electrode and the switching transistor. The repair line is formed from a pixel metal layer that is identical to the pixel electrode to be spaced apart from the pixel electrode, and is formed along the first direction to be overlapped with the gate line. Therefore, the repair line may repair electric defects of the gate line.10-22-2009
20090262046HIGH APERTURE RATIO PIXEL LAYOUT FOR DISPLAY DEVICE - A display device, pixel layout and method of forming the same is provided. The display device includes: a plurality of pixels formed in a pixel array area; and a power supply grid for distributing power to the pixels. Each pixel has a light emitting device and a plurality of transistors. The power supply grid includes a first group of power supply lines and a second group of power supply lines. The first group of power supply lines extend across the pixel array area. The second group of power supply lines extends across the pixel array area and electrically contacts the first group of power supply lines in the pixel array area. Each pixel is coupled to at least one power supply line in the first group of power supply lines and the second group of power supply lines.10-22-2009
20090102758ELECTRO-OPTICAL DEVICE - An electro-optical device includes first and second signal lines that extend in directions for intersecting each other on a component substrate, a pixel area in which a pixel electrode is disposed in correspondence with an intersection of the first and second signal lines, a signal output circuit that is disposed outside the pixel area and outputs a driving signal to the first signal line, and a connection wiring that connects the signal output circuit and the first signal line together. An outer peripheral edge of the pixel area has a curved portion or a bent portion in a portion facing the signal output circuit, and the signal output circuit includes a plurality of circuit blocks, and the circuit blocks are arranged along the curved portion or the bent portion of the portion facing the signal output circuit with deviated between adjacent circuit blocks in the direction of extension of the first signal line and/or the direction of extension of the second signal line.04-23-2009
20090295691Image display device - The present invention disposes a switch transistor between a driving transistor and a light emitting element, and sets the switch transistor in an off state during a non-emission period. Thereby, a variation in threshold voltage of the driving transistor is corrected while destruction of the light emitting element due to a reverse bias is avoided.12-03-2009
20130100002ORGANIC EL DISPLAY DEVICE - An organic electro-luminescence (EL) display device including: above a substrate, scanning lines; data lines; emissive pixels disposed near cross-points of the scanning lines and the data lines; and power supply lines for supplying currents to the emissive pixels, wherein the emissive pixels each have: a switching thin film transistor having a gate to which a scan signal is supplied via one of the scanning lines; a current control thin film transistor for controlling a current to be applied to the emissive pixel, in accordance with the voltage determined based on a data voltage supplied from one of the data lines via the switching thin film transistor; and an organic EL element to which a current is supplied from one of the power supply lines via the current control thin film transistor, the organic EL element including a lower electrode, an organic light-emissive layer, and an upper electrode.04-25-2013
20100220039DC-DC CONVERTER AND ORGANIC LIGHT EMITTING DISPLAY USING THE SAME - A DC-DC converter generates a first power and a second power for driving pixels in an organic light emitting display, such that the voltages of the first power and the second power are substantially independent of the voltage from a power supply or a battery. A voltage detector detects the voltage from the power supply, and a booster circuit and an inverter circuit respectively boost and invert the voltage from the power supply to generate and output the first and the second powers, respectively, for the pixels. A PWM controller controls the booster circuit and the inverter circuit to control voltages of the first power and the second power. The booster circuit is adapted to reduce the voltage from the power supply to be lower than the voltage of the first power when the voltage from the power supply detected by the voltage detector is higher than a reference voltage.09-02-2010
20100039355Speaker apparatus providing with visual screen - A speaker apparatus having a video screen function is disclosed, in which a cone paper of a conventional speaker is substituted with a flexible OLED for thereby displaying various images and video sources in sync with an audio source. A flexible OLED is provided for displaying a video source and an externally upgraded video source in a speaker apparatus which comprises a sound output apparatus having a sound coil, a magnet, and a damper, and an electric circuit apparatus of the sound output apparatus.02-18-2010
20080238835Display apparatus and driving method therefor - A display apparatus disclosed herein includes a plurality of pixel circuits, each having a plurality of switches configured to receive a driving signal of a predetermined period and to be controlled for opening and closing operation by the driving signal, a drive circuit configured to control the open/closed state of the switches, being operable to scan the pixel circuits and open and close the switches in periods independent of each other.10-02-2008
20080238829COLOR ELECTRO-LUMINESCENT DISPLAY WITH IMPROVED EFFICIENCY - A full-color electroluminescent display with improved efficiency and increased color gamut that includes substantially complementary yellow and blue light-emitting elements, the chromaticity coordinates of which define the endpoints of a line that intersects a Planckian locus within the interval 0.175<=u′<=0.225 within the Commission Internationale de l'Eclairage (CIE) 1976 u′v′ chromaticity space. Also included in the display is a green light-emitting element of spectrum having a dominant wavelength between 500 nm and 540 nm and a full width, half maximum spectral bandwidth of 50 nm or less; and a red light-emitting element.10-02-2008
20090002282EL display panel, power supply line drive apparatus, and electronic device - Disclosed herein is an electroluminescence display panel including: a pixel circuit; a signal line; a scan line; a drive power supply line; a common power supply line; a power supply line drive circuit; a high-potential power supply line; and a low-potential power supply line.01-01-2009
20090002281ACTIVE MATRIX ORGANIC ELECTROLUMINESCENCE DISPLAY AND ITS GRADATION CONTROL METHOD - An active matrix organic electroluminescence(EL) display comprises plural selection and data lines mutually crossed, and a pixel circuit connected to the selection and data lines and having switching devices, a storage capacitor and an organic EL device. In a part of a period that the pixel circuit connected to the selection line is being selected, an applied first data signal is held as a voltage at the storage capacitor of the selected pixel circuit. After the selection signal applying, a first current according to the held voltage is supplied to the organic EL device, and this emits light at luminance according to the first current. In another part of the period, a second current according to an applied second data signal is supplied to the organic EL device of the selected pixel circuit, and this emits light at luminance according to the second current.01-01-2009
20090002283Organic electroluminescent device - An organic electroluminescent device comprises: a substrate; a display unit located on the substrate and including a plurality of subpixels; a sealing region located at the outer periphery of the display unit and defined to form a sealing member; and a plurality of wiring lines connected to the display unit and disposed on the lateral side of the display unit, more than a part of the plurality of wiring lines located in a sealing member forming region, among the plurality of wiring lines, has a narrow line width which is 10 to 50% of that of the wiring lines located in other regions.01-01-2009
20090002280ORGANIC LIGHT EMITTING DEVICE AND METHOD OF DRIVING THE SAME - An organic light emitting device and a method of driving the same are disclosed. The organic light emitting device includes a display unit including a pixel including a plurality of subpixels, a scan driver connected to the display unit to supply a scan signal to the pixel, a data driver connected to the display unit to supply a data signal to the pixel, a switch unit positioned between one output terminal of the data driver and the subpixel, and a controller supplying a control signal for controlling turn-on/off operations of the switch unit to the switch unit. The switch unit includes a plurality of switches. One of the plurality of switches is turned on during an n-th scan period, maintained in a turn-on state, and turned off during an (n+1)-th scan period.01-01-2009
20100201609ORGANIC LIGHT EMITTING DIODE DISPLAY DEVICE - An organic light emitting diode (OLED) display device including a first substrate, OLEDs disposed on the first substrate, a second substrate facing the first substrate, and reflective layers disposed on the encapsulation substrate. The reflective layers are offset with respect to the OLEDs, so that the OLED display device can be used as a mirror when the display device does not display an image.08-12-2010
20080266215Organic light emitting display and driving method thereof - Disclosed is an organic light emitting display of improved an image quality. The organic light emitting display includes a frame memory for storing a data to correspond to a write clock and outputting the data stored according to a read clock; a signal generation unit for supplying the read clock; a data driver for converting the data, supplied from the frame memory, into a data signal and supplying the converted data signal to data lines; a scan driver for supplying a scan signal to scan lines; and pixels arranged near crossing points between the scan lines and the data lines, wherein the read clock has a higher frequency than the write clock.10-30-2008
20090167644RESETTING DRIVE TRANSISTORS IN ELECTRONIC DISPLAYS - A method for resetting drive transistors associated with subpixels in an electroluminescent display, comprising providing an electroluminescent display having a plurality of subpixels, each subpixel including an electroluminescent device and a drive circuit having a drive transistor for providing current through its associated electroluminescent device; providing a separate aging signal for each subpixel during operation of the electroluminescent display after a predetermined operating time period by responding as a function of the current passing through each of the subpixels or as a function of a voltage associated with each drive circuit; comparing each of the separate aging signals with a corresponding threshold level to produce a separate staleness signal for each subpixel representing whether or not the associated drive transistor should be reset; and resetting the associated drive transistors in response to staleness signals that indicate such drive transistors should be reset.07-02-2009
20090167648Luminescence display and driving method thereof - A OLED display and a driving method thereof are disclosed. The OLED display includes: an OLED display panel including: data lines to which data voltages are supplied; gate lines to which a gate voltage is sequentially supplied; luminescence control lines to which a luminescence control voltage is sequentially supplied, a driving power line to which a driving voltage is supplied; a compensation power line to which a compensation voltage having a first level and a second level different from the first level are supplied; a plurality of pixel cells each respectively in pixel areas defined by the data lines and the gate lines; a data driver having output lines whose number is smaller than the number of the data lines; and a demultiplexer unit formed between the data driver and the OLED display panel, the demultiplexer unit supplying the data voltages from the output lines to the data lines, wherein each of the pixel cells includes: a light emitting element; and a pixel driver that supplies a current corresponding to a corresponding one of the data voltages to the light emitting element based on the corresponding data voltage, the gate voltage, the luminescence control voltage, the driving voltage and the compensation voltage having the first level and that turns off the light emitting element when the compensation voltage has the second level.07-02-2009
20080231560Display device - A display device includes: a pixel array unit with pixel circuits disposed in matrix form, the pixel circuit including a driving transistor, an electro-optic element, a storage capacitor, and a sampling transistor, with the electro-optic element emitting light by generating a driving current based on information stored in the storage capacitor at the driving transistor to be applied to the electro-optic element; and a control unit, of which the output stage includes a buffer transistor, to output a pulse signal for driving the pixel array unit from the buffer transistor; wherein the pixel array unit and the control unit are formed with long laser beam irradiation to be scanned in the vertical direction or horizontal direction; and wherein with the control unit, the size of the buffer transistor is equal to or greater than the pixel pitch in the scanning direction of the laser beam.09-25-2008
20090167647Display device and electronic apparatus - Disclosed herein is a display device including a pixel array part configured to include scan lines disposed along rows, signal lines disposed along columns, and pixels that are disposed at intersections of the scan lines and the signal lines and arranged in a matrix, each of the pixels having at least a sampling transistor, a drive transistor, a switching transistor, a hold capacitor, and a light-emitting element; and a drive part configured to include a scanner and a driver, the driver supplying a video signal to the signal lines along the columns.07-02-2009
20080284689DISPLAY FOR MULTI-FUNCTION KEYPAD AND ELECTRONIC DEVICE HAVING THE SAME - A display for a multi-function keypad and an electronic device including the display. The display for a multi-function keypad includes: a display panel having a plurality of display regions arranged in a matrix pattern and a non-display region surrounding the plurality of display regions; a circuit board on the display panel and including a plurality of openings corresponding to the display regions, and a plurality of keys near peripheral edges of the openings and corresponding to the non-display region; and a pad on the circuit board and including a plurality of transparent windows corresponding to the openings, and a plurality of pressing units near peripheral edges of the transparent windows and corresponding to the plurality of keys.11-20-2008
20080284691Organic light emitting diode display device and driving method thereof - An organic light emitting diode display device and a driving method thereof are disclosed. The organic light emitting diode display device according to an embodiment of the invention comprises a display panel including a plurality of data lines, a plurality of gate line pairs crossing the data lines, and a plurality of light emitting cells which include an organic light emitting diode device, first and second cell driving circuits for alternately driving the organic light emitting diode device; a data voltage generator supplying a data voltage of a first polarity to the data lines; a compensation voltage generator supplying a compensation voltage of a second polarity to the data lines; and a scan driver for sequentially supplying scan pulses to the gate line pairs, wherein the first and second cell driving circuits are alternately supplied with the data voltage and the compensation voltage in response to the scan pulses to alternately driven the organic light.11-20-2008
20080284690ORGANIC LIGHT EMITTING DISPLAY DEVICE - Disclosed is an organic light emitting display device. The exemplary organic light emitting display device according to an exemplary embodiment of the present invention comprises a substrate, a displaying area located on the substrate, the displaying area comprising a plurality of sub pixels, each of which has an emission area; and a dummy area located on an area of the substrate other than the displaying area, the dummy area comprising a plurality of dummy patterns, wherein the dummy pattern contains the same material as that of the emission area.11-20-2008
20080284688Method for Driving, and a Circuit of an Element of an Illuminated Display - In illuminated displays with lighting elements which are driven by means of a control voltage, the voltage drop on a supply line, which supplies two or more lighting elements, is compensated for. The currents for all of the light elements which are connected to a supply line, and the known resistances are used to calculate the potential profile of the supply line for this purpose. The control voltages for the light elements are changed such that the actual potential on the supply line for each element is taken into account. Fluctuations in the brightness of the illuminated display resulting from potential differences are avoided. One element of an illuminated display has a current control means, a signal retaining means, a light emitting means and means for interrupting the current flow through the light emitting means. The control voltage is adjusted with the current flow interrupted, so that no potential differences exist on the supply line. The signal retaining means hold the control voltage relative to the potential on the line at the respective position of the lighting element. An illuminated display has adjustable voltages for the supply lines. The voltages are chosen to be sufficiently high that the minimum required voltage for setting the desired currents through the lighting elements is achieved.11-20-2008
20090033600Light Emitting Device and Method of Driving the Light Emitting Device - A light emitting device that achieves long life, and which is capable of performing high duty drive, by suppressing initial light emitting element deterioration is provided. Reverse bias application to an EL element (02-05-2009
20080291138Display device, driving method thereof, and electronic device - Disclosed herein is a display device including: a pixel array unit; and a driving unit; wherein the pixel array unit includes first scanning lines and second scanning lines in a form of rows, signal lines in a form of columns, and pixels in a form of a matrix, the pixels being disposed at parts where the first scanning lines and the signal lines intersect each other, each pixel includes a drive transistor of an N-channel type, a sampling transistor, a switching transistor, a retaining capacitance, and a light emitting element, the driving unit includes a write scanner for sequentially supplying a control signal to each first scanning line, a drive scanner for sequentially supplying a control signal to each second scanning line, and a signal selector for alternately supplying a signal potential as a video signal and a predetermined reference potential to each signal line.11-27-2008
20080291137DRIVER DEVICE FOR AN ORGANIC EL PASSIVE MATRIX DEVICE - A driver device is provided for an organic EL passive matrix device that achieves reduction in power consumption and suppression of uneven luminance at a low cost. The driver device includes a column driver, a first row driver, a second row driver, a memory, and a power supply/control signal input. An anode of each organic EL element of the organic EL passive matrix device is connected to an output of the column driver, and cathodes in a row are connected together to an input of the row driver. In the driver device, the column driver is disposed in the vicinity of one peripheral side of the IC, and each of the row drivers is disposed in the vicinity of one of the two peripheral sides adjacent to the peripheral side at which the column driver is disposed. These three drivers are packaged on a single integrated chip (IC) chip.11-27-2008
20080291136DISPLAY DEVICE, VIDEO SIGNAL PROCESSING METHOD, AND PROGRAM - There is provided a display device provided with a display portion, in which pixels having a light-emitting element for self-light-emitting, and a pixel circuit for controlling a current applied to a light-emitting element according to a voltage signal are arranged in a matrix, provided with an average luminance calculation portion calculating an average of luminance of an input video signal, and a light-emitting time setting portion setting a real duty defined every one frame by which light-emitting time for light emitting of the light-emitting element according to a calculated average luminance, wherein the light-emitting time setting portion sets the real duty in such a way that a light-emitting amount defined by a standard duty set beforehand and a maximum luminance among those of a video signal, and a light-emitting amount defined by a real duty to be set and an average luminance become the same as each other.11-27-2008
20080291135ORGANIC LIGHT EMITTING DEVICE - An organic light emitting device is disclosed. The organic light emitting device includes a display unit including a plurality of subpixels, a host memory unit that stores image data received from the outside by the frame, a data adjusting unit that fetches the image data frames stored in the host memory unit by the bit and converts one frame into a plurality of subfields and one display memory unit that stores the image data frame converted into the plurality of subfields by the data adjusting unit. When the data adjusting unit converts the frame into the plurality of subfields, the data adjusting unit inserts a black time into at least one of the plurality of subfields.11-27-2008
20080303755ORGANIC LIGHT EMITTING DISPLAY DEVICE AND MOTHER SUBSTRATE THEREOF - An organic light emitting display device capable of being inspected in a mother substrate unit, and a mother substrate of an organic light emitting display device including a plurality of organic light emitting display devices including data lines and scan lines; and scribing lines arranged between the organic light emitting display devices in a row direction or a column direction and partitioning regions of the organic light emitting display devices, wherein the data lines of the organic light emitting display device formed inside a region defined by first to fourth scribing lines are electrically coupled with a first pin-contact unit formed outside the first scribing line, and the scan lines of the organic light emitting display device formed inside a region defined by the first to fourth scribing lines are electrically coupled with a second pin-contact unit formed outside the second or third scribing lines, which are orthogonal to the first scribing line and parallel with each other.12-11-2008
20080246700Display Apparatus - A display apparatus, that includes current driving type luminescent elements, has a driving system that takes the conduction types of TFTs to control the emission of the luminescent elements into consideration. In order to reduce driving voltage and improve display quality simultaneously, the arrangement is provided such that if the second TFT which performs the “on-off” function of the current for the luminescent element is of an N channel type, the potential of the common power supply line (“com”) is lowered below the potential of the opposite electrode (“op”) of the luminescent element to obtain a higher gate voltage (“Vgcur”). In this case, if the first TFT connected to the gate of the second TFT is of a P channel type, when using the potential of the potential-holding electrode (“st”) at the “on” state as a reference, potentials of the scanning signal (“Sgate”) at the lower potential and the common power supply line (“com”) are rendered of the same polarities with respect to this potential of the potential-holding electrode (“st”). Therefore, the potential of the image signal (“data”) to turn “on” can be shifted within the range of the driving voltage in the display apparatus in the direction to reduce resistances at the “on” states of the first TFT and the second TFT to reduce driving voltage and improve display quality.10-09-2008
20080211745Organic light emitting display and driving circuit thereof - A driving circuit including a plurality of light emitting control drivers includes an input terminal coupled to an initial driving line or a light emitting negative control line of a previous light emitting control driver, a first clock terminal and a second clock terminal that are electrically coupled to a first clock line and a first negative clock line that are phase-inverted, or a second clock line and a second negative clock line, respectively, and an output terminal and a negative output terminal adapted to generate an output signal and a negative output signal when receiving an input signal, a clock signal and a negative clock signal via the input terminal, the first clock terminal and the second clock terminal, respectively.09-04-2008
20080238833LIGHT EMITTING DISPLAY DEVICE - An inspection display signal is supplied to a pixel to be inspected so that a light emitting element operates, and a current flowing through the light emitting element is detected. An element current detection signal having a number of bits which is less than a number of bits of a display data signal generated to be supplied to each pixel based on a video signal is stored in a memory according to a characteristic such as a change range and precision of the obtained element current and is used for variation correction. For example, only bit positions in which a value may change are stored in consideration of the change allowance range of the ON-current detection signal, so that a storage capacity to the memory is reduced without affecting correction precision of variation.10-02-2008
20080316152Transistor circuit, display panel and electronic apparatus - A transistor circuit is provided including a driving transistor where conductance between the source and the drain is controlled in response to a supplied voltage, and a compensating transistor where the gate is connected to one of the source and the drain, the compensating transistor being connected so as to supply input signals to the gate of the driving transistor through the source and drain. In a transistor circuit where conductance control in a driving transistor is carried out in response to the voltage of input signals, it is possible to control the conductance by using input signals of a relatively low voltage and a variance in threshold characteristics of driving transistors is compensated. With this transistor circuit, a display panel that can display picture images with reduced uneven brightness is achieved.12-25-2008
20080316150ORGANIC LIGHT EMITTING DIODE DISPLAY DEVICE - An organic light emitting diode (OLED) display device minimizes a threshold voltage variation of a drive transistor in a pixel circuit, increases an aperture ratio, and minimizes power consumption by applying a same range of data voltages to respective pixels. The OLED display device includes a first capacitor electrically connected between a first node and a power supply line; and a second capacitor electrically connected between the first node and a second node, wherein capacitances of the first and second capacitors are different from each other and adjustable.12-25-2008
20080316151Electro-optical apparatus and method of driving the electro-optical apparatus - The invention provides an electro-optical apparatus that can prevent a shift in a threshold voltage of an amorphous silicon transistor while driving an organic EL device in a pixel circuit including the amorphous silicon transistor. A characteristic-adjustment circuit can be provided, which has a function of returning a shift in the threshold voltage of the amorphous silicon transistor included in the pixel circuit to the original state.12-25-2008
20080238834ELECTROLUMINESCENCE DISPLAY APPARATUS - During a blanking period of a video signal, an element driving transistor for controlling a drive current supplied to an EL element is operated in its saturation region to thereby set the EL element to an emission level, and a current flowing through the EL element at that time is detected. Each current detector includes a current detection amplifier and a successive approximation type AD converter, and a DA converter of the successive approximation type AD converter is commonly shared among a plurality of the AD converters. With this arrangement, sufficient AD converting speed can be attained while using a simple structure to execute current detection for correcting display variations.10-02-2008
20080303754ELECTROLUMINESCENCE DISPLAY APPARATUS - In performing a display in accordance with a video signal, a display signal for inspection is supplied to a pixel within a predetermined inspected row to operate an EL element therein and to thereby detect a current that flows through the EL element. The current detection data is stored in a volatile primary memory. In accordance with data obtained in this manner, a variation correcting section sequentially corrects data signals to be supplied to the respective pixel. At the time of turning on power, the variation correcting section performs the correction using the current detection data saved in a secondary memory. With this arrangement, it is possible to execute display variation correction from immediately after turning on power, and it is also possible to execute real-time correction.12-11-2008
20080272989Light Emission Panel Display Device - The light emission panel display device according to the present invention has a scan drive circuit (11-06-2008
