Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Specific processing of feedback signal or circuit therefore (i.e., A-D conversion, compression, or modification)

Subclass of:

318 - Electricity: motive power systems

318700000 - SYNCHRONOUS MOTOR SYSTEMS

318400010 - Brushless motor closed-loop control

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
318400060 Comparator circuit or method 35
318400070 Plural diverse feedback (e.g., torque and speed, load and speed, etc.) 17
318400050 With reference signal generation (e.g., from external system, mechanical oscillator, etc.) 8
318400080 With nonmotor parameter or remote condition detected (e.g., temperature, light, airflow, position of diverse object, etc.) 3
20100039055TEMPERATURE CONTROL OF MOTOR - Some embodiments of the present disclosure provide a brushless motor configured to sense the temperature of the motor and control the operation of the motor. The motor is configured to lower the current generation in a power switching circuit and lower the temperature within the power switching circuit without stopping the operation of the motor. The brushless motor comprises a rotor, a stator comprising windings, a power switching circuit configured to supply an electric current to the windings, a temperature sensor placed on or in the vicinity of the power switching circuit and configured to sense or ascertain temperature of the power switching circuit, and a controller configured to receive a temperature input from the temperature sensor, select a mode of operation of the motor based on the temperature input, and generates a pulse width modulation (PWM) signal corresponding to the selected mode of operation. The present disclosure also provides a method of running a brushless motor with temperature control. The method comprises providing a motor, which comprises a rotor, a stator with windings, and a power switching circuit configured to supply an electric current to the windings, sensing or ascertain temperature of the power switching circuit, selecting a mode of operation of the motor based on the sensed or ascertained temperature, and generating a pulse width modulation (PWM) signal corresponding to the selected mode of operation.02-18-2010
20100320947Method For Calibrating A Motor Control Circuit To Improve Temperature Measurement In A Electrical Motor - A method enables measurement of an inverter loss within a motor control circuit for an appliance. The method includes applying a constant DC current generated from a first AC supply voltage to a motor winding through an inverter at a first duty cycle, measuring a first voltage corresponding to the current through the motor at a motor current sense resistor, computing a first ratio of the first measured voltage at the motor current sense resistor to a first DC input voltage corresponding to the first AC supply voltage, identifying a second duty cycle from the first computed ratio, comparing the second duty cycle to the first duty cycle, and identifying a first inverter loss factor from the difference between the first duty cycle and the second duty cycle.12-23-2010
20120212166HVAC ADJUSTMENT MODULE - A heating, ventilation and air conditioning (HVAC) system is provided. The system includes an integrated motor including a plurality of operating speeds and an input for selecting one of the plurality of operating speeds. The system further includes a system controller and an adjustment module. The adjustment module includes a plurality of operating modes each associated with one of the plurality of operating speeds and the ability to manually vary associations between the plurality of operating modes and the plurality of operating speeds. The adjustment module selects one of the plurality of operating modes on the basis of control commands received from the system controller and setting programmed or manually entered into and stored in the adjustment module and controls the integrated motor according to the operating speed associated with the selected operating mode.08-23-2012
Entries
DocumentTitleDate
20090079372Electric Motor, Drive System Employing Multiple Electric Motors, and Method for Controlling the Same - The motor according to one aspect of the present invention has an output waveform correcting unit for correcting the waveform of the output signal of a magnetic sensor during operation of the electric motor. ID codes for identification purposes are assigned respectively to a plurality of magnetic sensors. The output waveform correcting unit receives, from an external device, output waveform correction values for the magnetic sensors together with the ID codes, and stores the output waveform correction values for the magnetic sensors in memory. The drive system according to another aspect of the present invention has a plurality of electric motors, and a system controller connected to the plurality of motors via a shared communication line. Each electric motor has an identification code register that stores an identification code for identifying each electric motor. The system controller has an individual control mode in which operation of individual motors is controlled by transmitting commands to individual electric motors together with identification codes via the shared communication line.03-26-2009
20090033259METHOD OF ESTIMATING THE STATE OF A SYSTEM AND RELATIVE DEVICE FOR ESTIMATING POSITION AND SPEED OF THE ROTOR OF A BRUSHLESS MOTOR - A method for estimating the state of a system, as well as an extended Kalman filter (EKF), allows nonlinear mathematical models to be used for describing the system. Accurate precision is provided since the method is based on an EKF technique while using a filter that implements a first degree Stirling approximation formula. The method may be used for estimating position and speed of a brushless motor, and may be implemented in a relative device. Such a device may be introduced in a control loop of a brushless motor of a power steering system for a vehicle to provide a countering torque on the steering wheel based on speed of the vehicle and a steering angle of the vehicle.02-05-2009
20090121663BRUSHLESS MOTOR - A brushless motor includes: a permanent magnet; a driving coil moving relative to the permanent magnet; a sensor coil disposed to the permanent magnet so as to generate a sensor coil induced voltage having a same phase of a driving coil induced voltage generated in the driving coil; and a driving circuit applying a driving voltage to the driving coil, the driving voltage having a same phase of the sensor coil induced voltage generated in the sensor coil.05-14-2009
20130076281MOTOR CONTROL CIRCUIT, MOTOR CONTROL SYSTEM AND MOTOR CONTROL METHOD - According to an embodiment, a motor control circuit includes a rotational position decoding unit, a rotational position determining unit, and a motor drive signal generating unit. The rotational position decoding unit is configured to generate a rotational position signal representing a rotational position of a motor according to a sensor signal provided by a sensor. The rotational position determining unit is configured to store a current rotational position of the motor based on the rotational position signal. When the rotational position signal represents a subsequent rotational position of the stored current rotational position, the rotational position determining unit is configured to update the stored current rotational position with the subsequent rotational position, and generate a motor control signal representing the subsequent rotational position. The motor drive signal generating unit is configured to generate a motor drive signal for driving the motor according to the motor control signal.03-28-2013
20100045219Position Detecting Device and Synchronous Motor Driving Device Using the Same - A position detecting device which can increase accuracy in detecting the pole position of a motor used to perform quick acceleration and deceleration over the range from a zero speed to a high rotation speed, and a synchronous motor driving device using the position detecting device. A position detector detects basic-wave component signals in sensor signals and executes position calculation. A correcting unit calculates signal information representing at least one of a gain, an offset and a phase by a phase detector from the basic-wave component signals detected by an error calculator, and makes correction based on the calculated signal information such that a position detection error is zero.02-25-2010
20130043814System and method for synchronizing sinusoidal drive to permanent magnet motor without distorting drive voltage - A system for controlling a motor (02-21-2013
20130033208PWM CONTROL CIRCUIT AND PWM CONTROL METHOD - The PWM control circuit includes a polarity determination unit, a full wave rectification unit, an adjustment unit that generates an adjusted waveform signal by adjusting waveform of the full wave rectification signal, and a carrier signal generating unit that generates a fixed frequency carrier signal. The PWM control circuit further includes a comparator that generates an original PWM signal by comparing the adjusted waveform signal and the carrier signal, and a PWM waveform shaping unit that generates a first PWM signal for the positive polarity section and a second PWM signal for the negative polarity section, by shaping the original PWM signal according to the polarity signal.02-07-2013
