Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Digitally controlled

Subclass of:

323 - Electricity: power supply or regulation systems

323234000 - OUTPUT LEVEL RESPONSIVE

323265000 - Using a three or more terminal semiconductive device as the final control device

323282000 - Switched (e.g., switching regulators)

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20110175588CONTROL CIRCUIT AND METHOD FOR SWITCHING SUPPLY - A control circuit for a switching supply, include: a first control circuit that selects one of a first signal to switch a boost mode and a step-down mode and a second signal to control an on-period of a switch based on an input voltage, the switch provided between a terminal to which the input voltage is applied and an inductor; and a second control circuit that controls the switching supply based on an output voltage and the selected one of the first signal and the second signal.07-21-2011
20110175587SWITCHING CONTROL CIRCUIT AND SWITCHING POWER-SUPPLY APPARATUS - A switching power-supply apparatus and a switching power supply circuit in which a feedback signal is input from a feedback circuit to a feedback terminal of a switching control IC includes a capacitor and a Zener diode connected between the feedback terminal and a ground terminal. The Zener diode is a selectively connected external circuit. A voltage of the feedback terminal during an overcurrent operation changes depending on whether or not the external circuit is present. A return/latch determination circuit detects the voltage of the feedback terminal to switch between an automatic return system and a latch system in an overcurrent operation state.07-21-2011
20120200276POWER SUPPLY CIRCUIT WITH SCALABLE PERFORMANCE AND METHOD FOR OPERATING THE POWER SUPPLY CIRCUIT - A power supply circuit and a method for operating the power supply circuit are described. In one embodiment, a power supply circuit includes multiple power elements configured to convert an input voltage to an output voltage, a driver circuit coupled to the power elements and configured to drive the power elements, a regulator controller coupled to the power elements and configured to control the power elements for the conversion of the input voltage to the output voltage, and at least one bypass switch coupled to the power elements. The at least one bypass switch is used to bypass at least one of the power elements. Other embodiments are also described.08-09-2012
20130027013ERROR VOLTAGE GENERATION CIRCUIT, SWITCH CONTROL CIRCUIT COMPRISING THE SAME, AND POWER FACTOR CORRECTOR COMPRISING THE SWITCH CONTROL CIRCUIT - The present invention relates to an error voltage generation circuit, a switch control circuit, and a power factor corrector. The error voltage generation circuit generates an error voltage using an error input voltage corresponding to an output voltage of a power factor corrector and a soft start voltage. The error voltage generation circuit samples an error input voltage at an AC input supply time point of the power factor corrector and holes a sampling voltage according to the sampled error input voltage during a soft start period. The error voltage generation circuit generates a soft start voltage increasing from a start voltage corresponding to the sampling voltage. The switch control circuit controls a duty of a power switch of the power factor corrector using the error voltage.01-31-2013
20130027012DC-DC CONVERTER AND VOLTAGE CONVERSION METHOD THEREOF - A DC-DC converter is provided. When a load of the DC-DC converter is too light, the DC-DC converter can raise a frequency of its PWM signal, and reduce a pulse width of the PWM signal, so as to avoid the frequency of the PWM signal falling into a frequency range that can heard by human's ear and maintain high conversion efficiency of the DC-DC converter.01-31-2013
20130027014POWER SUPPLY CONTROLLER WITH AN INPUT VOLTAGE COMPENSATION CIRCUIT - An example controller for a power supply includes a drive signal generator and a compensation circuit. The drive signal generator is to be coupled to control switching of a switch included in the power supply to regulate an output voltage of the power supply in response to a sensed output voltage such that the output voltage of the power supply is greater than an input voltage of the power supply. The compensation circuit is coupled to the drive signal generator and is also coupled to output an offset current to adjust the sensed output voltage in response to the input voltage of the power supply.01-31-2013
20120169314BUCK CONVERTER - A buck converter includes a first MOSFET and a second MOSFET connected in series, a PWM module coupled to gates of the first MOSFET and the second MOSFET, and a control unit being coupled to the input current acquired unit, the input voltage acquired unit, the output current acquired unit, the output voltage acquired unit and the PWM module respectively, wherein the control unit controls a switch frequency of the PWM module and acquires the input current, the input voltage, the output current and the output voltage from the input current acquired unit, the input voltage acquired unit, the output current acquired unit and the output voltage acquired unit respectively.07-05-2012
20090267582SELF-TUNING DIGITAL CURRENT ESTIMATOR FOR LOW-POWER SWITCHING CONVERTERS - A switched mode power can use a digital controller to control the switching of the at least one switch of the switched mode power supply. The current through the power inductor can be estimated using a self-tuning digital current estimator.10-29-2009
20100148739DIGITAL CONTROL OF POWER CONVERTERS - A method of controlling a DC/DC converter to regulate an output voltage from an input voltage source that varies from a fully-charged voltage to a discharged voltage. The method introduced improves the dynamic response of the converter during transients by switching between different converter topologies to spread out voltage spikes, which are an inevitable result of transients. The invention also can improve the efficiency of the DC/DC converter by replacing higher loss modes with combination modes.06-17-2010
20100164455ADAPTIVE MULTI-MODE DIGITAL CONTROL IMPROVING LIGHT-LOAD EFFICIENCY IN SWITCHING POWER CONVERTERS - Adaptive multi-mode digital control schemes that improve the light-load efficiency (and thus the overall average efficiency) in switch-mode power converters without causing performance issues such as audible noises or excessive voltage ripples. Embodiments include a switch-mode power converter that reduces current in the power converter using a second pulse-width-modulation (PWM) mode before reaching switching frequencies that generate audible noises. As the load across the output of the power converter is reduced, the power converter transitions from a first PWM mode in high load conditions to a first pulse-frequency-modulation (PFM) mode, then to a second PWM mode, and finally to a second PFM mode. During the second PFM mode, the switching frequency is dropped to audible frequency levels. Current in the power converter, however, is reduced in the second PWM mode before transitioning to the second PFM mode. Therefore, the power converter produces less or no audible noise in light load conditions where the switching frequency drops to audible frequency levels, while achieving high efficiency across varying load conditions.07-01-2010
20100079124Adjustable Constant Current Source with Continuous Conduction Mode ("CCM") and Discontinuous Conduction Mode ("DCM") Operation - A converter system and method of operating a converter system are disclosed. The converter system comprises a converter power stage that can operate in a Discontinuous Conduction Mode (DCM) in a range of output currents and a Continuous Conduction Mode (CCM) in another range of output currents. The converter power stage includes at least an inductor with an inductor value and a control switch. The converter power stage provides an average current. A current controller is coupled to the converter power stage. When the converter power stage operates in DCM, the converter power stage provides the average current and the current controller is configured to measure the inductor value of the inductor. Furthermore, the current controller can also be configured to measure an input-to-output conversion ratio from the converter power stage.04-01-2010
20090121695METHODS AND APPARATUS FOR A MULTIPHASE POWER REGULATOR - Methods and apparatus for a multiphase power regulator according various aspects of the present invention operate in conjunction with an active transient response (ATR) system for applying a correction signal to a multiphase pulse width modulator. In the event of a transient, the ATR system may adjust the output of the pulse width modulator to quickly respond to load requirements. The output may be modified by adding pulses, blanking pulses, advancing pulses, and scaling pulses to one or more phases.05-14-2009
20100117615ESR ZERO ESTIMATION AND AUTO-COMPENSATION IN DIGITALLY CONTROLLED BUCK CONVERTERS - One embodiment of the present invention is a digitally controlled DC-DC converter comprising of a power stage including at least one switch and an output capacitor. A digital controller can control the switching of the at least one switch. The digital controller can include logic to produce an indication related to a zero resulting from the equivalent series resistance (ESR) of the output capacitor and to update the control of the switching of the switch in the power stage based on the estimate.05-13-2010
20130207630SYSTEMS AND METHODS FOR DYNAMIC MANAGEMENT OF SWITCHING FREQUENCY FOR VOLTAGE REGULATION - Systems and methods are provided that may be implemented to dynamically manage voltage regulator switching frequency. In one embodiment, the disclosed systems and methods may be implemented to dynamically find the optimal voltage regulator switching frequency based on the load current (I08-15-2013
20100033149DIGITALLY CONTROLLED CURRENT-MODE SWITCHED POWER SUPPLY - Disclosed is a current mode switched power supply. The current mode switched power supply includes a switching element and a power stage coupled to the switching element and configured to provide, in response to the switching of the switching element, an output voltage and a feedback voltage related to the output voltage. The current mode switched power supply also includes a digital control circuit connected to the switching element to digitally control the switching of the switching element.02-11-2010
20130043853POWER MATCHING SYSTEM - A power matching system is applied to a central processing unit (CPU) power supply, which includes a power control chip to regulate the frequency of the signal applied to the CPU power supply. The power control chip includes a detecting pin. The power matching system includes a control unit and a control circuit. The control unit includes a platform controller hub (PCH) to obtain information concerning a CPU, a basic input output system (BIOS) to obtain a power rating of the CPU, and an integrated baseboard management controller (IBMC) to output a required signal to the control circuit according to the power rating established. The power control chip receives the required signal from the control circuit and regulates the frequency of the signal applied to the CPU power supply.02-21-2013
20130043852Digital Controller for DC/DC Converters - An embodiment switching converter includes a power stage that receives an input voltage for converting it into an output voltage and provides a load current to a load operably coupled to the power stage. The power stage includes an inductor carrying an inductor current and a digital controller configured to regulate the output voltage to a level close to a reference voltage using a pulse width modulated (PWM) signal supplied to the power stage.02-21-2013
20130038308SWITCHING POWER SUPPLY APPARATUS - A switching power supply apparatus includes: an output transistor to generate an output voltage from an input voltage based on an ON/OFF control of the output transistor; a reference voltage generating unit to generate a reference voltage; a ripple injection unit to inject a ripple component into the reference voltage to generate a ripple reference voltage; a comparator to compare a feedback voltage with the ripple reference voltage to generate a comparison signal; and a switching controller to perform the ON/OFF control of the output transistor based on the comparison signal.02-14-2013
20130038307SWITCHING CIRCUIT AND DC-TO-DC CONVERTER - According to one embodiment, a switching circuit includes a high-side switch, a rectifier, and a driver. The high-side switch is connected between a high potential terminal and an output terminal. The rectifier is connected between the output terminal and a low potential terminal, and forward direction of the rectifier is the direction from the low potential terminal to the output terminal. The driver supplies a first voltage to a control terminal of the high-side switch in accordance with a high-side control signal and turns the high-side switch on. The driver supplies a second voltage being higher than the first voltage to the control terminal of the high-side switch when the voltage of the output terminal increases to not less than a predetermined value.02-14-2013
20130038306METHOD OF DETERMINING DC-DC CONVERTER LOSSES AND A DC-DC CONVERTER EMPLOYING SAME - The present application provides a method of calculating DC-DC converter power losses without the requirement for a measurement of input current. The application also describes the use of such a calculation to determine the optimum point for switchover between a single phase mode or dual phase mode in a two phase DC-DC power supply.02-14-2013
20110001460LOWER POWER CONTROLLER FOR DC TO DC CONVERTERS - The present invention relates to a DC to DC converter system (01-06-2011
20100109632POWER SUPPLY REGULATOR WITH DIGITAL CONTROL - An integrated circuit and method in an integrated circuit for providing electrical power utilizing digital power regulation. Various aspects of the present invention provide an integrated circuit comprising a power supply module that outputs electrical power at an output voltage level. An error determination module may receive a power supply reference signal and a signal indicative of the output voltage level and output a power supply error signal. A digital controller module may receive the power supply error signal, digitally process the power supply error signal, and output a power supply control signal. A power output-monitoring module may monitor the electrical power output from the power supply module and output the signal indicative of the output voltage level. The power supply module may receive the power supply control signal and output the electrical power based, at least in part, on the power supply control signal.05-06-2010
20130082674OPTIMIZING ISOLATED POWER SUPPLY LOOP GAINS FOR OPTO-COUPLER CURRENT TRANSFER RATIO VARIATIONS - A method of optimizing a gain adjustment value Kadj for a digital controller in an isolated switched mode power supply. The power supply includes an opto-coupler having a current transfer ratio (CTR04-04-2013
20130082675Digital Switching Converter Control - A control circuit can control the operation of a switching converter to provide a regulated load current to a load. The switching converter includes an inductor and a high-side and a low side-transistor for switching the load current provided via the inductor. A digital modulator is configured to provide a modulated signal having a duty cycle determined by a digital duty cycle value. A current sense circuit is coupled to at least one of the transistors and is configured to regularly sample a load current value. A comparator is coupled to the current sense circuit and is configured to compare the sampled load current value with a first threshold and to provide a respective comparator output signal. A regulator is configured to receive the comparator output signal and to calculate an updated digital duty cycle value.04-04-2013
20100045254Average current mode controlled converter having a buck mode, a boost mode, and a partial four-switch mode - An average current-mode controlled converter has a buck mode, a boost mode, and a four-switch mode. In one example, the converter operates in one of the three modes, depending on the difference between the converter output voltage VOUT and the converter input voltage VIN. Whether the four-switch mode is a full-time four-switch mode or a partial four-switch mode is user programmable. The novel converter can also be programmed to operate in other ways. For example, the converter can be programmed so that there is no intervening four-switch mode, but rather the converter operates either in a buck or a boost mode depending on VOUT-VIN. The converter can also be programmed so that the converter always operates in a conventional full-time four-switch mode. In one embodiment, the converter is programmed by setting an offset between two internally generated ramp signals and by setting associated limiting and inverting circuits.02-25-2010
20100066334Softstart controller - According to the invention, a DC-DC converter with a digital softstart controller comprises a feedback voltage; a reference voltage; an error amplifier; and a PWM comparator. The error amplifier compares the reference voltage with the feedback voltage. The error amplifier is coupled to the digital softstart controller. The PWM comparator compares signal from the error amplifier. Wherein, the digital softstart controller contains a mapping table, which has information regarding voltage step and time step so as to provide an arbitrary voltage.03-18-2010
20120182002POWER SUPPLY CONTROLLER HAVING ANALOG TO DIGITAL CONVERTER - A power supply controller includes a switching circuit which, in response to a control signal, transfers an analog signal to an output node as an outputted analog signal, the output node being coupled to an inductor and a capacitor, an analog to digital (A/D) converter which converts an outputted analog signal to a digital signal, a pulse width modulation (PWM) generator circuit which produces a PWM signal based on the digital signal, a driver which produces the control signal in response to the PWM signal, and a conversion range setting unit which sets a range data for the A/D converter based on the digital signal during a first period, and which sets the range data based on the PWM signal during a second period.07-19-2012
20130119956CONTROL IC HAVING AUTO RECOVERY CIRCUIT, AUTO RECOVERY CIRCUIT OF CONTROL IC, POWER CONVERTER SYSTEM AND METHOD FOR AUTO RECOVERING CONTROL IC - The present invention relates to a control IC, an auto recovery circuit, a power converter system and a method for an auto recovering. In one embodiment, there is proposed to a control IC including: an abnormal state detection unit; a protection unit changing into a protection mode in an abnormal state and changing the protection mode into an operation mode by receiving an auto recovery signal; an IC power unit receiving the power from an input power when an IC power drops until a preset low voltage under the protection mode, blocking a power supply from the input power when the IC power reaches a preset high voltage and repeating a power supplying and blocking; and an auto restart unit counting clocks alternatively repeating a power supply signal and a supply block signal and supplying the auto recovery signal when the number of counts reaches a preset value.05-16-2013
20100001705Power controller for supplying power voltage to functional block - A power controller includes a digital control circuit which performs a digital control on a basis of a difference between an output voltage supplied to a power control target device and a voltage reference, so that the output voltage is equal to the voltage reference, and a processor control circuit which conducts an operation of a processor in the digital control circuit, in response to a change of a control signal supplied by the power control target device and indicating a state of a load in the power control target device, which monitors an output from the digital control circuit, and which stops the operation of the processor when the load is judged to have no change.01-07-2010
20100134084OUTPUT VOLTAGE CONTROLLER, ELECTRONIC DEVICE, AND OUTPUT VOLTAGE CONTROL METHOD - An output voltage controller includes a first controller which controls current supply to a inductor based on an output voltage, and a second controller which controls current supply to the inductor by controlling a period when an input end to which an input voltage is inputted, the inductor, and an output end from which the output voltage is outputted are coupled based on the input voltage.06-03-2010
20100090671Intelligent Switching Controller and Power Conversion Circuits and Methods - In one embodiment, the present invention includes a circuit comprising a voltage estimation circuit to receive a first voltage and generate an estimation of an output voltage of a power conversion circuit based on the first voltage. The first voltage is from a circuit node between a first terminal of a switch and a first terminal of an inductor. The circuit further comprises a current estimation circuit to receive a first current and generate an estimation of an output current of the power conversion circuit based on the first current. The first current is a current through the switch. The circuit further comprises a pulse width modulation circuit to produce a pulse width modulated signal based on the estimation of an output voltage and the estimation of an output current.04-15-2010
20090066307Efficient voltage converter methods and structures - Voltage converter are provided for efficient generation of voltage signals in a load. The converters are formed with a group of inductors and at least two sets of buck and sync transistors that are arranged with the group so that conducted currents through each of the sets are directed through a respective one of the inductors and further directed to magnetically couple induced currents in the respective inductor of at least an associated one of the sets. Efficiency is particularly enhanced with an operational mode that is directed to light load conditions. In this mode and in at least a selected one of the sets, the buck transistor is turned off throughout the operational mode and the sync transistor is turned off for at least the time that an associated buck transistor is turned on in an associated set which couples induced currents in the respective inductor of the selected set. Preferably, the sync transistor is turned off at the end of a selected time span that begins when the associated buck transistor is turned off.03-12-2009
20120223694Operating a Semiconductor Component Having a Breakthrough Voltage - Methods and apparatuses are provided for operating a semiconductor component using a DC/DC-converter. The DC/DC-converter has its duty cycle controlled.09-06-2012
20120223693METHODS AND APPARATUS FOR DC-DC CONVERSION USING DIGITALLY CONTROLLED ADAPTIVE PULSE FREQUENCY MODULATION - A method and apparatus for regulating voltage comprising calculating a first PFM on time and a second PFM on time and selecting one the PFM on times according to a selection criteria. Then activating and deactivating at least one switch according to the selected PFM on time.09-06-2012
20120223692SENSORLESS SELF-TUNING DIGITAL CURRENT PROGRAMMED MODE (CPM) CONTROLLER WITH MULTIPLE PARAMETER ESTIMATION AND THERMAL STRESS EQUALIZATION - A multiphase controller for a DC-to-DC power supply includes logic to estimate parameters for multiple phases that provide a combined output at a load. The estimated parameters include a current estimate and an effective resistance estimates for each phase so that a power estimate for each phase can be produced. The logic adjusts the operation of the phases using the power estimate for each phase.09-06-2012
20120223691DIGITAL PULSE-FREQUENCY MODULATION CONTROLLER FOR SWITCH-MODE POWER SUPPLIES WITH FREQUENCY TARGETING AND ULTRASONIC MODES - A digital pulse controller uses digital logic to send pulses to a high side and low side switches of a switch-mode power supply converter. The digital logic uses a pulse frequency mode which includes a frequency targeting mode and an ultrasonic mode. The frequency targeting mode dynamically adjusts the size of the pulses in order to achieve a switching frequency within a desired band. The ultrasonic mode is switched into when the frequency of the pulses are at or below a threshold and the time of the pulses reaches a minimum threshold.09-06-2012