20080246697Organic light emitting display - An organic light emitting display includes: a first shift register which is electrically coupled with a clock line, a negative clock line, and an initial drive line; a first NAND gate which is electrically coupled with the initial drive line, a first light emitting control line which is an output line of the first shift register, and a first clock line; a second NAND gate which is electrically coupled with the initial drive line, the first light emitting control line, and a second clock line; a first pixel part which is electrically coupled with a first scan line which is an output line of the first NAND gate; a second pixel part which is electrically coupled with a second scan line which is an output line of the second NAND gate; a third pixel part which is electrically coupled with the first scan line; and a fourth pixel part which is electrically coupled with the second scan line.10-09-2008
20080204377Organic EL display device - The present invention realizes a high-quality display by optimizing a light emitting efficiency among pixels which differ in light emitting characteristic from each other by enabling to apply voltages corresponding to pixels which differ in color from each other while suppressing brightness irregularities attributed to a voltage drop of a power source line. Only power source lines Lv of sub pixels B and a bypass line Lb are connected with each other in a first row (X08-28-2008
20080272992Organic electro-luminescent display device and method of manufacturing the same - An organic electroluminescence device which includes a power line formed on the same layer as source and drain electrodes of a thin film transistor (TFT) and formed on a substrate on which the TFT is formed, a first insulating layer formed on the TFT, a lower electrode that electrically connected to one of the source and drain electrodes of the TFT and disposed on the first insulating layer, a first auxiliary power line and a second auxiliary power line formed on the same layer as the lower electrode in the second insulating layer, a second insulating layer formed on an edge portion of the lower electrode and not formed on the second auxiliary power line, wherein an opening that exposes a portion of the lower electrode is formed, an organic film formed on a substrate; and an upper electrode formed on the substrate.11-06-2008
20080272990METHOD OF DRIVING A PIXEL AND LIQUID CRYSTAL DISPLAY PANEL IMPLEMENTING THE METHOD - The invention provides methods of driving a pixel and liquid crystal display panels implementing the methods. The invention generates an ideal data voltage corresponding to a gray level of the pixel, and generates a compensated data voltage corresponding to the gray level according to a polarity change of the pixel. The charging period of the pixel is divided into a first charging time segment and a second charging time segment. The invention charges the pixel by the compensated data voltage during the first charging time segment, and charges the pixel by the compensated data voltage during the second charging time segment.11-06-2008
20100141565CONTROL HEAD WITH ELECTROLUMINESCENT PANEL IN LAND MOBILE RADIO - An exemplary land mobile radio control head and method are provided. In one embodiment, the control head has the capability to utilize halo light of the control head to implement a multi-function indicator that communicates a state of the land mobile radio. In another embodiment, the control head has the capability to provide buffer images constructed from data received from the land mobile radio into a video stream for rendering on an electroluminescent display. In another embodiment, the control head provides the capability for a user to modify a configuration stored on the land mobile radio that defines one of several display modes to be utilized in generating data for use in forming images to be rendered on an electroluminescent display.06-10-2010
20100141564Pixel and organic light emitting display device using the same - A pixel includes an organic light emitting diode, a second transistor configured to control a connection between a first power source and the organic light emitting diode, the second transistor having a gate electrode, a first transistor configured to control a connection between the gate electrode of the second transistor and a data line, the first transistor having a gate electrode coupled to a scan line, a third transistor configured to control a connection between the organic light emitting diode and a second electrode of the second transistor, the third transistor having a gate electrode coupled to a light emitting control line, a first capacitor having a first electrode coupled to the gate electrode of the second transistor and having a second electrode coupled to a first electrode of the second transistor, and a second capacitor having a first electrode coupled to the gate electrode of the second transistor.06-10-2010
20110006972ORGANIC EL DISPLAY DEVICE - A solid-sealing type organic EL display device is provided that can prevent water permeation through a defect generated in a passivation film which covers an extraction line in a peripheral sealing region thereby making it possible to prevent deterioration of an organic EL layer. An extraction line that couples a wiring line in a display region with a terminal part passes a peripheral sealing region. The extraction line is covered with an inorganic passivation film in the peripheral sealing region. The extraction line has a first flexure part and a second flexure part in the peripheral sealing region thereby making it possible to prevent a void and a crack generated in the inorganic passivation film from penetrating the peripheral sealing region. Consequently it is possible to prevent water permeation from outside and to prevent the deterioration of the organic EL layer.01-13-2011
20090179835ELECTRO-OPTICAL DEVICE, DRIVING METHOD OF ELECTRO-OPTICAL DEVICE, AND ELECTRONIC APPARATUS - An electro-optical device includes a pixel column, a first and second data lines, and a first and second output circuits. The pixel column including pixel portions are arranged in a first direction. The first and second data lines extend in the first direction. The first and second output circuits output data voltages to different pixel portions of the pixel column through the first and second data lines, respectively.07-16-2009
20120068915LIGHT EMITTING DEVICE AND ELECTRONIC APPARATUS - To solve degradation with time of a light emitting element by a new method. When the potential of an electrode of a monitor pixel is sampled and fed back to a light emitting pixel, degradation with time of a light emitting element can be corrected. In addition, when a writing period is divided into a plurality of periods during which a plurality of rows are selected, a gray scale can be expressed by a weighted light emitting period. That is to say, a light emitting device of the invention has a plurality of monitoring light emitting elements, a monitor line for monitoring changes in the potentials of electrodes of the plurality of light emitting elements, and a means for preventing, when any one of the plurality of monitoring light emitting elements is short-circuited, a current from flowing to the short-circuited monitoring light emitting element through the monitor line.03-22-2012
20090160741ELECTRO-OPTIC DEVICE, AND TFT SUBSTRATE FOR CURRENT CONTROL AND METHOD FOR MANUFACTURING THE SAME - To provide an electro-optic apparatus which can directly control alternating current, output significantly high-frequency alternating current, stably output a large amount of power, and reduce manufacturing cost, as well as a TFT substrate for current control and the method for producing the same.06-25-2009
20090179831Display Device - Any one of a write scanning line, a power source supply line, and a video signal line is structured as a subsidiary wiring disposed in the same layer as that having a lower electrode disposed therein. The subsidiary wiring is used in the power source supply line through which a power source drive pulse to be pulse-driven is transmitted, or other wirings (such as the write scanning line and the video signal line).07-16-2009
20090179834PROCESSING METHOD OF FLAT PANEL DISPLAY APPARATUS - A processing method of a flat panel display apparatus in which a cathode panel having electron emitting regions and an anode panel having phosphor regions and an anode electrode are joined is provided. A predetermined voltage is applied to each electron emitting region, thereby allowing electrons to be emitted therefrom. In a predetermined row, initial electron emitting states in the electron emitting regions are measured. After that, a voltage higher than that of the electron emitting region in a row showing the low initial electron emitting state is applied to the electron emitting region in the row showing the high initial electron emitting state for a predetermined time, thereby performing aging.07-16-2009
20090179832Organic electroluminescence display device - An organic electroluminescence display device is provided having a display section including a plurality of pixels arranged in a matrix; and a detection section for detecting a luminance characteristic of an OLED element in each of the pixels. The detection section includes a first path for allowing a detected characteristic value to pass therethrough and a second path for attenuating the detected characteristic value. A first switch is provided for the first path whereas a second switch is provided for the second path, the second switch being opened when the first switch is closed. The detected characteristic value having passed through any one of the first path and the second path is input to a same analog-to-digital converter to be converted into a digital quantity.07-16-2009
20100295759ORGANIC ELECTROLUMINESCENCE DISPLAY DEVICE - A solid-sealed organic electroluminescence display device is provided with means of preventing the occurrence of a dark spot in the market, due to the degradation of an organic EL light emitting layer by water entering from a pinhole of a sealant. In order to prevent the degradation of the organic EL layer by water, a first inorganic film, an organic flattening film, and a second inorganic film are formed on an upper electrode. Water entering from the pinhole in the second inorganic film diffuses into the organic flattening film, and degrades the organic EL layer in several months, resulting in a defect in the market. In order to prevent this, a material capable of reacting with oxygen or water and exhibiting color is added to the organic flattening film. Then, the defective organic electroluminescence display device is picked up and eliminated prior to delivery to the market.11-25-2010
20090128457ORGANIC ELECTROLUMINESCENT DISPLAY PANEL AND METHOD FOR MANUFACTURING THE SAME - The present invention provides an organic electroluminescent display panel that is resistant to deterioration by outgas and to light emission problems attributable to mask contact, and a method for manufacturing this panel. The organic electroluminescent display panel includes a substrate, a first display electrode formed on the main face of the substrate and having one or more pixel light-emitting regions, an organic functional layer that is formed on the first display electrode and includes at least one organic material layer, a mask spacer provided near the organic functional layer, and a second display electrode formed on the organic functional layer. The mask spacer is made of the same material as any one of the organic material layers and has a top face located higher than the position of the second display electrode, when measured from the main face of the substrate.05-21-2009
20090128458ORGANIC LIGHT EMITTING DIODE DISPLAY - Disclosed is an organic light emitting device which includes a first pixel displaying red, a second pixel displaying green, a third pixel displaying blue, and a fourth pixel displaying blue and forming a dot along with the first pixel, the second pixel, and the third pixel. The first to fourth pixels include a switching element and an organic light emitting element connected to the switching element, and the sum of the areas of the first to fourth pixels is substantially the same as the area of the dot.05-21-2009
20090184897ELECTROPHORETIC DISPLAY PANEL DRIVING METHOD AND ELECTROPHORETIC DISPLAY PANEL - An electrophoretic display panel includes an element substrate, a counter substrate, and an electrophoretic display layer interposed between the element substrate and the counter substrate. The element substrate includes a first data line set including plural data lines, second data line sets each including plural data lines branched from each of the plural data lines of the first data line set, plural scanning lines, and plural pixel electrodes. The plural pixel electrodes are disposed at locations where the plural data lines of the second data line sets intersect with the plural scanning lines. The counter substrate includes plural common electrodes, and one or more common electrodes is disposed opposite the plural pixel electrodes corresponding to one of the second data line sets.07-23-2009
20090184899Organic light emitting display device - An organic light emitting display capable of minimizing the voltage drop of pixel power sources supplied to an organic light emitting display panel, contemplates an organic light emitting display panel including a pixel unit on which an image is displayed, and a plurality of first and second power source pads provided at two or more edges outside the pixel unit in order to receive first and second pixel power sources in at least two different directions, a plurality of tape carrier packages (TCP) electrically coupled to the organic light emitting display panel and including driving ICs for driving the organic light emitting display panel and power source lines for transmitting the first and second pixel power sources to the first and second power source pads, and driving boards electrically coupled to the TCPs in order to supply control signals for controlling the driving ICs and the first and second pixel power sources to the TCPs.07-23-2009
20090140955LIGHT-EMITTING ELEMENT AND DISPLAY DEVICE - A light-emitting element that comprises a light emission layer that is deposited between first and second electrodes that lie opposite one another in parallel, an organic semiconductor layer that is deposited between the light emission layer and the first electrode, and an auxiliary electrode that is disposed via an insulation layer on the opposite side of the face of the first electrode opposite the second electrode, the light-emitting element further comprising a third electrode that is disposed inside the organic semiconductor layer.06-04-2009
20090184898Electroluminescent display panel and electronic apparatus - An electroluminescent display panel has pixel circuits for the active matrix driving system. Each pixel circuit has a thin-film transistor in which a portion of a pattern of a metal wiring material above the channel layer of the thin-film transistor is so laid out as to shield the channel region of the thin-film transistor.07-23-2009
20090140958INFORMATION PROCESSING APPARATUS - An information processing apparatus includes a main display composed of an organic electronic luminescent including a light emitting layer and configured to display at least one instruction information in a first display area of a standby screen, and a control unit configured to perform such a control that an illumination time taken for transiting a lighting state of the main display from a first state to a second state is set, whether the illumination time elapses after the lighting state is set in the first state is determined, and when determined that the illumination time elapses after the lighting state is set in the first state, the lighting state is set from the first state to the second state, and in synchronism with this transition to the second state, the display of the instruction information displayed in the first display area on the main display is deleted.06-04-2009
20090015522ACTIVE MATRIX-TYPE DISPLAY DEVICE - When performing gradation expression using a time division driving method, an operational frequency of a driving circuit is suppressed, and non-light emitting time is eliminated to increase the light emitting time. Each of a number of pixel circuits includes a light emitting element, a driver element for turning on or off a driving current of the light emitting element, a switching element for controlling connection of a gate electrode of the driver element with a signal line, and a capacitance to which a signal voltage supplied from the signal line to the gate electrode of the driver element is written.01-15-2009
20090015521ACTIVE MATRIX DISPLAY DEVICES - An active matrix display device stores a transistor drive voltage on a storage capacitor (01-15-2009
20090015523Organic Electroluminescence display device - Provided is an organic electroluminescence display device, in which when center deviations in film formation of organic electroluminescence layers in an arrangement direction of a sub-pixel aperture corresponding to a red light, a sub-pixel aperture corresponding to a green light, and a sub-pixel aperture corresponding to a blue light are denoted by LER(X), LEG(X), and LEB(X) and the center deviations in the film formation of the organic electroluminescence layers in a direction perpendicular to the arrangement direction are denoted by LER(Y), LEG(Y), and LEB(Y), any one of the following formulae is satisfied: LEG(X)≦LEB(X); LEG(X)≦LER(X); LEG(Y)≦LEB(Y); and LEG(Y)≦LER(Y).01-15-2009
20090243979PIXEL AND ORGANIC LIGHT EMITTING DISPLAY USING THE SAME - A pixel is provided including an OLED having anode and cathode electrodes. A second transistor controls current supplied from a first power supply to a second power supply via the OLED. A first transistor is coupled between a gate electrode of the second transistor and a data line and is configured to turn on when a scan signal is supplied to a scan line. A first capacitor is coupled between the first power supply and the gate electrode. A second capacitor is coupled between the anode electrode and the gate electrode. A fourth transistor is coupled between the second capacitor and the anode electrode and is configured to turn on when a control signal is supplied to a control line. A third transistor is coupled between the second transistor and the anode electrode and is configured to turn off when a signal is supplied to a light emitting control line.10-01-2009
20090051627DISPLAY METHOD OF EMISSION DISPLAY APPARATUS - Sticking of a Pixel is suppressed to improve the life of a display panel. In an emission display apparatus with a display panel in which a plurality of pixels each having at least one subpixel are disposed. A first display method of emitting light with only a pixel P(i,j) serving as an emission center and a second display method of allocating luminance of the pixel P(i,j) serving as an emission center to nearby pixels surrounding the pixel are combined in a controllable manner. A high-resolution mode with a high ratio of the first display method and a long-life mode with a high ratio of the second display method are switched therebetween depending on a spatial change or time change of image input data, an emission time, a degradation rate, a temperature, an emission luminance, and a display time.02-26-2009
20090167646Display device and electronic device - The present invention provides a display device includes: a pixel array section including a set of pixels arranged in a form of a matrix; and a driving section for driving the pixel array section.07-02-2009
20090073093Display Device and Electronic Apparatus - According to one feature of the invention, a display device comprises a pixel including a first sub-pixel having a first light-emitting element and a second sub-pixel having a second light-emitting element, a first source driver connected to a first source line included in the first sub-pixel, and a second source driver connected to a second source line included in the second sub-pixel. The first sub-pixel and the second sub-pixel are provided over one surface of a light-transmitting substrate, and a first display region using the first sub-pixel over one surface of the substrate and a second display region using the second sub-pixel over the opposite surface the substrate are provided. Accordingly, it is possible to provide a display device that realizes sophistication and a high added value, which includes a display region in each of one and the opposite sides.03-19-2009
20090096722ELECTROPHORETIC DISPLAY DEVICE, ELECTRONIC APPARATUS, AND METHOD OF DRIVING ELECTROPHORETIC DISPLAY DEVICE - An electrophoretic display device includes a common electrode and a plurality of pixel electrodes, and a disperse system containing electrophoretic particles, that is held between the common electrode and the plurality of pixel electrodes,. The electrophoretic display device includes a switching transistor and a control portion. The switching transistor supplies a corresponding one of the pixel electrodes with a low electric potential signal or a high electric potential signal supplied from a signal line. The control portion controls electric potential signals supplied to the pixel electrode and the common electrode to cause the electrophoretic particles to move. The switching transistor enters an on state when a gate electrode of the switching transistor is supplied with a first electric potential, and enters an off state when the gate electrode is supplied with a second electric potential. The control portion is provided with a first period during which control for causing the electrophoretic particles to move is performed and a second period during which, after the first period, the switching transistor is made to enter an off state. During the second period, when the first electric potential is smaller than the second electric potential, the control portion supplies a low electric potential signal from the signal line to the switching transistor and supplies a low electric potential signal to the common electrode, and when the first electric potential is larger than the second electric potential, the control portion supplies a high electric potential signal from the signal line to the switching transistor and supplies a high electric potential signal to the common electrode.04-16-2009
20090201229LIGHT-EMITTING APPARATUS, METHOD FOR PRODUCING LIGHT-EMITTING APPARATUS, AND ELECTRONIC APPARATUS - The invention provides a light-emitting apparatus that has a plurality of pixels each of which has a set of four sub pixels including a red, a green, a blue, and a remaining sub pixel, together making up a display screen. Each of the sub pixels has a light-emitting layer and color filter that transmits light corresponding to the sub pixel. The light-emitting layer includes a white light-emitting material that emits three-peak white light, with an emission spectrum having a red peak, a green peak, and a blue peak falling within the wavelength range of red light, of green light, and of blue light, respectively. Low intensity regions exist between the red peak and the green peak and between the green peak and the blue peak. The light-emitting layers of the sub pixels extend along the display screen. The color filters overlap the light-emitting layers in a plan view.08-13-2009
20110140997DISPLAY DEVICE - The present invention is intended to suppress power consumption of an EL display. In accordance with the brightness of an image to be displayed in a pixel portion, the contrast of the image is determined whether to be inverted or not, and the number of bits of the digital video signal to be input into the pixel portion is reduced, and the magnitude of a current to flow through the EL element is allowed to be maintained at a constant level even when a temperature of an EL layer changes by providing the EL display with another EL element to be used for monitoring a temperature.06-16-2011
20090096721PIXEL CIRCUIT - A pixel circuit has a light emitting diode, a driving transistor, a capacitor, a first switch, a second switch, a third switch, and a forth switch. The driving transistor has a drain, coupled to a second end of the light emitting diode. The capacitor is coupled between a gate of the driving transistor and the ground terminal. The third switch is coupled between the source and the gate of the driving transistor. The fourth switch is coupled between the second end of the light emitting diode and a data line. The first switch is off, the second is on, and the third is on during the reset period; the first switch is off, the second is off, and the third is on during the programming period; and the first switch is on, the second is on, and the third is off during the display period.04-16-2009
20090231244MOBILE TERMINAL AND DISPLAY METHOD THEREOF - A display unit includes a transparent light emitting element and displaying information on both sides thereof; a sensing unit for detecting the direction in which the screen of the display unit faces; and a controller for determining a placed state of the display unit according to the detected screen direction and changing information displayed on the display unit according to the determined placed state of the display unit. The screen direction may be one of a first direction in which a front surface of the display unit faces upward, and a second direction in which a rear surface of the display unit faces upward. By using the transparent display device, information can be displayed by using both surfaces of the display device, and displayed information can be changed according to a placed state of the display device. Thus, the users' interest and fun can be aroused and user convenience can be provided.09-17-2009
20090231243ORGANIC LIGHT-EMITTING DISPLAY APPARATUS AND METHOD OF MANUFACTURING THE SAME - An organic light-emitting display device and a method of manufacturing the same, the organic light-emitting display device including pixels including opposing first and second electrodes, and an intermediate layer disposed between the first and second electrodes. The pixels are divided into red, green, and blue sub-pixels. The intermediate layer has a thickness that varies according to the sub-pixels.09-17-2009
20090231239DISPLAY DEVICE - In a current driving display device, a first operation in which pixel circuits in the odd rows are sequentially scanned to set a current supplied to display elements and a second operation in which pixel circuits in the even rows are sequentially scanned to set a current supplied to display elements are alternately repeated. The current set in the pixel circuits is supplied to the display elements in parallel with the first and the second operations, the number of times in the period is twice or more than the number of times in which the pixel circuit sets a current supplied to the display element. Flickers are suppressed.09-17-2009
20090102760Display device and electronic apparatus have the same - A display device includes a pixel array portion in which sub-pixels each including an electro-optic element, a write transistor for writing a video signal, a hold capacitor for holding the video signal written by the write transistor, and a drive transistor for driving the electro-optic element in accordance with the video signal held in the hold capacitor are disposed in a matrix, and each unit pixel is composed of the plurality of adjacent sub-pixels belonging to a plurality of rows. The display device further includes power source supply lines through which power source potentials different in potential from one another are selectively supplied to the drive transistors. One power source supply line is wired every plural rows.04-23-2009
20090102761Image display device - The invention provides an image display device that has an especially satisfactory display quality for animated images, and sufficiently suppresses the irregularities of display quality among pixels. The image display device includes a light emitting drive means that drives a light emitting means, based on an analog display signal inputted to the pixels, and a light emitting control switch for controlling a light-on or light-off of the light emitting means on one end of the light emitting drive means in each pixel.04-23-2009
20090102759PIXEL DRIVE CIRCUIT FOR ORGANIC EL DISPLAY - A pixel circuit includes an organic EL element includes a storage capacitor charged with a data voltage; a first driving transistor responsive to charged voltage of the storage capacitor to supply drive current to the organic EL element; and a second driving transistor connected the storage capacitor and a predetermined power supply responsive to potential corresponding to a voltage drop in the organic EL element, and supplies charge current to the storage capacitor, circuitry for causing the second driving transistor to supply charge current to the storage capacitor from a time when the storage capacitor is charged with data voltage and the drive current from first driving transistor flows through the organic EL element. When drive current from the first driving transistor is stopped by changes in the charged voltage of storage capacitor, the drive current supplied to the organic EL element for a period corresponding to the data voltage.04-23-2009
20090102757APPARATUS AND METHOD TO COMPENSATE A DRIVING CURRENT OF A LIGHT EMITTING DIODE - The present invention discloses a method for driving a light emitting diode according to a required luminance, wherein an actual luminance of the light emitting diode decays with time and a correlation there between is represented by a life-time curve. The method comprises the following steps. First, the driving current is correlated with the required luminance by an initial coefficient is provided to the light emitting diode. Next, a length of a period of use of the light emitting diode is counted. Then, a slope of the life-time curve corresponding to the required luminance is stored. Finally, a new coefficient from the length of the period of use, the slope of the life-time curve and the initial coefficient is derived.04-23-2009
20090213046Organic light emitting diode display and method of driving the same - An organic light emitting diode display includes a data line, a gate line that crosses the data line to receive a scan pulse, a high potential driving voltage source to generate a high potential driving voltage, a low potential driving voltage source to generate a low potential driving voltage, a light emitting element to emit light due to a current flowing between the high potential driving voltage source and the low potential driving voltage source, a drive element connected between the high potential driving voltage source and the light emitting element to control a current flowing in the light emitting element depending on a voltage between a gate electrode and a source electrode of the drive element, and a driving current stabilization circuit to apply a first voltage to the gate electrode of the drive element to turn on the drive element and to sink a reference current through the drive element to set a source voltage of the drive element at a sensing voltage and to modify the voltage between the gate and source electrodes of the drive element to scale a current to be applied to the light emitting element from the reference current.08-27-2009