20130033207MULTI-PHASE ROTARY MACHINE CONTROL APPARATUS AND ELECTRIC POWER STEERING SYSTEM USING THE SAME - A multi-phase rotary machine control apparatus executes calculation processing of an angle error caused by position error in attaching a rotation angle sensor to a motor. The control apparatus sets d-axis and q-axis current command values to zero. A rotary shaft of the rotary machine is rotated externally. The control apparatus detects phase currents caused by a counter-electromotive force, converts phases and outputs voltage command values so that the current detection values become zero. The control apparatus calculates an angle error based on the voltage command values, and stores the angle error as an angle correction value. The control apparatus corrects a detection value of a rotation angle sensor by the stored angle correction value.02-07-2013
20100109586Controller for Rotating Electrical Machines - A controller for rotating electrical machines comprises a processing unit, to which a plurality of parameters are input, for generating a switching instruction to control a switching operation of a switching semiconductor device and outputting a signal corresponding to the switching instruction to a power converter. The processing unit includes at least a function to input thereto signals having been output from each of sensors such as a current sensor to detect current passed between the power converter and a winding of an armature, a temperature sensor to detect temperature of the winding of the armature, and a magnetic pole position sensor to detect magnetic pole position of a magnetic field system, and, based upon information on current, temperature, and rotation speed of the rotating electrical machines, having been obtained from those sensor signals, detects a magnetic flux that interlinks with the winding of the armature from a permanent magnet.05-06-2010
20090302789Method for Identification of the Sensor Assignment within an Electrical Machine - A method for identifying the sensor assignment to the output signals of an electrical machine having at least two standardized sensor elements, that are assigned to a rotating body. An arbitrary signal sequence of sensor signals of the at least two standardized sensor elements is recorded for a first direction of rotation of the electrical machine. The arbitrary signal sequence is sorted with respect to the electrical angle φ of the electrical machine corresponding to an offset of the electrical angle φ per sensor signal. The zero crossings of phases of the electrical machine are assigned to the sensor signals.12-10-2009
20120217913METHOD AND SYSTEM FOR DETERMINING A POSITION OF A ROTOR OF AN ELECTRIC MOTOR WITH NOISE REDUCTION - A data storage device stores previous position readings of the rotor for a previous cycle of a pulse width modulation signal applied to the motor. A current raw position reading for the current cycle is received. A predicted position reading for a current cycle is determined based on at least one of the stored previous position readings of the previous cycle. A data processor determines whether a difference between the current raw position reading and the predicted position reading for a first mode and a second mode is within one or more preset thresholds. The data processor selects the current raw position reading as a verified reliable final position reading if a first difference for the first mode is equal to or less than a primary preset threshold or if a second difference for the second mode is equal to or less than a secondary preset threshold.08-30-2012
20120217912METHOD AND SYSTEM FOR CALIBRATING ROTOR POSITION OFFSET OF AN ELECTRIC MOTOR - While enforcing a fake position in the data processing system and applying a zero direct-axis current command, positive and negative quadrature-axis current commands are applied sequentially and at approximately same magnitude to urge the rotor toward an enforced position. A processing module measures a positive quadrature-axis current aligned raw position data after application of the positive quadrature-axis current command and measures negative quadrature-axis current aligned raw position data for the rotor after application of the negative quadrature-axis command. An initial position offset calibrator or data processor determines a difference between the raw position data to determine an alignment of a true averaging axis. An initial position offset calibrator or data processor determines a raw averaging axis position data based on an average of the raw position data. An initial position offset calibrator or data processor determines a position offset based on a difference between the determined true averaging axis and the determined raw averaging axis position data.08-30-2012
20090237018Drive unit and manufacturing method thereof - A drive unit includes a rotating electrical machine; a rotation sensor that detects a rotational position of a rotor of the rotating electrical machine, and a storage medium. In an inspecting step of measuring a counter electromotive force by mechanically driving the rotating electrical machine after the rotating electrical machine and the rotation sensor are assembled together, positional error information of the rotation sensor obtained based on information of the counter electromotive force and output information from the rotation sensor is stored in the storage medium. The storage medium is integrally provided to the drive unit in such a state that the storage medium is readable upon assembling a control device that controls the rotating electrical machine.09-24-2009
20130162184MOTOR DRIVING APPARATUS AND METHOD - There are provided a motor driving apparatus and method. The motor driving apparatus includes: a speed detecting unit detecting a rotation speed of a motor according to an edge of a hall signal, and counting a preset clock signal while allocating a weighted value thereto according to a preset reference count value at the time of counting the clock signal based on the detected speed; a position calculating unit calculating a rotation position of the motor according to a count value of the speed detecting unit; and a driving unit driving the motor according to position information of the motor calculated by the position calculating unit.06-27-2013
20120235610ELECTRIC MOTOR CONTROL APPARATUS - An electric motor control apparatus capable of controlling a motor normally regardless of failures is obtained without increased cost. The apparatus includes a position sensor failure determination unit which outputs a failure determination signal, and generates a first phase; a motor rotation speed calculator which operates based on the failure determination signal and position sensor signals; a phase command generator producing a phase command based on the first phase, the failure determination signal and rotation speed; an amplitude command generator that generates an amplitude command indicating magnitude of a driving signal for the motor, and an electrical energization unit that applies the driving signal to the motor based on the phase command and the amplitude command. Upon failure of a position sensor, the phase command generator generates the phase command using the first phase, and a second phase obtained based on the first phase and the rotation speed.09-20-2012
20110025241SENSORLESS CONTROL METHOD OF HIGH PERFORMANCE PERMANENT MAGNET SYNCHRONOUS MOTOR DURING EMERGENCY OPERATION - The present invention provides a position sensorless control method of a high performance permanent magnet synchronous motor during emergency operation, which can accurately detect a magnetic pole position of the synchronous motor based on a position sensorless vector control using an adaptive observer configured based on a permanent magnet synchronous motor model.02-03-2011
20090295318MOTOR AND DRIVE CONTROL SYSTEM THEREOF - Provided is a motor having a magnetic polar unit in which a permanent magnetic polar array having arranged therein alternately a plurality of permanent magnetic polar elements in alternate opposite poles is made to face a plurality of electromagnetic coil arrays alternately excited at opposite poles, and the permanent magnetic polar array is made to move thereby; wherein the motor further comprises a sensor for detecting the periodical magnetic change accompanying the movement of the permanent magnetic polar array, the output of the sensor is directly returned as a direct drive waveform to the electromagnetic coils, and this drive circuit forms the excitation signal based on the return signal.12-03-2009
20110260663METHOD FOR COMPENSATING NONLINEARITY OF RESOLVER FOR HYBRID AND FUEL CELL VEHICLES - The present invention provides a method for compensating nonlinearity of a resolver to control a motor in hybrid and fuel cell vehicles, thereby stably controlling the motor current during high-torque and high-speed operation. In preferred aspects, the present invention provides a method for compensating nonlinearity of a resolver to control a motor in hybrid and fuel cell vehicles, the method including collecting resolver position data; determining whether to perform resolver position correction in the corresponding vehicle; and compensating nonlinearity of the resolver based on the collected resolver position data, if it is determined that the resolver position correction is not performed.10-27-2011
20110062904ALTERNATING CURRENT MOTOR CONTROL SYSTEM - An alternating current motor control system includes a three-phase synchronous alternating current motor, a rotational position sensor, and a motor control portion. The three-phase synchronous alternating current motor includes a rotor. The rotational position sensor detects a rotational position of the rotor. The motor control portion digitizes a detection signal of the rotational position sensor into a rotational position signal with a resolution that a quotient when an electrical angle of 360 degrees is divided by a multiple of 3 is set to a quantization unit. The motor control portion performs a rectangular wave control of applying a rectangular wave voltage based on the rotational position signal so that an energizing current of the three-phase synchronous alternating current motor is commutated every electrical angle of 60 degrees.03-17-2011
