Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Magnetic bearing

Subclass of:

310 - Electrical generator or motor structure

310010000 - DYNAMOELECTRIC

310040000 - Rotary

310066000 - With other elements

310090000 - Bearing or air-gap adjustment or bearing lubrication

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20090302699METHOD FOR MOUNTING A BODY - In a magnetic bearing arrangement, support coils are connected in series and can be fed with a current. By coupling a point connecting the two support coils to a voltage source, the support coils can be used as actuating elements and, by feeding the support coils with voltage pulses, the inductance of the support coils can be inferred which is an indication of the position of the body to be mounted. This provides for a position control arrangement. Using one and the same support coils, both a stably controlled load-bearing capacity can thus be produced and at the same time a position sensor can be replaced.12-10-2009
20080231130Magnetic Repulsion Type Bearing - A magnetic repulsion type bearing includes a plurality of induction iron pieces, a stator, a rotor, an outer casing, an inner casing and a current controlling device. The rotor is disposed inside the stator, and the iron pieces of the rotor and the iron pieces of the stator are arranged in an alternate manner so that the rotor may be fixedly held in the stator through the magnetic repulsion between them. Also, the outer casing and the inner casing enclose the rotor and the stator so as to shield the electromagnetic force. In addition, the current controlling device may be used to control the amount of current and the direction of the current flow so as to control the strength of the electromagnetic force and the polarity.09-25-2008
20100164315PROCESSING APPARATUS - A rotary floater (07-01-2010
20090121571MAGNETIC LEVITATION MOTOR AND PUMP - A magnetic levitation motor including a stator having magnetic bearing units and a motor unit, and a rotor provided to the stator. And the occurrence of an eddy current at a magnetic bearing is suppressed and the rotation loss of the rotor can be reduced, and also to provide a pump using such the magnetic levitation motor.05-14-2009
20100072845METHOD FOR DETERMINATION OF RESONANT FREQUENCIES OF A ROTOR USING MAGNETIC BEARINGS - The resonant frequencies of a rotor supported on magnetic bearings, in particular a rotor of a turbomolecular vacuum pump, are determined. While the rotor is stationary or the rotor is rotating at a relatively low rotation frequency, mechanical oscillations of the rotor are generated by electromagnets in the magnetic bearing. The rotor oscillations are detected by rotor-position sensors in the magnetic bearing. The resonant frequencies of the rotor are determined from the detected rotor-position oscillations.03-25-2010
20130038157Active Magnetic Bearing - An active magnetic bearing includes a bearing housing, a bearing stator, a bearing armature, a position detector, a jacket, and a stress buffering member. The bearing stator is accommodated in the bearing housing to support rotation of a rotor by using a magnetic force. The bearing armature is disposed to be spaced apart from the bearing stator by an interval and fixed to the rotor. The position detector is installed in the bearing housing to detect a position of the rotor. The jacket is interposed between the bearing stator and the bearing armature to seal a space between the bearing stator and the bearing housing. The stress buffering member connected to opposite ends of the jacket and the bearing housing, to buffer a stress generated due to differences between thermal exposition coefficients and temperatures of the bearing housing and the jacket.02-14-2013
20100109463Hybrid Five Axis Magnetic Bearing System Using Axial Passive PM Bearing Magnet Paths and Radial Active Magnetic Bearings with Permanent Magnet Bias and Related Method - An extremely energy efficient, compact, integrated hybrid five axis passive and active magnetic bearing system is developed for suspending a rotor within a non-rotating stator without conventional rolling element or fluid film bearings wherein 1) an axial permanent magnetic set of poles generates a magnetic flux path creating an axial repulsive force which keeps the rotor axially centered in the stator without using a thrust disk or radial thrust faces, 2) two radial electromagnetic bearings generate radial magnetic flux paths which create radial forces which keep the rotor radially centered in the housing, and 3) an integrated axial/radial permanent flux path which provides a bias flux for the radial bearings.05-06-2010
20120212093LAMINATED CORE FOR A MAGNETIC BEARING AND METHOD FOR CONSTRUCTING SUCH A LAMINATED CORE - The core of a combined radial-axial magnetic bearing is stacked with coated laminations each equipped with at least one radial cut (08-23-2012
20100013333MAGNETIC RADIAL BEARING HAVING PERMANENT-MAGNET GENERATED MAGNETIC BIAS, AND A MAGNETIC BEARING SYSTEM HAVING A MAGNETIC RADIAL BEARING OF THIS TYPE - A magnetic radial bearing and a magnetic bearing system for non-contact support of a rotor shaft are disclosed. The magnetic radial bearing for non-contact support of a rotor shaft includes a rotating-field machine stator with a plurality of stator slots distributed in a circumferential direction, and stator teeth with radial ends arranged between adjacent stator slots. The number of stator teeth is equal to the number of stator slots. A three-phase stator winding is wound around the stator slots for producing a rotating magnetic field. An axially extending permanent magnet in form of a strip or plate is arranged at the radial end of each stator tooth, wherein permanent magnets that are adjacently arranged in the circumferential direction have alternating opposing radial magnetization directions.01-21-2010
20120181887SAFETY BEARING FOR RETAINING A ROTOR SHAFT OF A MACHINE - The invention relates to a safety bearing for retaining a rotor shaft (07-19-2012
20100327687Systems, Devices, and/or Methods for Managing Magnetic Bearings - Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium storing machine-implementable instructions for, activities that can comprise and/or relate to, via magnetic radial bearings, magnetically levitating a rotating shaft, each of said magnetic radial bearings comprising stator magnet groups, each of said stator magnet groups comprising stator magnets, each of said stator magnet groups operatively adapted to fully support said rotating shaft independently of each other of said stator magnet groups so that the magnetic bearing system continues to operate with the failure of one or more components of the system.12-30-2010
20130049507PASSIVE MAGNETIC BEARINGS FOR ROTATING EQUIPMENT INCLUDING INDUCTION MACHINES - Permanent magnet bearings are incorporated into rotating equipment, such as induction machines, in addition to active magnetic or lubricated primary shaft support bearings. The passive magnetic bearings incorporate permanent magnets that generate directionally oriented magnetic fields of selective intensity. The magnetic field directions are aligned with a desired shaft support bearing preload direction and intensity, for example to exert axial thrust or radial preloads on the support bearings. A plurality of magnetic bearings may be oriented in opposed relationship with neutral or offsetting resultant forces. The passive magnetic force preload may be utilized to offset rotor vertical weight during induction startup or stopping cycles. Passive magnetic force preload may be applied to lubricated bearings to assure their operational stability. The passive magnetic bearings can also absorb radial or axial thrust forces imparted on the rotor shaft during induction machine operation, that may reduce machine operational noise, and energy consumption.02-28-2013
20090072644THRUST MAGNETIC BEARING SYSTEM - A thrust magnetic bearing system separates magnetic circuits of electromagnets from those of permanent magnets so that each permanent magnet produces a bias magnetic field while each electromagnet functions only to control the position of a rotating body, thereby achieving desired displacement and current stiffness without flowing a bias current through the electromagnet. The magnetic bearing system includes a thrust displacement sensor and a thrust magnetic bearing to float a disk floating body based on displacement information detected through the displacement sensor. The magnetic bearing includes a donut permanent magnet, a pair of electromagnets connected in series to form an inductor at both sides of the donut permanent magnet, and a pair of magnetic poles provided opposite each other outside the pair of electromagnets. The magnetic bearing floats the floating body through a bias magnetic flux generated by the permanent magnet and a control magnetic flux generated by the electromagnets.03-19-2009
20100133936ELECTROMAGNETIC ATTRACTION TYPE MAGNETIC BEARING AND CONTROL METHOD THEREOF - An electromagnetic attraction type magnetic bearing includes at least a pair of electromagnets (06-03-2010
20090315421HYBRID MAGENTIC BEARING - In a hybrid magnetic bearing, the electromagnet has a core wound with a control coil and has a main pole and a commutating pole with a commutating pole permanent magnet provided approximately parallel to each other at predetermined intervals in a protruding condition radially or axially to the rotor. In the magnetic bearing provided radially, two electromagnets are placed oppositely to each other across the rotor in an approximately horizontal position, and the rotor is arranged so as to have a predetermined gap with the main pole and the commutating pole, and the permanent magnet is provided between the adjacent electromagnets. In the magnetic bearing provided axially, two electromagnets are placed in parallel in an approximately horizontal position, and the rotor is arranged so as to have a predetermined gap with the main pole and the commutating pole, and the permanent magnet is provided between the adjacent electromagnets.12-24-2009
