Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Magnetic field acceleration means

Subclass of:

315 - Electric lamp and discharge devices: systems

315500000 - HIGH ENERGY PARTICLE ACCELERATOR TUBE

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
315501000 Magnetic field acceleration means 89
20100033115HIGH-CURRENT DC PROTON ACCELERATOR - A dc accelerator system able to accelerate high currents of proton beams at high energies is provided. The accelerator system includes a dc high-voltage, high-current power supply, an evacuated ion accelerating tube, a proton ion source, a dipole analyzing magnet and a vacuum pump located in the high-voltage terminal. The high-current, high-energy dc proton beam can be directed to a number of targets depending on the applications such as boron neutron capture therapy BNCT applications, NRA applications, and silicon cleaving.02-11-2010
20120194104HF RESONATOR CAVITY AND ACCELERATOR - An RF resonator cavity for accelerating charged particles comprises an RF resonator cavity in which an electromagnetic RF field acts on a particle beam which passes through the RF resonator cavity along a beam path, and at least one intermediate electrode arranged in the RF resonator cavity along the beam path of the particle beam, the intermediate electrode increasing an electrical breakdown resistance in the resonator cavity. An accelerator for accelerating charged particles, which includes such RF resonator cavity, is also provided.08-02-2012
20100013418Particle Radiation Therapy Equipment - Particle radiation therapy equipment arranged to apply a charged particle beam in a predetermined direction to a region of application within an imaging volume, comprising a charged particle beam source arranged to direct a charged particle beam in the predetermined direction, further comprising magnetic field generation means for generating a magnetic field in the region of application at the same time that the charged particle beam is applied, wherein the magnetic field generation means is arranged to provide access to the region of application for the charged particle beam, and to provide a homogeneous magnetic field in the region of application of the charged particle beam, said magnetic field being directed substantially in the predetermined direction.01-21-2010
20100039051Power Variator - An apparatus for use in a process to regulate power for a particle accelerator includes a first circulator, a second circulator, a tee coupled between the first and the second circulator, and a tuner coupled to the tee. An apparatus for use in a process to regulate power for a particle accelerator includes a first circulator, a second circulator, a 3-dB coupler coupled between the first and the second circulator, and a tuner coupled to the 3-dB coupler.02-18-2010
20090033249Method and apparatus for the acceleration and manipulation of charged particles - A magnetic field crosses non-uniform rotating electric radial fields which are generated between a central electrode and a series of circumferential outer electrodes. Synchronous charging and partial discharging is applied to the outer electrodes, generating a rotating non-axisymmetric field. Charged particles may then be accelerated and held in a circular orbit, regulated by the magnitude and frequency of the charging of the electrodes, with a radius given by Bqwr=Eq+mw02-05-2009
20110101891VIRTUAL GAP DIELECTRIC WALL ACCELERATOR - A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a “virtual” traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.05-05-2011
20090146587Completely Sealed High Efficiency Microwave Sulfur Lamp - A completely sealed microwave sulfur lamp is made possible by removing the heat generated from the magnetron and high voltage direct-current power supply via heat conducting oil, rubber and resin. An oil pump is used to circulate the heated oil to the metallic housing of the lamp for natural cooling. No forced air cooling is needed. High efficiency power supply is used to reduce the heat generated. The low ripple direct-current high voltage generated also contributes to lower heat generation at the magnetron.06-11-2009
20120062153RF CAVITY USING LIQUID DIELECTRIC FOR TUNING AND COOLING - A system for accelerating particles includes an RF cavity that contains a ferrite core and a liquid dielectric. Characteristics of the ferrite core and the liquid dielectric, among other factors, determine the resonant frequency of the RF cavity. The liquid dielectric is circulated to cool the ferrite core during the operation of the system.03-15-2012
20120206069PARTICLE ACCELERATOR HAVING WIDE ENERGY CONTROL RANGE - A particle accelerator system for producing a charged particle beam having pulses of charged particles that have different energy levels from pulse to pulse. The system enables independent adjustment of the RF power delivered to first and second accelerating sections thereof without adjustment of the RF power generated by an RF source. Such independent adjustment enables the RF power provided to the first accelerating section to be maintained at a level appropriate for optimal particle capturing therein and for producing a tightly bunched beam of particles having different energy levels from pulse to pulse, while enabling the RF power provided to the second accelerating section to be varied in order to vary the energy levels of the charged particles of the charged particle beam from pulse to pulse.08-16-2012
20120161671PARTICLE ACCELERATORS HAVING ELECTROMECHANICAL MOTORS AND METHODS OF OPERATING AND MANUFACTURING THE SAME - A particle accelerator including an electrical field system and a magnetic field system that are configured to direct charged particles along a desired path within an acceleration chamber. The particle accelerator also includes a mechanical device that is located within the acceleration chamber. The mechanical device is configured to be selectively moved to different positions within the acceleration chamber. The particle accelerator also includes an electromechanical (EM) motor having a connector component and piezoelectric elements that are operatively coupled to the connector component. The connector component is operatively attached to the mechanical device. The EM motor drives the connector component when the piezoelectric elements are activated thereby moving the mechanical device.06-28-2012
20120256563WELDING METHOD AND SUPERCONDUCTING ACCELERATOR - Provided is a welding method of welding a cylindrical stiffening member to an outer circumference of a superconducting accelerator tube body using a laser beam in a process of manufacturing a superconducting accelerator tube. The laser beam is configured such that a distribution profile of energy density on an irradiated face to which the laser beam is irradiated is a Gaussian distribution profile having a peak section, and the energy density of the peak section is 5.8×1010-11-2012
20100207551MULTI-MODE, MULTI-FREQUENCY, TWO-BEAM ACCELERATING DEVICE AND METHOD - A two-beam accelerator device including a drive beam source and an accelerated beam source for providing a drive beam and accelerated beam, a detuned resonant cavity disposed in the path of the drive beam and the accelerated beam, and a two-beam focusing device and method of use thereof. The detuned resonant cavity may be rectangular, square, axisymmetrical, and/or cylindrical. The focusing device may include a modified quadrupole magnet having four magnets, a central opening, a channel in the central opening, an opening in one of the four magnets, the opening having a non-magnetic channel lined with a magnetic material.08-19-2010
20120326636Accelerator system stabilization for charged particle acceleration and radiation beam generation - A method for generating stabilized particle acceleration by a radio-frequency (RF) accelerator is described, comprising operating the accelerator in a warm-up mode during a warm-up time period, without injecting charged particles or without accelerating injected charged particles, and operating the accelerator in a beam-on mode during a beam-on time period after the warm-up time period, to accelerate charged particles injected by the charged particle source. Automatic frequency control to match an expected frequency of the accelerator during the beam-on time period, prior to the start of the beam-on time period, for stability, is also described.12-27-2012