20110012578DC-DC CONVERTER CONTROLLER HAVING OPTIMIZED LOAD TRANSIENT RESPONSE - In one embodiment, a power supply controller is configured to turn off a first output transistor but inhibit turning off a second output transistor.01-20-2011
20110012577Power converting system with function of reducing dead-time - A driving circuit includes a dead-time detecting circuit, a duty-cycle controlling circuit, and a switch controlling circuit. The dead-time detecting circuit is coupled to an output of a power switch set for detecting a switching voltage on the output of the power switch set and accordingly outputting a dead-time detecting signal. The output of the power switch set is coupled to the first end of an inductive load, and the second end of the inductive load provides an output voltage. The duty-cycle controlling circuit is coupled to the second end of the inductive load for generating a set/reset signal according to the output voltage. The switch controlling circuit controls the power switch set to be away from a dead state according to the set/reset signal and the dead-time detecting signal.01-20-2011
20130063114CIRCUITS AND METHODS FOR CONTROLLING PWM INPUT OF DRIVER CIRCUIT - Circuits and methods for controlling Pulse Width Modulation (PWM) input of a driver circuit during transition of states are provided. The driver circuit is operative in one of a high state, a low state and a tri-state based on the PWM input. The method includes receiving a tri-state command for transition from the high state to the tri-state. A PWM output signal is enabled to transition from a high logic value to a low logic value for driving the driver circuit from the high state to the low state upon receipt of the tri-state command. The PWM output signal is enabled to transition from the low logic value to a tri-state logic value for driving the driver circuit from the low state to the tri-state upon elapse of a threshold time delay. The PWM input to the driver circuit is based on the PWM output signal.03-14-2013
20090237054Digital Control of Power Converters - A system and method for controlling a power converter is presented. An embodiment comprises an analog differential circuit connected to an analog-to-digital converter, and comparing the digital error signal to at least a first threshold value. If the digital error signal is less than the first threshold value, a pulse is generated to control the power converter. Another embodiment includes multiple thresholds that may be compared against the digital error signal.09-24-2009
20090237053High efficiency voltage regulator with auto power-save mode - A DC-to-DC converter comprises an error amplifier, a comparator, a PWM controller, a power switch unit, and a control signal monitoring circuit. The PWM controller receives a comparison signal from the comparator and generates a digital control signal that controls the power switch unit such that the DC-to-DC converter supplies a regulated voltage onto a load. The control signal monitoring circuit monitors the digital control signal and detects either a heavy load or a light load condition based on characteristics of the digital control signal. Under the light load condition, the monitoring circuit generates a first enabling signal such that the DC-to-DC controller operates in a power-save mode. Under the heavy load condition, the monitoring circuit generates a second enabling signal such that the DC-to-DC controller operates in a normal operation mode. The DC-to-DC converter consumes substantially less power in the power-save mode than in the normal operation mode.09-24-2009
20110043179DC-DC Converter - A DC-DC converter providing a DC output voltage at an output node. The DC-DC converter comprises an output stage, a digital controller, and a controller. The output stage comprises a pull-up circuit having a control terminal and coupled between a first fixed voltage and a internal node, a pull-down circuit coupled between the internal node and a second fixed voltage, and a low pass filter coupled between the internal node and the output node. The digital controller is powered by the DC output voltage and adjusts the DC output voltage by controlling the output stage. The controller controls a connection of a feedback path, comprising the digital controller, between the output node and the control terminal according to the DC output voltage.02-24-2011
20120112720SWITCHING POWER SUPPLY WITH SELF-OPTIMIZING EFFICIENCY - A switching power supply is provided that includes: input terminals for the uptake of an input power, output terminals for providing an output power, a circuit disposed between the input and output terminals for transforming the input power and having at least one controllable switch, a control unit for controlling the at least one controllable switch by means of at least one pulse-width modulation signal having variable frequency and variable duty cycle, and having measuring instruments connected to control unit, designed for at least measuring the input current intensity, the input voltage, the output current intensity, and the output voltage, wherein control unit is designed for the purpose of monitoring the efficiency of switching power supply by means of measurement values of the connected measuring instruments, and of optimizing the efficiency by controlling the at least one controllable switch by means of a first digital control loop. Also provided is a method for operating a switching power supply.05-10-2012
20130162235Power Supply Circuit - A power supply circuit that includes a voltage conversion circuit (CONY) for outputting an output voltage to an output voltage terminal, the output voltage being stepped up or stepped down from an input voltage (V06-27-2013
20110285372SEMICONDUCTOR DEVICE AND DISPLAY DEVICE - An object is to reduce power consumption of a semiconductor device including a DC-DC converter circuit. The semiconductor device includes a DC-DC converter circuit and a microprocessor. The DC-DC converter circuit includes a conversion circuit including an inductor and a transistor, and a control circuit including a comparison circuit and a logic circuit. A hysteresis comparator is used as the comparison circuit. In the control circuit, the comparison circuit compares an output signal of the conversion circuit with a first reference potential or a second reference potential, and the logic circuit performs arithmetic operation between an output signal of the comparison circuit and a clock signal of the microprocessor. In the conversion circuit, the transistor controls current flowing through the inductor in accordance with an output signal of the logic circuit, and the output signal of the conversion circuit is generated in accordance with the current flowing through the inductor.11-24-2011
20110291631POWER SUPPLY CIRCUIT - This invention offers a power supply circuit that is capable of improving a power factor as well as reducing a ripple current of an input/output of the power supply circuit due to switching of a switching device. The power supply circuit is provided with a first power supply circuit including first and second switching devices, a second power supply circuit including third and fourth switching devices and a switching control circuit. The switching control circuit controls the switching devices so that the first switching device and the third switching device are turned on and off at timings different from each other when an alternating current voltage from an alternating current power supply is positive, and the second switching device and the fourth switching device are turned on and off at timings different from each other when the alternating current voltage is negative.12-01-2011
20110291632Power Converters Including Zero-Current Detectors And Methods Of Power Conversion - A power converter includes a zero-current detector having an adjustable offset voltage. The power converter includes a power converting unit and a switch driving circuit. The power converting unit generates a DC output voltage based on a pull-up driving signal, a pull-down driving signal and a DC input voltage. The switch driving circuit generates a first detection voltage signal based on the DC output voltage. The switch driving circuit includes a zero-current detector configured to adjust an offset voltage based on the first detection voltage signal and generate a zero-current detecting signal based on the offset voltage. The offset voltage and the zero-current detecting signal are associated with a current in the power converting unit. The switch driving circuit also includes a pulse-frequency modulating circuit configured to perform a pulse-frequency modulation (PFM) to generate the pull-up driving signal and the pull-down driving signal based on the zero-current detecting signal12-01-2011
20120098511SYSTEMS AND METHODS FOR INTELLIGENTLY OPTIMIZING OPERATING EFFICIENCY USING VARIABLE GATE DRIVE VOLTAGE - Systems and methods for intelligently optimizing voltage regulation efficiency for information handling systems by varying gate drive voltage value based on measured operating efficiency and/or other voltage regulation operating parameters. Different voltage regulation operating parameters may be dynamically monitored and recorded during a power conversion process, and these operating parameters may then be used to dynamically and variably control gate drive voltage level to improve/optimize voltage regulation operating efficiency performance.04-26-2012
20110285373PULSE GENERATING CIRCUIT AND PULSE WIDTH MODULATOR - A pulse generating unit receives a clock at a predetermined frequency, and generates a pulse signal which transits synchronously with the positive edge of the clock. A flip-flop acquires the pulse signal every time a positive edge occurs in an inverted clock output from the inverter. A logic gate multiplexes the pulse signal and the output of the flip-flop. A selector selects either the output of the logic gate or the pulse signal.11-24-2011
20090102446Digital Controlled Power Supply - In a digital controlled power supply including a digital controller for generating a PWM signal which is used to turn on and off a switching element to obtain an output voltage for a load based on an input voltage, the digital controller includes an AD converter for receiving an analog output current from the power supply and converting the current into a digital value to produce a digital output current value, an arithmetic processing unit for conducting an arithmetic operation of a pulse width for each period of a sampling frequency of the AD converter or a frequency of carrier wave as a criterion to obtain the PWM signal, and a frequency controller for variably controlling the frequency of carrier wave and the sampling frequency on the basis of the digital output current value from the AD converter.04-23-2009
20110215781DIGITAL CONTROL SWITCHING REGULATOR HAVING AN INPUT VOLTAGE DETECTION CIRCUIT - A digital control switching regulator of the invention ON/OFF-controls switching elements by digital-controlled pulse width modulation signals and converts an input voltage to a desired output voltage. The switching regulator includes an input voltage detection circuit that includes: a voltage dividing circuit outputting a divided voltage of the input voltage; a comparator section comparing the divided voltage of the input voltage with a first reference voltage and a second reference voltage and outputting a first comparison signal and a second comparison signal indicating comparison results; and a control section controlling a dividing ratio of the voltage dividing circuit based on the first comparison signal and the second comparison signal to obtain the predetermined divided voltage, thereby outputting an input voltage digital signal corresponding to the input voltage. The input voltage digital signal controls controller coefficients for use in the digital control.09-08-2011
20090079408VOLTAGE MODE PWMFF-PFM/SKIP COMBO CONTROLLER - A voltage controller and method providing multiple modes of operation. Embodiments include pulse-width modulation (PWM), feed-forward (FF), pulse-frequency modulation (PFM) and skip operation (PWM-FF-PFM/SKIP). Controller embodiments have integrated MOSFET components, comparator hysteresis, oscillator feed-forward, fixed gain, and error amplifier (EA) limits thereby providing improved efficiency and noise immunity.03-26-2009
20090153121Voltage supply interface with improved current sensitivity and reduced series resistance - A voltage supply interface provides both coarse and fine current control with reduced series resistance. The voltage supply interface has a segmented switch having N component switches that are digitally controlled. The voltage supply interface replaces a conventional sense resistor with a calibration circuit that has a replica switch that is a replica of the N component switches. The calibration circuit includes a reference current I06-18-2009
20090153120Phase doubling for switching power supply - A switching power supply control system may include logic to generate a greater number of second switching control signals in response to a first number of original switching control signals. For example, the logic may increase the number of phases that may be controlled by an existing switching power supply controller. The logic may be configured to steer feedback signals from the increased number of phases back to original feedback inputs on the controller.06-18-2009
20080284398Controller having comp node voltage shift cancellation for improved discontinuous conduction mode (DCM) regulator performance and related methods - A modulation controller includes an error amplifier which receives a reference voltage and an output voltage (V11-20-2008
20100117616ADAPTIVE CONTROLLER WITH MODE TRACKING AND PARAMETRIC ESTIMATION FOR DIGITAL POWER CONVERTERS - A controller for a power stage may adaptively control power switches to improve the efficiency of power consumption by the power stage and detect continuous conduction mode (“CCM”) and discontinuous conduction mode (“DCM”) operations of the power stage without instantaneous or cycle by cycle sensing and sampling of the output inductor current. Additionally, the controller may be used to facilitate the estimation of output inductor value, the peak inductor current value, and other information on converter operations.05-13-2010
20090309567MONITORING AND CONTROL OF POWER CONVERTERS - A digital controller configured to inject a signal into a digital feedback path that facilitates regulation of a power converter and measure the corresponding phase, gain, or frequency. The digital controller may also include an adaptive tuning controller for adjusting power converter operating attributes based in part on the measurements. In an exemplary embodiment, the adaptive tuning controller uses the phase, gain, and/or frequency measurements to adjust the digital feedback signal. In an exemplary embodiment, the adaptive tuning controller compares the operating measurements with desired values and generates adjusted operating attributes. In accordance with an exemplary embodiment, the monitoring and adjusting of the digital feedback signal occurs while the digital controller is regulating a power signal in the power converter.12-17-2009
20090309566DC/DC converter circuit and controller thereof - The present invention uses a multi-phase oscillator or a mono-stable circuit in order to charge the output instantly or within an acceptable time period when a charge pump circuit is in a PFM mode and an output voltage is below a preset voltage level. Therefore, the present invention avoids the problem of charging the output in an unacceptable time delay thereby achieving the advantage of reducing the voltage ripple at the output.12-17-2009
20090140709CURRENT-LIMITING VOLTAGE CONVERSION DEVICE - The present invention relates to a current-limiting voltage conversion device, comprising a voltage conversion unit, a voltage signal unit, a sensor unit and a DC power loop. The voltage conversion unit and the sensor unit are electrically connected in series in the DC power loop. The voltage signal unit outputs a corresponding voltage signal to the voltage conversion unit based on the electric signal output by the sensor unit, and the voltage conversion unit controls the voltage conversion of the voltage conversion unit based on said voltage signal. The voltage signal unit includes outputting a voltage signal corresponding to the power state within a first preset range as detected by the sensor unit and outputting another voltage signal corresponding to the power state within a second preset range as detected by the sensor unit until the power state detected by the sensor unit returns to the first preset range06-04-2009
20080211473SYNCHRONOUS RECTIFIER HAVING PRECISE ON/OFF SWITCHING TIME - A synchronous rectifier, including an energy storage element having a terminal; a power supply input, connected to the terminal of the storage element in a first time interval; a reference line connected to the terminal of the storage element in a second time interval; and a zero comparator, coupled to the terminal of the storage element to detect a current flowing in the energy storage element and disconnect the terminal of the storage element from the reference line upon detecting a zero current, the zero comparator having an offset and a propagation time; the zero comparator further having an offset control input and an output. An offset regulating loop is coupled between the output of the zero comparator and the offset control input and regulates the offset of the zero comparator to compensate the propagation time.09-04-2008
20090289611CIRCUIT COMBINING A SWITCHING REGULATOR AND AN OVERVOLTAGE DETECTION CIRCUIT - An electronic circuit combines a synchronous switching regulator circuit with an overvoltage detection circuit. The overvoltage detection circuit is configured to generate an overvoltage signal capable of an overvoltage state indicative of a power supply voltage being above a predetermined threshold voltage. The switching regulator circuit is coupled to receive the overvoltage signal. The switching regulator is also configured, in response to the overvoltage signal being in the overvoltage state, to generate a first control signal resulting in at least one of two series coupled transistors being in an off condition.11-26-2009
20110169471SEMICONDUCTOR DEVICE AND POWER SOURCE DEVICE - A multi-phase power source device capable of easily changing the number of phases is realized. For example, a plurality of drive units POL[07-14-2011
20090295352Power Supply Unit and Image Forming Apparatus Including the Same - A power supply unit is provided. An output generation circuit generates an output corresponding to an supplied drive signal and supplies the output to a load. A detection circuit receives the output and generates a detection signal in response to the output. A control circuit generates a digital control signal for controlling a value of the output toward a target value in response to the detection signal. A first D/A conversion circuit receives the digital control signal and converts the digital control signal into an analog control signal, the first D/A conversion circuit being capable of setting a reference range for defining a voltage range of the analog control signal. A driving circuit generates the drive signal in response to the analog control signal and supplies the drive signal to the output generation circuit. A range switching circuit switches the reference voltage range of the first D/A conversion circuit between a wide range and a narrow range narrower than the wide range.12-03-2009
20090261795MULTI-THRESHOLD MULTI-GAIN ACTIVE TRANSIENT RESPONSE CIRCUIT AND METHOD FOR DIGITAL MULTIPHASE PULSE WIDTH MODULATED REGULATORS - Disclosed is a multi-phase pulse width modulated voltage regulator and method in which transient voltage excursions or deviations that exceed the load line voltage by more than a pre-determined amount are detected by an ATR circuit and a correction signal is applied. The correction signal is in the form of asynchronous pulses and the number of such pulses is a function of the magnitude of the voltage excursion as determined by the number of thresholds that are exceeded. Also disclosed is an adaptive voltage positioning (AVP) circuit and method for early detection of a transient event by sensing voltage changes at the load and adjusting the target voltage with pre-determined current values prior to the time that ATR event changes in the current at the load are detected.10-22-2009
20090261794DC-DC CONVERTER CONTROLLER HAVING OPTIMIZED LOAD TRANSIENT RESPONSE AND METHOD - A power supply controller (10-22-2009
20090167271ACTIVE TRANSIENT RESPONSE CIRCUITS, SYSTEM AND METHOD FOR DIGITAL MULTIPHASE PULSE WIDTH MODULATED REGULATORS - Disclosed is a multi-phase pulse width modulated voltage regulator and method in which transient voltage excursions or deviations that exceed the load line voltage by more than a predetermined amount are detected by an ATR circuit and a correction signal is applied. The correction signal is in the form of asynchronous pulses and the number of such pulses is a function of the magnitude of the voltage excursion as determined by the number of thresholds that are exceeded. Also disclosed is an adaptive voltage positioning (AVP) circuit and method for early detection of a transient event by sensing voltage changes at the load and adjusting the target voltage with pre-determined current values prior to the time that ATR event changes in the current at the load are detected. The AVP load line is pre-positioned for more precise current control. Also disclosed is an adaptive filter with adjustable frequency characteristics in response to an ATR event. Also disclosed is a pulse limiting circuit. Also disclosed is a tri-state implementation. Response to transient events is further improved with an external ATR circuit coupled to the load.07-02-2009
20090167270SUPPLY VOLTAGE CONTROL BASED AT LEAST IN PART ON POWER STATE OF INTEGRATED CIRCUIT - For one disclosed embodiment, switching voltage regulator circuitry may be controlled to supply a voltage to at least a portion of an integrated circuit. Information corresponding to a current load for a different power state of at least a portion of the integrated circuit may be received. The switching voltage regulator circuitry may be controlled to adjust the voltage to a different value based at least in part on the received information. For another disclosed embodiment, a voltage may be received for a power state of at least a portion of an integrated circuit having first logic to perform one or more functions and second logic integrated with the first logic. Information corresponding to a current load for a different power state of at least a portion of the integrated circuit may be sent from the second logic to voltage regulator control logic to adjust the voltage to a different value. Other embodiments are also disclosed.07-02-2009
20100102790Optimizing delivery of regulated power from a voltage regulator to an electrical component - Methods, apparatus, and products for optimizing delivery of regulated power from a voltage regulator to an electrical component, operation of the voltage regulator controlled by a service processor, the voltage regulator including a number of phases, each phase rated to deliver a different maximum power to the electrical component, where optimizing delivery of regulated power includes determining, by the service processor, the present power requirements of the electrical component, and enabling, by the service processor, one or more phases of the voltage regulator in dependence upon the present power requirements of the electrical component.04-29-2010
20080246455Adaptive zero current sense apparatus and method for a switching regulator - A switching regulator includes a low-side switch having a body diode. During the low-side switch is on, a zero-current sense circuit monitors the inductor current of the switching regulator and triggers a signal to turn off the low-side switch when the inductor current falls down to a zero-current threshold, to prevent reverse inductor current from the output terminal of the switching regulator. A body-diode turn-on time controller monitors the turn-on time of the body diode and adjusts the zero-current threshold according thereto, and the turn-on time of the body diode can be reduced to an optimal interval subsequently. The self-adjustable zero-current threshold is adaptive according to the application conditions, such as the inductor size, input voltage and output voltage of the switching regulator.10-09-2008