20090206782CONTROL DEVICE AND CONTROL METHOD - The invention relates to a control device and a control method which enhance accuracy in detecting a speed of a driven body to stably control drive means. An encoder signal control section (08-20-2009
20090284196MOTOR CONTROL APPARATUS AND CONTROL METHOD THEREOF - A motor control apparatus includes a sensing module, a phase modulating module, a duty cycle modulating module and a driving module. The sensing module detects a motor to generate a sensing signal. The phase modulating module receives the sensing signal and generates a phase modulation signal in accordance with the sensing signal. The duty cycle modulating module receives the phase modulation signal and generates a duty cycle modulation signal in accordance with the phase modulation signal. The driving module receives the duty cycle modulation signal and generates a motor control signal for controlling the motor in accordance with the duty cycle modulation signal.11-19-2009
20090261763METHOD OF DETECTING A USEFUL SIGNAL - A method of detecting a useful signal from a measurement signal that is overlaid by at least one interference signal for use in a control or regulating device, where the interference signal occurs with at least one known interference signal frequency. The method including the steps of detecting the measurement signal, performing a Fourier transformation on the measurement signal with reference to the interference signal frequency to detect the interference signal amplitude and phase, detecting the interference signal on the basis of the interference signal amplitude and phase, and removing the interference signal from the measurement signal to detect the useful signal. The Fourier transformation is performed only with reference to the known interference signal frequency to simplify the computation making it possible to detect the useful signal in real time.10-22-2009
20130099704Motor Control Circuit And Method That Reduce Speed Jitter Of An Electric Motor - Motor control circuits and associated methods to control an electric motor provide a plurality of drive signal channels at the same phase, resulting in reduced jitter in the rotational speed of the electric motor.04-25-2013
20100102765FINE RESOLUTION MOTOR CONTROL - Methods and apparatus are provided for deriving precision position and rate information for motors using relatively low precision analog sensors, and for implementing compensation techniques that overcome inherent sensor errors and rotor magnet flux tolerances.04-29-2010
20080309267METHOD AND APPARATUS FOR RESOLVER COMPENSATION - A system and method for compensating a resolver are disclosed. Briefly described, one embodiment receives at least one output signal from the resolver, the resolver detecting a current position of a rotor coupled to the resolver; determines if the current position of the rotor is detected by a first pole-pair of the resolver or if the current position is detected by a second pole-pair of the resolver; in response to determining that the current position of the rotor is detected by the first pole-pair, synchronizes the output signal from the resolver with a first resolver angle error information; and in response to determining that the current position of the rotor is detected by the second pole-pair, synchronizes the output signal from the resolver with a second resolver angle error information.12-18-2008
20080265816BRUSHLESS ELECTRIC MACHINE - The brushless electric machine includes a first drive member (10-30-2008
20100201295MOTOR DRIVING CIRCUIT AND DISC APPARATUS USING THE SAME - A back electromotive detection comparator compares back electromotive voltages Vu to Vw with a common voltage Vn of coils, and generates first rectangular wave signals Pu to Pw. A masking circuit performs masking of the first rectangular wave signals Pu to Pw, and outputs the resultant signals as second rectangular wave signals Mu to Mw. An output circuit supplies a drive current to coils on the basis of the second rectangular wave signals Mu to Mw. A frequency generating circuit generates a frequency generation signal SigFG whose level switches at every edge of the second rectangular wave signals Mu to Mw. A mask signal generating circuit generates a mask signal MSK which is at a high level during an interval multiplied by a coefficient to a pulse width Tp of the frequency generation signal SigFG after level transition of the frequency generation signal SigFG. The masking circuit nullifies level fluctuation of the first rectangular wave signals Pu to Pw during an interval when a mask signal MSK is at the high level.08-12-2010
20090001913DRIVE CONTROL CIRCUIT FOR ELECTRIC MOTOR - The drive control circuit for an electric motor is provided. The drive control circuit includes: an original drive signal generator that generates an original drive signal, based on a positional signal which indicates a relative position of a first drive member and a second drive member of the electric motor; an excitation ratio signal generator that generates an excitation ratio signal which indicates a ratio of excitation interval to non-excitation interval of coils of the electric motor, based on a speed signal indicating a relative speed of the first drive member and the second drive member of the electric motor; an excitation interval signal generator that generates a binary excitation interval signal which specifies the excitation interval and the non-excitation interval of the coils of the electric motor, based on the positional signal and the excitation ratio signal; and a mask circuit that generates a drive signal for driving the electric motor by masking part of the original drive signal based on the excitation interval signal.01-01-2009
20090230904NOISE SUPPRESSION FOR HALL SENSOR ARRANGEMENTS - A method and apparatus is provided for processing signals from a Hall-effect device arrangement coupled to a monolithic brushless DC motor where the motor is driven by a PWM circuit providing PWM drive signals.09-17-2009
20090195196CONTROL DEVICES AND METHODS - A control device for driving a motor which includes a rotor and a stator is provided. The control device includes a Hall detector and driving circuit. The Hall detector detects magnetic flux variation when the rotor rotates and generates a first detection signal and a second detection signal. The first and second detection signals represent current rotation location when the rotor rotates. The driving circuit generates a driving signal to drive the stator. The driving circuit turns on or off the driving signal according to a control signal and the relationship between the first and second detection signals.08-06-2009
20090001912CONTROL DEVICE FOR THREE-PHASE BRUSHLESS MOTOR - A control apparatus for a three-phase brushless motor, in which a control circuit includes time interval calculation means (01-01-2009
20100148709CONTROL MODULE ADAPTED TO BRUSH AND BRUSHLESS MOTORS - A control module adapted to brush and brushless motors essentially applies a magnetic sensor to generate detecting signals in response to the status of the motor and deliver those signals to a control unit. The control unit further converts the signals into discrete diverting signals for driving the rotating direction, phase commands for controlling the motor phase, and a pulse width modulation (PWM) for adjusting the motor speed. A phase refining circuit thence receives those transformed signals and confirms merely a selected phase command attendant with the diverting and PWM signals for assisting a stable operation of the motor. Therefore, such control module not only applies to different types of motors but uses the separate transmissions of the signals responsible for designated instructions to attain facile controls and appropriate adjustments to the errors of the motor phase or motor velocity and efficiently decrease the occurrence of breaking the motor.06-17-2010
20100156331DEVICE FOR CONTROLLING A POLYPHASE ROTATING MACHINE - A device for controlling a polyphase rotating machine, the machine comprising a stator, a rotor, and sensors, the device being capable of receiving: at least one first sensing signal (U; V; W) representing a position of the rotor relative to the stator and output by a first sensor; and a second sensing signal (V; W; U) representing the position and phase-shifted relative to the first signal and output by a second sensor. The control device comprises: means (K, R) for combining the first and second sensing signals into a combined signal, the means including at least one controlled switching element capable adopting at least in two states, the combined signal being based on a state of the first element and enabling the machine to be controlled.06-24-2010
20100188030MOTOR SPEED CONTROLLER - In a motor speed controller, feedback control is implemented at a gain independent of the target rotational speed ω07-29-2010
20100253253MOTOR DRIVING APPARATUS - A controller for a motor driving apparatus switches a direction of electricity flowing through a first coil according to a first lead angle signal obtained based on a first magnetic pole detecting signal and a second magnetic pole detecting signal. The controller switches a direction of electricity flowing through a second coil according to a second lead angle signal obtained based on the first magnetic pole detecting signal and the second magnetic pole detecting signal. Thus, a motor driving apparatus can be configured such that the angle of the rotation center of the rotor with respect to two magnetically sensitive poles can freely be selected.10-07-2010