20120286702APPARATUS AND METHOD FOR ENERGY STORAGE WITH RELATIVISTIC PARTICLE ACCELERATION - An energy storage device is proposed that utilizes acceleration of particles to near relativistic velocities to store energy in the kinetic energy of accelerated particles. Designs and models are provided for a commercially feasible device that implements the concept. The device allows tremendous performance capabilities across many parameters including energy density. Multiple innovations are also proposed for methods to reconvert the kinetic energy of accelerated particles back to electricity. In addition, certain innovations are proposed for accelerated particle beam control, beam particle designs and beam confinement rings. The device is different from existing particle collider storage rings in that it maximizes total beam energy, not energy per particle by accelerating particles to velocities substantially less than the speed of light. In addition, it includes innovations to meet the requirements of the commercial market with specific applications in markets such as grid level storage and energy storage for vehicles.11-15-2012
20080231215Undulator - An undulator comprises a first magnetic circuit (09-25-2008
20110298397Special purpose modes in photonic band gap fibers - Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.12-08-2011
315502000 Cyclotron 16
20120161672High-Current DC Proton Accelerator - A dc accelerator system able to accelerate high currents of proton beams at high energies is provided. The accelerator system includes a dc high-voltage, high-current power supply, an evacuated ion accelerating tube, a proton ion source, a dipole analyzing magnet and a vacuum pump located in the high-voltage terminal. The high-current, high-energy dc proton beam can be directed to a number of targets depending on the applications such as boron neutron capture therapy BNCT applications, NRA applications, and silicon cleaving.06-28-2012
20100045213Programmable Radio Frequency Waveform Generator for a Synchrocyclotron - A synchrocyclotron comprises a resonant circuit that includes electrodes having a gap therebetween across the magnetic field. An oscillating voltage input, having a variable amplitude and frequency determined by a programmable digital waveform generator generates an oscillating electric field across the gap. The synchrocyclotron can include a variable capacitor in circuit with the electrodes to vary the resonant frequency. The synchrocyclotron can further include an injection electrode and an extraction electrode having voltages controlled by the programmable digital waveform generator. The synchrocyclotron can further include a beam monitor. The synchrocyclotron can detect resonant conditions in the resonant circuit by measuring the voltage and or current in the resonant circuit, driven by the input voltage, and adjust the capacitance of the variable capacitor or the frequency of the input voltage to maintain the resonant conditions. The programmable waveform generator can adjust at least one of the oscillating voltage input, the voltage on the injection electrode and the voltage on the extraction electrode according to beam intensity and in response to changes in resonant conditions.02-25-2010
20110140641Electron Cyclotron Ion Source and Manufacturing Method Thereof - An apparatus of an electron cyclotron resonance ion source may include: a magnet unit containing a magnet for generating magnetic fields; an ionizing chamber housing unit for generating ions through electron cyclotron resonance from a plasma; a microwave generating unit for injecting microwaves to the ionizing chamber housing unit to generate ions; and a beam integrating and guiding unit for treating the generated ions. The magnet unit may include: a bobbin for winding the magnet; a variable spacer for dividing the bobbin into a plurality of sections; and the magnet which is wound into the form of a wire or a tape in the plurality of sections formed by the variable spacer.06-16-2011
20130162176Device And Method For Fast Beam Current Modulation In A Particle Accelerator - The present invention relates to a circular particle accelerator capable of modulating the particle beam current exiting the circular particle accelerator. The circular particle accelerator includes: an ion source for generating the particle beam; Dee electrode and counter-Dee electrode separated from each other by gaps for accelerating the particle beam, the counter-Dee electrode being grounded; a generator capable of applying an alternating high voltage to the Dee electrode, so as it is possible to have an electric field between the gaps; means for measuring the current intensity of the particle beam exiting the circular particle accelerator. It also comprises a regulator capable of modulating the Dee electrodes voltage amplitude (V06-27-2013
20090140671MATCHING A RESONANT FREQUENCY OF A RESONANT CAVITY TO A FREQUENCY OF AN INPUT VOLTAGE - A synchrocyclotron includes magnetic structures that define a resonant cavity, a source to provide particles to the resonant cavity, a voltage source to provide radio frequency (RF) voltage to the resonant cavity, a phase detector to detect a difference in phase between the RF voltage and a resonant frequency of the resonant cavity that changes over time, and a control circuit, responsive to the difference in phase, to control the voltage source so that a frequency of the RF voltage substantially matches the resonant frequency of the resonant cavity.06-04-2009
20110285327COOLING SYSTEMS AND METHODS - An ion therapy system comprises a particle accelerator (11-24-2011
20080258653CYCLOTRON HAVING PERMANENT MAGNETS - An apparatus for an improved cyclotron for producing radioisotopes especially for use in association with medical imaging. The improved cyclotron is configured without a conventional electromagnetic coil. A plurality of dees and a plurality of permanent magnets are alternately disposed in a circular array, each defining a channel through which ions travel. The vacuum chamber wall defines an opening disposed at the center of the array, the opening being configured to receive an ion source. Positive ions flowing from the ion source are exposed to the magnetic field generated by permanent magnets. The positive ions are repelled as they exit a positively charged dee. Negatively charged dees pull the ions. Each time the particles pass through the gap approaching the dees and as they leave the dee and pass through the magnets, they gain energy, so the orbital radius continuously increases and the particles follow an outwardly spiraling path. The disclosure also includes a system composed of a particle accelerator combined with a microreactor or microfluidic chip to produce molecular imaging biomarkers.10-23-2008
20090140672Interrupted Particle Source - A synchrocyclotron includes magnetic structures to provide a magnetic field to a cavity, a particle source to provide a plasma column to the cavity, where the particle source has a housing to hold the plasma column, and where the housing is interrupted at an acceleration region to expose the plasma column, and a voltage source to provide a radio frequency (RF) voltage to the cavity to accelerate particles from the plasma column at the acceleration region.06-04-2009
20130141019Cyclotron Comprising a Means for Modifying the Magnetic Field Profile and Associated Method - The present invention relates to a cyclotron capable or producing a first beam of accelerated charged particles defined by a first <> ratio (q/m) or a second beam of accelerated charged particles defined by a second <> ratio (q/m)′ less than said first <> ratio (q/m), said cyclotron comprising: 06-06-2013
20110068717 Twin Internal Ion Source For Particle Beam Production With A Cyclotron - The present invention relates to a cyclotron including two internal ion sources for the production of the same particles. The second ion source can be used as a spare ion source which strongly increases the uptime and the reliability of the cyclotron and reduces the maintenance interventions. Advantageously, the cyclotron is further characterized by an optimized close geometry of the different elements within the central region of the cyclotron. The cyclotron of the invention may be further characterized by an adaptation and optimization of the shape of first and second internal ion source to avoid particle losses during the first turn of acceleration. The cyclotron may be further characterized by an adaptation and optimization of the shape of the counter-Dee electrode assembly and possibly the Dee-electrode assembly in order to improve the acceleration field in-between the gaps.03-24-2011
