Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Control of current or power

Subclass of:

307 - Electrical transmission or interconnection systems

307011000 - PLURAL LOAD CIRCUIT SYSTEMS

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
307035000 Limit control 30
307032000 Load current proportioning or dividing 28
307033000 Constant magnitude control 11
Entries
DocumentTitleDate
20110175446MONITORING SYSTEM AND INPUT DEVICE THEREOF - A monitoring system includes a controller, a number of input devices, a number of digital sensors, a number of analog sensors, a number of displays, and a number of alarms. Each input device includes a switching circuit, an input circuit, and a connector. The connector is connected to a digital sensor or an analog sensor. The switching circuit includes an n-channel metal-oxide-semiconductor field effect transistor (MOSFET), a p-channel MOSFET, a first resistor, and a second resistor. The input circuit includes an operational amplifier and a third resistor.07-21-2011
20120200158WIRELESS POWER TRANSMISSION SYSTEM AND WIRELESS POWER TRANSMISSION APPARATUS - A wireless power transmission system is a system essentially includes a small number of transmitters and a large number of receivers having unique IDs, in which the transmitter collectively controls variable reactance inside the transmitter and the receiver by using the same ID so as to perform one-to-multiple power transmission. Specifically, aiming to achieve the one-to-multiple wireless power transmission system capable of adaptively controlling a power transmission efficiency, the transmitter registers a unique ID transmitted by the receiver, and requests the receiver to report on power reception state for each ID, thereby collectively controlling variable reactance inside the transmitter and the receiver according to the content of the report so that the power transmission efficiency inside the system is dynamically optimized.08-09-2012
20110181111Smart Powering and Pairing System and Related Method - According to one disclosed embodiment, a smart powering and pairing system includes a power conversion unit (PCU) having a communication module, a power management module and a pairing module. The PCU can convert mains power into a form that can be used to power a plurality of electronic devices. In one embodiment, the PCU can transparently pair a connected electronic device to a group of subsequently connected electronic devices by accepting pairing information from the connected electronic device and using it to pair the subsequently connected devices. In another embodiment, the PCU can transparently pair a group of connected electronic devices by applying generated security data to all the connected devices. In another embodiment, a power conversion unit can use security data to un-pair connected electronic devices.07-28-2011
20100156176DC POWER SUPPLY DEVICE AND METHOD FOR SUPPLYING MULTIPLE VARIABLE VOLTAGES USING POWER LINE COMMUNICATION - Provided are a DC power supply device and a DC power supply system for supplying multiple DC powers having variable voltages using a power line communication (PLC). The DC power supply device includes an AC/DC converter, a DC/DC distributor, a plurality of output voltage regulators, a voltage control module, and a PLC modem. The AC/DC converter converts an inputted AC voltage into DC voltage, and the DC/DC distributor distributes the DC voltage according to number of external devices. The output voltage regulators output the distributed DC voltage to the external devices. The voltage control module controls the output voltage regulators to output voltages according to the voltage request information of the external devices. The PLC modem transmits/receives the real-time voltage request information of the external devices through a power line.06-24-2010
20100026095Multiple Output Isolated DC/DC Power Converters - Methods of regulating an output voltage of a multi-output isolated power converter are disclosed. One method includes allowing the output voltage to vary unregulated when the output voltage is below a threshold value and preventing the output voltage from increasing when the output voltage reaches the threshold value. Additional methods and multi-output power supplies are also disclosed.02-04-2010
20090195071SWITCHING POWER SUPPLY CIRCUIT CAPABLE OF TIMING ADJUSTMENT OF SIGNAL - A switching power supply circuit includes a plurality of switching regulators and a timing adjustment circuit. The plurality of switching regulators converts an input voltage input to an input terminal into a plurality of predetermined constant voltages, and outputs the plurality of predetermined constant voltages from a plurality of output terminals, respectively. The timing adjustment circuit adjusts phases of a plurality of pulse signals generated by the plurality of switching regulators so that the phases of the plurality of pulse signals are different from each other, and outputs the plurality of adjusted pulse signals to respective switch circuits of the plurality of switching regulators.08-06-2009
20090195070ELECTRIC ENERGY CONTROL SYSTEM - In a store, a plurality of electric apparatuses including an air conditioner, a lighting apparatus, a water heater and a refrigeration unit are provided and connected to a single main power supply. An electric energy control system includes an electric energy detection part, an electric energy supervising part, an air conditioner derivation part and an air conditioner control part. The electric energy detection part detects the total electric energy consumption of the plurality of electric apparatuses. The electric energy supervising part outputs a demand signal when the total electric energy consumption detected by the electric energy detection part exceeds a set amount of electric energy. When the demand signal is output, the air conditioner control part employs as a default value A the electric current value of the air conditioner at the start of output of the demand signal, which has been derived by the air conditioner derivation part, and controls the air conditioner so that the electric current of the air conditioner reaches a target value TA reduced from the default value by a set amount of reduction Da08-06-2009
20100164281ACTIVE OUTPUT COMPENSATION CIRCUIT - An active output compensation circuit is adopted for use on a power supply which receives input power and regulates to become a plurality of different output power. The power supply has a transformer to transform the input power. The transformer has a secondary side connecting to a plurality of output regulation units to deliver the output power. The active output compensation circuit includes a voltage difference judgment unit electrically connected to the output regulation units and a plurality of compensation channel switches. The compensation channel switches bridge two output regulation units and the voltage difference judgment unit. The voltage difference judgment unit judges the voltage difference of two output power and determines whether to output an ON signal. The compensation channel switches are driven by the ON signal and set ON so that one output power can compensate another output power.07-01-2010
20080258560Electric Supply for an Aircraft Gas Turbine Engine Equipment - A device supplying electricity power to and actuating equipments of a gas turbine airplane engine, including an electricity power supply circuit dedicated to the engine and distinct from an electricity network on board the plane and excitation, control or servo circuits for pieces of electrical equipment of the engine. The engine electrical power supply circuit includes a first bus distributing DC or AC voltage to excitation, control or servo circuits for first pieces of electrical equipment of the engine, a second bus distributing DC or AC voltage to excitation, control or servo circuits for other pieces of electrical equipment of the engine requiring higher electrical power compared with the first pieces of equipment, and a third bus connected to receive power from an electricity source such as an airplane on-board electricity distribution network or an electricity generator dedicated to the engine and driven thereby. The third bus supplies the first and second bus with electricity power.10-23-2008
20130088079SYSTEM FOR CUTTING OFF STANDBY POWER - A system for cutting off standby power of the present invention comprises: a plurality of electronic products that are controlled devices; and a main system commonly controlling the same, wherein each of the plurality of electronic products is equipped with a standby power cut-off unit, which is controlled by the main system to open or cut off the power supply path of the power input of a corresponding electronic product, thereby cutting off standby power, and wherein the main system is equipped with a device selection and actuation unit which controls the action of the standby power cut-off unit of each of the electronic products to supply or cut off power to each of the plurality of electronic products.04-11-2013
20100117451Package circuit board with a reduced number of pins and package including a package circuit board with a reduced number of pins and methods of manufacturing the same - A package circuit board having a reduced package size. The package circuit board may include a semiconductor substrate in place of a printed circuit board. The package circuit board may further include a microelectronic chip mounted on the semiconductor substrate, the microelectronic chip having at least one of active and passive elements formed on the semiconductor substrate semiconductor substrate.05-13-2010
20130033104FAST START-UP VOLTAGE REGULATOR - A system for power regulation is provided. The system includes a plurality of regulator stages and a voltage boost circuit configured to provide a source voltage to a difference amplifier of each regulator stage. The difference amplifier of each regulator stage is configured to compare a feedback voltage to an output voltage of a reference generation circuit. Each regulator stage includes a plurality of output transistors driven by an output of the difference amplifier. The system includes a start-up circuit arranged and configured to power the voltage boost circuit the reference generation circuit while operation in a start up mode.02-07-2013
20130033105SYSTEMS AND METHODS FOR CURRENT MATCHING OF LED CHANNELS - System and method are provided for generating a plurality of channel currents. The system includes a channel reference generator configured to receive a first reference current and generate at least a first channel driving current and a second channel driving current, a first channel current divider configured to receive the first channel driving current and generate a first input current, a second input current, and a third input current, a second channel current divider configured to receive the second channel driving current and generate a fourth input current, a fifth input current, and a sixth input current, a first channel driver configured to receive the first input current, the second input current, and the third input current and generate a first channel current, and a second channel driver configured to receive the fourth input current, the fifth input current, and the sixth input current and generate a second channel current.02-07-2013
20130076133Apparatus Including a Gate Drive Circuit for Selectively Providing Power to a Powered Device Through Multiple Wire Pairs - A gate drive circuit includes a first gate terminal, a second gate terminal, and a driver circuit including an input and including an output coupled to the first gate terminal. The driver circuit is configured to provide a drive signal to the first gate terminal to control a first switch to selectively couple a first current path to a first wire pair of a network port. The gate drive circuit further includes a switch including a first terminal coupled to the output of the driver circuit, a second terminal coupled to the second gate terminal, and a control terminal responsive to a switch control signal to selectively couple the output of the driver circuit to the second gate terminal to control a second switch to selectively couple a second current path to a second wire pair of the network port.03-28-2013
20100060078Dual Input LDO Regulator With Controlled Transition Between Power Supplies - A Dual Input, Single Output Low Dropout Regulator (LDO) includes two linear regulator circuits and control circuitry that produce an overlap period during change-over between a regulated supply voltage and an unregulated supply voltage wherein both supply voltages are coupled to the LDO output pin. The unregulated supply voltage is supplied, e.g., by a battery, and the regulated supply voltage is supplied from a switching-type DC-DC converter. First and second output devices are connected between the LDO output terminal and the unregulated and regulated supply voltages, respectively. The first regulator circuit causes the first output device to supply the desired regulated output voltage while the switching regulator ramps up. The regulator circuits then turn on the second output device and gradually turn off the output device, whereby the regulated output voltage transitions from the unregulated supply voltage to the regulated supply voltage is achieved without severe voltage transients.03-11-2010
20100045108Power conversion architecture with zero common mode voltage - A controller for a power conversion system reduces common-mode voltage generated by the power conversion system by imposing a constraint on the control signals applied to the power conversion system. The power conversion system includes a plurality of switching devices that are responsive to control signals provided by the controller to selectively connect each output of the power conversion system to one of a plurality of inputs. The controller generates control signals based on a desired output of the power conversion system. In addition, the controller imposes a constraint on the control signals to reduce the common-mode voltage. The constraint is defined by assigning an integer value to each input of the power conversion system, and requiring that the selective connection of outputs to inputs must result in a sum of integer values equal to zero.02-25-2010
20100045109AC Power Distribution System with Transient Suppression and Harmonic Attenuation - An AC power distribution unit for coupling AC power having a fundamental frequency to a plurality of electrical loads has an enclosure. A power input feed is retained by the enclosure for coupling to a source of the AC power. A plurality of power output feeds is retained by the enclosure for coupling to the plurality of electrical loads. A harmonic mitigation module is retained in the enclosure and is connected in series between the power input feed and the plurality of power output feeds. The harmonic mitigation module bilaterally reduces harmonic current distortion above a predetermined frequency between the power input feed and the plurality of power output feeds.02-25-2010
20130038124POLE-MOUNTED POWER GENERATION SYSTEMS, STRUCTURES AND PROCESSES - Solar power systems and structures are mountable to a power distribution structure, e.g. a power pole or tower, which supports alternating current (AC) power transmission lines. An exemplary power generation structure is fixedly attached to and extends from the power distribution structure, and comprises a mounting rack. A solar array, comprising at least one solar panel, is affixed to the mounting rack. A DC to AC invertor is connected between the DC outputs of the solar array and the AC power transmission lines. The length of the solar array is generally in alignment with the power distribution structure, and the width of the solar array is greater than half the is circumference of the power distribution structure. The mounting rack and solar array may preferably be rotatable, such as based on any of location, time of day, or available light.02-14-2013
20120212053Inline Power Device For Multiple Inline Formats - Techniques are provided for delivering power to powered devices. Power is received from an inline power device and the power is separated into multiple power distribution paths. The power is received at a connector jack comprising conductor pins configured to receive the power and data. A transceiver is configured to interface with the first portion and the second portion of the conductor pins of the connector jack. The power distribution paths are electrically isolated, and rectifying diodes are configured to interface with the conductor pins are also electrically isolated. The power is transmitted from the inline power device across the multiple power distribution paths.08-23-2012
20130043727POWER SUPPLY APPARATUS - A power supply apparatus is provided, which includes an input conversion stage, a main power conversion circuit, an auxiliary power conversion circuit, a switching unit and a buck power conversion circuit. The input conversion stage is used for receiving an AC voltage and converting the AC voltage to output a DC input voltage. The main power conversion circuit is used for converting the DC input voltage so as to generate and output a main power. The auxiliary power conversion circuit is used for converting the DC input voltage so as to generate and output an auxiliary power. The switching unit is used for receiving the main power and the auxiliary power and selecting and outputting one of the main power and the auxiliary power. The buck power conversion circuit is used for stepping down the output of the switching unit so as to generate and output a standby power.02-21-2013
20130043726METHOD AND APPARATUS FOR TRIAC APPLICATIONS - Aspects of the disclosure provide a circuit. The circuit includes a control circuit and a return path circuit. The control circuit is configured to operate in response to a first conduction angle of a dimmer coupled to the circuit. The first conduction angle is adjusted to control an output power to a first device. The dimmer has a second conduction angle that is independent of the control of the output power to the first device. The return path circuit is configured to provide a return path to enable providing power to a second device in response to the second conduction angle.02-21-2013
20100109436Power supply equipment for simultaneously providing operating voltages to a plurality of devices - Power supply equipment includes circuitry for converting an input voltage to first and second DC output voltages. At least one of the output voltages is programmable in response to a voltage control signal. A first output port provides the first DC output voltage to a first electronic device and a second output port provides the second DC output voltage to a second electronic device. The conversion circuitry provides power sufficient to simultaneously power the first electronic device at the first DC voltage and the second electronic device at the second DC voltage.05-06-2010
20100109434MULTIPLE OUTPUT SWITCHING POWER SOURCE APPARATUS - A multiple output switching power source apparatus includes first and second transformers each having a primary winding, a first secondary winding, and a second secondary winding; a first control circuit adjusting a time for applying a DC voltage to the primary winding of the first transformer; a first rectifying-smoothing circuit rectifying and smoothing a voltage generated at the first secondary winding of the first transformer and providing a first output voltage; a second control circuit adjusting a time for applying the DC voltage to the primary winding of the second transformer; a second rectifying-smoothing circuit rectifying and smoothing a voltage generated at the first secondary winding of the second transformer and providing a second output voltage; and a third rectifying-smoothing circuit rectifying and smoothing a voltage across a series winding having the second secondary windings of the first and second transformers and providing a third output voltage.05-06-2010
20100109435Linear Voltage Regulator with Multiple Outputs - Systems, methods, and apparatuses that may be employed to generate multiple, regulated, isolated power supply voltages are disclosed. In a first implementation, a system includes a circuit configured to supply a plurality of regulated supply voltages. The circuit may include a voltage regulator that can include a first transistor, where the first transistor can be configured to supply a first regulated supply voltage. The circuit may further include a second transistor, operably coupled to the first transistor, where the second transistor can be configured to supply a second regulated supply voltage.05-06-2010
20130082527INTELLECTUAL SWITCH MODULE AND OPERATING METHOD FOR THE SAME - A group includes plural switch modules (04-04-2013
20130082526APPARATUS AND METHOD FOR MANAGING ELECTRIC DEVICES, AND MOBILE DEVICE AND SYSTEM ADAPTED TO THE METHOD - An apparatus and method for managing electric devices, and a mobile device and a system adapted to the method are provided. The electric device management system includes an electric power supply, a plurality of electric devices that are arranged in an area and receive electric power from the electric power supply, and a device management apparatus for providing information regarding the electric devices and at least one operation schedule of electric devices based on the entire amount of electric power planned to be consumed by the electric devices.04-04-2013
20120212054Administering Offset Voltage Error In A Current Sensing Circuit - Administering offset voltage error in a current sensing circuit including recording by a power supply management module a current sensing voltage for a power supply when no operating load is drawn from the power supply and dynamically calculating by the power supply management module output current of the power supply with an active load in dependence upon the recorded current sensing voltage.08-23-2012
20100078998POWER ELECTRONIC MODULE PRE-CHARGE SYSTEM AND METHOD - A power electronics device with an improved pre-charge circuit configuration is provided. More specifically, the input of the motor drive module may accept an AC or DC source voltage. In this way, the pre-charge circuit of the motor drive module may be utilized whether the motor drive is coupled to an AC or DC source.04-01-2010
20120181866Automation Device - An automation device having a plurality of modules, where at least one first module is configured to supply the other modules electrical power and a second module is configured to determine the total power requirement of the automation device, wherein the second module determines the total power requirement from the information relating to the power requirement of the respective module, which information is stored in the other modules, and compares the total power requirement with a threshold value and initiates measures for reducing the power requirement of at least one of the other modules based on the comparison result to prevent an overload due to improper or inappropriate installation of the automation device in a switchgear cabinet and resultant reduced air convection.07-19-2012
20130088077FULL BRIDGE SWITCHING CIRCUIT - A full bridge switching circuit includes a converter circuit including first and second converters. The first converter includes a first transformer and a first switching element part to control the first transformer in response to a first switching signal. The second converter includes a second transformer and a second switching element part to control the second transformer in response to a second switching signal. The first and second transformers are controlled by the first and second switching element parts to output first and second feedback signals, respectively. The full bridge switching circuit further includes a third switching element part having a third switching input connected to the first and second transformers, and an IC circuit to generate an OR signal by an OR operation of a first control signal generated from the first feedback signal and a second control signal generated from the second feedback signal.04-11-2013
20130088078Apparatus, System and Method for Cascaded Power Conversion - An apparatus, method, and system are provided for power conversion to supply power to a load such as a plurality of light emitting diodes. An exemplary apparatus comprises: a first power converter stage having a first power switch and a first inductive element; a second power converter stage having a second power switch and a second inductive element; a plurality of sensors; and a controller. The second power converter stage provides an output current to the load. The controller is adapted to use a sensed input voltage to determine a switching period, and is further adapted to turn the first and second power switches into an on-state at a frequency substantially corresponding to the switching period while maintaining a switching duty cycle within a predetermined range.04-11-2013
20100264733BULK POWER ASSEMBLY - A bulk power assembly includes a bulk power distribution (BPD) subassembly and a bulk power controller and hub (BPCH) subassembly coupled to the BPD subassembly. The BPD assembly is configured to provide bulk DC power from both AC input power and DC input power. The BPD subassembly is configured to distribute the DC bulk power. The BPCH subassembly is configured to monitor and control the BPD assembly.10-21-2010
20130069430Power-Supply Circuit For An Electrical Appliance Having A Battery And A DC-TO-DC Converter - A power supply circuit for a small electrical appliance is disclosed. The power supply circuit includes a battery; a first load with a relatively high power consumption; a controllable switch; at least a second load with a low power consumption; and a DC-to-DC converter. The first load is connected to the battery via the controllable switch and the DC-to-DC controller supplies power from the battery to the second load, such that the controllable switch supplies to the first load a pulsed voltage having a pulse-pause ratio. The DC-to-DC converter powers the second load at least during the pauses.03-21-2013
20090091186SYSTEM AND METHOD FOR MULTIPLE SENSE POINT VOLTAGE REGULATION - The present invention is a system and method for sensing the voltage at multiple sense points. The present invention acquires optimal feedback from a plurality of sources including those integrated on the same motherboard, for populated or unpopulated connectors and for adapter cards plugged into the connectors, for the purpose of controlling the voltage regulator output. The voltage regulator, connected to a logic system, provides voltage to those connectors needing the voltage.04-09-2009
