Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Electromechanical filter

Subclass of:

333 - Wave transmission lines and networks

333024000 - COUPLING NETWORKS

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
333193000 Using surface acoustic waves 146
333187000 Using bulk mode piezoelectric vibrator 142
333197000 Plural mechanically coupled bar, plate, or rod-type resonating means 11
333200000 Reed- or fork-type resonators 9
Entries
DocumentTitleDate
20110193655ACOUSTIC WAVE DEVICE AND ACOUSTIC WAVE FILTER - An acoustic wave device includes an interdigital transducer (IDT) electrode and a separate electrode facing the IDT electrode. The IDT electrode includes first and second comb-shaped electrode facing each other. The first comb-shaped electrode includes a first bus bar, first interdigitated electrode fingers, and first dummy electrode fingers. The second comb-shaped electrode includes a second bus bar second interdigitated electrode fingers interdigitated with the first interdigitated electrode fingers, second dummy electrode fingers facing the first interdigitated electrode fingers, weighted parts, and a non-weighted part. The weighted parts have electrodes at spaces between the second interdigitated electrode fingers and the second dummy electrode fingers. In the non-weighted part, there is no electrode at a space out of the spaces which is closest to the separate electrode in the non-interdigitated region. This acoustic wave device prevents short circuits between the IDT electrode and the separate electrode, and provides excellent characteristics of suppressing unwanted waves.08-11-2011
20110193654ELASTIC WAVE FILTER DEVICE AND MODULE INCLUDING THE SAME - An elastic wave filter device in which elastic wave filters and parallel resonators are provided on a piezoelectric substrate includes a plurality of ground ports. The elastic wave filters include input-side resonators and output-side resonators. The input-side resonators are connected between a reception input port and a first one of the ground ports. The output-side resonators are connected between reception output ports and the first ground port. The parallel resonators are connected in parallel to output lines and are connected to second and third ground ports.08-11-2011
20090121808 MEMS RESONATOR, A METHOD OF MANUFACTURING THEREOF, AND A MEMS OSCILLATOR - The invention relates to a MEMS resonator comprising a first electrode, a movable element (05-14-2009
20130033338UNRELEASED MEMS RESONATOR AND METHOD OF FORMING SAME - A microelectromechanical (MEM) resonator includes a resonant cavity disposed in a first layer of a first solid material disposed on a substrate and a first plurality of reflectors disposed in the first layer in a first direction with respect to the resonant cavity and to each other. Each of the first plurality of reflectors comprises an outer layer of a second solid material and an inner layer of a third solid material. The inner layer of each of the first plurality of reflectors is adjacent in the first direction to the outer layer of each reflector and to either the outer layer of an adjacent reflector or the resonant cavity.02-07-2013
20100109808Switchable Tunable Acoustic Resonator Using BST Material - An acoustic resonator includes a first electrode, a second electrode, and a barium strontium titanate (BST) dielectric layer disposed between the first electrode and the second electrode, where the acoustic resonator is switched on as a resonator with a resonant frequency if a DC (direct current) bias voltage is applied across the BST dielectric layer. The acoustic resonator is also switched off if no DC bias voltage is applied across the BST dielectric layer. Furthermore, the resonant frequency of the acoustic resonator can be tuned based on a level of the DC bias voltage, with the resonant frequency increasing as the level of the DC bias voltage applied to the BST acoustic resonator increases.05-06-2010
20100134207Nano electromechanical integrated-circuit bank and switch - A bank of nano electromechanical integrated circuit filters. The bank of integrated circuit filters comprising a silicon substrate; a sacrificial layer; a device layer including at least two resonators, wherein the at least two resonators include sub-micro excitable elements and wherein the at least two resonators posses a fundamental mode frequency as well as a collective mode frequency and wherein the collective mode frequency of the at least two resonators is determined by the fundamental frequency of the sub-micron elements. At least one switch connects to the bank of integrated circuit filters.06-03-2010
20090315645RESONANT CIRCUIT, OSCILLATION CIRCUIT, FILTER CIRCUIT, AND ELECTRONIC DEVICE - A resonant circuit includes a substrate; a MEMS resonator including a fixed electrode and a movable electrode formed above the substrate and having a first terminal and a second terminal, the movable electrode having a movable portion opposing at least a part of the fixed electrode; a first input-output terminal connected to the first terminal connected to one of the fixed electrode and the movable electrode of the MEMS resonator; a second input-output terminal connected to the second terminal connected to an other one of the fixed electrode and the movable electrode of the MEMS resonator; a voltage applying unit supplying a potential to at least the first terminal to apply a bias voltage between the first and the second terminals; and a variable capacitance connected between the first terminal and the first input-output terminal to allow a capacitance value to be changed by a change in a potential difference between opposite ends of the variable capacitance.12-24-2009