20080218102Programmable radio frequency waveform generatior for a synchrocyclotron - A synchrocyclotron comprises a resonant circuit that includes electrodes having a gap therebetween across the magnetic field. An oscillating voltage input, having a variable amplitude and frequency determined by a programmable digital waveform generator generates an oscillating electric field across the gap. The synchrocyclotron can include a variable capacitor in circuit with the electrodes to vary the resonant frequency. The synchrocyclotron can further include an injection electrode and an extraction electrode having voltages controlled by the programmable digital waveform generator. The synchrocyclotron can further include a beam monitor. The synchrocyclotron can detect resonant conditions in the resonant circuit by measuring the voltage and or current in the resonant circuit, driven by the input voltage, and adjust the capacitance of the variable capacitor or the frequency of the input voltage to maintain the resonant conditions. The programmable waveform generator can adjust at least one of the oscillating voltage input, the voltage on the injection electrode and the voltage on the extraction electrode according to beam intensity and in response to changes in resonant conditions.09-11-2008
20120126726Compact Cold, Weak-Focusing, Superconducting Cyclotron - A compact, cold, weak-focusing superconducting cyclotron can include at least two superconducting coils on opposite sides of a median acceleration plane. A magnetic yoke surrounds the coils and contains an acceleration chamber. The magnetic yoke is in thermal contact with the superconducting coils, and the median acceleration plane extends through the acceleration chamber. A cryogenic refrigerator is thermally coupled both with the superconducting coils and with the magnetic yoke.05-24-2012
20120217903CIRCULAR ACCELERATOR AND OPERATING METHOD THEREFOR - The circular accelerator comprises: a bending electromagnet that generates a bending magnetic field; a radio-frequency power source that generates a radio-frequency electric field in accordance with an orbital frequency of charged particles; a radio-frequency electromagnetic field coupling part connected to the radio-frequency power source; an acceleration electrode connected to the radio-frequency electromagnetic field coupling part; and an acceleration-electrode-opposing ground plate provided to form an acceleration gap between the plate itself and the acceleration electrode, for generating the radio-frequency electromagnetic field in an orbiting direction of the charged particles; wherein the bending electromagnet generates the bending magnetic field varying in such a way that the orbital frequency of the charged particles varies in a variation range of 0.7% to 24.7% with respect to an orbital frequency at the charged-particles' extraction portion, during a time of injection to extraction of the particles.08-30-2012
20130009571COMPACT, COLD, SUPERCONDUCTING ISOCHRONOUS CYCLOTRON - A compact, cold, superconducting isochronous cyclotron can include at least two superconducting coils on opposite sides of a median acceleration plane. A magnetic yoke surrounds the coils and a portion of a beam chamber in which ions are accelerated. A cryogenic refrigerator is thermally coupled both with the superconducting coils and with the magnetic yoke. The superconducting isochronous cyclotron also includes sector pole tips that provide strong focusing; the sector pole tips can have a spiral configuration and can be formed of a rare earth magnet. The sector pole tips can also be separated from the rest of the yoke by a non-magnetic material. In other embodiments, the sector pole tips can include a superconducting material. The spiral pole tips can also include cut-outs on a back side of the sector pole tips remote from the median acceleration plane.01-10-2013
20130169194CYCLOTRON ACTUATOR USING A SHAPE MEMORY ALLOY - An actuator assembly for use within the vacuum field of a cyclotron, one embodiment of which comprises an interactor which is moveable between a first position and a second position, at least one support structure for supporting the interactor in the first and second positions, a shape memory alloy (SMA) element connected to the interactor and/or support structure and being adapted to exert a force on the interactor and/or support structure so as to urge the interactor from the first position to the second position, an electromagnetic activator operatively associated with the SMA element for causing the element to exert the force when the electromagnetic activator is selectably activated, and a return mechanism operatively connected to the interactor, the support structure and/or the SMA element so as to urge the interactor from the second position to the first position when the electromagnetic activator is deactivated.07-04-2013
20130127375Programmable Radio Frequency Waveform Generator for a Synchocyclotron - A synchrocyclotron includes a resonant circuit that includes electrodes having a gap there between across the magnetic field. An oscillating voltage input, having a variable amplitude and frequency determined by a programmable digital waveform generator generates an oscillating electric field across the gap. The synchrocyclotron can include a variable capacitor in circuit with the electrodes to vary the resonant frequency. The synchrocyclotron can further include an injection electrode and an extraction electrode having voltages controlled by the programmable digital waveform generator.05-23-2013
315503000 Synchrotron 14
20120200237CHARGED PARTICLE BEAM EXTRACTION METHOD USING PULSE VOLTAGE - A charged particle beam extraction method according to the present invention is featured in that, in a circular accelerator which accelerates a charged particle beam, a pulse voltage is applied to a part of the accelerated charged particle beam to generate a momentum deviation only in the part of the charged particle beam, in that the charged particles of a part of the charged particle beam, the charged particles having a large momentum deviation, are located in a non-stable region and in an extraction region in a horizontal phase space with respect to the traveling direction of the charged particle beam, and in that a group of the charged particles located in the non-stable region and in the extraction region are largely deviated in the horizontal direction so as to be extracted.08-09-2012
20090309520MAGNETIC FIELD CONTROL METHOD AND APPARATUS USED IN CONJUNCTION WITH A CHARGED PARTICLE CANCER THERAPY SYSTEM - The invention comprises a charged particle beam acceleration, extraction, and/or targeting method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Novel design features of a synchrotron are described. Particularly, turning magnets, edge focusing magnets, concentrating magnetic field magnets, winding and control coils, flat surface incident magnetic field surfaces, and extraction elements are described that minimize the overall size of the synchrotron, provide a tightly controlled proton beam, directly reduce the size of required magnetic fields, directly reduces required operating power, and allow continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.12-17-2009
20090195194ALL-ION ACCELERATOR AND CONTROL METHOD OF THE SAME - It is an object of the present invention to provide an accelerator that can accelerate by itself all ions up to any energy level allowed by the magnetic fields for beam guiding, and provides an all-ion accelerator in which with trigger timing and a charging time of an induced voltage applied to an ion beam injected from a preinjector by induction cells for confinement and acceleration used in an induction synchrotron, digital signal processors for confinement and acceleration and pattern generators for confinement and acceleration generate gate signal patterns for confinement and acceleration on the basis of a passage signal of the ion beam and an induced voltage signal for indicating the value of the induced voltage applied to the ion beam, and intelligent control devices for confinement and acceleration perform feedback control of on/off of the induction cells for confinement and acceleration.08-06-2009