20090243978Display apparatus - A display apparatus, includes: a plurality of pixel circuits disposed in rows and columns and each including a driving transistor configured to produce driving current, an electro-optical element connected to an output terminal of the driving transistor, a storage capacitor configured to store information corresponding to a signal amplitude of an image signal, and a first sampling transistor and a second sampling transistor connected in cascade connection for writing the information corresponding to the signal amplitude into the storage capacitor; a vertical scanning section configured to produce a vertical scanning pulse for vertically scanning the pixel circuits; a plurality of vertical scanning lines connected to the vertical scanning section; a horizontal scanning section configured to supply the image signal to the pixel circuits in synchronism with the vertical scanning by the vertical scanning section; and a plurality of horizontal scanning lines connected to the horizontal scanning section.10-01-2009
20090243977PIXEL AND ORGANIC LIGHT EMITTING DISPLAY DEVICE INCLUDING THE SAME - An organic light emitting display device including: a plurality of pixels, each of the pixels including an organic light emitting diode (OLED) and a pixel circuit for driving the OLED, the pixel circuit including: a first transistor for transferring a data signal supplied from a data line to a current scan line; a second transistor for controlling an amount of current corresponding to the data signal that flows from a first pixel power supply to the OLED; a third transistor for diode-connecting the second diode according to the current scan signal; a storage capacitor for maintaining a gate voltage of the second transistor in accordance with the data signal; and a fourth transistor for initializing a first node according to a previous scan signal supplied before the current scan signal is supplied, the fourth transistor in a pixel region of a previous row pixel.10-01-2009
20090243976PIXEL AND ORGANIC LIGHT EMITTING DISPLAY USING THE SAME - A pixel capable of compensating for deterioration of an organic light emitting diode includes an organic light emitting diode. A pixel circuit includes a first transistor controlling an amount of current supplied from a first power supply to the organic light emitting diode corresponding to a data signal. A compensating unit controls a voltage of a gate electrode of the first transistor to compensate for deterioration of the organic light emitting diode. The compensating unit includes a second transistor coupled between the gate electrode of the first transistor and the organic light emitting diode and turned off during a period of the supply of the data signal to the pixel circuit, and a feedback capacitor coupled between the second transistor and the organic light emitting diode.10-01-2009
20090315813Display apparatus, driving method for display apparatus and electronic apparatus - Disclosed herein is a display apparatus, including: a pixel array section configured to have a plurality of pixels arranged in a matrix thereon, each of the pixels including an electro-optical element, a writing transistor, a driving transistor, and a storage capacitor connected between the gate electrode and the source electrode of the driving transistor for storing an image signal written by the writing transistor, each of the pixels carrying out a mobility correction process for applying negative feedback to a potential difference between the gate and the source of the driving transistor with a correction amount determined from current flowing to the driving transistor; a detection section configured to detect variation of a characteristic of any transistor in the pixels; and a control section configured to control the period of the mobility correction process based on a result of the detection by the detection section.12-24-2009
20090251392PIXEL AND ORGANIC LIGHT EMITTING DISPLAY DEVICE - A pixel and an organic light emitting display device using the same is provided. The pixel includes an organic light emitting diode (OLED). A pixel circuit controls an amount of current that flows into the OLED. In the pixel, the pixel circuit includes a first transistor controlling an amount of current that flows into a second power source via the OLED from a first power source. A storage capacitor is positioned between a gate electrode of the first transistor and the second power source. A boosting capacitor is positioned between the gate electrode of the first transistor and a boost line.10-08-2009
20090251391Method and apparatus for power recycling in a display system - A power recycling method and apparatus for driving capacitive display elements are described. The driving process involves charging and discharging the display elements. More particularly, the method effectively reuses some of the energy during the discharging process. Energy in display elements flows back from the panel to a power supply and other optionally to devices like RAM, MCU directly during the discharging process. Diodes between one or more power supplies and the display elements ensure that the discharge paths are disconnected when the voltage of display elements drops below the voltage of the power supply. A resistor path from the display elements to ground or a power supply lower than the display threshold voltage of the display elements guarantees that elements are turned OFF after the discharge process.10-08-2009
20120194412Display device, Electronic Device and Method of Driving Display Device - The present invention provides a display device which can display characters clearly and display images smoothly. An area gray scale method is adopted and a configuration of one pixel is changed depending on a mode, by selecting one or more display regions in each pixel. When characters are needed to be displayed clearly, one pixel is configured by selecting a stripe arrangement. Thus, clear display can be conducted. When images are needed to be displayed, one pixel is configured by selecting an indented state. Thus, smooth display can be conducted.08-02-2012
20090262047EL display panel and electronic apparatus - Disclosed herein is an electroluminescence display panel including pixel circuits corresponding to an active-matrix drive system, the electroluminescence display panel including a structure configured to include first light-emitting areas corresponding to an emission color that is strongest in a characteristic of changing a threshold voltage of a thin film transistor and second light-emitting areas that correspond to another emission color and are each disposed between the first light-emitting areas, wherein a sampling transistor in each of the pixel circuits for driving the second light-emitting areas is disposed in an area corresponding to a range of one fourth to three fourths of a length from a peripheral edge of one of two first light-emitting areas that are adjacent to each other with intermediary of the second light-emitting area of the sampling transistor to a peripheral edge of the other of the two first light-emitting areas.10-22-2009
20090256783CURRENT CONTROL IN DISPLAY DEVICE - An electroluminescent display device having a first and a second power supply; a respective power supply line for each row, wherein each power supply line is placed along a horizontal direction and is connected to the respective first electrodes of the driving TFTs of the pixels in the corresponding row; a plurality of switches, each connected to one or more power supply lines, for selectively connecting the corresponding one or more power supply lines to either the first or the second power supply; a gate driver for selecting a gate line; and a selecting circuit for controlling the plurality of switches, wherein the selecting circuit causes the power supply line corresponding to the selected gate line to be connected to the first power supply, and the one or more power supply lines not corresponding to the selected gate line to be connected to the second power supply.10-15-2009
20100265166PIXEL AND ORGANIC LIGHT EMITTING DISPLAY DEVICE USING THE PIXEL - A pixel includes an organic light emitting diode; a first transistor; a second transistor coupled to a data line and turned on when a scan signal is supplied to an i10-21-2010
20090315814Self-light emitting display unit and electronic device - A self-light emitting display unit capable of improving manufacturing yield is provided. Sizes of color pixel circuits corresponding to pixels for R, G, and B are respectively set unevenly within a pixel circuit according to a magnitude ratio of drive currents which allow color self-light emitting elements in the pixel to emit with a same light emission luminance. Thereby, the pattern densities of color pixel circuits respectively corresponding to the pixels for R, G, and B become even to each other, and the pattern defect rate as the whole pixel circuit is decreased.12-24-2009
20090315812Panel and drive control method - In the present embodiment, threshold correction is performed simultaneously on all the pixels thanks to a common power line (DS) shared by all the pixels. Then, video signal lines are set to a second reference potential higher than a reference potential, followed by multi-step threshold correction and video signal writing which are performed in a line sequential manner. Performing the threshold correction immediately before the video signal writing ensures shorter time from the threshold correction to the video signal writing. This suppresses leak currents, providing improved image quality.12-24-2009
20090273547Display apparatus and display-apparatus driving method - Disclosed herein is a driving method for driving a display apparatus, the display apparatus including: N×M light emitting units; M scan lines; N data lines; a driving circuit provided for each of the light emitting units to serve as a circuit having a signal writing transistor, a device driving transistor, a capacitor and a first switch circuit; and a light emitting device.11-05-2009
20100156762Organic light emitting display device - An organic light emitting display (OLED) device capable of compensating for threshold voltage of a driving transistor in which this OLED device uses a scan driver to sequentially supply scan signals to scan lines. A data driver supplies data signals to data lines when the scan signals are supplied with pixels positioned at the intersections of the scan lines and the data lines. A common circuit unit formed in every horizontal line, receiving one or more external power sources required in driving the pixels and transferring the received external power to pixels positioned in the same horizontal lines.06-24-2010
20120139820Organic light emitting display device and driving method thereof - An organic light emitting display device of the present embodiments includes: a plurality of pixels positioned at intersections of scan lines, data lines, and emission control lines; a pixel unit, including the plurality of pixels, and divided into two or more blocks; a scan driver sequentially supplying scan signals to the scan lines; a data driver supplying data signals to the data lines in synchronization with the scan signals; and two or more emission drivers connected with emission control lines in the blocks, in which each emission driver supplies emission control signals to emission control lines connected thereto, and at least one or more emission control signals are supplied in each block simultaneously.06-07-2012
20090115709Display apparatus, display-apparatus driving method and electronic instrument - Disclosed herein is a display apparatus including: a pixel array section including pixel circuits each having an electro optical device, a signal writing transistor, a signal storage capacitor, and a device driving transistor; and a pixel driving section, wherein: in a no-light emission period, the pixel driving section carries out a threshold-voltage correction process by changing an electric potential appearing on an electrode of the device driving transistor close to the electro optical device toward an electric potential obtained by subtracting the threshold voltage of the device driving transistor from the initialization electric potential of the gate electrode of the device driving transistor and a mobility correction process of negatively feeding a current flowing through the device driving transistor back to the gate electrode of the device driving transistor; and when a current is not flowing through the device driving transistor, the pixel driving section applies a positive bias voltage to the gate electrode of the signal writing transistor.05-07-2009
20090115708ACTIVE MATRIX DISPLAY DEVICE - An active matrix display device includes a driving section provided on a substrate, an insulating film stacked on the substrate, and light-emitting elements arranged in a matrix on the insulating film, and each of the light-emitting elements includes an light-emitting layer between its upper and lower electrodes, the active matrix display device being driven by the driving section provided for each of the light-emitting elements, the active matrix display device also including a first wiring required to cause the light-emitting element to emit light, and a second wiring disposed in the underlying layer of the first wiring via the insulating film, the second wiring also required to cause the light-emitting element to emit light, wherein the first or second wiring is branched into a plurality of wirings at the intersection between the two wirings.05-07-2009
20090115707ORGANIC LIGHT EMITTING DISPLAY AND METHOD OF DRIVING THEREOF - An organic light-emitting display device and a method of driving the display device are disclosed. A pixel circuit used in the organic light-emitting display device includes a first switching transistor, a second switching transistor and a driving transistor. The first switching transistor switches a data voltage in response to a first control signal. The second switching transistor switches a compensation voltage in response to a second control signal. The driving transistor provides an electric current to an organic light-emitting device in response to the data voltage and the compensation voltage.05-07-2009
20090115703LED DISPLAY WITH CONTROL CIRCUIT - An active-matrix circuit for controlling an LED display pixel that includes a control circuit responsive to control signals for storing a luminance value in a storage circuit during a frame period. A drive circuit responds to the storage circuit for controlling current through an LED to emit light at a luminance level determined by the luminance value. A luminance-value reduction circuit, connected to the storage circuit, provides a controlled reduction of the luminance value stored in the storage circuit during the frame period.05-07-2009
20090115706ORGANIC LIGHT EMITTING DIODE DISPLAY AND METHOD FOR MANUFACTURING THE SAME - An organic light emitting device including a first pixel, a second pixel and a third pixel displaying different colors from each other according to the present invention, the organic light emitting device includes a reflecting electrode and a translucent member forming a micro-cavity along with the reflecting electrode, wherein a optical path length is an interval between the reflecting electrode and the translucent member, and wherein the light path lengths of at least two pixels among the first pixel, the second pixel and the third pixel are the same.05-07-2009
20090115705ELECTRO-LUMINESCENT DISPLAY DEVICE - An electro-luminescent display includes a first array of light-emitting elements. Each of these light-emitting elements has an optical element. A second array of light-emitting elements also includes a second optical element different from the first. One or more row lines are electrically connected to either light-emitting elements in the first array of light-emitting elements or light-emitting elements in the second array of light-emitting elements. One or more column lines provide a data signal to the first and second array of light-emitting elements. A driver circuit delivers common information to the light-emitting elements in both the first and second arrays in response to a select signal for activating light-emitting elements in the first or second arrays.05-07-2009
20090115704PIXEL CIRCUIT FOR AN ACTIVE MATRIX ORGANIC LIGHT-EMITTING DIODE DISPLAY - A pixel circuit for an OLED element comprises first, second, third and fourth transistors wherein controllable conduction paths of the first and second transistors are connected for receiving a data signal current, and the control electrodes thereof are connected for receiving a select signal for being enabled thereby. The third and/or fourth transistors are connected for establishing a current in the OLED element responsive to the data signal current and the select signal. Capacitance may be provided by at least one of the transistors or by additional capacitance.05-07-2009
20100188317Reflective type display apparatus using dielectrophoresis and method of manufacturing the reflective type display apparatus - Example embodiments relate to a reflective type display apparatus using dielectrophoresis and a method of manufacturing the reflective type display apparatus. The display apparatus may include a first substrate and a second substrate arranged so as to face each other; a hydrophobic insulating layer formed on the first substrate; a hydrophobic pattern electrode unit arranged to form a non-uniform electric field; a hydrophilic dielectric medium with hydrophobic uncharged particles therein in a space between the first substrate and the second substrate; and a reflective plate arranged under the first substrate. The display apparatus may form an image by using dielectrophoresis of the hydrophobic uncharged particles according to an electric field gradient formed by the hydrophobic pattern electrode unit.07-29-2010
20090079677Driving of data lines used in unit circuit control - The display matrix section 03-26-2009
20090079676DISPLAY APPARATUS AND DRIVE METHOD THEREOF - A display apparatus comprises a display section including a display panel having a plurality of arranged display pixels, a display state of each of the display pixels being changed by an electric field generated between a pair of electrodes arranged to be opposed to each other; a luminous section including a luminous panel having a plurality of luminous pixels arranged correspondingly to each of the plurality of display pixels; and a control section for controlling the display state of one of the display pixels in the display panel by making an arbitrary one of the luminous pixels in the luminous panel emit a light.03-26-2009
20100188318DISPLAY DEVICE - A display device includes: a display section including a plurality of pixels which emit light in an amount varied depending on an amount of current; signal lines for inputting a display signal voltage to the plurality of pixels; a switch circuit for switching between the signal lines to output signals corresponding to pixel states of the plurality of pixels, the pixel states being obtained through a supply of a detection-use power source to the plurality of pixels; and an A/D conversion section which includes a circuit for changing a reference voltage, and which sequentially detects signals corresponding to pixel states of pixels in each of a plurality of blocks which are obtained by dividing pixels in a horizontal line of the display section. The deteriorated pixels, which is accompanied by an in-plane gradient and fluctuations of the display section, are compensated without increasing a scale of a detection circuit.07-29-2010
20100182223ORGANIC LIGHT EMITTING DISPLAY DEVICE - An organic light emitting display device that includes a plurality of signal lines and a plurality of scan lines, a plurality of pixels arranged at intersections of ones of the plurality of signal lines and ones of the plurality of scan lines, a scan driver to supply scan signals to the plurality of scan lines, the scan driver including a first plurality of thin film transistors and a data driver to supply data signals to the plurality of signal lines, the data driver including a second plurality of thin film transistors, wherein each of said plurality of pixels includes a first thin film transistor, a second thin film transistor and an organic light emitting diode, the first transistor being connected to the organic light emitting diode, the first transistor having an active layer made out of an oxide semiconductor, the second transistor, the first plurality of thin film transistors and the second plurality of thin film transistors each having an active layer made out of poly-silicon.07-22-2010
20100171685DISPLAY DEVICE - To provide a high-performance and highly reliable display device with a high aperture ratio, including light-emitting elements, and a manufacturing method thereof, and a technique for manufacturing such a display device at a low cost with high productivity. A compensating circuit, a light-emitting element, a switch, and a transistor are included, in which one terminal of the switch is electrically connected to the compensating circuit, a gate of the transistor is electrically connected to the compensating circuit, one of a source and a drain of the transistor is electrically connected to a first electrode of the light-emitting element, the other of the source and the drain of the transistor is maintained at a certain potential, and a second electrode of the light-emitting element and the other terminal of the switch are electrically connected to the same wire.07-08-2010
20100259467DISPLAY PANEL AND SYSTEM FOR DISPLAYING IMAGES UTILIZING THE SAME - An embodiment of the invention provides a display panel, which includes a substrate having a pixel region and a peripheral region, a control element overlying the pixel region of the substrate, a conducting layer overlying the substrate in the peripheral region, a first insulating layer overlying the conducting layer in the peripheral region, wherein a ratio between an area of the first insulating layer and an area of the conducting layer in the peripheral region is between about 0.27 and 0.99, a lower electrode layer overlying the first insulating layer, and a second insulating layer overlying the lower electrode layer.10-14-2010
20100001930DISPLAY DEVICE AND METHOD OF DRIVING THE SAME - A display is conducted by using a time gray-scale system, in which one frame period is divided into a plurality of sub-frame periods, and a voltage applied to an EL element of a pixel is varied on a sub-frame period basis. Because of this, a display device is provided in which the fluctuations in brightness caused by an environment temperature of an EL element are suppressed with a gray-scale display method that is unlikely to be influenced by variations in characteristics of TFTs in a pixel portion and that is unlikely to be influenced by variations in a display period.01-07-2010
20100177025INFORMATION DISPLAY DEVICE - An information display device (07-15-2010
20100177024Organic light emitting display - An organic light emitting display, includes scan lines and data lines that overlap each other, a pixel unit including pixels positioned at intersections of the scan lines and the data lines, a main power source line at one end of the pixel unit and adapted to receive a voltage of a first power source, and sub power source lines coupled to the main power source line and the pixels, wherein each of the pixels comprises at least one capacitor, and the capacitors have different capacitances based on a position of the respective pixels relative to the main power source line.07-15-2010
20100156763Organic electroluminescent display device including heat-radiating means - An organic electroluminescent display device includes an organic electroluminescent display (OLED) panel having a first surface for displaying images and a second surface opposite to the first surface, a thermal pad attached to the second surface, a heat sink attached to the thermal pad such that the thermal pad is disposed between the OLED panel and the heat sink, a bottom case spaced apart from the heat sink and protecting the second surface of the OLED panel, the bottom case formed of a metallic material, and a top case covering edges of the first surface of the OLED panel and combined with the bottom case, wherein a plurality of heat-radiating pins are formed on a surface of the heat sink facing the bottom case.06-24-2010
20100238092SCANNER, ELECTRO-OPTICAL PANEL, ELECTRO-OPTICAL DISPLAY DEVICE AND ELECTRONIC APPARATUS - A scanner includes a plurality of unit circuits configured with transistors of a same conductivity type. In the scanner, the unit circuit constituting the scanner includes an output transistor that selectively outputs, to an output terminal of the unit circuit, a signal given from an outside. A gate electrode of the output transistor is connected to one end of a voltage limiting transistor, and a gate electrode of the voltage limiting transistor is supplied with a first power supply potential.09-23-2010
20100253609IMAGE DISPLAY APPARATUS - According to one embodiment, an image display apparatus includes a plurality of pixels. Each pixel has a light emitting device; a drive transistor electrically connected to the light emitting device; and a capacitor electrically connected to the drive transistor. A ratio of an area occupied by the drive transistor per one pixel to an area of the one pixel is equal to or more than 0.05.10-07-2010
20110057864Emission control driver and organic light emitting display using the same - An emission control driver including a plurality of stages, each including a first unit adapted to generate a first output signal at a first node thereof based on an input signal, a clock signal, a inverted input signal, first and second power source voltages, a second unit adapted to output an emission control signal based on the first output signal and the input signal, a third unit adapted to transmit the first or second power source to the first unit based on the emission control signal, a inverted clock signal and an inverted emission control signal when a first path between the first power source and the first node and a second path between the second power source and the first node are blocked by the clock signal, and a fourth unit adapted to output a inverted emission control signal based on the emission control signal and the first output signal.03-10-2011
20080211746DRIVING CIRCUIT FOR AN OLED (ORGANIC LIGHT EMISSION DIODE), IN PARTICULAR FOR A DISPLAY OF THE AM-OLED TYPE - A driving circuit of an OLED diode is inserted between a first and a second voltage reference and having at least one input terminal receiving an input voltage signal and an output terminal for the generation of a driving current of the OLED diode, the driving circuit having at least one driver transistor having a first conduction terminal connected to the first voltage reference, a second conduction terminal connected to the output terminal and a control terminal connected to at least one first capacitor and one second capacitor. The first capacitor is inserted between this control terminal and an inner circuit node and the second capacitor is inserted between the inner circuit node and the second voltage reference, the driving circuit 09-04-2008
20100253608PIXEL AND ORGANIC LIGHT EMITTING DISPLAY DEVICE USING THE SAME - A display device displays an image having a substantially uniform brightness by compensating for variations of the threshold voltages of driving transistors and compensating for the deterioration of an organic light emitting diode. A pixel includes an organic light emitting diode, two transistors, a storage capacitor, and a compensation unit. A driving transistor supplies a current to an OLED corresponding to the voltage in the storage capacitor. The compensation unit controls a voltage of a gate electrode of the driving transistor corresponding to a deterioration of the organic light emitting diode, and couples one electrode of the driving transistor to the data line during a compensation period, during which a threshold voltage of the driving transistor is compensated.10-07-2010
20100253607ORGANIC ELECTROLUMINESCENCE DISPLAY APPARATUS - Provided is an organic electroluminescence display apparatus including: a substrate; a polarizing plate disposed on a display surface side being an opposite side of the substrate; a thin film transistor; and a planarization layer for reducing an irregular form corresponding to a circuit pattern of the thin film transistor, the planarization layer including a pixel electrode and an organic electroluminescence device and including at least two layers, a thickness of each of the planarization layers being set to be smaller than a maximum height of irregularities resulting from the thin film transistor, each of the planarization layers including a contact hole provided at a distinct planar position and a connection wiring layer capable of electrically connecting the thin film transistor and the pixel electrode via the contact hole, and a tapered portion of the planarization layer closest to the organic electroluminescence device having 30 degrees or less.10-07-2010
20100289727ELECTRO-LUMINESCENT DISPLAY WITH ADJUSTABLE WHITE POINT - The present invention provides an EL display adapted to receive a three-color input image signal, including three gamut-defining EL emitters for emitting red, green, and blue colored light and two additional EL emitters for emitting at least two additional colors of light, the chromaticity coordinates of the at least two additional colors of light lying inside the gamut and near the Plankian Locus; a structure for providing a display white point; and a controller responsive, to the provided display white point and the input image signal for providing first separate drive signals for the three gamut-defining EL emitters and second separate drive signals for the two additional EL emitters, wherein the respective luminance values corresponding to the second separate drive signals are each a function of the input image signal and the distances between the display white point and the pseudo-blackbody points of the two additional colors.11-18-2010