20130069466SPINDLE MOTOR - Disclosed herein is a spindle motor including: a shaft; a bearing receiving the shaft therein to thereby rotatably support the shaft; a bearing holder having the bearing mounted therein; an armature including a core stacked on an outer diameter of the bearing holder and a coil wound around the core; a rotor case having a magnet mounted therein so as to rotate by electromagnetic force with the armature and mounted on an outer diameter of the shaft; and an electromagnet selectively mounted on the armature or the bearing holder so as to face the rotor case, thereby preventing floating or separation of the rotor case by attractive force.03-21-2013
20090302698ELECTRICAL MACHINE WITH MAGNETIC BEARING AND SAFETY BEARING - In case there is a malfunction of the magnetic bearing in an electrical machine, in which such magnetic bearings drive a rotary shaft in a stator (12-10-2009
20120112590Magnetically Levitating Vehicle - The magnetically levitating vehicle comprises of a frame, a control device, tire chambers, and tires. The frame comprises of a magnetic shield, a cabin, and an undercarriage. The control device comprises of a control stick and a mounting system. The control stick comprises of an accelerator, levitation, and brake button. The mounting system comprises of a horizontal piece, a vertical and base piece, and push button locks. The plurality of tire chambers comprises of a plurality of sensor and levitation electromagnet pairs, propulsion electromagnets and permanent propulsion magnets. The vertical piece and horizontal piece both comprise of an inner and outer shaft, the latter of which comprises of a plurality of holes. The inner shell comprises of an orientation device, a plurality of permanent levitation magnets and sensor and propulsion electromagnet pairs, a plurality of permanent safety magnets, and an axle. The outer shell comprises of a tire tread.05-10-2012
20130057097Displacement Sensor and a Magnetic Bearing System Using the Same - In a displacement sensor and a magnetic bearing system using the same, the displacement sensor includes: a first coil unit including at least one first coil; a second coil unit including at least one second coil differentially connected to one side of the at least one first coil of the first coil unit; a sensor drive means for supplying a first power source voltage and a second power source voltage having the same drive frequency to the first coil unit and the second coil unit, respectively; and a detection circuit for extracting displacement information from a differential signal produced by the first coil unit and the second coil unit due to a change in inductances of the at least one first coil and the at least one second coil according to a position change of a displacement measurement object.03-07-2013
20120306305ARRANGEMENT OF AXIAL AND RADIAL ELECTROMAGNETIC ACTUATORS - Systems, methods, and devices for generating electromagnetic forces may involve generating an axial control magnetic flux in an axial control magnetic circuit comprising a first axial pole, a second axial pole, and an axial actuator target, the axial actuator target coupled to a body having a rotational axis. A radial control flux can be generated in a radial control magnetic circuit comprising a first radial pole, a second radial pole, and a radial actuator target. An electrical compensation current can be applied to an electrical bias flux leveling coil to cancel or nearly cancel any changes of the magnetic flux leaking from either the first or the second axial poles into the radial poles, electrical bias flux leveling coil wound around the rotational axis and located axially between the radial poles and the closest of the first or the second axial poles.12-06-2012
20110012456MAGNETIC BEARING DEVICE AND METHOD - An energy-saving magnetic bearing device with no bias current for making the relation between the excitation current and the magnetic force of the electromagnet linear is provided. In a magnetic bearing device for supporting a rotor 01-20-2011
20130062982METHOD FOR ADJUSTING RESISTANCE OF ELECTROMAGNET IN MAGNETIC BEARING AND FOR SENSORLESS DETERMINATION OF POSITION OF OBJECT MOUNTED IN MAGNETIC BEARING, TAKING INTO ACCOUNT ADJUSTED VALUE OF RESISTANCE - For an object on a bearing mounting having a magnetic bearing providing a magnetic field generally produced by an electromagnet, the bearing is regulated based on a position of the object relative to the bearing. The position of the object is determined by reference to an estimate of the inductance obtained using a least squares method, in which the electrical resistance of the bearing is taken into account. The resistance is subject to variations, for example due to temperature fluctuations; however, the electrical resistance can be estimated by regulating the inductance error, Δ{circumflex over (L)}={circumflex over (L)}03-14-2013
20110140559Magnetic Bearing Device of a Rotor Shaft Against a Stator With Rotor Disc Elements, Which Engage Inside One Another, and Stator Disc Elements - The magnetic bearing device contains soft-magnetic rotor disc elements, which radially engage inside one another, and soft-magnetic stator disc elements. These elements are, on their sides facing one another, provided with annular tooth-like projections that are opposite one another on either side of an air gap. In addition, magnetic field generators for generating a magnetic flux oriented in an axial direction between the disc elements are assigned to the rotor disc elements or to the stator disc elements.06-16-2011
20110074237Magnetic Levitation Novelty Device - An apparatus for animating a magnetically levitated object. The apparatus includes a display with an overhead housing. A magnetic levitation and oscillation assembly is included with an electromagnet in the overhead housing. A levitated object with a body in which a magnetic element is embedded is positioned proximate to the electromagnet and levitated within the display. The levitation and oscillation assembly includes a levitation actuator driving the electromagnet with a control signal to generate a levitating magnetic field. The assembly includes an oscillating signal generator that oscillates the levitating magnetic field at an oscillating frequency. During magnetic field oscillation, the object body is levitated by the electromagnet and is concurrently subjected to first oscillating movements while attached elements such as wings are subjected to second oscillating movements near their resonant frequency with larger displacements, whereby the object body appears stationary while attached elements vibrate with a reciprocating or flapping motion.03-31-2011
20110291506CENTRIFUGALLY DECOUPLING TOUCHDOWN BEARINGS - Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.12-01-2011
20110291508COMBINED RADIAL STABILIZER AND CENTERING ELEMENT FOR PASSIVE MAGNETIC BEARING SYSTEMS - A compact magnetic bearing element for radial centering is described. At zero and low speeds, the centering occurs through mechanical contact of a rotating slotted pole structure with stretched metallic ribbons. At higher speeds, eddy currents induced in the metallic ribbons provide non-contacting centering forces. Exemplary uses for the invention are generally in rotating machinery and in flywheel energy storage systems.12-01-2011
20110291507MAGNETIC BEARING ELEMENT WITH ADJUSTABLE STIFFNESS - A compact magnetic bearing element is provided which is made of permanent magnet discs configured to be capable of the adjustment of the bearing stiffness and levitation force over a wide range.12-01-2011
20120098371STABILIZATION OF ROTATING MACHINERY - This invention improves the operation of rotating machinery by allowing rotation about an inertial axis without the generation of imbalance forces that arise from the use of bearings to support rotating components.04-26-2012
20120098370STABILIZATION OF FLYWHEELS - This invention improves the operation of flywheels by allowing rotation about an inertial axis without the generation of imbalance forces that arise from the use of bearings to support the rotating components of the flywheel. The system uses periodic positional corrections to the rotating components of the flywheel so as to ensure that the system rotates within a predetermined boundary without continuously confining the rotating components to rotate about their geometric axis.04-26-2012
20100033046ROTATING ELECTRIC MACHINE - A rotating electric machine in which an adequate magnetic supporting force can be produced even when the gap length of the rotator is long. The rotating electric machine comprises a rotator (02-11-2010
20090189469MAGNETIC BEARING APPARATUS - A magnetic bearing apparatus supports a rotating object using magnetic levitation by a magnetic force of electromagnets. The magnetic bearing apparatus includes a PWM driver configured to supply exciting currents to the electromagnets, a driver power source configured to drive the PWM driver, and a displacement error signal removing section configured to extract a displacement error signal of the displacement information from a current flowing through the driver power source and to remove the displacement error signal from the displacement information.07-30-2009
20090146515Magnetic axial bearing and a spindle motor having this kind of magnetic axial bearing - The invention relates to a magnetic axial bearing for taking up axial forces that act on a rotor component that is rotatably supported about a rotational axis with respect to a stator component. The bearing comprises a first bearing part consisting of at least one permanent magnet and at least two flux guide elements associated with the permanent magnet that are disposed on opposing end faces of the permanent magnet and aligned substantially radial and perpendicular to the rotational axis, and a second bearing part consisting of at least two flux guide elements that are disposed at a mutual spacing to one another and aligned substantially radial and perpendicular to the rotational axis, each flux guide element of the second bearing part being associated with a flux guide element of the first bearing part and lying directly opposite the latter in a radial direction and separated from it by an air gap. The invention further describes a spindle motor having a magnetic axial bearing of this kind, used, for example, for driving a hard disk drive.06-11-2009