20110006603PORTABLE POWER MANAGER OPERATING METHODS - Various aspects of invention provide portable power manager operating methods. One aspect of the invention provides a method for operating a power manager having a plurality of device ports for connecting with external power devices and a power bus for connecting with each device port. The method includes: disconnecting each device port from the power bus when no external power device is connected to the device port; accessing information from newly connected external power devices; determining if the newly connected external power devices can be connected to the power bus without power conversion; if not, determining if the newly connected external power devices can be connected to the power bus over an available power converter; and if so, configuring the available power converter for suitable power conversion.01-13-2011
20130134781NETWORK SYSTEM - Provided is a network system including: a utility network including an energy generating unit; a home network consuming energy generated from the energy generating unit and including an energy consuming unit operating based on energy information including at least one energy price information; and a power adjusting device through which a current or a voltage supplied for an operation of the energy consuming unit is passed, wherein the power adjusting device reduces energy cost or an energy amount used by adjusting a voltage or current amount applied to the energy consuming unit based on the energy information.05-30-2013
20110221271Signal Variance Sensing Power Controller - A signal variance sensing power controller is described. The power controller functions by measuring the power consumption of a first device, and detecting fluctuations in the power consumption. The power controller then determines a level of variability, based on measured changes in the first device. Based on the level of variability, the power controller then determines a state of the first device, and influences a second device based on that state.09-15-2011
20130162039SYSTEM AND METHOD OF CONTROLLING OPERATION OF ELECTRIC DEVICE - A system for controlling an electric device operation includes a plurality of electric devices managed by a consumer associated with a power system and a plurality of control devices for controlling an operation of the electric devices. The system includes an operation time calculation unit configured to calculate a start time of an operation of increasing or decreasing power received from the plurality of electric devices based on a control command for requesting an increase or decrease of power received from the power system such that the start time is different for each of the electric devices. Each of the control devices executes an operation of increasing or decreasing reception power at an operation start time different for each of the electric devices as a result of calculation of the calculation unit.06-27-2013
20130162040DYNAMIC POWER CONTROL FOR A TWO WIRE PROCESS INSTRUMENT - A process instrument includes a transducer, a two wire interface, a microprocessor, a digital to analog converter, a first control circuit, and a second control circuit. A current passing through the two wire interface indicates a condition of the transducer. The microprocessor is interfaced with the transducer. The digital to analog converter receives a signal from the microprocessor indicating a current value. The first control circuit is coupled to the digital to analog converter and adapted to control the current passing through the two wire interface to the current value. The second control circuit is coupled to the digital to analog converter and supplies current to a secondary load.06-27-2013
20090102285Power Converter and Its Control Method and Air Conditioner - A controller (04-23-2009
20080246336Current Fed Inverter with Pulse Regulator for Electric Induction Heating, Melting and Stirring - A current fed inverter with duty cycle regulation of dc current to the input of the inverter is provided to increase the magnitude of inverter output power while operating a resonant load at resonant frequency. The regulator duty cycle period is synchronized to the period of the output current of the inverter so that there are two regulator periods for each single output current period of the inverter. Duty cycle regulation may be provided by a single pulse in the regulator period, or a series of pulses in the regulator period. Output power magnitude greater than that available at full duty cycle can be provided by operating the inverter at off resonance. Multiple current fed inverters may be connected to individual coil sections around a crucible and selectively interconnected for a heating or melting mode, or a stir mode.10-09-2008
20110278927Multiple Output Isolated DC/DC Power Converters - Methods of regulating an output voltage of a multi-output isolated power converter are disclosed. One method includes allowing the output voltage to vary unregulated when the output voltage is below a threshold value and preventing the output voltage from increasing when the output voltage reaches the threshold value. Additional methods and multi-output power supplies are also disclosed.11-17-2011
20110278925SWITCHING POWER SUPPLY DEVICE - In conventional multi-output switching power supply device, power is supplied from a relatively high voltage side output to a relatively low voltage side output through a dropper circuit which generates relatively large power loss so as to improve the voltage accuracy of a non-stabilized output, so that power supply efficiency is low and heat generated from the dropper circuit is high.11-17-2011
20110278926Multiple Output Isolated DC/DC Power Converters - Methods of regulating an output voltage of a multi-output isolated power converter are disclosed. One method includes allowing the output voltage to vary unregulated when the output voltage is below a threshold value and preventing the output voltage from increasing when the output voltage reaches the threshold value. Additional methods and multi-output power supplies are also disclosed.11-17-2011
20110278924POWER SUPPLY CIRCUIT FOR MOTHERBOARD - A power supply circuit for providing power and detecting a plurality of loads' input voltages on a motherboard includes a pulse width modulation (PWM) controller, a voltage output circuit and a voltage feedback circuit electrically connected to the PWM controller and the plurality of loads. The PWM controller outputs PWM control signals. The voltage output circuit receives the PWM control signals and outputs working voltage to the plurality of loads according to the received PWM control signals. The voltage feedback circuit detects the plurality of loads' input voltages and outputs feedback signals to the PWM controller according to the detected input voltages. The PWM controller adjusts its PWM control signal outputs, according to the received feedback signals, and adjusting working voltages to the plurality of loads.11-17-2011
20100007208ELECTRONIC DEVICE AND METHOD FOR SUPPLYING OPERATING VOLTAGE TO FIELD DEVICES - An electronic device for supplying an operating voltage to field-proximal equipment, in which a bus supplies the operating voltage to the field-proximal equipment via a current loop between a field device and a voltage supply unit which are connected to the bus. The field-proximal equipment includes control means for adaptive operating-voltage matching to an instantaneous power demand. The control means utilizes the energy which is still freely available in the loop.01-14-2010
20090206663Cross-interference reduction of a buck power converter - A power converter includes a first conversion stage for converting an input voltage to a first output voltage and a second conversion stage for converting the first output voltage to a second output voltage. An error signal is generated according to a reference voltage and a feedback signal extracted from the second conversion stage, and a feed forward signal is generated from the error signal and injected into the first conversion stage to stabilize the first output voltage. The feedback signal is a function of the second output voltage and thus, the error signal varies with the second output voltage. As a result, the first output voltage will be stabilized when the second output voltage varies, due to the varied feed forward signal.08-20-2009
20110298281SWITCHING MODE POWER SUPPLY AND POWER SUPPLY METHOD USING THE SAME - A switching mode power supply (SMPS) and a power supply method using the SMPS, the SMPS including: a rectifier to rectify an alternating current (AC) voltage; a first switching unit to switch the voltage rectified by the rectifier; a first switching control unit to control the first switching unit; and a power blocking unit to block power supply to the first switching control unit in a power saving mode.12-08-2011
20110298279HIGH EFFICIENCY STANDBY POWER GENERATION - An apparatus, system, and method are disclosed for providing standby power. A switching module adjusts an on-time and an off-time of one or more switches based on a feedback signal. The one or more switches are shared between a primary stage and a standby stage of a switched-mode power supply. A shutoff module interrupts electric power flowing to the primary stage in response to a standby signal having a standby state and allows electric power to flow to the primary stage in response to the standby signal having an on state. A feedback module provides the feedback signal to the switching module. The feedback module bases the feedback signal on an output of the primary stage in response to the standby signal having the on state. The feedback module bases the feedback signal on an output of the standby stage in response to the standby signal having the standby state.12-08-2011
20110298280APPARATUS AND METHOD FOR VARIABLE VOLTAGE DISTRIBUTION - Apparatus and methods for providing regulated voltages are disclosed. Using a single voltage regulator, a plurality of regulated voltages can be generated with a voltage distribution function. In addition, variable voltage control elements can be used to adjust a regulated voltage, thereby providing a variable regulated voltage. Together, voltage distribution and variable voltage control can create variable voltage distribution of regulated voltages. These regulated voltages can be used in a variety of applications, for example, as a bias voltage for a power amplifier.12-08-2011
20110291477COMPOSITE POWER SUPPLY - A composite power supply includes a plurality of power cluster lines, at least one USB port and at least one DC port formed on a surface of a casing, and the power cluster lines, the USB port and the DC port are electrically connected to a circuit board and the circuit board includes a plug-and-play circuit electrically connected to the USB port and provided for an electronic device to access electric power through the USB port, so as to waive the inconvenience of booting a computer before using the electric power, and the circuit board includes a DC-DC conversion circuit electrically connected to the DC port, and a knob or a multi-stage switch in the DC-DC conversion circuit is provided for adjusting the output voltage of the power ports to improve the convenience of the application significantly.12-01-2011
20100078997AUTOMOTIVE ELECTRICAL SYSTEM FOR COUPLING POWER CONVERTERS WITH A TRANSFORMER - Systems and/or apparatus are provided for automotive electrical systems having power converters that are coupled by using a transformer. An electrical system comprises a boost converter, wherein a first winding of a transformer is coupled between the input node of the boost converter and a first reference node. The boost converter further includes a switch coupled between the first reference node and a second reference node and a diode coupled between the first reference node and the output node of the boost converter. An energy source is coupled between the input node and the second reference node and a first electrical load is coupled between the output node and the second reference node. The electrical system further comprises a voltage converter having an input coupled to a second winding of the transformer, and a second electrical load coupled to the output of the voltage converter.04-01-2010
20100033014VOLTAGE SUPPLY ARRANGEMENT AND METHOD FOR PRODUCTION OF ELECTRICAL POWER - A voltage supply arrangement is proposed, which provides a voltage from a first power range in a first operating mode and from a second power range in a second operating mode, to a first electrical load. The voltage supply arrangement includes a voltage converter which is coupled on the input side to a voltage input of the voltage supply arrangement and on the output side to a first connection of a first switch, which is connected at a second connection to a voltage output of the voltage supply arrangement for connection of a first electrical load. The voltage supply arrangement further includes a second switch, which is coupled at a first connection to the voltage input and at a second connection to the voltage output, and a drive circuit, which is configured to set the first and the second switch to the first or the second operating mode in response to a control signal.02-11-2010
20090189447MULTI-CHANNEL SWITCHING REGULATOR - A controlling unit generates a pulse signal whose duty ratio is controlled so that the output voltage of each channel will be constant, and controls the main transistor and the rectification circuit of each channel in accordance with the pulse signal. The first synchronous rectification transistor is disposed in a direction such that the cathode of the body diode thereof is on the switching terminal side. The second synchronous rectification transistor is disposed in a direction such that the cathode of the body diode thereof is on the output terminal side. The controlling unit first turns on the first synchronous rectification transistor, and then turns on the second synchronous rectification transistor for a period of time in accordance with the pulse width of the pulse signal.07-30-2009
20100156175DC/DC BOOST CONVERTER WITH BYPASS FEATURE - An integrated circuit package includes a DC/DC boost converter for providing an output voltage at a program level to associated components of the integrated circuit package. The DC/DC boost converter includes a first mode of operation wherein the DC/DC boost converter is enabled responsive to an input battery voltage falling below a programmed level of the output voltage. The DC/DC boost converter also includes a second mode of operation wherein the DC/DC boost converter is disabled responsive to the input battery voltage being above the programmed level of the output voltage.06-24-2010
20090152949CONTROL DEVICE OF A PLURALITY OF SWITCHING CONVERTERS - A control device of a plurality of switching converters is disclosed; each converter comprises at least one power switch and is associated with a control circuit of the at least one power switch. The control device comprises means suitable for comparing a signal representative of the load of the plurality of converters with a plurality of reference signals and suitable for enabling or disabling at least one of said plurality of control circuits in response to said comparison.06-18-2009
20090152948POWER MANAGERS FOR AN INTEGRATED CIRCUIT - A system for an integrated circuit comprising a plurality of power islands includes a first power manager and a second power manager. The first power manager manages a first power consumption for the integrated circuit based on needs and operation of the integrated circuit. The second power manager communicates with the first power manager and manages a second power consumption for one of the power islands.06-18-2009
20090096289INTERPOSER FOR AN INTEGRATED DC-DC CONVERTER - An interposer electrical interface for placing a DC-DC converter in close proximity with an IC powered by the converter, the DC-DC converter including at least one switching node power supply stage, the at least one switching node power supply stage providing regulated power to the IC, the close proximity of the DC-DC converter and IC allowing for high efficiency in provision of the regulated power from the DC-DC converter to the IC, the interposer electrical interface comprising at least one electrical energy storage element.04-16-2009
20090096288POWERING DEVICES HAVING LOW AND HIGH VOLTAGE CIRCUITS - Embodiments of the invention are directed to a device that includes a battery having an output of a battery voltage, a step-up voltage converter, a high voltage circuit, a low voltage circuit and a controller. The step-up voltage converter includes an input that is coupled to the battery voltage. The step-up voltage converter is configured to produce a high supply voltage at an output. The high voltage circuit is coupled to the output of the step-up voltage converter. The controller selectively powers the low voltage circuit using either the output from the step-up voltage converter or the battery voltage.04-16-2009
20090096287POWER SOURCE FOR ELECTRIC APPLIANCES AND ELECTRIC APPLIANCES ADOPTING THE POWER SOURCE THEREOF - An electric appliance adopting novel power source includes a split type power source and at least two appliance main bodies. There are at least two output ports on the power source and the appliance body can be connected to the output ports in splicing. An alternative current servo controller is adopted in the power source and input end of the power source is powered by alternative current electric supply. Permanent magnet brushless direct current motors are adopted on the body of the appliance. The lifetime of appliance is increased and it is energy saving, safe and flexible. It avoids interference on other equipment during the course of operation. Precise high speed braking can be realized. Workers can work by holding the appliance body with rather small weight and small volume, which decreases labor strength of workers, relieves work fatigue and increases work efficiency.04-16-2009
20080265675External transformation socket - An external transformation socket without a power cord is disclosed, which includes an AC or DC power input, a transformer and an AC or DC power output. The functions of inputting, transforming and outputting include AC/AC, AC/DC, DC/DC, and DC/AC. The circuit board of the socket thereon includes an AC/DC power input, transformation coils, a capacitor, a constant voltage regulator, and many groups of AC/DC outputs with different voltages and currents after being transformed. Thereby, power may be supplied and output via various AC/DC outputs, depending on DC or AC requirements for users.10-30-2008
20110198924POWER SOURCE SYSTEM AND CONTROL CIRCUIT - A power source system including power-factor modifying circuits to modify a power factor of supplied electric power, a time difference circuit to output start signals for instructing the power-factor modifying circuits to start an operation to the power-factor modifying circuits at specified time intervals, and a control circuit to supply the electric power to the power-factor modifying circuit to start the power-factor modifying circuit when the power-factor modifying circuit acquires the start signal output from the time difference circuit.08-18-2011
20110148198POWER CONVERSION SYSTEM AND METHOD - A power conversion system for converting electrical power from at least one power source includes a plurality of converter chains which couple the at least one power source to at least one load. At least two of the converter chains comprise an associated dissipating unit. The dissipating units are coupled via at least one switch. A controller is arranged to control the at least one switch to route power to be dissipated from one of the converter chains to the converter chain's associated dissipating unit, or to at least one of the other dissipating units, or to the converter chain's associated dissipating unit and to at least one of the other dissipating units, to cause corresponding dissipation of the power to be dissipated.06-23-2011
20100078999Administering Offset Voltage Error In A Current Sensing Circuit - Administering offset voltage error in a current sensing circuit including recording by a power supply management module a current sensing voltage for a power supply when no operating load is drawn from the power supply and dynamically calculating by the power supply management module output current of the power supply with an active load in dependence upon the recorded current sensing voltage.04-01-2010
20100090529ELECTRIC POWER SOURCE DEVICE - An electric power source device includes a direct current voltage source 04-15-2010
20110169332Modular power supply arrangement, in particular for reactors for producing polysilicon - A power supply arrangement for producing polysilicon with a central control unit and a basic supply unit, which are regulated and controlled by control means. The basic supply unit supplies the supply module with electric energy, an output for connecting to loads which are supplied with electric energy from the mains via basic supply unit, and controllable switches, which are connected to the input and to the output and which are configured for adjusting the energy to be supplied to the loads. The switches are controllable. The control unit is supplied with electric energy. The power supply includes a communication bus. The control module and the basic supply module are connectable to the control module and the basic supply module to the communication bus. The control module and the basic supply module provide connections to the control module and the basic supply module to the communication bus.07-14-2011
20090273238POWER SOURCING EQUIPMENT DEVICE INCLUDING A SERIAL INTERFACE - In a particular embodiment, a circuit device is disclosed that includes a power sourcing equipment (PSE) circuit having a plurality of high-voltage line circuits adapted to communicate with a respective plurality of powered devices via network cables. The PSE circuit includes a serial interface circuit and includes a common controller coupled to the serial interface circuit and to the plurality of high-voltage line circuits. The circuit device also includes a low-voltage circuit having a programmable controller adapted to transmit control signals to the common controller via the serial interface circuit to control operation of the plurality of high-voltage line circuits.11-05-2009
20090267413Method and On-Board Vehicle Power Supply System for Predictively Increasing the On-Board Vehicle Power Supply System Voltage - A method is provided for reducing the energy consumption of a motor vehicle having at least one electric on-board power supply system to which at least one electric consuming device is connected. For implementing an efficient on-board power supply system which, in addition, contributes to the reduction of the energy consumption of a motor vehicle, the voltage level and/or power level of the electric on-board power supply system is kept at a first, low level during a first operating condition of the motor vehicle. The voltage level and/or power level of the electric on-board power supply system is temporarily raised to a second, higher level in a second operating condition of the motor vehicle. A driving situation detection device provided in the vehicle recognizes a largely directly imminent special driving situation as a result of the preceding behavior of the driver when controlling the vehicle and/or of the vehicle, in advance, and causes the voltage level and/or the power level of the electric power supply system to be temporarily raised to the second, higher level.10-29-2009
20090289500ENERGY SUPPLY DEVICE FOR A PLURALITY OF ENERGY CONSUMERS CONNECTED THERETO - An energy supply device (11-26-2009
20110198923POWER MANAGEMENT MECHANISM - An integrated circuit includes a global power supply node. A first power domain has a first power management circuit, which includes a local power supply node. A first power control circuit is capable of receiving an input signal. A second power control circuit has a higher current capacity than the first power control circuit. The first power control circuit and the second power control circuit are coupled to the local power supply node and the global power supply node. The input signal is configured to initiate a power sequence, e.g., a power up process or a power down process, in the first power control circuit. A first control signal generated by the first power control circuit is configured to initiate a power sequence in the second power control circuit.08-18-2011
20090295225MODULAR HVDC CONVERTER - A modular HVDC converter system including a high voltage direct current network, and at least two DC/AC converters being connected in series to the HVDC network. Each of the DC/AC converters is arranged to provide AC to a separate AC load.12-03-2009
20090008996MODULAR DC-DC STANDBY VOLTAGE CONVERTER HAVING PROGRAMMABLE SEQUENCING - An information handling system having a modular DC-DC standby power converter with programmable sequencing. The modular DC-DC standby power converter comprises a plurality of DC inputs and a plurality of DC outputs. The modular DC-DC standby power converter may also be bypassed and/or put into an off-state such that a voltage(s) of at least one output of the converter may then be the same voltage(s) of at least one input. When the modular DC-DC standby power converter is bypassed and/or in the off-state, its outputs may be at a high impedance. The output voltage(s) may be adjusted for specific system requirements. Turn-on and turn-off sequencing of the output voltage(s) may be programmed. The modular DC-DC standby power converter may have short circuit protection.01-08-2009
20090261653SINGLE-INPUT AND DUAL-OUTPUT POWER SUPPLY WITH INTEGRAL COUPLING FEATURE - A control and monitoring system power supply is described that receives a single power input and distributes power to two distinct segments of a control and monitoring system network. The power supply includes a single power input configured to receive AC from a power source and at least partially convert the AC power to an operable voltage for a network device. Further, the power supply includes dual power output drivers that share power from the single power input and distribute the power to distinct network cable segments. Each of the dual power output drivers is separate and common grounded with respect to the other.10-22-2009
