Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


TRANSMISSION THROUGH MEDIA OTHER THAN AIR OR FREE SPACE

Subclass of:

342 - Communications: directive radio wave systems and devices (e.g., radar, radio navigation)

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20090195435HAND-HELD DEVICE AND METHOD FOR DETECTING CONCEALED WEAPONS AND HIDDEN OBJECTS - The present invention is an inexpensive, hand-held, and easy to operate millimeter-wave detection device that employs a non-imaging sensor which radiates a pulse of millimeter waves of a certain amplitude and frequency towards a target located at a distance from the detection device. The sensor receives pulses of millimeter waves that are reflected from the target and generates a voltage waveform that is characteristic mainly of the target material, while other parameters such as distance to the target are known. The processor of the detection device measures both the peak voltage and the rate of increase of the voltage until it reaches the maximum. Using an algorithm stored in a software module, the deviation between the rate of the voltage rise and the peak voltage is compared with values of similar parameters for a number of test targets made of different materials that were previously collected and stored in a calibration table in the memory of the device. A concealed object, e.g. a weapon, is positively identified when the measured voltage rise is found to be similar to one of the stored voltage rises. The circuitry of the detection device generates a visual and/or audio output to a display device which is indicative to the operator as to whether a concealed object is present and, if a match is found with the data in the calibration table, the nature of the concealed object is also displayed. In addition to the basic mode of operation described, various other operation modes can be employed with the detection device of the invention.08-06-2009
20090289830ILLUMINATION SOURCE FOR MILLIMETER WAVE IMAGING - Methods and apparatuses of scene illumination for millimeter wave sensing are presented. One embodiment features illuminating a subject with millimeter wave radiation produced by at least one fluorescent light, generating an image with a passive sensor using the millimeter wave radiation reflected from the subject, and analyzing the image to detect representations corresponding to concealed objects associated with the subject. Another embodiment features at least one fluorescent light which illuminates a subject with millimeter wave radiation, and passive millimeter wave sensor which receives the millimeter wave radiation effected from the subject, and generates an image which is analyzed to detect image representations corresponding to concealed objects. Another embodiment features at least one florescent light behind an optically opaque medium which is transparent to millimeter wave radiation, and illuminating a subject with millimeter wave radiation produced by the fluorescent light.11-26-2009
20100052969MOTION COMPENSATION FOR RADAR IMAGING - In one embodiment, a radar is provided that is configured to construct an image of a target within or adjacent to a substrate according to scan points associated with a surface of the substrate while the radar is scanned in a first direction. The radar includes a transceiver that transmits radar pulses and receives reflected radar pulses using an antenna directed at the surface; and an image processor configured to use a plurality of processed received radar pulses to generate an image portion according to each scan point; and at least one laser range finder being configured to illuminate a first surface portion within a surface portion illuminated by the antenna and to illuminate a second surface portion displaced in the first direction from the first surface portion, the laser range finder determining a first range between the laser range finder and the first surface portion and determining a second range between the laser range finder and the second surface portion, wherein the radar is configured to process the first and second ranges to determine a range translation of the radar during the scan in the first direction, and wherein the image processor is further configured to compensate the image portions according to the determined range translation so at construct an image of the target.03-04-2010
20100052971Device and Method to Evaluate Condition of Concrete Roadways Employing a Radar-based Sensing and Data Acquisition System - A vehicle mounted device for producing enhanced images of an underlying roadbed for the roadway on which the vehicle is traveling. The device employs a first RF transmission and second RF transmission communicated through the same individual section of roadbed, to produce two images of the section using software adapted to the task. The two individual images are then combined to yield an enhanced view of the section of roadbed in a third image. Images of sequential adjacent roadbed sections may be stored on a computer and employed to provide a three dimensional image of the underlying roadbed anywhere along the distance traveled and imaged by the device.03-04-2010
20090278725IDENTIFICATION AND MAPPING OF UNDERGROUND FACILITIES - A system or method of creating a map of voids in the ground based on a scattered electromagnetic signal includes traversing a receiver/probe in a near field above a target area; generating a signal from a signal transmitter, the signal having a predetermined wavelength λ; receiving a scattered signal with the receiver/probe, the scattered signal including indications of subsurface variations via reflection of the generated signal; and detecting evanescent components of the scattered signal to provide a predetermined resolution. The method includes the use of an electrically small antenna for resolution of subwavelength features. The metamaterial-based antenna is on the order of meters and has an efficient transmit/receive capability. The ESA is 1/10 of the length of the equivalent dipole length, and may be scaled down to 1/10,000. Such an antenna may include phase sensitive current injection in the metamaterial resonant structures for loss-compensation.11-12-2009
20100117885ELECTROMAGNETIC SCANNING IMAGER - In one aspect, the present invention provides an imager, preferably portable, that includes a source of electromagnetic radiation capable of generating radiation with one or more frequencies in a range of about 1 GHz to about 2000 GHz. An optical system that is optically coupled to the source focuses radiation received therefrom onto an object plane, and directs at least a portion of the focused radiation propagating back from the object plane onto an image plane. The imager further includes a scan mechanism coupled to the optical system for controlling thereof so as to move the focused radiation over the object plane. A detector optically coupled to the lens at the image plane detects at least a portion of the radiation propagating back from a plurality of scanned locations in the object plane, thereby generating a detection signal. A processor that is in communication with the detector generates an image of at least a portion of the object plane based on the detection signal.05-13-2010
20130082865Sensor Head - An apparatus includes a sensor head including a continuous wave metal detector (CWMD), a radar, and a transceiver electrically connected to the radar. The radar includes a transmit antenna configured to transmit electromagnetic radiation, and a receive antenna configured to sense electromagnetic radiation. The transceiver is enclosed in a metal housing.04-04-2013
20130076556Active differential reflectometry - A millimeter wave method and apparatus for detecting objects on humans, for example, that might be hidden, for example, under the human's clothing includes an active w-band radiation source to illuminate the human subject; a diffuser on the active illumination source; a receiver to acquire an active mode and a passive mode image; apparatus and methods to minimize background environmental millimeter waves; and a device to form and display a differential image. The resulting differential image may show contraband at high resolution while avoiding display of the human anatomy.03-28-2013
20130076557ELECTROMAGNETIC SENSOR - Disclosed is a probe for use in a fluid pipeline, comprising: a transmitter for transmitting an RF signal via an antenna (03-28-2013
20130082866Sensor Fusion Framework Using Multiple Sensors to Assess Buried Structures - A method of surveying the condition of an underground conduit by positioning a propelled carriage assembly within the underground conduit. The carriage assembly includes (i) at least one transmitter/receiver unit capable of transmitting a pulsed signal toward at least a portion of an inner wall of the conduit, and (ii) a secondary sensor positioned on the carriage assembly. The data derived from the pulsed signal at a given lateral location within an underground conduit is read as is a secondary sensor condition derived from secondary sensor data taken at the given lateral location. Then it is determined whether the secondary sensor condition indicates a basis for a false void detection by the data derived from the pulsed signal and if the basis for false void detection exists, providing an indication of such basis.04-04-2013
20130082856REAL-TIME SYSTEM FOR IMAGING AND OBJECT DETECTION WITH A MULTISTATIC GPR ARRAY - A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.04-04-2013
20130082862RADAR SIGNAL PRE-PROCESSING TO SUPPRESS SURFACE BOUNCE AND MULTIPATH - A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.04-04-2013
20130082861SPOT RESTORATION FOR GPR IMAGE POST-PROCESSING - A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.04-04-2013
20130082860BURIED OBJECT DETECTION IN GPR IMAGES - A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.04-04-2013
20130082859SPATIALLY ADAPTIVE MIGRATION TOMOGRAPHY FOR MULTISTATIC GPR IMAGING - A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.04-04-2013
20130082858CLASSIFICATION OF SUBSURFACE OBJECTS USING SINGULAR VALUES DERIVED FROM SIGNAL FRAMES - The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N×N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.04-04-2013
20130082857DISTRIBUTED ROAD ASSESSMENT SYSTEM - A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.04-04-2013
20130082864DETERMINING ROOT CORRESPONDENCE BETWEEN PREVIOUSLY AND NEWLY DETECTED OBJECTS - A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.04-04-2013
20130082863SPATIALLY ASSISTED DOWN-TRACK MEDIAN FILTER FOR GPR IMAGE POST-PROCESSING - A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.04-04-2013
20100109933Underwater remote sensing - An underwater remote sensing system comprising a transmitter for transmitting an electromagnetic signal, a receiver for receiving an electromagnetic signal reflected from an object and determining means for determining the location of the object, wherein at least one of the transmitter and receiver is underwater. The determining means may be operable to determine the location of the object using signals received at three or more receiver positions. To do this, three or more receiver antennas may be provided. Alternatively, a single receiver antenna may be provided and moved between three or more different measurement locations.05-06-2010
20130050008MOBILE COHERENT CHANGE DETECTION GROUND PENETRATING RADAR - Described are a method and system for detecting and locating changes in an underground region. Changes are detected using a mobile coherent change detection ground penetrating radar (GPR). The GPR system is located on a mobile platform that makes two more measurement passes over the same route to acquire GPR images of an underground region at different times. A lateral offset between the GPR images for the two different times is determined and applied to one of the GPR images to generate a GPR shifted image that is spatially aligned with the other GPR image using a correlation process or other technique. A GPR difference image is generated from the GPR shifted image and the other GPR image. The GPR difference image includes data representative of changes to the underground region that occurred between the two measurement passes.02-28-2013
20130050007SUB-MILLIMETER WAVE RF AND ULTRASONIC CONCEALED OBJECT DETECTION AND IDENTIFICATION - Active and passive sub-millimeter wave RF and ultrasonic systems can be used to detect a concealed object, such as an object concealed under the clothing of a subject, and identify material properties of the object. A concealed object detection system can include an antenna configured to receive an RF signal in the sub-millimeter wave range, the RF signal having been emitted by an object, a detector configured to convert the RF signal into an electrical signal, a signal integrator configured to integrate the electrical signal and provide an integrated signal over an observation period and a processor configured to extract object information from the integrated signal. An object indication device provides an indication of a detected object and material properties of the detected object based on the extracted object information. The extracted object information can include object image data and object material identification data.02-28-2013