20090096303MOTOR PROVIDED WITH CHUCKING DEVICE AND DISK DRIVING DEVICE EQUIPPED WITH THE MOTOR - A motor includes a rotating body including a magnet, and a fixed body including a stator. The stator includes a stator core having an annular core back portion with an upper and a lower surface, and a plurality of circumferentially spaced-apart tooth portions extending from the core back portion in a direction away from the rotational axis, and a plurality of coils provided by winding a conductive wire around the tooth portions of the stator core with multiple turns. The rotor holder is arranged axially above the stator to cover the stator. Further, an annular or arc-shaped attracting magnet arranged to attract the rotor holder toward the stator is arranged radially inwardly of the core back portion, the attracting magnet having an upper surface axially facing toward the rotor holder, and a lower surface arranged axially below the upper surface of the core back portion of the stator core.04-16-2009
20080265704Magnetic Bearing Device With Simplified Wiring - A magnetic hearing device and a method of operation for such a device are provided. The device comprises a group (10-30-2008
20090309440System and Method For Device Suspension and Wireless Power Transmission - A system and method for device suspension and wireless power transmission are disclosed. According to one embodiment, an apparatus, comprises a suspended object having a wireless receiving circuit. A wireless transmission circuit is configured to transmit power to the wireless receiving circuit housed in the suspended object. A magnetic stabilization mechanism is beneath and not in contact with suspended object. A circuit is configured to magnetically control a position of the suspended object.12-17-2009
20090295244Apparatus for Magnetic Bearing of a Rotor Shaft With Radial Guidance and Axial Control - Radial, soft magnetic rotor disk elements which engage in each other and soft magnetic stator disk elements form a magnetic bearing device. The elements are provided with teeth-like extensions which are arranged opposite to each other over an air gap on sides which are oriented towards each other. Magnetic fields, which may be produced by permanent magnets or electromagnets, are assigned to the stator disk elements to produce a magnetic maintaining flow which is oriented in an axial direction between the disk elements for radial adjustment. An electromagnetic winding is also provided in the region of the central plane of the bearing device for axial adjustment, which enables a magnetic control flow, which superimposes the magnetic maintaining flow, to be produced.12-03-2009
20100201216BEARING DEVICE FOR NON-CONTACTING BEARING OF A ROTOR WITH RESPECT TO A STATOR - The invention relates to a bearing device (08-12-2010
20090009018Magnetic bearing unit - Displacement data of axial position targets measured by axial displacement sensors is transmitted to a first main spindle elongation computation section, which then computes elongation of a main spindle between the axial position targets. The computation result is transmitted to a second main spindle elongation computation section, which then computes elongation of the main spindle between one of the axial position targets provided on the side of a tool and the tool. The computation result is transmitted to an axial position control section. The axial position control section changes the power to be supplied to axial magnetic bearing parts, thereby controlling the axial position of the main spindle so that the axial position of the tool becomes constant.01-08-2009
20090009017Bearing apparatus and centrifugal compressor provided with same - A bearing apparatus include a rotor having a flange portion, a foil bearing for supporting the rotor in a radial direction, and a magnetic bearing for supporting the rotor in an axial direction by an electromagnet, and a control portion for controlling electric current supplied to the electromagnet. The control portion controls such that a first electric current is supplied to the electromagnet so as to cause the electromagnet to attract the flange portion so as to support the rotor in the axial direction. The control portion also controls such that when the number of revolutions of the rotor is smaller than the number (R01-08-2009
20090261673Cooling of a bearing journal - A rotary machine, which can be a turbine or a rotary compressor, is provided. The rotary machine includes a stationary housing and a rotating shaft supported in the housing by a magnetic bearing, whereby the magnetic bearing includes a laminated bearing journal with a shaft-mounted rotating lamination and a corresponding housing-mounted stationary lamination surrounding the rotating lamination, whereby both laminations extend axially to the shaft within a bearing portion, limited on one side by the end of the shaft. In addition, an axial duct extends axially through the shaft from the end to at least one substantially radial duct connecting the axial duct with an orifice in the shaft surface adjacent the other side of the bearing portion, and whereby a stationary tube is inserted in the axial duct supplying it with fluid. This arrangement provides sufficient cooling for a laminated bearing journal of the rotary machine.10-22-2009
20080238230MOTOR - A motor includes a shaft that serves as a rotation center when a rotor is rotated with respect to a stator, a bearing that supports the shaft in a circumferential direction of the shaft, a thrust bearing that supports one end of the shaft in a thrust direction of the shaft, a magnet that is fixed to the rotor and alternately magnetized to different poles in a rotational direction of the shaft, a core that is fixed to the stator and disposed to face the magnet in a radial direction of the shaft, a coil that are wound around the core, and a magnetic shield that shields leakage flux leaking from the magnet to the coil. A magnetic center of the core is offset from a magnetic center of the magnet in the thrust direction, so that the shaft is attracted to the thrust bearing.10-02-2008
20090160279Magnetic Levitation System - A magnetic levitation system for supporting an object against gravity by a supporting force includes a permanent-magnet dipole aligned in a vertical position and coupled to the object, a supporting-field generator and a stabilization system. The supporting-field generator generates a supporting force on the permanent-magnet dipole via a supporting field. The supporting field is a two-dimensional or three-dimensional magnetic quadrupole field so that the supporting force is independent of a position of the dipole. The stabilization system constrains the dipole against movements in at least one horizontal direction, and includes a diamagnetic element coupled to the dipole and arranged below the dipole, and a stabilizing-field generator generating a second two-dimensional or three-dimensional stabilizing field to restore said diamagnetic element to a position where the field strength of the stabilizing field has a local minimum.06-25-2009
20090127956MOTOR BUILT-IN MAGNETIC BEARING DEVICE - The device includes a rolling bearing unit supporting a radial load and a magnetic bearing unit supporting an axial load and/or a bearing preload; an electromagnet fitted to a spindle housing so as to confront, on a non-contact basis, a flange shaped thrust plate mounted on a main shaft; a motor rotor of a motor for driving the shaft, and a motor stator opposed to the rotor, the shaft being driven by magnetic or Lorentz forces developed between the rotor and the stator; and a sensor detecting an axial force acting on the bearing unit, and a controller controlling the electromagnet. In this device, the stiffness of a composite spring formed by the bearing unit and a support system for the bearing unit is chosen to be higher than the negative stiffness of a composite spring of a motor part comprised of the electromagnet and the motor.05-21-2009
20090184595SYSTEM AND METHOD FOR MAGNETIC LEVITATION WITH TILTED ORIENTATION - A system and method for magnetic levitation with a tilted orientation. In one embodiment, a magnetic levitation base together with a magnetic levitation affecting element that is located to the side of the levitation base support the magnetic levitation of a spinning magnetic top in a tilted orientation. The tilt angle of the levitating magnetic top may be greater than the tilt angle of the levitation base. In one embodiment, the levitation affecting element may comprise one or more magnets similar to that of the levitation base. The mass of the top and the tilt of the levitation base that are required for magnetic levitation may be adjusted by adjusting the levitation affecting element (e.g. altering its position and/or the strength of its magnetic field.) The general direction of the tilt may be reversed by changing the magnetic north-south direction (e.g. turning over or reversing the electromagnetic current) of the levitation affecting element.07-23-2009
20090200883Axial Gap Dynamo Electric Machine with Magnetic Bearing - An axial gap electric dynamo machine has a horizontally disposed rotor disk that is stabilized at its periphery by a plurality of permanent magnets connected to a ferromagnetic bearing plate that provides an opposing or repulsive force against the rotor magnets. In some preferred embodiments, the bearing plate magnets are configured in a dual band to further enhance the magnetic field that supports the periphery of the spinning rotor.08-13-2009
20090001830CALIBRATION OF A GENERATOR DEVICE - Methods are provided for calibrating a tachometer or generator device to reduce residual errors associated with the tachometer-generator device. A shim structure is positioned within the air gap of the tachometer-generator device. A physical characteristic or location of placement of the shim structure is selected to reduce variation in an output voltage of the tachometer-generator device.01-01-2009