20100171447INTENSITY MODULATED THREE-DIMENSIONAL RADIATION SCANNING METHOD AND APPARATUS - The invention relates to treatment of solid cancers and more particularly to a method and apparatus correlating proton beam intensity with proton delivery efficiency, optionally in a raster beam scanning system. The system induces betatron oscillation on the proton beam causing the beam to traverse an extraction material resulting in slowed protons and a feedback current proportional to the proton flux. A controller receives the desired intensity from an irradiation plan and the feedback current and adjusts the radio-frequency field in the radio-frequency cavity system to yield an intensity of the proton beam that matches the desired intensity from the irradiation plan. Preferably, the intensity of the proton beam correlates with radiation delivery efficiency. The system preferably operates in conjunction with a multi-field charged particle cancer therapy system, with charged particle beam injection, particle beam acceleration, multi-axis charged particle beam control, and/or targeting methods and apparatus.07-08-2010
20100141183METHOD AND APPARATUS COORDINATING SYNCHROTRON ACCELERATION PERIODS WITH PATIENT RESPIRATION PERIODS - The invention relates generally to treatment of solid cancers. More particularly, the invention relates to enhancing synchrotron acceleration cycle usage efficiency by adjusting the synchrotron's acceleration cycle to correlate with a patient's respiration rate where efficiency refers to the duty cycle or the percentage of acceleration cycles used to deliver charged particles to the tumor. The system senses patient respiration and controls timing of negative ion beam formation, injection of charged particles into a synchrotron, acceleration of the charged particles, and extraction to yield delivery of the particles to the tumor at a predetermine period of the patient's respiration cycle. Independent control of charged particle energy and intensity is maintained during the timed irradiation therapy. Multi-field irradiation ensures efficient delivery of Bragg peak energy to the tumor while spreading ingress energy about the tumor.06-10-2010
20100219776MULTI-ENERGY FREQUENCY-MULTIPLYING PARTICLE ACCELERATOR AND METHOD THEREOF - A multi-energy frequency-multiplying particle accelerator and a method thereof are disclosed in order to overcome the drawbacks of the existing accelerator, such as single energy level, beam current and operating frequency limited by a single power source. The accelerator comprises a pulse power generation unit for generating N pulse signals with different power levels, N is equal to or greater than 2; N microwave power generation units for, under the control of a control signal, generating N microwaves with different energy levels based on said N pulse signals, respectively; a power mixing unit having N entrances and one exit and for inputting a corresponding microwave among said N microwaves from each of said N entrances and outputting said N microwaves from said one exit; a particle beam generation unit for generating N particle beams in synchronization with said N is microwaves; and an accelerating unit for using said N microwaves to accelerate said N particle beams, respectively. Since the multi-energy frequency-multiplying particle accelerator of the present invention can output alternately particle beams of different energy levels and thus has improved operating frequency and multiplied power, it will find a wider application prospect in the field of radiograph imaging, radioactive medicine and radiation processing industry.09-02-2010
20120242257MAGNETIC FIELD CONTROL METHOD AND APPARATUS USED IN CONJUNCTION WITH A CHARGED PARTICLE CANCER THERAPY SYSTEM - The invention comprises a charged particle beam acceleration, extraction, and/or targeting method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Novel design features of a synchrotron are described. Particularly, turning magnets, edge focusing magnets, concentrating magnetic field magnets, winding and control coils, flat surface incident magnetic field surfaces, and extraction elements are described that minimize the overall size of the synchrotron, provide a tightly controlled proton beam, directly reduce the size of required magnetic fields, directly reduces required operating power, and allow continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.09-27-2012
20100060206FAST ELECTROMAGNET DEVICE - A fast electromagnet device (03-11-2010
20110156617INDUCTION ACCELERATING DEVICE AND ACCELERATION METHOD OF CHARGED PARTICLE BEAM - The present invention provides a set of induction accelerating cell for controlling acceleration of a charged particle beam and an induction accelerating device for controlling generation timing of an induced voltage applied by the induction accelerating cell in a synchrotron. The induction accelerating device in a synchrotron includes: an induction accelerating cell that applies an induced voltage; a switching power supply that supplies a pulse voltage to the induction accelerating cell via a transmission line and drives said induction accelerating cell; a DC power supply that supplies electric power to the switching power supply; and an intelligent control device including a pattern generator that generates a gate signal pattern for controlling on/off the switching power supply, and a digital signal processing device that controls on/off a gate master signal that becomes the basis of the gate signal pattern.06-30-2011
20100207552CHARGED PARTICLE CANCER THERAPY SYSTEM MAGNET CONTROL METHOD AND APPARATUS - The invention comprises a charged particle beam acceleration, extraction, and/or targeting method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Novel design features of a synchrotron are described. Particularly, turning magnets, edge focusing magnets, concentrating magnetic field magnets, winding and control coils, and extraction elements are described that minimize the overall size of the synchrotron, provide a tightly controlled proton beam, directly reduce the size of required magnetic fields, directly reduces required operating power, and allow continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.08-19-2010
20120313554ACCELERATOR FOR CHARGED PARTICLES - An accelerator for charged particle may include: a capacitor stack which includes a first electrode that can be brought to a first potential, a second electrode that is concentric to the first electrode and can be brought to a second potential differing from the first potential, and at least one intermediate electrode that is concentrically arranged between the first electrode and the second electrode and can be brought to an intermediate potential lying between the first potential and the second potential; a switching device to which the electrodes of the capacitor stack are connected and which is designed such that the concentric electrodes of the capacitor stack can be brought to increasing potential stages during operation of the switching device; a first and a second acceleration channel formed by first and second openings in the electrodes of the capacitor stack such that charged particles can be accelerated along the first and second acceleration channel by means of the electrodes; and a device which can influence the accelerated particle beam within the capacitor stack such that photons emitted by the particle beam are produced.12-13-2012
20120286703PARTICLE ACCELERATOR AND CHARGED PARTICLE BEAM IRRADIATION APPARATUS INCLUDING PARTICLE ACCELERATOR - A particle accelerator that is a synchrocyclotron accelerating charged particles and which includes an acceleration electrode that accelerates the charged particles; a high frequency power source that supplies the electric power to the acceleration electrode; a control unit that adjusts the frequency of the electric power supplied from the high frequency power source based on energy of the charged particle which is accelerated; and a matching circuit that has a coil and a capacitor, and performing impedance matching between the acceleration electrode and the high frequency power source, wherein the matching circuit has an inductance adjustment unit electrically adjusting the inductance of the coil.11-15-2012
20120133305MAGNETIC FIELD CONTROL APPARATUS AND DIPOLE MAGNET - To provide a magnetic field control apparatus capable of reducing a width of a correcting plate. The magnetic field control apparatus includes a conductive vacuum duct 05-31-2012
20100176753INDUCED VOLTAGE CONTROL DEVICE, ITS CONTROL METHOD, CHARGED PARTICLE BEAM ORBIT CONTROL DEVICE, AND ITS CONTROL METHOD - [PROBLEMS] To provide an induction voltage control device (07-15-2010
315504000 Betatron 8