20080303708STRUCTURAL SYSTEM FOR OPTIMIZING PERFORMANCE OF A MILLIMETER WAVE CONCEALED OBJECT DETECTION SYSTEM - A structural system for optimizing the performance of a millimeter wave concealed object detection system is disclosed. In a particular embodiment, a shell is provided to house and protect the millimeter wave concealed object detection system so that the detection system can operate optimally in a controlled and managed environment by eliminating or mitigating spurious millimeter wave emissions or reflections from outside or inside the shell. The shell can be free-standing or attached to a parent structure. The entry and exit to the system is controlled by entry and exit barriers. In addition, an inspection lane is configured according to each particular application to guide a subject through the detection system.12-11-2008
20130069814LARGE RESISTIVE VEE DIPOLE ANTENNA COMBINED WITH VEE DIPOLE ARRAY - A radar array comprising a panel, the panel comprising a top side and a bottom side; a plurality of high-frequency antennas coupled into a high-frequency array coupled to the panel; at least one low-frequency resistive vee dipole transmitting antenna; and at least one low-frequency resistive vee dipole receiving antenna, wherein the at least one low-frequency resistive vee dipole transmitting antenna and the at least one low-frequency resistive vee dipole receiving antenna are coupled into a low-frequency array.03-21-2013
20090040092BROADBAND ENERGY ILLUMINATOR - The present invention is a broadband energy illuminator for creating contrast between the broadband energy emanating from a scene and an individual within the scene. A millimeter wave camera is focused toward the individual to detect millimeter wave frequencies reflected from the scene. As an individual passes through scene the millimeter wave camera detects concealed objects by identifying differences in the millimeter wave energy reflected by the individual's body and a concealed object. The broadband energy illuminator focuses a cold source of broadband energy on the scene thereby enhancing the ability of the millimeter wave camera to distinguish the individual's body from concealed objects. A composite image is generated by a central processing unit and displayed on a monitor showing the concealed object on the individual through optical contrast.02-12-2009
20090040093METHOD AND APPARATUS FOR USING COLLIMATED AND LINEARLY POLARIZED MILLIMETER WAVE BEAMS AT BREWSTER'S ANGLE OF INCIDENCE IN GROUND PENETRATING RADAR TO DETECT OBJECTS LOCATED IN THE GROUND - A detection system comprises a transmitter unit, a receiver, and a processor. The transmitter unit is capable of transmitting a first collimated beam having a first frequency and a second collimated beam having a second frequency into a ground, wherein the first collimated beam and the second collimated beam overlap in the ground. The receiver is capable of monitoring for a response radio frequency signal having a frequency equal to a difference between the first frequency and the second frequency. The response radio frequency signal is generated by an object having non-linear conductive characteristics in response to receiving the first collimated beam and the second collimated beam. The processor is capable of controlling an operation of the transmitter unit and the receiver. The processor is connected to the transmitter unit and the receiver. The object is detected when the response radio frequency signal is detected by the receiver.02-12-2009
20110037639SYSTEM AND METHOD FOR DETECTING, LOCATING AND IDENTIFYING OBJECTS LOCATED ABOVE THE GROUND AND BELOW THE GROUND IN A PRE-REFERENCED AREA OF INTEREST - The invention relates to a system and method for detecting, locating and identifying objects located above ground or below ground in an area of interest, comprising an airborne vehicle which circumscribes the area of interest and which includes a built-in radar having an antenna with a respective transmitter and receiver, signal-processing means, data-storage means and graphical interface means. According to the invention, the area of interest has been pre-referenced and the radar is a heterodyne ground penetration radar (GPR). The signal transmitted by the antenna generates a beam that illuminates a strip of earth, consisting of a sinusoidal electromagnetic signal having a frequency that is varied in precise pre-determined progressive steps. This signal is mixed with the received (reflected) signal, thereby producing two sets of values corresponding to the phases of each frequency step or stage Said sets of values, which are obtained throughout successive sweeps (as the antenna moves), are stored in the storage means and subsequently processed in the processing means in order to obtain a final map or image of the location of the objects above ground or below ground.02-17-2011
20110063157METHOD FOR OPERATING A RADAR SYSTEM IN THE EVENT OF POSSIBLE CONCEALMENT OF THE TARGET OBJECT AND RADAR SYSTEM FOR PERFORMING THE METHOD - In a method for operating a radar system and a radar system for performing the method, in particular a microwave radar system for applications in or on motor vehicles, in which at least one target object and at least one possible concealing object are detected using radar technology, it is provided in particular that a detection is made of whether a concealment situation of the at least one target object by the at least one concealing object exists, and in the case of a detected concealment situation a loss of the target object is not automatically assumed.03-17-2011
20100085234MINE DETECTION - An integrated mine detection system includes a ground penetrating metal detector and a ground penetrating radar detector. The integrated mine detection system includes an integrated search device housing a radio-wave transmitter of the radar detector and a coil of the metal detector. The radio-wave transmitter includes an antenna. The integrated search device includes a radio-wave receiver in the form of a pair of receiving antennas.04-08-2010
20080266165SYSTEM FOR DEPLOYMENT OF A MILLIMETER WAVE CONCEALED OBJECT DETECTION SYSTEM - A system for deployment of a millimeter wave concealed object detection system is disclosed. In a particular embodiment, a storage container modified as a security check point includes an entry point disposed at a first end of the container and an exit point disposed at an opposing second end of the container. A detection area is disposed within the container and between the entry point and exit point. The detection area is isolated from the entry point and exit point so that an explosive blast is substantially contained within the detection area of the container. The system provides a standard platform for deployments of concealed object detection systems across extremely variable environments.10-30-2008
20100277358Detection of surface and buried objects - A sensor head includes a ground penetrating radar (GPR) system and a continuous-wave metal detector (CWMD). The GPR system includes a transceiver configured to transmit radiation toward an object and to receive radiation from the object. The CWMD includes a transmission antenna configured to produce a first magnetic field in the vicinity of the object sufficient to generate a current in the object, and a receive antenna configured to sense a second magnetic field produced by the current generated in the object.11-04-2010
20090212988Real time imaging expandable passive millimeter wave system for detecting concealed objects - A passive millimeter wave system of this invention is comprised of; human body detector sensors which detect human bodies passing a scanner; passive millimeter wave image sensor modules arranged horizontally or vertically to acquire millimeter wave images radiated from human body in horizontal and vertical axes at certain time intervals; amplifier which amplifies the DC voltage from passive millimeter image sensor modules to a certain level; analog-digital converter which transforms the amplified DC voltage to digital signals; mobility detector which detects movement of human body passing predetermined position to acquire millimeter wave signals from human body; digital signal processor which interlinks and reconstructs signals with the time and position of the object obtained from mobility detector and the signals obtained by passive millimeter image sensor modules; monitor which displays the image of the signals processed with digital signal processor.08-27-2009
20100259438Sensor cart positioning system and method - A movable platform has a front end, a back end, a longitudinal axis, and at least one axle oriented generally transverse to the longitudinal axis and located between the front and back ends for supporting wheels of the platform. A position sensor is affixed on the platform at a location other than at a location defined by a plane passing through the axle and normal to the longitudinal axis. The position sensor provides position data as the platform traverses a path. A sensor arrangement is supported by the platform and configured to provide subsurface sensor data as the platform traverses the path. A processor is configured to associate the position data with the sensor data relative to a reference frame and in a manner that accounts for dynamic motion of the platform.10-14-2010
20110298647Method, Apparatus, and System to Remotely Acquire Information from Volumes in a Snowpack - A method, apparatus, and system to remotely acquire information from volumes in a snowpack and to analyze the information are disclosed. Electromagnetic energy is transmitted remotely to a region of interest in a snowpack and data about reflections are processed to determine reflection values for different volumes within the snowpack. The frequency of the transmit signal is modulated and the positions from which energy is transmitted and received are changed to create a two-dimensional synthetic aperture that allows reflections from three-dimensional volumes to be discriminated and resolved. The electromagnetic energy is transmitted to ensure that it arrives at the snowpack at shallow grazing angles to maximize returns from volumes in the snow and to minimize boundary reflections from the ground.12-08-2011
20090033539Through-the-wall motion detector with improved antenna - A flat panel antenna used at a wall in a through-the-wall CW radar application is spaced from the wall by a half wavelength to eliminate the effects of energy reflected by the wall back to the antenna. In one embodiment, a ½-wavelength dielectric absorbing material insert is placed adjacent the flat panel antenna, which allows the flat panel antenna to be pressed against the wall for antenna stabilization, with the index of refraction of the material desirably being 3.02-05-2009
20080309544Method of Explosives Detection and Identification - A proposed method of detection and identification of explosives and drugs in an object comprises the steps of: generating an emitted UHF signal carried by pulse fixed carrier frequency electromagnetic waves with predetermined carrier frequency, deviation, duration, and amplitude; exposure of the object to the emitted signal; reception of a reflected signal; its amplification and processing; measuring its phase and intensity, the emitted and received signals difference and an absorption ratio, determining a phase lag between the received and emitted signals; comparing the lag with a preset lag value stored in memory, obtaining a lag difference; detecting and identifying the explosives and drugs based on the lag difference and taking into account the absorption ratio, wherein the ratio and lag difference are correlated to predetermined dielectric properties of certain types explosives or drugs inclusions. The emitted signal can be formed as a sequence of waves with increasing or decreasing frequencies.12-18-2008
20120139773DETECTION DEVICE, DETECTING METHOD AND DETECTION PROGRAM - This disclosure provides a device, which includes a transceiver for outputting a reception signal according to an echo intensity of a transmission signal, a reception signal monitoring module for monitoring an intensity of the reception signal based on a saturation condition, and a transmitting condition setting module for controlling a transmitting power according to the intensity of the reception signal monitored by the reception signal monitoring module.06-07-2012