20090243413ROBOT DRIVE WITH MAGNETIC SPINDLE BEARINGS - A drive section for a substrate transport arm including a frame, at least one stator mounted within the frame, the stator including a first motor section and at least one stator bearing section and a coaxial spindle magnetically supported substantially without contact by the at least one stator bearing section, where each drive shaft of the coaxial spindle includes a rotor, the rotor including a second motor section and at least one rotor bearing section configured to interface with the at least one stator bearing section, wherein the first motor section is configured to interface with the second motor section to effect rotation of the spindle about a predetermined axis and the at least one stator bearing section is configured to effect at least leveling of a substrate transport arm end effector connected to the coaxial spindle through an interaction with the at least one rotor bearing section.10-01-2009
20110127868MAGNETIC BEARING AND METHOD FOR OPERATION THEREOF - The invention relates to a magnetic bearing and to a method for operation thereof. The magnetic bearing contains a ferromagnetic, movably mounted bearing element (06-02-2011
20100181855MAGNETIC BEARING CONTROL DEVICE HAVING A THREE-PHASE CONVERTER, AND USE OF A THREE-PHASE CONVERTER FOR CONTROLLING A MAGNETIC BEARING - The invention relates to a magnetic bearing control device and the use of a three-phase converter for controlling a magnetic bearing. According to the invention, a three-phase converter (07-22-2010
20090079284Hybrid Magnetic Bearing - In a hybrid magnetic bearing, the electromagnet has a core wound with a control coil and has a main pole and a commutating pole with a commutating pole permanent magnet provided approximately parallel to each other at predetermined intervals in a protruding condition radially or axially to the rotor. In the magnetic bearing provided radially, two electromagnets are placed oppositely to each other across the rotor in an approximately horizontal position, and the rotor is arranged so as to have a predetermined gap with the main pole and the commutating pole, and the permanent magnet is provided between the adjacent electromagnets. In the magnetic bearing provided axially, two electromagnets are placed in parallel in an approximately horizontal position, and the rotor is arranged so as to have a predetermined gap with the main pole and the commutating pole, and the permanent magnet is provided between the adjacent electromagnets.03-26-2009
20100156219Advanced Flywheel and Method - A flywheel levitation apparatus and associated method are described for use in a flywheel driven power storage system having a rotor and which provides for an upward vertical movement of the rotor along an axis of rotation. The rotor includes a rotor face defining a cutaway section. A magnetic lifting force is applied to the rotor to at least in part serve in levitating the rotor. The magnetic lifting force exhibits a modified gap sensitivity that is smaller as compared to a conventional gap sensitivity that would be exhibited in an absence of the cutaway section.06-24-2010
20110057528BEARING SYSTEM FOR HIGH SPEED ROTARY MACHINE IN A SUB SEA ENVIRONMENT - The present invention discloses a bearing system for a high speed rotary machine, said bearing system comprising a rotor shaft (03-10-2011
20120139374MAGNETIC LEVITATION ASSEMBLY - A method and system for transportation using a magnetic bearing structure is disclosed. In one aspect, there is an apparatus for carrying a load along a magnetizable structure. In one embodiment, the apparatus comprises a third structure spaced apart vertically from the magnetizable structure and configured to generate magnetic flux and repel from the magnetizable structure. In one embodiment, the apparatus comprises at least one coil positioned at at least one end portion proximal to the magnetizable structure. In one embodiment, the apparatus comprises at least one flux guide comprising a magnetizable material and configured to concentrate magnetic flux. A first portion of the flux guide is thinner than a second portion of the flux guide that is positioned closer to the magnetizable structure than the first portion of the flux guide.06-07-2012
20110031836Rotational machine, method for the determination of a tilting of a rotor of a rotational machine, as well as a processing plant - The invention relates to a rotational machine adapted as a bearing-free engine including a stator (02-10-2011
20090108692Laying Head with a Vibration Damping Device - A laying head for forming coils using continuous and substantially rectilinear rolled products such as rods or wire, having vibration damping means integrated in one of two rotor supports (04-30-2009
20110001380PERMANENT MAGNET AND ROTATING BEARING HAVING SUCH PERMANENT MAGNETS - A permanent magnet (01-06-2011
20110001379PASSIVE MAGNETIC BEARING - A passive magnetic bearing which has an exceptionally low friction couple. Radial and axial restraint is achieved through magnetic and mechanical means. The embodiment of the passive magnetic bearing has two axially magnetized rings, which each exhibit at least one pair of north and south poles. The magnetized rings are positioned in a manner where the poles are in a repulsive magnetic interaction such that the plane of symmetry which separates the like poles lies perpendicular to the axis of the rotation of a shaft and this radially constrains the movement of the shaft. Axial rigidity is added to the system by the use of ceramic bearings and related axial retaining mechanisms on one of the ring magnets thus maintaining the magnetic bearing in an otherwise unstable axial plane.01-06-2011
20100181854METHOD AND BEARING FOR SUPPORTING ROTATABLE DEVICES, PARTICULARLY A MEDICAL SCANNER - A method is provided for supporting rotatable devices, particularly a medical scanner having an inner ring and an outer ring. According to the invention, the inner ring and outer ring are guided without contact in the axial and/or radial direction by the magnetic field of electromagnets, and the distance between them is monitored and controlled by means of distance sensors. For a bearing implementing said method according to the invention, the outer ring is made in multiple parts and has a U-shaped cross section that is open to the inside in the assembled state, into which the inner ring (07-22-2010
20110025153optimised levitation device - Device for levitation of an item over an optimized base by means of permanent magnets. The equilibrium is stable along one or two axes by means of these permanent magnets, and along the one or two others by means of a combination of electromagnets of near zero consumption at equilibrium.02-03-2011
20110043063ENCAPSULATED MAGNET ASSEMBLY AND PROCESS FOR MAKING - The present invention provides an encapsulated magnet assembly, comprising (a) a magnet disposed within a housing, said housing comprising at least one wall and defining at least one aperture; and (b) a housing cover; the housing cover comprising a first portion made of a magnetic material and a second portion made of a non-magnetic material, wherein the housing cover is configured to hermetically seal said aperture, the first portion being fixedly attached to the second portion wherein a point of attachment is heat treated; and wherein the housing wall is formed of the non-magnetic material and is fixedly attached to the second portion of the housing cover. In one embodiment, the magnet of the encapsulated magnet assembly is a permanent magnet, and in an alternate embodiment an electromagnet. In one embodiment the encapsulated magnet assembly is a component of a stator-rotor assembly.02-24-2011
20110084563AUXILIARY BEARING SYSTEM WITH PLURALITY OF INERTIA RINGS FOR MAGNETICALLY SUPPORTED ROTOR SYSTEM - An auxiliary bearing system for supporting a rotating shaft including a first auxiliary bearing coupled to the rotating shaft. A first inertia ring is coupled to and circumscribes the first auxiliary bearing. A second inertia ring circumscribes the first inertia ring. A radial clearance is defined between the first and second inertia rings when the rotating shaft is supported by a primary bearing system, and the first inertia ring engages the second inertia ring when the rotating shaft is not supported by the primary bearing system. A second auxiliary bearing is engaged with an outer surface of the second inertia ring.04-14-2011
20090033165Magnetic Levitation Actuator - A rotating shaft is accommodated in a case. A ferromagnetic portion is formed on the rotating shaft, and electromagnets are provided to the case. Many projecting portions are formed so as to be arranged in a direction along which the movement of the rotating shaft is required to be regulated. Furthermore, Many projecting portions are likewise formed on the ferromagnetic portion. According to this construction, magnetic flux occurring in the electromagnets concentrates, so that restoring force occurs in the axial direction with suppressing reduction of the attractive force in a radial direction to the ferromagnetic portion. Therefore, the movement in the axial direction of the rotating shaft can be regulated.02-05-2009
20100013332MAGNETIC RADIAL BEARING AND MAGNETIC BEARING SYSTEM HAVING A THREE-PHASE CONTROLLER - A magnetic radial bearing and a bearing system for supporting a rotating shaft are disclosed. The bearing has a number of electromagnets circumferentially arranged around a rotating shaft. Each of the electromagnets has a coil which is electrically connected so as to generate both a magnetic bias and a rotating three-phase field. First terminals of opposing coils are connected in common to a corresponding phase of a three-phase controller for generating the rotating field, whereas second terminals of the coils not connected to the same phase are connected at corresponding star points. The star points are connected to DC power for generating the magnetic bias.01-21-2010
20110101808MAGNETIC BEARING DEVICE - Provided is a magnetic bearing device capable of facilitating manufacture of the magnetic bearing device and improving precision in production thereof while maintaining eddy current reducing effects. The magnetic bearing device 05-05-2011