20100127955Pixel and organic light emitting display device using the same - A pixel includes an organic light emitting diode, a first transistor configured to control a connection between a first power source and the organic light emitting diode, a second transistor configured to control a connection between a reference power source and the gate electrode of the first transistor, a third transistor, a fourth transistor, and a fifth transistor connected such that, when the third transistor, the fourth transistor, and the fifth transistor are all turned on, a data line is coupled to an anode electrode of the organic light emitting diode; and a storage capacitor having a first electrode coupled to the gate electrode of the first transistor and having a second electrode coupled to a common node between the third and fifth transistors, wherein the fourth transistor is configured to drop a voltage of a data signal on the data line by a threshold voltage of the fourth transistor.05-27-2010
20100013746DISPLAY APPARATUS - In a display apparatus that includes an active matrix substrate on which multiple pixel circuits are disposed, each having a light emitting element, a drive transistor, a capacitor element connected between a gate terminal and the source terminal of the drive transistor, and a selection transistor, and a threshold voltage of the drive transistor is corrected by causing the capacitor element to hold the threshold voltage of the drive transistor, reverse bias voltages, each having a magnitude corresponding to a preset initial threshold voltage and a drive voltage of the drive transistor, the magnitude of the drive voltage being dependent on the amount of emission of the light emitting element, are supplied to the gate terminal of the drive transistor.01-21-2010
20090009439PIXELS AND DISPLAY PANELS - A pixel and a display panel using the pixel are provided. In the pixel, a driving element provides a driving circuit according to a data signal and a reference voltage to drive a light-emitting element to emit light. The electrical difference of the driving elements due to the fabrication process thereof does not affect the brightness of the light-emitting elements. Moreover, unequal brightness resulted from the equivalent resistance of the power lines is also prevented.01-08-2009
20090040150ELECTRIC CURRENT DRIVING TYPE DISPLAY DEVICE - In a pixel circuit 02-12-2009
20090207103Light-emitting hologram based on Organic Polymeric Diode - (OLED/PLED) - The present invention concerns a color display device. The pixel of display consists of three light-emitting two-dimensional holograms, of blue, green and red colors. The holograms are formed as interference pictures, and registered on an organic layer of the polymeric diode. The polymer layer radiates a full spectrum of white light, but at the expense of holographic cracks, take place, some optical effects, which influence on wavelength of light, as well, color of pixel.08-20-2009
20090073092Display Device - In one embodiment, a display device of the present invention includes capacitors provided between a gate and a source of a driver TFT. During a select period, a voltage is fed to the gate terminal of the driver TFT, and a voltage is fed to the source terminal of the driver TFT. Thereafter, during a threshold correction period, the gate voltage of the driver TFT is retained to make the source voltage of the driver TFT equal to Vda−Vth (03-19-2009
20090184896ORGANIC LIGHT EMITTING DISPLAY AND METHOD OF DRIVING THE SAME - There is provided an organic light emitting display capable of compensating for the deterioration of organic light emitting diodes (OLED) while sharing an analog-to-digital converter (ADC). The organic light emitting display includes sub pixels positioned in the intersections between scan lines and data lines, a current source unit for supplying predetermined current to organic light emitting diodes (OLED) in a sensing period for grasping deterioration information on the OLEDs included in the sub pixels, at least one analog-to-digital converter (ADC) provided fewer than data lines in order to convert a voltage applied to the OLEDs into a digital signal, and a switching unit for coupling the data lines to the current source unit in the sensing period and for sequentially coupling at least one ADC to the data lines in the sensing period.07-23-2009
20120242562DISPLAY DEVICE - According to one embodiment, a display device includes an insulating layer, a display unit, and an organic EL layer. The display unit is provided on a major surface of the insulating layer and includes a plurality of gate lines, a plurality of signal lines, a plurality of power source lines and a plurality of pixel units arranged in a matrix configuration. The EL layer is provided on the display unit. Each pixel unit includes a drive transistor and a resistor. The drive transistor includes a drive gate electrode, a drive source electrode, and a drive drain electrode. The drive source electrode or the drive drain electrode is connected to one of the power source lines. An end of the resistor is connected to the drive gate electrode. An other end of the resistor is connected to one of the gate line, the signal line, and the power source line.09-27-2012
20080309593Liquid Crystal Display Device - A liquid crystal display device includes a liquid crystal panel and an illumination unit. The illumination unit has a planar light emitting region formed by an EL element. The light emitting region is formed by a plurality of linear light emitting regions that extend in a direction perpendicular to the vertical scanning direction of liquid crystal. The linear light emitting regions are switched between a light emitting state and a non-light emitting state based on a command signal from a controller in a manner that the linear light emitting regions sequentially emit light in synchronization with vertical scanning of the liquid crystal. Each linear light emitting region is controlled to be in the non-light emitting state at least during a drive data rewriting period of a portion of the liquid crystal immediately above the linear light emitting region.12-18-2008
20080231561Display device and manufacturing method thereof - A display device in which a light shielding film is formed so as not to increase the number of steps and its cost, is provided. The display device of the present invention includes a monitor element for controlling influence on a light-emitting element due to temperature change and change with time and a TFT for driving the monitor element, and the TFT for driving the monitor element is provided so as not to be overlapped with the monitor element. The display device of the present invention includes a first light shielding film provided so as not to be overlapped with a first electrode of the monitor element, and a second light shielding film provided so as to be overlapped with an outer edge portion of the first electrode.09-25-2008
20080231557EMISSION CONTROL IN AGED ACTIVE MATRIX OLED DISPLAY USING VOLTAGE RATIO OR CURRENT RATIO - Compensation needed to be made for reduced light efficiency in aged sub-pixels of an active matrix organic light-emitting diode (OLED) display are determined using a current ratio or a voltage ratio pertaining to an aged sub-pixel relative to un-aged, reference sub-pixels.09-25-2008
20090109146Display apparatus, driving method for display apparatus and electronic apparatus - Disclosed herein is a display apparatus, including: a pixel array section having a plurality of pixels each including an electro-optical element, a writing transistor, a driving transistor, and a holding capacitor; a power supply scanning circuit; and a signal outputting circuit; wherein the power supply scanning circuit is operable to supply a second power supply potential to initialize the potential of a second electrode of the driving transistor and then change over the potential of a power supply line to a first power supply potential; and the signal outputting circuit is operable to output, when the writing transistor is in a conducting state, a first reference potential, supply, midway while a threshold value correction process is carried out, a second reference potential, output a third reference potential within a period within which the writing transistor remains in the conducting state, and output a image signal after the threshold correction process ends.04-30-2009
20090109148Organic electro-luminescent display device - A high-definition organic EL display device which enhances utilization efficiency of a space within a pixel is provided. In an organic EL display device in which pixels each of which is constituted of an organic El element are arranged in a matrix array, the pixel includes a pixel circuit which is configured to control an electric current supplied to the organic El element, the pixel circuit includes a capacitance, and the capacitance is arranged on a boundary of the pixels arranged adjacent to each other in a longitudinal direction of the pixels. Further, one electrode which constitutes the capacitance is used in common by the pixels arranged adjacent to each other in the longitudinal direction, and another electrode which constitutes the capacitance is separated between the pixels arranged adjacent to each other in the longitudinal direction.04-30-2009
20090109147Organic light emitting display and power supply method thereof - An organic light emitting display and power supply method thereof operate an organic light emitting display panel using a high voltage EVLDD and a low voltage ELVSS supplied from a driver integrated circuit during a low power display mode. The organic light emitting display a first power supply configured to supply a first power including a first high voltage and a first low voltage, a second power supply configured to supply a second power including a second high voltage and a second low voltage, and an organic light emitting display panel configured to receive the first power from the first power supply in a standard display mode and configured to receive the second power from the second power supply in a low power display mode.04-30-2009
20090109144CIRCUIT DEVICE AND ACTIVE-MATRIX DISPLAY APPARATUS - A circuit device includes a first circuit including a thin-film transistor and a second circuit including another thin-film transistor. The second circuit is controlled by control signals including a first control signal and a second control signal delayed from the first control signal. The second control signal is generated on the basis of the first control signal which has been propagated through the second circuit.04-30-2009
20090109143EL Display Device and A Method of Manufacturing the Same - To provide a high throughput film deposition means for film depositing an organic EL material made of polymer accurately and without any positional shift. A pixel portion is divided into a plurality of pixel rows by a bank, and a head portion of a thin film deposition apparatus is scanned along a pixel row to thereby simultaneously apply a red light emitting layer application liquid, a green light emitting layer application liquid, and a blue light emitting layer application liquid in stripe shapes. Heat treatment is then performed to thereby form light emitting layers luminescing each of the colors red, green, and blue.04-30-2009
20090109142EL DISPLAY DEVICE - A switch being turned off using an output open function of a power supply circuit, a cathode voltage Vss is not transmitted, an output terminal takes on a high impedance condition and, a probing being done into a pad of the cathode voltage Vss output terminal with a probe, an ammeter which measures a current is disposed between the probe 04-30-2009
20100134388DISPLAY DEVICE AND PIXEL CIRCUIT - To efficiently compensate a threshold value of a driving transistor. In a state where a first switching transistor is non-conductive and a second switching transistor in conductive, a sampling transistor is made conductive and a reference voltage is supplied from a signal line to write a threshold voltage of a driving transistor to a first capacitance. After that, in a state where first and second switching transistors and are non-conductive, the sampling transistor is made conductive and a signal voltage from the signal line is written to the first capacitance. Further, after that the sampling transistor is put into a non-conductive state, and the first and second switching transistors are put in a conductive state, to drive the driving transistor and supply current to a light emitting element06-03-2010
20100207848CHIPLET DISPLAY DEVICE WITH SERIAL CONTROL - A display device, including a substrate; an array of pixels arranged in rows and columns forming a light-emitting area over the substrate, each pixel including a first electrode, one or more layers of light-emitting material located over the first electrode, and a second electrode located over the one or more layers of light-emitting material; a first serial buss having a plurality of electrical conductors, each electrical conductor connecting one chiplet in a first set of chiplets to only one other chiplet in the first set in a serial connection, the chiplets being distributed over the substrate in the light-emitting area, each chiplet including one or more store-and-forward circuits for storing and transferring data connected to its corresponding electrical conductor; and a driver circuit in each chiplet for driving at least one pixel in response to data stored in the store-and-forward circuit.08-19-2010
20090140959Driving apparatus for organic electro-luminescence display device - Disclosed is an apparatus that prevents a degradation of image quality due to a deterioration of a driving apparatus in an organic electro-luminescence display device.06-04-2009
20090066614DISPLAY DEVICE - A display device including independent power sources for a display use and a detection use, display elements, switches (03-12-2009
20110109531PIXEL AND ORGANIC LIGHT EMITTING DISPLAY DEVICE USING THE SAME - A pixel includes: an organic light emitting diode including an anode electrode and a cathode electrode, where the cathode electrode is connected with a second power supply; a first transistor including a gate electrode, where the first transistor is connected between a first power supply and the organic light emitting diode, where the first transistor is configured to control an amount of current flowing from the first power supply through the organic light emitting diode to the second power supply; a second transistor connected between the gate electrode of the first transistor and the anode electrode of the organic light emitting diode; a third transistor connected between the first transistor and the first power supply; and a storage capacitor connected between the gate electrode of the first transistor and a data line.05-12-2011
20110109532ORGANIC LIGHT EMITTING DIODE DISPLAY AND METHOD FOR MANUFACTURING THE SAME - An organic light emitting diode (OLED) display and a method for manufacturing the same are described. An exemplary embodiment provides an OLED display including: a substrate including a plurality of pixel areas; a light emitting unit including an organic light emitting diode and a plurality of first thin film transistors, the light emitting unit being formed in each of the plurality of pixel areas; and a sensor unit including a photosensor and a plurality of second thin film transistors, the sensor unit being formed in at least some of the plurality of pixel areas. Each of the plurality of first thin film transistors and the plurality of second thin film transistors includes an oxide semiconductor layer, and the photosensor includes an oxide photoelectric conversion layer that are made of a same material on a same layer as the oxide semiconductor layer.05-12-2011
20110018787DISPLAY DEVICE - Provided is a display device including: a display region in which a plurality of pixels each including a light emitting element are arranged; a power supply unit provided outside the display region; a plurality of power supply lines connected to the power supply unit, for supplying power to the elements; and a light emission control unit (01-27-2011
20090033598Organic light emitting display - Disclosed is an OLED in which separation regions of spacers in odd and even rows are formed so that a fine metal mask (FMM) between light emission layers may move without being caught in the spacers. The OLED includes even and odd spacers protruding upwardly between light emission layers and are separated by separation regions. The separation regions of each row of spacers is aligned with spacers of adjacent rows and are not aligned with the separation regions of the adjacent rows.02-05-2009
20110128211LUMINESCENT DISPLAY DEVICE - A luminescent display device includes a substrate and a thin-film transistor above the substrate. The thin-film transistor includes a semiconductor layer, a gate insulating film on the semiconductor layer, a gate electrode on the gate insulating film, a source electrode, and a drain electrode. The luminescent display device further includes an interlayer insulating film on the gate electrode, a first capacitor electrode on the interlayer insulating film in a region above the gate electrode, and a luminescent element configured to be driven by a driver to produce luminescence. The driver includes the thin-film transistor, and the first capacitor electrode and the gate electrode constitute a capacitor.06-02-2011
20090219232PIXEL AND ORGANIC LIGHT EMITTING DISPLAY DEVICE USING THE SAME - A pixel of an organic light emitting display device and an organic light emitting display device using the same. The pixel is configured to compensate for the deterioration of organic light emitting diodes. The pixel includes an organic light emitting diode; a pixel circuit including a drive transistor for controlling an amount of electric current that flows from a first power source to a second power source via an organic light emitting diode; and a compensation unit between a gate electrode and a first electrode of the drive transistor for controlling a voltage of the gate electrode of the drive transistor to correspond to the deterioration of the organic light emitting diode. The compensation unit includes a transistor and a capacitor coupled in series between the gate electrode and the first electrode of the drive transistor.09-03-2009
20090219231El display panel, electronic apparatus and a method of driving el display panel - Disclosed herein is an electro luminescence display panel having a pixel structure corresponding to an active matrix drive system, including: a reverse bias potential generating portion configured to generate a reverse bias potential in which corresponding one of gradation values of pixels is reflected; and a voltage applying portion configured to apply the reverse bias potential to a gate electrode of a drive transistor composing a pixel circuit adapted to operate for a non-emission time period.09-03-2009
20090219230El Display panel module, el display panel and electronic apparatus - Disclosed herein is an electro luminescence display panel module, including: a pixel array section including a plurality of pixels, a plurality of signal lines extending in a vertical direction, and a plurality of horizontal lines extending in a horizontal direction, the signal lines and the horizontal lines being connected to the pixels such that each of the signal lines is connected to N ones of the pixel circuits which are connected to the same one of the horizontal lines, N being a natural number equal to or greater than 2; a first sampling control line; N second sampling control lines; a sampling scan driver; N pulse power supplies; and a horizontal selector; the pixel array section, the first sampling control lines, the N second sampling control lines, the sampling scan driver, the N pulse power supplies and the horizontal selector being mounted on the same substrate.09-03-2009
20100177023SHIFT REGISTER AND ORGANIC LIGHT EMITTING DISPLAY DEVICE USING THE SAME - A shift register is disclosed. In one aspect, the shift register has a plurality of stages dependently coupled to an input line of a start pulse and is driven by first, second and third clock signals respectively input to first, second and third input lines. The shift register includes first and second voltage stabilizer circuits to prevent leakage currents.07-15-2010
20090303163Image Display Device - Provided is an image display device in which deterioration of a self-light-emitting element within a pixel is corrected accurately. A detection unit detects, within a detection period, a difference in characteristics between self-light-emitting elements of adjacent pixels. A first subtraction circuit outputs a differential voltage between a reference voltage and an image voltage to a self-light-emitting element that is determined by the detection unit as a deteriorated element. An amplifier amplifies an output of the first subtraction circuit with a gain [1/{1-(α/100)}]12-10-2009
20100045576ORGANIC LIGHT EMITTING DIODE DISPLAY - An organic light emitting diode display is disclosed. In one embodiment, the display includes 1) an organic light emitting diode comprising i) a pixel electrode, ii) an organic emission layer formed on the pixel electrode, and iii) a common electrode formed on the organic emission layer, 2) a dual brightness enhancement film formed over the common electrode of the organic light emitting diode, 3) a first phase delaying plate formed on the dual brightness enhancement film, 4) a corner cube film formed on the first phase delaying plate, 5) a second phase delaying plate formed on the corner cube film and a 6) polarizing plate formed on the second phase delaying plate, wherein at least one of the elements 2)-5) is configured to reduce reflection of external light incident onto the polarizing plate and/or reduce the loss of light emitted from the organic emission layer before outputting the emitted light through the polarizing plate.02-25-2010
20090033597LIGHT EMITTING DISPLAY AND METHOD OF MANUFACTURING THE SAME - A light emitting display and a method of manufacturing the same. The light emitting display includes a substrate, a plurality of first and second signal lines that cross each other on the substrate, a plurality of organic light emitting diodes (OLEDs) coupled between the first signal lines and the second signal lines, a power source supply line for supplying a power source voltage to the OLEDs, and a plurality of inspection signal lines coupled to at least one of the first signal lines or the second signal lines. At least one of the inspection signal lines is discontinuous at a region overlapping the power source supply line and ends of the discontinuous inspection signal line at the region overlapping the power source supply line are coupled to each other through a conductive region under the inspection signal line.02-05-2009
20100053042Display Device - A plurality of data signal lines each of which is connected to at least one pixel circuit in one pixel circuit column and is not connected to the pixel circuits of other pixel circuit columns are provided to one pixel circuit column, and the pixel circuits in the pixel circuit column are connected to any one of the plurality of data signal lines. An image display device having such a constitution can alleviate lowering of display quality attributed to transmission delay or voltage drop of a scanning signal.03-04-2010
20100053039Display Device and Driving Method Thereof - A display device includes a plurality of pixels respectively including a plurality of light-emitting elements, a comparing unit for comparing input image signals during a plurality of continuous frames for each pixel and determining whether the input image signals are repeated, a signal converter for converting the input image signal into a compensating image signal for the pixel where the input image signals are repeated during the continuous frames, and a data driver generating a data signal corresponding to the compensation image signal to supply the data signal to the pixel.03-04-2010
20100053041PIXEL CIRCUIT, LIGHT EMITTING DISPLAY DEVICE AND DRIVING METHOD THEREOF - A pixel circuit including at least a light emitting element, and a thin film transistor that supplies to the light emitting element a first current controlling a gray scale according to luminance-current characteristics of the light emitting element, wherein the thin film transistor has a back gate electrode, at least a driving period in which the thin film transistor supplies the first current to the light emitting element, and a writing period in which a second current is written to the thin film transistor before the driving period in order to pass the first current to the thin film transistor during the driving period are included, and by changing voltages which are applied to the back gate electrode in the driving period and the writing period, current capability to a gate voltage of the thin film transistor is made to differ.03-04-2010
20100053038COLOR DISPLAY AND METHOD FOR PRODUCING THE SAME - A color display including a plurality of pixels on a substrate, each pixels being area-divided into plural sub-pixels including at least two sub-pixels that each emit colored light of different wavelengths and a white sub-pixel, wherein the at least two sub-pixels and the white sub-pixel each have at least an optical path length-adjusting layer and an organic electroluminescence layer interposed between a layer that partially transmits light and partially reflects light and a light reflection layer to form a resonator structure.03-04-2010
20080231558EMISSION CONTROL IN AGED ACTIVE MATRIX OLED DISPLAY USING VOLTAGE RATIO OR CURRENT RATIO WITH TEMPERATURE COMPENSATION - Compensation needed to be made for reduced light efficiency in aged sub-pixels of an active matrix organic light-emitting diode (OLED) display are determined using a current ratio or a voltage ratio pertaining to an aged sub-pixel relative to un-aged, reference sub-pixels. When the current through the sub-pixels or the voltage across the sub-pixels are measured to determine the age of the sub-pixels, correction is made to the measured current or voltage to account for variations in the ambient temperature in which the OLED display is placed.09-25-2008
20090153445Capacitive coupling-type transmitting and receiving circuits for information signal - A capacitive coupling-type transmitting and receiving circuit for information signal is provided in which attenuation of a signal on a non-contact transmission path via a capacitor and a change of voltage on the receiving side due to a slight change in capacitance are suppressed, modulation and demodulation processes of signals are unnecessary, and non-contact transmission which does not depend on the transmission rate is enabled. The capacitor is formed with a transmitting electrode on a transmission board and a receiving electrode on a display panel board, and an insulating member is interposed between the electrodes. The transmitting board comprises a transmission signal processing circuit which converts display data from an external signal source into a voltage signal. The display panel board comprises an impedance converter circuit and a reception signal processing circuit.06-18-2009
20090027315Organic light emitting display and driving method thereof - An organic light emitting display is disclosed. The display comprises: a scan driver for sequentially supplying a scan signal to scan lines during scan periods of a plurality of sub-frames included in a frame; a data driver for supplying a data signal to data lines when the scan signal is supplied; pixels disposed at a display region of a panel to be coupled to the scan lines and the data lines, and receiving a first power source voltage and a second power source voltage; at least one dummy organic light emitting diode disposed at a non-display region of the panel; and a power source block for supplying an electric current to the dummy organic light emitting diode and for generating the first power source voltage based on a voltage of the dummy organic light emitting diode corresponding to the electric current.01-29-2009
20090027313Imaging device - To determine a deterioration and maintain a high-quality image without unevenness of brightness by performing a precise correction, a detection scanning line for selecting a pixel which detects a deterioration of a pixel, a detection line for informing the outside of the display area of the property of a pixel selected for detecting the deterioration, a deterioration determination means for determining a deterioration amount based on a voltage corresponding to a current detected by the detection line, and a deterioration correction means (computation circuit) for reflecting the determination result of the deterioration determination means in image data supplied to the pixel, are provided.01-29-2009
20090027311Organic light-emitting diode (OLED) display apparatus and method of driving the same - An organic light-emitting diode (OLED) display apparatus, including a control unit to receive an image signal and to generate a frame-based image data signal and a frame identification signal based at least in part on the received image signal, the frame identification signal being synchronized with the frame-based image data signal, a driving voltage supply unit to generate a first voltage for a switching unit and a second voltage for a display unit, and a switching unit to receive the first voltage and the frame identification signal and to supply the first voltage for the display unit based at least in part on the frame identification signal.01-29-2009
20090027310Pixel, organic light emitting display using the same, and associated methods - A pixel including an organic light emitting diode, a second transistor controlling a current supplied to the organic light emitting diode, a pixel circuit configured to compensate a threshold voltage of the second transistor; and a compensating unit controlling a voltage of a gate electrode of the second transistor in order to compensate for deterioration of the organic light emitting diode. The compensating unit includes seventh and eighth transistors coupled in series between the organic light emitting diode and a first power source, the seventh and eight transistors being commonly connected to a fourth node therebetween, first and second feedback capacitors coupled in series between the fourth node and a second node, the second node being coupled to the gate electrode of the second transistor, and a ninth transistor coupled between a predetermined voltage source and a fifth node that is common to the first and second feedback capacitors.01-29-2009