20120218054DIELECTRIC CERAMIC AND RESONATOR - A dielectric ceramic which is capable of stably having a desired relative dielectric constant (εr), while having high Q value and good temperature coefficient of the resonance frequency. Specifically disclosed is a dielectric ceramic which contains lanthanum, magnesium, calcium and titanium, and when the compositional formula of the components is expressed as αLa08-30-2012
20090267706RESONATOR AND FABRICATION METHOD THEREOF - A resonator fabrication method is provided. A method includes providing a plurality of electrode patterns disposed apart from each other on a substrate using a nano-imprint technique; and forming an extended electrode pattern connected to a plurality of electrode patterns, and forming a nano structure laid across an extended electrode patterns. Therefore, a nano-electromechanical system (NEMS) resonator is easily fabricated at a nanometer level.10-29-2009
20110012694RESONATOR AND RESONATOR ARRAY - [Subject] An object of the present invention is to provide a resonator readily achieving a high resonance frequency without extreme downsizing and allowing for a high Q factor.01-20-2011
20110012693BULK-MODE RESONATOR - A method for forming a resonator including a resonant element, the resonant element being at least partly formed of a body at least partly formed of a first conductive material, the body including open cavities, this method including the steps of measuring the resonator frequency; and at least partially filling said cavities.01-20-2011
20130162373NANO ELECTROMECHANICAL INTEGRATED-CIRCUIT FILTER - A nano electromechanical integrated circuit filter and method of making. The filter comprises a silicon substrate; a sacrificial layer; a device layer including at least one resonator, wherein the resonator includes sub-micron excitable elements and wherein the at least one resonator possess a fundamental mode frequency as well as a collective mode frequency and wherein the collective mode frequency of the at least one resonator is determined by the fundamental frequency of the sub-micron elements.06-27-2013
20090237179System and method for using MEMS filter bank - A method and apparatus for recovering at least one signal of interest are provided. The method includes receiving an overall signal, the overall signal including the at least one signal of interest and a plurality of other signals, identifying at least one of the strongest components of the plurality of other signals, attenuating, using at least one MEMS resonator, any of the components identified by the identifying, wherein the overall signal will be modified to include the at least one signal of interest, attenuated versions of the components identified by the identifying, and the remaining portions of the plurality of other signals that were not subject to the attenuating, and recovering, after the attenuating, the at least one signal of interest.09-24-2009
20090027140Arrangement Comprising a Support and Super-Conductive Film, Vortex Diode Comprising Said Type of Arrangement and Use of Vortex Diodes for Filters - Disclosed is an arrangement including a support and a super-conductive film which is arranged thereon. The film has a plurality of holes in order to form a perforated grating. The holes are optionally round holes having increasing sizes, triangular holes, or holes which are arranged in a meandering manner in the film, and which produce improved properties in relation to signal conversion by a vortex diode and/or in a filter. A DC signal is directly removed therein without additional electronics.01-29-2009
20100171570Digitally Programmable RF Mems Filters with Mechanically Coupled Resonators - A digitally-tunable RF MEMS filter includes a substrate and a plurality of mechanically coupled resonators, wherein a first and a last resonator of the plurality of mechanically coupled resonators are configured to be electrostatically transduced. One or more of the plurality of mechanically coupled resonators are configured to be biased relative to the substrate such that the one or more biased resonators may be brought substantially in contact with the substrate. In a method of digitally tuning an RF MEMS filter having a mechanically coupled resonator array, a DC bias voltage is applied to at least a first resonator and a last resonator of the mechanically coupled resonator array such that motional boundary conditions for the at least first resonator and last resonator are selectable in proportion to the DC bias voltage.07-08-2010
20090309676Tunable Multiwalled Nanotube Resonator - A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.12-17-2009