20110254396Magnetic-Assisted Linear Bearing - A door suspension system comprises a horizontally suspended ferromagnetic shaft; a nonmagnetic bracket comprising a bracket cylinder for enclosing a linear bearing and an attached bracket hanger plate for securing a door panel; a nonmagnetic cylindrical linear bearing sized to slide into the bracket cylinder and over the shaft; at least two spaced bores in the upper surface of the bracket cylinder; at least two spaced bores in the upper surface of the cylindrical linear bearing arranged so as to align with the spaced bores in the bracket cylinder; a cylindrical permanent magnet positioned in at least one of the spaced bores of the bracket cylinder; and a ferromagnetic armature to complete the magnetic circuit through the shaft and the magnet or magnets.10-20-2011
20080309184Support device for supporting a rotor for rotation - A support device for rotatably supporting a rotor (12-18-2008
20110163622Combination Radial/Axial Electromagnetic Actuator - An electromagnetic actuator includes a body and first and second poles residing apart from the body. The first and second poles communicate magnetic flux across a gap with opposing end facing surfaces of the body. The body, the first pole, and the second pole are magnetically coupled and define an axial magnetic control circuit. A plurality of radial poles reside apart from the body, adjacent a lateral facing surface of the body, and communicate magnetic fluxes with the lateral facing surface. The body and the plurality of radial poles define a plurality of radial magnetic control circuits. The plurality of radial poles communicate magnetic fluxes with the lateral facing surface and at least one of the first pole or the second pole, and the body, the plurality of radial poles, and at least one of the first pole or the second pole define a magnetic bias circuit.07-07-2011
20080252161Magnetic bearing device and magnetic bearing spindle device - A control device includes a differential amplifying circuit for obtaining a difference between values of exciting currents (exciting voltage values) supplied to a pair of axial electromagnets and a pair of radial electromagnets, multiplying the obtained difference by coefficient times, and outputting it as the bearing load in an axial direction and a radial direction. The exciting current includes steady current supplied to the axial electromagnets and the radial electromagnets and control current which varies by the displacement of a main shaft. By supplying the steady current to the axial electromagnets and the radial electromagnets, the magnetic attraction force of the axial electromagnets and the radial electromagnets having non-linearity is linearly approximated. Accordingly, the difference between the values of the exciting currents (exciting voltages) supplied to a pair of electromagnets is obtained and is multiplied by coefficient times, thereby obtaining a value corresponding to the bearing load.10-16-2008
20110133587BEARING CONCEPT FOR SEGMENT MOTORS - An electrical machine includes a stator coupled to a machine frame and constructed to produce a magnetic field. A rotor which is connected to a shaft magnetically interacts with the stator and is separated there from by an air gap which is arranged such that the magnetic field within the air gap is directed essentially parallel to the shaft axis during operation of the electrical machine. Arranged between the rotor and the stator is an axial bearing which absorbs attraction forces acting between the stator and the rotor in a direction of the shaft axis. An elastic coupling mechanically couples the stator to the machine frame and is made less stiff than the axial bearing with respect to a force acting in the direction of the shaft axis, and constructed such that a force acting on the rotor in the direction of the shaft axis is able to cause the stator to be translated with respect to the machine frame in the direction of the shaft axis.06-09-2011
20100213777BODY OF REVOLUTION - The invention relates to a body of revolution, in particular for a centrifugal, which comprises a rotator, an electric motor with a stator and a rotor wherein said latter is fixed to the rotator for rotational movement therewith, a support to which the stator of the electric motor is attached and a bearing unit for rotational arrangement of the rotor around an axis of rotation which comprises at least one bearing adapted to coact with an electromagnetic stabilizer unit in such a way that disturbing forces and/or disturbing vibrations of the rotator are counteracted and/or compensated.08-26-2010
20100194225Self Sensing Integrated System and Method for Determining the Position of a Shaft in a Magnetic Bearing - A magnetic bearing system and related method that utilizes self-sensing in order to determine and adjust the position of a shaft within the bearing. Magnetic bearings levitate a rotating object with a magnetic field and are unstable in open-loop operation. Position feedback control is required to maintain a rotor in a centered position. The system and related method uses a unique design to sense the position of the rotating object with greater accuracy. It comprises coils which are used both to detect and adjust the position of the rotating object and a control system which supplies signals in a time-multiplexed manner in order to determine the position with accuracy while still allowing the same coils that are used to detect position to also supply a field to control the position of the rotor.08-05-2010
20110187217Magnetic bearing apparatus - A magnetic bearing apparatus is proposed having a stator (08-04-2011
20100026121SUPERCONDUCTING MAGNETIC THRUST BEARING WITH INTEGRATED DYNAMOTOR - In a superconducting magnetic thrust bearing with integrated dynamotor, a first fixed core is formed to have a U-shaped cross-section in a direction of the central axis of the cylindrical shape with an opening of the U-shape being directed perpendicularly to the central axis, and a superconducting coil is arranged on the inside of the U-shaped portion of the first fixed core formed into the U-shape. A rotary core has projecting ends at positions opposite to two projecting ends of the U-shape of the first fixed core, and a magnetic flux guide path, at a position opposite to an armature core, with a shape varying at predetermined intervals in the winding direction of the superconducting coil. The rotary core is constituted such that it rotates relatively to the first fixed core and is able to move in the direction of the central axis of the first fixed core. The armature core is arranged fixedly in a magnetic flux path that introduces a magnetic flux, which is generated from the superconducting coil and led out from one of the two projecting ends of the U-shape of the first fixed core, to the projecting ends of the rotary core, and leads out the magnetic flux from the projecting ends of the rotary core.02-04-2010
20100194224Magnetic bearing assembly for rotors - A rotor assembly includes a rotor having a central axis extending between the two opposing ends and a radial surface, and is rotatable about the central axis. At least one electromagnet is disposed proximal to and configured to exert magnetic force on a portion of the rotor. Further, a channeling member is disposed generally adjacent to the electromagnet and has a radial surface disposed adjacent to the rotor radial surface. As such, magnetic flux generated by the electromagnet extends generally radially between the electromagnet and the rotor portion and generally axially between the rotor portion and the channeling member so that the magnetic force biases the rotor both radially and axially to maintain the rotor at a desired position. Preferably, the assembly includes a plurality of magnets proximal to each end, two channeling members, and a tubular body extending between the channeling members and enclosing the rotor.08-05-2010
20120098369Suspended Rotors for Use in Electrical Generators and Other Devices - Apparatuses employing suspended rotors are provided. In one embodiment, an apparatus includes a housing forming an internal cavity and a rotor disposed in the internal cavity of the housing. The rotor has a first end and a second end. The apparatus also includes a first end ring coupled to the first end of the rotor and a second end ring coupled to the second end of the rotor. The first end ring and the second end ring are each magnetically repulsed from the housing to cause the rotor to be suspended relative to the housing.04-26-2012
20090174270DEVICE FOR SAFEGUARDING AN UNINTERRUPTIBLE POWER SUPPLY OF A MAGNET BEARING IN THE EVENT OF FAILURE OF AN ELECTRICAL SUPPLY VOLTAGE - The invention relates to a device for safeguarding uninterrupted power supply of a magnetic bearing (07-09-2009
20110025154Electric rotary drive - An electric rotary drive is proposed, designed as a bearingless external rotor motor, having a magnetically supported, substantially ring-shaped rotor (02-03-2011
20080309185Permanent magnet motor having an axially magnetized pull magnet - A permanent magnet motor having an axially magnetized pull magnet consisting of a baseplate on which a stator lamination stack having stator windings is disposed, wherein a hub is disposed opposite the baseplate, the hub being connected to a shaft that is supported with respect to a bearing bush via one or more fluid bearings wherein the hub carries at least one annular rotor magnet that lies radially opposite the stator lamination stack, wherein a pulling device acting in an axial direction and operating under the influence of magnetic tensile forces is disposed in the region between the hub and the stationary part of the motor, wherein the pulling device consists of a permanent magnetic pull magnet on the side of the rotor that interacts magnetically with surfaces on the side of the stator12-18-2008