20090153392MICROWAVE DATUM TOOL - In one aspect, a measurement system is disclosed that includes a source of microwave radiation having one or more wavelengths capable of penetrating through a visibly opaque obstruction, e.g., a wall. The source can be movably positioned on one side of the obstruction for illuminating thereof. The system can further include a microwave reflecting element disposed on another side of the obstruction, where the reflecting element is capable of reflecting at least a portion of the radiation transmitted through the obstruction. A plurality of radiation sensors are positioned relative to the obstruction so as to differentially detect at least a portion of the reflected radiation transmitted through the obstruction so as to determine a position of the source relative to the reflective element.06-18-2009
20090146864Loran-based underground geolocation, navigation and communication system - A system is provided for underground mapping, location determination and communications utilizing existing LORAN transmitters and a subterranean H-field antenna coupled to a conventional LORAN receiver. The result is an underground LORAN grid from which mapping and location can be ascertained as well as terrestrial-to-subterranean communications using the LORAN bit streams. Subterranean-to-terrestrial communication is established by a low-frequency handheld transmitter using repeat processing to transmit digital data from the subterranean location to the surface of the earth using modulated H-field waves.06-11-2009
20110148687ADJUSTABLE ANTENNA - A device includes a compressible conductive element including a first end and a second end, and an adjustment element coupled to the compressible conductive element, the adjustment element configured to adjust the compressible conductive element to a state of compression between an uncompressed mode and a compressed mode. The compressible conductive element is configured to couple to a source of electrical current at the first end and to radiate electromagnetic energy from the second end.06-23-2011
20110187577Resolution Radar Using Metamaterials - A radar system includes at least one transmit array comprising a plurality of metamaterial elements. The radar system further includes at least one near-field stimulator for inputting electromagnetic signal to the transmit array so that a sub-wavelength target is illuminated with an electromagnetic wave.08-04-2011
20110169683FILTERING SENSOR DATA TO PROVIDE ESTIMATES OF STRUCTURES - According to one embodiment, a method comprises receiving sensor data generated by one or more sensors in response to sensing a structure. The sensor data is filtered to identify edge data and reverberation data each describing the same structural feature of the structure. Image data for a filtered image of the structure is generated from the edge data, but not from the reverberation data.07-14-2011
20090295617System, Method, and Computer Program Product Providing Three-Dimensional Visualization of Ground Penetrating Radar Data - A system for analyzing and displaying radar information comprises: a transmit and receive unit operable to transmit radar signals to a survey volume and to receive radar returned radar signals, a processing unit operable to: receive radar data from the returned radar signals, reduce the data into depth bins, each with a score based on received signal strength, create connections among depth bins based on respective scores, and to eliminate ones of the depth bins that do not meet a threshold number of connections, the system further comprising a display unit operable to create a display of at least a subset of the depth bins that are not eliminated by the processing unit.12-03-2009
20090284405Passive Detection Apparatus - A passive detection device is disclosed comprising a plurality of antennas, receivers, and a digital beamformer, wherein the antennas and receivers are adapted to receive radiation of millimetre wavelengths from a near field region, to process and digitise it. The beamformer is adapted to process the received information and to generate static image information relating to the region. An indication means is provided to indicate the presence of objects of interest. The beamformer is preferentially adapted to generate information simultaneously in a plurality of planes at different distances from the apparatus. The indication means may comprise an array of pixels along the length of the apparatus to display image information, and may use the multi-planar information to construct images of the region comprising data from a plurality of planes. The invention has utility in security scanning applications such as at airports or other locations where security detection equipment is employed.11-19-2009
20090295618Through-Wall Imaging Device - A through-wall imaging device having antenna elements for transmitting and receiving signals adapted to pass through a wall for imaging objects therebehind, having a base with a carrier portion and a plurality of spaced-apart extensions connected thereto. At least a portion of the antenna elements are mounted on the extensions. The area between adjacent extensions is free of any material of the base at least when the extensions are in an operative state.12-03-2009
20090262006MOVING-ENTITY DETECTION - A system and method for detecting entities based on movement can involve transmission circuitry configured to enable transmission of a stepped-frequency radar signal, an antenna, and receiving circuitry configured to generate data including information associated with frequency and phase shifts between the transmitted signal and the reflections of the transmitted signal. The system also can involve a processor configured to analyze the generated data to determine information associated with a moving object located at a side of a wall different than a side of the wall of which the system is located. The analyzing can involve compensating for the effect of motion of the system on the phase shifts between the transmitted signal and the reflections of the transmitted signal.10-22-2009
20090262005MOVING-ENTITY DETECTION - A system and method for enabling transmission of a stepped-frequency radar signal can involve a first antenna and a second antenna. The system can also involve receiving circuitry configured to receive detected reflections from the antennas and to generate data including information associated with frequency and phase shifts. The system can further involve a processor configured to receive the generated data from the receiving circuitry and to analyze the generated data to determine information associated with a moving object located at a side of a wall opposite to the system by differentiating reflections of the transmitted signal detected with the first antenna from reflections of the transmitted signal detected with the second antenna.10-22-2009
20120293355SYSTEM AND METHOD FOR DETECTING CONCEALED EXPLOSIVES AND WEAPONS - A method for detecting hidden explosives or weapons, including transmitting a signal in different polarization channels towards an object, the next stage includes collecting back scattered energy in different polarization channels from the object, the next stage includes determining parameters that are dependent upon the transmitted signal polarization channels and the backscattered energy polarization channels, and providing an indication if there are hidden explosives or weapons in the object based on the parameters.11-22-2012
20100103019MILLIMETER WAVE (MMW) SCREENING PORTAL SYSTEMS, DEVICES, AND METHODS - A millimeter-wave (MMW) based screening system is provided that may operate with an active sensor, a passive sensor, or in a dual mode using both the active and passive sensors. One or more such sensors are mounted so as to rotate along an axis that passes through a target region of detection, in which a person or object is positioned for screening. A reflector is disposed radially outward from the one or more rotating sensors to reflect MMW radiation between the sensors and the target region. The system may be employed as a portal screening system, and may include a structure having a wall and a roof, for rapidly screening persons for concealed objects. Algorithms may be employed to provide data output that avoids privacy issues.04-29-2010
20100060509MODEL-BASED TOMOGRAPHIC RECONSTRUCTION - A model-based approach to estimating wall positions for a building is developed and tested using simulated data. It borrows two techniques from geophysical inversion problems, layer stripping and stacking, and combines them with a model-based estimation algorithm that minimizes the mean-square error between the predicted signal and the data. The technique is designed to process multiple looks from an ultra wideband radar array. The processed signal is time-gated and each section processed to detect the presence of a wall and estimate its position, thickness, and material parameters. The floor plan of a building is determined by moving the array around the outside of the building. In this paper we describe how the stacking and layer stripping algorithms are combined and show the results from a simple numerical example of three parallel walls.03-11-2010
20090167589EARTH-PENETRATING RADAR WITH INHERENT NEAR-FIELD REJECTION - A ground-penetrating radar comprises a transmitter for launching pairs of widely separated and coherent continuous waves. Each pair is separated by a different amount, such as 10 MHz, 20 MHz, and 30 MHz. These are equivalent to modulation that have a phase range that starts at 0-degrees at the transmitter antenna which is near the ground surface. Deep reflectors at 90-degrees and 270-degrees will be illuminated with modulation signal peaks. Quadrature detection, mixing, and down-conversion result in 0-degree and 180-degree reflections effectively dropping out in demodulation.07-02-2009
20100265117System and method for imaging objects - An active imaging system for imaging a target is described. The system includes a transmitting unit, a receiving unit, an antenna arrangement coupled to the transmitting unit and/or the receiving unit via a front end unit, and an image processing unit coupled to the receiving unit. The system also includes a control system coupled to the transmitting unit, the receiving unit and/or the image processing unit for controlling operation thereof. The antenna arrangement includes at least one rotating antenna synthetically forming a circular antenna. The image processing unit is configured for creating an image of the object by employing a synthetic aperture radar imaging algorithm.10-21-2010
20080284636Object detection method and apparatus - Method and apparatus for detecting objects. In one embodiment, a person entering a secured zone is illuminated with low-power polarized radio waves. Differently polarized waves which are reflected back from the person are collected. Concealed weapons are detected by measuring various parameters of the reflected signals and then calculating various selected differences between them. These differences create patterns when plotted as a function of time. Preferably a trained neural network pattern recognition program is then used to evaluate these patterns without creating an image of the object and autonomously render a decision on the presence of a weapon or other object. An interrupted continuous wave system may be employed. Multiple units may be used to detect various azimuthal angles and to improve accuracy. The units may be used in a bistatic configuration which enables comparison of off-axis signals.11-20-2008
20080272954HOLOGRAPHIC IMAGING OF NATURAL-FIBER-CONTAINING MATERIALS - The present invention includes methods and apparatuses for imaging material properties in natural-fiber-containing materials. In particular, the images can provide quantified measures of localized moisture content. Embodiments of the invention utilize an array of antennas and at least one transceiver to collect amplitude and phase data from radiation interacting with the natural-fiber-containing materials. The antennas and the transceivers are configured to transmit and receive electromagnetic radiation at one or more frequencies, which are between 50 MHz and 1 THz. A conveyance system passes the natural-fiber-containing materials through a field of view of the array of antennas. A computing device is configured to apply a synthetic imaging algorithm to construct a three-dimensional image of the natural-fiber-containing materials that provides a quantified measure of localized moisture content. The image and the quantified measure are both based on the amplitude data, the phase data, or both.11-06-2008