20080218295MEMS resonator array structure and method of operating and using same - A plurality of mechanically coupled MEMS resonators that are arranged in an N x M MEMS array structure. Each MEMS resonators includes a plurality of straight (or substantially straight) elongated beam sections that are connected by curved/rounded sections. Each elongated beam section is connected to another elongated beam section at a distal end via the curved/rounded sections thereby forming a geometric shape (e.g., a rounded square). Further, each resonator is mechanically coupled to at least one other adjacent resonator of the array via a resonator coupling section. The resonator coupling sections may be disposed between elongated beam sections of adjacent resonators. The resonators, when induced, oscillate at the same or substantially the same frequency. The resonators oscillate in a combined elongating (or breathing) mode and bending mode; that is, the beam sections exhibit an elongating-like (or breathing-like) motion and a bending-like motion. The one or more of the resonators of the array structure may include one or more nodal points or areas (i.e., portions of the resonator that are stationary, experience little movement, and/or are substantially stationary during oscillation of the resonator/array) in one or more portions or areas of the curved sections of the structure. The nodal points are suitable and/or preferable locations to anchor the resonator/array to the substrate.09-11-2008
20100013573PIEZOELECTRIC THIN-FILM FILTER - A piezoelectric thin-film filter reduces insertion loss and deterioration of steepness of a shoulder characteristic and reduces the ripple in the passband. In a first vibration portion, a piezoelectric thin film is disposed between a pair of electrodes along one main surface of a substrate. In a second vibration portion, the piezoelectric thin film is disposed between a pair of electrodes along the one main surface of the substrate. The vibration portions are both acoustically isolated from the substrate. In the first resonator, an additional film is disposed outside the electrode constituting half or more the overall length of the perimeter of the first vibration portion that is in contact with the electrode when seen from a thickness direction. In the second resonator, the external shape of the vibration portion when seen from a thickness direction is a polygon, and each side of the polygon is not parallel with any of the other sides thereof.01-21-2010
20090278628INTEGRATED SINGLE-CRYSTAL MEMS DEVICE - Method of manufacturing a MEMS device integrated in a silicon substrate. In parallel to the manufacturing of the MEMS device passive components as trench capacitors with a high capacitance density can be processed. The method is especially suited for MEMS resonators with resonance frequencies in the range of 10 MHz.11-12-2009
20090153267MEMS resonator structure and method - A microelectromechanical resonator may include one or more resonator masses that oscillates in a bulk mode and that includes a first plurality of regions each having a density, and a second plurality of regions each having a density, the density of each of the second plurality of regions differing from the density of each of the first plurality of regions. The second plurality of regions may be disposed in a non-uniform arrangement. The oscillation may include a first state in which the resonator mass is contracted, at least in part, in a first and/or a second direction, and expanded, at least in part, in a third and/or a fourth direction, the second direction being opposite the first direction, the fourth direction being opposite the third direction.06-18-2009
20100060384FILTER, DUPLEXER AND COMMUNICATION APPARATUS - A filter has a plurality of piezoelectric thin film resonators formed by sandwiching a piezoelectric film with a lower electrode disposed on a substrate and an upper electrode. Each of the piezoelectric thin film resonators has an electrode region formed with the upper electrode and the lower electrode overlapping each other, whose outline includes a curve. Among the plural piezoelectric thin film resonators, the piezoelectric thin film resonators in the opposing electrode regions of the adjacent piezoelectric thin film resonators are shaped to have outlines complementary to each other. With the filter, influences caused by transverse mode undesired wave of the piezoelectric thin film resonators can be suppressed. Therefore, miniaturization can be achieved without sacrificing the mechanical strength of electrodes having hollow structures.03-11-2010
20080211601Discrete Voltage Tunable Resonator Made of Dielectric Material - A voltage tunable resonator is provided, including a dielectric base made of a dielectric material having at least one of a voltage dependent dielectric constant and piezoelectric characteristics. A metal contact having a predetermined area is provided on an outer surface of the dielectric base at a predetermined location to provide a predetermined loaded Q for the resonator, and a metal ground coating is provided on the remaining exposed surfaces of the dielectric base, and an isolation region having a sufficient area to prevent significant coupling between the metal contact and the metal ground coating. A control voltage applied between the metal contact and the metal ground coating provides at least one of (i) a variable electric field to control the dielectric constant and a resonant frequency of the resonator and (ii) a piezoelectric response causing a dimensional change in the resonator to control the resonant frequency of the resonator.09-04-2008
20100176897MEMS RESONATOR DEVICES - The invention relates to MEMS devices. In one embodiment, a micro-electromechanical system (MEMS) device comprises a resonator element having a circumference, an anchor region, and a plurality of beam elements coupling the anchor region and the resonator element. Further embodiments comprise additional devices, systems and methods.07-15-2010