20110304232ELECTROMAGNETICALLY DRIVEN MOTOR AND ELECTRIC POWER GENERATOR - Method and apparatus for powering an electric motor by circumferentially positioning an array of drive magnets on a rotor and positioning a series of electromagnets on a platform surrounding the drive magnets. The electromagnets are energized and provided with a repulsive polarity at exact time and position necessary to repel a corresponding drive magnet on the rotor so as to drive the rotor in one direction. The rotor includes arrays of permanent magnets that induce current in wire coils circumferentially disposed in one or more stators around and in close proximity to the induction magnets.12-15-2011
20120169168METHOD FOR ON-LINE DETECTION OF RESISTANCE-TO-GROUND FAULTS IN ACTIVE MAGNETIC BEARING SYSTEMS - A magnetic bearing is disclosed that includes a sensing wire wrapped around one or more of the bearing coils and configured to measure the resistance to ground of each bearing coil. With the presence of contaminants such as liquids, a protective coating disposed about the bearing coils degrades over time, thereby reducing the resistance to ground of the bearing coils. The sensing wire transmits the detected resistance to ground of the bearing coils to an adjacent sensing device, which can provide an output that informs a user whether corrective action is required to prevent damage or failure of the magnetic bearing.07-05-2012
20120306304Motor - There is provided a motor including: a rotating member including a first magnet; and a fixed member supporting the rotating member and including a second magnet configuring a magnetic bearing part together with the first magnet, wherein a gap between the first and second magnets is larger than at least one of a contact prevention gap between the rotating member and the fixed member and a clearance between a shaft and a sleeve supporting the shaft.12-06-2012
20120038232AXIAL MAGNETIC SUSPENSION - The present invention generally relates to an apparatus and method for axially supporting a shaft. In one aspect, a magnetic suspension system for supporting a shaft in a housing is provided. The magnetic suspension system includes an array of magnet members disposed between the shaft and the housing. The array of magnet members comprising a first magnet member, a second magnet member, and a third magnet member, wherein the first magnet member and the second magnet member generate a first force that is substantially parallel to a longitudinal axis of the shaft and the second magnet member and the third magnet member generate a second force that is substantially parallel with the longitudinal axis of the shaft The first force and the second force are configured to position the shaft axially within the housing. In another aspect, a method of supporting a shaft along a longitudinal axis of a housing is provided. In a further aspect, a suspension system for supporting a shaft in a housing is provided.02-16-2012
20120038233MAGNETIC BEARING, A ROTARY STAGE, AND A REFLECTIVE ELECTRON BEAM LITHOGRAPHY APPARATUS - A magnetic bearing (02-16-2012
20100127589BEARING DEVICE HAVING A SHAFT WHICH IS MOUNTED MAGNETICALLY SUCH THAT IT CAN ROTATE ABOUT AN AXIS WITH RESPECT TO A STATOR, AND HAVING A DAMPING APPARATUS - The invention relates to a bearing device (05-27-2010
20110316376Split Magnetic Thrust Bearing - Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to: via a thrust stator of a magnetic bearing, the thrust stator adapted to be split into sectors so that a shaft of a machine can be removed from the magnetic bearing, producing an axi-symmetric field at each pole face of the thrust stator when the sectors are operatively assembled in the machine; and/or a magnetic bearing thrust stator, comprising a plurality of stator sectors, each of the stator sectors comprising a semi-circumferentially slotted stator portion comprising a plurality of semi-circumferential poles and a first coil portion shaped to fit substantially within the semi-circumferentially slotted stator portion.12-29-2011
20110050017METHOD AND APPARATUS FOR CONTROLLING A BEARING THROUGH A PRESSURE BOUNDARY - A rotating apparatus includes a housing, a shaft at least partially disposed within a first pressure environment defined by the housing, a first magnetic bearing supporting the shaft and being at least partially disposed within the first pressure environment, a sensor operable to sense a position of the shaft relative to the first magnetic bearing, a controller disposed in a second pressure environment independent of the first pressure environment and operable to communicate with the sensor and to generate a control signal for the first magnetic bearing based on the sensed position, and a communication device operable to communicate the control signal between the controller and the first magnetic bearing and to communicate the sensed position between the sensor and the controller without penetrating a pressure boundary defined between the first and second pressure environments.03-03-2011
20110050016MAGNETIC BEARING DEVICE FOR SUPPORTING ROLL SHAFT - A magnetic bearing device includes a magnet generating a magnetic field at a protrusion formed toward a roll shaft, and a body portion supporting the magnet in one direction. The roll shaft is supported while an air gap is formed between the roll shaft and the protrusion, and both sides of the protrusion are rounded.03-03-2011
20120062060MAGNETIC FAN DEVICE - A magnetic fan device includes a stator, at least three bearings fixed on the stator, a rotor fixedly connected to the stator, a motor, and at least three magnetic posts. The at least three bearings are permanent magnets. The rotor includes a shaft and a plurality of impellers rotatably connected to the shaft. The at least three magnetic posts with an opening at its lateral surface are configured for respectively receiving the at least three bearings by the opening. A first magnet is adhered to ends of the at least three magnetic posts, and a second magnet is adhered to opposite ends of the at least three magnetic posts. The magnetic pole of the first magnet adjacent to ends of the at least three bearings is opposite to the magnetic pole of the second magnet adjacent opposite ends of the at least three bearings.03-15-2012
20100072846MAGNETIC BEARING DEVICE - A magnetic bearing device has a rotating shaft (03-25-2010
20120013215METHOD AND APPARATUS FOR HYBRID SUSPENSION SYSTEM - A system for suspending a rotating body consisting of a combination of magnetic and engineered materials. The suspension system allows for some axial motion to account for varying system loads.01-19-2012
20100026120MAGNETIC CENTRE-FINDING DEVICE WITH NO MAGNET ON THE ROTOR AND WITH SMALL AIR GAP - The present invention relates to a magnetic centre-finding structure, and more particularly a magnetic centre-finding bearing structure intended notably for space applications. The present invention proposes a magnetic concept with no magnet on the rotor, the rotor being reduced to a crown comprising magnetic yokes, to arrange an item of equipment that can be tested on the ground, under gravity, in all positions, without the addition of extra energy, and with a reduction in the complexity of said device.02-04-2010
20120025648AXIALLY-ADJUSTABLE MAGNETIC BEARING AND A METHOD OF MOUNTING IT - The axially adjustable magnetic bearing comprises an annular body secured to a support, a magnetic bearing stator structure having an annular sheath for supporting electromagnet windings placed concentrically relative to said body, and an annular rotor armature placed concentrically relative to the stator structure, leaving an airgap relative thereto. The annular body includes at least one radial slot associated with clamping means, and includes a set-back portion in its face facing towards the stator structure. The face of the annular body facing towards the stator structure includes a sliding surface that co-operates with a facing portion of said sheath, and the set-back portion of the annular body presents a threaded portion that co-operates with a threaded portion of an adjustment ring engaged in an annular groove formed in the face of the sheath that faces towards the body. The adjustment ring is prevented from moving in the axial direction in said annular groove.02-02-2012
20120062061METHOD AND APPARATUS FOR ELEVATING AND MANIPULATING OBJECTS USING ELECTROMAGNETIC FIELDS ONLY - An enclosure to enclose the vertical electromagnetic repulsive elevation and manipulation of electromagnets is presented. The enclosure is capable of elevating the electromagnet to various heights and additionally horizontally repelling the elevated electromagnet from one elevated position to the next. The heights of the elevated electromagnet may vary depending on the voltage of the base electromagnets, the polarities of the electromagnets and the desired height of the elevated electromagnet.03-15-2012
20120112589MAGNETIC AND/OR ELECTROSTATIC PIVOT - Method for orienting a timepiece component made of magnetic/electrostatic material.05-10-2012
20100231076BEARINGLESS MOTOR - Provided is a bearingless motor capable of stably performing magnetic levitation and rotation even when a thrust disk is not provided and gap length is wide.09-16-2010
20090134727Method for Operating an Electromotive Drive - A method for operating an electromotive drive of a textile machine, comprising a contactlessly mounted rotor and catch bearings. The rotor rests on one catch bearing prior to initial operation, and is spaced therefrom by an air gap during stationary operation. A control device allows the rotor to be held in a force-free floating state during stationary operation. The method executes the following steps: (a) inputting an output signal from the control device for maintaining the force-free floating state during operation; (b) calculating the air gap by evaluating the output signal; (c) comparing the calculated value with predetermined limit values; and (d) deactuating the drive when the limit values are passed. The control device comprises a position sensor with at least one sensor coil, at least one actuator coil, a position controller and an integrator, at which the output signal is obtained to determine the air gap.05-28-2009