20090267543BETATRON WITH A REMOVABLE ACCELERATOR BLOCK - A betatron is provided, particularly in an x-ray inspection station, comprising an accelerator block that is provided with a rotationally symmetrical inner yoke composed of two spaced-apart pieces, at least one main field coil, and a toroidal betatron tube which is disposed between the pieces of the inner yoke. The betatron further comprises an outer yoke which embraces the accelerator block, connects the two pieces of the inner yoke, and has at least one lateral opening, as well as a lead shield that accommodates the accelerator block and the outer yoke. The outer yoke is composed of at least two parts which are movable relative to one another between an open and a closed position. The accelerator block can be laterally removed from the opening of the outer yoke that is in the open position.10-29-2009
20090267542BETATRON WITH A VARIABLE ORBIT RADIUS - A betatron, especially for an X-ray testing apparatus is provided that includes a rotationally symmetrical inner yoke having two interspaced parts, at least one round plate that is arranged between the inner yoke parts in such a way that the longitudinal axis thereof coincides with the rotational symmetrical axis of the inner yoke, an outer yoke connecting the two inner yoke parts, at least one main field coil, a toroidal betatron tube arranged between the inner yoke parts, at least one tune coil in the region of the at least one round plate, and an electronic control system for controlling a current flow through the tune coil during the injection phase of the electrons into the betatron tube.10-29-2009
20090153079BETATRON BI-DIRECTIONAL ELECTRON INJECTOR - A Betatron having a toroidal passageway disposed in a cyclical magnetic field with a main electron orbit circumnavigating the toroidal passageway. Within the toroidal passageway is a first electrode that is spaced apart from a second electrode. The combination of the first electrode and the second electrode define a central space having a first opening and a second opening. A cathode is disposed within the central space. This cathode has a first electron emitter aligned to inject electrons through the first opening and a second electron emitter aligned to inject electrons through the second opening. Electrons injected in a proper direction are accelerated in the main electron orbit. At a time of maximum electron acceleration, the electrons are deflected and impact a target that generates x-rays on impact.06-18-2009
20090091274METHOD FOR ACHIEVING HIGH DUTY CYCLE OPERATION AND MULTIPLE BEAMS WITH WEAK FOCUSING AND FIXED FIELD ALTERNATING GRADIENT INDUCTION ACCELERATORS - A new concept is presented along with different embodiments to produce improved duty cycle of electron beams and multiple beams of different energy from WF, FFAG and other betatron and induction accelerators. These variations are achieved by using the induction core in both directions of induction core swing to accelerate beams in different magnetic guide regions to improve beam repetition rates and duty cycle. The beams may have different energies and intensities. Multiple guide field regions may be used with an induction core while the field is varying in one direction to also produce multiple beams, each differing in energy and intensity. The use of a single core allows improved duty cycle and multiple beams with a substantial increase in performance and reduction of cost in those cases where the induction core, associated power supplies and control are a significant fraction of the cost of such an accelerator.04-09-2009
20090072767MODULATOR FOR CIRCULAR INDUCTION ACCELERATOR - Described herein is a modulator circuit for generating discrete energy pulses in a device. The circuit includes a high voltage power source intermittently coupled to a saturable first inductor, a second inductor and a capacitor coupled in parallel between the high voltage power source and the saturable first inductor and second inductor. When the first inductor is unsaturated, its inductance is high and it isolates the capacitor from the second inductor. When the first inductor saturates, the inductance collapses and the capacitor discharges a high energy pulse into the second coil. By controlling the time to saturation, the timing of the pulses is controlled. The modulator circuit is effective to control pulses applied to a circular induction accelerator, such as a Betatron.03-19-2009
20120013274Methods and Systems for Confining Charged Particles to a Compact Orbit During Acceleration Using a Non-Scaling Fixed Field Alternating Gradient Magnetic Field - A method is described wherein a beam of charged particles is confined to an orbit within a compact region of space as it is accelerated across a wide range of energies. This confinement is achieved using a non-scaling magnetic field based on the Fixed Alternating Gradient principle where the field strength includes non-linear components. Examples of magnet configurations designed using this method are disclosed.01-19-2012
20090066269VARIABLE INDUCTOR AS DOWNHOLE TUNER - A tunable LC circuit is used to trigger an electron discharge from an accelerator device, such as a Betatron. The circuit includes a coil as a first inductor having a first inductance electrically coupled in series with a capacitor. A second inductor having a variable inductance is electrically coupled, either in series or parallel, to the first inductor. The time to capacitor discharge is governed by:03-12-2009
20120274242CIRCULAR ACCELERATOR AND ITS OPERATION METHOD - A circular accelerator comprises a target current value memory which stores a target current value of a beam current of charged particle which is extracted from an extracting device; and a frequency determination part in which a frequency change ratio is obtained by performing a feedback control based on an error signal between a detection signal of a beam current detector and a target current value which is stored in a target current value memory, and determines a subsequent frequency from the obtained frequency change ratio and a current frequency, wherein the subsequent frequency which is determined by the frequency determination part is stored in a frequency memory and a radio-frequency generator generates the subsequent radio-frequency of frequency which is determined.11-01-2012
315505000 Linear accelerator (Linac) 35
20130038248DRIFT-TUBE LINEAR ACCELERATOR - A drift-tube linear accelerator that passes an injected particle beam through inside a plurality of cylindrical drift-tube electrodes arranged in a cylindrical cavity in a particle beam traveling direction and accelerates the particle beam by a radio-frequency electric field generated between the plurality of cylindrical drift-tube electrodes, wherein at least part of a focusing device for focusing the particle beam is disposed inside an end drift-tube electrode that is arranged nearest the injection side of the cylindrical cavity among the plurality of cylindrical drift-tube electrodes, with the focusing device being positionally adjustable independently of the end drift-tube electrode.02-14-2013
20090302785Slot resonance coupled standing wave linear particle accelerator - A slot resonance coupled, linear standing wave particle accelerator. The accelerator includes a series of resonant accelerator cavities positioned along a beam line, which are connected by resonant azimuthal slots formed in interior walls separating adjacent cavities. At least some of the slots are resonant at a frequency comparable to the resonant frequency of the cavities. The resonant slots are offset from the axis of the accelerator and have a major dimension extending in a direction transverse to the radial direction with respect to the accelerator axis. The off-axis resonant slots function to magnetically couple adjacent cavities of the accelerator while also advancing the phase difference between the standing wave in adjacent cavities by 180 degrees in addition to the 180 degree phase difference resulting from coupling of the standing wave in each cavity with the adjacent slot, such that the signals in each cavity are in phase with one another and each cavity functions as a live accelerating cavity. The resonance frequency of the slot is the comparable to the resonance frequency of the cavities, resulting in coupling of the cavities while also eliminating the need for side-cavity or other off-axis coupling cavities.12-10-2009
20130063052INTERLEAVING MULTI-ENERGY X-RAY ENERGY OPERATION OF A STANDING WAVE LINEAR ACCELERATOR - The disclosure relates to systems and methods for interleaving operation of a standing wave linear accelerator (LINAC) for use in providing electrons of at least two different energy ranges, which can be contacted with x-ray targets to generate x-rays of at least two different energy ranges. The LINAC can be operated to output electrons at different energies by varying the power of the electromagnetic wave input to the LINAC, or by using a detunable side cavity which includes an activatable window.03-14-2013