20130120181OBJECT DETECTION WITH A MULTISTATIC ARRAY USING SINGULAR VALUE DECOMPOSITION - A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across a surface and that travels down the surface. The detection system converts the return signals from a time domain to a frequency domain, resulting in frequency return signals. The detection system then performs a singular value decomposition for each frequency to identify singular values for each frequency. The detection system then detects the presence of a subsurface object based on a comparison of the identified singular values to expected singular values when no subsurface object is present.05-16-2013
20100141502CONTRABAND SCREENING SYSTEM WITH ENHANCED PRIVACY - An inspection system that can detect contraband items concealed on, in or beneath an individual's clothing. One embodiment relates to a method of generating an image of a person to identify contraband items. The method comprising receiving a first image from a camera, wherein the first image comprises a first depiction of a person and a first indication of at least one contraband item. The method further comprises using the first image, generating a second image comprising a second depiction of the person and a second indication of the at least one contraband item. The second depiction of the person has enhanced privacy with respect to the first depiction of the person.06-10-2010
20090140908SYSTEM FOR DEPLOYMENT OF A MILLIMETER WAVE CONCEALED OBJECT DETECTION SYSTEM USING AN OUTDOOR PASSIVELY ILLUMINATED STRUCTURE - A system for deployment of a millimeter wave concealed object detection system using an outdoor passively illuminated structure is disclosed. In a particular embodiment, the structure includes at least one sidewall with at least one louvered panel within the sidewall. The louvered panel is orientated to reflect millimeter energy into the structure that is used in part by a concealed object detection system for detecting concealed objects. The louvered panel includes a plurality of adjustable parallel slats for obtaining an optimum deployment angle. The structure further includes at least one detection lane for guiding a subject through the structure and is configured between a controlled entry barrier and an exit barrier of the structure.06-04-2009
20120068875Radar Image Generation System - According to one embodiment, a synthetic aperture radar includes a back projection processor that is configured to receive multiple return signals from the radar as the radar is moved with respect to an object, wherein the return signals are representative of electro-magnetic radiation reflected from the object. The back projection processor generates a dynamic image of one or more internal features of the object from the return signals by varying a squint angle of the plurality of return signals in which the squint angle varied by modifying a back projection filter. Once generated, the back projection processor displays the dynamic image on a display.03-22-2012
20090140907DETECTION OF A CONCEALED OBJECT - Disclosed are systems, methods, devices, and apparatus to determine if a clothed individual is carrying a suspicious, concealed object. This determination includes establishing data corresponding to an image of the individual through interrogation with electromagnetic radiation in the 200 MHz to 1 THz range. In one form, image data corresponding to intensity of reflected radiation and differential depth of the reflecting surface is received and processed to detect the suspicious, concealed object.06-04-2009
20110227778Hand-Held See-Through-The-Wall Imaging And Unexploded Ordnance (UXO) Detection System - The housing of a portable radar unit includes features for providing positioning of auxiliary handles between a first position and a second position, in which: the first position places the auxiliary handles in a position to act as handgrips in conjunction with integral handles and the second position places the auxiliary handles at an angle to the integral handles, so that the radar unit can be held with one hand and supported by a forearm of the same hand. Rotation of each auxiliary handle about a pivot moves the auxiliary handle between the first position and the second position; and a friction mechanism resists the rotation so that the auxiliary handle tends to stay in position until purposefully moved. The housing also includes internal space for housing a radar antenna, a reflector, and a mechanism for adjusting distance between the reflector and the antenna for tuning performance of the antenna. The housing provides external access without intrusion into the housing for operating the adjusting mechanism.09-22-2011
20090021417Method and system for detection of objects - A method for detection of an object, the method including irradiating a target with two electromagnetic wave energy beams, a first beam at a first frequency and a second beam at a second frequency, the first frequency being lower than the second frequency, both beams being polarized in a first direction, and determining a presence of an object by analyzing reflections of the first and second beams, wherein if there is a dominant reflection polarization in the first direction for both the first and second frequencies, then the target is considered not to have the object, and if there is a dominant reflection polarization in the first direction for only one of the first and second frequencies and a depolarized reflection at the other of the first and second frequencies, then the target is considered to have the object.01-22-2009
20110227777TWO-DIMENSIONAL ARRAY ANTENNA AND DEVICE FOR DETECTING INTERNAL OBJECT USING THE SAME - Provided are a two-dimensional array antenna and a device for detecting an internal object using the same. The device includes a plurality of unit antennas in a two-dimensional array of m columns and n rows on a board (where m and n are integers greater than 1), a first switch selecting one or more transmitting antenna to radiate a pulse signal onto an internal object in a structure from among the unit antennas; a second switch selecting one or more receiving antenna to collect a signal reflected from the internal object from among the unit antennas, and a transceiving analysis module analyzing information about the position and shape of the internal object.09-22-2011
20120105268Method of Detecting a Scatterer in a Structure, a Radar System and a Computer Program Product - The invention relates to a method of detecting a scatterer in a structure, such as a building structure. The method comprises the steps of transmitting from one or a multiple number of positions exterior to a structure, a wall probing radar signal towards the structure. The method also comprises the step of receiving, at one or a multiple number of positions exterior to the structure, signals that have been reflected by scatterers in the structure. Further, the method comprises the step of filtering, from the received signals, reflection information of a specific scatterer at a specific position. In addition, the method comprises the step of identifying a geometry of the specific scatterer, based on the reflection information. The filtering step comprises applying a phase change algorithm corresponding to a specific scatterer type.05-03-2012
20120105267SURVEILLANCE WITH SUBJECT SCREENING - A surveillance system is disclosed. In some embodiments, the surveillance system may include at least one controller adapted to control operation of first and second screening apparatus and to produce image data and screening data, to relate the image data to the screening data, and to produce relational information data from the related image data and screening data. In some embodiments, the system may include a first screening apparatus adapted to screen a subject in a subject position, a second screening apparatus adapted to screen the subject in the subject position, and a controller adapted to produce first and second screening data from the first and second screening apparatus, respectively, relate the first and second screening data, and to produce relational information data from the related first and second screening data.05-03-2012
20100182189DEVICE AND METHOD FOR DETECTING NON-LINEAR ELECTRONIC COMPONENTS OR CIRCUITS ESPECIALLY OF A BOOBY TRAP OR THE LIKE - The invention relates to a device and a method wherein tunable transmitters and detectors (receivers) are integrated into a non-linear detection system and a narrow-band signal having a variable frequency is used. The scanable frequency range should be between 10-100 MHz. The frequency acceptance range for the second and third harmonic is adjusted according to the transmit frequency.07-22-2010
20110102233Active millimeter-wave imaging system - An active millimeter wave imaging system and method. The system includes a spatially distributed broadband millimeter-wave illuminating source for illuminating a field of view and a millimeter-wave imaging receiver for imaging the field of view. The subject area to be imaged is illuminated simultaneously from many different angles by the distributed source. Reflections from the subjected area are then collected and used to form images. These images in preferred embodiments are compared with passive images made without the millimeter wave illumination from the millimeter wave source. The spatially distributed illumination source in preferred embodiments includes a broadband millimeter-wave noise generator producing millimeter wave radiation at frequencies at which the passive receiver is sensitive and a large reflector. In preferred embodiments the reflector has the shape of a section of an ellipse defining two foci.05-05-2011
20120194376Millimeter Wave Energy Sensing Wand and Method - A millimeter wave energy sensing wand is disclosed. In a particular embodiment, the wand includes a housing adapted to be grasped by a hand of an operator, at least one pixel contained within the housing, where the at least one pixel adapted to detect millimeter or terahertz wave energy emissions, and an alarm, where the alarm is activated when an anomaly of the millimeter wave energy emissions is detected. In addition, the wand may include a digital signal processor for processing millimeter wave emissions detected by the at least one pixel to determine millimeter wave energy values and a memory device for storing the millimeter wave energy values. A comparison module or other similar means may be used for comparing the millimeter wave energy values detected by the at least one pixel to a background millimeter wave energy value that may be a moving average or an absolute value.08-02-2012
20080316085APPARATUS FOR POSITION DETECTION USING MULTIPLE HCF TRANSMISSIONS - An apparatus a transmitter section, a receiver section, and a processing module. The transmitter section transmits a plurality of high carrier frequency beamformed signals in a loop manner until a desired number of signals has been transmitted. The receiver section receives the plurality of high carrier frequency beamformed signals and determines reception properties of the plurality of high carrier frequency beamformed signals. The processing module determines at least one of: reflection, absorption, refraction, and pass through based on the reception properties. The processing module then distinguishes an animate entity from an inanimate entity based on the at least one of the reflection, absorption, refraction, and pass through. The processing module then determines position of the animate entity within a given physical area.12-25-2008
20090207067Radar Imaging of Buildings Using Model-Based Focusing and Data-Based Focusing - According to one embodiment, an image generating device includes an image former coupled to a radar that transmits and receives electro-magnetic radiation at multiple frequencies. The image former generates an image using information received from the radar, adjusts the image according to a material characteristic of the object, and combines the image with other images received at differing frequencies to form a resulting image.08-20-2009
20090109081Positioning correction system and method for single and multi-channel ground penetrating radar - A mobile geophysical instrument produces geophysical data sets each associated with a position computed by use of a position sensor. A variable time delay results between a time when data for each geophysical data set is collected and a time when a position associated with each geophysical data set is recorded. A module receives distance transducer data and includes circuitry configured to generate a module signal based on trigger signals from the distance transducer and a calibration value. A data acquisition system (DAS) receives geophysical data sets from the geophysical instrument, positioning data from the positioning sensor, and the module signals. The DAS generates a DAS timestamp in response to each module signal and associates the DAS timestamp with each geophysical data set and a position associated with the geophysical data set, so as to substantially eliminate the variable time delay.04-30-2009