20090072773MOTOR DRIVING APPARATUS AND METHOD FOR CONTROL OF MOTOR REVOLUTION - This invention provides a motor driving apparatus that made it possible to reduce torque ripples including those attributed to load variation of the motor and an associated method for control of motor revolution. An output stage to a multiphase DC motor is comprised of power elements to supply output voltages to multiphase coils and a predriver to supply drive voltages to the power elements. A resistor means detects a current flowing through the power elements. A supply current detector detects a voltage signal produced across the resistor means as a supply current, using a high-speed ADC and a moving average filter. An output controller generates a PWM signal with a frequency lower than the frequency of the high-speed ADC so that the current detected by the supply current detector conforms to a current signal indicating a motor revolving speed and transfers the PWM signal to the output stage.03-19-2009
20090072774DISPLACEMENT SENSING METHOD AND MOTOR CONTROL APPARATUS - A displacement sensing method of the present invention includes the steps of superimposing a predetermined signal on a torque command to supply a drive torque to a motor, measuring an amplitude spectrum ratio between the drive torque in superimposing the predetermined signal on the torque command and a motor angle measured by a displacement sensor, generating correction data for evening out the amplitude spectrum ratio, and correcting the measured motor angle so that the motor angle measured by the displacement sensor is equal to an actual motor angle using the correction data.03-19-2009
20090115360PWM CONTROL CIRCUIT AND PWM CONTROL METHOD - The PWM control circuit includes a polarity determination unit, a full wave rectification unit, an adjustment unit that generates an adjusted waveform signal by adjusting waveform of the full wave rectification signal, and a carrier signal generating unit that generates a fixed frequency carrier signal. The PWM control circuit further includes a comparator that generates an original PWM signal by comparing the adjusted waveform signal and the carrier signal, and a PWM waveform shaping unit that generates a first PWM signal for the positive polarity section and a second PWM signal for the negative polarity section, by shaping the original PWM signal according to the polarity signal.05-07-2009
20110031912APPARATUS FOR DRIVING MOTOR OF AIR CONDITIONER AND METHOD FOR DRIVING THE SAME - An apparatus and method for driving a motor of an air conditioner are disclosed. A method for driving a motor of an air conditioner includes driving the motor in response to a predetermined speed command, sequentially detecting first and second mechanical angles in response to the speed command or a reference speed being spaced apart from the speed command by a predetermined range, calculating a maximum speed mechanical angle corresponding to a maximum speed ripple of the motor on the basis of the detected first and second mechanical angles, and compensating for load torque of the motor on the basis of the calculated the maximum speed mechanical angle. As a result, the speed ripple is decreased during the constant speed operation.02-10-2011
20110031913CONTROL DEVICE FOR CONTROLLING TRAVEL MOTOR OF VEHICLE - A control device for a travel motor mounted to a vehicle has a resolver which works as a rotation-angle sensor. The control device has a RDC which calculates a rotation-angle output value φ based on rotation detection signals Sa, Sb transferred from the resolver. The control device supplies electric power to the travel motor based on the rotation angle output value φ. The RDC calculates “sin(θ−φ)” as an error deviation ε based on the signals Sa and Sb and the rotation-angle output value φ. The RDC calculates an angular acceleration by multiplying the error deviation ε with a gain (=Ka·Kb), and integrates the angular acceleration two times in order to obtain a next rotation-angle output value. A gain control part of the RDC decreases the gain when the judgment means judges that the travel motor rotates at a constant rotation speed.02-10-2011
20100219781MOTOR DRIVE CIRCUIT - The motor drive circuit 09-02-2010
20110025242MOTOR CONTROL METHOD, MOTOR CONTROL DEVICE, FAN DEVICE, COMPRESSOR, AND PUMP DEVICE - Triggered by a position detection sensor detecting that a rotor is positioned at any one of K predetermined electrical angles, for example, 60°, 180°, and 300°, a voltage vector to be given to a motor is updated. When, for example, the rotation frequency is equal to or higher than a specified value, the predetermined electrical angles is changed into M, for example, into one angle of 60°.02-03-2011
20120176070METHOD FOR ANALYZING SIGNALS FROM AN ANGLE SENSOR - A method for analyzing signals from an angle sensor including at least two sensing elements which span a plane and including a rotatable element for varying the plane, the element being spaced from same. The angle sensor also includes a brushless electromotor which is controlled according to the method. The method for analyzing signals from an angle sensor comprises at least two sensing elements, said method producing high-definition measured results using sensing elements that map a full circle. This is achieved in that the sensing elements capture at least one first and one second vector of the field lying on the plane, the vectors being linearly independent of each other. A further variable, which is dependent on the distance between the plane and the rotatable element, is additionally detected, and the amplitudes of the signals of the first and the second sensing elements are controlled with the value of the further variable07-12-2012
20110043145METHOD AND CIRCUIT FOR PROCESSING A RESOLVER FAULT - A method of processing a resolver fault in a motor generator unit (MGU) includes receiving a position signal from a resolver describing a measured angular position of a rotor of the MGU, determining the presence of the resolver fault using the position signal, and calculating or extrapolating an estimated rotor position when the resolver fault is determined. A predetermined resolver fault state may be determined using a measured duration of the resolver fault, and the MGU may be controlled using the estimated rotor position for at least a portion of the duration of the resolver fault. A motor control circuit is operable for processing the resolver fault using the above method, and may automatically vary a torque output or a pulse-width modulation (PWM) of the MGU depending on the duration of the resolver fault.02-24-2011
20110241582CONTROL DEVICE FOR A MOTOR AND METHOD FOR CONTROLLING SAID MOTOR - A control device is for a motor, especially a brushless DC motor. The control device contains a bridge circuit for generating a rotating field for the motor and a sensor system for detecting a position of a rotor of the motor, a control signal for the bridge circuit being derivable from the signal representing the rotor position. The sensor system includes an absolute value transmitter which detects the absolute position of the rotor and which is configured to derive at least one incremental signal from the absolute position and to make it directly available to a control component for controlling the bridge circuit for commuting the motor.10-06-2011
20090218969MOTOR DRIVE CONTROL DEVICE AND MOTOR DRIVE CONTROL SYSTEM - A motor drive control device for controlling the driving of a brushless motor includes position detecting units (e.g. sensors or Hall elements), a drive signal determining unit and a drive signal outputting unit (an output circuit). The position detecting units are disposed in positions apart from each other by an electric angle of 120 degrees and output position detection signals representing the position of the rotor with respect to the stator. The drive signal determining unit determines drive signals for driving the 3-phase drive coils on the basis of the position detection signals. The drive signal outputting unit generates and outputs, to the 3-phase drive coils, the drive signals that have been determined by the drive signal determining unit.09-03-2009
20090218968CONTROL SYSTEM FOR CONTROLLING MOTORS FOR HEATING, VENTILATION AND AIR CONDITIONING OR PUMP - The present invention discloses a control system for controlling a motor for a heating, ventilation and air conditioning (HVAC) or a pump comprising: an opto-isolated speed command signal processing interface into which a signal for controlling a speed of the motor is inputted and which outputs an output signal for controlling the speed of the motor being transformed as having a specific single frequency; a communication device into which a plurality of operation control commands of the motor; an opto-isolated interface for isolating the plurality of operation control commands inputted through the communication device and the transformed output signal for controlling the speed of the motor, respectively; a microprocessor, being connected to the opto-isolated interface, for outputting an output signal for controlling an operation of the motor depending on the plurality of operation control commands and the transformed output signal for controlling the speed of the motor; a sensor, being connected to the motor, for outputting a rotor position sensing signal of the motor; a logic control circuit, being connected to the opto-isolated interface, the microprocessor, and the sensor, respectively, for adding the rotor position sensing signal and the output signal for controlling the operation of the motor; a power switch circuit being connected to feed electric power to the motor; a gate drive circuit, being connected to the logic control circuit and the power switch circuit, respectively, for driving the power switch circuit; and a power supply device being connected to the logic control circuit, the power switch circuit, and the gate drive circuit, respectively, for feeding electric power thereto.09-03-2009
