Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


BATTERY OR CELL DISCHARGING

Subclass of:

320 - Electricity: battery or capacitor charging or discharging

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
320128000 With charging 603
320135000 Regulated discharging 164
Entries
DocumentTitleDate
20100079109METHODS AND APPARATUS FOR STORING ELECTRICITY - In some embodiments, a system includes a battery and a capacitor bank. The battery is electrically coupled to a load device and is configured to supply power to the load device when the system is in a first configuration. The system is in the first configuration when a current requirement of the load device is less than a current threshold. The capacitor bank includes a plurality of capacitors and is electrically coupled to the battery when the system is in a second configuration. The battery and the capacitor bank are configured to collectively provide power to the load device when the system is in the second configuration. The system is in the second configuration when the current requirement of the load device is greater than the current threshold.04-01-2010
20130049692REFUELABLE STORAGE BATTERY - A reversible storage system for electric energy, including charging or discharging surfaces as a positive collector terminal and a charging or discharging area as a negative collector terminal and a flow electrode with a pumpable dispersion with particles storing electric energy and at least one supply line and at least one drain line for the pumpable dispersion. The pumpable dispersion includes particles storing electric energy in a capacitive and/or chemical fashion, having an average grain size distribution: 1 nM to 500 μm. For chemically storing particles, the negative and the positive collector terminals have a planar shape with a single exterior closed border and with their planar sides each contacting an ion-selective diaphragm or spacers, and the pumpable dispersion is arranged on a side facing away from the planar side of the respective collector, contacting the ion-selective diaphragm or spacers, and the dispersion at least partially penetrates the respective collector.02-28-2013
20130162215METHOD AND SYSTEM FOR MANAGING AN ELECTRICAL LOAD OF A USER FACILITY BASED ON LOCALLY MEASURED CONDITIONS OF AN ELECTRICITY SUPPLY GRID - The present invention relates to a method of managing the consumption and distribution of electricity in a user facility, wherein the user facility is connected to an electricity supply grid and the user facility comprises a grid connected on site generator; the method comprising the steps of measuring waveform conditions on a portion of the electricity supply grid adjacent the user facility to obtain locally measured waveform conditions; measuring electrical power readings from the on site generator; communicating the locally measured waveform conditions and the electrical power readings to a controller in the user facility; determining, at least on the basis of the locally measured waveform conditions, whether the electricity supply grid is oversupplied or undersupplied with electricity; and, modifying the flow of the electricity within the user facility based on whether the electricity supply grid is oversupplied or undersupplied with electricity and/or the electrical power readings from the grid connected on site generator.06-27-2013
20090009132Method of powering appliances and apparatus therefor - An apparatus for powering appliances includes:01-08-2009
20120235644ALKALI METAL ION BATTERY USING ALKALI METAL CONDUCTIVE CERAMIC SEPARATOR - A battery having a first electrode and a second electrode. The first electrode is made of metal and the second electrode is made of an oxidized material that is capable of being electrochemically reduced by the metal of the first electrode. An alkali-ion conductive, substantially non-porous separator is disposed between the first and second electrode. A first electrolyte contacts the first electrode. The first electrolyte includes a solvent which is non-reactive with the metal, and a salt bearing an alkali ion that may be conducted through the separator, wherein the salt is at least partially soluble in the solvent. A second electrolyte is also used. The second electrolyte contacts the second electrode. The second electrolyte at least partially dissolves the salt that forms upon the oxidized material being electrochemically reduced.09-20-2012
20100141211HYBRID ELECTROCHEMICAL GENERATOR WITH A SOLUBLE ANODE - The invention relates to soluble electrodes, including soluble anodes, for use in electrochemical systems, such as electrochemical generators including primary and secondary batteries and fuel cells. Soluble electrodes of the invention are capable of effective replenishing and/or regeneration, and thereby enable an innovative class of electrochemical systems capable of efficient recharging and/or electrochemical cycling. In addition, soluble electrodes of the invention provide electrochemical generators combining high energy density and enhanced safety with respect to conventional lithium ion battery technology. In some embodiments, for example, the invention provides a soluble electrode comprising an electron donor metal and electron acceptor provided in a solvent so as to generate a solvated electron solution capable of participating in oxidation and reduction reactions useful for the storage and generation of electrical current.06-10-2010