20120091804Load Control System Having an Energy Savings Mode - A load control system for a building having a lighting load, a window, and a heating and cooling system comprises a lighting control device for controlling the amount of power delivered to the lighting load, a daylight control device (such as a motorized window treatment) for adjusting the amount of natural light to be admitted through a window, and a controller for adjusting a setpoint temperature of the heating and cooling system to thus control a present temperature in the building. In response to receiving a demand response command, the controller controls the lighting control device, the daylight control device, and the heating and cooling system so as to decrease a total power consumption of the load control system. The load control system may comprise a controllable switching device for disconnecting power to or disconnecting the control lines to one or more components of the heating and cooling system.04-19-2012
20120292996MULTI-OUTPUT DC-TO-DC CONVERSION APPARATUS WITH VOLTAGE-STABILIZING FUNCTION - A multi-output DC-to-DC conversion apparatus with a voltage-stabilizing function includes a center-tapped main transformer, a semiconductor component group, and a triggering controller. The DC-to-DC conversion apparatus provides at least two output voltages which are a main output voltage and an auxiliary output voltage, respectively. The auxiliary output voltage is functioned as an input voltage of a buck converter; and, as a result, the auxiliary output voltage can be adjusted to obtain a lower variable DC voltage. The triggering controller is used to stabilize the main output voltage and the auxiliary output voltage. Therefore, the main transformer provides one or two secondary windings to step down the auxiliary output voltage so as to increase efficiency of the buck converter.11-22-2012
20120292994DEMAND RESPONSE MANAGEMENT SYSTEM AND METHOD WITH VAR SUPPORT - A method for providing VAR support in a power distribution network having a demand response management system can include querying the demand response management system for an inductive device on the power distribution network and power cycling the inductive device to affect reactive power in the power distribution network.11-22-2012
20100201193Power supply apparatus and voltage monitoring method - Output voltages of regulators are supplied to each load device and input to a representing-value decision logic circuit that is operated by a dedicated resident power supply. The representing-value decision logic circuit selects an output voltage that appears the most irregular of all output voltages from the regulators, and then sends a selection result to a selector. The selector selects only the output voltage from a regulator that outputs the output voltage that appears the most irregular and is selected by the representing-value decision logic circuit and then outputs the output voltage to a smoothing circuit. The direct current that has been smoothed by the smoothing circuit is quantized by an AD converter and then received by a system monitoring processor.08-12-2010
20100201192Power conversion device - A power conversion device includes a combination of at least one power supply, a power converter, an inverter, a converter, an alternate current (AC) power circuit, and a control unit. The power converter converts a power provided from the at least one power supply into a direct current (DC) power input. The inverter and the converter convert the DC power from the power converter into an AC power output and a different DC power output respectively. The AC power circuit includes a switching device for controlling the transmission of AC power output. The AC power circuit has a terminal connected to an electric main and another terminal connected to the output of the inverter. The control unit employs a signal to control the power converter for setting the distribution of input powers in the conversion of power in order to ensure power output. As such, the at least one power supply is converted by the inverter and the converter to provide an output of AC power or DC power and a signal of the control unit is used to effect control so as to ensure power output so that the present invention allows for timed management and distribution of power flows for the AC power outputs from the electric main and the inverter in order to provide stable power output.08-12-2010
20090167083Apparatus and methods for providing multiple output voltages - In one embodiment, an electrical connector apparatus providing multiple output voltages comprises an input terminal, a DC to DC converter, and a plurality of output terminals. The input terminal receives a DC input voltage. The DC to DC converter converts the DC input voltage to at least one DC output voltage. The output terminals provide the DC output voltage to a number of loads simultaneously. The output terminals have a number of terminal structures configured to be matched to a number of structure requirements of the loads respectively.07-02-2009
20120032509VOLTAGE TRANSFORMING DEVICE AND METHOD AND POWER SUPPLY SYSTEM - A voltage transforming device is provided, which includes: a first voltage transforming module, configured to perform a pre-stage voltage transformation on an input DC voltage to output an isolated DC voltage, in which the pre-stage voltage transformation includes a primary transformation that converts the input DC voltage to a to-be-transformed AC voltage, a working period of the primary transformation includes a first half period and a second half period, and a dead time exists when a first half period and a second half period are switched between each other; a capacitor filtering module, configured to perform capacitor filtering compensation on the isolated DC voltage in the dead time to output a stable intermediate DC voltage; and a second voltage transforming module, configured to perform at least two separate post-stage voltage transformations on the intermediate DC voltage to output DC voltages required by at least two loads.02-09-2012
20080290730Flyback Converter - The present invention relates to a multiple output flyback converter having a switch regulated output circuit (11-27-2008
20120292995SYNCHRONOUS SWITCHING POWER SUPPLY - A method for powering one or more loads from a varying input voltage comprises controlling a primary switch to selectively apply the input voltage to energize an inductor, controlling a load switch to selectively connect the inductor to the load, monitoring one or more load parameters to determine load conditions, and, when the load conditions meet a load requirement, disconnecting the load from the inductor and directing any remaining current in the inductor to a energy storage element.11-22-2012
20110204718Power supply arrangement, in particular for supplying power to a reactor for producing polysilicon - The invention relates to a power supply arrangement, in particular for supplying power to thin silicon rods in a reactor for producing polysilicon with the Siemens process, with inputs (L08-25-2011
20090015068APPARATUS FOR SUPPLYING POWER AND LIQUID CRYSTAL DISPLAY HAVING THE SAME - Disclosed are a power supplying apparatus and a LCD having the same that reduces manufacturing cost of a large-scale LCD module and enhances power efficiency by integrating an external dc power supply used in a large-scale LCD panel into a LCD panel. A first voltage converter converts an external ac voltage into a first dc voltage, and changes a voltage level of the first dc voltage into a second dc voltage having a higher voltage level than that of the first dc voltage. A second voltage converter converts the second dc voltage into an ac voltage, raises a voltage level of the converted ac voltage, and provides the raised ac voltage to a load. A current detector detects a current flowing through the load, and provides a current detection signal as a feedback signal to the first voltage converter so that the first voltage provide a constant direct current output voltage.01-15-2009
20090015069Mutual blanking for a multi-channel converter - A shutter circuit is provided for a multi-channel converter to blank the switching noise produced by the switching of the converter. The shutter circuit monitors the switching of the switches in the output stages of the converter, and when one channel performs switching, the shutter circuit will send a signal to other channels to block the current sensors thereof. The current sensors are so blocked for a period not to sense the switching noise. The mutual interference between the channels due to the switching noise of the converter is eliminated.01-15-2009
20090015067EFFICIENT DC DISTRIBUTION SYSTEM, TOPOLOGY, AND METHODS - Embodiments of power distribution systems and methods are described generally herein. Other embodiments may be described and claimed.01-15-2009
20090015066CLOSE-LOOP RELAY DRIVER WITH EQUAL-PHASE INTERVAL - A power distribution system generally includes at least two relays. An equal-phase pulse generator generates pulse signals in equal phase intervals. At least two drivers, one for each of the at least two relays, control current flow to the at least two relays based on the pulse signals.01-15-2009
20080272650XDSL CPE and power system thereof - A power system includes a power adapter, a first power sub-system, and a second power sub-system. The power adapter provides a first DC power. The first power sub-system includes a first converter and a first controlling circuit. The first converter converts a first DC voltage into a second DC voltage, and the first controlling circuit controls a boot time of the first converter. The second power sub-system includes a second converter and a second controlling circuit. The second converter converts the first DC voltage into a third DC voltage, and the second controlling circuit controls the boot time of the second converter.11-06-2008
20080231113Multiple device battery charger - An improved method of charging multiple batteries and battery powered devices of different types at one time. Utilizing multiple methods of supplying DC power to external batteries, a user can charge a variety of devices at the same time. The power is routed in three distinct ways: directly to the output ports, through resistors, and through a switch converter. Then, using methods established and known to one in the art, external electronic devices may be attached to the output ports. Thus, the external battery will be charged through whichever route delivers the proper voltage. This design utilizes the logic contained within the external device for charging purposes.09-25-2008
20080272651LED current control circuits and methods - Embodiments of the present invention include circuits and methods for electrical current control. In one embodiment, a regulator provides power to the anode end of a set of LED strings. A current setting circuit derives its current from a current reference and generates multiple matching currents that drive the low side (cathode end) of the set of LED strings. The current setting circuit also contains a feedback signal to the regulator that helps maintain a desired voltage level to the anode end of the LED strings. This embodiment is designed to be expandable and drive any number of LED strings. The present invention may be implemented with a high or low side driver scheme to drive the current. Also, the present invention may be implemented with bipolar, nmos, pmos, or any device that operates as a transistor.11-06-2008
20110006604CURRENT-SHARING SUPPLY CIRCUIT FOR DRIVING MULTIPLE SETS OF DC LOADS - A current-sharing supply circuit includes a current providing circuit, a first output rectifier circuit, a second output rectifier circuit, a first current-sharing transformer, a second current-sharing transformer, a first current-sharing circuit and a second current-sharing circuit. By adjusting the equivalent impedance values of the first current-sharing circuit, the second current-sharing circuit, the primary winding coil of the first current-sharing transformer and the primary winding coil of the second current-sharing transformer, the first output current and the second output current are substantially identical.01-13-2011
20120104851DRIVER FOR COOPERATING WITH A WALL DIMMER05-03-2012
20130214600METHOD AND CONTROLLER FOR DEVICE POWER STATE CONTROL - A method and a controller for power state control of a device that is connected to two or more other devices are described. Also described are a method and a controller for configuring the power state control. Power states of related devices among the two or more other devices are monitored. In case all related devices among the two or more other devices are in a low power mode, the device is switched to a low power mode. Alternatively, in case all related devices among the two or more other devices are in a low power mode, the device is switched to a normal power mode. Which of the other devices are related devices is determined in a configuration procedure.08-22-2013
20120104850SINGLE PHASE POWER FACTOR CORRECTION SYSTEM AND METHOD - A single phase grid correction system for correcting the power factor of an electrical power grid. The grid has a generator, transmission lines connecting the generator to distribution nodes, feeder lines radiating from each node, and groups of consumers connected to each feeder line. A capacitor bank is located at a number of consumer's premises, indoors, either beside or forming part of the consumer's normal single phase electric panel. A set of remotely controlled switches at the consumer's premises permits the capacitor banks to be switched in and out of grid connection and also allows non-essential high energy consuming loads, not necessarily inductive, to be switched on and off the grid. The grid correction systemic are widely distributed at consumer's premises throughout the grid. By remotely controlling the switches, the utility operator can switch capacitor banks at selected consumer premises in or out of the grid to provide or remove reactive power as needed, and can also selectively remove load from the grid to reduce the likelihood of sudden uncontrollable load shedding. 05-03-2012
20120104849Electrical Supply Apparatus - Electrical supply apparatus (05-03-2012
20090140574System and method for integrated power control - A method for distributing power generated by a power generation system may include determining available power that can be generated by the power generation system. The method may also include obtaining power requests from power transforming devices, comparing the available power to the power requests, and determining amounts of the available power to distribute to the power transforming devices. The method may further include obtaining operating condition requests from the power transforming devices, and determining the operating conditions under which the power generation system should operate.06-04-2009
20120068536CONTROLLING INDUCTIVE POWER TRANSFER SYSTEMS - An inductive power transfer system comprises a primary unit operable to generate an electromagnetic field and at least one secondary device, separable from the primary unit, and adapted to couple with the field when the secondary device is in proximity to the primary unit so that power can be received inductively by the secondary device from the primary unit without direct electrical conductive contacts therebetween. The system detects if there is a substantial difference between, on the one hand, a power drawn from the primary unit, and on the other hand, a power required by the secondary device or, if there is more than one secondary device, a combined power required by the secondary devices. Following such detection, the system restricts or stops the inductive power supply from the primary unit. Such a system can detect the presence of unwanted parasitic loads in the vicinity of the primary unit reliably.03-22-2012
20120068535ENERGY CONVERTER, AND ASSOCIATED METHOD, FOR PROVIDING CONVERTED ENERGY TO A SET OF ELECTRONIC DEVICES - An apparatus, and an associated method, converts input energy, such as energy sourced at a household electric power supply, into converted energy for powering a set of electronic devices having operating power requirements. A converter housed in a converter housing forms first-converted energy of the input energy. The first-converted energy is provided to a dongle, connected to the converter. The dongle forms second-converted energy and provides connections to power both a first electronic device with the first-converted energy and to power a second electronic device, having second energy requirements, using second-converted energy formed at the dongle.03-22-2012
20100194197POWER CONVERTER WITH COMMUNICATION CAPABILITY - Systems for providing a wireless capable power converter are provided. The power converter can include a power converter module operatively connected to a detachable I/O module. A voltage input, a first voltage output, and second voltage output can be disposed in, on, or about the power converter module. Power, at a first voltage, can be distributed via a first connection device. Power, at a second voltage, can be distributed via a first Universal Serial Bus connection device. One or more I/O devices, a wireless transceiver, and a second Universal Serial Bus connection device can be disposed in, on, or about the I/O module. The first and second Universal Serial Bus connection devices can be complimentary, permitting the operative connection of the I/O and power converter modules. The second voltage output can provide all or a portion of the power consumed by the wireless transceiver and I/O devices.08-05-2010
20080303345SEMICONDUCTOR DEVICE - A semiconductor device including a redundant circuit which can operate even when power source in a circuit in part of the redundant circuit is short-circuited. A power source circuit, a power source control circuit to which a power source potential is input from the power source circuit, and a first functional circuit and a second functional circuit connected to the power source control circuit are provided for a semiconductor device. The power source control circuit selects one of the first functional circuit and the second functional circuit and judges whether power source is short-circuited or not. When power source is short-circuited, power source supply stops and other functional circuits are supplied with power source.12-11-2008
20110140521MULTIPLE-LEVEL SWITCHED-MODE POWER SUPPLY - A circuit for providing at least two power supply voltages from a D.C. voltage provided by a first switched-mode converter between a first and a second terminals, wherein: a second reversible buck-type switched-mode converter is powered with said D.C. voltage; a capacitive dividing bridge connects said first and second terminals, the midpoint of the capacitive dividing bridge corresponding to the output of the second converter and defining a third terminal of provision of an intermediary potential; and said two power supply voltages are respectively sampled between the first and third and between the third and second terminals.06-16-2011
20090167084ADAPTOR CIRCUIT FOR POWER SUPPLY - An exemplary adaptor circuit of a power supply includes a power connector, a first electric switch, a second electric switch, and an output terminal. The power connector includes a power good pin and a power pin. The first electric switch has a first terminal connected to the power good pin of the power connector, a second terminal connected to the power pin of the power connector, and a grounded third terminal. The second electric switch has a first terminal connected to the second terminal of the first electric switch, a second terminal connected to a first voltage terminal via a first transmission line or a second voltage terminal via a second transmission line by selectively mounting a connection component to close an open segment of the corresponding transmission line, and a grounded third terminal. The output terminal outputs a driving voltage signal to chipsets on a motherboard.07-02-2009
20090085402MATRIX OF PIXELS PROVIDED WITH VOLTAGE REGULATORS - A matrix microelectronic device comprising: 04-02-2009
20090015065Centralized powering system and method - A system and method is disclosed for delivering controlled electrical power, and more specifically, a system and method for providing a continuous, reliable and inexpensive supply of utility and emergency power to a cable network for use by a plurality of active components in the network. The system comprises a first voltage regulating means (01-15-2009
20130214598SYNCHRONIZED PWM RANDOMIZATION FOR COORDINATED LOAD MANAGEMENT - A method of controlling a power consuming device includes receiving a control signal from a power supplying utility. The control signal signals a beginning of a control period. A length of time to operate the power consuming device during the control period is determined and an offset time is identified. A start time for operation of the power consuming device is identified as a function of the beginning of the control period and the offset time. A stop time for operation of the power consuming device is identified as a function of the start time and the determined length of time to operate the power consuming device.08-22-2013
20130214599POWER CONVERTING APPARATUS AND POWER CONVERTING SYSTEM - A power converting apparatus is connected to a second power converting apparatus via a power supply line and an earth line, and includes: a carrier-signal generating unit configured to switch a frequency to a frequency selected from a plurality of candidate frequencies or a candidate frequency range according to information to be transmitted to the second power converting apparatus and generate a carrier signal having the switched frequency; a PWM-signal generating unit configured to generate a PWM signal using the generated carrier signal; and a switching element for controlling a control target, which makes switching according to the PWM signal to thereby perform an operation for power conversion and transmits a voltage-to-earth signal corresponding to the information to be transmitted, to the second power converting apparatus via the power supply line and the earth line.08-22-2013
20090212628System and method for inductive power supply control using remote device power requirements - An adaptive inductive ballast is provided with the capability to communicate with a remote device powered by the ballast. To improve the operation of the ballast, the ballast changes its operating characteristics based upon information received from the remote device. Further, the ballast may provide a path for the remote device to communicate with device other than the adaptive inductive ballast.08-27-2009
20090008995POWER SUPPLY CONTROL METHOD AND STRUCTURE THEREFOR - In embodiment, a power supply system is configured to use a linear regulator to form a regulated voltage during a standby mode and to use the regulated voltage to form another regulated voltage.01-08-2009
20090001813CONFIGURABLE INPUT HIGH POWER DC-DC CONVERTER - The invention relates to electrical power conversion and more specifically to a high power direct current-to-direct current (DC-DC) power converter. The DC-DC converter includes a plurality of input ports for receiving a plurality of inputs, each having current, voltage, and power, which can be selectively configured by a user. The DC-DC converter further includes a plurality of output channels for outputting current, voltage, and power, which may be selectively configured by a user. By allowing a user to configure both the inputs and outputs, the DC-DC converter may be utilized with wide variation of power conversion applications.01-01-2009
20090243389Multiple output magnetic induction unit and a multiple output micro power converter having the same - A multiple output magnetic induction unit includes a magnetic substrate, and a plurality of toroidal coils mounted on the magnetic substrate side by side. No insulating layer is required between the toroidal coils.10-01-2009
20090251003INFORMATION PROCESSING APPARATUS AND CONTROL METHOD - An information processing apparatus selects power having a higher voltage value out of power supplied via a plurality of external apparatuses, or selects power supplied from an external apparatus via a transmission line or power supplied from a power supply, whichever has a higher voltage value, to use the selected power within the information processing apparatus.10-08-2009
20090256423MULTIPLE OUTPUT SWITCHING POWER SOURCE APPARATUS - A multiple output switching power source apparatus includes first and second switching elements Q10-15-2009
20090243388MULTI-OUTPUT DC/DC CONVERTER - Disclosed is a multi-output DC/DC converter controlling power-conversion switching in synchronization with a frequency of one output voltage among multiple output voltages in an LLC resonant DC/DC converter. The multi-output DC/DC converter includes a power conversion circuit performing alternate switching on an input DC voltage to output multiple DC voltages including a first DC voltage and a second DC voltage each having a preset voltage level, and a control circuit controlling the alternate switching of the power conversion circuit in synchronization with a preset resonant frequency.10-01-2009
20120193984Systems, Methods, and Apparatus for Integrated Volt/VAR Control in Power Distribution Networks - Certain embodiments of the invention may include systems, methods, and apparatus for controlling voltage and reactive power in a distribution network. One method includes estimating at least one present state associated with a distribution network; allocating one or more load zones in the distribution network; predicting load profiles of each zone for a predetermined time period; determining capacitor bank switching schedules for a predetermined time period based at least in part on the at least one present state and the predicted load profiles; and switching capacitor banks according to the capacitor bank switching schedules.08-02-2012
20100156177DRIVING CIRCUIT AND METHOD FOR DRIVING CURRENT-DRIVEN DEVICES - At the driving initiation, whether the output channels are enabled or disabled is determined by judging whether the voltages of the output channels are changed by a charging or discharging operation. The current output sources corresponding to the disabled output channels are turned off for power-saving. In the voltage conversion, the status of the disabled output channels is ignored, for accurately control of the voltage conversion.06-24-2010
20100013303CIRCUIT CONFIGURATION FOR THE JOINT PULSE WIDTH MODULATION OF VALVES WITH QUENCHING - A circuit configuration is provided for switching valves with joint pulse width modulation and quenching, having a first switch to which a pulse width modulation is applied for controlling magnetic fields of a plurality of valve inductors connected to the circuit configuration; a plurality of second switches by which the circuit configuration is able to be switched between a slow and a rapid quenching of the magnetic fields of the inductors; and a diode which is in the conducting state when the second switches are in a switching state for a slow quenching of the magnetic fields of the inductors, and which is no longer parallel to the inductors when the second switches are in a switching state for a rapid quenching of the magnetic fields of the inductors.01-21-2010