20090027309DISPLAY APPARATUS - A display apparatus which can decrease a flicker with the resolution of a moving image being heightened, and further to decrease the color breakup at the edge portion of the moving image, drives an organic EL device 01-29-2009
20110069000SYSTEM FOR DISPLAYING IMAGES - A system for displaying images is provided. The system includes a full-color organic electroluminescent device having a bottom substrate. A reflection layer, a first transparent electrode, an organic electroluminescent unit, and a second transparent electrode are sequentially disposed on the bottom substrate. Particularly, a light enhancing layer is disposed between the bottom substrate and the first transparent electrode.03-24-2011
20110050550Pixel driving circuit for light emitting display panel - A display panel has a plurality of OLED pixels arranged in rows and columns. The pixel driving circuit has two or more current paths through a plurality of switching elements for providing the necessary current to the OLEDs in a pixel. The control end of each switching element is connected to the control end of the other switching elements, but each switching element has a separate power source which can be separately adjustable. In some embodiments, in a pixel or sub-pixel, one switching element is located at one end and one switching element is located at the other end of a pixel length, and each pixel is adjacent to a first power source line and a second power source line along the pixel length for separately providing the electrical power to two switching elements.03-03-2011
20080252567Active Matrix Display Device - An active matrix display device has a display section including a plurality of pixel sections each controlling the light intensity of an electro-optical element, a data driver supplying a data value to a data line, a gate driver supplying a selection signal to a gate line, and a controller. The controller includes a video data processing section that outputs video data to each pixel section, a correction data processing section that calculates and outputs correction data based on the video data supplied to each pixel section or its output history, and a multiplexer that selectively outputs the data. The video data is displayed during a predetermined video period, and the correction data is displayed during a predetermined correction period. The sum of the video period and the correction period is equal to the display period of one frame in the display section.10-16-2008
20100295758PIXEL CIRCUIT - To efficiently execute threshold value compensation for a driving transistor for an electroluminescent element. A first storage capacitor has a first terminal connected to a data line. A first terminal of a switching transistor and a first terminal of a reset transistor are connected to a second terminal of the first storage capacitor. The first storage capacitor is formed overlapping a data line.11-25-2010
20100117939ORGANIC LIGHT EMITTING DISPLAY DEVICE - An organic light emitting display device includes a display unit including a plurality of data lines, a plurality of scan lines, and pixels at crossing regions of the data lines and scan lines, wherein the plurality of data lines are arranged into a plurality of groups; a data driver for supplying data signals to the data lines; a first demultiplexer at a first side of the display unit for associating the groups to first corresponding output channels of the data driver, and for coupling the output channels to the data lines in the first corresponding groups in accordance with control signals; a second demultiplexer at a second side of the display unit opposite the first side for associating the groups to second corresponding output channels of the data driver, and for coupling the output channels to the data lines in the second corresponding groups in accordance with the control signals.05-13-2010
20110254757ORGANIC LIGHT EMITTING DIODE DISPLAY - An organic light emitting diode display includes a substrate including a display area and a non-display area, a display unit that is formed in the display area and includes a plurality of subpixels arranged in a matrix form, a main ground line that is positioned at a first side of the non-display area and is formed using the same material as source and drain electrodes included in each subpixel, and an auxiliary ground line that is formed to surround the non-display area, overlaps at least a portion of the main ground line at the first side of the non-display area, is electrically connected to the main ground line, and is formed using the same material as a lower electrode included in each subpixel.10-20-2011
20100265165ORGANIC LIGHT EMITTING DISPLAY DEVICE - An organic light emitting display device capable of improving image quality on a large panel. The organic light emitting display device includes a panel divided into at least two regions including a first region crystallized by a first crystallization process and a second region crystallized by a second crystallization process, in which a boundary part of the first and second regions is subject to both the first crystallization process and the second crystallization process, and further includes: organic light emitting diodes at crossing regions of scan lines and data lines; and pixel circuits at the crossing regions and configured to supply currents to the organic light emitting diodes. Here, couplings between the pixel circuits within the first region and the boundary part and their respective organic light emitting diodes are different from couplings between the pixel circuits within the second region and their respective organic light emitting diodes.10-21-2010
20110248907DISPLAY APPARATUS - A display apparatus having an improved function for encapsulating a display unit, and comprising a substrate, wherein the display unit is disposed on the substrate; an encapsulation unit facing the display unit, the encapsulation unit comprising: a metal layer; and a composite member; and a sealing unit disposed between the substrate and the encapsulation unit and separated from the display unit so as to adhere the substrate to the encapsulation unit, wherein the composite member comprises a resin matrix and carbon fibers, and wherein the metal layer is disposed between the substrate and the composite member.10-13-2011
20100097302ORGANIC LIGHT EMITTING DISPLAY - An organic light emitting display includes a display unit including a plurality of pixels coupled to scan lines and data lines, a data driver for applying data signals to the data lines, a black data inserting unit between the display unit and the data driver for applying black data to the display unit, the black data being applied between periods in which the data signals are applied, and a timing controller for controlling the data driver and the black data inserting unit.04-22-2010
20100053040DISPLAY DEVICE AND METHOD OF DRIVING THE SAME - A display device includes: horizontal scan lines; vertical scan lines; an electro-optical element disposed at each of positions where the horizontal scan lines and the vertical scan lines intersect and selectively turned on based on a video signal and a vertical scan signal; a defect information storing section that stores defect information indicating whether each of the electro-optical elements has a defect; and a video signal generating section that generates a video signal to be supplied to the electro-optical element in each position based on a video signal supplied from outside and the defect information, wherein the video signal generating section supplies a video signal to the electro-optical elements such that the supply of a level required for turning on an element is stopped for an electro-optical element having a defect and the video signal supplied from the outside is supplied to an electro-optical element having no defect.03-04-2010
20090322657ORGANIC LIGHT EMITTING DISPLAY AND FABRICATING METHOD THEREOF - A flat panel display according to an exemplary embodiment of the present invention includes a transistor disposed on a substrate, a planarizing layer having a trench, which includes a bottom surface and a side surface, disposed on the transistor, a reflective film disposed in the trench, a pixel electrode disposed on the reflective film and connected to the transistor, a partition wall having an opening to expose a portion of the pixel electrode, an organic light emitting member disposed on the reflective film, and a common electrode disposed on the organic light emitting member.12-31-2009
20100277402ELECTRO-OPTICAL DEVICE, METHOD OF DRIVING THE SAME, AND ELECTRONIC APPARATUS - An aspect of the present invention provides an electro-optical device including a plurality of scanning lines, a plurality of data lines, a plurality of power lines extending in a direction intersecting with the plurality of data lines, and a plurality of pixel circuits provided corresponding to intersections of the plurality of scanning lines and the plurality of data lines, wherein pixel circuits of the plurality of pixel circuits provided adjacent to each other along one of the plurality of data lines is coupled to one of the plurality of power lines.11-04-2010
20080246698Organic light emitting display device and driving method thereof - An organic light emitting display device and a driving method thereof, capable of preventing malfunction due to an overload of a scan driver and an abnormal lighting phenomenon of pixels.10-09-2008
20080246699Organic light emitting display, and image modification method - An organic light emitting display, and an image modification method may include an analog to digital image signal processor configured to output present digital image data, a frame data analysis unit electrically coupled to the image signal processor, the frame data analysis unit configured to receive the present digital image data and a present data summation value, and to output a new data summation value, a light emission time supply unit electrically coupled to the frame data analysis unit and configured to supply a light emission time in accordance with the new data summation value, and a light emission control driver electrically coupled to the light emission time supply unit and configured to output a light emission signal in accordance with the light emission time output from the light emission time supply unit.10-09-2008
20080238831Organic electroluminescent display device and method of fabricating the same - An organic electroluminescent display device includes: a substrate; a gate line, a data line an a power line on the substrate, the gate line and the data line crossing each other to define a pixel region, the power line parallel to and spaced apart from the data line; a switching element connected to the gate line and the data line, the switching element including a switching gate electrode, a switching active layer, a switching source electrode and a switching drain electrode; a driving element connected to the switching element, the driving element including a driving gate electrode, a driving active layer, a driving source electrode and a driving drain electrode; a first passivation layer on the switching element and the driving element, the first passivation layer having a first contact hole exposing the driving drain electrode; a first shield pattern under the first contact hole, the first shield pattern including a same material and a same layer as the gate line; a first electrode on the first passivation layer, the first electrode connected to the driving drain electrode through the first contact hole; an organic electroluminescent layer on the first electrode; and a second electrode on the organic electroluminescent layer.10-02-2008
20110156990PIXEL AND ORGANIC LIGHT EMITTING DISPLAY DEVICE USING THE SAME - A pixel for use in an organic light emitting display device capable of displaying an image of uniform brightness is provided. The pixel includes: an organic light emitting diode; a first transistor for controlling the amount of current supplied to the organic light emitting diode; a storage capacitor coupled between a gate electrode and a second electrode of the first transistor; a second transistor coupled between the gate electrode of the first transistor and a data line, and configured to turn on when a scan signal is supplied to a scan line; a fourth transistor coupled between the first electrode of the first transistor and a first power source, and configured to be off during a period when a voltage is charged to the storage capacitor; and a third transistor coupled between the gate electrode and the first electrode of the first transistor.06-30-2011
20100271293ELECTRO-OPTICAL APPARATUS, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE - An electro-optical apparatus includes a substrate and multiple pixels formed upon the substrate. The substrate is formed by interleaving multiple strip-shaped tape members configured of a resin.10-28-2010
20080316149Electro-luminescence pixel, panel with the pixel, and device and method for driving the panel - An electro-luminescence display having a plurality of pixels is disclosed. One of the pixels of the electro-luminescence display includes an electro-luminescence diode electrically connected between first and second voltage sources; first and second thin film transistors adjusting an amount of current flowing to the electro-luminescence diode; and a control circuit complementarily operating the first and second thin film transistors in an active mode and a refresh mode.12-25-2008
20080252570Organic light emitting display and driving method thereof - An organic light emitting display capable of displaying an image with uniform luminance regardless of deterioration of an organic light emitting diode and threshold voltage/mobility of a drive transistor is disclosed. The organic light emitting display senses deterioration of the organic light emitting diode and the threshold voltage and/or mobility of a drive transistor and modifies the data supplied to the pixel according to the sensed parameters.10-16-2008
20080252566Display, Display Method, and Electronic Device - A display, comprising: a planar display section; a pixel space provided next to a side adjacent to one surface of the display section and encapsulating a plurality of kinds of colorants, each kind having a different color; an accumulation section provided in the pixel space and accumulating the colorants; a separation system that separates a specific kind of colorant from the accumulated colorants in the accumulation section; a transfer system that selects at least one kind of colorant from the separated colorants and transfers this colorant to the side adjacent to the display section of the pixel space. The separation system performs separation utilizing the magnitude of a dielectrophoretic force generated in each colorant upon receipt of an alternating electric field of a specific frequency applied by this system, the magnitude varying depending on the kind of the colorant. A color of at least the one kind of colorant transferred by the transfer system is displayed at the display section.10-16-2008
20100321280Display - A display having a display plane comprising individual pixel elements is proposed. The display can be controlled pixel by pixel by way of an array comprising control elements, with a sensor plane comprising individual photo diodes, which can be read out line by line by way of a readout circuit, being provided, which is used to scan the surface of a flat object adjacent to the display.12-23-2010
20080204375Organic light emitting diode display device and driving method thereof - An organic light emitting diode (OLED) display device, including a pixel unit including a plurality of pixels connected to scan lines and data lines, a scan driver adapted to generate and supply scan signals to the scan lines, a data driver adapted to generate and supply data signals to the data lines, an optical sensor adapted to generate an optical sensor signal to correspond to an intensity of light, and a data conversion unit adapted to compare a predetermined reference value with the optical sensor signal so as to generate a selection signal for selecting one of at least three modes. The data conversion unit may be adapted to store an input image data or a changing data changed from the input image data to correspond with the selection signal. The data driver may generate the data signals to correspond to the input image data or the changing data stored in the data conversion unit.08-28-2008
20080204376AMOLED INCLUDING CIRCUIT TO SUPPLY ZERO DATA VOLTAGE AND METHOD OF DRIVING THE SAME - An active matrix organic electroluminescent display including a circuit to supply a zero data voltage, and a method of driving thereof. A driver of the organic electroluminescent display includes a zero data process block which outputs a zero data voltage enable signal when pixel data that is to be displayed is zero data, and a circuit to transmit zero data voltage corresponding to the zero data to a pixel in response to the zero data voltage enable signal. The organic electroluminescent display and the driver thereof separately include the circuit for supplying zero data voltage, and thus zero data can be accurately displayed.08-28-2008
20080204374Method and apparatus for driving an AMOLED with variable driving voltage - The sharpness impression when displaying a movement on an AMOLED (Active Matrix Organic Light Emitting Display) shall be improved. For this purpose, an apparatus for driving a cell of an AMOLED is provided including driving means for applying a driving voltage to the cell and for applying a luminance control signal to the cell during a pregiven time frame. The apparatus further includes controlling means for varying the driving voltage within the time frame according to a predefined function of time. For example, the driving voltage may be varied in the form of a triangle so that the lighting time over the frame is reduced while a CRT like behavior is emulated.08-28-2008
20100283713FOLDABLE PORTABLE DISPLAY - Techniques are generally described for a system, method and apparatus that provides a foldable portable display, such as may be used in conjunction with a handheld or other portable electronic device. The display screen may be folded and/or retracted into a smaller form factor for easy concealment and/or stowage. When in use, the display may be extended into a larger size and shape than the case for the device.11-11-2010
20110134019ORGANIC LIGHT EMITTING DIODE DEVICE - An organic light emitting diode device is disclosed. The organic light emitting diode device includes a color calibration layer which is applied to the white sub-pixel. The color calibration layer selectively absorbs light in a given wavelength region thereby increasing luminance due to the white sub-pixel while simultaneously preventing the deformation of white color coordination. The contrast ratio may also be improved by reducing the reflection of external light, thereby minimizing the need for a polarizer, and the thickness of the device may thus be decreased and processing costs may be reduced.06-09-2011
20110134018METHOD OF MANUFACTURING FLEXIBLE DISPLAY APPARATUS - A method of manufacturing a flexible display apparatus, and more particularly, to a flexible display apparatus including a display unit including a thin-film transistor which is easily encapsulated. The method of manufacturing a flexible display apparatus includes: sequentially forming a first plastic film and a first barrier layer on a first substrate; forming a thin-film transistor on the first barrier layer; forming on the thin-film transistor a display device that is electrically connected to the thin-film transistor; forming an encapsulation member including a second substrate, a second plastic film, and a second barrier layer, wherein the second substrate and the second film are sequentially stacked on the second barrier layer; combining the encapsulation member with the upper portion of the display device; ablating the first substrate from the first plastic film; and ablating the second substrate from the second plastic film.06-09-2011
20100156761EDGE EMISSIVE DISPLAY DEVICE - A display device includes a plurality of Y display slices, each display slice having electronic structures, which include a one-dimensional array of X adjacent pixels that emit light from a face edge of the display slice in response to electrical power. The display slices are assembled in a layered arrangement to form an emissive face. Also included are control electrodes, power electrodes, data electrodes, and a connection structure for each display slice. Each connection structure connects at least (a) each of a plurality of groups of the corresponding display slice's pixels to a separate one of the control electrodes, (b) one or more of the power electrodes to at least one of the corresponding display slice's electronic structures, and (c) one or more of the data electrodes to at least one of the corresponding display slice's electronic structures.06-24-2010
20110095967PIXEL AND ORGANIC LIGHT EMITTING DISPLAY DEVICE USING THE SAME - A pixel and an organic light emitting device that can display an image having a desired luminance. The pixel includes an organic light emitting diode (OLED), first through third transistors, and a first capacitor. The OLED has a cathode electrode coupled to a second power source. The second transistor controls the current from a first power source to the OLED. The first capacitor has a first terminal coupled to a gate electrode of the second transistor. The first transistor is coupled between a second terminal of the first capacitor and a data line, and turns on when a scan signal is supplied to a scan line. The third transistor is coupled between the gate electrode and a second electrode of the second transistor, and turns on when a control signal is supplied to a control line. The third transistor remains turned on for a longer time than the first transistor.04-28-2011
20110260954ORGANIC LIGHT-EMITTING DISPLAY APPARATUS - An organic light-emitting display apparatus includes: a plurality of thin film transistors (TFTs); a planarization layer covering the plurality of TFTs; a plurality of pixel electrodes formed on the planarization layer, each of the pixel electrodes being connected to a corresponding one of the plurality of TFTs using a via-hole passing through the planarization layer and having a light-emitting portion and a non-emitting portion, and each of the via-holes being located at a point farthest from each of the light-emitting portions surrounding the via-hole; a pixel defining layer formed on the planarization layer to respectively cover each of the via-holes and the non-emitting portions; organic layers, each organic layer including an emission layer and being disposed in a corresponding one of the light-emitting portions; and a counter electrode disposed on each of the organic layers.10-27-2011
20100220040PIXEL AND ORGANIC LIGHT EMITTING DISPLAY DEVICE USING THE SAME - A pixel includes an organic light emitting diode (OLED) having a cathode electrode coupled to a second power source, a second transistor coupled to a data line and a first scan line, a first transistor coupled between a second electrode of the second transistor and an anode electrode of the OLED, a third transistor coupled between a gate electrode and a second electrode of the first transistor, a fourth transistor coupled between the gate electrode of the first transistor and an initialization power source, a fifth transistor coupled between a first electrode of the first transistor and a first power source, a first capacitor coupled between the gate electrode of the first transistor and the first power source, and a second capacitor coupled between the gate electrode and the first electrode of the first transistor.09-02-2010
20100321279Transistor, electronic device including a transistor and methods of manufacturing the same - Disclosed are a transistor, an electronic device and methods of manufacturing the same, the transistor including a photo relaxation layer between a channel layer and a gate insulating layer in order to suppress characteristic variations of the transistor due to light. The photo relaxation layer may be a layer of a material capable of suppressing variations in a threshold voltage of the transistor due to light. The photo relaxation layer may contain a metal oxide such as aluminum (Al) oxide. The channel layer may contain an oxide semiconductor.12-23-2010
20080218454Display apparatus and method for driving the same - In a display apparatus, as shown in FIG. 09-11-2008
20080218452Image display apparatus - When an organic EL display apparatus enables display of a standard luminance mode and a high luminance mode, it takes long time to reset the gate potential of the OLED drive TFT to a given value in a standard mode. In the reset operation of the gate potential of an OLED drive TFT at the time of writing an image signal, in a standard mode, a precharge current is allowed to flow in the OLED element for a short period before the reset operation to set an initial value of the gate potential of the OLED drive TFT to be close to a supply potential or a reference potential. With the above operation, the variation of the OLED drive TFT gate potential after resetting is reduced. As a result, the light emitting period during one frame can be extended. Also, since a blanking period can be extended, it is possible to measure the characteristic of the OLED element by using the blanking period.09-11-2008
20080218453Organic electroluminescence display - In an organic EL display, correction is made for a difference in screen luminance between the case of measuring characteristics of OLED elements, and the case of not measuring the characteristics of the OLED elements. A data line for feeding image data items, and a detection line for measuring the characteristics of the OLED elements are connected to respective pixels. Detection of the characteristics of the OLED elements is executed by utilizing a specified period of a frame period. Because an image-displaying period is limited in a frame where measurement of the characteristics of the OLED element 09-11-2008
20080218450ORGANIC ELECTRO-LUMINESCENT DISPLAY AND METHOD OF MAKING THE SAME - An organic electro-luminescent display and a making method of the same. The organic electro-luminescent display according to the present invention includes a luminance control unit including a data sum-up unit to generate a frame data; a look-up table for storing an information corresponding to the light emission control signal to correspond to the frame data; an operator unit to generate a look-up table by using a value at the beginning step of luminance reduction, a value at the final step of luminance reduction, a pulse width of the light emission control signal at the beginning step of luminance reduction, and a pulse width of the light emission control signal at the final step of luminance reduction; and a luminance control signal driver for outputting a luminance control signal using the information corresponding to the light emission control signal stored in the look-up table.09-11-2008
20080218451Organic electroluminescence display - The voltage-current property of the specific pixel is measured to store the data on a single line in a line memory. The property data of adjacent pixels are compared. A failure determination unit detects whether or not the pixel to be compared is faulty. If it is determined as being faulty, the faulty pixel is removed from the pixel group to be compared. The burn-in determination unit performs the comparison using normal pixels only to provide the correct burn-in data. The calculation unit reflects the burn-in data in the image data from the host.09-11-2008
20080218448Organic electro luminescence display and driving method of the same - Disclosed are an organic electro luminescence display and a driving method of the same. The present invention provides an organic electro luminescence display including a pixel unit for displaying an image to correspond to a scan signal, a light emission control signal and a data line. The image is composed of a plurality of frames. The organic electro luminescence display of the present invention includes a scan driver for supplying the scan signal and the light emission control signal to the pixel unit, a data driver for generating a data signal with a video data to supply the generated data signal to the pixel unit, a control unit for controlling a pulse width of the light emission control signal using a frame data which is the sum of the video data inputted to one frame and controlling one frame time according to the size of the frame data, and a power supply unit for supplying a first power and a second power to the pixel unit.09-11-2008
20100066651ORGANIC LIGHT EMITTING DIODE DISPLAY AND METHOD FOR MANUFACTURING THE SAME - The present invention relates to an organic light emitting device and a manufacturing method thereof. The organic light emitting device according to an embodiment of the present invention comprises: a first pixel displaying a first color; a second pixel displaying a second color; and a third pixel displaying a third color; wherein each of the first, second, and third pixels comprise a first translucent member, a second translucent member disposed on the first translucent member, an intermediate member disposed between the first and second translucent members, and a pixel electrode disposed on the second translucent member.03-18-2010