20100207803Circularly Polarized Antennas for Active Holographic Imaging through Barriers - Circularly-polarized antennas and their methods of use for active holographic imaging through barriers. The antennas are dielectrically loaded to optimally match the dielectric constant of the barrier through which images are to be produced. The dielectric loading helps to remove barrier-front surface reflections and to couple electromagnetic energy into the barrier.08-19-2010
20110006940Method and Device for Detection of Motion of the Surface of an Object - The invention relates to a method for detection of motion of the surface of an object by means of a detection device, the object being stationary during a detection process, and situated in a space on the opposite side of a wall in relation to the detection device, and having a relative dielectric constant ∈r greater than 1.1. The method comprises steps of transmitting radar signals and receiving radar signals reflected by the object, and if a motion has been detected, in addition visualising the motion in a three-dimensional combined radar model and data model. The invention also relates to a detection device for carrying out the method.01-13-2011
20090184861INCLUSION OF ASSESSMENT DATA IN MILLIMETER WAVE CONCEALED OBJECT DETECTION SYSTEMS - A millimeter wave object detection system includes a millimeter wave imager and a data entry device configured to assign assessment information to events where a concealed object is detected by an operator/observer or automated computer program interrogating imagery produced by the millimeter wave imager. A computer is programmed to store assessment data from the data entry device into a database, and statistical operations can be performed upon the database.07-23-2009
20110025547DETERMINATION OF HOSTILE INDIVIDUALS ARMED WITH WEAPON, USING RESPIRATION AND HEARTBEAT AS WELL AS SPECTRAL ANALYSIS AT 60 GHZ - A system includes a plurality of radar units configured to provide scan data to a network; a signal processing and imaging module connected to the network and configured to receive the scan data, identify a target, and determine a type of the target based on a radar profile of the target; and a display unit in communication with the signal processing and imaging module and configured to provide a tracking display of the target position and type. A method includes scanning an inhabitable area using a plurality of radar detector units to produce scan data; processing the scan data to construct a digitized representation of a target in the inhabitable area; using recovered information of the target to differentiate between a live person, an animal or an object as the target type; and displaying the target type and position on an image display.02-03-2011
20110025545Method and system for motion compensation for hand held MTI radar sensor - Methods to quantify the amount of radial platform motion of a portable sensor are described. In an exemplary embodiment, the method uses the frequency domain phase data in the range bin corresponding to a large stationary object. A correction factor is computed and applied back into the time domain samples prior to processing by Doppler filters used to measure motion in the scene.02-03-2011
20110025546Mobile sense through the wall radar system - A method and apparatus for sensing a target through a wall or obstruction by a Moving Target Indicator (MTI) radar sensor. In an exemplary embodiment, a series of radar pulses are transmitted at frequencies less than about 5 GHz. Radar return signals are received at a plurality of receive antenna array subapertures. The radar return signals are processed by a digital beamformer to form multiple beams. Target detection processing detects moving and stationary targets through a plurality of parallel target detection signal processing paths.02-03-2011
20110115666Highway Speed Ground Penetrating Radar System Utilizing Air-Launched Antenna and Method of Use - Embodiments of the disclosed technology comprise an air-launched antenna system with interference-rejection technology that operates in analog hardware as well as by way of a digital filtering technique. Using an inline analog hardware filter combined with a digital filter, to determine transversal (and/or recursive) coefficients, in a calibration phase, a measurement system may be configured to remove interference and the effects (such as a delay or temperature variation) which result from use of an analog filter. In this manner, the resulting measurements of a composition of road surface are more accurate and useful.05-19-2011
20110115667Ultra-wideband Radar Waveform Calibration for Measurements of a Heterogeneous Material - Embodiments of the disclosed technology comprise a ground penetrating radio device and methods of use for obtaining greater resolution. This is achieved by measuring the composition/reflection off a homogeneous material (e.g., metal plate), determining coefficients to correct the measured/reflection in order to make the measurements look like an idealized reference signal, and then using these coefficients in a digital filter to correct measurements/a reflection off a heterogeneous material, such as a road surface. In this manner, the composition of the heterogeneous material is determined with greater accuracy.05-19-2011
20110084868VARIABLE RANGE MILLIMETER WAVE METHOD AND SYSTEM - A variable range millimeter wave method and system is disclosed. In a particular embodiment, the system includes a primary mirror having an aperture to reflect millimeter wave energy to a secondary mirror, where the secondary mirror is disposed in front of the primary mirror and adapted to redirect the millimeter wave energy to a millimeter wave sensor/detector of a millimeter wave camera. The millimeter wave camera is configured to process the millimeter wave energy to visually detect concealed objects hidden on a target and an operating frequency of the millimeter wave camera is between 225 GHz and 275 GHz. In addition, the system includes a laser rangefinder, GPS and altimeter to determine a location of the target and to optimize a focus of the millimeter wave camera. A video monitor displays millimeter wave imagery and video images spatially and temporally relative to the millimeter wave imagery to aid targeting.04-14-2011
20100052970Ground penetrating synthetic aperture radar - A method and system for examining subsurface targets utilizing an elevated or airborne platform. A broad spectrum of frequencies is transmitted from the platform and is directed at the various subsurface targets. A plurality of chirp signals would be utilized to transmit the entire frequency range. These signals are reflected from the various subsurface targets and are received by the platform. The received chirp signals are combined in a manner to allow the visualization of the subsurface target.03-04-2010
20110102235IDENTIFICATION OF POTENTIAL THREAT MATERIALS USING ACTIVE ELECTROMAGNETIC WAVES - Electrical properties of concealed dielectric objects, such as the dielectric permittivity, can be deduced from incident, reflected, and transmitted electromagnetic waves in an imaging system. In a confocal arrangement a horn illuminates a reflect array and the reflect array is configured to focus the radiation at an element in the scan volume. The reflections are in turn refocused by a reflect array at the horn aperture. The reflect array is electronically configured to scan the focal point throughout the scan volume in a systematic way. Knowledge of the horn pattern and the scan strategy allows the system to compute the geometry associated with each volume element. Amplitude and phase variations between the object and the surrounding volume and the computed geometry are used to estimate the relative permittivity and thus facilitate categorization of the object using a database of material relative permittivities.05-05-2011
20100039309RELATING TO SCANNERS - The invention provides a security scanner that produces a radar profile of a clothed person or another object such as a bag carried by a person at a distance and does not require close proximity of the person or object to the scanner itself. The scanner includes a millimetre wave antenna system optimised for short-range active imaging and arranged to provide rapid high-resolution images of an object or person of interest and processing means for resolving the images so as to detect the presence of predetermined objects. The processing means preferably includes means for comparing contrasts in reflectivity in the scanned images with predetermined expected values from skin and light clothing. The processing means may also include means for detecting predetermined behavioural or physical traits such as the effect on gait on carried weighty objects or stiff structures strapped to the person from the images of a scanned object or person. The scanner may be incorporated within a turnstile access arrangement.02-18-2010
20110175765Device for Detecting Objects, Notably Dangerous Objects - The present invention relates to a device for detecting objects. The device comprises at least one microwave-frequency transmitter and one microwave-frequency receiver. The receiver makes a relative rotary movement about the transmitter, a signal being transmitted toward an individual for several positions of the receiver on the circle of relative rotation, the signals reflected by points of an object and received by the receiver at the positions being supplied to processing means in order to form a radar image. The receiver and the transmitter can be installed on a disk with a very low moment of inertia. The invention applies notably for the detection of weapons or explosives carried by persons.07-21-2011
20100315280Multi-Platform Radar with Forced Resonating Antennas for Embedded Detection and Volumetric Imaging - An electromagnetic interrogation system and methods for analyzing a target in a test bed are disclosed. A forced resonating antenna unit has a transmit element and a receive element both mounted on a platform movable over the test bed. An interrogation signal source generates a continuous stepped-frequency radio frequency (RF) signal. A plurality of receiver channels are connected to the receive element, and ratios of the scattered continuous stepped-frequency RF signal on a first one of the receiver channels and on a second one of the receiver channels each relative to a reference one of the receiver channels is derived as a measurement for each frequency step. A triggering module linked to the receiver channels generates a positional data value corresponding to a set of measurements for one or more stepped frequency sweeps. An analysis module generates test bed analysis results based upon multiple sets of measurements over time and the corresponding positional data values.12-16-2010
20080238757System and Methods for Remote Sensing Using Double-Sideband Signals - A sensing system (10-02-2008
20120200445Sensor Cart Positioning System and Method - A movable platform has a front end, a back end, a longitudinal axis, and at least one axle oriented generally transverse to the longitudinal axis and located between the front and back ends for supporting wheels of the platform. A position sensor is affixed on the platform at a location other than at a location defined by a plane passing through the axle and normal to the longitudinal axis. The position sensor provides position data as the platform traverses a path. A sensor arrangement is supported by the platform and configured to provide subsurface sensor data as the platform traverses the path. A processor is configured to associate the position data with the sensor data relative to a reference frame and in a manner that accounts for dynamic motion of the platform.08-09-2012
20120062407Forward-Looking Detection Radar - An explosive detection system includes an unmanned vehicle and a manned vehicle. The unmanned vehicle includes a reflector. The manned vehicle includes a ground penetrating radar. The manned vehicle also includes electronics configured to process radar signals that are reflected by the reflector to detect an explosive device. The manned vehicle follows the unmanned vehicle.03-15-2012