20110199167MEMS RESONATOR ARRAY STRUCTURE AND METHOD OF OPERATING AND USING SAME - Each one of resonators arranged in an N×M MEMS array structure includes substantially straight elongated beam sections connected by curved/rounded sections and is mechanically coupled to at least one adjacent resonator of the array via a coupling section, each elongated beam section connected to another elongated beam section at a distal end via the curved/rounded sections forming a geometric shape (e.g., a rounded square), and the coupling sections disposed between elongated beam sections of adjacent resonators. The resonators, when induced, oscillate at substantially the same frequency, in combined elongating/breathing and bending modes, i.e., beam sections exhibiting elongating/breathing-like and bending-like motions. One or more of the array structure's resonators may include one or more nodal points (i.e., that are substantially stationary and/or experience little movement), which are suitable and/or preferable locations to anchor the resonator/array to the substrate, in one or more areas of the structure's curved sections.08-18-2011
20130120080SPURIOUS-MODE SUPPRESSION PIEZOELECTRIC RESONATOR DESIGN - Provided are methods and apparatus to improve upon conventional piezoelectric resonators. Also provided are apparatus and methods to improve upon filters having piezoelectric resonators. In an example, a piezoelectric resonator includes a substrate, and a piezoelectric material disposed on the substrate. A first electrode and a second electrode are disposed on the piezoelectric material. The piezoelectric resonator has a passband, and a portion of the perimeter of the piezoelectric material is anchored to the substrate to suppress an in-band spurious mode of the piezoelectric material. The portion, if unanchored, would exhibit maximum, near-maximum, and/or excessive displacement deflection at resonance. The piezoelectric resonator can be integrated in a semiconductor die. Multiple filters having piezoelectric resonators with respective different passbands can be disposed on the substrate.05-16-2013
20090096548Tuning and compensation technique for semiconductor bulk resonators - One or more pn junctions are provided on the resonating bar of a semiconductor bulk resonator. When a reverse bias is imposed upon the pn junction(s), a variable depletion layer results and, hence, capacitance. The depletion layer capacitance allows for variable coupling to the resonator bar. The variable coupling allows control circuitry to null out or compensate for variation related to temperature and/or drift.04-16-2009
20130214875GRAPHENE SHEET AND NANOMECHANICAL RESONATOR - A graphene sheet is provided. The graphene sheet includes a carbon lattice and a spatial distribution of defects in the carbon lattice. The spatial distribution of defects is configured to tailor the buckling properties of the graphene sheet.08-22-2013
20090206953RESONANT MEMS DEVICE THAT DETECTS PHOTONS, PARTICLES AND SMALL FORCES - A resonant MEMS device that detects photons, particles and small forces including atomic forces is disclosed. The device comprises a planar substrate 08-20-2009
20090212884NANOTUBE DEVICE - A device comprising a nanotube configured as a resonator, a source electrode, a gate electrode, a drain electrode and at least one impeding element, wherein the at least one impeding element is configured to minimize energy loss due to a contact resistance between at least the source electrode and the nanotube.08-27-2009
20090256649ACOUSTIC WAVE FILTER DEVICE - An acoustic wave filter device includes plural filter circuits between an input terminal and an output terminal. Plural inductors are connected in series in a series arm that connects the input terminal and the output terminal, and plural first acoustic wave resonators are connected between the series arm and a ground potential. Each of the filter circuits includes at least one of the inductors and one of the first acoustic wave resonators. A second acoustic wave resonator in the series arm connects adjacent filter circuits. The acoustic wave filter device has a pass band lower than a trap band, steep attenuation characteristics in a range from the pass band to the trap band, and is capable of providing a large amount of attenuation in the trap band.10-15-2009
20120105173MEMS Device - System and method for a microelectromechanical system (MEMS) is disclosed. A preferred embodiment comprises a first anchor region, a vibrating MEMS structure fixed to the first anchor region, a first electrode adjacent the vibrating MEMS structure, a second electrode adjacent the vibrating MEMS structure wherein the vibrating MEMS structure is arranged between the first and the second electrode.05-03-2012
20090315646RESONANT CIRCUIT, METHOD OF PRODUCING SAME, AND ELECTRONIC DEVICE - A resonant circuit includes a substrate; a MEMS resonator including a fixed electrode and a movable electrode formed above the substrate and having a first terminal and a second terminal, the movable electrode having a movable portion opposing at least a part of the fixed electrode; and a voltage applying unit applying a bias voltage to the MEMS resonator, the voltage applying unit including a voltage divider circuit that includes a compensation resistance formed of a same layer as that of the movable portion to allow a resistance value to be changed by a thickness of the layer and a reference resistance formed of a layer different from that of the movable portion and connected to the compensation resistance to output a junction potential between the compensation resistance and the reference resistance to at least one of the first and the second terminals of the MEMS resonator.12-24-2009