20090189567Zinc Anode Battery Using Alkali Ion Conducting Separator - A zinc anode storage battery comprising a first electrode containing zinc or a zinc alloy, a second electrode containing an oxidizing material capable of electrochemical reduction by zinc, an alkaline electrolyte, and a substantially non-porous, alkali-ion conducting separator provided between the first electrode and the second electrode. The alkali conducting separator may be a solid alkali metal ion super ion conducting material, wherein the alkali metal is Na, K, or Li.07-30-2009
20100141212STIMULATION AND INTENSIFICATION OF INTERFACIAL PROCESSES - A system and method for controlling a power storage device through the Stimulation and Intensification of Interfacial Processes (SIIP) is provided. A signal generator can provide a low voltage sinusoidal AC signal across a battery terminal, or other reactor vessel, during charging and discharging states. For example, the battery/reactor vessel can be of Li-ion and NiMH designs, a fuel cell, a Zn—O cell, or other devices that have features of rechargeable batteries. The output of the signal generator (i.e., voltage, wave type, and frequency) can be controlled based on battery parameters (e.g., internal resistance, output power, temperature). The internal resistance of the battery can be reduced, and the discharge time can be increased. Elastic waves can also be provided to a battery/reactor vessel to stimulate the interfacial processes. The signal generator can be an integrated circuit which is packaged with the battery and can be powered by the battery.06-10-2010
20090134842Nickel-Metal Hydride Battery Using Alkali Ion Conducting Separator - A nickel-metal hydride storage battery comprising a positive electrode containing nickel hydroxide, a negative electrode containing a hydrogen absorbing alloy, an alkaline electrolyte, and an alkali conducting separator provided between the positive electrode and the negative electrode. The alkali conducting separator may be a solid alkali metal ion super ion conducting material, wherein the alkali metal is Na, K, or Li05-28-2009
20090079392Portable power supply module with winding unit - A portable power supply module with winding unit comprises a shell body, a battery room, at least one battery unit, a connection line with predetermined extension length and an output connector. The shell body is provided with a winding area and an output connector accommodation room. The battery room is provided with a set of conductive contact plates which electrically connect with a circuit board. The connection line is electrically connected with the circuit board, extended beyond the shell body and connected with the output connector. The connection line can be wound around and received in the winding area of the shell body and the output connector is accommodated in the output connector accommodation room of the shell body.03-26-2009
20110043168MONITORING BATTERY CELL VOLTAGE - An apparatus includes battery gauge circuitry implemented on an integrated circuit. The battery gauge circuitry includes a plurality of switches that individually open in response to a voltage reduction on a battery cell associated with a respective one of the switches. The battery gauge circuitry also includes a logic device that determines if at least one of the switches is open. The battery gauge circuitry also includes a register that stores data that indicates if at least one switch is open. The battery gauge circuitry also includes a controller that initiates halting power delivery to a load if at least one of the switches is open. The controller also identifies the open switch.02-24-2011
20110101920BATTERY MODULE, BATTERY SYSTEM AND ELECTRIC VEHICLE INCLUDING THE SAME - A battery system includes a plurality of battery modules each including a plurality of battery cells. One battery module includes a main circuit board, and the other battery modules include auxiliary circuit boards. The main circuit board includes a cell characteristics detecting circuit that detects characteristics of each battery cell and a control-related circuit having a function related to control of the plurality of battery modules. The auxiliary circuit board includes a cell characteristics detecting circuit that detects characteristics of each battery cell, and does not include a control-related circuit having the function related to control of the plurality of battery modules. In a battery module of another battery system, a first printed circuit board, a board holder and a second printed circuit board are attached to one end surface frame. A voltage detecting circuit that detects a voltage between terminals of each battery cell and a communication circuit having a communication function are mounted on the first and second printed circuit boards, respectively.05-05-2011