20110089780MAGNETIC BEARING WITH HIGH-TEMPERATURE SUPERCONDUCTOR ELEMENTS - A magnetic bearing with high-temperature superconductor elements which has a stator and a rotor, which is held such that it can rotate with respect to the stator and is mounted in an axially and radially self-regulating manner in the stator. A body of a Type-2 superconductor, in particular a high-temperature superconductor, is provided on the rotor. The stator has a coil of a superconducting material.04-21-2011
20110181140Apparatus Having a Stator and a Rotor Mounted in Said Stator - A stator has a first bearing for a first end of a shaft of the rotor, and a second bearing for a second end of the shaft. The first and the second bearings have a respective permanent magnet which exerts a magnetic force on the shaft. Alternatively, the shaft is in the form of a permanent magnet and the first and the second bearing have a respective ferromagnetic part. At least one of the two ends of the shaft is supported axially by means of a point bearing. The apparatus is, for example, a fan.07-28-2011
20120169167Axial Hybrid Magnetic Bearing, Method for Operation thereof, and Structure for Rotor thereof - An axial hybrid magnetic bearing (HMB) is disclosed herein. The HMB has a first electric magnet, a second electric magnet, and a rotor being between the two electric magnets. The rotor has a permanent magnet (PM) structure facing the two electric magnets by its two sides. By doing so, the power consumption can be lower by a bias magnetic flux provided by the PM structure; the equilibrium point of the rotor can be adjusted by the magnetic force of the two electric magnets, which will not change the magnetic characteristic of the PM structure.07-05-2012
20100277020HYDROSTATIC BEARING MADE OF MAGNETIC MATERIAL WHICH IS ALSO USED AS A MOTOR MAGNET - A permanent magnet motor is provided with a housing, a rotating shaft supported within the housing, and magnetic coils arranged within the housing. A hydrostatic bearing is disposed on the rotating shaft, the hydrostatic bearing having a permanent magnet incorporated therewith that restricts movement of the rotating shaft in a radial direction.11-04-2010
20120175985PASSIVE MAGNETIC BEARING SYSTEM - An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.07-12-2012
20120074803Electric generator - My Improved Electrical Generator is a high efficiency generator that functions by a series of frictionless bearings and rotating magnets.03-29-2012
20110095633Magical Power - Electric generator also can generate from silicon magnetic and quartz material by attract and repulsion polarity of silicon magnetic north and south apply force compress and decompress on quartz material to create electric signal. The other useful of silicon magnetic can keep holes charge at bay to create more free flow of electrons that help silicon switching faster and low heat.04-28-2011
20090096302MAGNETIC BEARING DEVICE AND METHOD - An energy-saving magnetic bearing device with no bias current for making the relation between the excitation current and the magnetic force of the electromagnet linear is provided. In a magnetic bearing device for supporting a rotor 04-16-2009
20090322172HYBRID THREE-POLE ACTIVE MAGNETIC BEARING AND METHOD FOR EMBODYING LINEAR MODEL THEREOF - Disclosed are a hybrid three-pole active magnetic bearing and a method for embodying a linear model thereof. The hybrid three-pole active magnetic bearing comprises: a stator including a main-magnetic pole in which three magnetic poles are arranged in a fan-shape at an interval of 120 degrees and the three magnetic poles are wound by a coil respectively and a sub-magnetic pole in which three magnetic poles are arranged in a fan-shape at an interval of 120 degrees and a permanent magnet is provided at peripheral ends of the three magnetic poles respectively; and a rotor enclosing a circumference of the stator, in which the three magnetic poles of the main-magnetic pole and the three magnetic poles of the sub-magnetic pole are alternately located at the same interval, and the sub-magnetic pole further includes a pole shoe is formed as a “U” shape and provided at a peripheral end of the permanent magnet.12-31-2009
20120299422ELECTROMAGNETIC ACTUATOR - A body is equipped with magnetically connected radial and axial actuator targets. The radial actuator target features a cylindrical lateral surface. The axial actuator target features the first and the second end-facing surfaces. A radial pole is adapted to communicate a magnetic flux with the cylindrical lateral surface. Magnetically connected first and second axial poles are located axially on one side of the radial pole and adapted to communicate magnetic fluxes with the first and the second end-facing surfaces. The first axial pole, the second axial pole and the axial actuator target form a magnetic axial control circuit. The radial pole, the radial actuator target, the axial actuator target, the first axial pole and the second axial pole form the magnetic bias circuit. Superposition of magnetic fluxes in the axial control circuit and in the bias circuit results in an axial force acting on the axial actuator target.11-29-2012
20110210631BEARING ARRANGEMENT AND BEARING BLOCK HAVING A MAGNETIC RADIAL BEARING AND A SAFETY BEARING FOR A ROTATING MACHINE - A bearing arrangement and a bearing block includes a magnetic radial bearing for the contact-less support of a rotor shaft of a rotating machine, and a touchdown bearing for catching the rotor shaft. Both bearings are connected to each other permanently and in an axially aligned manner, and are elastically suspended with regard to a bearing shield, a machine housing, or a foundation of the rotating machine.09-01-2011
20120126648MACHINE AND METHOD FOR MONITORING THE STATE OF A SAFETY BEARING OF A MACHINE - The invention relates to a method for monitoring the state of a safety bearing (05-24-2012
20100231075LARGE CAPACITY HOLLOW-TYPE FLYWHEEL ENERGY STORAGE DEVICE - Disclosed is a large capacity hollow-type flywheel energy storage device. The energy storage device includes a hollow shaft, a vacuum chamber receiving the hollow shaft, a flywheel having a predetermined weight and disposed at an inner edge of the vacuum chamber, and a hub connecting the flywheel to the hollow shaft and disposed in the vacuum chamber to be rotatable together with the flywheel. A superconductive bearing and an electromagnet bearing are disposed inside and outside the hollow shaft, respectively, such that magnetic forces thereof can be shielded from each other. Thus, magnetic interference between the superconductive bearing and the electromagnet bearing is shielded by the magnet shield interposed therebetween, thereby preventing rotation loss by stabilizing a structural mechanism during rotation while improving design adaptability.09-16-2010
20120139375MAGNETIC LEVITATION CONTROL DEVICE AND HYBRID TYPE MAGNETIC BEARING - A bias magnetic flux is formed so as to be passed through the electromagnet core of an electromagnet, and a bypass magnetic path, serving as a magnetic path for a control magnetic flux, is formed in parallel with a permanent magnet, the bypass magnetic path being magnetized in a direction in which passage of the bias magnetic flux is blocked, and thus, even if the permanent magnet and the electromagnet are disposed in locations where the mutual magnetic fluxes of the permanent magnet and the electromagnet are superimposed, the control magnetic flux formed by the electromagnet is passed through the bypass magnetic path, whereby loss of the control magnetic flux can be suppressed. Thereby, the permanent magnet and the electromagnet can be disposed in locations where the mutual magnetic fluxes are superimposed, whereby the device can be made smaller in size.06-07-2012
20130009501MAGNETIC BEARING STRUCTURE AND TURBO MACHINE HAVING THE SAME - Disclosed is a magnetic bearing structure including a permanent magnet, levitating a rotation body without a bias current, and easily magnetizing the permanent magnet. The magnetic bearing structure includes a ring-shaped permanent magnet provided on a side of a rotation shaft and magnetized in a direction parallel with a shaft direction of the rotation shaft, a coil installed on a side of the permanent magnet, and a conductor installed on an external side of the coil and used to form a magnetic field path. According to the configuration, when an additional bias current is not supplied to the coil installed in the magnetic bearing, a rotation body levitates according to the magnetic field caused by the permanent magnet, and a magnetized direction of the permanent magnet is in parallel with a shaft direction of the rotation shaft thereby allowing easy magnetization and increasing productivity of the magnetic bearing.01-10-2013
20130020895APPARATUS, SYSTEM AND METHOD FOR DETECTING ANOMALOUS AXIAL DISPLACEMENTS OF A MAGNETICALLY LEVITATED FLYWHEEL IN AN ELECTROMECHANICAL BATTERY SYSTEM AND RELATED SYSTEMS AND METHODS - A magnetic-stabilizer bearing apparatus is described for stabilizing the magnetic bearing of an electromechanical battery (EMB) system, which includes a magnetic bearing arrangement having magnetic-stabilizer bearing elements, at least two Halbach arrays attached to the flywheel with a fixed conductive element positioned in-between each of the arrays and an EMB flywheel, and a control arrangement to monitor the current and detect an anomalous axial displacement of the flywheel from its equilibrium position if currents measured by the control arrangement exceed a characterized distribution of currents. Also described is a related method for stabilizing a magnetic bearing of an electromechanical battery (EMB) system.01-24-2013
20080252162PASSIVE MAGNETIC BEARING CONFIGURATIONS - A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.10-16-2008