20120242263Electric Motor and Method for the Operation of an Electric Motor - An electric motor having a rotor and a stator as well as a measuring device designed for detecting a position of the rotor, which is movable relative to the stator, and comprising a sensor system for the provision of sensor signals in dependence on the position of the rotor relative to the stator and a processing device for controlling the sensor system, for processing the sensor signals and for outputting a position signal. The processing device is configured for switching between a first operating state with a continuous or high-frequency intermittent provision of supply energy to the sensor system and a second operating state with a low-frequency intermittent provision of supply energy to the sensor system.09-27-2012
20110101899MOTOR CONTROL APPARATUS - A motor control apparatus includes a resolver and a R/D converter in which an electrical angle of 360° is set smaller than a mechanical angle of 360° and that outputs a two-phase encoder signal corresponding to the electrical angle; a two-phase encoder counter that counts the two-phase encoder signal and outputs a digital value corresponding to the electrical angle; a multiplication factor of angle detecting portion that detects a position of the mechanical angle to which an angle indicated by a signal output from the R/D converter corresponds, based on a change in a count value; and a motor controlling portion that corrects a current command value determined based on a torque command value, according to an output of the multiplication factor of angle detecting portion.05-05-2011
20110074321MOTOR DRIVE CONTROL CIRCUIT - A differential amplifier detects a coil current Is at the time of steady rotation of a synchronous motor. An application voltage S03-31-2011
20110254479BRUSHLESS MOTOR ROTATION-POSITION DETECTION SYSTEM - A rotation-position detection system according to the present invention is configured with a resolver mounted in a brushless motor and a motor controller. The motor controller outputs an excitation signal to the resolver and an A/D converter thereof alternately applies analogue/digital conversion to a sine wave signal and a cosine wave signal outputted from the resolver so that a rotation position of the motor is calculated.10-20-2011
20110043146MOTOR DRIVE CONTROL DEVICE - A motor drive control device is configured to control driving of a brushless DC motor including a stator having drive coils, a rotor having plural magnetic poles, and plural position detecting units that output position detection signals representing position of the rotor with respect to the stator. The motor drive control device includes a drive voltage generating unit configured to generate and output drive voltages to the motor to drive the motor. An abnormality detecting unit can be used to detect abnormality of the position detection signals. When abnormality of at least one of the position detection signals has been detected by the abnormality detecting unit, the motor drive control device can drive the motor based on at least one of the remaining position detection signals excluding the position detection signal that has been detected as abnormal.02-24-2011
20120268047FAN MOTOR DRIVING DEVICE, AND COOLING DEVICE AND ELECTRONIC MACHINE USING THE SAME - The objective of the present invention is to miniaturize a driving circuit of a fan motor. The present invention provides a driving device for driving a fan motor as a three-phase brushless DC motor. An inbuilt Hall component is disposed adjacent to the fan motor and generates a pair of Hall signals corresponding to a rotor position of the fan motor. An internal power source supplies a bias signal to the inbuilt Hall component. A Hall signal processing portion cancels a shift of the pair of Hall signals and amplifies the Hall signal. A driving processing circuit drives the fan motor according to an output signal of the Hall signal processing portion. The driving device is integrated on a semiconductor substrate.10-25-2012
20110089874Motor drive controller and image forming apparatus incorporating the motor drive controller - A motor drive controller includes a position detector that detects and outputs positional signals representing rotational positions of the magnetic rotor at first resolution, a position change detector that detects and outputs position change signals representing rotational positions of the magnetic rotor at second resolution higher than the first resolution, a phase synchronizing circuit that generates and outputs low resolution absolute phase information based on the positional and position change signals. The phase synchronizing circuit generates and outputs high-resolution absolute phase information based on the position change signals. A drive voltage signal outputting device outputs a drive voltage signal causing the current to flow through the coils in accordance with the absolute phase information.04-21-2011
20120146561ELECTRONICALLY COMMUTATED ELECTRIC MOTOR FEATURING PREDICTION OF THE ROTOR POSITION AND INTERPOLATION, AND METHOD - The invention relates to an electronically commutated electric motor comprising a stator and an especially permanent-magnetic rotor. The electric motor also comprises a control unit which is effectively connected to the stator and is designed to generate control signals for commutating the stator in such a way that the stator can generate a rotating magnetic field in order to rotate the rotor. The electric motor further comprises at least one rotor position sensor which is designed to detect a position, especially an angular position, of the rotor and generate a rotor position signal representing the position of the rotor. The control unit is designed to generate the control signals in accordance with the rotor position signal. According to the invention, the control unit is designed to sample and quantize the rotor position signal and generate a digital rotor position signal. The digital rotor position signal forms a time-related data stream which corresponds to the sampled and quantized rotor position signal. The control unit includes an interpolator which is designed to generate at least one intermediate value in the digital rotor position signal, said intermediate value lying between two successive rotor position values.06-14-2012
20100060213MOTOR CONTROLLER, MOTOR DRIVE SYSTEM AND PUMP UNIT - A motor controller for controlling a permanent magnet motor having a rotor having a permanent magnet and a stator having multiphase windings including a position detector generating and outputting rotor rotational position signal; a waveform data storage storing sinusoidal waveform data; a drive signal output section reading the waveform data from the waveform data storage at timings determined based on the rotational position signal and outputting a voltage signal corresponding to the waveform data to the windings through a drive section; a data history storage storing data corresponding to the voltage signal of previous control period; and an output data modifier that, when outputting the voltage signal in current control period, compares corresponding waveform data with previous waveform data, and if difference between the current and the previous data is equal to or greater than a predetermined value, current output data is modified by a portion of the difference.03-11-2010
20110148336MOTOR CONTROL DEVICE AND METHOD FOR CONTROLLING BRUSHLESS MOTOR - A motor control device detects electric currents on two perpendicular axes and calculates voltage command values on the two perpendicular axes according to deviations between the detected electric currents and target current values respectively, thereby to perform feedback control of a brushless motor equipped with a rotation angle sensor. On the premise that a γ axis, which represents a phase component, and a δ axis, which represents a torque component, become control axes due to an assembly error of the rotation angle sensor, a correction value calculation unit of the motor control device sets an electric current on the γ axis to 0 to establish a no-load steady rotation state and calculates the assembly error from a voltage equation on γ-δ axes.06-23-2011
20110133678MOTOR CONTROL DEVICE, MOTOR DRIVE SYSTEM AND INVERTER CONTROL DEVICE - An inverter control device includes a phase current detection unit which is connected to a current sensor. The current sensor detects current flowing between a three-phase inverter which converts a DC voltage into AC three-phase voltages and a DC power supply which outputs the DC voltage, and the phase current detection unit detects phase current flowing in each phase of the inverter from a result of detection by the current sensor, so as to control the inverter on the basis of a result of detection by the phase current detection unit. The phase current detection unit includes an estimation block which estimates phase current of an intermediate voltage phase or current corresponding to the phase current of the intermediate voltage phase as a first estimated current, and estimates phase current of a maximum voltage phase or phase current of a minimum voltage phase using the first estimated current so that each phase current can be detected.06-09-2011