20100176898MEMS DEVICE AND METHOD FOR MANUFACTURING THE SAME - A micro electro mechanical systems (MEMS) device includes a substrate and a MEMS structure formed on the substrate. In the device, the MEMS structure includes an operation structure including a support portion formed on the substrate and a movable portion that is extended from the support portion and movable above the substrate. The movable portion has a section minimum portion whose a sectional area orthogonal to a direction toward the movable portion from the support portion is smaller than a sectional area of the movable portion located on each side of the section minimum portion. The section minimum portion is formed by a boundary pattern provided to a planar pattern of the operation structure.07-15-2010
20130214876NANO SCALE RESONATOR, NANO SCALE SENSOR, AND FABRICATION METHOD THEREOF - A nano scale resonator, a nano scale sensor, and a fabrication method thereof are provided. The nano scale resonator includes a resonance unit of nano scale configured to resonate based on an applied signal, and an anchor on a substrate, the anchor being configured to support the resonance unit, the anchor having an air gap within boundaries of the anchor, the resonance unit, and the substrate, the air gap being configured to reflect a vertical wave occurring in the resonance unit.08-22-2013
20100013574Micro-Electro-Mechanical Transducer Having a Surface Plate - A micro-electro-mechanical transducer (such as a cMUT) is disclosed. The transducer has a base, a spring layer placed over the base, and a mass layer connected to the spring layer through a spring-mass connector. The base includes a first electrode. The spring layer or the mass layer includes a second electrode. The base and the spring layer form a gap therebetween and are connected through a spring anchor. The mass layer provides a substantially independent spring mass contribution to the spring model without affecting the equivalent spring constant. The mass layer also functions as a surface plate interfacing with the medium to improve transducing performance. Fabrication methods to make the same are also disclosed.01-21-2010
20100127798Micro-Electromechanical Resonators Having Electrically-Trimmed Resonator Bodies Therein and Methods of Fabricating Same Using Joule Heating - A micro-electromechanical resonator includes an electrically-trimmed resonator body having at least one stiffness-enhanced semiconductor region therein containing metal-semiconductor lattice bonds. These metal-semiconductor lattice bonds may be gold-silicon lattice bonds and/or aluminum-silicon lattice bonds. A surface of the resonator body is mass-loaded with the metal, which may be provided by a plurality of spaced-apart metal islands. These metal islands may be aligned along a longitudinal axis of the resonator body. A size of the at least one stiffness-enhanced polycrystalline semiconductor region may be sufficient to yield an increase in resonant frequency of the resonator body relative to an otherwise equivalent resonator having a single crystal resonator body that is free of mass-loading by the metal.05-27-2010
20110102105MEMS-BASED TUNABLE FILTER - A filter device is provided including a substrate (05-05-2011
20100301967MEMS Device - System and method for a microelectromechanical system (MEMS) is disclosed. A preferred embodiment comprises a first anchor region, a vibrating MEMS structure fixed to the first anchor region, a first electrode adjacent the vibrating MEMS structure, a second electrode adjacent the vibrating MEMS structure wherein the vibrating MEMS structure is arranged between the first and the second electrode.12-02-2010
20100134208RADIO FREQUENCY DEVICE - An RF device is provided. The RF device includes a vibratile carbon nanotube having a nanotube natural frequency (f06-03-2010
20110128094Resonator and Periodic Structure - A resonator includes a resonating body and at least one periodic structure having one end connected to the resonating body. The periodic structure includes at least two basic structure units with duplicated configuration. The periodic structure blocks wave propagation caused by the vibration of the resonating body. The resonating body has a resonance frequency f06-02-2011
20110128095RESONANT FILTER BASED ON AN N/MEMS MATRIX - A resonant filter including a matrix of n×m resonators of N/MEMS type, each resonator including an actuating mechanism and a detection mechanism. An input of the filter, configured to receive an electrical input signal, is electrically connected to the resonator actuating mechanism. The outputs of the resonator detecting mechanism are electrically connected together and to an output of the filter, such that the signal to be obtained as an output of the filter is an image of the sum of the mechanical responses of the resonators. The resonators are not mechanically coupled together.06-02-2011