20100194670OLED Display System Compensating for Changes Therein - A method of compensating an OLED display device having light-emitting elements that change with use, comprising the steps of: a) using the device to display images; b) sequentially displaying an ordered series of calibration images, wherein each of the calibration images have one or more corresponding flat fields, at least one of the corresponding flat fields of each calibration image of the ordered series has a different luminance value, and the calibration images are arranged in the ordered series so as to reduce perceived luminance discontinuities; c) measuring and recording current used by the display for each sequentially displayed calibration image; d) calculating compensation parameters based on the measured currents; e) compensating an input image using the compensation parameters; and f) displaying the compensated input image.08-05-2010
20110260953LIGHT EMITTING DEVICE AND DISPLAY PANEL - A light emitting device includes a substrate, a patterned light-scattering layer, and an electroluminescent device. The patterned light-scattering layer is disposed on a portion of the substrate. The patterned light-scattering layer has a bottom surface in contact with the substrate, a top surface opposite to the bottom surface, and a plurality of sidewalls connecting the bottom surface and the top surface. The electroluminescent device is at least disposed on the sidewalls.10-27-2011
20110187629FLAT PANEL DISPLAY APPARATUS AND ORGANIC LIGHT-EMITTING DISPLAY APPARATUS - A flat panel display apparatus includes a substrate; a display unit which is formed on the substrate and displays an image; a metal sheet which faces towards the substrate; a sealant which fills the entire free space between the substrate and the metal sheet and seals the space between the substrate and the metal sheet; and a polymer layer which is disposed on a surface of the metal sheet and has a lower thermal expansion coefficient than the metal sheet. An organic light-emitting display (OLED) apparatus including a sealant which fills an entire space between a substrate and a metal sheet is also disclosed.08-04-2011
20100026612Display device and electronic apparatus - Disclosed herein is a sampling transistor in an embodiment of the present invention is kept at the on-state with a time width shorter than one horizontal cycle, during the period from the rising of a control pulse supplied from a scanner to a scan line WS to the falling of the control pulse, and samples a video signal from a signal line SL to write the video signal to a hold capacitor. The sampling transistor includes the channel region between the source and the drain and has a sandwich gate structure in which a shield that electrically shields the channel region is disposed on the other side of the channel region. This suppresses change in the threshold voltage of the sampling transistor.02-04-2010
20090174629Organic Light Emitting Display Device and driving method thereof - A circuit and process capable of smoothly switching between screens of an organic light emitting display by switching an image of a pixel unit that includes a matrix of pixels into a black image by sequentially reducing the voltage of a first power supply at least two times to display the black image as the screen of the pixel unit transitions to the black image.07-09-2009
20100019996DISPLAY SUBSTRATE AND METHOD OF MANUFACTURING THE SAME - A display substrate includes a switching transistor electrically connected to a gate line and a data line, the data line extending in a first direction substantially perpendicular to the gate line extending in a second direction, the switching transistor including a switching active pattern comprising amorphous silicon, a driving transistor electrically connected to a driving voltage line and the switching transistor, the driving voltage line extended in the first direction, the driving transistor including a driving active pattern comprising a metal oxide; and a light-emitting element electrically connected to the driving transistor.01-28-2010
20090027314Imaging device and method of correction pixel deterioration thereof - In a display mode, a signal driving circuit (DAC) transmits image signals to the pixels selected by a scanning circuit for display and first switches of switch units. Then, a power supply circuit supplies a current corresponding to the transmitted signal to the pixels. Then, organic EL elements provided in the pixels are driven to emit light, thereby displaying an image. In order to correct the deterioration of the organic EL elements, first, a constant current flows from a current source to the organic EL elements of the pixels selected by a scanning circuit for detection and second switches and a voltage corresponding to the constant current applied to the organic EL element is detected. The detected voltage is input to an AD converter through a buffer amplifier, and the AD converter converts the voltage into a digital value, and transmits the digital value to a signal correction control unit. When the organic EL element deteriorates, the detected digital value varies. Therefore, the signal correction control unit corrects the signal from the signal driving circuit, thereby correcting the deterioration of the organic EL element.01-29-2009
20100085283Light-Emitting Device and Electric Appliance - An inexpensive light emitting device capable of displaying a bright image and an electric appliance using the light emitting device. In the light emitting device having a pixel portion and a driver circuit formed on one insulating member, all of semiconductor elements for the pixel portion and the driver circuit are formed by n-channel semiconductor elements, thereby enabling the manufacturing process to be simplified. Each of light-emitting elements provided in the pixel portion emits light in such a direction that most of the light travels away from the insulating member, so that substantially the whole of the pixel-forming segment electrode (corresponding to a cathode of an EL element) is formed as an effective light-emitting area. Therefore, a low-priced light-emitting device capable of displaying a bright image can be obtained.04-08-2010
20090135105LIGHT-EMITTING ELEMENT AND DISPLAY APPARATUS USING THE SAME - A light-emitting element comprises an auxiliary electrode provided on a substrate; an insulating layer provided on the auxiliary electrode; a first electrode supported by the insulating layer; a carrier injection layer made of an organic conductive material having carrier injecting property, and making contact with the first electrode; a light emission layer supported by the carrier injection layer; and a second electrode supported by the light emission layer, and a carrier dispersion layer having lower resistance than the carrier injection layer is provided between the carrier injection layer and the light emission layer. With this arrangement, a light-emitting element having good light emission characteristics in-a pixel is provided.05-28-2009
20110115693Display Device - A display device includes a first display panel and a second display panel. The first display panel displays a first image in a first direction. The second display panel is on the first display panel and shares a common substrate with the first display panel. The second display panel displays a second image in the first direction. The second image at least partially overlaps the first image.05-19-2011
20120306728Display Device, Driving Method Of The Same, and Electronic Device - A display device suppresses the influence of variations of a current value supplied to a light emitting element caused by a temperature change. In particular, luminance variations caused by a temperature gradient in a pixel portion due to a heat generated from a source signal line driver circuit are suppressed. In a display device including a gate signal line provided in a row direction, a source signal line provided in a column direction, and a light emitting element in a pixel portion arranged in matrix corresponding to the gate signal line and the source signal line, a column of monitor elements is provided beside the pixel portion, a constant current is supplied to each row of the monitor elements, and a voltage generated at the monitor element for each row of pixels is applied to light emitting elements of the corresponding row.12-06-2012
20120306727FUSED POLYCYCLIC COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE USING THE COMPOUND - Provided are a fused polycyclic compound suitable for use mainly as a component for a blue-light-emitting device, and an organic light-emitting device using the compound. The fused polycyclic compound is represented by the general formulae (1), (2), (8) and (9).12-06-2012
20090174628OLED display, information device, and method for displaying an image in OLED display - An OLED display including a display panel, a memory, and a processing circuit is provided. The display panel includes a plurality of sub-pixels. The memory stores a compensation table. The processing circuit includes a current sensor, and a processor. The current sensor sense a current of at least one sub-pixel among said plurality of sub-pixels, and the compensation table is updated according to the sensed current. The processor receives image data and generates compensated image data based on the image data and the updated compensation table. Then the display panel displays said compensated image data.07-09-2009
20100277401EL DISPLAY PANEL DRIVING METHOD - In order to charge and discharge parasitic capacitance of a source signal line sufficiently and program a predetermined current value into a pixel transistor, it is necessary to output a relatively large current from the source driver circuit. However, if such a large current is passed through the source signal line, the value of this current is programmed into the pixel, causing a larger than desired current to flow through an EL element. For example, if a 10 times larger current is used for programming, a 10 times larger current flows through the EL element, and thus the EL element illuminates 10 times more brightly. To obtain predetermined emission brightness, the time during which the current flows through the EL element can be reduced to 1/10 of one frame (1 F). This way, the parasitic capacitance of the source signal line can be charged and discharged sufficiently and the predetermined emission brightness can be obtained.11-04-2010
20090121984Electroluminescent display panel and electronic device - An EL display panel including: a pixel array section in which EL display elements whose light emission state is controlled by an active matrix driving system are arranged in a form of a matrix; a first writing control line driving section and a second writing control line driving section configured to drive each writing control line from both sides of the pixel array section; and a first power supply line driving section and a second power supply line driving section configured to drive a power supply line disposed along a direction of a horizontal line from both sides of the pixel array section, the first power supply line driving section and the second power supply line driving section being respectively arranged between the first writing control line driving section and the pixel array section and between the second writing control line driving section and the pixel array section.05-14-2009
20110316765MATRIX ADDRESSED DISPLAY SYSTEM - The present invention relates to the monitoring and correction of display errors in a matrix addressed display system. The display system comprises a graphics system, a display module and a display fault handling system including a memory. The display module has a matrix addressed electro-optical array of display elements, the display elements being arranged in rows and columns and having corresponding row and column circuit lines. The graphics system generates display data and sends this to the display module in order to activate using row and column circuit lines each of the display elements and thereby display visual information to a user of the system based on the display data. The display fault handling system is used to monitor over a period of time at least one electrical parameter of a plurality these circuit lines and determine whether or not a display error has occurred.12-29-2011
20120062450Pixel circuit and display device - A pixel circuit includes: a switching transistor whose conduction is controlled by a drive signal supplied to the control terminal; a drive wiring adapted to propagate the drive signal; and a data wiring adapted to propagate a data signal. The drive wiring is formed on a first wiring layer and connected to the control terminal of the switching transistor. The data wiring is formed on a second wiring layer and connected to a first terminal of the switching transistor. A multi-layered wiring structure is used so that the second wiring layer is formed on a layer different from that on which the first wiring layer is formed.03-15-2012
20120044130DISPLAY APPARATUS AND ELECTRONIC APPARATUS - A display apparatus includes a pixel unit in which pixels are arranged in a matrix pattern; and a driving circuit for driving the pixel unit. Each of the pixels includes a signal level holding capacitor; a first transistor that is turned on/off in response to a writing signal and via which one end of the signal level holding capacitor is connected to a signal line; a second transistor having one end of the signal level holding capacitor connected to a gate thereof and the other end of the signal level holding capacitor connected to a source thereof; a current-driven self-light-emitting element whose cathode is held at a cathode potential and whose anode is connected to the source of the second transistor; a third transistor that is turned on/off in response to a driving pulse signal; and a fourth transistor that is turned on/off in response to a control signal.02-23-2012
20120044129REFLECTIVE COLOUR DISPLAY DEVICE - A reflective colour display device comprises a plurality of capillary sub-pixels arranged side by side. Each capillary sub-pixel has a first end and a second end, and a scattering medium disposed between said ends. Each capillary sub-pixel contains a transparent coloured medium which can be reversibly changed to a medium with a different light absorption property in an optical modulation region between the first end and the scattering medium. The optical modulation region of each capillary sub-pixel has a height to width aspect ratio of at least about 3. Light incident on the scattering medium through a first sub-pixel will be scattered into at least one neighbouring sub-pixel having a coloured medium of different colour to coloured medium in the first sub-pixel.02-23-2012
20120044128DISPLAY METHOD AND DEVICE USING PHOTONIC CRYSTAL CHARACTERISTICS - A display method and device using photonic crystal characteristics are disclosed. In the display method using photonic crystal characteristics in accordance with the present invention, when a plurality of particles having electric charges are dispersed in a solvent, an electric field is applied to control inter-particle distance.02-23-2012
20120062449REDUCING VIDEO CROSS-TALK IN A VISUAL-COLLABORATIVE SYSTEM - A visual-collaborative system including a display screen configured to display images and a camera configured to capture images. The system also includes a video cross-talk reducer configured to estimate video cross-talk that is to be displayed on the display screen and captured by the camera, and reducing the estimated video cross-talk from captured images by the camera. The estimation of the video cross-talk and reduction of the video cross-talk is signal based.03-15-2012
20100277400CORRECTION OF AGING IN AMOLED DISPLAY - The data line voltage on the data line of the AMOLED sub-pixels is measured while the OLED is being driven by a reference current, in order to determine the age of the OLED in the sub-pixel. The pixel transistor serves as a current source for driving the OLED in the sub-pixel with the reference current. The data line voltage is substantially equal to the forward voltage VF(aged) of the aged OLED being driven at the reference current. The forward voltage VF (un-aged) of a reference (un-aged) OLED sub-pixel also measured at the reference current, and is subtracted from the measured OLED diode forward voltage VF (aged) to obtain their difference ΔVF=VF(aged)−VF(un-aged). ΔVF is an indicator of the age of the OLED in the sub-pixel, and is used as an index to a look-up-table that stores the corresponding aging offset data for generating the incremental pixel current needed to maintain constant luminance in the aged OLED pixel.11-04-2010
20120112989DISPLAY APPARATUS AND METHOD FOR MAKING THE SAME - A pixel has an outer region extending linearly along a boundary with an adjacent pixel and an inner region extending along the inner side of the outer region. Wiring lines are arranged across the outer region and the inner region. An outer uneven zone is formed along the outer region and on a substrate due to level differences resulting from the presence of the wiring lines. Similarly, an inner uneven zone is formed along the inner region and on the substrate due to level differences resulting from the presence of the wiring lines. A pattern of a conductor film of which the wiring lines are made is formed properly such that recessed portions of the outer uneven zone are located directly behind their corresponding raised portions of the inner uneven zone, as viewed from inside the pixel.05-10-2012
20090135113Electro luminescent display panel and electronic apparatus - An EL display panel having a pixel structure corresponding to an active-matrix drive system, the EL display panel including a current supply line configured to be connected to a plurality of pixel circuits in common, line width of an intersection part of the current supply line with a signal line being smaller than line width of the other part of the current supply line.05-28-2009
20120306729EL DISPLAY PANEL, POWER SUPPLY LINE DRIVE APPARATUS, AND ELECTRONIC DEVICE - Disclosed herein is an electroluminescence display panel including: a pixel circuit; a signal line; a scan line; a drive power supply line; a common power supply line; a power supply line drive circuit; a high-potential power supply line; and a low-potential power supply line.12-06-2012
20090135109ORGANIC EL ELEMENT, ORGANIC EL DISPLAY DEVICE, AND METHODS OF MANUFACTURING THE SAME - In an organic EL element having a transparent conductive electrode and a cathode opposed to the transparent conductive electrode, the cathode includes a film of a rare earth element that can be sputtered. The film of the rare earth element having a low work function, for example, a LaB05-28-2009
20090135112Display apparatus and fabrication method and fabrication apparatus for the same - A display apparatus includes: a pixel array section including a plurality of pixel circuits disposed in rows and columns and each including a driving transistor configured to produce driving current, a storage capacitor configured to store information in accordance with a signal amplitude of an image signal, an electro-optical element connected to an output terminal of the driving transistor, and a sampling transistor configured to write information in accordance with the signal amplitude into the storage capacitor, the driving transistor being operable to produce driving current based on the information stored in the storage capacitor and supply the driving current to the electro-optical element to cause the electro-optical element to emit light. The pixel circuit includes a pixel divided into a plurality of divisional pixels each of which independently includes the electro-optical element, the storage capacitor and the driving transistor.05-28-2009
20090135111Display apparatus - Disclosed herein is a display apparatus, including: a pixel array section including a plurality of pixel circuits disposed in a matrix and each including a driving transistor for producing driving current, a storage capacitor for storing information of a image signal amplitude, an electro-optical element connected to an output terminal side of the driving transistor, and a sampling transistor for writing information of the signal amplitude into the storage capacitor, the driving transistor being operable to produce driving current based on the information stored in the storage capacitor and supply the driving current to the electro-optical element to cause the electro-optical element to emit light; a driving signal fixing circuit for keeping the driving current fixed; and a light blocking layer provided on the light input side of a transistor which participates in the driving signal fixing function and for preventing appearance of leak current of the transistors arising from light irradiation.05-28-2009
20090135110DISPLAY APPARATUS AND INTEGRATED CIRCUIT - A display apparatus includes: an image display unit including plural electro-optic elements and plural pixel drive circuits, which elements and circuits being arranged two-dimensionally in row and column directions; a first power supplying line for supplying first potential to the image display unit; plural data lines severally connected to columns of the image display unit for supplying data signals to the pixel circuits; plural scanning lines crossing the data lines; a data line drive circuit for driving the data lines; and a scanning line drive circuit for driving the scanning lines, wherein second potential is supplied to the scanning line drive circuit through a second power supplying line and the display apparatus is provided with elements severally for shifting potential of the scanning lines to first potential of the first electric power supplying line when the second potential is lower than the first potential.05-28-2009
20090135107Organic light emitting display - A pixel circuit for an organic light emitting display is disclosed. The pixel uses both current and voltage driving methods. A voltage based on an input current and on an input voltage is stored, and current for an organic light emitting diode is generated based on the stored current.05-28-2009
20090135106ORGANIC LIGHT EMITTING DISPLAY AND DRIVING METHOD FOR THE SAME - An organic light emitting display and a driving method for the same for preventing picture playback disruption during the playback of a moving picture. An organic light emitting display includes: a display region including a plurality of pixels for displaying an image; a frame memory for storing image signals of the image; a data driver for receiving the image signals to generate data signals; a scan driver for generating scan signals; and a controller for controlling the frame memory to store the image signals and to transfer the image signals stored in the frame memory to the data driver. The controller controls the frame memory to store the image signals for at least two horizontal synchronization periods before they are transferred to the data driver.05-28-2009
20090135104Organic light emitting device - An organic light emitting device includes a substrate having a plurality of pixels, each pixel comprising a plurality of sub-pixels. Each sub-pixel includes an emission area that has a first electrode, a second electrode and an emitting layer, with the emitting layer of at least one sub-pixel includes a phosphorescence material. In addition to these features, the device includes a scan line to provide scan signal to a corresponding sub-pixel, a data line configured to supply data signal to a corresponding sub-pixel, and a power supply line to provide power to a corresponding sub-pixel. The data line and power supply line have a single-layer structure, and a taper angle of each of the data line and the power supply line lies in a predetermined range.05-28-2009
20090135103ORGANIC LIGHT EMITTING DEVICE - An organic light emitting device includes a substrate having a plurality of pixels, with each pixel comprising a plurality of sub-pixels. Each sub-pixel includes an emission area that contains a first electrode, a second electrode, and an emitting layer. The emitting layer of at least one sub-pixel includes a phosphorescence material. In addition to these features, the device includes a scan line to provide a scan signal to a corresponding sub-pixel, a data line to supply data signal to a corresponding sub-pixel, and a power supply line configured to provide power to a corresponding sub-pixel. The resistance of the data line is lower than a resistance of the scan line.05-28-2009
20090135102ORGANIC LIGHT EMITTING DEVICE - An organic light emitting device includes a substrate having a plurality of pixels, with each pixel comprising a plurality of sub-pixels. Each sub-pixel includes an emission area, the emission area including a first electrode, a second electrode and an emitting layer. Scan, data, and power supply lines are provided to supply scan, data, and power signals to one or more corresponding sub-pixels. Additionally, a ratio of a distance between adjacent sub-pixels to a width of the power supply line lies in a predetermined range.05-28-2009
20120154258PIXEL CIRCUIT AND DISPLAY DEVICE - A display device having at least a plurality of pixel circuits, connected to signal lines to which data signals in accordance with luminance information are supplied, arranged in a matrix, wherein pixel circuits of odd number columns and even number columns adjacent sandwiching an axis in a column direction parallel to an arrangement direction of the signal lines have a mirror type circuit arrangement symmetric about the axis of the column direction, and there are lines different from the signal lines between signal lines of adjacent pixel circuits.06-21-2012
20110090137PIXEL CIRCUIT AND PIXEL DRIVING METHOD - An exemplary pixel circuit includes an OLED, a storage capacitor, a driving transistor and first through fourth switching transistors. The driving transistor is for driving the OLED at a predetermined brightness. The first source/drain electrode of the driving transistor is coupled to a terminal of the storage capacitor, the second source/drain electrode is coupled to the OLED, and the gate electrode is coupled to receive a data voltage through the first switching transistor. Gate-on voltages of the first and second switching transistors are in opposite phases to each other, and the first and second switching transistors are controlled by the same control signal. Likewise, gate-on voltages of the third and fourth switching transistors are in opposite phases to each other, and the third and fourth switching transistors are controlled by the same control signal. A pixel driving method is also disclosed.04-21-2011
20120313844ORGANIC LIGHT-EMITTING DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME - An organic light-emitting display device includes a substrate, a plurality of pixel electrodes arranged in a matrix on the substrate, and an organic common layer covering the pixel electrodes. The pixel electrodes include a plurality of first pixel electrodes, a plurality of second pixel electrodes, and a plurality of third pixel electrodes. An n-th pixel column includes the second pixel electrodes and the third pixel electrodes arranged alternately, an (n+1)-th pixel column which is adjacent to the n-th pixel column includes the first pixel electrodes, and an (n+2)-th pixel column which is adjacent to the (n+1)-th pixel column includes the second pixel electrodes and the third pixel electrodes arranged alternately, wherein n is a natural number. One of the second and third pixel electrodes is disposed in the n-th pixel column in a row and the other one of the second and third pixel electrodes is disposed in the (n+2)-th pixel column in the same row.12-13-2012
20100289730FOLDING ELECTRONIC DEVICE WITH CONTINUOUS DISPLAY - In general, in one aspect, the disclosure describes an apparatus that includes two panels pivotally connected together. The panels can pivot from an open arrangement where the two panels lay side by side to a closed arrangement where the two panels lay one on top of another. The apparatus also includes a flexible display connected to the two panels and having a portion that is mechanically free from the two panels. The apparatus further includes a cavity to receive at least a portion of the free portion of the display when the panels are pivoted into the closed arrangement.11-18-2010
20100289729SURFACE-EMISSION DISPLAY DEVICE - A flat panel display device includes a circuit board (11-18-2010
20100289728ORGANIC EL DISPLAY PANEL AND MANUFACTURING METHOD THEREOF - Provided is a technique which easily forms a bank the inner lateral surface of which has a part (lower part of the inner lateral surface) made to be lyophilic. The technique provides an organic EL display panel containing a plurality of organic EL elements in which each organic EL element comprises a substrate, an anode disposed on the substrate, an organic light emitting layer disposed on the anode, a cathode disposed on the organic light emitting layer, and a forward-tapered bank which regulates the area of the organic light emitting layer. A lyophobic organic film is disposed on the upper surface of the bank and the surface of the upper part of the tapered portion of the bank but not disposed on the surface of the lower part of the tapered portion of the bank of the organic EL element.11-18-2010
20100245216Display panel and display device - A display panel includes: a plurality of pixel circuits formed in a matrix on a substrate; an insulating layer covering the plurality of pixel circuits; a plurality of light emitting elements connected to the plurality of pixel circuits, and arranged in a matrix on the insulating layer; a filtering layer including a light transmitting section at least in a part of a region facing the light emitting element and a light shielding section formed in a same plane as the light transmitting section, and formed on an opposite side from the pixel circuit in relation to the light emitting element; a light reflecting section formed in a region facing the light shielding section, and between the light emitting element and the filtering layer; and a light receiving element formed in a region facing the light shielding section, and on the pixel circuit side in relation to the light emitting element.09-30-2010
20120127065Display Device and Method of Driving the Same - Disclosed is an EL display device by which accurate gray scales can be obtained. The EL display device comprises a source signal line driving circuit which includes an operation amplifier electrically connected to a correction TFT and a source signal line, and a pixel which includes an EL element and a driving TFT. An inputted analog signal voltage is converted into a current, the current is converted into a gate-source voltage of the correction TFT that has the same polarity as the driving TFT, the gate-source voltage is supplied as a source line signal to the source signal line, and the source line signal is applied to a gate electrode of the driving TFT. Thus the EL element can emit light at a luminance linearly corresponding to the inputted analog signal voltage.05-24-2012