20120146560MOTOR CONTROL SYSTEM - A motor control system includes a power supply to supply current to a motor, a shunt resistor provided at one side of the motor to measure the magnitude of current supplied to the motor, a differential amplifier to receive a voltage applied to both ends of the shunt resistor as an input signal and amplify the input signal, an Analog/Digital Converter (ADC) to convert an analog signal generated from the differential amplifier into a digital signal, a switch to switch current applied to the motor by the power supply, and a microcontroller to generate a Pulse Width Modulation (PWM) control signal so as to control ON or OFF of the switch and generate an operation start signal of the ADC by considering the PWM control signal and a hardware delay value of the differential amplifier.06-14-2012
20090189554MOTOR SENSING CIRCUIT WITH TRANSIENT VOLTAGE SUPPRESSION - A motor sensing circuit with transient voltage suppression includes a sensing unit and an impulse absorber. The sensing unit has an electrical switch generating a pulse sensing signal when switching and a signal output terminal electrically connecting to the electrical switch and outputting said pulse sensing signal. The impulse absorber has a first terminal connecting to the signal output terminal of the sensing unit and a second terminal being grounded. Consequently, the impulse absorber is able to provide a route for a transient current to be drained away, with the transient current being generated by an impulse inputted the motor sensing circuit through the signal output terminal.07-30-2009
20110156624MOTOR DRIVE CIRCUIT FOR DRIVING A SYNCHRONOUS MOTOR - A coil current detector detects a current component flowing through a coil. A scaling unit scales a drive signal. An induced voltage component extraction unit extracts an induced voltage component by removing the drive signal, scaled by the scaling unit, from the coil current component detected by the current detector. A phase difference detector detects a phase difference between the phase of the drive signal and that of the induced voltage component. A signal adjustment unit adjusts the drive signal so that the phase difference detected by the phase difference detector can be brought close to a target phase difference.06-30-2011
20120001574Electric Power Conversion System and Electric Power Conversion Device - According to the present invention, an electrical power conversion system includes: a motor; an inverter circuit that outputs three-phase (U-phase, V-phase, W-phase) alternating currents to the motor; a current sensor that detects each of the three-phase alternating currents; and a control circuit that controls the inverter circuit based on a torque command value and values detected by the current sensor, so that the three-phase alternating currents outputted from the inverter circuit are formed as sine waves; and wherein the control circuit includes: a current component extraction unit that, based on the values detected by the current sensor, for each phase, extracts current components superimposed upon each of three-phase alternating currents; and an AC current abnormality detection unit that detects abnormality of an AC current flowing to the motor, based on the phases of the current components for any two phases among the three-phase alternating currents.01-05-2012
20120007529Image forming apparatus, motor control apparatus and motor control method thereof - An image forming apparatus includes an engine unit used for performing an image forming job, an engine control unit which controls the operation of the engine unit, a brushless direct current (BLDC) motor which drives the engine unit, a sensor unit which senses the driving information of the BLDC motor, a communication interface unit which receives a digital control command with respect to the BLDC motor from the engine control unit, a driving signal unit which generates a driving signal to control the BLDC motor, and a digital control unit which controls the operation of the driving signal unit in a digital PLL manner, based on the received digital control command, the detected driving information and a digital gain value as a control factor with respect to the BLDC motor.01-12-2012
20120013280Brushless Three Phase Motor Drive Control Based on a Delta Zero Crossing Error - A control method for a brushless, three-phase DC motor. The motor may include a plurality of electromagnets and a rotor. A voltage induced by rotation of a rotor may be sampled at an expected zero crossing value to produce a first sampled voltage value. An average of a plurality of sampled voltage values, including voltage values sampled at a plurality of prior expected zero crossing values, may be calculated. A delta zero crossing error may be calculated. The delta zero crossing error may be calculated based on a difference between the first sampled voltage value and the calculated average. The plurality of electromagnets may be commutated. Commutation timing for the plurality of electromagnets may be determined based at least in part on the delta zero crossing error.01-19-2012
20120013281SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE - A motor speed determining circuit determining a rotation speed of a motor is provided and a processing of generating motor driving waveform is switched in accordance with the rotation speed of the motor. A resolver signal outputted from a resolver 01-19-2012
20120112672ROTATION ANGLE CALCULATION APPARATUS AND ROTATION ANGLE CALCULATION METHOD - A control apparatus using a multipole resolver for calculating the rotation angle of a motor includes an acquisition unit, a learning unit, a calculation unit, and a correction unit. The acquisition unit acquires a detected angle θ detected by the multipole resolver. The learning unit learns the waveform of an error Errθ for each pole of the resolver. The calculation unit calculates a motor's rotational acceleration variation α. The correction unit compares the rotation speed variation α with a threshold value α0. Where α<α0, the correction unit performs a normal correction of calculating a corrected angle φ using an error Errθ of one mechanical period (in which the motor makes one full rotation) ago. In contrast, where α>α0, the correction unit performs a transition correction of calculating a corrected angle φ using an immediately preceding error Errθ.05-10-2012
20120025745CONTROL CIRCUIT OF AN ELECTRIC MOTOR WITH A MEASURE DELAY COMPENSATION AND MOTOR SYSTEM COMPRISING THE CIRCUIT - A control circuit controls an electric motor and includes: a measuring device configured to measure a first phase current of the motor and provide a corresponding first analog signal; an analog-to-digital converter structured to convert the first analog signal into a first digital signal; a conversion module for generating a first converted digital signal representative of the first digital signal expressed in a rotating reference system; a node structured to compare the first converted digital signal into a first reference signal and generate a first error signal; and a measure control circuit structured to provide a timing signal of the analog-to-digital converter depending on the first error signal and a time delay introduced by the measuring device.02-02-2012
20090134821MOTOR DRIVING CIRCUIT - A motor driving circuit for full-wave single-phase driving a motor includes a position detection unit, a turn-on signal generation unit, and switching devices that define an H-bridge circuit. The turn-on signal generation unit includes a differential amplifier arranged to produce a trapezoid wave signal, and a square wave generation circuit arranged to produce a square wave signal, wherein the trapezoid and the square wave signals are respectively supplied to control terminals of lower switching devices in the H-bridge circuit. Further, one of the lower switching devices is turned on and off according to a voltage level of the square wave signal, and the remaining lower switching device is turned on and off when a voltage of the trapezoid wave signal becomes higher than an operation voltage of the remaining lower switching device, wherein a non-conducting interval is provided for the motor coil according to the operation voltage.05-28-2009
20090134822CONTROLLER OF MULTI-PHASE ELECTRIC MOTOR - A controller of a multi-phase electric motor has a drive section having an upper arm switching element and a lower arm switching element for driving the multi-phase electric motor, a single current detection section for detecting a current value of the multi-phase electric motor, a pulse width modulation signal generation section for generating plural pulse width modulation of each phase within one control period based on the current value detected by the current detection section and a carrier signal, and a phase movement section for moving the pulse width modulation signal of a predetermined phase generated by the pulse width modulation signal generation section by gradually changing a movement amount of the phase in one control period, and outputting the resultant pulse width modulation signal to the drive section.05-28-2009