20100181832POWER CONVERTERS HAVING VARIED SWITCHING FREQUENCIES - Systems and techniques for performing power conversion operations in a portable device are used to convert an input voltage to a voltage at an output. The conversion operations use a two-stage conversion to convert the input voltage to a first voltage and to convert the first voltage to a second voltage. A switching frequency is altered with changes in the input voltage. The switching frequency is selected based on the input voltage level and/or to maintain a substantially consistent ripple at the output, which can correspond to the first voltage and/or the second voltage.07-22-2010
20100176657FOUR QUADRANT MOSFET BASED SWITCH - An electronically controlled four quadrant MOSFET based switch in which a pair of drivers are provided in cooperation with a MOSFET. A first one of the drivers is arranged such that when current flow through the MOSFET is to be enabled responsive to a first condition of the control signal, the gate of the MOSFET is driven with an appropriate voltage, and when current flow through the MOSFET is to be disabled responsive to a second condition of the control signal, the gate is driven towards a limit voltage. A second one of the drivers is arranged such that when current flow through the MOSFET is to be enabled the body diode connection of the MOSFET is driven towards the potential of the MOSFET source, and when current flow through the MOSFET is to be disabled the body diode connection is driven towards the limit voltage.07-15-2010
20100176656Independent power supply module for LCD - A power supply module for an LCD includes a system power supply module and a backlight power supply module. The system power supply module is used to drive a display panel module of the LCD. The backlight power supply module utilizes a power factor correction device to convert an input AC voltage to a DC voltage, and then utilizes a DC/AC inverter to convert the DC voltage to an AC driving voltage to drive the backlight module. The power supply module is also applicable to a plurality of LCDs.07-15-2010
20090045676Controlling Power Supply to Vehicles Through a Series of Electrical Outlets - A system for supplying electrical power to a plurality of vehicles from a central power supply through a plurality of electrical outlets includes an outlet control unit for each of the outlets and a vehicle control unit for each of the vehicles. The outlet microprocessor switches the supply of power to the outlet to communicate data to the vehicle. The vehicle microprocessor communicates data by switching a load across the power supply to provide interaction between the microprocessors to manage requirement and availability of power. The data includes whether the power plant of the vehicle is gasoline powered, diesel powered, hybrid or electric battery powered. The microprocessor of the vehicle control unit is arranged to control switches which supply power to selected loads in the vehicle and includes an interface which is arranged to connect to a Canbus communication system of the vehicle.02-19-2009
20100237697SYSTEM AND METHOD FOR CONTROLLING THE OPERATION PARAMETERS OF A DISPLAY IN RESPONSE TO CURRENT DRAW - A system and method for controlling the power consumption of an electronic display. A maximum current value may be selected where above this value the risk to damage to the display or local circuitry may be jeopardized. Ramp-wise and/or gradual controls of the display parameters such as fan speed and backlight levels may reduce the current draw during extreme situations and line voltage fluctuations. Embodiments allow the display to continue operation without risking an overload of the local circuit or damage to the display. Further embodiments may be used to limit the power consumption of a display in order to minimize energy usage. Several parameters can be measured and controlled simultaneously to provide a minimal amount of energy usage while minimizing any noticeable difference in images.09-23-2010
20120139341ENHANCED LOAD MANAGEMENT AND DISTRIBUTION SYSTEM - A system for managing distribution of electrical power includes a power management circuit, power control units, a first keyline and a second keyline. The power management circuit includes a device configured to measure power consumed by an electrical load, and a comparator comparing the measured power with a power limit. Each power control unit includes an outlet for delivering power to a load; a timing control circuit coupled to each outlet and configured to deliver an enabling signal to each outlet individually with a time delay; a signal input; and a signal output. The first keyline connects the power management circuit with the signal input of one power control unit; the second keyline connects the signal output of that power control unit with the signal input of another power control unit. Each power control unit is configured to propagate a signal to another power control signal via the second keyline.06-07-2012
20100219685VOLTAGE SUPPLY CIRCUIT - In the voltage supply circuit, a reference voltage generating circuit generates a reference voltage. An operational amplifier circuit generates an output voltage on the basis of the reference voltage. A selection circuit has at least two first terminals to select one of the first terminals and to generate a passed output voltage representing the output voltage passed through the first terminal selected. A second terminal receives the passed output voltage and is capable of outputting the passed output voltage to a load circuit. A detection circuit detects a magnitude of the passed output voltage and generates a detection voltage. The selection circuit selects a voltage corresponding to the passed output voltage generated from among at least two of the detection voltages and generates a detection voltage representing the detection voltage selected. The operational amplifier circuit decreases the difference between the reference voltage and the selected detection voltage.09-02-2010
20090167082DRIVING SYSTEM HAVING CHANGEABLE OUTPUT PHASE - A driving system with a changeable output phase includes a PWM unit to generate a duty cycle signal, a first driving unit, a second driving unit, a first transformer and a second transformer. The first driving unit and the second driving unit receive an input power and the duty cycle signal to drive respectively the first transformer and the second transformer to transform the input power to a first driving power and a second driving power. At least one of the first driving unit and the second driving unit is connected to a power phase control unit which generates a phase switching signal to modulate the driving phase of the connecting driving unit so that the first driving power and the second driving power output from the first and second transformers have a same or different phase to drive loads at the rear end.07-02-2009
20090315397POWER SUPPLY CIRCUIT, POWER SUPPLY CONTROL CIRCUIT AND POWER SUPPLY CONTROL METHOD - A plurality of DC-DC converters are cascade-connected via a plurality of control signal lines which are used in common for start sequence control and stop sequence control. Each of the plurality of DC-DC converters is constituted including a sequence control circuit which commences a start operation along with activation of a control signal line on a previous stage side and activates a control signal line on a subsequent stage side along with completion of the start operation, and commences a stop operation along with deactivation of the control signal line on the subsequent stage side and deactivates the control signal line on the previous stage side along with completion of the stop operation.12-24-2009
20080309163IN-VEHICLE MOUNT ELECTRONIC CONTROLLER - In an in-vehicle mount electronic controller, a constant-voltage power supply generates a high-precision small-capacity 5V output voltage Vad, a low-precision large-capacity 5V output voltage Vif and a low-precision large-capacity 3.3V output voltage Vcp, and also generates at least one of a low-precision small-capacity 2.8V output voltage Vup and a high-precision small-capacity 3.3V output voltage Vsb. A judgment signal input circuit logically combines comparison results of divided voltages of the above output voltages Vif, Vcp, Vup and Vsb with a divided voltage of the output voltage Vad as a reference voltage, and inputs relative voltage information ER12-18-2008
20080265676HIGH VOLTAGE POWER CONTROLLING APPARATUS OF IMAGE FORMING APPARATUS AND METHOD THEREOF - A high voltage power controlling apparatus of an image forming apparatus including a DC (direct current) power controller to convert and output a first PWM (pulse width modulation) signal provided from an engine controller into a switching waveform signal, a first voltage transformer to transform the switching waveform signal output from the DC power controller, a rectifier to rectify output power transformed by the first voltage transformer into DC power, first through N (where N is a positive integer greater than one) DC supplies to adjust and output the DC power rectified by the rectifier such that the DC power is adjusted to a predetermined level, first through N AC (alternating current) power controllers to convert and output a second PWM signal provided from the engine controller into switching waveform signals, and second through N+1 voltage transformer to transform the switching waveform signals output from the first through N AC power controllers, to overlap the transformed powers with the DC powers having predetermined levels of the first through N DC supplies, and to output the overlapped powers to first through N developers, respectively.10-30-2008
20110127833POWER SUPPLY UNIT PROVIDED WITH AC/DC INPUT VOLTAGE DETECTION AND POWER SUPPLY SYSTEM INCORPORATING SAME - Disclosed is a power supply unit provided with AC/DC voltage detection and a power supply system incorporating such power supply unit. The power control unit of the power supply unit can manipulate the first stage power circuit and the bypass switch thereof according to the form and magnitude of the first voltage which is inputted to the power supply unit in order to boost the overall operating efficiency. When the inventive power supply unit is applied to a high-level DC power supply system, the problem that the power supply unit can not output a rated output voltage due to an insufficient DC first voltage can be avoided.06-02-2011
20110248565METHOD AND APPARATUS FOR DYNAMIC LOAD SHARING - A method for providing dynamic load sharing between a first and a second three phase system is disclosed, wherein the first and second three phase system are connected to a first and second three phase interleaved winding in a generator. The method comprises determining a first q-axis control signal for the first three phase system and a second q-axis control signal for the second three phase system based on a torque and/or power demand for the generator, determining a first d-axis control signal for the first three phase system and a second d-axis control signal for the second three phase system based on a coupling effect between the first and second three phase systems, and adjusting the q-axis control signals and d-axis control signals by including at least one feed forward compensation signal, wherein said at least one feed forward compensation signal is based on a coupling effect between the first and second three phase systems.10-13-2011
20110006605CURRENT-SHARING SUPPLY CIRCUIT FOR DRIVING MULTIPLE SETS OF DC LOADS - A current-sharing supply circuit is provided for driving a first set of main DC loads, a first set of minor DC loads, a second set of main DC loads and a second set of minor DC loads. The current-sharing supply circuit includes a current providing circuit, a first output rectifier circuit, a second output rectifier circuit, a first main current-sharing circuit and a second main current-sharing circuit. By adjusting an equivalent impedance value of the first main current-sharing circuit to be impedance matched with that of the first set of main DC loads and that of the first set of minor DC loads, respectively, and adjusting an equivalent impedance value of the second main current-sharing circuit to be impedance matched with that of the second set of main DC loads and that of the second set of minor DC loads, respectively, a first main output current, a first minor output current, a second main output current and a second minor output current passing through these DC loads are substantially identical.01-13-2011
20100133905MULTI-OUTPUT POWER CONVERSION CIRCUIT - A multi-output power conversion circuit is provided for converting an input voltage into a standby voltage and a first output voltage. The multi-output power conversion circuit includes a transformer, a power switching circuit, a first rectifier-filter circuit, a second rectifier-filter circuit, a first switching circuit, a voltage-adjusting circuit, a feedback circuit and a power control circuit. The feedback circuit is connected to the first rectifier-filter circuit, the second rectifier-filter circuit and the system circuit. The feedback circuit generates a feedback voltage according to a power-status signal issued by the system circuit. The power control circuit is interconnected between the power switching circuit and the feedback circuit for controlling on/off statuses of the power switching circuit according to the feedback voltage. The feedback circuit generates the feedback voltage according to the power-status signal and selectively according to the first DC voltage or the second DC voltage.06-03-2010
20110006602Central Control and Instrumentation System for a Technical Installation and Method for Operating a Central Control and Instrumentation System - A central control and instrumentation system with a plurality of functional modules interconnected by data transmission is provided. The functional modules are monitored by a central control module. Functional modules with a data output after completing a predefined number of action cycles, which are specific to each module, allow a provision of a fast motion functionality for simulation purposes and are subjected to a correction parameter of the number of action cycles for a user-controlled variation of the respective cycle to be completed.01-13-2011
20110025128 METHOD AND SYSTEM FOR POWER MANAGEMENT - A method and system for power management is provided. To control power supplied to a second electronic device (02-03-2011
20110018343METHOD AND APPARATUS FOR REGULATING AN ADDITIONAL OUTPUT OF A POWER CONVERTER - An example post regulator controller for use in a power converter having a regulated output and an additional output is disclosed. The post regulator controller includes an inductor to be coupled between the regulated output of the power converter and a post regulator switch of the power converter. The inductor is to be coupled to drive the post regulator switch with an induced voltage across the inductor to redirect energy from the regulated output to the additional output of the power converter.01-27-2011
20090066157Green Technology: Green circuit and device designs of green chip - Green Design is to save the resource and energy for earth. Applying the recycling of energy concept to the electrical and electronic device and circuit, we can save many nuclear power plants to save the earth and human society. Comparing with today power amplifier PA has only 10% efficiency, the high linearity and high efficiency power-managing amplifier PMA and differential power managing amplifier DPMA can have the power efficiency more than 95%. The recycling switch inductor drive power management unit PMUx gets rid of the switch loss and has power efficiency more than 99%. The Xtaless Clock generator based on on-chip gain-boost-Q LC tank and the Spurfree and Jitterless Frequency & Phase Lock Loop FPLL. The DPMA directly supply the power to the plasma light. The charge doped light mirror reduces the voltage swing, increases the power efficiency and operating speed of plasma light, projective TV, LaserCom. The plasma light can use for the home light to have the efficiency of 95% to replace the conventional light bulb having only 10% efficiency. The bipolar LED serves as both thermal detector and fault indication light saving a lot energy and enhances the safety of electrical vehicle. The resistorless zero current detector saves a lot power dissipation in the PMU. The 5-less green SOC design of Xtaless clock generator, the capless LDVR (low drop voltage regulator), the inductorless SM (Switch Mode Power Regulator), resistorless current detector and diodeless TRNG (True Random Number Generator) can save the earth.03-12-2009
20120032508Method and Apparatus for Peak Shifting Adjustment - An apparatus and a method for peak shifting adjustment are disclosed. The apparatus includes a controlling unit that is configured to sequentially control different outputting units to output the Pulse-Width Modulation (PWM) signals according to a preset time sequence. The interval between two adjacent outputted PWM signals is T1, which is the time when the current required by an electric device is higher than the normal current in case of an increase of the duty cycle of the PWM signals. At least two outputting units are connected to corresponding electric devices and configured to output the PWM signals to the corresponding electric devices according to the control of the controlling unit.02-09-2012
20110043033Out-Door Unit with Multiple Ports - An out-door unit with multiple ports comprises a plurality of circuit blocks, a DC-DC converter and a plurality of ports. The DC-DC converter is configured to provide current to the plurality of circuit blocks. The plurality of ports is connected to a plurality of in-door units respectively via a diode and provides current from the plurality of in-door units to the DC-DC converter via a diode respectively. At least one of the plurality of ports is connected to a first circuit block of the plurality of circuit blocks to provide current to the first circuit block.02-24-2011
20110018345Automatic Sensing Power Systems and Methods - An automatic sensing power system automatically determines a power requirement for an electrical device, converts power to the required level, and outputs the power to the electrical device when the electrical device is connected to the automatic sensing power system.01-27-2011
20090033151Modularized power supply switch control structure - A modularized power supply switch control structure aims to control a main power system of a power supply. The main power system includes at least one high voltage output unit at a high voltage output end and one low voltage output unit at a rear low voltage output end. A control unit is connected to the high voltage output unit and the low voltage output unit to control start/stop time series of the high voltage output unit and the low voltage output unit so that the high voltage output unit and the low voltage output unit can be started asynchronously. Thus the power supply can output a start voltage at the start instant to meet load requirement. A plurality of power output modules deliver output asynchronously. Hence output current or voltage surge at the start instant can be improved.02-05-2009
20100164283POWER SUPPLY SCHEME FOR REDUCED POWER COMPENSATION - A power control system is described that reuses current from segregated circuits of the mobile device. In some embodiments, the segregated circuits (or “sections”) can be “stacked” in series (with respect to the power supply) such that power is more efficiently used. The power can be more efficiently used by arranging a first section to reuse current that supplies power to a second section. A power control unit can be used to control regulators.07-01-2010
20100164282Multi-output Switching regulator and control method therefor - The present invention discloses a multi-output switching regulator, comprising: a single-input-multiple-output voltage converter converting an input voltage to a first output voltage at a first node and a second output voltage at a second node; an input capacitor connected with the input voltage at an input node; a first output capacitor having two ends, one of which is connected with the first node; and a second output capacitor having two ends, one of which is connected with the second node; wherein the other end of the first output capacitor is connected to ground, the input node or the second node, and the other end of the second output capacitor is connected to ground, the input node or the first node.07-01-2010
20110241423Circuits, Systems and Methods to Detect and Accommodate Power Supply Voltage Droop - Circuits, systems, and methods for monitoring a power supply voltage and determining if the power supply voltage has drooped are disclosed. In one embodiment, a voltage monitoring circuit is provided and configured to determine if the power supply voltage supplied to a functional circuit has drooped. When no droop of the power supply voltage is detected, the voltage monitoring circuit is configured to provide an indication to the functional circuit to operate in a first mode. When droop of the power supply voltage is detected, the voltage monitoring circuit is configured to provide an indication to the functional circuit to operate in a second mode. In this manner, operating margin in the power supply may be reduced since the functional circuit may be configured to properly operate when a voltage droop of the power supply voltage occurs.10-06-2011
20110210608SYSTEM AND METHOD FOR A SINGLE STAGE POWER CONVERSION SYSTEM - A power conversion system includes a photovoltaic source to generate direct current (DC) power; a direct current (DC) to an alternating current (AC) single stage inverter to convert the direct current (DC) power from the photovoltaic source to alternating current (AC) power for delivery to a power grid, and a load balancing unit coupled to the single stage inverter. The power conversion system also includes a controller configured to determine a maximum power point for the power conversion system, regulate an output voltage of the single stage inverter, compute a power balance difference between a power demand from the power grid and an output power of the single stage inverter obtainable at the maximum power point and control in real-time the load balancing unit based on the power balance difference.09-01-2011
20110089761METHOD AND APPARATUS FOR POWER CONVERSION AND REGULATION - Techniques are disclosed to control a power converter with multiple output voltages. One example regulated power converter includes a an energy transfer element coupled between a power converter input and first and second power converter outputs. A switch is coupled between the power converter input and the energy transfer element such that switching of the switch causes a first output voltage to be generated at the first power converter output and a second output voltage to be generated at the second power converter output. A current in the energy transfer element is coupled to increase when a voltage across the energy transfer element is a difference between an input voltage at the power converter input and the first output voltage. The current in the energy transfer element is coupled to decrease when the voltage across the energy transfer element is a sum of the first and second output voltages.04-21-2011
20090315398OUTPUT CIRCUIT - A buffer driving capability control device is provided which can suppress occurrence of radiated noise due to a load driven by large driving power in the case where loads differing in driving power are connected to one terminal. The device includes an output buffer which can switch between the driving capability for driving a load requiring large driving power and the driving capability for driving a load requiring small driving power, and also includes a control period for driving the load requiring the large driving power and a control period for driving the load requiring the small driving power, and during the respective control periods, switches the driving capability of the output buffer to the ones suitable for the corresponding loads.12-24-2009
20100013304Adding and Dropping Phases in Current Sharing - A distributed power management system may include a digital communication bus and a plurality of POL (point-of-load) regulators coupled to the communication bus and configured in a current sharing arrangement in which each POL regulator of the plurality of POL regulators has a respective output stage coupled to a common load and configured to generate a respective output current. Each POL regulator may have a respective phase in the current sharing configuration, and each POL regulator may transmit and receive information over the bus according to a bus communication protocol corresponding to the bus. Each POL regulator may autonomously add and drop its phase as required by the system, by sequentially manipulating a pulse width of a couple of gate signals configured to respectively control a high-side field effect transistor (FET) and low-side FET in the POL regulator's output stage.01-21-2010
20110248564Electric power converting system - An electric power converting system includes a common DC power supply, and a plurality of inverter sets operated mutually independently to one another, and supplied with electric power from the common DC power supply. Each inverter set has an inverter circuit and a main circuit capacitor. The system further includes a plurality of first and second switching circuits. Each first switching circuit is provided between the common DC power supply and each inverter set, and each second switching circuit is provided in each inverter set for discharging charges in the main circuit capacitor.10-13-2011
20110175447Current Control System and Method for Controlling a Current - A current control system comprising at least one series arm including a linear series regulator for generating a manipulated variable signal, wherein the linear series regulator is connected to a semiconductor control element which is connected to a supply voltage referenced to a ground potential, and the semiconductor control element includes an output voltage at its output side relative to the ground potential. A reference signal fed to the series regulator, a current measurement signal, and the manipulated variable signal are referenced to the ground potential, where the manipulated variable signal is fed to a subtractor which subtracts the difference of the feed voltage minus the output voltage from the manipulated variable signal, and the generated output signal of the subtractor is fed to the semiconductor control element as a corrected manipulated variable signal.07-21-2011