20110074619SYSTEM AND METHOD OF DETECTION OF UNCRUSHABLE METALLIC PIECES IN MINERAL LOADS - A system and method to detect uncrushable metallic pieces hidden inside a mineral load directly inside a transport device to a primary crusher includes a directionally adjustable radar having at least one device with electromagnetic wave emitter/receiver antennas, a portal through which the transport device passes, a spectral generator/analyzer connected to the antenna devices that generates the electromagnetic waves and analyzes the echoes of the electromagnetic waves that interact with the mineral load, and a computational device that includes a digital signal processor connected to the spectral generator/analyzer.03-31-2011
20110128179SCANNING NEAR FIELD ELECTROMAGNETIC PROBE - A method and apparatus is devised for detecting objects of interest in which frequency-scanned RF in the HF region of the electromagnetic spectrum is projected out across a given area and returns are detected and converted into image data in which phase, amplitude, range and frequency associated with the incoming data is correlated with frequency-dependent range templates to determine the existence of, the range of and the direction of the objects of interest.06-02-2011
20100214150MILLIMETER WAVE IMAGING SYSTEM WITH FREQUENCY SCANNING ANTENNA - A millimeter wave imaging system. The system includes one or more millimeter wave frequency scanning antenna for collecting frequency dependent beams of millimeter wave radiation from a narrow one-dimensional field of view and millimeter wave amplifier components for amplifying the millimeter wave radiation collected by each antenna. The system includes a beam-former that separates the amplified radiation to produce frequency dependent signals corresponding to the frequency dependent beams. The beam-former includes delay lines, a millimeter wave lens, and an array of millimeter wave power detectors for detecting the power in each frequency dependent beam. A sampling circuit reads out the frequency dependent signals to produce a one-dimensional image of the antenna field of view. A two dimensional image of a target may be obtained by moving the target (or having the target move) across the field of view of the scanning antenna or by moving the antenna in order to scan its line of focus over the target. In preferred embodiments a 2×2 Dicke switch is provided to permit sampling a reference thermal source for gain control while continuing to collect image information. This 2×2 Dicke switch provides a square root of 2 improvement in temperature sensitivity over a single receiver version. Preferred embodiments also include features for focusing the antenna within a range of about 5 feet to infinity.08-26-2010
20110148686MOVING-ENTITY DETECTION - Sensing moving entities includes transmitting a stepped-frequency radar signal including multiple frequencies through a wall from a first side of the wall to a second side of the wall. Portions of the radar signal that are reflected by entities located beyond the second side of the wall are detected. The reflected portions are processed to generate processed data including information associated with frequency shifts between the transmitted signal and the detected signal. The processed data is analyzed to determine if reflected portions are associated with moving entities.06-23-2011
20110260905Millimeter Wave Imaging Apparatus - A millimeter wave imaging apparatus includes: an imaging device including a plurality of millimeter wave sensors that are arranged in a planar manner and receive millimeter waves radiated from a subject to detect signal levels thereof; a temperature sensor that detects a temperature of the imaging device; a storage device that stores, with respect to the each of the millimeter wave sensors, temperature characteristics data indicating a relationship between the temperature detected by the temperature sensor and the output from the millimeter wave sensor; and an image data generation device that obtains a deviation of an output from the each of the millimeter wave sensors from reference temperature characteristics based on the temperature detected by the temperature sensor and the temperature characteristics data stored by the storage device, corrects the output from the each of the millimeter wave sensors based on the deviation, and thereby generates the image data.10-27-2011
20100026551Railroad surveying and monitoring system - A Railroad Surveying and Monitoring System configured on a mobile platform for surveying, monitoring, and analyzing rail position and superstructure and terrain substructure of railroad tracks (02-04-2010
20100026550Handheld Instrument Capable of Measuring Heartbeat and Breathing Motion at a Distance - The apparatus of the present invention consists of a MicroPower Radar (MPR), a data acquisition (DAQ) element and a PDA. The radar sends a short, low-amplitude signal of radio-frequency (RF) energy toward the target scene. This signal reflects from the target and is received as a Doppler change. RF has the advantages of penetrating clothing while operating at one fiftieth the power of a cellular or cordless phone. This Doppler change in signal amplitude is filtered, amplified and presented to the DAQ. The DAQ converts the analog Doppler signal into a digital bit-stream and passed to the processor. Proprietary software analysis is performed to further filter and to make a Live/Dead determination. The radar antenna is located at the back of the device and should be pointed toward the victim, the display facing the operator.02-04-2010
20120146832METHOD AND DEVICE FOR DETECTING HIDDEN OBJECTS BY MEANS OF ELECTROMAGNETIC MILLIMETER WAVES - A method for detecting hidden objects by means of electromagnetic millimeter waves is provided, in which a test object is irradiated with millimeter waves and the millimeter waves that are reflected from the test object are evaluated. The millimeter waves are focused on different depth layers of the test object during the irradiation thereof.06-14-2012
20110304495BEAT-PRODUCT RADIO IMAGING METHOD (RIM) - A beat-product radio imaging method (RIM) system uses a matched continuous wave (CW) transmitter and receiver to electronically image material in between. Signal attenuation measurements are taken from a number of different transmitter and receiver perspectives around the material. The transmitter and receiver each have a crystal oscillator rated at 10-ppm or better frequency uncertainty. The receiver's crystal oscillator is used as a local oscillator to beat down the transmitter's carrier frequency to baseband. The frequency error between the local oscillator and the transmitter carrier frequencies produces a beat product of less than one Hertz in frequency and its magnitude is inversely proportional to the path attenuation between the transmitter and receiver. An extremely low-pass filter is used to remove everything above one Hertz in the detector. The receiver sensitivity is therefore extraordinarily high.12-15-2011
20100066585ADJUSTABLE PULSE WIDTH GROUND PENETRATING RADAR - A ground penetrating radar system is described that is able to create both low frequency, wide pulses, and high frequency, narrow pulses, to enable both deep and shallow operation of the ground penetrating radar on demand, including simultaneous operation.03-18-2010
20090015459Method for Reducing Interference Signal Influences on a High-Frequency Measurement Device and High-Frequency Measurement Device - A method for reducing interference signal influences on a high-frequency measurement device, in particular a method for operating a high-frequency position finder, in which an analog measurement signal (01-15-2009
20110050479STATIC RF IMAGING FOR INSIDE WALLS OF A PREMISES - A system includes a radar unit configured to provide raw data from scanning an exterior of a structure; and a signal processing and imaging module configured to: process the raw data into markers of interior locations of the structure; and display an image of interior structural features based on the markers. A method includes: scanning a building structure from the exterior of the structure using a radar unit to provide raw data; processing the raw data into markers of interior locations of the structure; estimating locations of interior structural features of the structure from the markers; and displaying an image of the interior structural features.03-03-2011
20090212990APPARATUS AND METHOD FOR DETECTING AND LOCATING HIDDEN OBJECTS - An apparatus and method for detecting and locating hidden objects employs a symmetrical array of five directional antennas, including a central transmit antenna and a pair of receive antennas at each side of the transmit antenna, respectively. All of the antennas are pointed in the same general direction toward an object field of interest. The transmit antenna radiates a beam of high-frequency electromagnetic energy, and the receive antennas receive high-frequency electromagnetic energy returned by hidden objects. Each pair of receive antennas has an associated phase detector, the output of which represents the phase difference between receive antenna signals corresponding to the received electromagnetic energy. A circuit determines when the outputs of the phase detectors represent predetermined phase differences and operates indicator devices.08-27-2009
20100220001IMAGING SYSTEM AND METHOD - A radar imaging system for capturing an image of an object within an area of interest through at least one visual impairment. The radar imaging system comprises at least one radar array. The radar array includes a plurality of transmitter elements and a plurality of receiver elements for receiving a plurality of coded return signals from an object through the at least one visual impairment. The system further comprises at least one processor coupled to the transmitter and receiver elements, which is adapted to transmit a plurality of differently coded signals toward the object and the at least one visual impairment; decode the plurality of coded return signals received by each of the receiver elements; extract from the decoded return signals a multiplicity of captured signals for each transmitter to receiver path; focus the multiplicity of signals on all points of interest within the area of interest by aligning the multiplicity of captured signals to be co-incident from a particular point within the area of interest; and sum the aligned signals to produce an image of the object. A method for capturing an image of an object in an area of interest through at least one visual impairment is also provided.09-02-2010
20120112949WIDEBAND RF DETECTION - The present invention relates to a method of wideband RF detection. The method may include transmitting a signal from a plurality of transmit positions along a drive path. Reflections of the transmitted signal are received at a plurality of receive positions along the drive path. A signature is formed based on arrival angles of the reflections at each of the receive positions. The signature includes the arrival angles of the reflections at each of the receive positions with respect to a distance along the drive path of a corresponding transmit position and a corresponding receive position of each of the reflections.05-10-2012
20090135045THROUGH-THE-OBSTACLE RADAR SYSTEM AND METHOD OF OPERATION - There are provided a through-the-obstacle radar system and method of operating thereof comprising recording signals and/or derivatives thereof collected during a certain substantial monitoring period, and using the recorded information for generating patterns informative of a monitoring scene. There are further provided a method of motion detection based on through-the-obstacle radar and the system thereof. The method comprises collecting signals and/or derivatives thereof acquired by the radar system during a certain substantial monitoring period and accommodating respective records, said records comprising information characterizing the signals and/or derivatives thereof and information indicative, at least, of the time the signals were obtained; processing the accommodated records and generating at least one histogram characterizing a normative motion level at different time intervals; comparing an actual motion level with the level in the normative histogram corresponding to the same time intervals; and recording the motion as detected if its actual level fits a certain relationship with the corresponding level in the normative histogram.05-28-2009
20090135044Combined Radar and communications link - In a CW radar system for detecting motion behind a wall (05-28-2009
20090073023Millimeter Wave (MMW) Screening Portal Systems, Devices and Methods - A millimeter-wave (MMW) based screening system is provided that may operate with an active sensor, a passive sensor, or in a dual mode using both the active and passive sensors. One or more such sensors are mounted so as to rotate along an axis that passes through a target region of detection, in which a person or object is positioned for screening. A reflector is disposed radially outward from the one or more rotating sensors to reflect MMW radiation between the sensors and the target region. The system may be employed as a portal screening system, and may include a structure having a wall and a roof, for rapidly screening persons for concealed objects. Algorithms may be employed to provide data output that avoids privacy issues.03-19-2009