20090219114Apparatus, method, and computer program product providing edgeless carbon nanotube resonator arrays - A nanotube apparatus is described. The apparatus includes a first electrode having a first edge. An array of nanotubes distributed in a closed path are also included. The closed path surrounds the first electrode and adjacent to the first edge. The closed path is also locally straight. Each of the nanotubes has an end that is free to oscillate. The apparatus also includes a second electrode having a second edge surrounding both the first electrode and the array of nanotubes. Methods are also described.09-03-2009
20090322448MEMS FILTER WITH VOLTAGE TUNABLE CENTER FREQUENCY AND BANDWIDTH - A tamable MEMS filter is disclosed, having a substrate with first and second isolated substrate areas. First and second anchor points are coupled to the substrate. A base is coupled to the first and second anchor points by first and second coupling beams, respectively. A dielectric layer is coupled to the base. An input conductor is coupled to the at least one dielectric layer. An output conductor is coupled to the at least one dielectric layer.12-31-2009
20110102106MAGNONIC CRYSTAL SPIN WAVE DEVICE CAPABLE OF CONTROLLING SPIN WAVE FREQUENCY - There is provided a magnonic-crystal spin wave device capable of controlling a frequency of a spin wave. The magnonic-crystal spin wave device according to the invention includes a spin wave waveguide made of magnetic material, and the spin wave waveguide guides the spin wave so as to propagate in one direction, and includes a magnonic crystal part which has a cross-section orthogonal to the direction, and at least one of a shape, area size, and center line of the cross-section periodically changes in the direction. In accordance with the invention, it is possible to easily control the frequency of the spin wave using the spin wave waveguide made of single magnetic material.05-05-2011
20100321132TUNABLE MEMS RESONATORS - Tunable MEMS resonators having adjustable resonance frequency and capable of handling large signals are described. In one exemplary design, a tunable MEMS resonator includes (i) a first part having a cavity and a post and (ii) a second part mated to the first part and including a movable plate located under the post. Each part may be covered with a metal layer on the surface facing the other part. The movable plate may be mechanically moved by a DC voltage to vary the resonance frequency of the MEMS resonator. The cavity may have a rectangular or circular shape and may be empty or filled with a dielectric material. The post may be positioned in the middle of the cavity. The movable plate may be attached to the second part (i) via an anchor and operated as a cantilever or (ii) via two anchors and operated as a bridge.12-23-2010
20110133855RESONATOR, ELASTIC WAVE TRANSMISSION ELEMENT AND FABRICATION METHOD THEREOF - A resonator, an elastic wave transmission element and a method for fabricating the transmission element are provided. The elastic wave transmission element has a first side and a second side. The elastic wave transmission element includes a plurality of structures sequentially arranged along a direction from the first side toward the second side. Each of the structures has a different defect which is different to each other. The impedance of the structures decreases gradually along the direction. As such, the elastic wave transmission element has an impedance match function.06-09-2011
20110018655MEMS RESONATOR STRUCTURE AND METHOD - A microelectromechanical resonator may include one or more resonator masses that oscillates in a bulk mode and that includes a first plurality of regions each having a density, and a second plurality of regions each having a density, the density of each of the second plurality of regions differing from the density of each of the first plurality of regions. The second plurality of regions may be disposed in a non-uniform arrangement. The oscillation may include a first state in which the resonator mass is contracted, at least in part, in a first and/or a second direction, and expanded, at least in part, in a third and/or a fourth direction, the second direction being opposite the first direction, the fourth direction being opposite the third direction.01-27-2011
20100060383Carbon Nanotube Resonators - Under one aspect, a resonator 03-11-2010
20120306593ELASTIC WAVE DEVICE - In an elastic wave device, a first piezoelectric substrate and a second piezoelectric substrate are joined to each other with a joining portion so as to face each other across a cavity. A first set of a plurality of filters located on a facing surface of the first piezoelectric substrate and a second set of a plurality of filters located on a facing surface of the second piezoelectric substrate define a plurality of pairs of filters and face each other across the cavity. An absolute value of a difference between center frequencies of a filter of the first set of filters and a filter of the second set of filters in each pair of filters is larger than a minimum value among absolute values of differences between center frequencies of pairs of filters selected from a group including the first set of filters and the second set of filters.12-06-2012