20120229054RF Cavity and Accelerator having Such an RF Cavity - An RF cavity includes a chamber, a conductive wall that encloses the chamber and has an inner side and an outer side, a switch arrangement comprising a plurality of solid-state switches arranged along a circumference of the wall around the chamber, wherein the solid-state switches are connected to the conductive wall such that RF currents are induced in the conductive wall when the switch arrangement is activated, as a result of which RF power is coupled into the chamber of the RF cavity, and a shielding device located on the outer side of the conductive wall, along a circumference of the RF cavity, the shielding device configured to increase the impedance of a propagation path of RF currents along the outer side of the wall such that the RF currents coupled into the wall are suppressed on the outer side of the wall.09-13-2012
20080211431Pulse-to-Pulse-Switchable Multiple-Energy Linear Accelerators Based on Fast RF Power Switching - A method and apparatus for modulating at least one of energy and current of an electron beam in a linac for fast switching of particle beam energy on a time scale comparable with, and shorter than, the interval between linac pulses. Such modulation may be achieved by dividing, in a coupler, a radio-frequency (RF) field into field components and coherently adding these components in a phase shifting section to selectively direct the RF field to a chosen section of the linac. The phase shifting section may include at least one arm containing at least one fast switch and at least one phase changer. In specific embodiments, the phase shifting section may include an electronically controlled plasma switch and a plasma short.09-04-2008
20080303457Modular linac and systems to support same - Some embodiments include an accelerator waveguide to generate an accelerated radiation beam, and a housing to house to accelerator waveguide. The housing may include an interface to couple the housing to and to decouple the housing from a movable support. Some aspects include coupling a first interface of a housing to a first interface of a movable support, and uncoupling the first interface of the housing from the first interface of the movable support, wherein the housing includes an accelerator waveguide to generate an accelerated radiation beam.12-11-2008
20090261760H-MODE DRIFT-TUBE LINAC AND DESIGN METHOD THEREFOR - A linearity of a voltage change to a tuner insertion amount is verified for at least one of a plurality of tuners. Based on the voltage change linearity, individual voltage change data corresponding to respective insertion amounts are calculated for each of the plurality of tuners through a proportional calculation. A combination of auto-tuners and a combination of respective insertion amounts of the auto-tuners are determined using the individual voltage change data, and an adequacy of the determined combinations is verified through a direct three-dimensional electromagnetic field calculation. The combinations are determined on a condition that, when the individual voltage change data of nominated tuners are added together, respective voltage changes attributed to the nominated tuners are cancelled out to allow an entire voltage distribution to have substantially no change.10-22-2009
20110006708INTERLEAVING MULTI-ENERGY X-RAY ENERGY OPERATION OF A STANDING WAVE LINEAR ACCELERATOR USING ELECTRONIC SWITCHES - The disclosure relates to systems and methods for fast-switching operating of a standing wave linear accelerator (LINAC) for use in generating x-rays of at least two different energy ranges with advantageously low heating of electronic switches. In certain embodiments, the heating of electronic switches during a fast-switching operation of the LINAC can be kept advantageously low through the controlled, timed activation of multiple electronic switches located in respective side cavities of the standing wave LINAC, or through the use of a modified a side cavity that includes an electronic switch.01-13-2011
20080315801Dispersion-Free Radial Transmission Lines - A dispersion-free radial transmission line preferably for linear accelerators, having two plane conductors each with a central hole, and an electromagnetically permeable material between the two conductors and surrounding a central channel connecting the two central holes. At least one of the material parameters of relative magnetic permeability, relative dielectric permittivity, and axial width of the permeable material is varied as a function of radius, so that the characteristic impedance of the radial transmission line is held substantially constant, and pulse transmission through the radial transmission line is substantially dispersion-free. Preferably, the electromagnetically permeable material is divided into concentric radial sections, with the varied material parameters held constant in each respective section but stepwise varied from section to section as a step function of the radius. The radial widths of the concentric sections are selected so that pulse traversal time across each section is the same, and the varied material parameters of the concentric sections are selected so that the traversal error is minimized.12-25-2008
20100207553METHOD FOR ACCELERATING ELECTRONS IN A LINEAR ACCELERATOR AND AN ACCELERATING STRUCTURE FOR CARRYING OUT SAID METHOD - The invention relates to a method for accelerating low-injection energy electrons in a continuous standing wave linear accelerator (08-19-2010
20110101892Accelerator for Accelerating Charged Particles - An accelerator for accelerating charged particles has a plurality of delay lines (05-05-2011
20100301782H-MODE DRIFT TUBE LINAC, AND METHOD OF ADJUSTING ELECTRIC FIELD DISTRIBUTION IN H-MODE DRIFT TUBE LINAC - An H-mode drift tube linac according to the present invention includes: an accelerator cavity which functions as a vacuum chamber and a resonator; drift tube electrodes for generating accelerating voltages in a charged particle transporting direction in the accelerator cavity; tuners for adjusting a distribution of electric fields generated at gaps between respective pairs of the drift tube electrodes; and antennas for measuring a variation of the distribution of the electric fields, the antennas being provided along the charged particle transporting direction in the accelerator cavity.12-02-2010
20100060207COMPACT ACCELERATOR FOR MEDICAL THERAPY - A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (˜70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.03-11-2010
20110101893Accelerator for Accelerating Charged Particles and Method for Operating an Accelerator - An accelerator for accelerating charged particles has at least two delay lines having different delays, wherein the at least two delay lines have an input side into which electromagnetic waves can be conducted for producing an accelerating electric potential, wherein the input side of the delay lines is designed to reflect electromagnetic waves, and the accelerating electric potential can be produced at least partially by the waves reflected at the input side. In a method for operating an accelerator, which comprises at least two delay lines having different delays, the at least two delay lines have an input side into which electromagnetic waves can be conducted for producing an accelerating electric potential, wherein the electromagnetic waves conducted into the delay lines are reflected at the input side, and the accelerating electric potential can be produced at least partially by the waves reflected at the input side.05-05-2011
20100188027TRAVELING WAVE LINEAR ACCELERATOR COMPRISING A FREQUENCY CONTROLLER FOR INTERLEAVED MULTI-ENERGY OPERATION - An electromagnetic wave having a phase velocity and an amplitude is provided by an electromagnetic wave source to a traveling wave linear accelerator. The traveling wave linear accelerator generates a first output of electrons having a first energy by accelerating an electron beam using the electromagnetic wave. The first output of electrons can be contacted with a target to provide a first beam of x-rays. The electromagnetic wave can be modified by adjusting its amplitude and the phase velocity. The traveling wave linear accelerator then generates a second output of electrons having a second energy by accelerating an electron beam using the modified electromagnetic wave. The second output of electrons can be contacted with a target to provide a second beam of x-rays. A frequency controller can monitor the phase shift of the electromagnetic wave from the input to the output ends of the accelerator and can correct the phase shift of the electromagnetic wave based on the measured phase shift.07-29-2010