20110102234STANDOFF RANGE SENSE THROUGH OBSTRUCTION RADAR SYSTEM - A standoff range, sense-through-obstruction radar system is capable of detecting micro-Doppler, or life form signatures, and movements through obstructions at stand-off ranges and displaying the target information over a live video feed of the area under surveillance. The sense-through-obstruction radar system comprises an antenna assembly that includes a horn antenna and a reflector configured to reflect radio frequency (RF) energy to/from the horn antenna. An antenna pointing assembly supports the antenna assembly. The antenna pointing assembly is configured to move the antenna assembly to point the antenna assembly toward an obstruction. A sensor assembly is mounted to the antenna assembly so that the sensor assembly is aligned with the RF beam formed from the RF energy reflected from the reflector to the horn antenna. The sensor assembly is configured to detect the location of the obstruction and to provide information to assist pointing of the antenna assembly toward the obstruction.05-05-2011
20120119935REMOTE INTERROGATION FOR DETECTION OF ACTIVITY OR LIVING ORGANISMS INSIDE ELECTRONICALLY CONDUCTIVE CONTAINERS - A system includes: a radar scanner disposed to scan the interior of a container; an interrogator in communication with the scanner; and a processing system in communication with the interrogator, in which the processing system displays information about the interior of the container. A method includes: mounting a radar scanner antenna to a container so as to scan the interior of the container; connecting a coupler to the scanner so that the scanner communicates scanning data via the coupler to the exterior of the container. Another method includes: coupling an interrogator and radar processing system to a scanner mounted on a container; and processing radar scan data from the interior of the container. Another method includes: linking a radar processing system via a communications link to an interrogator that is coupled to a scanner mounted on a container; and processing radar scan data from the interior of the container.05-17-2012
20120133544MEASUREMENT METHOD AND APPARATUS - There is provided a method and associated apparatus for measurement. Specifically, a method for determining a distance travelled by a signal in a medium, or the time of flight of a signal travelled. The method comprises considering an unambiguous range wherein the unambiguous range greater than a distance to be travelled by a signal. A signal is then transmitted across the distance to be determined, the signal comprising at least two frequency components, the frequency components based on the unambiguous range and the speed of the signal in the medium. The distance travelled (or the time of flight) is determined by using the variance of the received phase characteristics, such as phase angle) of one frequency component of the received signal with the received phase characteristics of another frequency component of the received signal.05-31-2012
20120133543DUAL MODE GROUND PENETRATING RADAR (GPR) - A dual mode ground penetrating radar includes an enclosure which houses radar electronics. The dual mode ground penetrating radar includes an enclosure housing radar electronics. The dual mode ground penetrating radar further includes a first antenna feed having ferrite loading and extending outside of the enclosure. The dual mode ground penetrating radar further includes a second antenna feed spaced apart from the first antenna feed, the second antenna feed having ferrite loading and extending outside of the enclosure. An RF signal is provided in at least one of the first and second antenna feeds by the radar electronics.05-31-2012
20120162002ELECTROMAGNETIC TOMOGRAPHY APPARATUSES AND METHODS - A tomography apparatus for producing image data representative of a dielectric and/or conductivity property distribution within an object using electromagnetic radiation having a frequency in the range 0.05 GHz to 10 GHz, the apparatus having: a processing means for producing image data representative of a dielectric and/or conductivity property distribution within an object located in the imaging domain based on measurement data from the measuring means, wherein the tomography apparatus is configured so that electromagnetic radiation incident on the receivers during a second time period t06-28-2012
20090058710METHODS AND APPARATUS FOR DETECTING THREATS USING RADAR - Methods and apparatus for early detection and identification of a threat such as individuals carrying hidden explosive materials, land mines on roads, etc. are disclosed. One method comprises illuminating a target with radiation at a first polarization, collecting first radiation reflected from the target which has the same polarization as the first polarization, illuminating a target with radiation at a second polarization, and collecting second radiation reflected from the target which has the same polarization as the second polarization. A threat determination is then made based on the difference between the energy values of the first and second collected radiations. In other embodiments, the difference between energy values is used in conjunction with an evaluation of the returned energy in comparison with returned energy from other targets in order to additionally assess whether the primary target is a threat.03-05-2009
20120256777Method for Identifying Materials Using Dielectric Properties through Active Millimeter Wave Illumination - Described herein is a method by which active millimeter wave radiation may be used to detect and identify the composition of concealed metallic, concealed non-metallic, concealed opaque or concealed semi-transparent materials based on their optical properties. By actively radiating a semi-transparent target anomaly with multiple millimeter wave radiation frequencies, the dielectric properties of the target anomaly can be identified. The dielectric properties of the target anomaly may then be compared to a library of dielectric properties attributed to semi-transparent materials of interest. This method will allow active millimeter wave radiation technology to identify the likely composition of targeted semi-transparent materials through absorption and illumination measurements attributed to the dielectric properties of the targeted composition.10-11-2012
20120176265METHOD AND APPARATUS FOR EXAMINING AN OBJECT USING ELECTROMAGNETIC MILLIMETER-WAVE SIGNAL ILLUMINATION - A method examining an object using millimeter-wave signals includes: (a) providing at least two millimeter-wave signal sources; (b) transmitting at least two millimeter-wave signals having at least two different frequencies from the signal sources illuminate the object; (c) in no particular order: (1) determining whether a return reflected signal is above a threshold level; [a] if yes, processing the return signal to identify object shape; [b] if not, processing another return signal; and (2) determining whether a return intermodulation product or harmonic signal is detected; [a] if yes, processing the return signal to identify object nature; [b] if not, processing another return signal; (d) determining whether checked all return signals; (1) if not, processing another return signal; (2) if yes, proceeding to step (e); (e) determining whether results are satisfactory; (1) if not, changing frequency of at least one of the wave signals; (2) if yes, terminating the method.07-12-2012
20120249356SURFACE PENETRATING RADAR SYSTEM AND TARGET ZONE INVESTIGATION METHODOLOGY - A radar system (10-04-2012
20120182171CHANGE DETECTION METHOD AND SYSTEM FOR USE IN DETECTING MOVING TARGETS BEHIND WALLS, BARRIERS OR OTHERWISE VISUALLY OBSCURED - A system and method for locating a moving target behind a wall or barrier comprising: providing a plurality of images of the region of interest; selecting a reference image from the plurality of images; forming a predetermined number of difference images by subtracting the absolute value of the pixels of the reference image from the absolute values of pixels in a predetermined number of the plurality of images; eliminating negative pixel values in the predetermined number of difference images; minimizing the side lobes to form a combined difference image for each reference frame, selecting another reference image from the plurality of images and performing the steps of forming a plurality of difference images, eliminating negative pixel values, averaging the resulting predetermined number of difference images and minimizing the side lobes for each selected reference image to form a set of combined difference images which contain the moving target signature.07-19-2012
20120229322Apparatus For Remote Detection and Monitoring of Concealed Objects - An apparatus and method for remote detection and monitoring of concealed objects are disclosed. According to one embodiment, an apparatus includes one or more transmitting antennae, one or more receiving antennae with a plurality of receiving channels, a pulse sequence generator providing a sequence of pulse signals to the one or more transmitting antennae, and a signal processing unit receiving a sequence of return signals from an object reflecting the sequence of pulse signals. The signal processing unit includes a variable delay generator that receives signal profile of the sequence of pulse signals from the pulse sequence generator, an amplifier that amplifies the sequence of return signals, a multi-channel integrator that integrates the plurality of receiving channels and produces integrated multi-channel signals, and an analog multiplexer that multiplexes the integrated multi-channel signals.09-13-2012
20120229321METHOD AND APPARATUS FOR USING NON-LINEAR GROUND PENETRATING RADAR TO DETECT OBJECTS LOCATED IN THE GROUND - A method and apparatus for detecting objects located underground. In one advantageous embodiment, a detection system detects objects having electrical non-linear characteristics located underground. The detection system comprises a transmitter unit, a receiver, and a processor. The transmitter transmits a plurality of pulsed radio frequency signals having a first frequency and a second frequency into a ground. The receiver monitors for a response radio frequency signal having a frequency equal to a difference between the first frequency and a second frequency, wherein the response radio frequency signal is generated by an object having the non-linear conductive characteristics in response to receiving the plurality of electromagnetic signals. The processor is connected to the transmitter unit and the receiver, wherein the processor controls an operation of the transmitter unit and the receiver, wherein the object is detected when the response radio frequency signal is detected by the receiver.09-13-2012
20080291076Method and Device for a Material-Penetrative Localization of a Measurement Signal - The invention relates to a method for the material-penetrative localization of a measurement signal, in particular a material-penetrative positioning method for use on walls, ceilings, and floors.11-27-2008
20120262326DEVICE AND METHOD FOR DETECTION OF WATER FLOW IN GROUND - The invention relates to a device and a method to determine whether a water leakage has occurred in ground by means of Doppler radar. The device comprises a radar emitting unit for emitting electromagnetic waves into the ground, a receiver unit for receiving signals reflected from a fluctuating water surface, a signal processing unit which band pass filters the received signal to obtain a signal that only comprises the Doppler shifted frequencies, creates a measure of the derivative of the reflected signal and, in a decision processor, compares this measure with a threshold value corresponding to the signal value of the background. If the measure of the derivative exceeds said threshold value a leakage is considered to have occurred.10-18-2012
20120262325MINE DETECTION - An integrated mine detection system includes a ground penetrating metal detector and a ground penetrating radar detector. The integrated mine detection system includes an integrated search device housing a radio-wave transmitter of the radar detector and a coil of the metal detector. The radio-wave transmitter includes an antenna. The integrated search device includes a radio-wave receiver in the form of a pair of receiving antennas.10-18-2012