20110267019METHODS AND SYSTEMS TO DIGITALLY BALANCE CURRENTS OF A MULTI-PHASE VOLTAGE REGULATOR - Methods and systems to generate a digital error indication of an input signal relative to a reference signal, using resistors, comparators, and latches. The digital error indication may indicate that the input signal is within a range of the reference signal, above the range, or below the range. The methods and systems may be implemented within a multi-phase digital voltage regulator to generate a digital error indication for each of a plurality of phase currents relative to an instantaneous average of the phase currents. The digital voltage regulator may be fabricated on an integrated circuit die with a corresponding load, such as a processor. The digital voltage regulator may include a plurality of multiplier or look-up based gain modules, each to receive a corresponding one of the digital error signals and to output one of three values. Outputs of each gain module may be integrated over time.11-03-2011
20080238395DC-DC Converter, Power Supply System, and Power Supply Method - According to an embodiment, a DC-DC converter comprises: an error amplifier that receives a soft start signal and amplifies a difference between an output voltage signal and a reference voltage signal; a PWM control circuit that controls ON and OFF states of a first switching transistor and a second switching transistor based on the output of the error amplifier; a frequency divider that divides a frequency signal and outputting a divided frequency signal; an accumulator that performs an adding operation based on the divided frequency signal and a control signal; and a DA converter that generates the soft start signal based on an output of the accumulator.10-02-2008
20080238392CONTROLLER AND DRIVER COMMUNICATION FOR SWITCHING REGULATORS - Pulse width modulation (PWM) controllers and output stage driver circuits and related methods of communicating switching regulator mode information. The controller includes circuitry that recognizes intervals when the load driven by the regulator is in a low power mode. Responsive to recognizing the low power mode, the controller generates a PWM mode signal having at least three (3) different levels including at least one intermediate level that is coupled to at least one driver. Based on the PWM mode signal, the regulator is switched into a power saving low power operational mode.10-02-2008
20080238393Centralized controller and power manager for on-board power systems - A controller for controlling a plurality of DC-DC switching cells each configured to generate an output voltage in response to receiving a PWM control signal from the controller. The controller includes a plurality of output ports for outputting a plurality of PWM control signals, and at least one input port for receiving a plurality of output voltages from the plurality of switching cells. The controller is configured to sample the plurality of output voltages one at a time via a multiplexer and to regulate the output voltages in response to the sampling.10-02-2008
20080238394DC-DC CONVERTER, POWER SUPPLY VOLTAGE SUPPLYING METHOD, AND POWER SUPPLY VOLTAGE SUPPLYING SYSTEM - According to one aspect of the invention, a DC-DC converter including a soft-start function of a soft start in response to a soft-start signal, comprises: a detection circuit that detects whether the soft-start signal is active at an end of a soft-start operation; and an output voltage control circuit that controls an output voltage based on detection result of the detection circuit.10-02-2008
20080238390Dynamically adjusted multi-phase regulator - In some embodiments, a multi-phase converter with dynamic phase adjustment is provided.10-02-2008
20080278132Digital Compensation For Cable Drop In A Primary Side Control Power Supply Controller - The present invention is a system and a method that uses primary side sensing to regulate the output voltage at a cable end without any remote sensing of cable connections back from the load. This is accomplished by approximating the current from the control voltage in the control loop through the relationship that defines the Ton time in terms of the control voltage Vc. Once the approximation of the output current is known, it is multiplied by a known fixed cable resistance, and this value is subtracted from the feedback sensor output before it is subtracted from the digital reference. This forces the regulator to raise the output voltage by the amount of drop across the cable, causing the output of the cable to be maintained at the targeted regulation point.11-13-2008
20090027024LOAD CURRENT COMPENSATION IN SYNCHRONOUS POWER CONVERTERS - A method of operating a synchronous power converter generates a control signal in a load current compensation circuit based on a light load condition at the converter, where the control signal controls a gate driver for at least one power switch of the converter. When the gate driver is turned off via the control signal, the method monitors one or more comparison signals in a reference voltage adjustment module of the compensation circuit, a first comparison signal of the one or more comparison signals indicative of a voltage level at a phase node of the converter. Based on a remaining body diode conduction level associated a body diode with the at least one power switch as detected by at least a second comparison signal, the method adjusts a reference voltage for the at least one power switch with the adjustment module until the body diode is no longer conducting.01-29-2009
20080284397Digital voltage converter and control method thereof - In a digital boost or buck-boost converter, a pulse width modulation signal has an on-time and an off-time. A constant off-time period is provided to set the off-time to be constant, and an on-time period to determine the on-time is derived by monitoring the output voltage of the converter. With the constant off-time, the output voltage and the on-time period will have a linear relation, thereby reducing the output ripple when the converter operates with a high duty-ratio.11-20-2008
20080284401METHODS AND APPARATUS TO CONTROL A DIGITAL POWER SUPPLY - Methods and apparatus to control a digital power supply are disclosed. An example method includes calculating a duty cycle of a pulse width modulated signal to control an output of a digital power supply, initializing an output of a counter that forms a pulse width modulator to increment by a first increment up to a counter maximum value for a first period and to decrement by the first increment for a second period, dividing the duty cycle by a constant to determine a multiple of the duty cycle to apply to each power stage of the power supply, calculating a first threshold percent by subtracting the multiple of the duty cycle from one hundred percent, setting a first threshold to be the first threshold percent multiplied by the counter maximum value, and controlling the power factor controller based on the first threshold.11-20-2008
20080284400METHODS AND APPARATUS TO MONITOR A DIGITAL POWER SUPPLY - Methods and apparatus to monitor a digital power supply are disclosed. An example method includes receiving a voltage from a voltage source at a digital power supply, controlling the voltage using a power factor controller and a direct current (DC) to DC converter to generate an output voltage, controlling the output voltage using a signal processor to generate control signals based on receiving instructions, controlling the power factor controller and the DC to DC converter with a digital signal processor using the control signals, and copying an operating parameter from a register or a memory location of the digital signal processor to a memory buffer of the digital power supply.11-20-2008
20080290852POWER SUPPLY CIRCUIT AND SEMICONDUCTOR MEMORY - A power supply circuit that outputs a set voltage from an output terminal, has a boosting circuit that boosts a voltage supplied from a power supply and outputs the voltage to the output terminal; a voltage detecting circuit that outputs a first detecting signal when the voltage outputted from the boosting circuit is not lower than a first detection voltage set lower than the set voltage, and outputs a second detecting signal when the voltage outputted from the boosting circuit is not lower than the set voltage; and a clock signal generating circuit that outputs, based on a reference clock signal, a clock signal and an inverted clock signal obtained by inverting the clock signal, and stops outputs of the clock signal and the inverted clock signal in response to the second detecting signal.11-27-2008
20080290851POWER SUPPLY - A power supply has a soft-start function capable of raising its output DC voltage without generating overshoot even when its load condition is set light at the start-up. The power supply comprises an error amplifier for outputting an error signal corresponding to the error between the output DC voltage and the target value thereof, a control section for adjusting power to be supplied to the load on the basis of this error signal, and a limiting circuit for limiting the voltage of the error signal to a predetermined level for a predetermined time after the output DC voltage at the start-up exceeds a predetermined value being set less than the target value.11-27-2008
20090015227Load-Induced Voltage Overshoot Detection And Correction In Switching Power Supplies - One embodiment of the invention includes a switching power supply system. The system includes a switch network comprising at least one switch configured to provide an output voltage based on switching activity thereof. The system also includes a switching controller configured to control the switch network to maintain the output voltage provided at an output based on a feedback signal associated with the output voltage. A converter pulse detector is configured to detect an output voltage overshoot condition based on the switching activity of the switch network corresponding to a transition in an output load to which the output voltage is provided.01-15-2009
20110001461Buck-boost switching regulator and control circuit and method therefor - The present invention discloses a buck-boost switching regulator, and a control circuit and a method therefor, to convert an input voltage to an output voltage. The control method comprises: obtaining a feedback signal relating to the output voltage; comparing the feedback signal with a reference voltage to generate an error amplified signal; when the error amplified signal is between a first voltage (V01-06-2011
20080290853Semiconductor element drive circuit - A drive circuit for driving a semiconductor element according to an input signal includes an output stage, a clamp circuit, a comparator, and a clamp control circuit. The output stage includes a series circuit of two transistors. A node between the transistors is coupled to a control terminal of the semiconductor element. One of the transistors is turned on when the input signal indicates that the semiconductor element is driven. The clamp circuit clamps a potential of the control terminal to a level enough to drive the semiconductor element when the one of the transistors is turned on. The comparator compares a power supply voltage of the drive circuit with a threshold voltage. The clamp control circuit disables the clamp circuit when the power supply voltage is less than the threshold voltage.11-27-2008
20080272758Switching Power Converter with Switch Control Pulse Width Variability at Low Power Demand Levels - A power control system includes a switch mode controller to control the switching mode of a switching power converter. The switch mode controller generates a switch control signal that controls conductivity of a switch of the switching power converter. Controlling conductivity of the switch controls the switch mode of the switching power converter. The switch mode controller includes a period generator to determine a period of the switch control signal and to vary the determined period to generate a broad frequency spectrum of the switch control signal when the determined period corresponds with a frequency in at least a portion of an audible frequency band. Generating a switch control signal with a broad frequency spectrum in the audible frequency band allows the system to utilize switching frequencies in the audible frequency band.11-06-2008
20120105039Delay Block for Controlling a Dead Time of a Switching Voltage Regulator - Embodiments for at least one method and apparatus for controlling timing of switch control signals of a switching voltage regulator disclosed. One method includes generating a regulated output voltage based upon a switching voltage, generating the switching voltage through controlled closing and opening of a series switch element and a shunt switch element, and controlling, by a delay block, the closing and opening of the series switch element and a shunt switch element. The delay block control includes receiving, by the delay block, a timing signal, generating a one of a series switch control signal and a shunt switch control signal by controllably delaying the timing signal with a first delay, and generating one other of the series switch control signal and the shunt switch control signal by inverting, and controllably delaying the timing signal with a second delay.05-03-2012
20120105038CLOCK PHASE SHIFTER FOR USE WITH BUCK-BOOST CONVERTER - A buck boost converter generates a regulated output voltage responsive to an input voltage and switching control signals. Switching control circuitry generates the switching control signals responsive to the regulated output voltage, a maximum duty cycle signal and a mode signal. Mode control circuitry generates the maximum duty cycle signal and the mode signal responsive to a buck PWM signal and a boost PWM signal, a first clock signal and a second clock signal phase shifted from the first clock signal by a fixed, programmable amount. A phase shifter generates the first clock signal and the second clock signal responsive to a reference voltage and a synchronization signal.05-03-2012
20090085545VOLTAGE REGULATOR - In some implementations, a system includes a low-power voltage regulator that can switch between three power modes: a power shutdown mode, a low power mode, and a higher power mode. The system includes a selector coupled to the voltage regulator to switch between the low power mode and the higher power mode, and a switch to switch between the power shutdown mode and the low or higher power mode. The system also has a control circuit to control the switch and the selector to control operation of the voltage regulator in any of the three power modes. A total current used in the voltage regulator in the low power mode is on the order of microamps or nanoamps. The voltage regulator in the low power mode has two to more orders of magnitude of lower current use than the voltage regulator in the higher power mode.04-02-2009
20090128113POWER CONVERTER HAVING AUTO CONVERSION FUNCTION FOR PULSE SKIP MODE AND CONTROL METHOD - A power converter having an auto conversion function for a pulse skip mode (PSM) and a related control method are provided. The power converter having an auto conversion function for a PSM and a control method thereof can provide a PSM capable of preventing unnecessary switching operations and, thus, improving the efficiency of the power converter by automatically switching to the PSM even when a load is small.05-21-2009
20090160414COMPARATOR-SYSTEM DC-DC CONVERTER - The comparator-system DC-DC converter 06-25-2009
20090184701SWITCHING VOLTAGE REGULATOR, CONTROL CIRCUIT AND METHOD THEREOF - A control circuit comprises a PWM control circuit and a PWM skip control circuit. The PWM control circuit controls a switching circuit. The switching circuit acts as a current source for an output circuit and a load circuit. The PWM skip control circuit controls the operation of the PWM control circuit. When the output current of the switching circuit is below a predetermined threshold, the PWM skip control circuit stops the operation of the PWM control circuit. When the output voltage of the switching circuit is below a predetermined threshold, the PWM skip control circuit resumes the operation of the PWM control circuit.07-23-2009
20120068679REGULATED POWER SUPPLY SYSTEM WITH HIGH INPUT VOLTAGE DYNAMICS - This regulated power supply system with high input voltage dynamics, of the type having a shared inductance buck/boost transformer and having at least two controllable semiconductor switching members, one associated with the buck function of the transformer and the other with the boost function of the transformer, is characterized in that one of the controllable semiconductor switching members is driven by control means as a function of the system's input voltage, and the other is driven continuously by enslavement means on the output voltage.03-22-2012
20090015228SWITCHING POWER SUPPLY CIRCUIT - A switching power supply circuit uses a magnetic material that is harder to be magnetically saturated than ferrite as a core of a transformer or a choke coil and suitably protects a switching element. The circuit includes a transformer having a core made of a magnetic material of amorphous metal, a primary-side winding and a secondary-side winding. The circuit further includes a switching element for flowing current through the primary-side winding of the transformer according to a pulsive drive signal, and a primary-side current detection circuit for detecting the current flowing through the primary-side winding. The circuit further includes plural circuit elements for rectifying and smoothing a voltage generated in the secondary-side winding of the transformer to generate an output voltage, and a control circuit for generating the drive signal based on at least a detection result of the primary-side current detection circuit, and limiting a period for flowing the current in the primary-side winding.01-15-2009
20090015225METHOD FOR REGULATING A VOLTAGE AND CIRCUIT THEREFOR - A voltage regulator (01-15-2009
20090051337BIDIRECTIONAL POWER SUPPLY DEVICE - In a bidirectional power supply device, a DC-DC converter is connected such that the longer an ON time of the first switch becomes, the higher a voltage of a second positive terminal and a second negative terminal becomes. When stopping the supply of power from a first positive terminal and a first negative terminal to a second positive terminal and a second negative terminal, a control circuit turns OFF a third switch, and then operates a switching signal generation circuit so that the ON time of the first switch becomes a maximum. The switching signal generation circuit is operated so that the ON time of the first switch becomes a maximum with the third switch turned OFF in start-up when supplying power from the second positive terminal and the second negative terminal to the first positive terminal and the first negative terminal.02-26-2009
20110221412VOLTAGE CONVERTER AND LED DRIVER CIRCUITS - A voltage converter circuit can include a boost converter having a switching transistor and configured to receive an input voltage, produce an output voltage and selectively operate in one of a boost mode, a skip mode and a linear mode. In the boost and skip modes, the boost converter can switch on and off the switching transistor at a switching frequency to produce an output voltage at magnitudes greater than input voltage magnitudes. In the linear mode, the boost converter can turn off the switching transistor at all times to pass the input voltage unboosted to produce an output voltage at magnitudes less than input voltage magnitudes. The boost converter can be configured to operate in the boost mode for input voltage magnitudes less than a first predetermined input voltage magnitude, in the skip mode for input voltage magnitudes between the first predetermined magnitude and a second predetermined input voltage magnitude greater than the first predetermined input voltage magnitude, and in the linear mode for input voltage magnitudes greater than the second predetermined input voltage magnitude.09-15-2011
20090085544Current regulator and method for regulating current - A regulator and a method for regulating a current through a load. The regulator may include, for example, a first circuit portion configured to alternately apply and remove a voltage across the load in accordance with a first signal, the voltage causing a current to flow, and a second circuit portion configured to generate the first signal so as to have a duty cycle that depends upon an amount of the current and a second signal when the amount of current is below a threshold amount, and to generate the first signal so as to have a duty cycle that depends upon the amount of the current but not the second signal when the amount of current exceeds the threshold amount.04-02-2009
20090015226Method for implementing radiation hardened, power efficient, non isolated low output voltage DC/DC converters with non-radiation hardened components - A method of producing an economical DC/DC converter that efficiently produces a relatively low output voltage and operates in a high ionizing radiation dose environment such as found in spacecraft and particle accelerator applications. That is, the converter comprises two P-channel FETs, a switching means for switching conductivity between the two P-channel FETs, and output means for outputting an output voltage. The output voltage being a step-down voltage that is unaffected by high-ionizing radiation such that is found in space or particle accelerators.01-15-2009
20090230937POWER FACTOR CORRECTION CIRCUIT AND POWER SUPPLY APPARATUS THEREOF - A power factor correction circuit including a boost converter, a first capacitor, a first resistor, and a boost control unit is provided. The boost control unit includes a signal generator and a frequency controller. The boost converter transforms a rectified voltage to a correction voltage according to a pulse width modulation (PWM) signal. The first capacitor and the first resistor are coupled between an input terminal and a ground terminal of the boost converter. The boost control unit is adapted to generate the PWM signal, and adjust a duty cycle and a frequency of the PWM signal according to a current flowing through the first resistance, the rectified voltage and the correction voltage. Wherein, the signal generator is adapted to generate a ramp signal and adjust a slope of the ramp signal according to a charging current. The frequency controller adjusts the charging current according to the rectified voltage.09-17-2009
20110221415DC/DC CONVERTER - According to one embodiment, a switching transistor changes, based on ON/OFF operations, the direction of an electric current flowing to an inductor. A gate driving unit applies a driving voltage to a gate of the switching transistor. A power-supply switching unit switches, based on a result of comparison of the input voltage and the output voltage, the voltage of a power supply that generates the driving voltage.09-15-2011
20090102445SWITCHING DC-DC CONVERTER AND OSCILLATOR - A switching DC-DC converter includes: an output voltage detecting unit configured to detect a DC output voltage; an error amplifying unit configured to compare the detected output voltage and a reference voltage and configured to supply an amplified error signal between the detected output voltage and the reference voltage to the pulse width modulating unit; and a single oscillating unit connected to an output of the output voltage detecting unit and an output of the error amplifying unit and operable on a first oscillating mode and a second oscillation mode. The oscillating unit on the first oscillating mode controls a switching frequency of the power switch based on the detected output voltage. The oscillating unit on the second oscillating mode controls the switching frequency of the power switch based on the amplified error signal.04-23-2009
20110227550MODULATION SCHEME USING A SINGLE COMPARATOR FOR CONSTANT FREQUENCY BUCK BOOST CONVERTER - A buck boost converter generates an output voltage responsive to an input voltage and at least one switching control signal in a buck mode of operation, a boost mode of operation and a buck-boost mode of operation. Control logic generates the at least one switching control signal responsive to the output voltage, a reference voltage, and a sensed voltage associated with an inductor current of the buck boost converter. The sensed voltage associated with the inductor current enables the control logic to generate the at least one switching control signal in a selected one of the buck mode of operation, the boost mode of operation and the buck-boost mode of operation.09-22-2011