20120161680BRUSHLESS MOTOR CONTROL DEVICE AND BRUSHLESS MOTOR - A voltage application unit causes switching elements to apply voltage to flow an electric current into corresponding windings to generate a revolving magnetic field. A period derivation unit derives an energization period of the windings. A signal generation unit generates a PWM signal for causing the voltage application unit to activate and deactivate the switching elements, such that a duty ratio decreases gradually in a predetermined time period subsequent to the derived energization period. A period specifying unit specifies a detection period of an electric current, which is supplied from the switching elements presently switched and deactivated, by a predetermined time period between an edge, which is caused when the PWM signal changes in level to deactivate the switching elements, and a time point in advance of the edge in the energization period.06-28-2012
20110181214MOTOR DRIVE CIRCUIT - A motor drive circuit is configured to drive a motor based on first and second position detection signals opposite in phase to each other, the signals having a frequency corresponding to a rotational speed of the motor and indicating a rotational position of the motor. The circuit includes a first level-shift circuit, a second level-shift circuit, a timing detecting circuit, and an output circuit. The first level-shift circuit is configured to shift a level of at least either one of the first and second position detection signals so that a first period, during which a first output signal corresponding to the first position detection signal is higher in level than a second output signal corresponding to the second position detection signal, becomes longer than a second period, during which the second output signal is higher in level than the first output signal.07-28-2011
20100052581MOTOR CONTROLLER - When the torque command value is zero, a set point of DC current for an inverter is calculated to obtain a difference between the set point and a detected DC current so that an error in magnetic pole position may be estimated and corrected. By correcting the magnetic pole position, unwanted power running and regenerative torque of the motor can be avoided and unnecessary charge or discharge to or from a battery can be prevented.03-04-2010
20100052580Speed Control Module for Motor - The speed control module includes a sensing element installed in a motor for detecting a position of magnet of rotor; a power switch connected to the motor for switching on/off control signals sent to the motor; a main controller connected to the power switch and sensing element for processing half-wave feedback signals from the sensing element and sending the signals to the motor via the power switch; and speed adjusting element connected to the main controller for receiving external information and providing to the main controller. When the motor is operating, the half-wave feedback signals of the sensing element vary because of continuous rotation of the magnet of rotor. The main controller outputs a three-phase voltage to change the magnetic field of the stator coil, so that the motor speed can be smooth and stable.03-04-2010
20120074879Methods and Apparatuses for Fault Management in Permanent Magnet Synchronous Machines Using the Field Reconstruction Method - Methods and apparatuses for detecting faults and optimizing phase currents in an electromechanical energy converter are disclosed. An example method comprises: measuring a current of a phase of the electromechanical energy converter, modeling the electromechanical energy converter with the current measurement input into a field reconstruction module, calculating a flux linkage of the electromechanical energy converter, comparing the flux linkage with a flux linkage from a no fault electromechanical energy converter, and optimizing the current of the phase of the electromechanical energy converter in response to the comparison. Other embodiments are described and claimed.03-29-2012
20100007294MICROCOMPUTER AND MOTOR CONTROL SYSTEM PROVIDED THEREWITH - A microcomputer which obtains a rotor position signal from a biphase signal delivered by a resolver mounted on an electric motor according to a rotation phase of a rotor relative to a stator, thereby controlling the motor based on the rotor position signal. The microcomputer includes a digital signal converter which is configured by hardware and converts the biphase signal delivered from the resolver into a digital data position signal, the digital signal converter being mounted on a single chip.01-14-2010
20120229062MOTOR CONTROL SYSTEM FOR A HOIST DRIVE - A motor control system for a hoist drive having an electric motor operationally connected to a hoisting member for hoisting a load, the motor control system being adapted to generate a final angular frequency reference (ω*09-13-2012
20100327786Electric motor drive control apparatus - An electric motor drive control apparatus includes a detection angle obtaining section that obtains the detection angle of the resolver; a correction information storage section that stores correction information for correcting the detection angle, in association with a modulation ratio that is a ratio of an effective value of a fundamental wave component of the AC voltage to the system voltage; and a detection angle correcting section that obtains the correction information from the correction information storage section, based on the modulation ratio at the time the detection angle obtaining section obtains the detection.12-30-2010
20120262097MOTOR DRIVING APPARATUS AND MOTOR APPARATUS USING THE SAME - A motor driving apparatus includes an automatic gain control circuit on a signal path for transmitting a rotor-position detecting signal (hall voltage signal), and the automatic gain control circuit includes: an amplifier, configured to perform differential amplification on an input signal (step-angle hall current signal) to generate an output signal (amplified hall current signal); and a feedback control portion, configured to monitor the output signal (monitored current signal) to decide a gain of the amplifier.10-18-2012
20120081046CONTROL OF AN ELECTRICAL MACHINE - A method of controlling an electrical machine that includes selecting an edge of a rotor-position signal as a reference edge and commutating a phase winding of the electrical machine at times relative to the reference edge. The rotor-position signal has at least four edges per mechanical cycle, each of the edges being associated with a respective zero-crossing in back EMF or minimum in inductance of the phase winding. The angular position of at least one of the edges relative to its respective zero-crossing or minimum is different to that of the other edges. The reference edge is then selected from the edges such that the angular position of the reference edge relative to its respective zero-crossing or minimum is the same with each power on of the electrical machine. Additionally, a controller and control system that implement the method.04-05-2012
20130009577SYSTEM FOR CONTROLLING A MOTOR - A system for controlling a motor is provided. The system for controlling the motor includes a sensor for sensing position information of a rotor of the motor, a processor for receiving the sensed signal from the sensor and estimating an electrical angle on the basis of the sensed signal, and a control signal generating module for generating a control signal used to control the operation of the motor based on the electrical angle. The system can obtain the necessary control signal for controlling the motor only by one sensor, thereby reducing the complexity of installation of the sensors in the motor and also saving the cost.01-10-2013
20090146593Motor controller of air conditioner - The present invention relates to a motor controller for air conditioner including a converter having at least one switching element for converter, the converter converting AC utility power into DC power by a switching operation of the switching element; an inverter having at least one switching element for inverter, the inverter converting the DC power into prescribed AC power by a switching operation of the switching element and driving a three-phase motor; a microcomputer outputting a converter switching control signal that controls the switching element for converter; and a dc terminal signal generator detecting a dc terminal voltage that is applied across an dc terminal of the converter to sequentially generate a pulse type dc terminal signal, and insulating the dc terminal from the microcomputer. The present invention may sequentially generate a dc terminal signal and simultaneously insulate the dc terminal from the microcomputer, thus making it possible to improve the stability of the motor controller.06-11-2009
20130175956APPARATUS AND METHOD TO CONTROL BLDC MOTOR - An apparatus and method to control a brushless direct current (BLDC) motor, which accurately detect driving current. To this end, the BLDC motor control apparatus includes a BLDC motor, a driver to generate driving current to drive the BLDC motor, a current measurer to measure the driving current, a pulse width modulator to change a driving voltage to drive the BLDG motor; and a controller to control the BLDC motor. The controller detects the amount of the driving current in synchronization with pulse width modulation of the pulse width modulator and determines current with a minimum change due to a variation of counter electromotive force, among currents flowing through a plurality of coils, as the driving current, thereby accurately detecting the driving current.07-11-2013
20110273120PWM CONTROL CIRCUIT AND PWM CONTROL METHOD - The PWM control circuit includes a polarity determination unit, a full wave rectification unit, an adjustment unit that generates an adjusted waveform signal by adjusting waveform of the full wave rectification signal, and a carrier signal generating unit that generates a fixed frequency carrier signal. The PWM control circuit further includes a comparator that generates an original PWM signal by comparing the adjusted waveform signal and the carrier signal, and a PWM waveform shaping unit that generates a first PWM signal for the positive polarity section and a second PWM signal for the negative polarity section, by shaping the original PWM signal according to the polarity signal.11-10-2011