20080246358Magnetic bearing spindle device for machine tool - The control device displaces the main shaft in the axial direction and in the radial direction within the range of the gap between the rib member of the main shaft and the axial magnetic bearing and the gap between the main shaft and the radial magnetic bearings, by controlling the attraction forces of the axial electromagnets and the radial electromagnets, whereby the main shaft can be positioned. By controlling the axial magnetic. bearing and the radial magnetic bearings, it becomes possible to freely displace only the main shaft in the axial direction and in the radial direction, and therefore, the main shaft can be positioned at high speed and with high precision. Moreover, there is no necessity of providing the feeding mechanism in which the ball screw mechanism and linear motor etc. are employed for the purpose of displacing the magnetic bearing spindle device, and hence, reduction of the production cost for the grinding apparatus can be achieved.10-09-2008
20080231129Spindle apparatus - In a spindle apparatus for a machine tool, a spindle is supported on a housing by support-purpose bearing devices, and is rotated by an electric motor, and a tool is attached to a tool attaching portion formed at a distal end of the spindle. A radial magnetic bearing for vibration suppressing purposes which includes a plurality of electromagnets is provided around the tool attaching portion of the spindle. A plurality of radial displacement sensors for detecting a displacement of the tool attaching portion in radial directions are provided around the tool attaching portion. There is provided an electromagnet control unit for controlling the electromagnets of the radial magnetic bearing on the basis of outputs of the radial displacement sensors so as to support the tool attaching portion in a predetermined position.09-25-2008
20080231128Magnetic Bearing Device With an Improved Vacuum Feedthrough - A magnetic bearing device (09-25-2008
20080224556METHODS OF CONTROLLING THE INSTABILITY IN FLUID FILM BEARINGS - A method of controlling the instability in fluid film bearings by using a magnetic bearing in combination with a fluid film bearing (whether it is a cylindrical journal bearing, an elliptic bearing, an offset-half bearing, a multi-lobe bearing, foil bearing or a tilting-pad bearing, does not really matter), wherein the fluid film bearing serves as the primary load carrying bearing and the magnetic bearing controls the instability of the fluid film bearing. This efficient combination results in bearings that can be used at high speeds without having neither stability nor reliability problems. An alternative method of controlling the instability in fluid film bearings is to disturb the flow in the axial direction, for example, a sleeve (journal) bearing can be manufactured such that the bearing axis is skewed with the shaft axis or a variable geometry bearing can be manufactured to allow for bearing angular misalignment.09-18-2008
20080224555Method and Device For Controlling a Magnetic Bearing - A detection device (09-18-2008
20110273044LARGE GAP HORIZONTAL FIELD MAGNETIC LEVITATOR - The invention is a magnetic levitation device that has a pair of permanent magnets or electromagnets, which are used to create a large constant magnetic field on a horizontal plane between two magnetic poles. An object is levitated between the two magnets and is kept within the horizontal magnetic field by an electromagnet that is controlled by a servomechanism.11-10-2011
20110248587PERMANENT MAGNETIC DEVICE - An apparatus to operate with a rotor includes a plurality of permanent magnetic components and a plurality of hydraulic cylinders. The permanent magnetic components are arranged to surround the rotor. The hydraulic cylinders are coupled to permanent magnetic components and are connected via at least one hydraulic tube.10-13-2011
20130147296MAGNETIC LEVITATION TYPE VACUUM PUMP AND MAGNETIC LEVITATION DEVICE - A magnetic levitation type vacuum pump includes an electromagnet magnetically levitating a rotor by a magnetic force, an electromagnet driving circuit supplying an electromagnet current including a magnetic levitation control current component and a carrier wave current component having a frequency band higher than the magnetic levitation control current component to the electromagnet coil, a levitated position detecting circuit detecting the carrier wave current component and generating a levitated position signal of the rotor, a magnetic levitation control circuit inputting a current command of the magnetic levitation control current component to the electromagnet driving circuit based on the levitated position signal. The electromagnet coil has a primary coil and a secondary coil connected in parallel with the primary coil. An interrupting circuit connected in series with the secondary coil for the carrier wave current component passing therethrough and interrupting the magnetic levitation control current component is further included.06-13-2013
20110234033COMBINATION RADIAL/AXIAL ELECTROMAGNETIC ACTUATOR WITH AN IMPROVED AXIAL FREQUENCY RESPONSE - A first bias magnetic flux may be communicated between a first axial pole and a first axial facing surface of the body. A second bias magnetic flux may be communicated between a second axial pole and a second axial facing surface of the body. A time-varying axial control magnetic flux may be communicated through the first and second axial facing surfaces of the body, and may be generated in a magnetic circuit including the body, the first and second axial poles, and an axial magnetic backiron. The first and second axial poles may include axial pole laminated inserts composed of electrically isolated steel laminations stacked along the body axis. The axial magnetic backiron may include laminated inserts composed of electrically isolated steel laminations stacked in the direction tangential to the body axis. The axial pole laminated inserts may be magnetically coupled to the axial magnetic backiron laminated inserts.09-29-2011
20130181560Electric Machine having Two Rotors and at least Two Bearings - An electric machine is provided. The electric machine includes at least one stator, a shaft, movable in rotation around an axis of rotation, two rotors, each being interdependent of the shaft, at least two bearings, able to support both rotors and the shaft. A single bearing is located between both rotors along the axis of rotation.07-18-2013
20110285233INDUCTION MACHINE BEARING SYSTEM - A bearing assembly for an induction machine, such as an alternating current motor, includes a magnetic bearing for supporting a rotating shaft. An auxiliary bearing, also supporting the shaft in the event of magnetic bearing failure, is aligned with the motor end shield and frame so that shaft loads supported thereby are transferred to the frame in a manner that reduces likelihood of magnetic bearing contact with the shaft or its deformation. The bearing assembly may incorporate shock absorbing and vibration damping/isolation elements, such as o-rings, between the auxiliary bearing and its support structure interface to the frame. The auxiliary bearing may be incorporated in a removable cartridge for ease of machine maintenance. The bearing assembly may include heat dissipating fins.11-24-2011
20110309702ELECTRO-ACTUATED MAGNETIC BEARINGS - Techniques are generally described for adjusting a magnetic field in a magnetic bearing by moving permanent magnets in real time. Some example devices or systems include a magnetic bearing comprising electro-actuators adapted to move permanent magnets relative to a rotor to balance the rotor. For instance, in one example, each electro-actuator includes electro-active material adapted to deform in response to being exposed to an electrical field. This deformity causes permanent magnets attached to a surface of each electro-actuator to move relative to a rotor to balance the rotor. In many examples, a measurement circuit may be coupled to each electro-actuator and adapted to measure a capacitance of each electro-actuator. The capacitance measurement may be used to determine an adjustment signal to adjust the magnetic field in real time.12-22-2011
20120001507SYSTEM AND METHOD FOR ACTIVELY CONTROLLING THE THRUST ACTING ON A ROTOR - Embodiments of the present invention provide a method and system of actively controlling, in real-time, a thrust load experienced by a rotor. The rotor may have the form of a single or multi-part shaft, upon which rotatable components are mounted. Embodiments of the present invention incorporate electromagnets, which may be in the form of an electromagnetic device located adjacent a thrust piston on the rotor, or other embossed feature. A control system may modulate the electrical current through the electromagnetic device to control the thrust load and the axial movement of the rotor. This may create a balance thrust or zero thrust condition, if desired. Alternatively, modulating the electrical current may allow biasing the thrust load in a desired direction.01-05-2012
20130207495Electric Machine - An electric machine, for example, a motor, is provided. The machine or motor includes a stator, a rotor, at least one main bearing for supporting the rotor relative to the stator in a main range of speeds and at least one secondary bearing suitable for supporting the rotor relative to the stator when the first main bearing is faulty. Each secondary bearing is a passive electrodynamic bearing and includes at least one permanent magnet and a moveable electric conductor element.08-15-2013
20130207496SYSTEM AND METHOD FOR PERFORMING MAGNETIC LEVITATION IN AN ENERGY STORAGE FLYWHEEL - A system for performing magnetic levitation of an energy storage flywheel, including an upper levitator pole which includes a permanent magnet and an electromagnet, a lower levitator pole fixed to the energy storage flywheel and being formed of a material capable of being attracted to or repelled from the upper levitator pole when a magnetic flux is applied to the magnetic flux path of the permanent magnet of the upper levitator pole, an electromagnetic driver which applies an electric current through the electromagnet of the upper levitator pole, and a controller which controls the electromagnetic driver so as to control the electric current applied through the electromagnet, causing the lower levitator pole to be controllably attracted to or repelled from the upper levitator pole.08-15-2013

Patent applications in class Magnetic bearing