20090243577REVERSE CURRENT REDUCTION TECHNIQUE FOR DCDC SYSTEMS - The purpose of the present invention is to provide a method for switching devices that enables the prediction of when a reverse current condition will occur regardless of voltage-mode or current-mode switching regulator. According to the present invention, the reverse current reduction technique is realized by implementing a circuit which takes in the PWM signal, switching regulator's output signal and the Supply Voltage, before outputting a logic signal to indicate the start of reverse current flow; an OR gate, which outputs a logic signal to control the turning ON/OFF of the PMOS buffer at the output.10-01-2009
20120194158CONTROLLERS FOR CONTROLLING CURRENTS TO PREDETERMINED CURRENT REFERENCES - A high-side switch is coupled to a power supply terminal and selectively coupled to ground via a conduction path. During an on state duration, the high-side switch can be enabled and the conduction path can be disabled. During an off state duration, the high-side switch can be disabled and the conduction path can be enabled. During a skip state duration, the high-side switch and the conduction path both can be disabled. A controller coupled to the high-side switch can control the on state duration and the skip state duration based on a current reference. The controller can further generate a control signal for controlling the high-side switch and the conduction path according to the on state duration and the skip state duration, and adjust an output current to the current reference according to the control signal.08-02-2012
20120194157SWITCHING REGULATOR PERFORMING OUTPUT VOLTAGE CHANGING FUNCTION - A switching regulator can convert an input voltage to a desired output voltage by ON-OFF controlling switching elements with PWM signals. The switching regulator can include a communication interface circuit that receives external operation instructions, an output voltage setting section that changes an output voltage to an output voltage setting value upon receiving an output voltage changing instruction from the outside, a voltage divider and an ADC that converts an error voltage into a digital error signal e[n], the error voltage being a difference between a reference voltage Vref and a detected output voltage value Vfb. The switching regulator can also include a controller that includes an operation control section for calculating a duty factor signal d[n] to determine an ON time proportion of the switching elements and an output voltage changing control section for controlling operation to change the output voltage.08-02-2012
20090256541POWER SEQUENCE TECHNIQUE - Methods, systems, and devices are described for a power-on sequence for a circuit. A sequence generator for an electronic system may control various power domains to enter known states and prevent unwanted states as other domains of the system power-up. Regulator modules may be controlled to remain in an inoperable state until a reference voltage stabilizes at a predetermined reference level. The regulator modules regulate a received voltage supply to output a regulated voltage at the reference level, the regulated voltage set via a comparison to the reference voltage. Various analog and digital modules may be controlled to remain in an known state until the regulated voltage stabilizes at substantially the reference level. Additional sequencing is described for other dependencies, as well.10-15-2009
20100156376Control circuit and method for a digital synchronous switching converter - In addition to an output voltage control loop, a dead-time optimization loop is provided for a digital synchronous switching converter to dynamically adjust the dead-time for the power switches of the converter. It is extracted a minimal feedback signal at a steady state while the output voltage remains under a specification, and a maximal efficiency of the digital synchronous switching converter is thus obtained.06-24-2010
20100156375CONTROL DEVICE FOR A SWITCHING CONVERTER - A control device for a switching converter, the converter having at least one transistor supplied by an input voltage and adapted to supply a load by means of an output voltage. The converter also including a circuit adapted to turn on and off the at least one transistor. The control device includes an operation circuit adapted to change the state of the at least one transistor from turned on to turned off or vice versa, respectively when the output voltage goes down or goes up by a first voltage of a given value by defining a first state; the operation circuit including a further circuit adapted to generate a ramp signal and to change the first state of the at least one transistor from turned on to turned off or vice versa when the ramp voltage is equal to the output voltage of the converter.06-24-2010
20100181983CONSTANT ON-TIME CONVERTER AND THE METHOD OF OPERATION - The present invention discloses a control circuit for constant on-time converter and a control method thereof. The proposed constant on-time DC/DC converter stabilizes the system and improves the performance of the load transient response without large equivalent series resistance of the output capacitor.07-22-2010
20100001703Programmable Step-Up Switching Voltage Regulators with Adaptive Power MOSFETs - A step-up switching voltage regulator includes an inductor connected between an input voltage and a node Vx, M low-side switches connected between the node Vx and a ground voltage and N synchronous rectifiers connected between the node Vx and an output node. An interface circuit that decodes a control signal to identify: 1) a subset (m) of the low-side switches, 2) a subset (n) of the synchronous rectifiers, and 3) a reference voltage V01-07-2010
20100188063DIGITALLY CONTROLLED SWITCHED-MODE POWER SUPPLY - The present invention relates to a digitally controlled switched-mode power supply, wherein a switched-mode power supply is provided with a control circuit, which comprises a signal amplifier unit able to receive digital signals or analog signals and a switching controller able to receive the signals. The switching controller uses the signals to produce a clock signal, after which the clock signal is output, whereupon the signal amplifier unit feeds a signal back to control the switching controller. The signal amplifier unit is provided with at least one amplifier element, and when the amplifier element receives a digital signal or analog signal, then the signal is transmitted to the switching controller. Accordingly, the control circuit achieves the effectiveness to not only receive and transmit digital signals, but also receive and transmit analog signals, and is thus provided with the advantage of enormous flexibility.07-29-2010
20100171481DIGITAL POWER CONTROL DEVICE - A digital power control device includes a power input terminal, power converter, regulator, power output terminal, feedback voltage detecting unit, feedback voltage encoder, PWM control unit, and a digital PWM output module 07-08-2010
20130214753CONTROL DEVICE, DIGITAL CONTROL POWER SUPPLY, AND CONTROL METHOD - In a digital control power supply, a mode control unit measures a first frequency and a second frequency for a difference between a second digital value and a target value. Based on the measured first frequency and second frequency and a predetermined threshold set to the first and second frequencies, the mode control unit determines whether an amplification factor for use in amplification processing by an amplifier is maintained at a current amplification factor or is changed to an amplification factor which is larger or smaller by 1 than the current amplification factor. This contributes to an improvement in noise resistance of the digital control power supply and prevents an output voltage from being unstable.08-22-2013
20100213911SEMICONDUCTOR INTEGRATED CIRCUIT AND POWER SUPPLY DEVICE - A semiconductor integrated circuit includes: a first switching element and a second switching element that are provided in series between a first power line and a second power line; a power supply circuit that outputs a given output voltage by on/off controlling the first switching element and the second switch element; a current detection circuit that detects a current corresponding to an output load current of the power supply circuit; a switching time control circuit that controls a switching time defined by a power supply voltage and the output voltage based on a current value detected by the current detection circuit; and a switching element control circuit that controls the first switching element and the second switching element based on an output signal of the switching time control circuit.08-26-2010
20100277151Systems and methods for intelligently optimizing operating efficiency using variable gate drive voltage - Systems and methods for intelligently optimizing voltage regulation efficiency for information handling systems by varying gate drive voltage value based on measured operating efficiency and/or other voltage regulation operating parameters. Different voltage regulation operating parameters may be dynamically monitored and recorded during a power conversion process, and these operating parameters may then be used to dynamically and variably control gate drive voltage level to improve/optimize voltage regulation operating efficiency performance.11-04-2010
20100253308Constant Current Driving System with Stable Output Current - Constant current driving circuit includes a latch, an ON timer, and an OFF timer. The latch outputs a switch control signal according to an ON signal and an OFF signal for controlling a power switch. The power switch is coupled between an input voltage source and an inductor. When the switch control signal controls the power switch to turn on/off, the input voltage source is able/unable to couple to the inductor through the power switch. The inductor provides an output current and an output voltage. The ON timer detects if the output current reaches a peak value for accordingly outputting the OFF signal. The OFF timer outputs the ON signal according to the output voltage and the switch control signal for control the interval of the switch control signal representing “OFF”.10-07-2010
20100253307PFC CONVERTER HAVING TWO-LEVEL OUTPUT VOLTAGE WITHOUT VOLTAGE UNDERSHOOTING - A switching controller for a PFC converter is provided. The switching controller comprises a switching-control circuit, a current-command circuit, a programmable feedback circuit, a modulator, an over-voltage detection circuit, and a light-load detection circuit. The switching controller is capable of regulating a bulk voltage of the PFC converter at different levels in response to load conditions of the PFC converter. A turbo current eliminates a first voltage undershooting of the bulk voltage at the transient that the bulk voltage decreases to arrive at a second level from a first level. A voltage-loop error signal is maximized to eliminate a second voltage undershooting of the bulk voltage at the transient that the bulk voltage starts to increase toward the first level from the second level.10-07-2010
20100141230SELF-TUNING SENSORLESS DIGITAL CURRENT-MODE CONTROLLER WITH ACCURATE CURRENT SHARING FOR MULTIPHASE DC-DC CONVERTERS - Embodiments of the present invention concern a multiphase switch-mode power supply. The multiple phase switch-mode power supply can have at least one switch and a digital controller to control the switching of the at least one switch. During a calibration period, the digital controller can freeze the current of all of the multiple phases except for a phase being calibrated. This can be done by fixing the current reference of the phases except for the phase being calibrated.06-10-2010
20090115390POWER CONVERTER WITH PROTECTION MECHANISM FOR DIODE IN OPEN-CIRCUIT CONDITION AND PULSE-WIDTH-MODULATION CONTROLLER THEREOF - A power converter with a protection mechanism for a diode in an open-circuit condition includes a DC to Dc (DC/DC) conversion circuit, a detection and protection circuit, a pulse-width-modulation (PWM) signal generator, and a logic gate. The detection and protection circuit is used for detecting an open-circuit condition of the diode of the DC/DC conversion circuit. The logic gate receives an output signal of the detection and protection circuit and a PWM signal outputted by the PWM signal generator. When the diode is in an open-circuit condition, the PWM signal cannot be transmitted to a power switch of the DC/DC conversion circuit due to the output signal of the detection and protection circuit.05-07-2009
20110101948Power Converter with Controller Operable in Selected Modes of Operation - A power converter and method of controlling the same for selected modes of operation. In one embodiment, the power converter includes a first power switch coupled to a source of electrical power and a second power switch coupled to the first power switch and to an output terminal of the power converter. The power converter also includes a controller configured to control an operation of the first and second power switches during selected modes of operation.05-05-2011
20100264894SWITCH DRIVING CIRCUIT - A switch driving circuit includes a buffer module, a capacitor module, a first switch module, a second switch module, and a control module. The buffer module generates a driving voltage according to a control voltage. The first switch module is turned on when the control voltage is at a low voltage level to provide a supply voltage to the buffer module and charge the capacitor module by the supply voltage to generate a compensation voltage. The second switch module is turned on when the control voltage is at a high voltage level to provide the compensation voltage to the buffer module. When the supply voltage is higher than a reference voltage, the control module turns on the first switch module and turns off the second module to provide the supply voltage to the buffer module.10-21-2010
20130127434Coupled Inductor Arrays And Associated Methods - A coupled inductor array includes a magnetic core and N windings, where N is an integer greater than one. The magnetic core has opposing first and second sides, and a linear separation distance between the first and second sides defines a length of the magnetic core. The N windings pass at least partially through the magnetic core in the lengthwise direction, and each of the N windings forms a loop in the magnetic core around a respective winding axis. Each winding axis is generally perpendicular to the lengthwise direction and parallel to but offset from each other winding axis. Each winding has opposing first and second ends extending towards at least the first and second sides of the magnetic core, respectively. One possible application of the coupled inductor array is in a multi-phase switching power converter.05-23-2013
20080272759DC converter with halt mode setting means - A DC converter with a halt mode setting is disclosed for preventing the occurrence of over-current while alleviating the increase in the size of circuits, along with a method for setting up such a halt mode. The DC converter includes a semiconductor switch, a clock generator for outputting a clock signal to a gate of the semiconductor switch to be utilized for controlling an on/off time of the semiconductor switch such that a predetermined power is output from the generator, and a drive circuit for switching the semiconductor switch to the continuous-on state according to a halt mode setting requirement regardless of the clock signal, when the semiconductor switch, normally repeating on/off operations responsive to the clock signal, is in its off-state.11-06-2008
20090039851Switching Control Circuit - A switching control circuit comprises: an error amplifying circuit configured to output an error voltage obtained by amplifying an error between a feedback voltage corresponding to an output voltage and a lower voltage selected out of a first reference voltage increasing with time passage and a second reference voltage used as a reference for a target level; a comparison circuit configured to output a comparison signal obtained by comparing the feedback voltage with the error voltage output from the error amplifying circuit; and a drive circuit configured to output first and second control signals for controlling first and second transistors, respectively, in order to turn the output voltage to the target level by complementarily turning on and off the first and second transistors, after the error voltage exceeds the feedback voltage, based on the comparison signal output from the comparison circuit.02-12-2009
20090039850CONTROL DEVICE OF A SWITCHING CONVERTER AND RELATIVE SWITCHING CONVERTER - A control device for a switching converter having an input terminal and an output terminal, a half-bridge of a first and a second transistor coupled between the input terminal and a reference voltage the control device including a first circuit structured to detect signal on the output terminal of the converter and to integrate the detected signal and regulate on the average value of the detected signal by comparison with a further reference signal, and then drive the first and second transistor as a function of the regulation. The control device further includes a switching circuit for turning off the first circuit so that the control device carries out a regulation on the detected signal by comparison with a further reference signal and drives the first and second transistors when current passing between the output terminal of the converter and the half-bridge crosses zero.02-12-2009
20090072806ELECTRONIC DEVICE HAVING MULTI-POWER SOURCE INTEGRATED CIRCUIT - An electronic device includes: an integrated circuit having a first circuit part, a second circuit part, a first power source line of the first circuit part, a second power source line of the second circuit part, and a coupling switch coupling the first power source line and the second power source line; a power source supply part which generates a power source to be supplied to the first and second circuit parts and which has a power source supply control circuit controlling the supply of power source to the second circuit part; and a power source control part that controls the power source supply control circuit and the coupling switch, wherein the power source control part controls the power source supply control circuit so as to supply a power source in accordance with the operating state of the second circuit part and closes the coupling switch.03-19-2009
20090072805SWITCHING REGULATOR AND METHOD OF ADJUSTING PULSE WIDTH - A switching regulator switches according to an input signal and performs PWM control with a PWM pulse signal. The switching regulator includes a pulse width limiting circuit that includes a reference current source, a constant current source, a capacitor, an inverting block including a first switch circuit to supply a constant current to the capacitor and a second switch circuit to discharge a voltage across the capacitor to a ground, a determination circuit to determine whether the voltage across the capacitor becomes a given value or greater, and a limiting circuit to limit a pulse width of the PWM pulse signal. The inverting block further includes either a third switch circuit configured to pass the given constant current or a switching control circuit configured to cause the first and second switch circuits to pass the given constant current regardless of the PWM pulse signal.03-19-2009
20090115391Load-Dependent Frequency Jittering Circuit and Load-Dependent Frequency Jittering Method - The present invention discloses a load-dependent frequency jittering circuit, comprising: a load condition detection circuit for receiving a switching signal and generating an output according to a load condition; a number generator for receiving the output of the load condition detection circuit and generating a number; a digital to analog converter for converting the output of the number generator to an analog signal; and an oscillator for generating a jittered frequency according to the output of the digital to analog converter.05-07-2009
20090146630SEMICONDUCTOR DEVICE - A semiconductor device includes: a digital control circuit configured to supply two semiconductor switching elements connected in series in a switching power supply circuit with a pulse signal for turning on/off the semiconductor switching elements; and a dead time setting circuit configured to set a dead time in which the two semiconductor switching elements are both turned off. The dead time setting circuit includes: a delay generation circuit including a plurality of delay elements connected in series and having mutually different delay values; and a delay adjustment circuit configured to adjust the delay values of the delay generation circuit so that a setting value of the dead time is determined on basis of correlation between the dead time and the duty cycle of the pulse signal.06-11-2009
20080303502Buck-boost converter - A controller (12-11-2008
20080284399METHODS AND APPARATUS FOR CONTROLLING A DIGITAL POWER SUPPLY - Methods and apparatus for controlling a digital power supply are disclosed. An example method includes storing a first set of coefficients for controlling a digital power supply in a memory of the digital power supply, associating the first set of coefficients with a first set of characteristics of an input voltage for the digital power supply, storing a second set of coefficients for controlling the digital power supply in the memory of the digital power supply, associating the second set of coefficients with a second set of characteristics of the input voltage, receiving a first voltage from a voltage source at the digital power supply, determining that the first voltage has the first set of characteristics, and, in response to determining that the first voltage has the first set of characteristics, applying the first set of coefficients to the digital power supply.11-20-2008
20100171480METHOD AND APPARATUS OF A UNIFIED CONTROL SOLUTION FOR BRIDGELESS POWER FACTOR CONTROLLERS AND GRID CONNECTED INVERTERS - A unified control solution for both bridgeless power factor controllers and grid connected inverters is disclosed. Conventionally, the bridgeless power factor controllers and the grid connected inverters are controlled with different approaches. In the present invention, it is disclosed that the two kinds of applications can be controlled with one unified approach. With the disclosed method, one single integrated circuit can be made and be used in both applications. Firstly, a sample based controller is disclosed to derive the ac current reference from the ac voltage and the dc voltage. The ac current reference is forced to be proportional to the ac voltage. The proportion coefficient is derived from the dc voltage in such a way to keep the dc voltage constant. Furthermore, the coefficient is updated only once every half ac line cycle. So as long as the ac current follows the current reference, the dc voltage will be regulated to a constant, and the ac current will be pure sinusoidal. Secondly, a new current mode switching pattern is disclosed based on an improved hysteretic switching pattern. The disclosed switching pattern minimizes the number of switching event and removes the deadtime requirement without the risk of shoot through.07-08-2010
20130141069SWITCH MODE POWER SUPPLY SYSTEM, ASSOCIATED CONTROLLER AND METHOD - A switch mode power supply system has a constant on-time signal generator, a logic circuit, a feedback circuit, a first ramp signal generator, a second ramp signal generator, a switch circuit having a power switch, and a comparator. A feedback signal from the feedback circuit is compensated by the first ramp signal generator, and a reference signal is compensated by the second ramp signal generator. The comparator compares the compensated feedback signal with the compensated reference signal to indicate an off time of the power switch while the constant on-time signal generator decides the on-time of the power switch.06-06-2013
20100320984APPARATUS INCLUDING POWER SUPPLY CIRCUIT - An apparatus which has a load that consumes a predetermined amount of electric power per unit time includes a power source circuit configured to generate a voltage for driving the load, a capacitor which is connected to a supply line for supplying electric power to the load from the power source circuit and configured to stabilize a potential of the load, a first supply circuit which can supply electric power smaller than the predetermined amount to the capacitor and can discharge a charge from the capacitor, a second supply circuit which can supply electric power larger than the predetermined amount to the capacitor, a switch circuit configured to operate each of the first supply circuit and the second supply circuit, and a holding circuit configured to hold information based on the operation of the first supply circuit.12-23-2010