20100066169CIRCUIT DEVICE INCLUDING MULTIPLE PARAMETERIZED POWER REGULATORS - In a particular embodiment, a circuit device includes a plurality of programmable voltage regulator circuits adapted to produce one or more unique power supplies. Each programmable voltage regulator circuit includes a power supply output terminal and a base regulator circuit module that has multiple configurable parameters to support a plurality of regulator configurations. The base regulator circuit module includes a plurality of leads. Each programmable voltage regulator circuit further includes selected circuitry coupled to the plurality of leads and to the power supply output terminal. The selected circuitry is adapted to cooperate with the base regulator circuit module to provide a selected type of regulator circuit and to apply a power supply to the power supply output terminal.03-18-2010
20100066170Method and Apparatus for Allocating Electricity from a Distributor - The present invention provides a method and apparatus for allocating current (03-18-2010
20110101776LAMP CIRCUIT - A lamp circuit is disclosed, comprising a direct current (DC) power supplier adapted to provide a supply voltage, a driving unit coupled to the DC power supplier so as to receive the supply voltage, and a light-radiating module coupled to the driving unit and having a DC output side. The driving unit generates a constant DC current that passes through the light-radiating module such that a DC voltage to be supplied to a DC load is built at the DC output side.05-05-2011
20100231041EFFICIENT DC DISTRIBUTION SYSTEM, TOPOLOGY, AND METHODS - Embodiments of power distribution systems and methods are described generally herein. Other embodiments may be described and claimed.09-16-2010
20110074212POWER SUPPLY PROVIDING AN INTEGRATED POWER SYSTEM - A power supply with an integrated power system has a common transformer. After the power supply receives input power, the common transformer generates an induction power at the secondary side. The power supply further includes a standby power system receiving the induction power and outputting a standby power, an actuation switch with one end electrically bridging the common transformer and the standby power system, a primary power system connecting to the other end of the actuation switch, and a power management unit receives the standby power to be activated. The standby power system modulates and transforms the induction power to the standby power to start operation of the power management unit. Users can trigger the power management unit to output an enabling signal to conduct the actuation switch to be ON so that the primary power system can receive the induction power and transform to output the primary output power.03-31-2011
20110074213POWER-ENABLED CONNECTOR ASSEMBLY AND METHOD OF MANUFACTURING - An advanced connector assembly enabled to receive and distribute power signals. In one embodiment, the connector comprises a multi-port modular jack, and incorporates a PSE controller board disposed in the rear portion of the connector assembly, e.g., outside the connector housing. The PSE controller board controls the power to a powered device and. may be adapted to, for example, distinguish whether the device is a short circuit or a network interface card, guarantee the supply of power to selected ports, and prevent cables from transmitting abnormal power. Heat removal features are also optionally utilized to effectively dissipate heat produced by the electronic or signal conditioning components utilized on said multi-port modular jack. In some embodiments, the PSE controller board is also optionally made removable from the jack housing.03-31-2011
20100244562DIRECT CURRENT SYSTEM, METHOD, AND APPARATUS - A system and method for providing direct-current power is described. In one embodiment a direct current voltage is converted into at least two regulated DC voltages, and a first of the at least two regulated DC voltages is applied across a first and second outputs and a second of the at least two regulated DC voltages is applied across the second output and a third output. And when a first impedance across the first and second outputs is less than a second impedance across the second and third outputs, current is received via the second output while delivering power to the first and second impedances.09-30-2010
20110018344ELECTRONIC DEVICE AND METHOD FOR DYNAMIC USB POWER ASSIGNMENT - An electronic device assigns power to USB ports dynamically. A total current detection circuit transmits driving voltage signals to the USB ports, and detects whether a total current provided to the USB ports exceeds a rated total current and output a total current detection signal. A plurality of short-circuit detection circuits detects whether USB devices connected to the corresponding USB ports are shorted and to output a short-circuit detection signal. A plurality of relay circuits switch connection between the USB ports and the power circuit. A USB controller outputs a control signal according to the total current detection signal and the short-circuit detection signal and directs the relay circuits to switch connection between the corresponding USB ports and the power circuit on and off.01-27-2011
20100084917Power adaptor - A power adaptor including a USB connector, a DC power input port, a DC power output port and a DC/DC voltage regulator. The DC power output port is electrically connected to the DC power input port. The DC/DC voltage regulator is electrically connected to the USB connector and the DC power input port for lowering the voltage of the power input from the DC power input port and outputting the power to the USB connector. The power adaptor is adaptable to a notebook computer charger to charge another portable electronic product such as a mobile phone, a PDA or an iPod. The charging process can be performed without powering on the notebook computer so as to facilitate use and save energy.04-08-2010
20100072817Grid responsive control device - A load control device which is responsive to a physical variable representing the balance between load and generation on an electricity grid. The control device varies the energy consumption of the load based on the current value of the physical variable of the grid relative to a central value of that physical variable, which is derived from past readings of the physical variable of the grid. The grid responsive control device also takes into account the time since the load last varied its energy consumption in determining whether or not the grid variable load control should be provided.03-25-2010
20090051221Direct current voltage conversion circuit - A DC voltage conversion circuit (02-26-2009
20110163599HIGH VOLTAGE GAIN POWER CONVERTER - A high voltage gain power converter includes: a main switch element; an assistant switch element; a first inductive element, a first switch element, and a first capacitive element; and a second inductive element, a second switch element, and a second capacitive element. The first inductive element is connected between an input node and first switch element. The first capacitive element, connected between the first switch element and ground, provides a first boost output voltage. The second inductive element is connected between the main switch element and first capacitive element. The second switch element is connected to a common node of the second inductive element and main switch element. The second capacitive element, connecting the second switch element to a first node, provides a second boost output voltage. The assistant switch element is connected between the first inductive element and common node of the second inductive element and main switch element.07-07-2011
20120267955POWER TRANSMISSION AND DISTRIBUTION SYSTEMS - A power transmission and distribution system suitable for subsea electrical loads includes a primary dc transmission cable connected to an onshore AC/DC converter module that connects the onshore end of the cable to an ac supply network. The subsea end of the cable is connected to a primary subsea power distribution unit and includes a DC/DC converter module having a modular topology with a series of interconnected DC/DC converter units. The DC/DC converter module is connected between the cable and a primary dc distribution network. Secondary dc transmission cables and associated circuit breakers connect the primary subsea power distribution unit to secondary subsea power distribution units that are located near the subsea loads. Each secondary subsea power distribution unit includes a DC/DC converter module having a modular topology with a series of interconnected DC/DC converter units. Respective secondary dc distribution networks supply power to one or more subsea loads.10-25-2012
20120267953APPARATUS AND METHOD FOR CONTROLLING AND SUPPLYING POWER TO ELECTRICAL DEVICES IN HIGH RISK ENVIRONMENTS - An integrated power hub and device controller apparatus, and associated operational method, are operable to control and supply power to electrical devices that operate in environments which create a high risk for the electrical devices to generate stray voltages and currents. According to one embodiment, the apparatus includes a plurality of converter circuits, a controller, and a communication interface. The converter circuits convert input AC power to DC power such that each converter circuit provides a DC output voltage for a respective electrical device. The converter circuits may be configured (e.g., with toroidal step-down transformers) so as to mitigate stray currents from flowing between the electrical devices. The controller is operable to generate control signals so as to at least partially control operations of the electrical devices. The communication interface is operably coupled to the controller and operable to provide the control signals to the electrical devices.10-25-2012
20110001356SYSTEMS AND METHODS FOR ELECTRIC VEHICLE GRID STABILIZATION - A system and methods that enables power flow management using AGC commands to control power resources. Power regulation can be apportioned to the power resources. An AGC command requesting an apportioned amount of the power regulation may be transmitted to a power resource. The power flow manager can determine a power regulation range for a power resource, and transmit an AGC command based on the power regulation range. In addition, a power flow management system can detect a change in an intermittent power flow and implement a power flow strategy in response to the change in the intermittent power flow. The power flow strategy may be a smoothing strategy or a leveling strategy.01-06-2011
20100283321Circuit for Controlling Power Supply to a Consumer and Method for Operating a Circuit - The present invention concerns a circuit for operating a consumer (11-11-2010
20100253142System and Method for Supplying Power to a Power Grid - System and methods for supplying electric power to a power grid are disclosed. The system includes a power generation source, a charging station for charging a zinc-based energy storage device from the power generation source, and a transport module for transporting the zinc-based energy storage device. The system also includes an input station for supplying power to the power grid from the zinc-based energy storage device, and a controller for selectively discharging the zinc-based energy storage device to the power grid based on the initiation signal.10-07-2010
20110133553SYSTEM AND METHOD FOR DELAYING PHASE SHIFT WITHIN A DC/DC CONVERTER - A multi-output DC/DC voltage regulator has a master regulator for providing a first output voltage pulse responsive to an input voltage. The master regulator generates a synchronization signal that ramps from a first level up to a second level and discharges back to the first level responsive to the first output voltage pulse. At least one slave regulator provides a second output voltage pulse responsive the input voltage and a delay signal. The at least one slave regulator includes comparison logic for comparing the synchronization signal with a reference value and generates the delay signal to initiate the second output voltage pulse when the synchronization signal substantially equals the reference value. The first output voltage pulse is delayed from the second output voltage pulse by a selected amount.06-09-2011
20100181831POWER SUPPLY CONTROL APPARATUS - A power supply control apparatus includes a plurality of power supply units for supplying electric power to a plurality of electric circuits respectively. The power supply control apparatus receives pulse signals from the exterior. Each of the plurality of power supply units comprises a counter for counting the pulse signals. And a controller initiates to supply of the electric power to corresponding one of the electric circuits when the number of the pulse signals counted by the counter reaches the particular value which corresponds to an initiating timing of supplying electric power to corresponding one of the electric circuits.07-22-2010
20100117450INTEGRATED MULTIPLE OUTPUT POWER CONVERSION SYSTEM - A voltage converter includes a plurality of power conversion circuits that receive respective digital control inputs and supply respective output signals that are separately programmable to have respective desired voltages. A control circuit, a portion of which is shared by the power conversion circuits on a time multiplexed basis, supplies the digital control inputs. The shared portion of the control circuit includes, a first selector circuit to select on the time multiplexed basis set points for respective ones of the output signals; a digital-to-analog converter to convert a selected set point to an analog set point signal, a second selector circuit to select one of measured signals that correspond to respective ones of the set points, and a summer coupled to determine a difference between the analog set point signal and a corresponding measured signal and generate an error signal indicative thereof05-13-2010
20120146414SYNCHRONOUS SWITCHING POWER SUPPLY - A method for powering one or more loads from a varying input voltage comprises controlling a primary switch to selectively apply the input voltage to energize an inductor, controlling a load switch to selectively connect the inductor to the load, monitoring one or more load parameters to determine load conditions, and, when the load conditions meet a load requirement, disconnecting the load from the inductor and directing any remaining current in the inductor to a energy storage element.06-14-2012
20110095607System and Method for Supplying Power to a Load Using Deep-Sleep-Mode Power Supplies - A system and method are provided for supplying power to a load using deep-sleep-mode power supplies. Each of plural switching power supplies includes an input converter, an output converter and a standby converter. Each is configured to have its output converter connected to the load, and each is configured to operate in at least an online mode in which the input, output and standby converters are enabled for switching, and a deep sleep mode in which the input, output and standby converters are disabled from switching. A system controller is configured to place a first set of the plural switching power supplies in the online mode and a second set of the plural switching power supplies in the deep sleep mode while the load is operating and the power supplies in the first set are supplying power to the load.04-28-2011
20100283322Multiple output power supply - A method is provided for supplying power to multiple output channels. Channel control signals are monitored to determine a state for each of the output channels. Each channel control signal is associated with one of the output channels. The energy in a storage element is directed to output channels according to the state of the channel control signals.11-11-2010
20100194198METHOD AND APPARATUS FOR IMPLEMENTING AN UNREGULATED DORMANT MODE WITH AN EVENT COUNTER IN A POWER CONVERTER - A control circuit for use in a power converter with an unregulated dormant mode of operation includes a drive signal generator coupled to generate a drive signal to control switching of a power switch to be coupled to the control circuit to regulate a flow of energy to a power converter output in response to an energy requirement of one or more loads to be coupled to the power converter output. An unregulated dormant mode control circuit is included and is coupled to render dormant the drive signal generator thereby ceasing the regulation of the flow of energy to the power converter output by the drive signal generator when the energy requirement of the one or more loads falls below a threshold for more than a first period of time. The drive signal generator is coupled to be unresponsive to changes in the energy requirements of the one or more loads when dormant. The unregulated dormant mode control circuit is coupled to power up the drive signal generator after a second period of time has elapsed. The drive signal generator is coupled to again be responsive to changes in the energy requirement of the one or more loads after the period of time has elapsed.08-05-2010
20080211304Intermediate bus architecture with a quasi-regulated bus converter - A dc-dc converter system comprises a quasi-regulated bus converter and plural regulation stages that regulate the output of the bus converter. The bus converter has at least one controlled rectifier with a parallel uncontrolled rectifier. A control circuit controls the controlled rectifier to cause a normally non-regulated mode of operation through a portion of an operating range of source voltage and a regulated output during another portion. The bus converter may be an isolation stage having primary and secondary transformer winding circuits. For the non-regulated output, each primary winding has a voltage waveform with a fixed duty cycle. The fixed duty cycle causes substantially uninterrupted flow of power during non-regulated operation. Inductors at the bus converter input and in a filter at the output of the bus converter may saturate during non-regulated operation.09-04-2008
20110187191Intermediate Bus Architecture with a Quasi-Regulated Bus Converter - A dc-dc converter system comprises a quasi-regulated bus converter and plural regulation stages that regulate the output of the bus converter. The bus converter has at least one controlled rectifier with a parallel uncontrolled rectifier. A control circuit controls the controlled rectifier to cause a normally non-regulated mode of operation through a portion of an operating range of source voltage and a regulated output during another portion. The bus converter may be an isolation stage having primary and secondary transformer winding circuits. For the non-regulated output, each primary winding has a voltage waveform with a fixed duty cycle. The fixed duty cycle causes substantially uninterrupted flow of power during non-regulated operation. Inductors at the bus converter input and in a filter at the output of the bus converter may saturate during non-regulated operation.08-04-2011
20110187192SWITCHING MODE POWER SUPPLY AND A METHOD OF OPERATING THE POWER SUPPLY IN A POWER SAVE MODE - A switching mode power supply and a method of operating the power supply in a power save mode. The switching mode power supply includes a first PWM controller and a second PWM controller that are driven by different driving voltages and control first and the second voltages to be output, respectively, a first transformer that is controlled by the first PWM controller to output the first voltage and having a primary coil, a secondary coil to induce the first voltage, and an auxiliary winding, and a rectifier that rectifies and smoothes a current flowing through the auxiliary winding of the first transformer, generates a power save mode voltage based on the respective driving voltages of the first and the second PWM controllers, and supplies the power save mode voltage to the first and the second PWM controllers. Accordingly, the power save mode is operated using a voltage difference without requiring an extra controller.08-04-2011
20110187190Dual voltage output circuit - A dual voltage output circuit includes first and second differential driving units. The first differential driving unit is operable to generate a first output voltage from a pair of first input voltages, has first and second nodes to receive first and second voltage levels, respectively, and has a first intermediate voltage node to receive a first intermediate voltage level. The second differential driving unit is operable to generate a second output voltage from a pair of second input voltages, has third and fourth nodes to receive the first and second voltage levels, respectively, and has a second intermediate voltage node to receive a second intermediate voltage level.08-04-2011
20110187189SYSTEM AND METHOD FOR CONTROLLING SINGLE INDUCTOR DUAL OUTPUT DC/DC CONVERTERS - A DC to DC converter comprises voltage regulation circuitry for generating at least two output voltages responsive to an input voltage. The voltage regulation circuitry further includes a plurality of main switches connected to receive the input voltage. A plurality of auxiliary switches is connected to provide the at least two output voltages. A single inductor is connected between the plurality of main switches and the plurality of auxiliary switches. A dual-output PWM controller provides a first PWM control signal for controlling the operation of the plurality of main switches responsive to a first feedback voltage from a first output voltage using a first control loop and provides a second PWM control signal for controlling the operation of the plurality of auxiliary switches responsive to a second feedback voltage from a second output voltage using a second control loop. Current mode control can be used for each control loop to reduce the cross regulation problem.08-04-2011
20110187188REDUNDANT POWER SUPPLY DEVICE - A redundant power supply device, particularly the one without installing a heat dissipating fan, includes a chassis having at least one power input accommodating space and a plurality of power output accommodating spaces, a back panel device comprising a back panel, which is a printed circuit board mounted onto the chassis, a plurality of power supply devices installed in the power output accommodating spaces and electrically connected to the back panel, at least one power input module inserted into the power input accommodating space for providing an external AC-to-DC or DC-to-AC conversion and electrically coupling the back panel. During an application without changing the back panel, the power input accommodating space is disposed opposite to the external input power supply, and the power input includes at least one power input module with AC-to-DC or DC-to-AC conversion to achieve high interchangeability, economic benefit and product competitiveness.08-04-2011
20110215642MONITORING SYSTEM AND INPUT AND OUTPUT DEVICE THEREOF - A monitoring system includes a controller, a number of input and output (I/O) devices, a number of sensors, and a number of electronic devices. Each I/O device comprises an input circuit, an output circuit, and a connector. The connector is connected to a sensor or an electronic device. The controller controls the I/O device to function as an input device or an output device. When the I/O device functions as an input device, the input circuit transmits a voltage signal to the controller. When the I/O device functions as an output device, the output circuit supplies power to the electronic device and the controller detects the voltage of the electronic device via the input circuit.09-08-2011
20090174257LARGE POWER MULTI-OUTPUTS POWER SUPPLY STRUCTURE HAVING RELATIVELY HIGH EFFICIENCY IN LOAD RANGE AND CONTROLLING METHOD THEREOF - The configurations of a switched-mode power supply and a controlling method thereof are provided. The proposed switched-mode power supply includes a first output converter receiving a DC input voltage and generating a first high power DC voltage output and at least one low power DC voltage output, and a second output converter receiving the DC input voltage and generating a second high power DC voltage output coupled to the first high power DC voltage output to generate a coupled output, wherein the first output converter works and the second output converter idles when a transient power of the coupled output is not larger than a rated output power of the first high power DC voltage output, and both the first and the second output converters work when the transient power is larger than the rated output power.07-09-2009
20120098340EQUIPMENT POWER MANAGEMENT SYSTEM - An equipment power management system in accordance with the present invention has a plurality of electrical devices and a control device. The electrical devices can operate in any one of multiple operational states different from each other in power consumption of a commercial power source. The control device switches the operational state of an electrical device to that of a smaller power consumption of the commercial power source in ascending order from the electrical device of the lowest priority when a receiving power amount of the whole equipment including the plurality of electrical devices exceeds a first threshold value until the receiving power amount falls below a second threshold value which is lower than or equal to the first threshold value.04-26-2012
20110304205POWER OUTLET APPARATUS WITH MULTIPLE SOCKETS DETECTION, AND DETECTION METHOD THEREOF - A power outlet apparatus with multiple sockets detection, and the detection method and module thereof are disclosed. The apparatus includes a plurality of socket groups, a plurality of current detection unit, a voltage detection unit, a processing unit, and an output unit. In which the current detection units are installed at the socket groups respectively, for detecting a current data corresponding to each socket group. And the voltage detection unit is for measuring a voltage data of the socket groups. The voltage data and the current data are processed by a processing unit for obtaining an electricity information of each socket group.12-15-2011
20110304206DC-DC SWITCHING CELL MODULES FOR ON-BOARD POWER SYSTEMS - A DC-DC switching cell module includes a switch, a rectifier, an output filter coupled to the rectifier, and an input port for receiving an external PWM control signal from a controller. The switching cell module is configured to control the switch in response to the external PWM control signal to generate a DC output voltage from a DC input voltage. The switching cell module is configured for attachment to a circuit board as a discrete component.12-15-2011