20120127064ORGANIC ELECTROLUMINESCENT DISPLAY APPARATUS - Provided is a display apparatus that can select either an “outdoor visibility mode” or a “wide viewing angle mode” or either a “power saving mode” or a “wide viewing angle mode” depending on a user scene; that can also select intermediate states between the two modes; and provide high displayed image quality. An organic electroluminescent display apparatus of the present invention includes a plurality of pixels, an organic electroluminescent element, a data line driver, a pixel circuit, and a gate line driver, in which each pixel includes two organic electroluminescent elements that emit light of the same color, an element with high light-collecting property is disposed over a light emission side of only one of the two organic electroluminescent elements, and units that make a difference in lighting times or drive currents between the two organic electroluminescent elements are included.05-24-2012
20110181500LUMINANCE COMPENSATION APPARATUS FOR AN OLED PANEL AND METHOD THEREOF - A luminance compensation apparatus for an OLED panel including a luminance integration unit and a luminance compensation unit is provided. The luminance integration unit is used for respectively integrating a luminance value for each dot of an OLED panel before a current frame period to obtain an integrated luminance value for each dot of the OLED panel. The luminance compensation unit is used for respectively converting the integrated luminance value for each dot of the OLED panel to a compensation luminance value for each dot of the OLED panel according to a compensation lookup table, and generating an output luminance value for each dot of the OLED panel according to the compensation for luminance value for each dot of the OLED panel and a luminance value for each dot of the OLED panel at the current frame period to drive signals to compensate luminance for each dot of the OLED panel.07-28-2011
20120133575DISPLAY APPARATUS - Provided is a display apparatus, which has both high light-emission efficiency and good display performance. The display apparatus includes multiple pixels, each of the multiple pixels including an organic light-emitting device including a first electrode, a light-emitting layer, and a second electrode, the multiple pixels including an optical unit for allowing a part of light emitted from the light-emitting layer to exit to outside while changing an exiting direction thereof, in which, in the multiple pixels including the optical unit, an optical distance between the light-emitting layer and the first electrode or an optical distance between the light-emitting layer and the second electrode is set to a predetermined value.05-31-2012
20100182222LIGHT-EMITTING DEVICE, DISPLAY APPARATUS AND LIGHTING APPARATUS EACH INCLUDING LIGHT-EMITTING DEVICE AND MANUFACTURING METHOD OF LIGHT-EMITTING DEVICE - A light-emitter includes a first electrode layer, a second electrode layer, and a light-emitting layer located between the first and second electrode layers. A gradient index lens is located proximate to the second electrode layer opposite the light-emitting layer and comprises a plurality of concentric parts. The concentric parts are grouped into a central zone and annular zones. Each annular zone includes at least two of the concentric parts. One of the concentric parts included in each annular zone has a refractive index different from a refractive index of another of the concentric parts. A wavelength of light emitted from the light-emitting layer is greater than a radius of the central zone and a width of each annular zone. An effective refractive index of each annular zone decreases in an outward direction from a center of the gradient index lens.07-22-2010
20090058769ACTIVE MATRIX DISPLAY DEVICE - An active matrix display device, wherein a unit pixel comprising a plurality of sub-pixels is correlated to video data having bits corresponding to a plurality of gray scale levels for a pixel, one bit of the video data is correlated to at least one frame display sub-pixel in the unit pixel, directly written onto the frame display sub-pixel, and displayed for one frame period, and the remaining plurality of bits of the video data are temporarily stored in a frame memory, separated into sub frames and written onto at least one other sub-frame display sub-pixel of the unit pixel, and displayed separately for sub-frame periods.03-05-2009
20120169574Organic Light Emitting Display - An organic light emitting display includes pixels at crossing regions of scan lines, data lines, and emission control lines, a display unit including the pixels and divided into at least i blocks, wherein i is a natural number greater than 1, each of the blocks including corresponding scan lines, scan drivers each coupled to a corresponding one of the blocks for supplying scan signals to the corresponding scan lines, emission drivers included in the blocks for supplying emission control signals to the emission control lines, each of the blocks includes corresponding emission control lines, a data driver for supplying data signals to the data lines, a timing controller for controlling the scan drivers, the emission drivers, and the data driver and for supplying emission block control signals to control light emission of the pixels, wherein the pixels are set in a non-emissive state when receiving the emission block control signal.07-05-2012
20120176297PIXEL CIRCUIT AND DISPLAY DEVICE, AND A METHOD OF MANUFACTURING PIXEL CIRCUIT - The display device including a pixel circuit has a first line, a transistor, a light emitting element, and a second line. The transistor is located between the second line and an electrode of the light emitting element. Either the first line or the second line is wired in a region that overlaps a light emitting region of the light emitting element in a lamination direction of layers. The second line intersects the first line outside of the light emitting region and overlaps a non-light emitting region of the light emitting element.07-12-2012
20100271292Display with improved electromagnetic compatibility characteristics - Disclosed herein is an apparatus. The apparatus includes a display module having a base member, an emissive component, and a flexible circuit. The flexible circuit includes a first end and an opposite second end. The base member is proximate the first end. The emissive component is mounted on the second end. The second end of the flexible circuit is disposed between the base member and the emissive component.10-28-2010
20090066613DISPLAY APPARATUS - A display apparatus of the present invention has EL elements and pixel circuits 03-12-2009
20120188150DISPLAY DEVICE - A display device including: scanning lines; data lines; pixels provided in a matrix; and a power line, each of the pixels includes: an organic EL device; a drive transistor which converts a data voltage applied to a gate into a drive current; a capacitor which holds a voltage according to the data voltage; a selector transistor having a gate connected to one of the scanning lines and a source connected to the gate of the drive transistor; a selector transistor having a gate connected to the scanning line, a source connected to a drain of the selector transistor, and a drain connected to the data line; and a guard potential transistor having a gate connected to the source of the selector transistor, a source connected to the drain of the selector transistor, and a drain connected to the power line.07-26-2012
20090033596Display device - Example embodiments relate to a display device having first and second substrates arranged opposite to each other, a semiconductor device on the first substrate, an organic light emitting element on the first substrate and an optical unit between the organic light emitting element and the second substrate. The display device may be configured to adjust angle viewing modes, e.g., a narrow angle viewing mode and a wide angle viewing mode, by selectively applying a voltage to the organic light emitting element and the optical unit.02-05-2009
20090021454DISPLAY DEVICE, AND METHOD FOR REPAIRING A DEFECTIVE PIXEL - A display device 01-22-2009
20090021453FASHION ACCESSORY INCLUDING ALTERNATING LIGHT EMITTING AND NON-LIGHT EMITTING ELEMENTS OF CONSISTENT LENGTHS - The present invention discloses a fashion accessory for nightclub wear. The fashion accessory can include an article of jewelry that includes multiple light-emitting elements, multiple non-light-emitting elements and a binding element. Each of the light-emitting elements can emit light based on electroluminescence, phosphorescence, chemoluminescence, or radioluminescence. The binding element, can connect the light-emitting elements and the non-light-emitting elements together along a linear axis. A length of each light-emitting element and non-light emitting element measured along the linear axis can be approximately equivalent, or at least the lengths of light-emitting elements can be equivalent to each other and lengths of non-light emitting elements can be of equivalent lengths to each other. Further, the light-emitting elements and the non-light-emitting elements can be arranged in an alternating light-dark pattern in which no two light-emitting elements are adjacently positioned and in which no two non-light-emitting elements are adjacently positioned.01-22-2009
20110122053Organic Light Emitting Diode Display - An organic light emitting diode (OLED) display includes: a first substrate; an organic light emitting diode that is positioned on the first substrate and that emits light; a second substrate that is opposite to the first substrate with the organic light emitting diode interposed therebetween; a sealant that is positioned between the first substrate and the second substrate to cohere and seal the first substrate and the second substrate; and a refractive index change portion that is positioned on the second substrate to be opposite to the organic light emitting diode and that has a refractive index that sequentially reduces from the second substrate to the organic light emitting diode.05-26-2011
20100328196PASSIVE-MATRIX CHIPLET DRIVERS FOR DISPLAYS - A passive-matrix display device having a plurality of chiplets, each chiplet associated with one or more independent column electrodes located in the display area, each chiplet electrically connected to and driving a separate subset of the independent column electrodes and electrically connected to and driving a subset of the row electrodes to cause the light-emitting material in each pixel to emit light, wherein each chiplet includes a serial luminance shift register for shifting pixel luminance values corresponding to each independent column electrode from one chiplet to another and a column driver for driving each of the independent column electrodes to which it is connected with the corresponding pixel luminance values; and wherein each chiplet further includes a row driver for driving each corresponding row electrode to which it is connected and a row control shift register for controlling the row drivers.12-30-2010
20080297450ORGANIC ELECTROLUMINESCENT DEVICE - An organic electroluminescent device comprises: a substrate; a display unit located on the substrate and including a plurality of subpixels; a sealing region located at the outer periphery of the display unit and defined to form a sealing member; and a plurality of wiring lines connected to the display unit and disposed on the lateral side of the display unit, some of the plurality of wiring lines are respectively divided into two or more in the sealing region.12-04-2008
20080297449Display device - A display device includes: a pixel array unit with pixel circuits disposed in matrix form, the pixel circuit including a driving transistor, an electro-optic element, a storage-capacitor, and a sampling transistor, with the electro-optic element emitting light by generating a driving current based on information stored in the storage-capacitor at the driving transistor to be applied to the electro-optic element; and a control unit, of which the output stage includes a buffer transistor, to output a pulse signal for driving the pixel array unit from the buffer transistor; wherein the pixel array unit and the control unit are formed with long laser beam irradiation to be scanned in the vertical direction; and with the control unit, buffer transistors for outputting a pulse signal for sampling to an input video signal to each signal line are arrayed in a column in the longitudinal direction of the laser beam irradiation.12-04-2008
20110032177Method for Making an Electronic Display Device Covered by a Protection Plate - The invention relates to a method for making an electronic display device (02-10-2011
20120326952DISPLAY APPARATUS, METHOD OF MANUFACTURING DISPLAY APPARATUS, AND ELECTRONIC APPARATUS - A display apparatus includes a plurality of pixels each including an electro-optic element, a writing transistor writing a video signal into the pixel, a holding capacitor holding the video signal written by the writing transistor, and a driving transistor driving the electro-optic element based on the video signal held in the holding capacitor. The driving transistor includes a channel region, a gate electrode disposed opposite to the channel region, a first source/drain region closer to a power source, a second source/drain region closer to the electro-optic element, and impurity regions disposed between the channel region and the first and second source/drain regions and having a lower concentration than that of the corresponding source/drain region. The impurity region disposed between the channel region and the first source/drain region is formed in a region other than a region facing the gate electrode.12-27-2012
20110037683ORGANIC LIGHT EMITTING DIODE DISPLAY - An organic light emitting diode display includes a substrate main body, an organic light emitting diode including a first electrode, an organic emissive layer, and a second electrode sequentially arranged on the substrate main body, a selective reflection layer arranged on the organic light emitting diode, a phase retardation film arranged on the selective reflection layer, a first linear polarizing film arranged on the phase retardation film, a twisted nematic liquid crystal layer arranged on the first linear polarizing film, a liquid crystal driving electrode arranged on the twisted nematic liquid crystal layer and a second linear polarizing film arranged on the liquid crystal driving electrode.02-17-2011
20120268355Display Device - A display device in which the current load of wirings are distributed and display variations due to voltage drop are suppressed. An active matrix display device of the invention comprises a first current input terminal, a second current input terminal, and a plurality of current supply lines extending parallel to each other. Each current supply line is connected to a plurality of driving transistors in a line. One end of each current supply line is connected to the first current input terminal via a first wiring intersecting with the current supply lines, and the other end thereof is connected to the second current input terminal via a second wiring intersecting with the current supply lines. Accordingly, a current is supplied to each current supply line from both the first and the second current input terminals. The first and the second current input terminals are provided separately from each other.10-25-2012
20120268353DISPLAY DEVICE - An object of the invention is to convert input RGB data to R′G′B′W data without suffering loss of gradations of the input RGB data. A display panel 10-25-2012
20120268354DISPLAY DEVICE - Embodiments relate to an organic EL panel comprising a panel driving circuit for converting R′G′B′W data into driving signals which is supplied to a pixel circuit. At a RGB→R′G′B′W converting section, the bit width of input RGB data is greater than the bit width of converted R′G′B′W, and the characteristic curve of the amount of luminescent of W sub pixel for the input data of W in the said panel driving circuit is different from the R′G′B′ curve normalized at a luminance ratio necessary for a reproduction of white color with sub pixels of RGB. An appropriate process is carried out by the RGB→R′G′B′W converting section in accordance with the curve of input data from the panel driving circuit verses amount of luminescent to minimize an error which may be generated when a conversion is made.10-25-2012
20110221660Self-luminescent Display Device, Display Method and Portable Computer of the Same - A self-luminescent display device for an electronic device includes a display screen and a display controller. The display screen is utilized for displaying pictures via a plurality of self-luminescent elements, and includes a data display area for displaying an image and a status display area for displaying a status information of the electronic device. The display controller is utilized for receiving an image data corresponding to the image and a control signal corresponding to the status information, to drive the data display area and the status display area to display the image and the status information, respectively.09-15-2011
20120319930DISPLAY APPARATUS AND FABRICATION METHOD FOR DISPLAY APPARATUS - Disclosed herein is a display apparatus, including: a plurality of pixel circuits arrayed in a matrix; a driving wiring line to which the pixel circuits are connected; and a plurality of signal lines wired so as to cross with the driving wiring line and having the pixel circuits connected; the signal lines being wired in parallel to each other.12-20-2012
20120319929DISPLAY APPARATUS AND METHOD FOR MAKING THE SAME - A pixel has an outer region extending linearly along a boundary with an adjacent pixel and an inner region extending along the inner side of the outer region. Wiring lines are arranged across the outer region and the inner region. An outer uneven zone is formed along the outer region and on a substrate due to level differences resulting from the presence of the wiring lines. Similarly, an inner uneven zone is formed along the inner region and on the substrate due to level differences resulting from the presence of the wiring lines. A pattern of a conductor film of which the wiring lines are made is formed properly such that recessed portions of the outer uneven zone are located directly behind their corresponding raised portions of the inner uneven zone, as viewed from inside the pixel.12-20-2012
20100231488METHOD FOR OPERATING ELECTROPHORETIC DISPLAY APPARATUS, ELECTROPHORETIC DISPLAY APPARATUS, AND ELECTRONIC SYSTEM - There is provided a method for operating an electrophoretic display apparatus including a first substrate; a second substrate; an electrophoretic device being held between the first substrate and the second substrate and containing electrophoretic particles; a first electrode formed on a surface of the first substrate, the surface facing the electrophoretic device; an insulation layer formed between the first electrode and the electrophoretic device; and a second electrode formed on a surface of the second substrate, the surface facing the electrophoretic device. The method includes: (a) driving the electrophoretic device by inputting a first potential to the first electrode and inputting a second potential to the second electrode, and (b) recovering a potential of the second electrode by changing the potential of the second electrode, from the second potential to the first potential, at a constant rate such that a voltage applied to the electrophoretic device is made equal to or smaller than a threshold voltage of the electrophoretic device, wherein (b) is performed after (a) and before next (a).09-16-2010
20100231487LIGHT-EMITTING DEVICE AND DISPLAY - This light-emitting device includes a first electrode, a second electrode disposed opposite to the first electrode and a phosphor layer which is sandwiched between the first electrode and the second electrode and constituted by dispersing n-type semiconductor particles in a p-type semiconductor medium. A light-emitting device in another embodiment includes a first electrode, a second electrode disposed opposite to the first electrode and a phosphor layer which is sandwiched between the first electrode and the second electrode wherein a p-type semiconductor is segregated among the n-type semiconductor particles.09-16-2010
20110260955ORGANIC EL LIGHT EMITTING DEVICE - An organic EL light emitting device is provided with: a substrate having a coloring region where two or more pixel regions are arranged in a line; line-shaped main banks which define the coloring region and face each other; pixel separation regions arranged among the pixel regions in the coloring region; a pixel electrode arranged for each of the pixel regions; and organic function layers arranged on the pixel electrodes. In the organic EL light emitting device, auxiliary banks, and grooves for communicating the pixel regions with each other are arranged in the pixel separation regions, and the projection of an end portion of a second pixel region side of a groove arranged in a pixel separation region (A) overlaps an auxiliary bank arranged in a pixel separation region (B) if the end portion thereof is projected from the first pixel region side to the second pixel region side in the line direction of the main banks when three successive pixel regions in the coloring region are set as the first pixel region, the second pixel region, and a third pixel region, and a pixel separation region between the first pixel region and the second pixel region is set as the pixel separation region (A), and a pixel separation region between the second pixel region and the third pixel region is set as the pixel separation region (B).10-27-2011
20120326951Display Device - To provide a display device with little signal delay and a display device that can operate with low power consumption, parasitic capacitance between a common wiring that applies a common potential to a plurality of pixels and signal lines that input signals for driving the pixels is avoided. Specifically, the common wiring is routed outwardly with respect to an external input terminal to which a signal is input from the, outside, to avoid intersections of the signal lines and the common wiring. Thus, parasitic capacitance between the common wiring and the signal lines is avoided, so that the display device can operate at high speed with low power consumption.12-27-2012
20120092239ORGANIC LIGHT EMITTING DIODE DISPLAY AND METHOD FOR MANUFACTURING THE SAME - An organic light emitting device including a first pixel, a second pixel and a third pixel displaying different colors from each other according to the present invention, the organic light emitting device includes a reflecting electrode and a translucent member forming a micro-cavity along with the reflecting electrode, wherein a optical path length is an interval between the reflecting electrode and the translucent member, and wherein the light path lengths of at least two pixels among the first pixel, the second pixel and the third pixel are the same.04-19-2012
20120287024METHOD FOR DRIVING DISPLAY DEVICE - In a display device using a light-emitting element or the like, the power consumption is reduced without reducing the display quality. A first operation and a second operation are carried out. In the first operation, a threshold voltage of a transistor is held in a capacitor. In the second operation, a signal potential corresponding to an image signal and the threshold voltage are added with the use of a capacitive coupling by the capacitor and are input to a gate of the transistor, so that a drain current of the transistor flows into a load element. The first operation is carried out once in a plurality of frames. A switch that determines whether the capacitor is electrically connected to a wiring to which a power supply potential is input is provided. A transistor in which a channel is formed in an oxide semiconductor layer is used as the switch.11-15-2012
20120287025ACTIVE MATRIX DISPLAY DEVICE AND DRIVING METHOD THEREOF - In a circuit in FIG. 11-15-2012
20120287026DISPLAY PANEL AND PRODUCTION METHOD THEREOF - A display panel includes: a first substrate; light-emitting elements on a region of the first substrate; a second substrate facing the first substrate with the light-emitting elements therebetween; a glass frit between the first substrate and the second substrate so as to surround the region of the first substrate in which the light-emitting elements are disposed, the glass frit providing a hermetic seal between the first substrate and the second substrate; and a light-shielding part formed on one of the first substrate and the second substrate so as to extend along the glass frit, the light-shielding part shielding light. The light-shielding part has a lower light-shielding property in a region corresponding to the outer region of the glass frit than in a region corresponding to the inner region of the glass frit. The glass frit has been irradiated with light through the light-shielding part.11-15-2012
20100188316EMISSION CONTROL DRIVER AND ORGANIC LIGHT EMITTING DISPLAY DEVICE USING THE SAME - An emission control driver includes a plurality of stages, each of the plurality of stages including a first driver for outputting a first output signal corresponding to one of the first output signal output from a previous stage or a first start pulse; a second driver for outputting a second output signal corresponding to one of the second output signal output from the previous stage or a second start pulse; and a third driver for receiving the first and second output signals and for outputting an emission control signal.07-29-2010
20120139821Organic Light Emitting Display Device and Method for Manufacturing the Same - The present disclosure relates to an organic light emitting display device and a method for manufacturing the same. The present disclosure suggests an organic light emitting display device including an organic layer; a display element layer including a display area representing video data and a pad area extended from the display area, on the organic layer; film elements formed on the display element layer; a film type printed circuit board connected to the pad area; and a reinforcing adhesive filling a space between the film type printed circuit board and the film elements06-07-2012
20130021228PIXEL CIRCUIT AND DISPLAY DEVICE - [Problem to be solved] To achieve low power consumption. [Solution] The driving transistor T01-24-2013
20080252571Method of Compensating an Aging Process of an Illumination Device - The present invention relates to a method of compensating an aging process of an illumination device comprising at least one organic light emitting diode (10-16-2008
20080252569Organic light emitting display and driving method thereof - An organic light emitting display capable of displaying an image with uniform luminance regardless of deterioration of an organic light emitting diode and threshold voltage and/or mobility of a drive transistor is disclosed. The organic light emitting display senses deterioration of the organic light emitting diode and threshold voltage and/or mobility of a drive transistor and modifies the data supplied to the pixel according to the sensed parameters.10-16-2008
20080252568Organic light emitting display and driving method thereof - An organic light emitting display capable of displaying an image with uniform luminance regardless of deterioration of an organic light emitting diode and threshold voltage and/or mobility of a drive transistor is disclosed. The organic light emitting display senses deterioration of the organic light emitting diode and threshold voltage and/or mobility of a drive transistor and modifies the data supplied to the pixel according to the sensed parameters.10-16-2008
20080238832ORGANIC ELECTROLUMINESCENT DEVICE AND DISPLAY DEVICE - The invention provides an organic electroluminescent device having at least an anode and a cathode forming a pair of electrodes. At least one electrode being transparent or translucent, and a buffer layer and an organic compound layer is disposed between the anode and the cathode. The organic compound layer has one or more layers including at least a light-emitting layer. At least one of the layers of the organic compound layer comprising at least one specific charge-transporting polyether. At least one of the layers having the charge-transporting polyether is provided in contact with the buffer layer. The buffer layer is provided in contact with the anode and has at least one charge injection material selected from the group consisting of an inorganic oxide, an inorganic nitride, and an inorganic oxynitride. The invention further provides a display device using the organic electroluminescent device.10-02-2008
20080238836Display apparatus and method for making the same - A pixel has an outer region extending linearly along a boundary with an adjacent pixel and an inner region extending along the inner side of the outer region. Wiring lines are arranged across the outer region and the inner region. An outer uneven zone is formed along the outer region and on a substrate due to level differences resulting from the presence of the wiring lines. Similarly, an inner uneven zone is formed along the inner region and on the substrate due to level differences resulting from the presence of the wiring lines. A pattern of a conductor film of which the wiring lines are made is formed properly such that recessed portions of the outer uneven zone are located directly behind their corresponding raised portions of the inner uneven zone, as viewed from inside the pixel.10-02-2008
20080231559Display apparatus and driving method therefor, and electronic device - After a sampling transistor is turned ON at a first timing when a control signal has risen, during a sampling period from a second timing when a video signal has risen from a reference potential to a signal potential to a third timing when the control signal has fallen and is turned OFF, the sampling transistor samples and writes the signal potential in a holding capacitance, and negatively feeds back a current flowing into a drive transistor during the sampling period to the holding capacitance and applies mobility correction of the drive transistor on the written signal potential. A signal driver adjusts the second timing for the video signal supplied to respective signal lines to correct a backward shift of the third timing due to a transmission delay along a scanning line of the control signal output from the control scanner.09-25-2008