20120262324Subterranean Image Generating Device And Associated Method - In certain embodiments, a subterranean imaging apparatus comprises at least two receive channels configured on a land-based vehicle and a synthetic aperture radar (SAR) system. The at least two receive channels are operable to generate electrical signals according to electromagnetic radiation reflected from a subterranean target below a ground surface. The SAR system is operable to receive the electrical signals from the at least two receive channels, generate raw images from the received electrical signals, generate a weighting according to phase statistics of pixels in the raw images, and combine the raw images using the weighting to generate a refined image of the subterranean target.10-18-2012
20120268307Systems and Methods for Mapping the Crust of the Earth - A system comprises a radar transmitter configured to generate a radar signal at a predetermined frequency and a radar receiver configured to receive a reflected signal produced by a reflection of the radar signal. The system further includes a radar antenna system configured to transmit the radar signal into a subterranean region and to receive the reflected signal from the subterranean region. A control system is used for controlling a dwell time of the radar antenna system, and a processor is adapted to generate an image of at least a portion of the subterranean region based at least in part on the reflected signal.10-25-2012
20110267215METHODS AND SYSTEMS FOR DETERMINING THE PHASE CONSTANT FOR A DIELECTRIC MEDIUM - A method for determining a phase constant for a dielectric medium is provided. The method includes deploying a calibration object with a known free-space spectral response within a dielectric medium of interest, determining the spectral response of the calibration object deployed in the dielectric medium, and determining the phase constant for the dielectric medium using a relationship between the free-space spectral response of the calibration object and the spectral response of the calibration object when deployed in the dielectric medium.11-03-2011
20120092206METAL DETECTOR AND GROUND-PENETRATING RADAR HYBRID HEAD AND MANUFACTURING METHOD THEREOF - A hybrid ground penetrating radar (GPR)/metal detector (MD) head includes a V-dipole GPR antenna and transmit and receive MD coils. One of the MD coils is arranged in a quadrupole configuration with a crossbar, and the V-dipole antenna is perpendicular to the crossbar. The legs of the V-dipole antenna may straddle the crossbar or may be on one side of the crossbar. The MD coils may be fabricated on a printed circuit board, which may be at a non-normal angle with respect to a central axis of the V-dipole antenna.04-19-2012
20130021192MILLIMETER WAVE ENERGY SENSING WAND AND METHOD - A millimeter wave energy sensing wand includes a housing adapted to be grasped by a hand of an operator. A number of sensors may be coupled with the housing and include comprising at least one millimeter or terahertz wave energy sensor. A controller coupled with the housing and electrically coupled with the sensors receives signals from the sensors in two or more sensing modes, including an active sending mode and a passive sensing mode, and generates feedback when an anomaly is detected in the received signals. The sensors may also operate in a metal detection sensing mode, and the controller may further generate feedback based on the metal detection sensing mode. The sensors may further be configured to operate in a proximity sensing mode. One or more LEDs may illuminate a portion of a scanning area.01-24-2013
20080246647SUBSURFACE IMAGING RADAR - The present invention can be summarized by use of a diffraction limited SAR giving large integration angle and a short depth of field which gives that energy from underground targets is focused independently at different depths to enable 3d imaging. The radar device according to the invention should be implemented by considering the following parameters: Choice of the appropriate illumination geometry, i.e. elevation angle θ, and the appropriate use of low frequency diffraction limited SAR processing to obtain 3D imaging, and the choice of an appropriately low radar frequency.10-09-2008
20130169466RF METAL DETECTOR AND ELECTRONIC ARTICLE SURVEILLANCE SYSTEM USING SAME - A radio frequency (RF) metal detector and an electronic article surveillance (EAS) system are disclosed. The RF metal detector in example embodiments transmits an RF signal. A receiver measures the power and phase of the signal as reflected from metallic objects in an interrogation zone. The RF metal detector can be deployed in a combined system that performs multiple functions. For example, the RF metal detector can be integrated with an EAS system that also sends RFID commands and receives RFID responses. In some embodiments the metal detector can discriminate between moving metal objects and stationary metal objects, and/or discriminate between objects in the interrogation zone and objects outside the interrogation zone. An antenna or antennas can be connected in a mono-static or bi-static configuration and the phase and power signals can be either DC-coupled or AC-coupled into the system through a mixer.07-04-2013
20080218400DOUBLE-SIDEBAND SUPPRESSED-CARRIER RADAR TO NULL NEAR-FIELD REFLECTIONS FROM A FIRST INTERFACE BETWEEN MEDIA LAYERS - A ground-penetrating radar comprises a software-definable transmitter for launching pairs of widely separated and coherent continuous waves. Each pair is separated by a constant or variable different amount double-sideband suppressed carrier modulation such as 10 MHz, 20 MHz, and 30 MHz Processing suppresses the larger first interface reflection and emphasizes the smaller second, third, etc. reflections. Processing determines the electrical parameter of the natural medium adjacent to the antenna.09-11-2008
20130135136IMAGING SYSTEM AND METHOD - An imaging system and method in which the system carries out the method which includes the steps of: (a) determining an incident field, (b) using the incident field and a volume integral equation (VIE) to determine a total field, (c) predicting voltage ratio measurement at a receiving antenna by using the volume integral equation (VIE), wherein the VIE includes a vector Green's function, (d) collecting voltage ratio measurements from one or more receiving antennas, and (e) comparing the predicted voltage ratio measurements to the collected voltage ratio measurements to determine one or more properties of the object being evaluated. An S-parameter based inverse scattering method using the vector Green's function and VIE as its core is also described.05-30-2013
20130093611IMAGING SYSTEM - An imaging system (04-18-2013
20130113648SENSOR HEAD - Detection systems for scanning regions are disclosed. The detection systems may be used to detect various objects that are, for example, buried in the ground or obscured by being hidden on the body of a person. The detection systems include a sensor head having a continuous wave metal detector (CWMD) coil, radar antennas, and a transceiver electrically connected to a radar. The radar includes a transmit antenna configured to transmit electromagnetic radiation, and a receive antenna configured to sense electromagnetic radiation.05-09-2013
20130113647MOVING-ENTITY DETECTION - A stepped-frequency radar signal is transmitted through a barrier. A transmitter of the stepped-frequency radar is on a first side of the barrier, a first object is on a second side of the barrier, and a second object that is distinct from the first object is on the second side of the barrier. A signal including a reflection of the transmitted signal from the first object and a reflection of the transmitted signal from the second object is sensed. The sensed signal is analyzed to determine that a first detection is associated with the first object and a second detection is associated with a second object.05-09-2013
20130120182WORK AREA MONITOR - A Work Area Monitor comprising a radar module mounted on a motorised vehicle. The Work Area Monitor provides early warning of slope failure in a work area by generating an alarm if movement detected in movement data derived from interferometrically processed radar images exceeds a threshold.05-16-2013
20110221624Apparatus and Method Using a Radar in a Wireless and/or Wireline Sensor Node and Operating Radar In the Ground to Detect and Count Vehicles in Roadway, Parking Lot and Airport Applications - A package, wireless sensor module, wireless sensor node and wireline sensor node are disclosed including a radar configured to embed beneath vehicles in pavements, walkways, parking lot floors and runways referred to herein as in ground usage. An access point interfacing to at least one of the sensors is disclosed to provide traffic reports, parking reports, landing counts, takeoff counts, aircraft traffic reports and/or accident reports based upon the sensor's messages regarding the radar and possibly magnetic sensor readings. A runway sensor network is disclosed of radar sensors embedded in lanes of at least one runway for estimating the landing count and/or takeoff count effect of aircraft.09-15-2011
20120280849METHOD OF USING GROUND PENETRATING RADAR TO DETECT CORROSION OF STEEL BARS IN FERROCONCRETE COMPONENTS - The present invention discloses a method of using ground penetrating radar to detect corrosion of steel bars in ferroconcrete components. The method comprises the following steps. Firstly, a ground penetrating radar is used to emit an electromagnetic wave toward a ferroconcrete component. Then, a reflected electromagnetic wave is received. The reflected electromagnetic wave is calculated to obtain characteristic parameters from the interface of the steel bar and the concrete, wherein the characteristic parameters includes reflection electric potential, specific resistance and corresponding specific electric current from the interface. Reference characteristic data which include reference thicknesses of the concrete versus reference reflected electric potential, specific resistance and corresponding specific electric current from the interface are provided. The obtained interface characteristic parameters and the thickness of the concrete are compared with the reference characteristic data to derive the corrosion condition of steel bars in the ferroconcrete component.11-08-2012
20130113649DETECTION OF AN ASYMMETRIC OBJECT - An apparatus for detecting objects includes a transceiver configured to generate a radar signal, a transmit antenna coupled to the transceiver and configured to emit the radar signal, the radar signal comprising a first circular polarization, and a receive antenna coupled to the transceiver and configured to receive a return signal, the return signal comprising the first circular polarization.05-09-2013
20120019406RADAR TOMOGRAPHY APPARATUS AND METHOD - The present invention relates to a radar tomography apparatus and method for determining one or more material properties of an object at a first number of positions distributed within a region of interest of said object. To reduce the acquisition and processing time of data radar tomography apparatus is proposed comprising: 01-26-2012
20120062408UNSYNCHRONIZED RADIO IMAGING - An unsynchronized acoustic or radio-frequency (RF) computed tomography (CT) imaging system with matched, but independent, continuous wave (CW) transmitters and receivers configured to radiate acoustic or RF transmissions in a plurality of vector paths through solid geologic material. A computer calculates and displays tomographic images constructed from individual acoustic or RF path signal travel time or attenuation measurements logged from registered locations from the CW transmitters and receivers after their being shuttled amongst a number of different transmitter and receiver perspectives available around said geologic material to generate data necessary for computed tomography. Each of the transmitters and receivers include independent unsynchronized crystal oscillators rated at 10-ppm or better frequency uncertainty to produce and to detect CW radio frequency (RF) transmissions.03-15-2012
20130207830HANDHELD LOCATING DEVICE - A locating device disposable on a surface has a housing, a capacitance sensor, a radar sensor, and an inductance sensor. The locating device also has a motion sensor disposed for detecting at least one motion parameter. A controller receives data from the capacitance sensor, the radar sensor, the inductance sensor and the motion sensor, and determines from the data a presence of objects disposed within or behind the surface. A display is used for displaying a graphical representation of the objects disposed within or behind the surface.08-15-2013

Patent applications in class TRANSMISSION THROUGH MEDIA OTHER THAN AIR OR FREE SPACE