20120098339POWER SUPPLY DEVICE - A power supply device for an electronic device includes a power supply module, a sampling module, a pulse width modulation (PWM) controller, and a processor. The PWM controller controls the power supply module to be switched on. The sampling module samples current generated by the power supply module and generates sampling signals correspondingly. The PWM controller receives the sampling signals and transmits the sampling signals to the processor. The processor calculates values of the current according to the sampling signals.04-26-2012
20120306272SYSTEM AND METHOD FOR DYNAMIC POWER MANAGEMENT OF A MOBILE DEVICE - A method of dynamic power management of a mobile device. The method includes monitoring at least one load to determine when at least one of the loads will become active or inactive, determining a minimum required output voltage level to be provided by a single voltage converter based on voltage level requirements of the at least one load that will become active or inactive, converting an input voltage level via the voltage converter to provide the minimum required output voltage level to the output power port in advance of the at least one load becoming active or after the at least one load becomes inactive, monitoring the input voltage level, determining whether the input voltage level is below a first threshold, and when the input voltage level is below the first threshold, reducing the output voltage level provided by the single voltage converter.12-06-2012
20090167081SECONDARY SIDE-DRIVEN HALF-BRIDGE POWER SUPPLY - The present invention discloses a secondary side-driven half-bridge power supply, which has a half-bridge transformer. A MOSFET unit is connected to the primary side of the half-bridge transformer, and an output rectifier/filter circuit connected to the secondary side of the half-bridge transformer. In the present invention, a PWM controller generates a control signal and sends the signal to a separating element. The control signal is used to drive the MOSFET unit, and the MOSFET unit then drives the half-bridge transformer. The output rectifier/filter circuit processes the signal output by the half-bridge transformer to provide voltages for external loads. The present invention can increase the power efficiency, raise the working frequency, and reduce the cost.07-02-2009
20120043811POWER SUPPLY HAVING IMPROVED SYSTEM EFFICIENCY - A power supply having improved system efficiency includes: a standby stage converting a DC voltage into an operating voltage and a first standby voltage, which have a preset magnitude, and supplying the first standby voltage to a standby output terminal; a DC/DC stage supplied with the operating voltage from the standby stage, converting the DC voltage into a main voltage having a preset magnitude, and supplying the main voltage to a main output terminal; and a main/standby stage converting the main voltage from the DC/DC stage into a second standby voltage having a preset magnitude, and supplying the second standby voltage to the standby output terminal.02-23-2012
20100096923Synchronization of Plural DC-DC Voltage Converters - The present disclosure relates to circuits and methods for improving the performance of plural DC-DC voltage converters.04-22-2010
20110316339DISTRIBUTED POWER DELIVERY SCHEME FOR ON-DIE VOLTAGE SCALING - A high-speed low dropout (HS-LDO) voltage regulation circuit suitable to enable a power gate unit to produce a variable voltage signal based on the load of a processor is disclosed herein. In various embodiments, selection logic may dynamically enable or disable the HS-LDO circuit to allow the power gate unit to operate under a fully-on or fully-off mode. Other embodiments may be disclosed or claimed.12-29-2011
20100301671POWER EXTRACTION FROM SIGNAL SINKS - A power extractor suitable for locations proximate to the sink of a signal channel is disclosed. The power extractor can generate power from the signal channel without substantially disturbing a quality of signals within the channel. In one embodiment, the power extraction circuit can include: a current source coupled to a sink side of a signal channel, where the signal channel is independent of any power supply signal, the current source being high impedance to maintain signal quality within the signal channel; a first regulator configured to generate a first regulated supply from a current derived from the signal channel using the current source; and a second regulator coupled to the first regulator, where the second regulator is configured to generate a second regulated supply from the first regulated supply.12-02-2010
20110057513Power Sampling Systems and Methods - An automatic sensing power system automatically has a voltage sampling system that samples a voltage from an electrical device, determines a power requirement for the electrical device, converts power to the required level, and outputs the power to the electrical device when the electrical device is connected to the automatic sensing power system.03-10-2011
20110156481POST REGULATION CONTROL CIRCUIT - A post regulation control circuit aims to monitor ancillary output power generated from a power supply. The power supply includes at least one primary output circuit to provide a primary output power. A post regulation circuit obtains the primary output power and regulate to an ancillary output power. The monitor circuit sets an abnormal level and obtains a detection power from the post regulation circuit to compare with the abnormal level. Determining whether to output a driving pulse wave according to the detection power is over the abnormal level or not, or stop outputting the driving pulse wave.06-30-2011
20120001487Load Control System That Operates in an Energy-Savings Mode When an Electric Vehicle Charger is Charging a Vehicle - A load control system for a building having a lighting load, a window, a heating and cooling system, and an electric vehicle charger for charging a vehicle (e.g., an electric or hybrid vehicle) operates in an energy-savings mode to reduce the total power consumption of the load control system when the vehicle charger is presently charging the vehicle. The load control system may comprise a lighting control device for controlling the intensity of the lighting load, a daylight control device for adjusting the amount of natural light admitted through the window, and a temperature control device for controlling a setpoint temperature of the heating and cooling system to thus control a present temperature in the building. When the vehicle charger is presently charging the vehicle, the load control system automatically controls the lighting control device, the daylight control device, and the temperature control device to decrease the total power consumption of the load control system.01-05-2012
20110049987Power tap, terminal apparatus and communication system - A power tap that supplies an alternating-current power to an terminal apparatus, is connected to the terminal apparatus to configure a closed circuit, and transmits or receives data to/from the terminal apparatus, the power tap including: a plurality of routes including difference loads; a selecting portion that, when data is transmitted to the terminal apparatus, selects any one of the routes based on the transmitted data, in synchronism with timing in which amplitude of an alternating current flowing on the closed circuit becomes 0; and a first detecting portion that, when data is received from the terminal apparatus, detects change of the amplitude of the alternating current based on the received data.03-03-2011
20110049986ADAPTIVE PHASE OFFSET CONTROLLER FOR MULTI-CHANNEL SWITCHING POWER CONVERTER - An adaptive phase offset controller for use with a switching power converter having first and second channels. The controller includes a discriminator which detects a ‘critical condition’ in which a switching signal for the first channel transitions during a critical time interval so as to give rise to crosstalk that can corrupt the operation of the second channel's control circuit. When the discriminator detects a critical condition, a phase offset circuit offsets the phase of the first channel's switching signals, such that subsequent transitions occur outside of the critical time interval. A second discriminator and phase offset circuit are preferably employed to detect critical conditions which can give rise to crosstalk that can corrupt the operation of the first channel's control circuit.03-03-2011
20110049985ELECTRONIC DEVICE - An electronic device includes alight emitting unit that provides backlight to a liquid crystal display unit, a communication unit that transmits video data, and a control unit that controls a current flowing from a DC-DC convertor to the light emitting unit. The control unit controls the current flowing from the DC-DC convertor to the light emitting unit so as to change an output voltage of the DC-DC convertor from a first voltage to a second voltage which is lower than the first voltage. The first voltage is supplied to the light emitting unit and the second voltage is supplied to the communication unit.03-03-2011
20110049984POWER-CONSUMPTION CONTROL APPARATUS AND METHOD FOR SMART METER - The present invention relates to a power-consumption control apparatus and method for a smart meter. The total amount of power consumption and amounts of power consumption of individual electrical devices connected are sensed, and the amounts of power consumption of the individual electrical devices are analyzed. The total amount of power consumption of the electrical devices is compared with a preset progressive amount on the basis of the analyzed result and supply and shutoff of power to the electrical devices is controlled on the comparison result. According to embodiments of the present invention, power consumption (power shutoff and supply) in homes, factories, and offices is automatically and effectively managed and controlled, which makes it possible for consumers to pay lower electrical bill and for power suppliers to improve the efficiency of power distribution by efficiently estimating power consumption.03-03-2011
20110049983Power Strip System - A power strip system includes a master control socket, at least one subsidiary socket of which the power on/off status is decided by a current of the master control socket, a current detecting unit connected with the master control socket for detecting the current of the master control socket and sending a corresponding current signal, a control module receiving and analyzing the current signal sent by the current detecting unit and then generating a corresponding control signal, a voltage regulating module providing a regulated voltage for the control module to be acted as a power supply of the control module, and a switch module including a switch device and a switching unit controlling the switch device to turn on/off the subsidiary socket according to the control signal of the control module.03-03-2011
20120062031CONTROL SYSTEM FOR MULTI OUTPUT DCDC CONVERTER - A multi-output DC to DC converter can have complex control requirements in CCM mode because of the differing load requirements of the outputs. A multi-output DC to DC converter having a single coil or inductor and a freewheel switch is described. A controller measures the duration of the freewheel phase. The controller increases the current supplied to the DC to DC converter in the following duty-cycle if the duration is less than a first value, and decreases the current supplied to the inductor in the following duty-cycle if the duration is greater than a second value.03-15-2012
20120013187METHOD AND CIRCUIT FOR CURRENT BALANCE - This disclosure presents method and circuit for current balance. An AC signal or a DC signal is applied to a circuit to source current to loads. A capacitor is configured to balance the current in loads. By matching the charging time and the discharging time of the balance capacitor in every cycle, the current balance of the loads is achieved.01-19-2012
20120205978REGULATOR PROVIDING VARIOUS OUTPUT VOLTAGES - A regulator for providing a plurality of output voltages is provided. The regulator includes a basic unit and a plurality of replica units. The basic unit amplifies an input voltage to obtain a core voltage according to a first control signal. Each of the replica units outputs one of the output voltages according to the input voltage and one of a plurality of second control signals, wherein at least two of the output voltages have different voltage levels. The first control signal is set according to the second control signals, to make the voltage level of the core voltage substantially equal to or less than a maximum voltage level of the output voltages and substantially equal to or greater than a minimum voltage level of the output voltages.08-16-2012
20080258559Electric Power Flow Control - An apparatus for controlling power flow in a high voltage network. A phase shifting transformer includes a tap changer.10-23-2008
20120153724POWER-GENERATION CONTROL APPARATUS, POWER-GENERATION CONTROL METHOD AND POWER GENERATION SYSTEM - Disclosed herein is a power generation control apparatus including: a power generation efficiency control section configured to control the power generation efficiency of a power generation module for generating electric power in accordance with light received by the power generation module; and a power accumulation control section configured to control power accumulation into the power accumulation section accumulating electric power generated by the power generation module by detecting the power accumulation state of the power accumulation section. When the power generation module is in a state of being capable of generating electric power and if the power accumulation section is in a state of having fully accumulated electric power and if a load connected to the power accumulation section is in a state of consuming no electric power, the power generation efficiency control section controls the power generation module to generate electric power at a low power generation efficiency.06-21-2012
20120153723POWER SUPPLY CIRCUIT WITH SHARED FUNCTIONALITY AND METHOD FOR OPERATING THE POWER SUPPLY CIRCUIT - A power supply circuit and a method for operating the power supply circuit are described. In one embodiment, a power supply circuit includes at least one input terminal to receive at least one input voltage, a power element including multiple power element components configured to convert the at least one input voltage to at least one output voltage, multiple regulator controllers configured to control the power element components for the conversion of the at least one input voltage to the at least one output voltage, at least one first switch coupled to the regulator controllers and the power element components, and multiple output terminals to output the at least one output voltage. The at least one first switch is used to configure the power supply circuit to function as either one voltage regulator or multiple independent voltage regulators. Other embodiments are also described.06-21-2012
20120025610POWER SUPPLY HAVING LOW QUIESCENT CONSUMPTION - Electronic circuitry and methods are provided. Electrical energy is coupled to a transformer by way of line filter of a power supply. A clipper circuit limits the alternating-current voltage applied to the primary side. A voltage tripler receives output from the secondary side of the transformer and a resulting voltage is coupled to a voltage regulator. At least one regulated direct-current voltage is output to a load and is maintained while a current pulse is applied to a predetermined device. The electronic circuitry conforms to pending power conservation requirements for computers and other equipment.02-02-2012
20120025609VERY HIGH EFFICIENCY UNINTERRUPTIBLE POWER SUPPLY - The invention is an electrical power conversion topology. The preferred embodiment is as a three-phase, on-line Uninterruptible Power Supply (UPS). The desired AC output voltage waveform is formed on each output line or phase of the UPS, using pulse modulation techniques and a smoothing output filter inductor. A semiconductor switching matrix is used to switch the power converter side of each output filter inductor between three voltage potentials, a positive battery potential, a negative battery potential and a third intermediate and varying AC potential synchronized with the desired output voltage. The invention potentially provides the same performance as that of a multi-level inverter topology approaching an infinite number of DC levels.02-02-2012
20120062030Switching converter and method for controlling a switching converter - This invention provides a switching converter having a number N of outputs providing N output signals, said switching converter being operable in at least a boost mode. The switching converter has at least one inductor, a number of switches, and a controlling device for controlling a charging time of the at least one inductor at least by the switches such that a discharging time of the at least one inductor is constant03-15-2012
20090008997VOLTAGE REGULATION DEVICE - A voltage regulation device adapted for connection to a varying electrical supply and to regulate the voltage supplied to certain selected circuits whose loads benefit from voltage regulation. The device comprises a PWM or phase angle switched autotransformer which is sufficiently compact and lightweight to be incorporated into a standard electrical consumer unit which has separated circuits, ie, those whose loads benefit from voltage regulation and those whose loads do not, such that the former may be controlled by the device to operate at a constant and reduced voltage thus ensuring a reduction in energy consumption and the life enhancement of the appliances connected to the device. The operating temperature of the autotransformer is controlled by temporarily increasing the output voltage of the autotransformer in the event of overheating.01-08-2009
20110084552Power Management Methodology - A power management system for regulating supply voltage in at least two selectable power modes with low power, minimal leakage current and quicker startup times is disclosed. The power management system includes at least two regulators having regulator inputs and regulator outputs. The regulator inputs are respectively coupled to at least two voltage domains, wherein the voltage domains have different load traits and/or requirements. The power management system also includes at least one switch disposed between the regulator outputs so as to selectively interconnect the regulator outputs based on the selected power mode.04-14-2011
20090134702DC CONVERTER WITH INDEPENDENTLY CONTROLLED OUTPUTS - A DC converter comprises a single primary circuit which is coupled to each of a plurality of output circuits in respective time periods, the coupling being provided by switching in the output circuits. Each output circuit produces a respective output voltage and a respective feedback signal which is coupled as a control signal to the primary circuit during the respective time periods, so that each output voltage is regulated substantially independently of each other output voltage. The time periods for the different output circuits can be equal or different, and can be dynamically changed depending on error voltages of the output circuits.05-28-2009
20120126616REFERENCE VOLTAGE GENERATION CIRCUIT AND METHOD - A reference voltage generation circuit includes: a bandgap reference circuit, generating a plurality of initial currents with different temperature coefficients; a base voltage generation circuit, combining the initial current into a combined current, and converting the combined current into one or more base voltages; a bias current source circuit, generating one or more bias currents based on at least one of the initial currents; and one or more regulating output circuit, each converting a respective one of the one or more bias currents into an increment voltage and adding the increment voltage to the base voltage to generate a respective output voltage. Each output voltage may have its respective temperature coefficient.05-24-2012
20120161517ELECTRONIC DEVICE FOR CONTROLLING CONSUMPTION POWER AND METHOD OF OPERATING THE SAME - An aspect of the present invention relates to a method of restricting power consumption of an electronic device. The method includes a request reception step of receiving a power consumption restriction request including a restricted power consumption value and a response transmission step of sending a response to the power consumption restriction request on the basis of the restricted power consumption value and a required power consumption value necessary for an operation.06-28-2012
20110181110Smart Power Delivery System and Related Method - According to one disclosed embodiment, a smart power delivery system includes a power conversion unit having a communication module and a power management module that can convert mains power into an optimized voltage and limited current used to power an electronic device. In one embodiment, a power conversion unit can optimize an output voltage by communicating with a connected electronic device and exchanging parameters representing desired characteristics of the output voltage. In one embodiment, an electronic device receives power from a power conversion unit through a wired power conduit. In another embodiment, an electronic device receives power from a power conversion unit through a wireless power conduit. In one embodiment, an optimal voltage is selected after negotiation between multiple electronic devices and a power conversion unit.07-28-2011
20110181112MULTI-VOLTAGE POWER SUPPLY - A multi-voltage power supply includes a transformer, a first output circuit to generate a first output voltage using a voltage transferred to a secondary winding of the transformer, and a first output voltage controller to control a voltage supplied to the primary winding of the transformer according to the first output voltage. The multi-voltage power supply includes second through Nth output circuits to generate second through Nth output voltages using the voltage transferred to the secondary winding of the transformer, and second through Nth output voltage controllers performing control in order to linearly output the second through Nth output voltages by feeding back the second through Nth output voltages. Accordingly, multiple (at least two) output circuits, which are on the secondary winding side of the transformer, to realize multiple output voltages can be independently controlled, and in particular, by linearly controlling the multiple output circuits, the multiple output voltages can be stably controlled regardless of the number of output voltages.07-28-2011
20090058184Power supply circuit having power assigning elements between output branches - An power supply circuit includes at least one voltage converting circuit, a plurality of output branches, and a plurality of power assigning elements. The at least one voltage converting circuit is configured for converting a primary voltage signal to at least one alternating current (AC) voltage signal. Each of the output branches is configured for providing a direct current (DC) power supply to a respective load circuit based on the at least one AC voltage signal. The power assigning elements are configured to reassign the DC power supplies provided by the output branches to the load circuits.03-05-2009
20120217801ELECTRONIC APPARATUS AND DATA OUTPUT METHOD - According to one embodiment, an electronic apparatus includes a receiver, a generator, an output module, a reception module, and a controller. The receiver is configured to receive power information associated with power consumption of respective external apparatuses from the respective external apparatuses. The generator is configured to generate display data to relatively display power consumption of the respective external apparatuses based on the power information. The output module is configured to output the display data. The reception module is configured to accept a selection of a first external apparatus from the respective external apparatuses. The controller is configured to control the first external apparatus.08-30-2012
20100052420METHOD FOR SELECTING AN ELECTRIC POWER SUPPLY, A CIRCUIT AND AN APPARATUS THEREOF - A method for selecting an electric power supply and a circuit thereof are provided. The method includes detecting whether there is an output signal from a high electric power source, connecting a low electric power source with input of a transformer if there is no output signal from the high electric power source, disconnecting output of the transformer with a general circuit if there is no output signal from the high electric power source, transforming a voltage received from the low electric power source, and outputting the transformed voltage to a control unit. By disconnecting the output of the transformer with the general circuit, the low power source may reduce waste of an electric power.03-04-2010
20120175954POWER DISPATCH SYSTEM FOR ELECTROLYTIC PRODUCTION OF HYDROGEN FROM WIND POWER - A system for distributing medium voltage DC electric power from a wind farm to electrolyser modules requiring low voltage DC power. The system includes one or more of each of central step down DC-DC converters, DC buses, regulated DC-DC converters, respective electrolyser module controllers, dispatch controllers, alternative loads, and alternative power sources.07-12-2012
20120313433SWITCHING POWER SUPPLY APPARATUS - In a switching power supply apparatus, a resonant capacitor and an inductor are connected in series between a primary winding in a transformer and a second switching element. A first rectifier smoothing circuit including a diode and a capacitor rectifies and smoothes a voltage occurring at a first secondary winding in the transformer during an on period of a first switching element to extract a first output voltage. A second rectifier smoothing circuit including a diode and a capacitor rectifies and smoothes a voltage occurring at a second secondary winding in the transformer during an on period of the second switching element to extract a second output voltage. A control circuit controls an on time of the first switching element and an on time of the second switching element on the basis of the first output voltage and the second output voltage.12-13-2012