20080231556ACTIVE MATRIX OF AN ORGANIC LIGHT-EMITTING DIODE DISPLAY SCREEN - In an active matrix for an organic light-emitting diode display screen, each pixel is arranged between two row select lines, each line controlling at least a first switching transistor T09-25-2008
20130169516PIXEL CIRCUIT, DISPLAY APPARATUS AND DRIVING METHOD - A pixel circuit includes an energy storage element, a driving transistor, a first transistor and a second transistor. The driving transistor has a gate electrically connected with the energy storage element. The first transistor has a first terminal electrically connected with the energy storage element and the gate of the driving transistor, and a second terminal electrically connected with the first terminal of the driving transistor. The second transistor has a first terminal electrically connected with the first terminal of the driving transistor and the second terminal of the first transistor, and a second terminal connected with a data voltage or a first voltage. During a first stage, the gates of the first and second transistors receive a first signal and a second signal, respectively, and the data voltage or the first voltage charges the energy storage element via the first and second transistors.07-04-2013
20080224965Pixel, organic light emitting display using the same, and associated methods - A pixel including an OLED, the pixel including a first transistor coupled between a data line and a first node, the first transistor being turned on by a low signal on an i-th scan line, a second transistor coupled between a first power source and a fifth transistor, a third transistor coupled between the gate electrode of the second transistor and an electrode of the second transistor that is coupled to the fifth transistor, the third transistor being turned on by a low signal on an (i−1)-th scan line, a fourth transistor coupled between a first reference voltage and the first node, the fourth transistor being turned on by the low signal on the (i−1)-th scan line, a storage capacitor coupled between the first node and the second node, and a compensator controlling a voltage of the second node corresponding to degradation of the OLED.09-18-2008
20080224964Display apparatus, display-apparatus driving method and electronic equipment - In the present invention, there is provided a display apparatus including: a pixel array section including pixel circuits each having an electro-optical device, a write transistor configured to carry out a voltage storing process, a holding capacitor configured to hold the sampled video signal, and a driving transistor configured to drive the electro-optical device; first scan means for carrying out a selective scan operation in row units and driving each of the write transistors; second scan means for selectively supplying either a first or second electric potential synchronously with the selective scan operation for feeding a current to each of the driving transistors; and control means for sustaining a power-supply feed line in a floating state during a period ending at a time not earlier than the start of the voltage storing process after a voltage corresponding to the threshold voltage of the driving transistor has been held in the holding capacitor.09-18-2008
20080224963DISPLAY APPARATUS AND ELECTRONIC DEVICE - A display apparatus, includes: a substrate; a plural light emitting elements provided on the substrate and each formed from a lower electrode, a light emitting function layer and an upper layer stacked in this order; a partition for element isolation provided on the substrate and having a plural apertures individually corresponding to the light emitting elements; and a black matrix disposed on the light extraction side of the light emitting elements and having a shape with which the black matrix covers over portions. Each of the apertures of the partition having a side wall is formed in such a tapering shape that the aperture width increases toward the light extraction side of the light emitting elements. The black matrix is provided in such a manner as to cover over an upper edge portion of the tapering shape on at least one side which defines each aperture of the partition.09-18-2008
20080224962IMAGE DISPLAY DEVICE - An image display device includes switches directly connected a constant current source to a self-luminous element to be able to detect a characteristic of the self-luminous element, generate a coordinates and convert information of the characteristic and coordinates into a system communication signal, transferring an input with a temperature variation to a system side.09-18-2008
20080224961ORGANIC LIGHT EMITTING DISPLAY AND METHOD FOR MANUFACTURING THE SAME - An organic light emitting display capable of reducing or preventing damage due to static electricity by using a structure for reducing or preventing the damage due to static electricity and a method for manufacturing the same. A pixel region includes a plurality of data lines, a plurality of scan lines, and a plurality of pixels, the data lines crossing the scan lines, and the pixels being coupled to the data lines and the scan lines. A data driver is coupled to the data lines and transfers a data signal. A scan driver is coupled to the scan lines and transfers a scan signal. A discharge capacitor unit is located at a connection region between the pixel region and the scan driver.09-18-2008
20080224960Image Display Screen and Method for Controlling Said Screen - The invention relates to an image display screen including: 09-18-2008
20110273366Display Device And An Electronic Apparatus Using The Same - In a conventional display device comprising a sub-display, the display device is increased in thickness and in the number of components as the number of displays is increased. In the present invention, a dual emission display device is used so that either surface of a display is used as a main display or a sub-display. Accordingly, the display device can be reduced in thickness and in the number of components. Further, mechanical reliability can be enhanced when the invention is applied to a tablet PC, a video camera and the like.11-10-2011
20130176194ORGANIC LIGHT-EMITTING DISPLAY APPARATUS AND METHOD OF REPAIRING THE SAME - An organic light-emitting display apparatus includes a plurality of pixels, each defined by a scan line, a data line, and a power supply line, a plurality of control lines branching off of one wire in a first direction and simultaneously transferring control signals to the plurality of pixels; and a plurality of repair bridges placed between neighboring ones of the plurality of control lines, each of the plurality of repair bridges including a first bridge connected to one of the neighboring ones of the plurality of control lines and a second bridge connected to another one of the neighboring control lines.07-11-2013
20080218455Organic electroluminescence display - The present invention is to provide an organic electroluminescence display including a plurality of pixels, each pixel being composed of a plurality of sub-pixels, each of the sub-pixels having: an organic electroluminescence element configured to have a structure arising from stacking a drive circuit and an organic electroluminescence light-emitting part connected to the drive circuit; wherein to the drive circuit of one sub-pixel of the plurality of sub-pixels included in one pixel, an auxiliary capacitor connected in parallel to the organic electroluminescence light-emitting part of the drive circuit is connected, and the auxiliary capacitor is provided in the same plane as that of the drive circuit.09-11-2008
20080218449ORGANIC LIGHT EMITTING DISPLAY AND METHOD OF MANUFACTURING THE SAME - An organic light emitting display including: a pixel unit to display an image, according to a data signal and a scan signal; a data driver to supply the data signal, according to a video signal; and a scan driver to supply the scan signal. The data driver includes a memory to store a corrected offset voltage and to control a voltage of the data signal according to the corrected offset voltage.09-11-2008
20090284449Organic light emitting display device - An organic light emitting display device having a pixel unit including a plurality of scan lines, data lines and pixel power lines arranged in a matrix type and forming respective sub pixels in an intersection region of the plurality of scan lines, data lines and pixel power lines; a thin film transistor including a pad unit receiving signals to drive driving the respective sub pixels, a scan driver and a data driver supplying the signals to the plurality of scan lines and data lines through the pad unit, and non-pixel unit formed with a power supply line supplying power to the pixel powers line, the sub-pixel including an oxide semiconductor layer; a capacitor having a lower electrode and an upper electrode formed of a transparent conductive material; and an organic light emitting element electrically coupled to the thin transistor and disposed on the capacitor.11-19-2009
20130093651DISPLAY DEVICE, ELECTRONIC DEVICE, AND DRIVING METHOD - A display device is described. The device includes an active-matrix luminescence panel that has data lines and pixels for determining luminescence of the pixels. Each pixel includes a driving transistor that converts a signal voltage from a data line into a signal current, and a first switch between the data line and the gate of the driving transistor. The device includes a test current generator to supply a test current to one of the data lines, a voltage detector to detect the voltage of one of the data lines, and a controller to control switches, the test current generator and the voltage detector.04-18-2013
20130113688ARRAY SUBSTRATE FOR GATE-IN-PANEL-TYPE ORGANIC LIGHT-EMITTING DIODE DISPLAY DEVICE - An array substrate for a gate-in-panel (GIP)-type organic light-emitting diode (OLED) display device is provided. A plurality of circuit blocks are formed on gate circuit units and separated into pixel lines in which respective gate lines are disposed, and a plurality of clock lines formed in each of signal input units. Each of the signal input units includes at least one group. Each of the groups includes the plurality of clock lines. Each of the circuit blocks includes one or two partial circuit blocks, which are sequentially disposed in a row in a lengthwise direction of the gate line in each of the pixel lines. Each of the partial circuit blocks is included in a signal input unit disposed most adjacent thereto, and connected to a clock line formed in one group disposed most adjacent thereto through a plurality of first connection lines.05-09-2013
20130113687ACTIVE MATRIX ORGANIC LIGHT EMITTING DIODE PIXEL CIRCUIT AND OPERATING METHOD THEREOF - An active matrix organic light emitting diode pixel circuit includes an organic light emitting diode, a driving circuit, a switching circuit and a capacitor. In a charge state, by controlling the switching circuit, a first end of the capacitor is electrically coupled to a signal input terminal, and a second end of the capacitor is electrically coupled to a first power source. In a compensation state, by controlling the switching circuit, the first end of the capacitor is electrically coupled to the signal input terminal, and the second end of the capacitor is electrically coupled to an anode of the organic light emitting diode. In an emission state, by controlling the switching circuit, the first end of the capacitor is electrically coupled to the driving circuit, and the second end of the capacitor is electrically coupled to the driving circuit and the anode of the organic light emitting diode.05-09-2013
20130113689DISPLAY DEVICE AND ELECTRONIC APPARATUS - A display device includes: a pixel array unit having pixels including a circuit configuration, in which a first electrode of an electro-optical element and a source electrode of a driving transistor are connected together, a gate electrode of the driving transistor and a source electrode or a drain electrode of a writing transistor are connected together, a holding capacitor is connected between the gate electrode and the source electrode, and an auxiliary capacitor is connected between the first electrode and a second electrode, disposed in a matrix shape. A signal line used for transmitting a video signal is disposed between adjacent pixels, and from one pixel of adjacent pixels to an area of the other pixel, the auxiliary capacitor of the one pixel is set to be disposed. One electrode of the auxiliary capacitor disposed on the signal line side is conductive with the second electrode of the electro-optical element.05-09-2013
20130141316ORGANIC LIGHT EMITTING DIODE DISPLAY DEVICE AND METHOD OF DRIVING THE SAME - An organic light emitting diode (OLED) display device and a method of driving the same are provided. A time point at which each of transistors is turned on is controlled without using an additional transistor so that a node connected to a source electrode of a driver transistor can be floated, and a node connected to a gate electrode of the driver transistor can be initialized to an initialization voltage level. Thus, initialization characteristics can be improved to enhance degradation of response characteristics and luminance, and a threshold voltage of the driver transistor and occurrence of a ripple at a high-potential voltage terminal can be compensated.06-06-2013
20080211747Organic light emitting display - An organic light emitting display includes a first switching element including a control electrode electrically coupled to a scan line and between a data line and a first voltage line, a driving transistor electrically coupled between the first voltage line and a second voltage line, a second switching element including a control electrode electrically coupled to a light emission control line and between the first voltage line and the driving transistor, a third switching element including a control electrode electrically coupled to the scan line and between the second switching element and the driving transistor, a first storage capacitor that is electrically coupled between the first voltage line and the control electrode of the driving transistor, a second storage capacitor that is electrically coupled between the first storage capacitor and the second switching element, and an OLED electrically coupled between the driving transistor and the second voltage line.09-04-2008
20080198102Display apparatus, driving method thereof, and electronic system - A display apparatus includes: a pixel array section including a row of scanning lines, a column of signal lines, and pixels in a matrix, with each of the pixels disposed at an intersection of both of the lines; and a drive section. The drive section performs line progressive scanning on the pixels. The pixel includes a light emitting device, a sampling transistor, a driving transistor, a switching transistor, and a holding capacitor. The sampling transistor samples a video signal in the holding capacitor, the driving transistor changes the device to a luminous state, the switching transistor becomes ON in advance of the sampling of the video signal to change the light emitting device to a non-luminous state, and the sampling transistor takes in the OFF voltage from the signal line to the driving transistor, thereby preventing a penetration current from flowing from the power source toward the fixed potential.08-21-2008
20110221661Organic light-emitting display device - An organic light-emitting display device includes a substrate, the substrate having a plurality of transmitting regions, a plurality of thin film transistors, a plurality of conductive lines, a passivation layer, a plurality of pixel electrodes on the passivation layer, an opposite electrode facing the plurality of pixel electrodes, an organic layer disposed among the plurality of pixel electrodes and the opposite electrode, and a plurality of masking films disposed in the plurality of transmitting regions.09-15-2011
20080272991Organic Electroluminescence Pixel, Organic Electroluminescence Device, and Manufacturing Method Thereof - An organic electroluminescence pixel, an organic electroluminescence device comprising the same, and method for manufacturing the organic electroluminescence device are provided. The organic electroluminescence pixel comprises a substrate, a first electrode, a first carrier-injection layer, a semi-trans-flective metal layer, an organic emitting layer, and a second electrode. The first electrode is formed on the substrate. The first carrier-injection layer, the semi-trans-flective metal layer, and the organic emitting layer are formed between the first electrode and the second electrode. At least one of the first electrode and the second electrode comprises a transparent electrode.11-06-2008
20130147691DRIVING CIRCUIT OF A SEMICONDUCTOR DISPLAY DEVICE AND THE SEMICONDUCTOR DISPLAY DEVICE - There are provided a driving circuit of a semiconductor display device which can obtain an excellent picture without picture blur (display unevenness) and with high fineness/high resolution, and the semiconductor display device. A buffer circuit used in the driving circuit of the semiconductor display device is constituted by a plurality of TFTs each having a small channel width, and a plurality of such buffer circuits are connected in parallel with each other.06-13-2013
20130147689PIXEL STRUCTURE OF ELECTROLUMINESCENT DISPLAY PANEL - A pixel structure of electroluminescent display panel has a first sub-pixel region, a second sub-pixel region, and a third sub-pixel region. The pixel structure of electroluminescent display panel includes a first organic light-emitting layer, and a second organic light-emitting layer. The first organic light-emitting layer is disposed in the first sub-pixel region for generating a first primary color light in the first sub-pixel region. The second organic light-emitting layer is disposed in the second sub-pixel region, and the third sub-pixel region for generating a second primary color light in the second sub-pixel region, and for generating a third primary color light in the third sub-pixel region. The first sub-pixel region, the second sub-pixel region, and the third sub-pixel region have different cavity lengths.06-13-2013
20130147690ORGANIC LIGHT-EMITTING DISPLAY DEVICE WITH SIGNAL LINES FOR CARRYING BOTH DATA SIGNAL AND SENSING SIGNAL - An organic light-emitting display device having a signal line that is shared by a first column of pixels and a second column of pixels to transmit a data signal and a sensing signal. The organic light-emitting display device includes a plurality of columns of pixels, and a plurality of signal lines extending between the plurality of columns of pixels. Each of the plurality of signal lines is configured to transmit a data signal from a data driver to the first column of pixels at first times. The data signals control the operation of an organic light-emitting element in the first column of pixels. The same signal line transmits a sensing signal from the second column of pixels to the data driver at second times. The sensing signal represents a variable property of an electrical component in a pixel of the second column of pixels.06-13-2013
20130147692DISPLAY DEVICE - Any one of a write scanning line, a power source supply line, and a video signal line is structured as a subsidiary wiring disposed in the same layer as that having a lower electrode disposed therein. The subsidiary wiring is used in the power source supply line through which a power source drive pulse to be pulse-driven is transmitted, or other wirings (such as the write scanning line and the video signal line).06-13-2013
20100309101DISPLAY DEVICE AND MANUFACTURING METHOD THEREFOR - A display device includes: a substrate; a pair of partition walls above the substrate; a light-emitting portion above the substrate that includes a first electrode, a second electrode, and a light-emitting layer located between the first electrode and the second electrode, the second electrode and the light-emitting layer located between the pair of partition walls; and a pixel circuit for applying a voltage to the first electrode. Each of the pair of partition walls includes a conductive portion and an insulating portion that covers side surfaces of the conductive portion for insulating the first electrode and the light-emitting layer from the conductive portion. The second electrode covers an upper surface of the conductive portion of each of the pair of partition walls and is electrically connected to the pixel circuit via the conductive portion.12-09-2010
20100309100DISPLAY DEVICE WITH PARALLEL DATA DISTRIBUTION - A display device responsive to a controller, including a substrate having a display area; a two-dimensional array of pixels formed on the substrate in the display area, each pixel comprising an optical element and a driving circuit for controlling the optical element in response to selected pixel information; a two-dimensional array of selection circuits located in the display area, each associated with one or more pixels, for selecting pixel information provided by the controller, wherein each selection circuit receives the provided pixel information, selects pixel information corresponding to its associated pixel(s) in response to the provided pixel information, and provides the selected pixel information to the corresponding driving circuit(s); and a parallel signal conductor electrically connecting the selection circuits in common for transmitting pixel information provided by the controller to each of the selection circuits.12-09-2010
20100315318TOP EMISSION TYPE ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE AND METHOD OF FABRICATING THE SAME - An organic electroluminescent display (OELD) device includes a first substrate having a first unit pixel region including first and second pixel regions; first and second gate lines along a first direction; first and second data lines along a second direction; a switching TFT in the first pixel region; a driving TFT in the first pixel region; a passivation layer including a first contact hole exposing a portion of the driving TFT; a first electrode contacting the driving TFT through the first contact hole; a bank surrounding the second pixel region an organic emitting layer in the second pixel region; and a transparent second electrode on the organic emitting layer and the bank, wherein the second pixel region is a region shifted from the first pixel region such that the second gate line goes across the second pixel region.12-16-2010
20090135108Sample-and-Hold Display with Impulse Backlight - An apparatus includes a sample-and-hold display with a plurality of transmissive aperture holes, and an electroluminescent backlight source with a plurality of delimited emissive areas. A dedicated delimited emissive area is associated to each transmissive aperture hole of the sample-and-hold display. A display control component updates the sample-and-hold display with a predetermined refresh rate. A backlight control component activates different portions of the electroluminescent backlight source sequentially, each portion comprising a plurality of the emissive areas.05-28-2009
20080266214SUB-PIXEL CURRENT MEASUREMENT FOR OLED DISPLAY - An active matrix drive system drives an emissive display device such as an organic light-emitting diode display and is configured to measure sub-pixel current in the emissive display device. One or more power column power lines of the emissive display device are turned off while sub-pixel current is measured. As a result, the sub-pixel current is relative large compared to the background current of the emissive display device, which facilitates accurate measurement of the sub-pixel current.10-30-2008
20130187840DISPLAY APPARATUS - Provided is a display apparatus including: a substrate; a first organic light emitting element; a second organic light emitting element; a first color filter; and a second color filter in which the first color filter has a refractive index larger than a refractive index of the second color filter; the first color filter and the second color filter are in contact with each other; and in a cross section taken along a direction perpendicular to the substrate, at a part at which the first color filter and the second color filter are in contact with each other, the first color filter has an angle between a side surface thereof and the substrate, which is more than 90 degrees, and the second color filter has an angle between a side surface thereof and the substrate, which is less than 90 degrees.07-25-2013
20130187839ORGANIC LIGHT EMITTING DISPLAY DEVICES AND METHODS OF MANUFACTURING ORGANIC LIGHT EMITTING DISPLAY DEVICES - An organic light emitting display device includes a first substrate, an organic light emitting structure, a peripheral circuit, a recess, a black matrix and a polarization structure. The first substrate may include a display region and a peripheral region. The peripheral region may surround the display region or extend along at least one side of the display region. The organic light emitting structure may be disposed over a first face of the first substrate in the display region. The peripheral circuit may be disposed over the first face of the first substrate in the peripheral region. The recess may be disposed on a second face of the first substrate in the peripheral region. The black matrix may be disposed in the recess. The polarization structure may be disposed over the black matrix and the second face of the first substrate.07-25-2013
20120019436DISPLAY APPARATUS - A display apparatus includes a plurality of pixels. Each pixel has a light emitting unit, a memory cell, and a driving circuit. The memory cell stores an image data. The driving circuit is electrically connected with the light emitting unit and the memory cell, and drives the light emitting unit according to the image data.01-26-2012
20130201087PIXEL AND ORGANIC LIGHT EMITTING DISPLAY USING THE SAME - A pixel includes a first transistor coupled between a first power source and a first node, the first transistor including a gate electrode coupled to a second node, an organic light emitting diode (OLED) coupled between the first node and a second power source, a second transistor for supplying a data signal to the second node in response to a scan signal, a third transistor having a source electrode and a drain electrode electrically coupled to each other, the third transistor being coupled to the first power source and the second node, and a fourth transistor having a source electrode and a drain electrode electrically coupled to each other, the fourth transistor being coupled between the second node and the first node.08-08-2013
20130201086ACTIVE LIGHT EMITTING DEVICE - An active light emitting device disposed on a substrate is provided. The active light emitting device includes a scan line, a data line, a power line, a circuit unit, and a light emitting unit. The circuit unit is connected to the scan line, the data line, and the power line. The circuit unit at least includes an overlapping component which is at least partially overlapped with the power line. The light emitting unit is driven by the circuit unit. A light emitting region and a circuit region on the substrate are defined respectively by the light emitting unit and the circuit unit.08-08-2013
20130201085PIXEL STRUCTURE OF ORGANIC ELECTROLUMINESCENCE DEVICE - A pixel structure of an organic electroluminescence device includes a scan line, and a data line, a bias line and a readout line on a substrate, a first switch device, a capacitor, a driving device, an organic light emitting device, a second switch device and a photo sensor device. The first switch device is electrically connected to the scan line and the data line. The capacitor is electrically connected to the first switch device and the bias line. The driving device is electrically connected to the first switch device, the capacitor and the bias line. The organic light emitting device is electrically connected to the driving device. The second switch device is electrically connected to the scan line and the readout line. The photo sensor device is electrically connected to the second switch device and the bias line.08-08-2013
20120299806NOVEL ORGANIC COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE INCLUDING THE SAME - Provided are a novel organic compound appropriate for emission of blue light and an organic light-emitting device including the organic compound. The organic compound is represented by general formula 1:11-29-2012
20130093650Display Device - A signal line driving circuit which includes a digital signal sampling circuit, a storage circuit, a time setting circuit and a constant current circuit, is fabricated of TFTs on an insulating substrate which is made of the same substance as that of a pixel portion substrate. Thus, in a passive type EL display device, the problem of a distortion in the case of bonding the signal line driving circuit onto the pixel portion substrate can be eliminated. Besides, in an active type EL display device, each pixel is constructed of one transistor and an EL element. Thus, the aperture factor of the EL display device is enlarged.04-18-2013
20120086626FEEDBACK STRUCTURE FOR AN ORGANIC LIGHT-EMITTING DIODE DISPLAY - A feedback structure for an organic light-emitting diode display comprises an organic light-emitting diode panel, a driver chip and a signal transmission line group. The organic light-emitting diode panel includes a signal input terminal group and a signal feedback term connected to the ground. The driver chip includes a power input port connected to an external power source, a signal input port, and a feedback port connected to the ground. The signal transmission line group is electrically connected between the signal input terminal group and the signal output port. By such arrangements, it can ensure a stable segment control signal or avoid damage to the driver chip.04-12-2012

Patent applications in class Electroluminescent

Patent applications in all subclasses Electroluminescent