20090315644HIGH-Q DISK NANO RESONATOR DEVICE AND METHOD OF FABRICATING THE SAME - A nanoresonator device with high quality factor and method for fabricating the same is disclosed herein. The nanoresonator device generally includes an input electrode, an output electrode, a nanoresonator anchored at its motionless nodal points of its resonance modes by support beam(s) and/or anchor. The nanoresonator device can be fabricated on various wafers including a silicon on insulator (SOI) wafer, which includes an insulating layer and a heavily doped silicon layer. The nano structures with high quality factor can be patterned on a film utilizing nano fabrication tools and the patterned structures can be utilized as a mask to form permanent nano structures on the silicon layer by reactive ion etching (RIE). The insulating layer can be removed to form the anchor beams and a cavity by wet etching utilizing an etching solution.12-24-2009
20120062340MICROELECTROMECHANICAL FILTER - A microelectromechanical filter is provided. The microelectromechanical filter includes an input electrode, an output electrode, one or several piezoelectric resonators, one or several high quality factor resonators, and one or several coupling beams. The input electrode and the output electrode are disposed on the piezoelectric resonators. The high quality factor resonator is silicon or of piezoelectric materials, and there is no metal electrode on top of the resonator. The coupling beam is connected between the piezoelectric resonator and the high quality factor resonator. The coupling beam transmits an acoustic wave among the resonators, and controls a bandwidth of filter. The microelectromechanical filter with low impedance and high quality factor fits the demand for next-generation communication systems.03-15-2012
20120062339MEMS NOTCH FILTER AND METHOD - A MEMS notch filter comprises a frame; a movable mass; resilient members connecting the mass to the frame; electrodes connected to the frame; and a comb drive connected to the frame and the mass which operates to drive the mass, wherein the filter is adapted to oscillate at least one resonant frequency. A mechanism is positioned below the mass, wherein the mechanism is adapted to maintain a neutral position of the mass and to expel fluid onto the mass. The comb drive is adapted to receive an applied voltage signal from the electrodes. This voltage signal is applied to the comb drive at a resonant frequency of the notch filter and induces the mass to oscillate in a geometric plane of the frame (or optionally in some other resonant mode); resulting in dissipation of energy and voltage attenuation. Other voltage components not at the notch frequency are not attenuated.03-15-2012
20090219113METHOD FOR GAP ADJUSTMENT OF TWO MECHANICAL ELEMENTS OF A SUBSTANTIALLY PLANAR MICROMECHANICAL STRUCTURE AND CORRESPONDING ELECTROMECHANICAL RESONATOR - The invention concerns a method for adjusting the operating gap of two mechanical elements of a substantially planar mechanical structure obtained by micro-etching. The method consists in attributing (A) to one of the elements (E) a fixed reference position (RF) in the direction of the residual gap separating said elements; connecting (C) the other element (OE) to the fixed reference position (RF) by an elastic link (S) and installing (D) between the fixed reference position (RF) and the other element (OE) at least a stop block defining an abutting gap, maximum displacement amplitude of the other element; subjecting (DE) the other element (OE) to a displacement antagonistic to the elastic link (S) up to the abutting position constituting the operating position, the residual gap being reduced to the difference between residual gap and abutting gap and less than the resolution of the micro-etching process. The invention is applicable to electromechanical resonators.09-03-2009
20120249265Resonator and Method of Controlling the Same - A resonator comprising a resonator body and actuation electrodes for driving the resonator into a resonant mode, in which the resonator body vibrates parallel to a first axis. The resonator comprises means to apply a voltage to the resonator in a direction perpendicular to the first axis direction. This serves to shift the frequency of resonant modes other than the principal resonant mode, and this allows increased amplitude of output signal from the resonator.10-04-2012
20090058561Multi-Ring Resonator System and Method - A system and method are provided which includes ring resonator structures coupled together with beam structure(s). The ring resonators are configured to operate in the contour or breathe mode. The center of the coupling beam structure is used as a nodal anchor point for anchoring the ring resonators and the beam structures, and also provides a reflecting interface. In an embodiment, the coupling beam structure includes two quarter-wavelength matched beams and an anchor located at a nodal point for coupling the two quarter-wavelength matched beams and ring resonator structures. The symmetric ring design also provides a differential drive and sense configuration while balancing the driving forces about the anchor located at the center of the beam structure. The system exhibits low energy losses while providing large sensing signals and a high quality factor (Q) of about 186,000 at a resonant frequency of about twenty-nine (29) MHz.03-05-2009