20100134083SYSTEM AND METHOD FOR A/D CONVERSION - In one embodiment, a method of performing an A/D conversion includes comparing a reference signal to a ramp signal, comparing an input signal to the ramp signal and causing a signal to propagate through a delay line when the ramp signal crosses a first of the reference signal or the input signal. The state of the delay line is stored when the ramp signal crosses a second of the reference signal or the input signal after the ramp signal crosses the first of the reference signal or the input signal.06-03-2010
20100181982VOLTAGE GENERATING APPARATUS FOR HEADPHONE - A voltage generating apparatus for a headphone is provided, which includes a voltage generator, a charge pump circuit, an operating amplifier and a controller. The voltage generator generates a first operating voltage. The charge pump circuit receives the first operating voltage and an adjusting signal, and generates a second operating voltage according to the first operating voltage and the adjusting signal. The operating amplifier receives the first operating voltage and the second operating voltage serving as the operating voltages thereof and receives an input signal so as to generate an output signal. The controller receives the second operating voltage and a control signal, and generates the adjusting signal according to the second operating voltage and the control signal.07-22-2010
20110018514Dual-mode buck switching regulator and control circuit therefor - The present invention discloses a dual-mode buck switching regulator, comprising: a first power transistor having an end coupled to an input voltage and another end coupled to a common node; an inductor having an end coupled to the common node and another end coupled to the input voltage; a second power transistor having an end coupled to ground; a diode having an end coupled to ground; and a control circuit generating a first and a second switch control signals for controlling operations of the first and the second power transistors according to a feedback signal, and generating a mode selection signal according a mode control signal to select a synchronous or an asynchronous mode, wherein the second power transistor has another end which is coupled to the common node in the synchronous mode, and the diode has another end which is coupled to the common node in the asynchronous mode, and in the asynchronous mode: the another end of the second power transistor is not coupled to the common mode, or the second power transistor maintains off. The present invention also relates to a control circuit of the dual-mode buck switching regulator.01-27-2011
20110043180POWER SUPPLY CONTROLLER - A power supply controller includes: a controlling section that, upon determination that no anomaly has occurred, causes a semiconductor switch to execute turning on and, upon determination that the anomaly has occurred, causes the semiconductor switch to maintain an off state; a monitoring section that monitors which condition the controlling section is in, the condition being normal or anormal; and a switching section that, upon monitoring result by the monitoring section indicating the normal condition, causes turning on and off of the semiconductor switch by the controlling section and, upon the monitoring result indicating the anormal condition, causes turning on and off of the semiconductor switch with an external on-off command signals.02-24-2011
20110043177CONTROL DEVICE FOR AN INTERLEAVING POWER FACTOR CORRECTOR - In an interleaving power factor corrector, a control device interleavingly drives first and second converting circuits such that the power factor corrector generates a voltage output (Vo), and includes first and second control modules generating respectively first and second driving signals (Q_master, Q_slave) that correspond respectively to first and second control signals for controlling operations of power switches of the first and second converting circuits. A phase modulating module generates a reset signal (S_PTCL) based on an inverted first driving signal (Qn_master) and a feedback compensation signal (Vcomp) outputted by the first control module, and a reset signal (S_syn) outputted by the second control module. When one of the reset signals (S_syn, S_PTCL) has a predetermined level, the second driving signal (Q_slave) has a level for switching the power switch of the second converting circuit to an OFF-mode.02-24-2011
20110115456DC-DC CONVERTER AND SEMICONDUCTOR INTEGRATED CIRCUIT - A DC-DC converter according to the present invention includes a monitoring circuit which monitors an output signal of a mode comparator and which outputs a mode change detection signal when the output of the mode comparator has output a light load mode signal, and a clamp circuit which is connected between power supply and ground and which changes a voltage at a first end of a filter circuit toward a preset prescribed voltage according to the mode change detection signal.05-19-2011
20110043178Electronic Device with Power Switch Capable of Regulating Power Dissipation - An electronic device with a power switch capable of regulating power dissipation includes a power supply device; a power switch, for providing an output voltage; and a current regulating circuit, which includes an adaptive control unit, for outputting a regulating signal, according to the voltage difference between the power supply device and the output voltage; and a switch control unit, for outputting a switch control signal to control the magnitude of the current through the power switch, according to the regulating signal.02-24-2011
20110084676CONTROL CIRCUIT AND METHOD FOR A POWER CONVERTER CONTROLLING ADAPTIVE VOLTAGE POSITION - A control circuit and method for a power converter controlling adaptive voltage position comprises an adder acquiring an output voltage difference between the output voltage and the reference output voltage, a digital compensator with an Z-domain transfer function to reference to the output voltage difference to generate a pulse width control signal, regulating the least significant bits of a denominator coefficient in the Z-domain transfer function such that a load line function of the power converter is performed via control of the pulse width control signal, and a pulse modulation circuit being controlled by the pulse width control signal to generate the pulse width modulation signal to control ON/OFF of power switch of the power converter. Thus, functions of controlling the negative or positive load lines and function of variable load line required by the operation of multiphase converter can be performed easily without complicated operations.04-14-2011
20090033302Voltage conversion device - When a voltage conversion operation is started, a control circuit (02-05-2009
20100164456CONTROL CIRCUIT AND CONTROL METHOD FOR SWITCHING REGULATOR - A first comparator compares a feedback voltage that corresponds to the output voltage of a switching regulator with a threshold voltage having hysteresis. The first comparator outputs a voltage comparison signal which is asserted when the feedback voltage is smaller than the threshold voltage. A second comparator generates a current comparison signal which is asserted when an electric current that flows through a switching transistor reaches a reference current. During a period in which the voltage comparison signal is asserted, a logic unit performs an operation in which, when the current comparison signal is asserted, a control signal is set to a second level at which the switching transistor is turned off, following which, after the passage of a predetermined OFF time, the control signal is set to a first level at which the switching transistor is turned on.07-01-2010
20110080148Soft starting driver for piezoelectric device - A driver includes a boost converter, a pulse width modulator controlling the boost converter, and a timer controlling the pulse width modulator. The timer, such as a digital counter, causes the pulse width modulator to produce narrow pulses unless or until the end of a period is reached, at which point the pulse width modulator is not controlled by the timer.04-07-2011
20110127983DIGITAL CONTROL OF PWM CONVERTERS WITH NONLINEAR GAIN SCHEDULING - A system and method for controlling a digital pulse-width modulated power converter achieves a fast large-signal transient response while maintaining a slow response near the steady-state operating point in order to assure stability and to reduce the system's susceptibility to noise. Digital output error samples are processed through a gain scheduling block that applies a non-linear gain function to produce a weak loop response when the system is near its steady-state equilibrium point and a strong loop response when large transients are encountered. The resulting system maintains a fast transient response to large error signals while reducing noise and loop jittering and assuring loop stability.06-02-2011
20110241640SYSTEM AND METHOD OF INTERMITTENT DIODE BRAKING FOR MULTIPLE PHASE VOLTAGE REGULATOR - A method of operating a regulator controller IC for performing intermittent diode braking for controlling a multiple phase voltage regulator. The method includes receiving at least one signal for detecting repetitive load transients, determining a rate of the repetitive load transients, generating diode braking control signals, each for applying diode braking to a corresponding one of multiple phases for at least one load transient when the repetitive load transients are below a first rate, and controlling the diode braking control signals to drop application of diode braking of at least one phase for at least one load transient when the repetitive load transients are at least the first rate. The method may include rotating the application of diode braking among the phases during successive applications of diode braking. The method may include dropping an increased number of phases for diode braking as the rate of repetitive load transients is increased.10-06-2011
20090219003OFFLINE SYNCHRONOUS SWITCHING REGULATOR - An offline synchronous switching regulator is proposed for improving the efficiency thereof. Switches are coupled to switch a transformer and generate a switching signal at a secondary side of the transformer. A switching circuit is coupled to an output of the regulator to generate pulse signals in response to the switching signal and a feedback signal. Pulse signals are utilized to control a synchronous switch for rectifying and regulating the regulator. The synchronous switch includes a power-switch set and a control circuit. The control circuit receives pulse signals for turning on/off the power-switch set. The power-switch set is connected in between the transformer and the output of the regulator. A flyback switch freewheels an inductor current and can be turned on in response to the off state of the power-switch set whose on-time is correlated to the on-time of the power-switch set.09-03-2009
20090033303PIEZOELECTRIC TRANSFORMER TYPE HIGH-VOLTAGE POWER APPARATUS AND IMAGE FORMING APPARATUS - A piezoelectric transformer type high-voltage power source apparatus to control an output voltage from a piezoelectric transformer to a load, and an image forming apparatus including the same, the piezoelectric transformer type high-voltage power source apparatus including: an output voltage detection unit to compare the output voltage with an output control voltage, and to output a digital value according to the comparison; and a driving control unit to control a driving frequency and a duty rate of the piezoelectric transformer according to the digital value. Accordingly, the piezoelectric transformer type high-voltage power source apparatus can stably perform frequency and duty rate control without experiencing an abnormal oscillation or uncontrollable state due to a manufacturing irregularity of particular components and/or a change in temperature, and a high voltage can be output within a short rise time.02-05-2009
20100052639Power supply controller having analog to digital converter - A power supply controller includes an analog to digital (A/D) converter that performs analog-digital conversion of an output voltage and outputs a digital signal, a deviation signal generator unit that generates a deviation signal from the digital signal and a standard voltage value serving as an output voltage target value, and a power controller unit that controls the output voltage based on the deviation signal. The power supply controller includes a conversion range setting unit that sets a range of the reference voltage into the A/D converter based on a first signal as the digital signal in a power supply startup period, and sets the reference voltage range into the A/D converter based on a second signal as the deviation signal or as a signal corresponding to the deviation signal in a steady state period.03-04-2010
20120242314DC-DC CONVERTER AND DIGITAL PULSE WIDTH MODULATOR - A DC-DC converter has a switching element, a lowpass filter, an oscillator, an AD converter, an error signal generator, a counter, a comparator, a selector configured to select one of the plurality of clock signals in accordance with a value of a lower side bit of the error signal in sync with a timing when the comparator detects coincidence, and a switching controller configured to control ON/OFF of the switching element in accordance with the clock signal selected by the selector. The selector selects one among the plurality of clock signals and a new clock signal generated by combining two or more clock signals comprising neighboring phases among the plurality of clock signals.09-27-2012
20100066335POWER CONVERSION REGULATOR WITH PREDICTIVE ENERGY BALANCING - A power-conversion regulator comprising an inductive reactor, an output filter reactor, and a switch for admitting energy to the inductive reactor, additionally comprises computation circuitry responsive to the flux in the inductive reactor, to a reference signal, to an output voltage, and sometimes to an output load current, for computing the quantity of energy that must be supplied to a load and to the output filter reactor to regulate the output voltage or current to a desired relationship with the reference signal during each chopping waveform cycle driving the switch. As the inductive reactor is charged from an input energy source, the computation circuitry predicts whether the energy in the inductive reactor has become adequate for the regulation.03-18-2010
20090027025NON-LINEAR PWM CONTROLLER - In one embodiment, the controller of these teachings includes a nonlinear controller component capable of providing an amplitude determining input signal to a control signal providing component, the control signal providing component providing output having a predetermined amplitude substantially over one time interval from a number of time intervals or output having a predetermined average amplitude substantially over one time interval from a number of time intervals, the amplitude determining input signal corresponding to at least one predetermined system state variable. The nonlinear controller component is operatively connected to receive as inputs at least one predetermined system state variable. A relationship between the amplitude determining input signal and at least one predetermined system state variable is obtained by a predetermined method.01-29-2009
20110101947INTEGRATED CIRCUIT WITH DC-DC CONVERTER - An integrated circuit (05-05-2011
20110074376Output Driving Circuit Capable of Reducing EMI Effect - An output driving circuit capable of reducing EMI effect includes a non-overlapping signal generation unit for generating a first non-overlapping signal and a second non-overlapping signal according to an input signal, a pre-driver for generating a first pre-driving signal and a second pre-driving signal according to the first non-overlapping signal and the second non-overlapping signal, a high-side switch, a low-side switch, and a control unit for controlling the high-side switch or the low-side switch to be switched into a weak on state to reduce load inductive current effect for a load.03-31-2011
20100244799SYSTEM AND METHOD FOR PHASE DROPPING AND ADDING - A multi-phase voltage regulator comprisies a plurality of current supplying stages, each current supplying stage configured to supply a local output current equaling at least a portion of a load current output from the multi-phase voltage regulator; and a plurality of control circuits, each control circuit coupled to a respective one of the plurality of current supplying stages, wherein each control circuit calculates a control signal based, at least in part, on a sampled current representative of the respective local output current and a sampled current representative of a master output current. The control signal from each control circuit causes the respective current supplying stage to be disabled gradually over a first time interval if the sum of the local output current and the master output current is detected as being below a respective first predetermined level.09-30-2010
20100194366DC/DC Converter and Method for Controlling a DC/DC Converter - A DC/DC converter comprises an inductive element (L) having a first terminal connected to an input connection (08-05-2010
20100301824STEP-UP DC/DC SWITCHING CONVERTER AND SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE - A step-up DC/DC converter having a step-up circuit which can performs a stable control without depending on a logic threshold of a semiconductor switching device and a semiconductor integrated circuit device having the step-up DC/DC converter are provided. The step-up DC/DC converter includes: a control logic which generates a driving voltage to be supplied to a semiconductor switching device; a power supply circuit which steps-up a battery voltage to perform a level shift of the driving voltage output by the control logic; and an amplifier operated with using a voltage generated by the semiconductor switching device as a power supply. Since the level-shifted semiconductor switching device control signal is higher than a logic threshold voltage of the semiconductor switching device, the ON/OFF of the semiconductor switching device can be controlled.12-02-2010
20100301822Switching regulator and control circuit thereof, and method for determining on-time in switchng regulator - The present invention discloses a switching regulator and control method thereof, and a method for determining On-time in switching regulator. The switching regulator comprises: a power switch circuit including at least one power transistor switch which operates to convert an input voltage to an output voltage; a PWM generation circuit for generating a duty signal in a normal operation mode according to a feedback signal relating to the output voltage; a pulse skipping circuit for determining On-time in a pulse skipping mode according to a node with non-constant voltage level, the node being connected with the power transistor switch; and a driver circuit for driving the at least one power transistor switch according to one of the outputs from the PWM generation circuit and the pulse skipping circuit.12-02-2010
20100301823POWER SUPPLY UNIT AND CONTROL CIRCUIT OF POWER SUPPLY UNIT - An ADC, a comparator, a calculator and a DPWM for applying a feedback control to a power supply main circuit are provided on a control circuit. The comparator compares digital output voltage information obtained by analog to digital conversion of the ADC and target voltage information, and outputs its difference to an error adjuster. The error adjuster performs control by reference to the difference (error value information) so that an output voltage of the power supply main circuit is not included in a predetermined range adjacent to the resolution boundary of the power supply control signal, thereby preventing the occurrence of distortion (limit cycle oscillation) of the output voltage caused by the accumulation of errors.12-02-2010
20100301821METHOD AND APPARATUS FOR INPUT CHARGE CONTROL OF A POWER SUPPLY - An example controller includes a constant current control circuit and an integrator included in the constant current control circuit. The constant current control circuit is to be coupled to receive an input current sense signal, an input voltage sense signal, and an output voltage sense signal. The control circuit is adapted to regulate an output current of a power supply by generating a control signal to control switching of a switch. The integrator is coupled to integrate the input current sense signal during a switching period of the control signal to generate an integrated signal representative of a charge taken from an input voltage source of the power supply. The constant current control circuit is adapted to control the switching of the switch such that the integrated signal is proportional to a ratio of the output voltage sense signal to the input voltage sense signal.12-02-2010
20110210711Apparatus for Detecting a State of Operation of a Power Semiconductor Device - An embodiment of the invention relates to an apparatus including a power semiconductor device and a processor coupled thereto. The processor is configured to provide a control signal to the power semiconductor device to regulate an output characteristic of the apparatus. The processor models an internal characteristic of the power semiconductor device and alters the control signal if the modeled internal characteristic crosses a threshold value. In an exemplary embodiment, the internal characteristic is a channel temperature of a MOSFET. A sensor such as a thermistor is coupled to or included within the processor to sense a parameter separate from the power semiconductor device, such as a processor temperature, and the processor is configured to adapt the modeled internal characteristic to the sensed parameter.09-01-2011
20090115392SWITCHING REGULATOR - A switching regulator includes a step-down-and-step-up unit to convert an input voltage to a low voltage or to a high voltage in accordance with a control signal, and a controller including a low-pass filter to receive a reference voltage generated in accordance with an external control signal. The controller causes the step-down-and-step-up unit to perform a step-down operation or a step-up operation in accordance with a voltage difference between a proportional voltage proportional to an output voltage of the step-down-and-step-up unit and the reference voltage. The controller further causes the step-down-and-step-up unit to perform a step-down operation or a step-up operation in accordance with a voltage difference between an output voltage of the low-pass filter and the proportional voltage, and changes a time constant of the low-pass filter in accordance with the operation being performed.05-07-2009
20110254525DIMMING CONTROL FOR A SWITCHING POWER SUPPLY - A controller for dimming control of a switching power supply includes a phase angle measurement block and a drive logic block. The phase angle measurement block is to be coupled to receive an input sense signal. The phase angle measurement block generates a phase angle signal representative of a phase angle of an input voltage of the power supply in response to the input sense signal. The drive logic block is to be coupled to control switching of a switch included in the power supply. The drive logic block controls the switch in a closed loop dimming control when the phase angle is less than or equal to a phase threshold and in a open loop dimming control when the phase angle is greater than the phase threshold.10-20-2011
20080252280CONTINUOUS-TIME DIGITAL CONTROLLER FOR HIGH-FREQUENCY DC-DC CONVERTERS - The present invention is a voltage mode digital controller for low-power high-frequency dc-dc converters that has recovery time approaching physical limitations of a given power stage. It consists of a digital controller with load transient response approaching physical limitations of a given power stage that is suitable for low-power SMPS. In one aspect the invention is a method of utilizing a continuous-time digital signal processor (CT-DSP) for regulation of the operation of switch-mode power supplies. A CT-DSP can be used to instantaneously detect changes of voltage or current during transition periods and immediately perform control action that results in the fastest possible response. The invention may include current program mode controllers for SMPS where the input current is sensed as well as power factor correction rectifiers (PFC), where often input voltage, input current and output voltage are sensed. Upon sensing a deviation in the input voltage the CT-DSP is utilized to apply a switch-mode power operation whereby the controller switches between continuous-time and digital function.10-16-2008