20120074779SYSTEM AND METHOD FOR PHASE BALANCING IN A POWER DISTRIBUTION SYSTEM - A phase balancing system includes a load forecasting module, a phase unbalance identification module and a demand response module. The load forecasting module determines a load forecast for the distribution system for the period of interest and the phase unbalance identification module determines voltage unbalance on the distribution system for the period of interest. The demand response module estimates an available demand response on the distribution system for the period of interest and allocates an optimized demand response from the available demand response to minimize the voltage unbalance on the distribution system for the period of interest.03-29-2012
20100013305Method to Properly Ramp Current Sharing - A distributed power management system may include a communication bus and a plurality of POL (point-of-load) regulators coupled to the communication bus, and configured in a current sharing arrangement in which each POL regulator of the plurality of POL regulators has a respective output stage coupled to a common load and configured to generate a respective output current. Each POL regulator may have a respective phase in the current sharing configuration, and may transmit and receive information over the bus according to a bus communication protocol corresponding to the bus. The plurality of POL regulators may autonomously synchronize, to each other, a start time of their respective output voltage signal ramps by transmitting monitoring information to each other over the communication bus, while each of the POL regulators is ramping a duty cycle of a gate signal controlling a low-side field effect transistor of the output stage of the POL regulator according to a duty cycle of a gate signal controlling a high-side FET of the output stage of the POL regulator.01-21-2010
20100194196MODULATION MONITOR AND CONTROL - A system and method are provided for monitoring and controlling voltage modulation on a power grid, in order to maintain closed-loop control of the grid. The power grid has a plurality of connections including used and unused connections. A detector is configured to detect a modulation voltage on the power grid. A controller is configured to receive signals from the detector, and to control connections to the power grid. The controller disables power to unused connections in accordance with the modulation voltage exceeding a first threshold and disables power to used connections in accordance with the modulation voltage exceeding a second threshold; used connections are disabled one at a time at a first time interval each for a period given by a second time interval. The controller also restores power to the connections in accordance with the detected modulation voltage being less than a third threshold.08-05-2010
20090021075Semiconductor device - To reduce power consumption of a semiconductor device, the semiconductor device is configured to include: a power supplier for outputting multiple different voltages; a power controller for outputting a control signal to cause the power supplier to output one of the multiple voltages; a voltage controlling target block for outputting an error detection signal indicating an operation state, in accordance with the multiple voltages; and an error detector for monitoring the operation of the voltage controlling target block. The error detector determines, based on the error detection signal, whether the operation of the voltage controlling target block is normal, and informs the power controller of the obtained determination result. Further, based on a voltage indicated by a control signal and on the determination result from the error detector, the power controller determines a voltage controlling target block voltage to be supplied to the voltage controlling target block.01-22-2009
20090021074Power Supply Scheme for Reduced Power Compensation - A power control system is described that reuses current from segregated circuits of the mobile device. In some embodiments, the segregated circuits (or “sections”) can be “stacked” in series (with respect to the power supply) such that power is more efficiently used. The power can be more efficiently used by arranging a first section to reuse current that supplies power to a second section. A power control unit can be used to control regulators01-22-2009
20120261987INTERNAL VOLTAGE GENERATOR AND OPERATION METHOD THEREOF - An internal voltage generation circuit includes a plurality of active driving units configured to supply a plurality of active power supply voltages to a plurality of voltage terminals, respectively, in an active mode, and a common standby driving unit configured to commonly supply a standby power supply voltage to the plurality of voltage terminals in a standby mode.10-18-2012
20110121651ASSEMBLY OF ACTUATORS AND OF A SYSTEM FOR SUPPLYING ELECTRICAL POWER FROM A NETWORK - An assembly having actuators and an electricity power supply system. The assembly includes an input unit connecting the actuators to a three-phase AC electricity network and to a control system. The input unit includes a transformation member arranged to transform the AC into DC at high voltage and connected to a bidirectional power line having connected in series therewith at least one protective switch, a communications interface, and at least one of the actuators. The communications interface is arranged and connected to a central unit to exchange signals over the power line with a signal communications interface of at least one of the actuators. The input unit also includes a charger/discharger unit that connects an energy store to the power line.05-26-2011
20110121650CIRCUIT CONFIGURATION AND METHOD FOR PROVIDING A VOLTAGE SUPPLY FOR A DRIVER CIRCUIT - A circuit configuration for providing a voltage supply for a driver circuit driven by a controller, contains a controller for driving a driver circuit, and an intermediate circuit for providing a DC voltage. The intermediate circuit is connectable to a voltage source. A first voltage regulating circuit is provided for generating an auxiliary voltage from the DC voltage. A second voltage regulating circuit is provided for generating a first supply voltage for the controller from the auxiliary voltage. A third voltage regulating circuit is provided for generating a second supply voltage for the driver circuit from the auxiliary voltage. In this case, the third voltage regulating circuit generates the second supply voltage in a manner dependent on a control signal from the controller.05-26-2011
20110121649ENERGY SAVINGS BASED ON POWER FACTOR CORRECTION - Methods and apparatus for enhanced control over electronic device manufacturing systems are provided herein. In some embodiments, an integrated sub-fab system in accordance with the present invention may be provided with fixed or real time power factor management, correction, reporting, and tabulation. Such a system could also be used by any industry consuming significant levels of power. The integrated sub-fab system power management could be extended to other parts of the factory where high levels of power are used.05-26-2011
20120319479POWER DEMAND MANAGEMENT IN INDUCTIVE POWER TRANSFER SYSTEMS - A method of controlling power delivered to one or more loads in an inductive power transfer (IPT) system includes varying a frequency of a current in a primary conductive path (12-20-2012
20120267954LOAD LINE CALIBRATION DEVICE - An adjusting device adjusts a load line of a CPU power supply circuit. The adjusting device includes a controller, a DC electronic load device, a voltage follower, an adjustable resistor, and an indicator. The controller controls the DC electronic load device to change an output current of the circuit. The voltage follower sends an output voltage of the circuit to the controller. The controller calculates the load line of the circuit based on the output current and the output voltage of the circuit, determines whether the load line satisfies the required value, changes a resistance of the adjustable resistor until the load line satisfies the required value, and sends a resistance of the adjustable resistor to the indicator.10-25-2012
20120080949POWER MONITORING SYSTEM - A power monitoring system to monitor electrical power supply to electrical equipments. The monitor includes an energy saving device to reduce unnecessary power consumption. A control means for enabling control of power consumption of electrical devices in response to the data output of the monitored power consumption.04-05-2012
20120080948CONNECTION DEVICE FOR CONNECTING BETWEEN ELECTRICAL DEVICES - A connection device for connecting between a multifunction peripheral and USB devices. A hub unit is disconnectably connected to the multifunction peripheral via a first interface for enabling power supply from the multifunction peripheral to the hub unit. The hub unit is also disconnectably connected to the USB devices via a second interface for enabling power supply from the hub unit to the USB devices. A dedicated power supply connector is connected to a power supply section of the multifunction peripheral via wiring for enabling power supply from the multifunction peripheral to the hub unit. A hub circuit relays data between the multifunction peripheral and one of the USB host connectors of the hub unit. Power from the first interface to the hub circuit is supplied through a first power path, and power from the multifunction peripheral to the USB devices is supplied through a second power path.04-05-2012
20120080947POWER SUPPLY APPARATUS - The power supply includes an output unit that converts a DC voltage and outputs the DC voltage; a capacitor that stabilizes the DC voltage output from the output unit, the power supply being able to be operated in a power saving mode in which a power consumption is reduced by stopping a whole or part of an operation of a load operated by the DC voltage output from the output unit; a detection unit that detects that a power is cut off; a discharging load that discharges the capacitor; and a control unit that performs control so as to operate the charging load when the detection unit detects that the power is cut off during the operation in the power saving mode.04-05-2012
20120080946ELECTRONIC DEVICE AND METHOD FOR MANAGING CURRENT OF THE ELECTRONIC DEVICE - A method for managing current of an electronic device initializes a control signal of a baseboard management controller (BMC) of the electronic device to be a low level before the electronic device is powered on, maintains the control signal under a low-level status for a specified time upon the condition that a power on signal of the electronic device is received, and rotates the electronic fan with a low current and a low speed. The method further sets the control signal to be a high level when the specified time elapses to rotate the electronic fan with a normal current and a normal speed, and sets the control signal to be the low level upon the condition that a power off signal of the electronic device is received.04-05-2012
20120080945Power Management Unit Systems and Methods - Systems and methods provide for a power management unit and its operation. The power management unit includes: a step-down power converter configured to receive a first voltage and output a second voltage, wherein the second voltage is less than the first voltage and at least one step-up power converter configured to receive the second voltage and output a third voltage, wherein the third voltage is greater than the second voltage. It also includes an inductive element connected to the step-down power converter and the at least one step-up power converter and configured to store energy and selectively release the stored energy, wherein the inductive element is time shared by both the step-down power converter and the at least one step-up power converter; and a finite state machine configured to control the time sharing of the inductive element.04-05-2012
20110254369POWER SYSTEM WITH SHARED CLAMP RESET - An example power supply includes a first power converter, a second power converter, and a shared clamp reset circuit. The first power converter is adapted to convert an input to a first output and includes a first transformer having a first primary winding. The second power converter is also adapted to convert the input to a second output and includes a second transformer having a second primary winding. The second primary winding of the second transformer is not the first primary winding of the first transformer. The shared clamp reset circuit is coupled to the first primary winding of the first transformer and is coupled to the second primary winding of the second transformer to manage leakage inductance energy within the first transformer and within the second transformer.10-20-2011
20120326507POWER CONVERSION APPARATUS HAVING CASING ACCOMMODATED WITH A PLURALITY OF CIRCUIT BOARDS - An apparatus for converting power of a power source used for a main unit mounted on a vehicle includes: a first circuit that converts the power into a first power and supplies the first power to a first auxiliary unit mounted on the vehicle; a second circuit that converts the power into a second power and supplies the second power to a second auxiliary unit mounted on the vehicle; a first board on which the first circuit is mounted; a second board on which the second circuit is mounted; and a connecting member that electrically connects between the first board and the second board to allow the power of the power source to be conducted therebetween.12-27-2012
20120326506LOAD-SEGMENTATION-BASED 3-LEVEL INVERTER AND METHOD OF CONTROLLING THE SAME - The present disclosure relates to a load-segmentation-based 3-level inverter and method for controlling same. Three-level inverter includes: multiple capacitors charged with voltages divided from a DC input voltage; top switch having one end connected with positive terminal of one of multiple capacitors; bottom switch having one end connected with negative terminal of one of multiple capacitors; multiple legs each including a first switch connected to the other end of top switch and a second switch connected to the other end of bottom switch with the first and second switches connected; multiple diodes connected in series forwardly from the other end of bottom switch to the other end of top switch and having interconnect points connected to a contact between the multiple capacitors; and multiple loads having connected terminals at a contact between the first and second switches of each of the legs and a contact between the multiple diodes.12-27-2012
20120280565System and Method for an Intelligent Power Controller - In accordance with an embodiment, a method of operating a node coupled to a power network and a communications link includes receiving a status from a further node coupled to the power network via the communications link, and adjusting a power consumption of a device coupled to the node and powered by the power network based on the status message and based on a first rule set.11-08-2012
20110278923MULTI-OUTPUT POWER SUPPLY - An apparatus for providing power to an electronic device may include a power input configured to receive an input voltage from a power supply, and a rectifier operatively connected to the power input and configured to convert the input voltage to a first voltage. The rectifier may further be configured to transmit the first voltage to a first power output operatively connected to the rectifier. The apparatus may further include a power converter operatively connected to the rectifier and configured to convert the first voltage to a second voltage different than the first voltage and a first relay operatively connected to the rectifier to selectively prevent the first voltage from being transmitted through the first power output. The power converter may further be configured to transmit the second voltage to a second power output operatively connected to the power converter.11-17-2011
20120286575APPARATUS FOR MANAGING SECONDARY BATTERY - Disclosed is a secondary battery management apparatus including a current control switch for opening and closing the flow of charge or discharge current of a secondary battery; a connector for selectively providing a power conducting state and a power cutoff state based on whether the apparatus is connected to a charge/discharge device; a communication terminal for providing a communication interface with the charge/discharge device; a power supply for receiving power from the secondary battery and supplying the received power to a component that requires electrical power; a power supply line including a power supply switch; a switch controller for detecting the reception of a communication request signal through the communication terminal during connection to the charge/discharge device through the connector and transmitting a turn-on signal to the power supply switch; and a controller connected to the power supply and initiating or terminating a management operation for the battery.11-15-2012
20120091805METHOD FOR OPERATING AN ENERGY GENERATOR WITH INVERTER OPERATION DEPENDING ON A MAINS VOLTAGE AND CIRCUIT LAYOUT - A method for operating a first energy generator in an electric power supply system to which a plurality of electric consumers and at least the first energy generator, which is embodied as a regenerative energy generator, are connected via respectively one grid connection point each assigned thereto, wherein at least the first energy generator has an inverter of predetermined power rating, the AC voltage output of which is electrically connected to a first grid connection point assigned thereto, and wherein the operating control of the inverter regarding its reactive power feed and/or its reactive power draw into or out of the electric power supply system takes place depending on a continuously measured mains voltage value. The reactive power control in the energy grid is improved in that the mains voltage value is measured at a second grid connection point, which is different from the first grid connection point of the energy generator.04-19-2012
20120091803CONSTANT VOLTAGE CONSTANT CURRENT GENERATION CIRCUIT - A constant voltage constant current generation circuit includes a first transistor, a first resistor connected between the first terminal and a second potential, a first diode connected in series with the first resistor, and a first operational amplifier which outputs a first control signal to a control terminal of the first transistor. The constant voltage constant current generation circuit includes a current output circuit which outputs a constant current from a current output terminal according to the first control signal, a second transistor through which a second current flows, the second current obtained by mirroring a first current flowing through the first transistor, a second resistor connected between the voltage output terminal and the second potential. The constant voltage constant current generation circuit includes a current source which outputs a current to the voltage output terminal, and which has negative current characteristics with respect to a temperature change, and a reference voltage output circuit which outputs the reference voltage from a reference voltage terminal.04-19-2012
20120326505ELECTRIC POWER SUPPLY-AND-DEMAND CONTROL SYSTEM, ELECTRIC POWER MANAGEMENT APPARATUS, AND ELECTRIC POWER SUPPLY-AND-DEMAND CONTROL METHOD - An electric power supply-and-demand control system includes a memory unit, an estimation unit, a first calculation unit, and a second calculation unit. The system is capable of transmitting/receiving data to/from a power management apparatus provided to each of consumers to instruct a power management apparatus to adjust electric power. The memory unit memorizes a supply, consumptions, reserve power, and response results. The estimation unit estimates a response speed on the basis of the response results. The first calculation unit calculates a target value which allows it to eliminate an unbalance between the supply and a demand. The demand is given as a total of the consumptions. The second calculation unit calculates second adjustment amounts so that a total of the second adjustment amounts approaches the target value and is in the range.12-27-2012
20120139342METHOD AND APPARATUS FOR IMPLEMENTING AN UNREGULATED DORMANT MODE WITH OUTPUT RESET IN A POWER CONVERTER - An implementation of an unregulated dormant mode with an output reset controller in a power converter is disclosed. An example method for controlling an output of a power converter includes generating a drive signal with a drive signal generator to regulate a flow of energy to one or more loads coupled to an output of the power converter in response to an energy requirement of the one or more loads. The drive signal generator is rendered dormant to cease for a first time period the regulation of energy flow to the one or more loads when the energy requirement of the one or more loads falls below a threshold value. The energy requirement of the one or more loads is not responded to during the first time period. The drive signal generator is then powered up to resume after the first time period has elapsed the regulation of energy flow to the one or more loads. After the first time period has elapsed, it is identified whether there is an increase in the energy requirement of the one or more loads. If there is the increase in the energy requirement of the one or more loads, the output of the power converter is reset to allow a voltage at the output of power converter to be discharged during a second time period after the first time period has elapsed to a value substantially below a normal regulation output voltage.06-07-2012
20130009470SYSTEM POWER INTEGRATED CIRCUIT AND ARCHITECTURE, MANAGEMENT CIRCUIT, POWER SUPPLY ARRANGEMENT, AND PORTABLE APPARATUS - According to one embodiment, a management circuit for a portable device includes an input terminal, a first step-up converter, a first step-down converter, and a second step-down converter. The input terminal is coupled to receive a supply voltage from a power supply. The first step-up converter, coupled to the input terminal, selectively converts the supply voltage to a boosted voltage. The first step-down converter, coupled to the first step-up converter, selectively provides a first output power voltage to a first radio frequency (RF) module. The second step-down converter, coupled to the first step-up converter, selectively provides a second output power voltage to a second radio frequency (RF) module. The first step-up converter performs the conversion of the supply voltage when the supply voltage is under a threshold voltage.01-10-2013
20130020870Power Converters Having Varied Switching Frequencies - Systems and techniques for performing power conversion operations in a portable device are used to convert an input voltage to a voltage at an output. The conversion operations use a two-stage conversion to convert the input voltage to a first voltage and to convert the first voltage to a second voltage. A switching frequency is altered with changes in the input voltage. The switching frequency is selected based on the input voltage level and/or to maintain a substantially consistent ripple at the output, which can correspond to the first voltage and/or the second voltage.01-24-2013
20100090528DC POWER OUTLETS IN FIXED POWER DISTRIBUTION SYSTEMS IN OR ON WALL INSTALLATIONS - An electrical power distribution system has fixed stations with AC power to DC power conversion circuitry at these stations. The converter(s) are switchable ON/OFF at outlet ports or sockets where the socket configuration permits. Standardized DC sockets accommodate a variety of voltage requirements typical of portable digital devices. In some embodiments feedback circuitry is provided to regulate the power to these devices in accordance with parameters programmed in the portable devices or in the sensing circuitry provided at each station.04-15-2010
20130127248ALTERNATING CURRENT (AC) TO DIRECT CURRENT (DC) CONVERTER DEVICE - An alternating current (AC) to direct current (DC) converter device includes an AC-to-DC converter circuit, a step-down DC converter circuit, a controller, a first standby power converter circuit and a second standby power converter circuit. The AC-to-DC converter circuit is adapted to receive and perform an AC-to-DC conversion on an AC power so as to output a DC bus voltage. The step-down DC converter performs a step-down conversion on the DC bus voltage so as to output a main power voltage. The first standby power converter circuit performs a step-down conversion on the main power voltage so as to output a first standby DC voltage. The second standby power converter circuit performs a step-down conversion on the DC bus voltage to output a second standby DC voltage.05-23-2013
20130169048LOAD DRIVING DEVICE - A load driving device includes a power storage device, a first power converter, a ring-shaped filter, a first output-side power line, and a first input-side power line. The first output-side power line extends through an opening so that a first output-side common mode current caused by switching the first switching element flows inside the opening through the first output-side power line in a first output-side flow direction. The first input-side power line extends through the opening so that a first input-side common mode current caused by switching the first switching element flows inside the opening through the first input-side power line in a first input-side flow direction same as the first output-side flow direction.07-04-2013
20130134782SOLAR DEVICE - A solar device is provided. The solar device includes a solar module configured to absorb solar energy to convert the solar energy to electrical energy, a DC converter configured to detect an input voltage output from the solar module and outputs a DC voltage corresponding to a maximum power point through the detected input voltage, an interface unit configured to transmit data including the input voltage detected from the DC converter and the DC voltage corresponding to the maximum power point, a data combiner configured to combine and transmit data on the solar module with the data received from the interface unit, a data synthesizer configured to remove a DC voltage offset from the data received from the data combiner, and a data controller configured to track a maximum power point using data from which the DC voltage offset has been removed.05-30-2013
20130113282Systems and methods for operation of an AC power supply distribution circuit - Systems and methods for operation of an AC power supply distribution circuit that has a limited supply capacity rely on dynamically measured available load capacity to regulate operation of the AC power supply circuit, and existing and potential loads, to avoid fault or damage.05-09-2013
20130093243COORDINATED POWER CONVERTER SYSTEM - The present invention relates to a switched power converter system (04-18-2013