20110273119CONTROL DEVICE AND METHOD FOR CONTROLLING AN ELECTRONICALLY COMMUTATED MOTOR, AND MOTOR - The invention relates to a control device for controlling an electronically commutated motor. The control device comprises a control input for a rotor position signal and a control output for connection to field coils of the motor. The control device is designed to generate a load current for displacing a rotor of the motor depending on the rotor position signal and to output said load current via the control output. The control device comprises at least one semiconductor switch for switching the load current depending on a semiconductor control signal. The control device comprises at least one pulse generator including the at least one semiconductor switch, said pulse generator being designed to generate the load current in the form of a pulsed control signal for displacing the rotor. The control device is characterized by a delta sigma converter which is at least indirectly connected to the control input on the input side and which is designed to produce the semiconductor control signal in the form of a digital bit stream depending on the rotor position signal.11-10-2011
20090140676METHOD AND SYSTEM FOR SENSORLESS CONTROL OF AN ELECTRIC MOTOR - Methods and systems for controlling an electric motor are provided. A signal comprising at least first and second cycles is provided to the electric motor. A first flux value for the electric motor associated with the first cycle of the signal is calculated. A second flux value for the electric motor associated with the second cycle of the signal is calculated based on the first flux value.06-04-2009
20100308758BACK EMF SENSING INTERFACE CIRCUIT - A back EMF signal from PWM driven motor is passed through an attenuation circuit. The attenuation circuit has a first mode of operation and a second mode of operation. The first mode of operation, used to sample a higher voltage back EMF signal during PWM on-time, applies the back EMF signal to a resistive divider formed of a first resistor and second resistor connected in series. The second mode of operation, used to sample a lower voltage back EMF signal during PWM off-time, applies the back EMF signal to a circuit comprised of a transistor conduction path in series with the second resistor. A control signal, responsive PWM on-time and off-time state, controls switching between the first and second modes.12-09-2010
20120274248ELECTRONICALLY COMMUTATED ELECTRICAL MOTOR HAVING A CALIBRATED MOTOR TORQUE CONSTANT - The invention relates to an electrically commutated electrical motor having a stator and having an in particular permanent-magnetically designed rotor. The electronically commutated electrical motor also has a control unit which is connected to the stator and designed to actuate the stator for generating a magnetic rotary field. The control unit is designed to detect a voltage induced in at least one stator coil of the stator and to determine a motor torque constant representing an achievable torque in dependence on a rotational speed signal representing a rotor circumferential frequency of the rotor. According to the invention, the control unit in the electronically commutated electrical motor of the aforementioned type is designed to detect a frequency content of the motor torque constant and to actuate the stator for generating a torque in dependence of the frequency content, in particular a frequency amplitude of the motor torque constant.11-01-2012
20110234129MOTOR DRIVING CIRCUIT - First and second A/D converters perform analog/digital conversion of first and second signals of a Hall signal so as to generate third and fourth signals as digital signals. A differential conversion circuit generates a fifth signal as a single-ended signal that corresponds to the difference between the third and fourth signals. An offset correction circuit corrects offset of the fifth signal so as to generate a sixth signal. An amplitude control circuit stabilizes the amplitude of the sixth signal to a predetermined target value, and generates its absolute value, thus generating a seventh signal. A control signal generating unit generates a control signal based upon the seventh signal. A driver circuit drives a motor according to the control signal.09-29-2011
20130154526APPARATUS AND METHOD FOR COMPENSATING OFFSET OF CURRENT SENSOR - Provided is an apparatus for compensating offset of a current sensor detecting a motor current supplied by an inverter for PWM (Pulse Width Modulation) control of a motor, the apparatus including a current controller providing a PWM signal generated based on the motor current detected by the current sensor to the inverter, calculating an offset using the motor current detected by the current sensor in response to presence and absence of the PWM control of the motor, or offset-compensating the motor current detected by the current sensor.06-20-2013
20100019706MOTOR ROTATION IRREGULARITY DETECTION CIRCUIT - A motor rotation irregularity detection circuit includes a first integrator for integrating a rotation detection signal that is output from a driver of a sensor-less motor; a differentiator for outputting a difference between a binary signal based on the integral in the first integrator and the rotation detection signal; a second integrator for integrating an output signal of the differentiator; a comparator for making a comparison between the integral in the second integrator and a reference voltage to output an irregularity detection signal; and an output terminal for outputting a signal coming from the comparator.01-28-2010
20130181644ANGLE DETECTION APPARATUS AND METHOD FOR ROTOR OF MOTOR - An angle detection apparatus for a rotor of a motor includes a period counter, a step period generator, and an angle generator. The period counter receives a rotor sensing signal, and calculates a plurality of time ranges of a plurality of pulses of the rotor sensing signal. The step period generator generates a ratio value and an error signal according to an average time range value of the time ranges and a set value. The step period generator further adjusts the ratio value according to the error signal, and generates a step time according to the adjusted ratio value and the average time range value. The angle generator receives the step time and the rotor sensing signal, and obtains an angle detection result according to the rotor sensing signal and the step time.07-18-2013
20110279072MOTOR DRIVING CIRCUIT - First and second A/D converters perform analog/digital conversion of first and second signals of a Hall signal so as to generate third and fourth signals as digital signals. A differential conversion circuit generates a fifth signal as a single-ended signal that corresponds to the difference between the third and fourth signals. An offset correction circuit corrects offset of the fifth signal so as to generate a sixth signal. An amplitude control circuit stabilizes the amplitude of the sixth signal to a predetermined target value, and generates its absolute value, thus generating a seventh signal. A control signal generating unit generates a control signal upon the seventh signal. A driver circuit drives a motor according to the control signal.11-17-2011
20120019179CONTROL DEVICE AND CONTROL METHOD FOR MOTOR - A control device divides 360° corresponding to one cycle of a resolver angle into N zones, and determines whether or not a resolver angle θ in the current cycle exceeds a division border. When determined that resolver angle θ in the current cycle exceeds a division border, the control device calculates a time difference ΔT[n] between a calculation time T[n] in the immediately preceding resolver cycle and a calculation time T in the current cycle. The control device also calculates a resolver angle variation Δθ[n] with time difference ΔT[n] by adding 360° to the difference between resolver angle θ obtained in the current cycle and a resolver angle θ[n] obtained in the immediately preceding resolver cycle. The control device then calculates a rotation speed NM by multiplying, by a coefficient K, a value obtained by dividing Δθ[n] by ΔT[n].01-26-2012
20130093372METHOD AND SYSTEM ESTIMATING ROTOR ANGLE OF AN ELECTRIC MACHINE - Position samples are stored from an encoder coupled to a permanent magnet electric machine. A data processor determines first changes in position between successive position samples and second changes between successive first changes in position. A data processor determines whether each first change in position is generally increasing, decreasing or constant. A corrective motion factor is applied to each stored position sample based on whether the first change in position is generally increasing or decreasing. The data processor estimates a final rotor angle of the electric machine based on a particular one of the position samples and a corresponding first change in position associated with the particular one of the position samples corresponding to a respective time.04-18-2013

Patent applications in class Specific processing of feedback signal or circuit therefore (i.e., A-D conversion, compression, or modification)

Patent applications in all subclasses Specific processing of feedback signal or circuit therefore (i.e., A-D conversion, compression, or modification)