20080252278System and Method for Controlling a Hysteretic Mode Converter - A system and method for controlling a conversion frequency of a hysteretic mode voltage converter. A digital control loop comprises a timing measure unit having a first input coupled to a reference clock and a second input coupled to a clock based on a switching of the switching of the converter, and an on time adjust unit coupled to the timing measure unit. The timing measure unit counts a number of clock ticks of a clock signal provided by the clock occurring during a period of time specified by a number of clock ticks of a reference clock signal provided by the reference clock. The on time adjust unit adjusts an on time control signal based on the count of the number of clock ticks of the clock signal to alter a frequency of the switching.10-16-2008
20100320983SYSTEM AND METHOD FOR PFM/PWM MODE TRANSITION WITHIN A MULTI-PHASE BUCK CONVERTER - A multi-phase voltage regulator comprises a plurality of DC/DC voltage regulators. Each of the DC/DC voltage regulators is associated with a particular phase of the multi-phase regulator. Each of the regulators comprises a first switching transistor connected between an input voltage node and a phase node responsive to switching control signals. A second switching transistor is connected between the phase node and a ground node and is responsive to the switching control signals. An inductor is connected between the phase node and an output voltage node. Control logic generates the switching control signals responsive to a pulse control signal. PFM/PWM transition logic generates the pulse control signal. The pulse control signal transitions between a PWM signal and a PFM signal responsive to an error voltage, a feedback voltage from the output voltage node and an inductor current through the inductor. An error amplifier generates the error voltage responsive to the feedback voltage and a reference voltage. The output of each error amplifier in each of the plurality of phases are connected to each other. A capacitor is connected between the output voltage node and a ground node.12-23-2010
20100320985DRIVER CIRCUIT - A drive control signal is effectively obtained. An offset control circuit (12-23-2010
20100283442DC-DC CONVERTER AND SEMICONDUCTOR INTEGRATED CIRCUIT FOR CONTROLLING POWER SOURCE - A control technology which eliminates the need for changing the switching frequency even under light load where the on-time of a drive switching element becomes shorter than a minimum on-time dependent on the characteristics of the circuit in a synchronous rectification switching regulator. The synchronous rectification switching regulator includes a drive switching element for storing energy in a coil by applying a DC input voltage from a DC power supply to an inductor and permitting a current to flow, and a rectification switching element for rectifying the current of the inductor during an energy discharge period where the drive switching element is turned off. The timing for turning off the rectification switching element under light load is delayed so as to store energy in the inductor from the output, and the on-time is controlled to become longer as the load becomes lighter by the output from an error amplifier.11-11-2010
20110133713DC-TO-DC CONVERTER WITH INDEPENDENT COMPENSATION LOGIC - An apparatus comprises a direct current (“DC”) to DC converter comprising a first compensation logic and other DC to DC converter logic. The first compensation logic compensates for phase shifts in an output of the DC to DC converter. The first compensation logic is disabled independently of the other DC to DC converter logic based on a first communication sent to the DC to DC converter.06-09-2011
20110133714POWER CONVERTER WITH PROTECTION MECHANISM FOR DIODE IN OPEN-CIRCUIT CONDITION AND PULSE-WIDTH-MODULATION CONTROLLER THEREOF - A power converter with a protection mechanism for a diode in an open-circuit condition includes a DC to Dc (DC/DC) conversion circuit, a detection and protection circuit, a pulse-width-modulation (PWM) signal generator, and a logic gate. The detection and protection circuit is used for detecting an open-circuit condition of the diode of the DC/DC conversion circuit. The logic gate receives an output signal of the detection and protection circuit and a PWM signal outputted by the PWM signal generator. When the diode is in an open-circuit condition, the PWM signal cannot be transmitted to a power switch of the DC/DC conversion circuit due to the output signal of the detection and protection circuit.06-09-2011
20110133712DIGITAL CONTROL SWITCHING POWER SUPPLY UNIT - A digital control switching power supply unit includes an A/D converter circuit having a delay line circuit that has a delay element array whose delay time is controlled by a bias current, and that converts a current value into a digital signal using a signal transmission delay time, a phase difference detector circuit that detects a phase difference between a switching cycle and an A/D conversion cycle, a charge pump circuit that generates a control voltage in accordance with the phase difference, and a bias current indicator circuit that determines a bias current in accordance with an output voltage of the charge pump circuit and a result of a comparison of a detected value of the output voltage and a reference voltage, wherein the digital control switching power supply unit controls in such a way that the A/D conversion cycle is synchronized with the switching cycle.06-09-2011
20100117614Tuning A Switching Power Supply - Tuning a switching power supply, the power supply including a switching transistor; a filter circuit; a pulse generator that drives the switching transistor; a programmable filter connected to the output of the filter circuit; a digital signal processor (‘DSP’) connected to the output of the filter circuit, the DSP configured to program the programmable filter; and a tuning control circuit connected to the output of the filter circuit, to the pulse generator, and to the DSP; including calculating by the DSP, from sampled voltage values of a tuning pulse driven through the filter circuit by the pulse generator, the actual impedance of the filter circuit; and programming, by the DSP, the programmable filter, setting the combined impedance of the filter circuit and the programmable filter to the design impedance of the filter circuit.05-13-2010
20110095742Power Converter with Controller Operable in Selected Modes of Operation - A power converter and method of controlling the same for selected modes of operation. In one embodiment, the power converter includes a first power switch coupled to a source of electrical power and a second power switch coupled to the first power switch and to an output terminal of the power converter. The power converter also includes a controller configured to control an operation of the first and second power switches during selected modes of operation.04-28-2011
20110095741Control Device for DC-DC Converter and Related DC-DC Converter - A control device for a DC-DC converter includes a PWM controller for generating a PWM signal to a switch module of the DC-DC converter according to a feedback signal of the DC-DC converter, a logic circuit for generating a selection signal according to a magnitude of an output current of the DC-DC converter, and a multiplexer coupled to a plurality of voltages for selecting one of the plurality of voltages to be a supply voltage according to the selection signal.04-28-2011
20110187339Voltage-Converter Arrangement and Method for Voltage Conversion - A voltage-converter arrangement comprises an arrangement input (08-04-2011
20110148378ALGORITHMIC APPROACH TO PWM SMPS CURRENT SENSING AND SYSTEM VALIDATION - A power supply current monitor comprising a processor operable to monitor a pulsed voltage signal generated by a power supply and generate an alert when a pulse width for the pulsed voltage signal is outside an expected pulse width range; wherein the pulse width is dependent on an amount of current being supplied to a load by the power supply.06-23-2011
20110148377POWER SUPPLY CONVERTER AND METHOD - A power supply converter and a method for adjusting a threshold voltage in the power supply converter. The circuit includes first and second switches having current conducting terminals commonly connected together to form a node. An energy storage element may be connected to the node and a zero current detection comparator may be connected to the node. A first voltage may be provided at the control terminal of the first switch that turns it off. After the first switch is off, determining whether the first switch turned off before or after the current in the energy storage element has reached zero. This may be accomplished by determining whether the voltage at the first node is positive or negative. If the voltage at the first node is negative, the threshold voltage is increased and if the voltage at the first node is positive the threshold voltage is decreased.06-23-2011
20100026264SELF-ADJUSTING SWITCHED-CAPACITOR CONVERTER WITH MULTIPLE TARGET VOLTAGES AND TARGET VOLTAGE RATIOS - A method for constructing a direct-current to direct current (DC-DC) converter from an input voltage to an output voltage. The DC-DC converter has multiple capacitors and multiple switches connectible the capacitors. A target voltage ratio is obtained based on the input voltage and the output voltage. The target voltage is expressed as a radix number. The radix number is spawned into a code of the target voltage ratio. The code is translated into a switched-capacitor converter (SCC) configuration including the switches and the capacitors. The code may be an extended binary representation code or a Generic Fractional Numbers code. The switched-capacitor converter (SCC) configuration is preferably modified to obtain charge balance.02-04-2010
20100026262Power Supplying Apparatus - A first-order feedback control power supply apparatus being arranged in such a manner that when the apparatus is driven under light load condition, a current flowing through an inductor is detected by employing a second CR smoothing filter; when the present load condition is judged as a light load condition based upon the detected inductor current, both upper-sided/lower-sided power MOSFETs and a PWM oscillator are turned OFF so as to be brought into sleep states; when an output voltage of the power supply apparatus is lowered and the lowered output voltage reaches a lower limit threshold of a transient variation detecting circuit, the upper-sided power MOSFET is turned ON to recover the output voltage; and when the output voltage of the power supply voltage reaches a predetermined voltage, the upper-sided power MOSFET is turned OFF so as to be again brought into the sleep state.02-04-2010
20100026261MULTI-LEVEL SIGNALING - A control circuit generates an output based on the first signal and the second signal by encoding the output to be a multi-state signal having at least three states. A magnitude of the multi-state signal generated by the controller varies depending on binary states of the first signal and the second signal. The controller utilizes the output (i.e., the multi-state signal) to control a switching circuit. A driver circuit receives the output generated by the control circuit. In one embodiment, the multi-state signal has more than two different logic states. The driver decodes the multi-state signal for generating signals to control switches in the switching circuit. One signal generated by the driver circuit is a pulse width modulation signal; another signal generated by the driver circuit is an enable/disable signal.02-04-2010
20100026260SWITCHING REGULATOR CIRCUIT FOR OPERATION AS A SWITCHING DEVICE IN A SWITCHING MODE AND A PASSIVE DEVICE IN A PASSIVE MODE - A switching regulator circuit is provided for operation as a switching device in a switching mode and as a passive device in a passive mode. A controller is provided for operating the circuit in a switching mode and a passive mode. Additionally, a single transistor is provided for operating as a switching device in the switching mode and for further operating as a passive device in the passive mode.02-04-2010
20100090672DC gain improvement of a digitally controlled DC-DC converter by LSB tuning - An easy LSB tuning method is proposed for a digitally controlled DC-DC converter to increase the DC gain of the digitally controlled DC-DC converter under conditions of no-limit-cycle and a finite bit number to reduce steady-state error of the digitally controlled DC-DC converter. The LSB of one or more of the coefficients in the denominator of the discrete-time domain transfer function of the digital compensator in the digitally controlled DC-DC converter is so tuned that the sum of all coefficients in the denominator of the discrete-time domain transfer function becomes zero. Therefore, the influence of round-off effect on the coefficients of the digital compensator is mitigated.04-15-2010
20100148740VOLTAGE BUCK-BOOST SWITCHING REGULATOR - A stable, high-speed, high-efficiency constant voltage is provided without a complicated, large-scale, high-cost phase compensation circuit over a wide range of operating conditions. This voltage buck-boost switching regulator consists of a pair of voltage reducing transistors, a pair of voltage boosting transistors, inductance coil, output capacitor and controller. The controller has the following parts for performing PWM control of constant voltage for voltage reducing transistors and voltage boosting transistors: an output voltage feedback circuit, an inductor current sense circuit, a variable sawtooth wave signal generator, switching controllers, and a voltage boosting driver.06-17-2010
20120306467DC-DC CONVERTER, POWER SOURCE CIRCUIT, AND SEMICONDUCTOR DEVICE - A DC-DC converter includes a control circuit, a switching element, and a constant-voltage generation portion which generates an output voltage on the basis of an input voltage supplied through the switching element. The control circuit includes AD converters which convert the input voltage and the output voltage, a signal processing circuit, a pulse modulation circuit, and a power supply control circuit which controls supply of a power supply voltage to the signal processing circuit in accordance with digital values of the input voltage and the output voltage. The signal processing circuit determines the duty ratio in accordance with the digital value of the output voltage, and the pulse modulation circuit controls the switching element. The signal processing circuit includes a memory device including a memory element, a capacitor for storing data of the memory element, and a transistor for controlling charge in the capacitor. The transistor includes an oxide semiconductor.12-06-2012
20100001704Programmable Step-Down Switching Voltage Regulators with Adaptive Power MOSFETs - A step-down switching voltage regulator includes M high-side switches connected between an input voltage and a node; N synchronous rectifiers connected between the node Vx and a ground voltage and an inductor connected between an input voltage and a node Vx and an inductor connected between the node Vx and an output node. An interface circuit decodes a control signal to identify: 1) a subset (m) of the high-side switches, 2) a subset (n) of the synchronous rectifiers. A control circuit drives the high-side switches and synchronous rectifiers in a repeating sequence that includes an inductor charging phase where the high-side switches in the subset m are activated to connect the node Vx to the input voltage; and an inductor discharging phase where the synchronous rectifiers in the subset n are activated to connect the node Vx to the ground voltage.01-07-2010
20110062928SWITCHING POWER SUPPLY CONTROLLER WITH HIGH FREQUENCY CURRENT BALANCE - A controller for a multi-phase switching power supply shuffles the sequence of the phases in response to a load transient to prevent synchronization of one or more phases with high-frequency load transients. The sequence may be shuffled by varying the frequency and/or sequence of the switching control signals to introduce a random variation in the phases.03-17-2011
20120146607METHOD AND APPARATUS FOR INPUT CHARGE CONTROL OF A POWER SUPPLY - An example power supply includes an energy transfer element, a switch and a controller. The controller includes a logic circuit and a constant current control circuit. The logic circuit generates a drive signal to control the switch in response to a control signal. The constant current control circuit generates the control signal in response to a received input current sense signal, input voltage sense signal, and output voltage sense signal. An integrator included in the constant current control circuit integrates the input current sense signal to generate an integrated signal representative of a charge taken from the input voltage source. The constant current control circuit is adapted to generate the control signal to provide a constant current at the output of the power supply such that the integrated signal is proportional to a ratio of the output voltage sense signal to the input voltage sense signal.06-14-2012
20120146606Constant On-Time Converter with Stabilizing Operation and Method Thereof - The embodiments of the present invention disclose a constant on-time converter with stabilizing operation and a control method thereof. The converter may comprise an input terminal, an output terminal, a feedback circuit, an operating circuit, a comparison circuit, a timer, a driving circuit and a switching circuit. The operating circuit may be coupled to a compensation signal adjusted by a digital controller.06-14-2012
20090128114POWER SUPPLY OUTPUT VOLTAGE TRIMMING - A power supply trim control signal is produced by integrating differences between monitored and target values of the output voltage of a power supply. Register storage requirements are reduced by producing the target value from a nominal voltage value and one of a plurality of margin offsets selected in accordance with control data. The control data also selects between open and closed loop trim control. Stability is enhanced by changing the target value slowly in response to any change in the control data.05-21-2009
20080303501Digital Controller for Dc-Dc Switching Converters for Operation at Ultra-High Constant Switching Frequencies - A digital controller for low-power DC-DC switch mode power supplies (SMPS) suitable for on-chip implementation and use in portable battery-powered systems is provided. The digital controller allows operation at ultra high constant switching frequencies and can be implemented with a simple low-power digital hardware. The digital controller includes a digital pulse width modulator (DPWM), based on a multibit 212-11-2008
20100225291DC-DC CONVERTER CIRCUIT, ELECTRO-OPTIC DEVICE, AND ELECTRONIC DEVICE - A DC-DC converter circuit includes a boosting circuit having at least part of a DC-DC converter; a control signal circuit that controls the boosting circuit; and a power supply unit being electrically connected to both of the boosting circuit and the control signal circuit and supplying at least the control signal circuit with electric power. The DC-DC converter includes a plurality of capacitors and switching units enabling each of the plurality of capacitors to be electrically independent, and the control signal circuit transmits a signal to the switching units when the DC-DC converter is not operating in intermittent operation thereof, the signal indicating each of the plurality of capacitors being made to be electrically independent.09-09-2010
20110156683Current mode buck-boost DC-DC controller - A current mode DC-DC controller operates with high efficiency even when the input and output voltages are close. Switches selectively connecting an input, ground and an output to inductor terminals are controlled in a buck/boost region to alternate between operation as a buck converter and operation as a boost converter. The number of switches repeatedly changing state is thus reduced, lowering switching losses and improving conversion efficiency. Current through the inductor during operation is sensed and compared to an error value to control switching from buck mode operation to boost mode operation and back.06-30-2011
20110156681SWITCHING POWER SUPPLY CONTROL APPARATUS - According to embodiments, a switching power supply control apparatus causes a switching element to perform an ON/OFF once in each period of a clock signal, when an output voltage of a switching power supply formed by charging a capacitor with a current of a choke coil that stores/releases current energy in conjunction with the ON/OFF operation of the switching element is adjusted by exercising ON/OFF control of the switching element based on comparator output that compares the output voltage with a reference voltage.06-30-2011
20110156682VOLTAGE CONVERTER WITH INTEGRATED SCHOTTKY DEVICE AND SYSTEMS INCLUDING SAME - A semiconductor device such as a voltage converter includes a circuit stage such as an output stage having a high side device and a low side device which can be formed on a single die (i.e., a “PowerDie”) and connected to each other through a semiconductor substrate, and further includes a Schottky diode integrated with at least one of the low side device and the high side device. Both the high side device and the low side device can include lateral diffused metal oxide semiconductor (LDMOS) transistors. Because both output transistors include the same type of transistors, the two devices can be formed simultaneously, thereby reducing the number of photomasks over other voltage converter designs. The voltage converter can further include a controller circuit on a different die which can be electrically coupled to, and co-packaged with, the PowerDie. Various embodiments of the Schottky diode can provide Schottky protection and, additionally JFET protection for the Schottky device.06-30-2011
20090039852DIGITAL AVERAGE INPUT CURRENT CONTROL IN POWER CONVERTER - A digital average-input current-mode control loop for a DC/DC power converter. The power converter may be, for example, a buck converter, boost converter, or cascaded buck-boost converter. The purpose of the proposed control loop is to set the average converter input current to the requested current. Controlling the average input current can be relevant for various applications such as power factor correction (PFC), photovoltaic converters, and more. The method is based on predicting the inductor current based on measuring the input voltage, the output voltage, and the inductor current. A fast cycle-by-cycle control loop may be implemented. The conversion method is described for three different modes. For each mode a different control loop is used to control the average input current, and the control loop for each of the different modes is described. Finally, the algorithm for switching between the modes is disclosed.02-12-2009
20120062201COMPARATOR TYPE DC-DC CONVERTER USING SYNCHRONOUS RECTIFICATION METHOD - A DC-DC converter 03-15-2012
20120062200VOLTAGE REGULATION DEVICE AND SYSTEM EMPLOYING THE SAME - A voltage regulation device employed in a voltage regulation system is for a motherboard power supply. The voltage regulation device includes a first sampling module, a voltage regulation module, a second sampling module, and a main controller. The first sampling module samples current and voltage signals from a power source through the motherboard power supply. The voltage regulation module outputs adjustable drive voltages for the motherboard power supply controlled by the main controller. The second sampling module samples current and voltage signals of the drive voltages from the motherboard power supply. The main controller receives the current and voltage signals, and converts the current and voltage signals from the first sampling module and the second sampling module to corresponding input power and output power, respectively, and the input power and the output power are calculated to generate conversion efficiencies of each drive voltage.03-15-2012