20110254509Flexible Cathodes - This disclosure relates to methods of making a cathode for a lithium batter. The batterys include: (a) treating a cathode current collector with flame or corona; (b) coating a slurry containing iron disulfide, a first solvent, and a binder onto the cathode current collector obtained from step (a) to form a coated cathode current collector, in which the slurry contains about 73-75% by weight solids and the binder contains a polymer selected from the group consisting of linear di- and tri-block copolymers, linear tri-block copolymers cross-linked with melamine resin, ethylene-propylene copolymers, ethylene-propylene-diene terpolymers, tri-block fluorinated thermoplastics, hydrogenated nitrile rubbers, fluoro-ethylene-vinyl ether copolymers, thermoplastic polyurethanes, thermoplastic olefins, and polyvinylidene fluoride homopolymers; and (c) drying the coated cathode current collector obtained from step (b) to provide a cathode, in which the cathode contains no more than 0.5% by volume of the first solvent and is capable of being bent to 180°. This disclosure also relates to methods of making a lithium battery.10-20-2011
20120169287BATTERY CONDITIONER WITH POWER DISSIPATER - The present application is directed to a power dissipation apparatus including a conductive trace formed on a substrate and to methods of using the power dissipation apparatus. The power dissipation apparatus may be used to dissipate heat generated from electrical current passed through the conductive trace of the power dissipation apparatus. The current may be provided from, for example, a battery conditioner.07-05-2012
20100320970PASSIVE BATTERY DISCHARGE DEVICE - A passive battery discharge apparatus located within a cap. The cap extends over battery contacts to be discharged. The discharge apparatus includes a conductive material with specified volumetric resistivity properties that is formed into a pad. The cap is positioned over the contacts so that the pad touches and spans between the contacts to be discharged. A spring insures good contact between the pad and the battery contacts. A metal heat sink provides added thermal control. The discharge apparatus provides an economical solution to safely transport batteries that are beyond their useful service life by avoiding circuit components in favor of conductive elastomers or conductive foams.12-23-2010
20100026242METHOD AND ARRANGEMENT FOR DISCHARGING AN ENERGY STORAGE SYSTEM FOR ELECTRICAL ENERGY - A method and an arrangement for discharging an energy storage system for electrical energy, particularly in a vehicle having a hybrid drive line, by means of a first discharge resistor, wherein a coolant such as carbon dioxide gas is provided to the first discharge resistor during discharge of the energy storage system for leading off heat as well as a hybrid vehicle comprising such an arrangement.02-04-2010
20120007561METHOD OF DISCHARGING A NICKEL-METAL HYDRIDE BATTERY - A method for discharging a nickel-metal hydride storage battery comprising a positive electrode containing nickel hydroxide, a negative electrode containing a hydrogen absorbing alloy, an alkaline electrolyte, and an alkali conducting separator provided between the positive electrode and the negative electrode. The alkali conducting separator may be a solid alkali metal ion super ion conducting material, wherein the alkali metal is Na, K, or Li.01-12-2012
20120007560ELECTROLYTES FOR WIDE OPERATING TEMPERATURE LITHIUM-ION CELLS - Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.01-12-2012
20120126752NICKEL-METAL HYDRIDE/HYDROGEN HYBRID BATTERY USING ALKALI ION CONDUCTING SEPARATOR - A nickel-metal hydride (hydrogen) hybrid storage battery comprising a positive electrode containing nickel hydroxide, a combination negative electrode containing a hydrogen storage alloy electrode and a reversible hydrogen electrode, an alkaline electrolyte, and an alkali conducting separator disposed between the positive electrode and the negative electrode. The alkali conducting separator may be a substantially non-porous ion conducting material wherein the alkali conducted is Na, K, or Li. A method of charging and discharging such a hybrid battery is also disclosed.05-24-2012
20120074908DUAL-FUNCTION AIR CATHODE NANOARCHITECTURES FOR METAL-AIR BATTERIES WITH PULSE-POWER CAPABILITY - Disclosed herein is a metal-air battery having a cathode, an anode, and an electrolyte. The cathode has a cathode current collector and a composite of a porous carbon structure and a pseudocapacitive coating. The coating does not completely fill or obstruct a majority of the pores, and the pores can be exposed to a gas. The electrolyte is in contact with the anode and permeates the composite without completely filling or obstructing a majority of the pores.03-29-2012