20120176207PARTIALLY-FILLED ELECTRODE-TO-RESONATOR GAP - Method and apparatus for lowering capacitively-transduced resonator impedance within micromechanical resonator devices. Fabrication limits exist on how small the gap spacing can be made between a resonator and the associated input and output electrodes in response to etching processes. The present invention teaches a resonator device in which these gaps are then fully, or more preferably partially filled with a dielectric material to reduce the gap distance. A reduction of the gap distance substantially lowers the motional resistance of the micromechanical resonator device and thus the capacitively-transduced resonator impedance. Micromechanical resonator devices according to the invention can be utilized in a wide range of UHF devices, including integration within ultra-stable oscillators, RF filtering devices, radar systems, and communication systems.07-12-2012
20100327993MICRO MECHANICAL RESONATOR - A micro mechanical resonator includes a high dielectric substrate, and a torsional vibrator having one end that is a fixed end fixed to high dielectric substrate, and having the other end that is a free end. The torsional vibrator has a substantially circular plate-like shape, has a lower surface serving as the fixed end fixed to the substrate, and has an upper surface serving as the free end that is not fixed. The torsional vibrator torsionally vibrates relative to an axis (torsional vibration axis) connecting the center of the circle of the end surface of the fixed end to the center of the circle of the end surface of the free end. In this way, a micro mechanical resonator can be implemented which can be manufactured readily and achieves a high Q factor.12-30-2010
20100327992MEMS RESONATOR INCLUDING MAIN AND SUB MOVABLE BEAMS, AND EXCITING ELECTRODES EXCITED BY ALTERNATING-CURRENT SIGNAL - A MEMS resonator is provided a main movable beam, at least one sub movable beam, and at least one exciting electrode. The main movable beam is electrically insulated from a substrate and fixed to at least one fixed end, the sub movable beam is formed to extend from the main movable beam. The exciting electrode is provided to be close to the sub movable beam. The sub movable beam is excited by an electrostatic force to oscillate by exciting the exciting electrode using an alternating-current signal, such that the MEMS resonator resonates with at least one of a fundamental resonant frequency and harmonic frequencies thereof. The resonant frequency is changed by changing at least one of number of the at least one exciting electrode and a position of the exciting electrode relative to the sub movable beam.12-30-2010
20080297276Nano-resonator including beam with composite structure - A nano-resonator including a beam having a composite structure may include a silicon carbide beam and/or a metal conductor. The metal conductor may be vapor-deposited on the silicon carbide beam. The metal conductor may have a density lower than a density of the silicon carbide beam.12-04-2008
20110037537THERMOCOMPENSATED MECHANICAL RESONATOR - The invention relates to a thermocompensated mechanical resonator including a strip whose core, which is of polygonal section, includes single crystal silicon. According to the invention, one or a number of faces of the core has a coating for making the resonator less sensitive to temperature variations. The invention concerns the field of timepieces.02-17-2011
20080238575ELECTRO MECHANICAL DEVICE AND MANUFACTURING METHOD THEREOF, AND RESONATOR AND MANUFACTURING METHOD THEREOF - An electro mechanical device including: a main body of an electro mechanical device having a lower electrode and a movable member; an overcoat film sealing the main body of the electro mechanical device by maintaining a space, wherein a support post is provided between the overcoat film and the movable member.10-02-2008
20130169383SWITCHABLE FILTERS AND DESIGN STRUCTURES - Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed on a piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam formed above the piezoelectric substrate and at a location in which, upon actuation, the MEMS beam shorts the piezoelectric filter structure by contacting at least one of the plurality of electrodes.07-04-2013
20100315179METHODS AND APPARATUS FOR TEMPERATURE CONTROL OF DEVICES AND MECHANICAL RESONATING STRUCTURES - Methods and apparatus for temperature control of devices and mechanical resonating structures are described. A mechanical resonating structure may include a heating element and a temperature sensor. The temperature sensor may sense the temperature of the mechanical resonating structure, and the heating element may be adjusted to provide a desired level of heating. Optionally, additional heating elements and/or temperature sensors may be included.12-16-2010
20130207746RF MIXER FILTER MEMS RESONATOR ARRAY - A MEMS mixer filter including an array of a multiplicity of resonator elements with conductive outer surfaces in a coplanar rectangularly tiled array, and two sets of DC bias lines in which alternating resonator elements in each row and column are connected to one or the other sets of bias lines so that laterally adjacent resonators may be biased to a DC potential. The resonator elements are uniform in size and shape. Lateral dimensions of the resonator elements are between 5 and 50 microns. The resonator elements are between 100 nanometers and 100 microns thick, and adjacent resonator elements are separated by a gap between 100 and 500 nanometers. A process of forming the MEMS mixer filter.08-15-2013

Patent applications in class Electromechanical filter

Patent applications in all subclasses Electromechanical filter