20120043953POWER SUPPLY CIRCUIT - In the case where the duty cycle of the PWM signal exists and the duty cycle of the PWM signal is constant for a certain period, a feedback control circuit is operated intermittently with the duty cycle fixed. Specifically, a power supply circuit includes an A/D converter circuit for forming a digital value based on an analog value obtained by monitoring an output voltage based on a reference voltage, a digital filter circuit for smoothing the digital value, a PWM signal generator circuit for generating a PWM signal based on an output value of the digital filter circuit, and an operation mode control circuit for controlling a circuit operation mode based on the duty cycle of the PWM signal.02-23-2012
20120013322BUCK SWITCH-MODE POWER CONVERTER LARGE SIGNAL TRANSIENT RESPONSE OPTIMIZER - A switch mode power supply (SMPS) response to a disturbance is improved by using a hysteretic control in combination with a fixed frequency, pulse-width modulated (PWM) controller for providing robust control and optimizing the response to disturbances in buck or buck derived switch mode power supply (SMPS) system topologies.01-19-2012
20120153917LOW-TO-MEDIUM POWER SINGLE CHIP DIGITAL CONTROLLED DC-DC REGULATOR FOR POINT-OF-LOAD APPLICATIONS - A DC-DC converter for generating a DC output voltage includes: a digitally controlled pulse width modulator (DPWM) for controlling a switching power stage to supply a varying voltage to an inductor; and a digital voltage feedback circuit for controlling the DPWM in accordance with a feedback voltage corresponding to the DC output voltage, the digital voltage feedback circuit including: a first voltage controlled oscillator for converting the feedback voltage into a first frequency signal and to supply the first frequency signal to a first frequency discriminator; a second voltage controlled oscillator for converting a reference voltage into a second frequency signal and to supply the second frequency signal to a second frequency discriminator; a digital comparator for comparing digital outputs of the first and second frequency discriminators and for outputting a digital feedback signal; and a controller for controlling the DPWM in accordance with the digital feedback signal.06-21-2012
20120153916DIGITAL BOOST FEEDBACK VOLTAGE CONTROLLER FOR SWITCH-MODE POWER SUPPLIES USING PULSE-FREQUENCY MODULATION - A controller produces high-side and low-side control signals. The high and low-side signals are used to switch high-side and low-side transistors in the power stage to control the voltage across the power stage output capacitor of the power stage. A boost feedback charge pump receives the low or high-side signal to increase the charge on a charge pump output capacitor. The controller is configured to send Pulse Frequency Modulation (PFM) high and low-side signals that control the voltage on the power stage output capacitor and charge the charge pump output capacitor. The controller is also configured to send boost feedback (BFB) high and low-side signals that charge the boost feedback capacitor, but are designed to not significantly change the charge on the power stage output capacitor.06-21-2012
20120025797CONTROL CIRCUIT FOR POWER SUPPLY - A control circuit for controlling a power supply including a first switch and a second switch coupled in series between a first potential and a second potential. The control circuit includes a detection circuit that detects a magnitude relation of a voltage value at a node between the first and second switches and a reference value during a period in which the first switch and the second switch are inactivated. The detection circuit generates a control signal corresponding to the magnitude relation. A regulation circuit regulates a switching timing of the second switch in response to the control signal to decrease a difference between the voltage value at the node and the reference value.02-02-2012
20120153915BUCK OR BOOST DC-DC CONVERTER - A control circuit for controlling a DC-DC converter, with the converter including an inductor and associated switching circuitry, with the switching circuitry including a first transistor switch connected intermediate an input voltage terminal and a first terminal of the inductor, a second transistor switch connected intermediate the first terminal of the inductor and a circuit reference, a third transistor switch connected intermediate a second terminal of the inductor and an output voltage terminal and a fourth transistor switch connected intermediate the second terminal of the inductor and the circuit reference. Mode control circuitry responsive to separate buck and boost comparators and configured to cause the switching circuitry to switch among a pass phase where the first and second transistor switches are ON, a boost phase where the first and third transistors are ON and a buck phase where the second and third transistors are ON, with first selected switching periods beginning operation in the pass phase followed, in response to an output of the buck comparator, with operation in the buck phase and with second selected switching periods beginning operation in the pass phase followed, in response to an output of the boost comparator, to operation in the boost phase.06-21-2012
20120153918Protection Circuit for Protecting a Half-Bridge Circuit - The present invention relates to a protection circuit for protecting a half-bridge circuit. The protection circuit detects an incorrect response of the half-bridge by monitoring the current of a first switch at a series resistor of a second switch. The protection circuit has a detector for detecting the voltage across the resistor and an evaluation circuit which is designed in such a manner that it evaluates an output signal from the detector after the first switch has been switched on and provides a fault signal at an output when the voltage across the resistor is greater than the threshold voltage.06-21-2012
20110089920ARCHITECTURE OF CONTROLLING A DUAL POLARITY, SINGLE INDUCTOR BOOST REGULATOR USES AS A DUAL POLARITY SUPPLIES IN A HARDDISK DRIVE DUAL STAGE ACTUATOR (DSA) DEVICE - A dual supply circuit uses a dual feedback control, single inductor, dual polarity boost architecture with a low side power FET for end of current recirculation sensing. A dual feedback system tracks the output voltage variations and a low side power FET end of current recirculation sensing utilizes the internal current limit sensing system. Logic defining the state of operations allows the regulator to operate in both single and dual mode to cater to wide application ranges. The positive boost regulator can be operated in a buck mode making the output voltage constant with high input supply.04-21-2011
20120249105POWER CONVERTER USING ORTHOGONAL SECONDARY WINDINGS - A power conversion device includes a magnetic core; and a plurality of windings surrounding portions of the magnetic core, including a first set of windings defining a first magnetic flux path, a second set of windings defining a second magnetic flux path magnetically orthogonal to the first magnetic flux path, and a third set of windings. Each winding of the third set of windings is configured to be excitable via both the first flux path and the second flux path.10-04-2012
20120126765CIRCUIT AND SYSTEM WITH SOFT-START FUNCTIONALITY - A circuit includes a first control output adapted to couple to a control terminal of a first transistor and a second control output adapted to couple to a control terminal of a second transistor. The circuit further includes a feedback input for receiving a signal and a control circuit. The control circuit is configured to independently control first and second on-times of control signals applied to the first and second control outputs, respectively, in response to receiving the signal to limit a current at an output node.05-24-2012
20120126766Control circuit and bulk DC/DC converter in constant on-time mode - Constant on-time control circuit includes a comparing circuit including a comparator including a positive input end for receiving a control voltage; a negative input end for receiving a feedback voltage from the output voltage of the DC/DC converter; and an output end for outputting a comparing signal; and a voltage adjusting circuit coupled to the output end of the comparator for adjusting the control voltage; and a pulse generator coupled to the output end of the comparator for generating a pulse signal to control a switch set of the DC/DC converter according to the comparing signal.05-24-2012
20120126768CONTROL CIRCUIT FOR SWITCHING POWER SUPPLY - An error amplifier generates an error signal V05-24-2012
20120126769VOLTAGE BOOSTING/LOWERING CIRCUIT AND VOLTAGE BOOSTING/LOWERING CIRCUIT CONTROL METHOD - A voltage boosting/lowering circuit according to an aspect of the present invention includes an output voltage generation circuit 05-24-2012
20120126767BUCK CONVERTER - A buck converter includes a first electrical switch and a second electrical switch connected in series, a PWM module coupled to the gate of the first electrical switch through a first adjustable resistance module and coupled to the gate of the second electrical switch through a second adjustable resistance module, a filter circuit coupled between the connecting node of the two different electrical switches and an output node, and a control module for adjusting values of the first adjustable resistance module and the second adjustable resistance module and acquiring a voltage value from the connecting node.05-24-2012
20120161735PEAK CURRENT CONTROLLED SWITCHING VOLTAGE REGULATOR SYSTEM AND METHOD FOR PROVIDING A SELF POWER DOWN MODE - A peak current controlled switching voltage regulator system and method for providing a self-power down mode. An on-chip voltage regulator integrated into an on-chip digital logic circuit provides a core supply voltage to the on-chip digital logic circuit along with an off-chip inductor. An off-chip regulator connected to the on-chip digital logic circuit provides an external core supply voltage with respect to the on-chip digital logic circuit. A start-up circuit operates the on-chip voltage regulator in a self-power down mode for a predetermined time period when the on-chip regulator is not connected to the off-chip inductor in order to maintain an equilibrium voltage supply with respect to the on-chip digital logic circuit.06-28-2012
20100207594Auto-Tuning Power Supply - An apparatus for and method of automatically tuning a voltage regulation control loop for a digitally controlled switch mode power supply is provided. The method includes determining a frequency response of the power stage and calculating an open loop transfer function from the frequency response. A correlated metric is defined based at least in part on the open loop transfer function, wherein the correlated metric is correlated to an expected disturbance in regulated output voltage from the digitally controlled switch mode power supply due to a change in load. New values for the open loop transfer function are calculated for a range of controller compensation parameters to minimize the correlated metric. These values are then applied to the digital controller for use in controlling the power supply.08-19-2010
20100207595OUTPUT BUFFER CIRCUIT - Provided is an output buffer circuit capable of reducing output noise, and increasing a response speed. In a case where an output voltage changes from a ground voltage to an inversion voltage of NOR, and a case where the output voltage changes from a power supply voltage to an inversion voltage of NAND, both of two MOS transistors control the output voltage, and hence, a slew rate of the output voltage becomes steep. Thus, a response speed of the output buffer circuit becomes high. Further, in such a case where the output voltage changes in the vicinity of a voltage (VDD/2) other than the above-mentioned cases, only one MOS transistor controls the output voltage, and hence, the slew rate of the output voltage becomes gentle. Thus, a response speed of the output buffer circuit becomes low, which reduces output noise.08-19-2010
20120212202FEEDBACK TERMINAL OF POWER CONVERTER HAVING PROGRAMMING FUNCTION FOR PARAMETER SETTING - A control circuit of a power converter according to the present invention comprises a switching circuit, a sample-and-hold circuit and a current source. The switching circuit generates a switching signal in response to a feedback signal. The sample-and-hold circuit samples the feedback signal. The current source is coupled to a feedback terminal for generating a programming voltage. A programmable signal is generated in accordance with the programming voltage and the feedback signal, and the programmable signal is coupled to set a parameter.08-23-2012
20120212203METHOD AND APPARATUS FOR OPERATING A DC/DC CONVERTER - A method of operating a DC/DC converter in a continuous-conduction mode (CCM) or in a discontinuous-conduction mode (DCM) to produce an output voltage, the DC/DC converter setting a pulse width modulation in CCM based on a COMP signal that varies as a function of the output voltage, the method including capturing the COMP signal utilizing a digital-to-analog converter at a transition between CCM and DCM, and varying a frequency of operation of the DC/DC converter in DCM based on the captured COMP signal.08-23-2012
20120133347EFFICIENCY-OPTIMIZING, CALIBRATED SENSORLESS POWER/ENERGY CONVERSION IN A SWITCH-MODE POWER SUPPLY - An intelligent pulse width modulation (PWM) controller adapts a switch mode power supply (SMPS) system's operating parameters to optimize efficiency, remove hot spots and isolate faults by integrating a microcontroller, PWM digital circuits and analog circuits into a single integrated circuit, e.g., a mixed signal device, thereby reducing the number of external connections, silicon die area and integrated circuit packages. A lossless inductor current sense technique integrates a matched, tunable complimentary filter with the intelligent SMPS controller for accurately measuring current through the power inductor of the SMPS without introducing losses in the power circuit. The complimentary filter is adjusted by the microcontroller to significantly reduce the effects of component tolerances, accurately measuring the power inductor current for precise closed loop control and over current protection. The frequency pole and gain of the complimentary integrated filter can be adjusted on the fly in order to adapt to dynamically changing operating conditions of the SMPS system.05-31-2012
20120169315POWER SUPPLIES AND CONTROL METHODS FOR OPERATING IN QUADRATURE-RESONANCE-SIMILAR MODE - Control method and power controller suitable for a switched mode power supply with a power switch are provided. An ON time of the power switch is recorded. An estimated OFF time is provided based on the ON time. The estimated OFF time is in positive correlation with the ON time. The power switch is turned ON after the elapse of the estimated OFF time.07-05-2012
20110204865SYSTEM AND METHOD FOR ADAPTIVE SWITCHING FREQUENCY CONTROL - System and method for providing frequency control to a power converter. The system includes a controller configured to receive a load signal and generate a first control signal. The load signal indicates an output load for a power converter. Additionally, the system includes a signal generator configured to receive the first control signal and generates at least a first output signal. The first output signal is associated with a first signal strength and a first frequency. The first frequency is inversely proportional to a sum of a first time period, a second time period, and a third time period. The first signal strength increases with the time during the first time period, the first signal strength decreases with the time during the second time period, and the first signal strength is constant with respect to the time during the third time period.08-25-2011
20110204864COEFFICIENT SCALING DEPENDING ON NUMBER OF ACTIVE PHASES - According to example configurations herein, a controller receives a value indicative of a number of phases in a power supply to be activated for producing an output voltage to power a load. The controller utilizes the value to adjust a magnitude of at least one control coefficient associated with the power supply. The control can also use the value of the input voltage to adjust the magnitude of at least one control coefficient. For example, according to one example configuration, the controller digitally computes values for the one or more control coefficients based on the received value indicating the number of phases in the power supply to be activated for producing the output voltage. Based on the adjusted magnitude of the at least one control coefficient, the controller produces control signals to control the number of phases in the power supply as specified by the value to produce the output voltage.08-25-2011
20100026263BUCK CONTROLLER HAVING INTEGRATED BOOST CONTROL AND DRIVER - An integrated circuit controller for controlling the operation of a voltage converter which includes a first comparator for comparing a voltage associated with an input of a boost converter with a threshold voltage and generating a control signal in response thereto. A second comparator compares a second voltage associated with an output of the boost converter with the threshold voltage and generates a second control signal in response thereto. Driver circuitry generates a first switching transistor drive signal and a second switching transistor drive signal. The first switching transistor drive signal is used for driving an upper gate switching transistor of a buck converter. The second switching transistor drive signal may be configured in a first mode of operation to drive a lower gate switching transistor of the buck converter and may be configured in a second mode of operation to drive a switching transistor of the boost converter. Control logic enables/disables at least a portion of the driver circuitry responsive to the control signal and the second control signal.02-04-2010
20100007318Buck converter threshold detection for automatic pulse skipping mode - Circuits and methods to detect a threshold for entering and leaving a discontinuous current mode of a buck converter have been disclosed. A buck converter is switched to continuous mode if the filtered battery current has reached a defined threshold current Ithccm. In order to expedite the transition from DCM mode to CCM mode the time delay between two or more pulses of a current through an inductor is monitored and the buck converter is switched to CCM mode if this time delay is smaller than a defined threshold.01-14-2010
20090243578Power Supply with Digital Control Loop - One embodiment of a power supply apparatus includes a switching regulator generating an output voltage VOUT at an output node from an input voltage VIN at an input node in accordance with a pulse width modulated signal having a nominal frequency of f10-01-2009
20120313606METHOD FOR OPERATING SOFT START CIRCUIT AND DEVICES USING THE METHOD - A soft start circuit is disclosed. The soft start circuit includes a reference voltage generator configured to generate a reference voltage, a switch connected between an output node of the reference voltage generator and an output node of the soft start circuit and configured to selectively provide an output signal in response to a switch control signal, a capacitor connected between the switch and a ground, and a current source configured to generate a current having a different level in each of a plurality of intervals to charge the capacitor.12-13-2012
20120313608HIGH EFFICIENCY BUCK-BOOST POWER CONVERTER - A buck-boost power converter switches the switches thereof with a novel sequence and extends the switching periods of the switches to reduce the switching loss and conduction loss when the input voltage thereof approaches the output voltage thereof. The influence of the load current of the power converter on the duty thereof is taken into account to switch the power converter between modes at correct time points, so as to prevent the output voltage from being affected by the mode switching.12-13-2012
20120313607HIGH EFFICIENCY BUCK-BOOST POWER CONVERTER - A buck-boost power converter switches the switches thereof with a novel sequence and extends the switching periods of the switches to reduce the switching loss and conduction loss when the input voltage thereof approaches the output voltage thereof. The influence of the load current of the power converter on the duty thereof is taken into account to switch the power converter between modes at correct time points, so as to prevent the output voltage from being affected by the mode switching.12-13-2012
20120182001LOW INPUT VOLTAGE BOOST CONVERTER OPERABLE AT LOW TEMPERATURES AND BOOST CONTROLLER THEREOF - A low input voltage boost converter operable at low temperatures, comprising a boost controller and an NMOS transistor. The boost controller has a driver unit, a first inverter circuit, a second inverter circuit, and a comparator circuit, wherein the first inverter circuit is used to enhance the high level of a switching signal during a startup period.07-19-2012
20120299569Constant On-Time Switching Regulator Implementing Light Load Control - A control circuit for a switching regulator implements constant on-time control scheme with synchronous rectification and applies an integrated standard and light load control loop to improve light load efficiency and enhance transient response. In one embodiment, the control circuit includes a reference voltage selection circuit configured to select, based on a low-side current signal, a first reference voltage for standard load condition and a second reference voltage for light load condition as a selected reference voltage. The second reference voltage is greater than the first reference voltage. The control circuit further includes a control loop configured to generate a control signal to turn on the main switch when the feedback voltage is below the selected reference voltage and the minimum off-time duration has expired.11-29-2012
20100327836CONTROLLERS FOR DC TO DC CONVERTERS - A controller includes a ramp signal generator and control circuitry coupled to the ramp signal generator. The ramp signal generator provides a control current through a resistive component to control energy stored in a first energy storage component. The ramp signal generator further generates a ramp signal based on the energy stored in the first energy storage component. The control circuitry adjusts a voltage at one end of the resistive component thereby controlling the control current to indicate a voltage across a second energy storage component. The control circuitry further controls a current through the second energy storage component within a predetermined range based on the ramp signal.12-30-2010
20130169254CONTROLLERS FOR DC/DC CONVERTERS - A controller for a DC/DC converter includes multiple signal generators and a control circuit. The signal generators generate multiple pulse signals, each signal generator generating a corresponding pulse signal of the pulse signals and controlling the corresponding pulse signal to have a predetermined pulse width by counting a same preset number of cycles of a same oscillating signal. The control circuit selectively activates the signal generators according to an output of the DC/DC converter to generate the pulse signals.07-04-2013
20120268093DC-DC CONVERTER CONTROL METHOD AND DC-DC CONVERTER CONTROL CIRCUIT - The transient response of an output voltage to a load fluctuation is improved, in a switching power source that carries out a PWM control. In a DC-DC converter wherein a switching element of an output stage is controlled by a drive signal, whose pulse width is set at a minimum value, output from a PWM signal generating circuit based on an output voltage output from an error amplifier in accordance with the difference between a feedback voltage in accordance with an output voltage of the output stage and a reference voltage, there is provided a minimum pulse width detector circuit that supplies a current to a phase compensation capacitor when the pulse width of the drive signal is at the minimum value, thus preventing the output voltage from dropping below a value corresponding to the minimum value when the load fluctuates, and improving transient response characteristics of the output voltage.10-25-2012
20120326687CHOPPER CIRCUIT, DC/DC CONVERTER, AND FUEL CELL SYSTEM - A chopper circuit includes an input unit that inputs a main turn-on signal for turning on a main switching element and an auxiliary turn-on signal for turning on an auxiliary switching element; and a prohibiting unit that prohibits the main switching element from turning on unless the auxiliary turn-on signal is input.12-27-2012