20120299550SILICON-AIR BATTERIES - Silicon-oxygen batteries comprising a silicon anode as chemical fuel, an air-cathode for dissociating oxygen and a non-aqueous electrolyte, and applications using the same are provided. The silicon-batteries may utilize air for generating oxygen.11-29-2012
20100231168LITHIUM-SULPHUR BATTERY WITH HIGH SPECIFIC ENERGY - The invention provides for a method of discharging a chemical source of electric energy in two stages. The chemical source of electric energy comprises a positive electrode (cathode) including sulphur or sulphur-based organic compounds, sulphur-based polymeric compounds or sulphur-based inorganic compounds as a depolarizer, a negative electrode (anode) made of metallic lithium or lithium-containing alloys, and an electrolyte comprising a solution of at least one salt in at least one aprotic solvent. The method comprises the steps of configuring the chemical source of electric energy to generate soluble polysulphides in the electrolyte during a first stage of a two stage discharge process, and selecting the quantity of sulphur in the depolariser and the volume of electrolyte in a way that after the first stage discharge of the cathode, the concentration of the soluble polysulphides in the electrolyte is at least seventy percent (70%) of a saturation concentration of the polysulphides in the electrolyte.09-16-2010
20130141049BATTERY AND METHOD FOR OPERATING A BATTERY - The method for operating a battery including several electrochemical cells and a battery control unit, includes collecting operating parameter data of the battery, transmitting the operating parameter data to the battery control unit, and determining whether a predefined relationship of the collected operating parameter data with regard to predefined operating parameter values exists for the battery, and carrying out normal operation of the battery if it does. If, it has been determined that the predefined relationship with respect to the predefined operating parameter values does not exist, a query is transmitted to a decision unit as to whether an exception operation of the battery is to be carried out, and a response to the query by the decision unit is determined. The response is then transmitted to the battery control unit, and an exception operation of the battery is performed by the battery control unit depending on the response.06-06-2013
20130147435COST-EFFECTIVE RELIABLE METHOD TO DEPOWER RECHARGEABLE ELECTRIC BATTERIES - Methods and systems for depowering a rechargeable battery in a rapid, yet controlled, manner. The methods comprise (i) providing a depowering medium comprising expanded graphite (and optionally, one or more dispersible non-ionic electric conductors) dispersed in a substantially non-ionic aqueous medium; (ii) contacting terminals of the battery with the depowering medium; and (iii) maintaining contact between the depowering medium and terminals for a period of time sufficient to depower the battery. The systems comprise (i) the depowering medium; and (ii) a container configured to receive a battery and the depowering medium such that the battery body is contacted with the depowering medium prior to the terminals.06-13-2013
20130147436BATTERY PACK AND ELECTRONIC PAYMENT SYSTEM - A battery pack of the present invention is a battery pack for an electric power tool, which is to be detachably attached to the electric power tool to supply electric power to the electric power tool. The battery pack includes a battery unit that can be charged and discharged, and a fee calculation information detection unit that detects information for calculating a usage fee in accordance with use of the electric power tool.06-13-2013
20120274285SYSTEMS AND METHODS FOR PREDICTING BATTERY POWER-DELIVERY PERFORMANCE - Battery management systems and methods related to predicting power-delivery performance are provided. In one embodiment, a method for predicting power-delivery performance for a battery includes retrieving a plurality of battery operating parameters for a selected discharge cycle, calculating an offset indicative of a difference between a modeled internal resistance of the battery and an observed internal resistance generated from a calibration discharge cycle of the battery prior to the selected discharge cycle, and outputting a battery power-delivery performance prediction based on an offset-corrected internal resistance indicative of a difference between a modeled internal resistance based on the plurality of battery operating parameters for the selected discharge cycle and the offset.11-01-2012

Patent applications in class BATTERY OR CELL DISCHARGING

Patent applications in all subclasses BATTERY OR CELL DISCHARGING