20100060208Quarter-Wave-Stub Resonant Coupler - A linac system having at least two linac structures configured to operate with a resonant coupler. The linac structures and the resonant coupler resonate at the same frequency, are in close proximity, and designed for a relative phase of 0° or 180°. The coupling between the resonant coupler and the linac structures is achieved by slots between the linac structures and the resonant coupler, which allow the magnetic fields of the linac structures to interact with the magnetic field of the resonant coupler. The relative size of the slots determines the relative amplitude of the fields in the linac structures. There are three modes of oscillation, a 0 mode, wherein the linac structures and the resonant coupler are excited in phase, a π/2 mode, wherein the linac structures are excited out of phase and the resonant coupler is nominally unexcited, and the π mode, wherein the linac structures and the resonator coupler are excited out of phase.03-11-2010
20120200238Microwave Device for Accelerating Electrons - A microwave device for accelerating electrons includes an electron gun providing an electron beam along an axis in a microwave structure for accelerating the electrons of the beam, an input for the electron beam, an output for accelerated electrons, and a series of coupled cavities along said axis, of central resonant frequency, an input for a microwave signal for excitation of the microwave structure by one of the cavities, a radiofrequency generator providing the excitation microwave signal to the acceleration microwave structure, and a central unit controlling the variation of energy of the electrons at the output of the microwave structure. The radiofrequency generator comprises a frequency control input for changing the frequency of the excitation microwave signal around the central resonant frequency, the change producing a variation of the energy of the accelerated electrons of the beam at the output of the microwave structure.08-09-2012
20100060209RF ACCELERATOR METHOD AND APPARATUS USED IN CONJUNCTION WITH A CHARGED PARTICLE CANCER THERAPY SYSTEM - The invention comprises a radio-frequency accelerator method and apparatus used in conjunction with multi-axis charged particle radiation therapy of cancerous tumors. An RF synthesizer provides a low voltage RF signal, that is synchronized to the period of circulation of protons in the proton beam path, to a set of integrated microcircuits, loops, and coils where the coils circumferentially enclose the proton beam path in a synchrotron. The integrated components combine to provide an accelerating voltage to the protons in the proton beam path in a size compressed and price reduced format. The integrated RF-amplifier microcircuit/accelerating coil system is operable from about 1 MHz, for a low energy proton beam, to about 15 MHz, for a high energy proton beam.03-11-2010
20110089871ACCELERATOR PACK, SPECIFICALLY FOR LINEAR ACCELERATION MODULES - An accelerator pack, specifically for linear accelerator modules cascade-connected to a proton-emitting cyclotron, specially adapted for use in cancer therapies. Such a technique is named PT. The pack displays an accelerating cavity of improved efficiency in virtue of its shape, which provides for making a portion of accelerating cavity on both faces of the pack. Furthermore, the pack also contains a coupling cavity portion. In such a manner, the volume of the accelerating cavity is increased as compared to that of the packs of the known accelerator modules.04-21-2011
20100289436LOW-INJECTION ENERGY CONTINOUS LINEAR ELECTRON ACCELERATOR - This invention relates to continuous standing-wave linear electron accelerator (11-18-2010
20120126727Sub-Nanosecond Beam Pulse Radio Frequency Quadrupole (RFQ) Linear Accelerator System - Sub-nanosecond single ion beam pulses are generated by means of one embodiment of the invention. In this embodiment, an ion source provides ions to a radio frequency quadrupole linear accelerator comprising electrodes. A power source is used to apply radio frequency alternating currents to the electrodes. A device is used to inject ions from the ion source to the accelerator, causing the accelerator to provide only a single sub-nanosecond output beam pulse at a time.05-24-2012
20120235603ACCELERATOR AND METHOD FOR ACTUATING AN ACCELERATOR - An accelerator for accelerating charged particles includes at least two RF resonators which are arranged successively in a beam propagation direction and configured to accelerate a pulse train comprising a plurality of particle bunches, each RF resonator generating an RF field, and a control apparatus for actuating the RF resonators, wherein the control apparatus is configured to set the RF fields generated by the RF resonators independently of one another during the acceleration of the pulse train, such that the plurality of particle bunches of the pulse train experience different accelerations during the acceleration of the pulse train. Further, a method for actuating an accelerator for accelerating charged particles having at least two RF resonators arranged successively in the beam propagation direction and with which a pulse train comprising a plurality of particle bunches is accelerated, includes, during the acceleration of the pulse train, independently controlling the RF fields generated by the at least two RF resonators such that the plurality of particle bunches of the pulse train experience different accelerations during the acceleration of the pulse train.09-20-2012
20120235602Linear accelerator - The present invention provides a linear accelerator in which a rotatable conductive vane is employed to vary the electromagnetic coupling between adjacent accelerating cells. The vane is sealed off from the rest of the linear accelerator by an insulating partition, so the pressure around the vane can be higher than in the rest of the accelerator. This greatly simplifies the mechanisms which may be used to control the rotation of the vane, allowing a higher bakeout temperature in manufacture and a higher rate of rotation in use.09-20-2012
20120313555INTERLEAVING MULTI-ENERGY X-RAY ENERGY OPERATION OF A STANDING WAVE LINEAR ACCELERATOR USING ELECTRONIC SWITCHES - The disclosure relates to systems and methods for fast-switching operating of a standing wave linear accelerator (LINAC) for use in generating x-rays of at least two different energy ranges with advantageously low heating of electronic switches. In certain embodiments, the heating of electronic switches during a fast-switching operation of the LINAC can be kept advantageously low through the controlled, timed activation of multiple electronic switches located in respective side cavities of the standing wave LINAC, or through the use of a modified a side cavity that includes an electronic switch.12-13-2012
20120187872SYSTEM TO IMPROVE FUEL ECONOMY AND REDUCE A PLURALITY OF TOXIC GAS EMISSIONS IN A MOTORIZED VEHICLE THROUGH UTILIZING ENERGY CONTAINED IN A QUANTUM VACUUM - The present invention is a system to improve fuel economy of a vehicle with an internal combustion engine or an electric engine. The system includes a base, a primary energy absorption mechanism to attract and store energy contained in a quantum vacuum and a plurality of fasteners that are utilized to removably secure the system to the vehicle hood or the electrical engine. The system also includes a pair of hybrid ceramic magnets that are disposed within the primary energy absorption mechanism, a pair of metal plates and a linear particle accelerator that has variable field strength and is positioned within the primary energy absorption mechanism that includes a signal transmitter.07-26-2012
20120229053Ultra-high vacuum photoelectron linear accelerator - A photoelectron linear accelerator for producing a low emittance polarized electron beam. The linear accelerator includes a tube having a cylindrical wall, said wall being perforated to allow gas to flow to a pressure chamber containing ultra high vacuum pumps located outside the accelerator. The RF accelerator cavity comprises of two concentric cylindrical regions having different outside diameters and different lengths.09-13-2012