20120326688SWITCHING POWER SUPPLY WITH QUICK TRANSIENT RESPONSE - A switching power supply with a quick transient response is provided. A hysteretic control loop which comprises a hysteretic controller (12-27-2012
20120326686POWER SUPPLY GENERATOR WITH NOISE CANCELLATION - Techniques for performing noise cancellation/attenuation are disclosed. In one design, an apparatus includes a power supply generator having a switcher, a coupling circuit, an envelope amplifier, and a feedback circuit. The switcher generates DC and low frequency components and the envelope amplifier generates high frequency components of a supply voltage for a load, e.g., a power amplifier. The switcher receives a first supply voltage and provides a switcher output signal having switcher noise. The coupling circuit receives the switcher output signal and provides a first output signal having a first version of the switcher noise. The feedback circuit receives the switcher output signal and provides a feedback signal. The envelope amplifier receives an envelope signal and the feedback signal and provides a second output signal having a second version of the switcher noise, which is used to attenuate the first version of the switcher noise at the load.12-27-2012
20120319669HIGH EFFICIENCY BUCK-BOOST POWER CONVERTER - A buck-boost power converter switches the switches thereof with a novel sequence and extends the switching periods of the switches to reduce the switching loss and conduction loss when the input voltage thereof approaches the output voltage thereof. The influence of the load current of the power converter on the duty thereof is taken into account to switch the power converter between modes at correct time points, so as to prevent the output voltage from being affected by the mode switching.12-20-2012
20120319668POWER SUPPLY CIRCUIT WITH PROTECTION CIRCUIT - A power supply circuit includes a pulse width modulation (PWM) controller, a plurality of phase circuits connected to the PWM controller, and a protection circuit connected to the PWM controller and each of the phase circuits. The PWM controller controls all of the phase circuits alternately outputting power supply voltages according to a predetermined sequence, and the protection circuit operates to detect whether the phase circuits work normally. When any one of the phase circuits does not work normally, the protection circuit turns off the PWM controller and all of the phase circuits.12-20-2012
20110221414DC to DC CONVERTER HAVING ABILITY OF SWITCHING BETWEEN CONTINUOUS AND DISCONTINUOUS MODES AND METHOD OF OPERATION - A DC to DC converter has first and second transistor coupled at a first node and coupled between first and second power supply terminals. An inductor has a first terminal coupled to the first node and a second terminal coupled to an output terminal for receiving a variable load. Transistor drive circuitry controls conduction of the first and second transistor in a non-overlapping conduction operation. A duty cycle controller controls a duty cycle for the first transistor and the second transistor. Control circuitry determines a mode of operation by monitoring cycles of operation and detecting a predetermined pattern of cycles in which inductor current becomes negative. A first mode of operation permits both the first transistor and the second transistor to alternately conduct and a second mode of operation does not permit the second transistor to conduct during each cycle when the inductor current is reduced to substantially zero.09-15-2011
20110221413DC TO DC CONVERTER HAVING SWITCH CONTROL AND METHOD OF OPERATION - In a D.C. to D.C. converter, an input voltage is received via an inductor at an input terminal and stored onto a capacitor of an integrator. A first switch is coupled between the input terminal and a reference terminal such as ground and thereby fluxes the inductor. The input voltage stored on the capacitor falls at a rate determined by the integrator circuit and an initial value of the input voltage. After a time duration, the first switch becomes nonconductive. Current flows from the inductor through a diode to an output terminal until a second switch across the diode is made conductive. Stored voltage on the capacitor of the integrator increases in response to the second switch being conductive. The stored voltage on the capacitor is continuously compared with a reference voltage. The second switch is made nonconductive when the stored voltage on the capacitor exceeds the reference voltage.09-15-2011
20120081093Switching regulator - A switching regulator includes: a switching element that controlling supply of power supply voltage according to a control signal; a smoothing circuit smoothing the power supply voltage supplied via the switching element and supplying the smoothed power supply voltage as an output voltage to an output terminal; an error amplifier outputting an error signal according to a difference between the output voltage supplied to the output terminal and a reference voltage; a delta sigma modulation circuit generating a delta sigma modulation signal according to the error signal; and a power supply abnormality detection circuit outputting the delta sigma modulation signal as the control signal and detecting an abnormality in the power supply voltage based on the delta sigma modulation signal.04-05-2012
20110291630MICROPROCESSOR PERFORMANCE AND POWER OPTIMIZATION THROUGH SELF CALIBRATED INDUCTIVE VOLTAGE DROOP MONITORING AND CORRECTION - Disclosed is a digital voltage regulator system and method for mitigating voltage droop in an integrated circuit. If an unacceptable voltage droop is detected, the digital voltage regulator may take action to allow the power supply voltage to recover. A digital voltage regulator in accordance with embodiments discussed herein detects voltage droop by comparing a power supply voltage measurement with a threshold voltage. The threshold voltage may be calibrated based on power supply voltage measurements taken while the integrated circuit is operating.12-01-2011
20120139518USER-CONFIGURABLE, EFFICIENCY-OPTIMIZING, POWER/ENERGY CONVERSION SWITCH-MODE POWER SUPPLY WITH A SERIAL COMMUNICATIONS INTERFACE - An intelligent pulse width modulation (PWM) controller adapts a switch mode power supply (SMPS) system's operating parameters to optimize efficiency, remove hot spots and isolate faults by integrating a microcontroller, PWM digital circuits and analog circuits into a single integrated circuit, thereby reducing the number of external connections, silicon die area and integrated circuit packages. A communications interface is used to communicate with a host system for monitoring operating parameters of the SMPS, e.g., current, voltage, efficiency, operating temperature, diagnostics, etc. In addition, the communications interface may be used to alter the operating parameters (objectives) of the SMPS during operation thereof.06-07-2012
20120139517USER-CONFIGURABLE, EFFICIENCY-OPTIMIZING, CALIBRATED SENSORLESS POWER/ENERGY CONVERSION SWITCH-MODE POWER SUPPLY WITH A SERIAL COMMUNICATIONS INTERFACE - An intelligent pulse width modulation (PWM) controller adapts a switch mode power supply (SMPS) system's operating parameters to optimize efficiency, remove hot spots and isolate faults by integrating a microcontroller, PWM digital circuits and analog circuits into a single integrated circuit, thereby reducing the number of external connections, silicon die area and integrated circuit packages. A lossless inductor current sense technique integrates a matched, tunable complimentary filter with the intelligent SMPS controller for accurately measuring current through the power inductor of the SMPS without introducing losses in the power circuit. The complimentary filter is adjusted by the microcontroller to significantly reduce the effects of component tolerances, accurately measuring the power inductor current for precise closed loop control and over current protection. The frequency pole and gain of the complimentary integrated filter can be adjusted on the fly in order to adapt to dynamically changing operating conditions of the SMPS system.06-07-2012
20130021013SWITCHING POWER SUPPLY APPARATUS - Switching power supply apparatus, which allows steady-state power consumption due to starting current supply circuit to be cut is provided. Comprising a starting current supply circuit which, at turn-on of an input power supply, from a high-voltage power supply provided by input power supply or a high-voltage positive electrode of a switching device, supplies an operating current to a switching control circuit through a switch element comprised of a depression mode FET; and a steady-state current supply circuit which supplies the operating current to the switching control circuit, using a low-voltage power supply provided by a secondary electromotive force of a transformer after start of the switching operation, the apparatus uses the low-voltage power supply to supply a bias voltage to a path of a leakage current flowing from the high-voltage power supply to a grounding terminal through the switch element in the off-state, thereby blocking the leakage current.01-24-2013
20080252279CONTROL CIRCUIT FOR DC CONVERTER - A method of controlling at least one transistor of a DC voltage converter to regulate an output voltage of the DC converter, the method including determining whether the output voltage of the DC converter is within a first or second voltage range, the second voltage range including a desired value of the output voltage; if the output voltage is in the first voltage range, generating a control signal using a first control method performed by a first controller, the first controller receiving the output voltage and determining the control signal based on the value of the output voltage in the first voltage range; and if the output voltage is in the second range, generating a control signal using a second control method performed by a second controller, the second controller receiving the output voltage and determining the control signal based on the value of the output voltage in the second voltage range.10-16-2008
20080252277DIGITAL CONTROL SWITCHING POWER-SUPPLY DEVICE AND INFORMATION PROCESSING EQUIPMENT - To provide a digital control switching power-supply device capable of suitably achieving fast transient response at the time of a sudden load change. In parallel with normal digital signal processing means that outputs a PWM pulse signal having a desired duty, transient variation detection means composed of a CR filter provided across an output inductor and a window comparator is provided in preparation for a sudden load change. If a sudden decrease in load is detected, a PWM pulse signal having a duty of 0% is forcedly output, and if a sudden increase in load is detected, a PWM pulse signal having a duty of 100% is forcedly output.10-16-2008
20100090670MULTIPHASE SWITCHING CONVERTER - A method of passive current balancing for digital control of multiphase DC-DC converters is provided based upon the duty-cycle matching principle. Current balance is achieved by inserting a digital filter into the control path. Being sensorless, it is insensitive to current measurement inaccuracies caused by noise, component value tolerance or variation. It will be shown that effective current balancing can be achieved via some simple modifications to standard voltage mode control laws, allowing current balancing to be achieved with minor additional complexity. The current share scheme has been shown to perform well dynamically, matching currents cycle by cycle during load steps, and clearly benefiting from the absence of the slow current share loop popular in traditional methods. The current share filter proposed, blends well with existing digital controllers. Given the very low complexity in implementing the filter, the degree of matching achieved is exceptional.04-15-2010
20080238391Current drive circuit and method - One embodiment relates to a control system. In one embodiment, a control system is configured to drive a load based on a set-point of the load, a measured load characteristic and a supply voltage of the load. The controller is configured to determine a duty cycle based on the load characteristic, the set-point, and the supply voltage. The controller is further configured to drive the load in response to the duty cycle.10-02-2008
20080224678SWITCHING POWER SUPPLY CONTROLLER WITH HIGH FREQUENCY CURRENT BALANCE - A controller for a multi-phase switching power supply shuffles the sequence of the phases in response to a load transient to prevent synchronization of one or more phases with high-frequency load transients. The sequence may be shuffled by varying the frequency and/or sequence of the switching control signals to introduce a random variation in the phases.09-18-2008
20130176011DCDC CONVERTER WITH CONVERTER MODULES THAT CAN BE DYNAMICALLY ENABLED OR DISABLED - Provided is an apparatus comprising a DCDC converter having a plurality of converter modules each configured to convert current from a first voltage level to another voltage form. In accordance with an embodiment of the disclosure, the converter modules are configured to be dynamically enabled or disabled such that only each converter module that has been enabled converts current for an output of the DCDC converter. Any inefficiency that would have been introduced by converter modules that are not needed are mitigated or eliminated altogether. The effect is that efficiency can be improved during low load conditions when there is no need to enable all of the converter modules.07-11-2013
20110273155Hybrid Rectifier - A hybrid voltage rectifier enables a switch mode DC-DC power converter to safely power an external dynamic load by way of a substantially lossless conductive coupling between an output filter of the converter and the load. The rectifier is controlled so as to permit net average current through an inductor of the output filter to be approximately equal to, but not less than, zero by permitting very low loss conduction in the first quadrant and, selectively, cycle by cycle, in the third quadrant during load operation. The converter has a first switch, an output filter, a second switch, and a controller. The output filter is conductively coupled with the first switch, and has an inductor in series with the load. The controller sets state conditions of the second switch, such that the inductor operates in a continuous current mode.11-10-2011
20130113450MIXED MODE COMPENSATION CIRCUIT AND METHOD FOR A POWER CONVERTER - A mixed mode compensation circuit and method for a power converter generate a digital signal according to a reference value and a feedback signal which is related to the output voltage of the power converter, convert the digital signal into a first analog signal, offset the first analog signal with a variable offset value to generate a second analog signal, and filter out high-frequency components of the second analog signal to generate a third analog signal for stable output voltage of the power converter. The mixed mode compensation does not require large capacitors, and thus the circuit can be integrated into an integrated circuit.05-09-2013
20130113449Testing a Switched Mode Supply with Waveform Generator and Capture Channel - A test method and system are provided for testing a switched mode power supply in open loop on an automated test equipment device by applying a low frequency waveform signal (05-09-2013
20130093406POWER REGULATOR AND CONTROLLING METHOD THEREOF - Methods and circuits related to power regulation are disclosed. In one embodiment, a power regulator for converting an input electrical signal to an output electrical signal to supply power to a load, can include: (i) a power stage having switching devices and a filter; (ii) a regulation signal generator for the switching devices that includes a feedback circuit and a PWM, the feedback circuit receiving an output signal from the power stage, the PWM receiving an output from the feedback circuit, and generating a PWM control signal; (iii) a constant time generator receiving the PWM control signal and generating a constant time signal based on the PWM control signal duty cycle; and (iv) a logic/driving circuit receiving the PWM control signal and the constant time signal, and controlling operation of the switching devices to modulate the output signal from the power stage, and maintaining a pseudo constant operation frequency.04-18-2013
20080258697DYNAMIC GATE DRIVE VOLTAGE ADJUSTMENT - A DC-DC buck converter comprises a high-side power FET having a current path connected in series between an input terminal and an inductor connected to an output terminal supplying an output current to a load. The converter further comprises a low-side power FET having a current path connected between a reference terminal and an interconnection node of the high-side power FET with the inductor. The converter has a pulse width modulation controller receiving a feedback signal from the output terminal and providing pulse width modulated signals, and a gate driver circuit that receives the pulse width modulated signals from the pulse width modulation controller and applies pulse width modulated drive signals to the gates of the power FETs. The gate driver circuit supplies the drive signals to the gates of the power FETs at a variable voltage level adjusted in response to at least the output current, minimizing the power dissipation of the gate driver circuit.10-23-2008
20130147454SWITCHING REGULATOR WITH ERROR CORRECTION AND CONTROL METHOD THEREOF - A switching regulator configured to provide an output voltage comprises a power stage, an error correction circuit, a comparator, an ON-time generator and a logic circuit. The error correction circuit generates an error correction voltage based on a reference voltage and a feedback voltage representative of the output voltage. The comparator compares the feedback voltage with the difference between the reference voltage and the error correction voltage, and generates a comparison signal. The ON-time generator is configured to provide an ON-time signal. The logic circuit generates a logic control signal to control the power stage based on the comparison signal and the ON-time signal.06-13-2013
20120274299Switching Regulator and Control Circuit Thereof - The present invention discloses a switching regulator, including: a power stage including at least one power transistor which switches according to a switch control signal to convert an input voltage to an output voltage; a pulse width modulation (PWM) signal generator generating a PWM signal according to the output voltage; an over current detection circuit comparing a current sensing signal with a reference signal to generate an over current signal indicating whether an over current is occurring; and a signal adjustment circuit adjusting the PWM signal or a clock signal to generate the switch control signal for controlling an ON time of the power transistor of the power stage.11-01-2012
20110234190METHOD AND SYSTEMS FOR CONDUCTION MODE CONTROL - Methods for selecting between the two modes (states) of operation, continuous conduction and discontinuous conduction, are disclosed. Systems that are capable of selecting the operating mode and operating in the continuous conduction mode or the discontinuous conduction mode are also disclosed.09-29-2011
20100315055BUCK CONVERTER - A buck converter and a switching regulator capable of suppressing a ripple voltage under light load conditions. The buck converter has NMOS transistors QN12-16-2010
20100315054High efficiency voltage regulator with auto power-save mode - A DC-to-DC converter comprises an error amplifier, a comparator, a PWM controller, a power switch unit, and a control signal monitoring circuit. The PWM controller receives a comparison signal from the comparator and generates a digital control signal that controls the power switch unit such that the DC-to-DC converter supplies a regulated voltage onto a load. The control signal monitoring circuit monitors the digital control signal and detects either a heavy load or a light load condition based on characteristics of the digital control signal. Under the light load condition, the monitoring circuit generates a first enabling signal such that the DC-to-DC controller operates in a power-save mode. Under the heavy load condition, the monitoring circuit generates a second enabling signal such that the DC-to-DC controller operates in a normal operation mode. The DC-to-DC converter consumes substantially less power in the power-save mode than in the normal operation mode.12-16-2010
20110298439DIGITALLY CONTROLLED INTEGRATED DC-DC CONVERTER WITH TRANSIENT SUPPRESSION - A fully integrated DC-DC converter utilizes digitally controlled dual output stages to achieve fast load transient recovery is presented. The DC-DC converter includes a main converter output stage connected in parallel with an auxiliary output stage. The main output stage is responsible for steady-state operation and is designed to achieve high conversion efficiency using large inductor and power transistors with low on-resistance. The auxiliary stage is responsible for transient suppression and is only active when a load transient occurs. The auxiliary output stage performs well with inductor and power transistors much smaller than those of the main switching stage and thus achieves well balanced power conversion efficiency and dynamic performance with a much smaller area penalty than previously described dual-output-stage converters.12-08-2011
20130200870LOW-DROPOUT VOLTAGE REGULATOR HAVING FAST TRANSIENT RESPONSE TO SUDDEN LOAD CHANGE - An apparatus comprising a regulator and a control circuit. The regulator may be configured to generate a regulated voltage in response to (i) a reference input signal, (ii) a pull down signal and (iii) a control signal. The control circuit may be configured to generate the control signal in response to a digital complement of the pull down signal. The regulator and the control circuit have a common supply voltage and ground. The regulator may comprise a pass through device and a protection device. The protection device may respond to the control signal to limit a load voltage that passes through the pass through device.08-08-2013
20130200871DIRECT DRIVE WAVEFORM AMPLIFIER - A high voltage waveform is generated that is similar to a low voltage input waveform. The high voltage waveform is a series of pulses that are applied directly to the device. An error signal controls the frequency, magnitude, and duration of the pulses. A feedback signal derived from the high voltage waveform is compared with the input waveform to produce the error signal.08-08-2013
20120086421SINGLE-STAGE POWER SUPPLY WITH POWER FACTOR CORRECTION AND CONSTANT CURRENT OUTPUT - An example controller includes a delayed ramp generator, an integrator, an arithmetic operator, and a drive signal generator. The integrator integrates an input current sense signal representative of an input current of the power supply to generate an input charge signal. The input current has a pulsating waveform with a period that is a switching period of a switch of the power supply. The arithmetic operator circuit generates an input charge control signal responsive to the input charge signal and a ratio of a rectified input voltage to a dc output voltage of the power supply. The drive signal generator produces a drive signal responsive to the input charge control signal and a delayed ramp signal generated by the drive signal generator to control the switch.04-12-2012
20130207631SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE, DC-DC CONVERTER, AND VOLTAGE CONVERSION METHOD - A semiconductor integrated circuit device is employed in a DC-DC converter that switches the voltage fed to the load depending on the PWM signal. The semiconductor integrated circuit device has an error voltage generating part, a mode setting part, an oscillation signal generating part, a pulse generating part, and a control part. The oscillation signal generating part generates an oscillation signal with a prescribed period when in the non-light-load mode, and it turns off the oscillation signal when in the light-load mode. The pulse generating part generates a pulse signal before the oscillation signal generating part generates the oscillation signal when the pulse generating part switches from the light-load to the non-light-load mode.08-15-2013

Patent applications in class Digitally controlled