20130113283CHARGING AND DISTRIBUTION CONTROL - A system configured for charging and distribution control is provided. The system includes a switching regulator, a control circuit and a first converter. The switching regulator is configured to be selectively operable in one of a first operative state and a second operative state based on a control signal. The first operative state and the second operative state are associated with a maximum level of an alternator output power corresponding to at least one alternator operational feature, at least one alternator operational feature being associated with the alternator output voltage and an alternator speed. The control circuit is configured to generate the control signal based at least on the at least one alternator operational feature. The first converter is configured to generate a first converter output voltage based on the regulated DC output voltage. The first converter output voltage is lower than the regulated DC output voltage.05-09-2013
20130099569CHARGING CONTROL METHOD - A charging control method adapted to be used in a portable electronic device is provided. The portable electronic device includes a display module and a rechargeable battery. The charging control method includes the following steps. Firstly, a working status of the display module is obtained and a control signal is transmitted by a control unit. Next, the control signal is received and a charging power provided to the rechargeable battery is adjusted according to the control signal by a power control unit.04-25-2013
20130140892CONTROL ARCHITECTURE FOR POWER SWITCHING CONTROLLER - A control architecture for a power controller has a power line input, a plurality of power channels that are operable to control power flow from the power line input to one or more loads, an isolated power supply, and a microcontroller module that controls each of the multiple power channels.06-06-2013
20080197703Power Supply Control Circuit and Electronic Circuit - A power supply control circuit (08-21-2008
20110241424VOLTAGE TRANSFORMING DEVICE AND METHOD AND POWER SUPPLY SYSTEM - A voltage transforming device is provided, which includes: a first voltage transforming module, configured to perform a pre-stage voltage transformation on an input DC voltage to output an isolated DC voltage, in which the pre-stage voltage transformation includes a primary transformation that converts the input DC voltage to a to-be-transformed AC voltage; a capacitor filtering module, configured to perform capacitor filtering compensation on the isolated DC voltage in the dead time to output a stable intermediate DC voltage; and a second voltage transforming module, configured to perform at least two separate post-stage voltage transformations on the intermediate DC voltage to output DC voltages required by at least two loads. A voltage transforming method and a power supply system are also provided. Thereby, the decoupling of the pre-stage and post-stage working modes is achieved, and the interference suffered during voltage transformation is reduced.10-06-2011
20130099568POWER SUPPLY CIRCUIT FOR MEMORY SLOTS - A power supply circuit for providing a voltage to a memory slot group with one or more memory slots includes a platform controller hub (PCH), a basic input/output system (BIOS), and a control circuit. The PCH detects whether any of the memory slots are occupied, and notifies the BIOS. If there are any memory slots are occupied, the BIOS enables a general purpose input/output (GPIO) terminal of the PCH. The control circuit controls a power supply to provide or not provide power to the memory slot group based on whether the GPIO terminal of the PCH is enabled.04-25-2013
20130147273RESONANT POWER MANAGEMENT ARCHITECTURES - Disclosed are various embodiments of resonant power management of a mobile device. In one embodiment, a mobile device including a power management unit (PMU) including a resonant inverter, a plurality of AC/DC converters, and an AC bus configured to route the AC power from the resonant inverter to the plurality of AC/DC converters. The resonant inverter converts DC power from a power source to AC power that is converted to DC power by the AC/DC converters and supplied to loads of the mobile device. In another embodiment, a method for power management of a mobile device includes monitoring, by a PMU of the mobile device, an operating mode of the mobile device and adjusting an output frequency of a resonant inverter of an AC power distribution network of the PMU in response to a change in the operating mode of the mobile device.06-13-2013
20130147274POWER MANAGEMENT APPARATUS AND METHOD OF OPERATING THE SAME - A power management apparatus and a method of operating the same are disclosed. The power management apparatus includes a power conversion unit, a first sensing unit, a second sensing unit, a switch unit, and a control unit. The power conversion unit converts output power generated from at least one renewable energy generation apparatus. The first sensing unit is provided to sense a first current and a first voltage and the second sensing unit is provided to sense a second current and a second voltage. The control unit acquires an output power generated from the renewable energy generation apparatus and acquires a feedback power to an AC utility according to the currents and the voltages when the control unit turns on the switch unit.06-13-2013
20130113284Load Control System Providing Manual Override of An Energy Savings Mode - A load control system for a building having a lighting load, a window, and a heating and cooling system comprises a lighting control device, a daylight control device, and a temperature control device operable to be controlled so as to decrease a total power consumption of the load control system in an energy-savings mode. The energy-savings mode can be manually overridden in response to actuation of the actuator of an input control device, such that the load control system enters a manual mode for manually adjusting the loads controlled by the lighting control device, the daylight control device, and the temperature control device. The load control system is operable to automatically return to the energy-savings mode at a time after the load control system entered the manual mode.05-09-2013
20130140891CONFIGURABLE POWER SWITCHING CONTROLLER - A configurable power switching controller includes multiple power channels and a programming connector that connects the load outputs of a subset of the multiple power channels thereby creating at least one merged power channel.06-06-2013
20130175865SYSTEM AND METHOD FOR CHARGING AND DISCHARGING BATTERY - A system for charging and discharging batteries includes a battery module, an adapter, a charger, and an electronic device electrically connected to the charger and the battery module. The battery module includes a first cell battery, a second cell battery, and a first switch electrically connected to the first and second battery cells. The adapter receives an AC voltage, and converts the AC voltage to a DC voltage. The charger receives the DC voltage, and charges the battery module accordingly. The electronic device is electrically connected to the charger and the battery module. When the charger charges the battery module, the first switch is switched to electrically connect the first and second battery cells with the charger in series. When the battery module discharges to the electronic device, the first switch is switched to electrically connect the first and second battery cells with the electronic device in parallel.07-11-2013
20100308656Multi-output power supply device - A multi-output power supply device includes a first power switch, a first switch controller that controls the first power switch, a transformer that transforms a power supplied from the first power switch, first through Nth output circuits connected to a secondary side of the transformer, where N is a positive integer greater than 1, a second power switch that switches the power output from one of the first through Nth output circuits, a second switch controller that controls the second power switch, a feedback circuit that feeds back output voltages of the first through Nth output circuits, and a feedback compensation circuit that performs a switching operation complementarily with the second power switch to compensate for a resistance of the feedback circuit. Accordingly, when power output to one of the output circuits is blocked, the multi-output power supply device can stably control the power output to the other output circuits.12-09-2010
20100308655STEP-UP SWITCHING POWER SUPPLY DEVICE - The step-up DC/DC converter (12-09-2010
20100308654Mixed mode control for switching regulator with fast transient responses - Methods and circuits for power supply arrangement and control are disclosed herein. In one embodiment, a switching regulator controller can include: (i) a first feedback circuit for sensing an output of a switching regulator to compare against a regulation reference, and to generate a control signal suitable for matching the output of the switching regulator to the regulation reference during a steady state operation of the switching regulator; and (ii) a second feedback circuit for sensing a regulation difference between the output and the regulation reference, and to generate an adjustment signal in response to the regulation difference, where the adjustment signal adjusts the control signal under transient conditions to improve transient responses of said switching regulator.12-09-2010
20120274135POWER MANAGEMENT MECHANISM - An integrated circuit includes a global power supply node. A first power domain has a first power management circuit, which includes a local power supply node. A first power control circuit is capable of receiving an input signal. A second power control circuit has a higher current capacity than the first power control circuit. The first power control circuit and the second power control circuit are coupled to the local power supply node and the global power supply node. The input signal is configured to initiate a power sequence, e.g., a power up process or a power down process, in the first power control circuit. A first control signal generated by the first power control circuit is configured to initiate a power sequence in the second power control circuit.11-01-2012
20120274134DC-DC CONVERTER, METHOD FOR OPERATING THE DC-DC CONVERTER, ENVIRONMENTAL ENERGY HARVESTING SYSTEM COMPRISING THE DC-DC CONVERTER, AND APPARATUS COMPRISING THE ENERGY HARVESTING SYSTEM - A DC-DC converter independently supplies electrical loads. The converter includes a charge switch and a discharge switch connected between an input supply and a reference. An inductor has a first terminal connected between the charge switch and the discharge switch and a second terminal. Coupling switches are provided between the inductor second terminal and the electrical loads. An adaptive-control circuit acquires, during supply of each electrical load, a signal indicating the voltage value across the inductor and generates a first time interval as a function of the signal indicating the voltage value detected. Each electrical load is supplied during the first time interval, and completely discharged during a second time interval subsequent to the first time interval.11-01-2012
20130154372POWER-FACTOR-CORRECTED RESONANT CONVERTER AND PARALLEL POWER-FACTOR-CORRECTED RESONANT CONVERTER - A resonant converter with power factor correction includes a power-obtaining circuit, an energy-storage element and an energy-transferred circuit. The power-obtaining circuit is used for receiving an input line voltage. The energy-storage element is coupled between the power-obtaining circuit and the energy-transferred circuit. The energy-transferred circuit is used for generating an output power. In a first time period, based on a first control signal, the energy-storage element and the power-obtaining circuit operate a soft switching so that the energy-storage element is charged to obtain the input line power and generate an energy-storage voltage. In a second time period, based on a second control signal, the energy-storage element and the energy-transferred circuit operate a soft switching so that the energy-storage element is discharged to make the energy-storage voltage converted into the output power.06-20-2013
20130181521SINGLE +82 C-BUCKBOOST CONVERTER WITH MULTIPLE REGULATED SUPPLY OUTPUTS - The detailed description described embodiments of highly efficient power management systems configurable to simultaneously generate various output voltage levels for different components, sub-assemblies, and devices of electronic devices, sub-systems, and systems. In particular, the described embodiments include power management systems that substantially reduce or eliminate the need for inductors, large numbers of capacitors, and complex switching techniques to transform an available voltage level from a system power source, such as a battery, to more desirable power supply voltages. Some described embodiments include a charge pump that uses only two flying capacitors to simultaneously generate multiple supply outputs, where each of the multiple supply outputs may provide either the same or a different output voltage level. The described embodiments also include efficient power management systems that flexibly provide highly accurate voltage levels that are substantially insensitive to the voltage level provided by a system power source, such as a battery.07-18-2013
20110234001DRIVE CIRCUIT, LIGHT PRINT HEAD, AND IMAGE FORMING APPARATUS - A drive circuit is provided for supplying a drive current to drive a plurality of driven elements each having two main electrodes. The drive circuit includes a switch circuit for receiving a drive signal; and a constant current circuit connected to the switch circuit for adjusting the drive current at a constant level. The constant current circuit is formed of a depletion type MOS transistor.09-29-2011
20110234000DISTRIBUTED POWER SUPPLY SYSTEM WITH DIGITAL POWER MANAGER PROVIDING DIGITAL CLOSED-LOOP POWER CONTROL - A power supply system includes a digital power manager and multiple power blocks each conveying regulated power to a respective load. The power blocks include the power part of non-isolated DC/DC converters, signal sampling and conversion circuits to provide analog voltage signal representing output voltage, output current, temperature, etc., and driving circuits to receive pulse width modulation (PWM) signals and drive switching devices. Closed-loop voltage control and protection functions for the power blocks are integrated into the digital power. The digital power manager includes a non-volatile memory containing registers, including a digital power manager configuration register, a power block set-up register, and a power block monitor register, as well as a user-definable space. The digital power manager programs and monitors operation of each power block, and may also include a user interface, such as an I2C interface, for receiving programming data from a host user system and send monitoring data thereto.09-29-2011
20110233999METHOD TO REDUCE SYSTEM IDLE POWER THROUGH SYSTEM VR OUTPUT ADJUSTMENTS DURING S0ix STATES - An electronic device includes a power control circuit to generate a power mode signal and a plurality of voltage regulators to receive the power mode signal. Each voltage regulator reduces an output voltage in response to the power mode signal, and the reduced output voltage of each voltage regulator is used to power a different circuit of or function to be performed in the electronic device.09-29-2011
20100314939POWER SOURCING EQUIPMENT DEVICE INCLUDING A SERIAL INTERFACE - In a particular embodiment, a circuit device is disclosed that includes a power sourcing equipment (PSE) circuit having a plurality of high-voltage line circuits adapted to communicate with a respective plurality of powered devices via network cables. The PSE circuit includes a serial interface circuit and includes a common controller coupled to the serial interface circuit and to the plurality of high-voltage line circuits. The circuit device also includes a low-voltage circuit having a programmable controller adapted to transmit control signals to the common controller via the serial interface circuit to control operation of the plurality of high-voltage line circuits.12-16-2010
20130154371BATTERY PACK - A battery pack includes first and second terminals, a battery unit electrically connected between the first and second terminals, the battery unit being configured to receive charging power, and being configured to output discharging power, and a power converter electrically coupled between the first terminal and the battery unit, the power converter being configured to convert the charging power to have a charging voltage corresponding to the battery unit, wherein the first and second terminals are configured to be electrically coupled to a generator and a starter motor.06-20-2013
20130181520ELECTRIC LOAD CONTROL APPARATUS - An electric load control apparatus includes an inverter connected to input terminals of an electric storage device, and having output terminals connected via output electric power lines to an electric motor. The inverter includes switching elements, which are controlled to energize the electric motor with electric power stored in the electric storage device. A noise removal filter disposed on at least a portion of the output electric power lines includes a bendable sheet made of a magnetic material wound around the output electric power lines, with air gaps disposed between coiled sheet layers of the wound sheet.07-18-2013
20110309678SYSTEMS AND METHODS FOR ISOLATING CURRENT FLOW TO WELL LOADS - Systems and methods for controlling power distribution among various electrical loads disposed in a bore are described. Control modules that are associated with loads such that each load is associated with at least one control module. Each control module includes circuitry that can respond to a voltage at a level that is above a threshold by allowing current to flow to its associated load, and that can prevent current from flowing to its associated load when a voltage level at another load, instead of the associated load, is above a threshold. The loads and control modules can be located in various zones in the wellbore.12-22-2011
20130187457DEVICE AND METHOD FOR POWERING ETHERNET MIDSPAN DEVICE AND ENDSPAN DEVICE - A midspan device for providing power and data from a one-pair power sourcing equipment to a two-pair powered device is described. The midspan device is connected to the one-pair power sourcing equipment and takes a portion of the power from the power sourcing equipment to power a converter. The converter converts one-pair data into a two-pair data and forwards the converted data to the two pairs of the powered device. Another portion of the power from the power sourcing equipment is on a DC path and coupled through center tap transformers to provide power to the powered device.07-25-2013
20130187458POWER SAVING OUTLET SYSTEM AND METHOD FOR CONTROLLING THEREOF - An embodiment of the present invention discloses a power saving outlet system and a method for controlling thereof. The power saving outlet system includes a main outlet, at least one auxiliary outlet, a current detection unit, and a control unit. The current detection unit generates a current detection signal according to an operational current of the main device. And the control unit determines if the current detection signal is smaller than the threshold value to selectively cause an electrical power to be delivered from the external power source to the auxiliary device.07-25-2013
20130187459POWER SUPPLY ATTACHMENT - A device that removably attaches to existing power supplies or adapters to provide power to one or more additional electronic devices, while not interfering or affecting the power being supplied to the primary or main electronic device by the power supply or adapter. The adapters, interfaces, connectors, cords and other components described herein may be used with any applicable electronic device, including portable electronic devices. In one embodiment, the device attaches to and provides power to a laptop computer power adapter, while simultaneously providing power to a USB port or interface.07-25-2013
20080309162SYNCHRONOUS RECTIFIER CIRCUIT AND MULTI-OUTPUT POWER SUPPLY DEVICE USING THE SAME - A synchronous rectifier circuit and a multi-output power supply device using the same include a semiconductor switch to control a current flow of the synchronous rectifier circuit, and a switching controller to control the semiconductor switch according to a synchronous rectification control signal and an output control signal generated by feeding back the output voltage of the synchronous rectifier circuit. The synchronous rectifier circuit can control an output voltage, decrease power loss so as to increase the efficiency of the synchronous rectifier circuit, and decrease the cost of the synchronous rectifier circuit.12-18-2008
20120019067Power Converter with Communication Capability - Systems for providing a wireless capable power converter are provided. The power converter can include a power converter module operatively connected to a detachable I/O module. A voltage input, a first voltage output, and second voltage output can be disposed in, on, or about the power converter module. Power, at a first voltage, can be distributed via a first connection device. Power, at a second voltage, can be distributed via a first Universal Serial Bus connection device. One or more I/O devices, a wireless transceiver, and a second Universal Serial Bus connection device can be disposed in, on, or about the I/O module. The first and second Universal Serial Bus connection devices can be complimentary, permitting the operative connection of the I/O and power converter modules. The second voltage output can provide all or a portion of the power consumed by the wireless transceiver and I/O devices.01-26-2012
20120019066ACTUATOR AND ENERGY MANAGEMENT SYSTEM COMPRISING SUCH ACTUATORS - An actuator for the power control of at least one connected load has a load detection device for detecting a magnitude of a load and/or a type of a load of the at least one as a measurement variable relating to the load of the at least one consumer. A communication interface receives at least one manipulated variable for the power control of the at least one consumer and transmits the measurement variable detected by the load detection device. Actuators of this type may be integrated into an energy management system, such as of a building automation system, for example.01-26-2012
20130200703INTELLECTUAL POWER CONTROLLING SYSTEM - An intellectual power controlling system includes a gateway controller (08-08-2013
20130200704Systems and Methods for the Timed Power Up of Electronic Devices - A power re-set device that includes two or more solid state switched outlet circuits and two or more timer delay circuits. The circuits are housed within a power outlet enclosure and allow the user to connect a modem, a router, and a computer to direct their sequential activation on a time delayed basis. The system includes displays and timer set buttons to program timed delays into the system for activation of specific switched outlet circuits. The device includes connection to an AC power outlet through a surge protection circuit. The system includes a manual power cycle button that allows the user to re-set the entire system through a single action. The user may program the system to sequentially activate the electronic devices in a manner that allows boot up of the devices in an order that accommodates the interconnections between the devices, such as through a network. Operation of the system includes programming the device to delay activation of a modem and then to delay activation of a router within the system. Thereafter, a further time delay may be implemented before a computer within the system is powered up. The device may monitor power and network signal condition.08-08-2013
20130200705Method to reduce system idle power through system VR output adjustments during Soix states - An electronic device includes a power control circuit to generate a power mode signal and a plurality of voltage regulators to receive the power mode signal. Each voltage regulator reduces an output voltage in response to the power mode signal, and the reduced output voltage of each voltage regulator is used to power a different circuit of or function to be performed in the electronic device.08-08-2013
20120086270Configurable Distributed Power Module - The present invention provides a configurable dc-dc power converter module and method of manufacture for such module. The power converter module comprises an isolated subassembly with a capacitor bank, control circuits and an isolated power train that converts an input voltage to an intermediate bus voltage. The power module further comprises multiple non-isolated power trains electrically coupled to the isolated subassembly that are powered by the intermediate bus voltage to produce output voltages. The number of output voltages is determined by the number of populated non-isolated power trains, which may include all of the non-isolated power trains in the power module or a subset thereof. In one embodiment of the invention the non-isolated power trains are located on a carrier PWB that is electrically coupled to the bus PWB.04-12-2012
20130207467POWER MANAGEMENT SYSTEM - An apparatus is disclosed, which includes a system that includes loads, linear regulators, switches and a controller. The linear regulators supply power to the loads, and the controller is adapted to use the switches to selectively couple power sources to the linear regulators to regulate a collective power dissipation of linear regulators.08-15-2013
20130207468DUAL SIDE CONTROL FOR INDUCTIVE POWER TRANSFER - An apparatus for dual side control includes a measurement module that measures a voltage and a current of an IPT system. The voltage includes an output voltage and/or an input voltage and the current includes an output current and/or an input current. The output voltage and the output current are measured at an output of the IPT system and the input voltage and the input current measured at an input of the IPT system. The apparatus includes a max efficiency module that determines a maximum efficiency for the IPT system. The max efficiency module uses parameters of the IPT system to iterate to a maximum efficiency. The apparatus includes an adjustment module that adjusts one or more parameters in the IPT system consistent with the maximum efficiency calculated by the max efficiency module.08-15-2013

Patent applications in class Control of current or power

Patent applications in all subclasses Control of current or power