20110121763Linear Accelerators - We propose that during the factory testing of the linac, rather than simply confirming that the beam falls within the permissible ranges set out in the standard, the beam is in fact adjusted towards a standard signature. A new (or existing) linac could then be paired to a new linac, or to an existing linac, such as one that it is to operate alongside or one that it is to replace. Treatment plans would then be transferable between such pairs of linacs. In addition, the standard signature to which the linacs were approximated could be placed towards the centre of the permitted ranges, to produce linacs that were more reliable over the very long term. This requires a linac that has automatically adjustable parameters, so that a suitable programmed computer is able to monitor the output of the linac and adjust its operating parameters. We therefore provide a radiation source comprising a linear accelerator, beam control circuitry for the linear accelerator, an electronic control apparatus for the control circuitry arranged to adjust properties thereof, and a monitor for detecting properties of the radiation beam produced by the linear accelerator, wherein the control apparatus is adapted to retain a set of beam properties and periodically activate the accelerator, measure the current beam properties via the monitor, compare the measured beam properties to the retained beam properties, and potentially adjust the control circuitry properties to align the beam properties towards the retained beam properties. The beam properties that are measured may include at least one of beam flatness and beam width. The retained beam properties can be the properties of the beam produced by the linear accelerator when new, or the properties of a standard beam. The control apparatus is preferably arranged to send a message if the difference between the measured beam properties and the retained beam properties exceeds a threshold. It may also send a message to a remote location if the difference between the measured beam properties and the retained beam properties exceeds a second threshold.05-26-2011
20100327785PARTICLE ACCELERATOR AND MAGNETIC CORE ARRANGEMENT FOR A PARTICLE ACCELERATOR - A particle accelerator includes a power supply arrangement, multiple solid-state switched drive sections, a plurality of magnetic core sections and a switch control module. The drive sections are connected to the power supply arrangement for receiving electrical power therefrom, and each drive section includes a solid-state switch, electronically controllable at turn-on and turn-off, for selectively providing a drive pulse at an output of the drive section. The magnetic core sections are symmetrically arranged along a central beam axis, and each magnetic core of the sections is coupled to a respective drive section through an electrical winding connected to the output of the drive section. The switch control module is connected to the drive sections for providing control signals to control turn-on and turn-off of the solid state switches to selectively drive magnetic cores to induce an electric field for accelerating the beam of charged particles along the beam axis.12-30-2010
20120081042TRAVELING WAVE LINEAR ACCELERATOR BASED X-RAY SOURCE USING CURRENT TO MODULATE PULSE-TO-PULSE DOSAGE - Provided herein are systems and methods for operating a traveling wave linear accelerator to generate stable electron beams at two or more different intensities by varying the number of electrons injected into the accelerator structure during each pulse by varying the electron beam current applied to an electron gun.04-05-2012
20120081041TRAVELING WAVE LINEAR ACCELERATOR BASED X-RAY SOURCE USING PULSE WIDTH TO MODULATE PULSE-TO-PULSE DOSAGE - Provided herein are systems and methods for operating a traveling wave linear accelerator to generate stable electron beams at two or more different intensities by varying the number of electrons injected into the accelerator structure during each pulse by varying the width of the beam pulse, i.e., pulse width.04-05-2012
20100231144Microwave system for driving a linear accelerator - A microwave system for driving a linear accelerator is provided. The inventive microwave system employs a plurality of magnetrons, at least one pulse generator to energize the magnetrons, means for synchronizing outputs from the magnetrons, and at least one waveguide for transmitting synchronized outputs or power from the magnetrons to a linear accelerator. The linear accelerator that is driven by the inventive microwave system demonstrates increased efficiency and dependability, higher energy and power outputs, as well as, different energy outputs that can take the form of successive pulses that alternate between at least two different energy levels.09-16-2010
20120280640LINEAR ACCELERATOR - A method for pulsed operation of a linear accelerator includes generating pulses of charged particles. The generating includes emitting particles by a particle source and accelerating the particles in an accelerator device that includes a plurality of linked cavity resonators. The accelerator device is supplied with energy by an energy supply unit. Particle energy is changed solely by varying a number of particles emitted by the particle source per pulse.11-08-2012
20120146553Blumlein Assembly with Solid State Switch - A blumlein assembly incorporating a solid-state switch is presented. In the exemplary embodiment, a semiconductor switch is placed between first and second conducting strips, with dielectric material filling in the space between the strips on either side of the switch. A third conductive strip, parallel to the other two strips, is separated from the middle one of the strips by another dielectric layer. Rather than having the switch attach directly to the dielectric material on either side, a holder or carrier structure is used, which may be formed of several pieces or of a monolithic structure. The holder is formed of a material whose dielectric constant is closer to that of the switch than the dielectric material on either side, but whose boundary with the dielectric on either side has at least a portion that extends in a non-orthogonal direction with respect to the conducting strips. The arrangement allows the structure to withstand higher electric field levels without breakdown. The exemplary switch is light activated and the holder structure also includes ferrules on either side of the holder, by which optic fibers can be optically coupled with the switch. The switch extends to either side beyond the conductive strips, so that the ferrules are not placed between these strips to again allow for the use of higher field values.06-14-2012
20130181637High Voltage RF Opto-Electric Multiplier for Charge Particle Accelerations - Circuitry is presented for use in the pulse-forming lines of compact linear accelerators of charged particles. This presents devices that can provide high-voltage radio-frequency pulses in the range of from a few volts to megavolts for charged particle accelerators. The devices can use as input an external charge voltage and an optical pulse to create output RF pulses with a peak voltage that is increased over the input voltage. The exemplary embodiment presents a circuit of pulse forming lines for compact linear accelerator that includes an opto-switch and RF transmission lines that form a pulse shaper and a ladder-like pulse multiplier unit, with or without an output shaper.07-18-2013
20120086364PARTICLE BEAM COUPLING SYSTEM AND METHOD - Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole (RFQ). Coupling of the charged particle beam is accomplished, at least in-part, by relying on sensitivity of the RFQ to energies of the incoming charged particle beam. A portion of a charged particle beam, which has an initial energy outside a range of RFQ's acceptance energy values, is subjected to a field that modifies its energy to fall within the range of RFQ's acceptance energy values. Once the field is removed, the charged particle beam returns to the initial energy that is outside of the RFQ' range of acceptance energy values. In another configuration, a portion of a charged particle beam, which has an initial energy within the range of RFQ's acceptance energy values, is subjected to a field that modifies its energy to fall outside the range of acceptance energy values of the RFQ.04-12-2012

Patent applications in class Magnetic field acceleration means

Patent applications in all subclasses Magnetic field acceleration means