Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


WITH PUMP

Subclass of:

303 - Fluid-pressure and analogous brake systems

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
303010000WITH PUMP89
20100052415HYDRAULIC PUMP - A hydraulic pump comprising a containment body (03-04-2010
20080258544VEHICLE BRAKE CONTROL UNIT BASE BODY AND VEHICLE BRAKE CONTROL UNIT - A base body has flow path configuring portions, has inlet and outlet ports, a central mounting hole 10-23-2008
20130088076Automotive Hydraulic Brake System - An automotive hydraulic brake system is provided which exhibits an excellent pressure reduction performance to a low μ road while restraining an intake resistance of a fluid pump. For providing the hydraulic brake system, a gate-in valve is connected to an intake passage that connects a master cylinder to an intake side of the fluid pump. The gate-in valve selectively opens and closes the intake passage in accordance with a mutual relation between a master cylinder pressure and a pressure produced at an intake side of the fluid pump.04-11-2013
20100045096Motor/Pump Assembly - A motor and pump assembly for providing pressure to a brake actuating device of a motor vehicle brake system is described herein. The assembly comprises an electric motor and a double diaphragm pump. The pump includes a pump housing, two opposed working diaphragms, and crank drives each being coupled between the electric motor and a respective diaphragm for moving the diaphragm. A working chamber is defined between the pump housing and a working chamber cover. Each working chamber including an inlet channel, an inlet valve associated with the inlet channel, an outlet channel, and an outlet valve associated with the outlet channel, wherein the outlet channels are defined in the covers of the working chamber and in the pump housing to direct air displaced from the working chambers into an inside space of the pump housing. An air outlet unit is provided for exhausting the air from the inside space.02-25-2010
20110204708BRAKE FLUID PRESSURE CONTROL DEVICE FOR VEHICLE - A brake fluid pressure control device has a base unit including: an inlet valve mounting hole; an outlet valve mounting hole; a reservoir hole; a cylinder hole into which a plunger is inserted to freely slide in the cylinder hole; an inflow hole that connects the outlet valve mounting hole and the reservoir hole; a suction hole that connects the reservoir hole and the cylinder hole; and a discharge hole that connects the cylinder hole and the inlet valve mounting hole, wherein the suction hole is configured to be inserted with a suction valve that allows only an inflow of the brake fluid into the cylinder hole, wherein the discharge hole is configured to be inserted with a discharge valve that allows only a discharge of the brake fluid from the cylinder hole, and wherein the inflow hole and the suction hole are arranged to be substantially in parallel with each other.08-25-2011
20120112525VEHICLE BRAKING SYSTEM - A vehicle braking system includes an operation amount detector, a hydraulic pressure source, a controller, and a wheel cylinder. The hydraulic pressure source is to generate brake hydraulic pressure corresponding to an amount of operation detected by the operation amount detector. The wheel cylinder is to be operated by the brake hydraulic pressure generated by the hydraulic pressure source. The hydraulic pressure source includes a first actuator and a second actuator. The first actuator includes a piston and an electric motor. The electric motor is configured to move the piston forwardly to generate the brake hydraulic pressure. The second actuator includes a pump configured to pressurize brake fluid located downstream of the first actuator. The controller is configured to selectively operate the first actuator and the second actuator based on the amount of operation detected by the operation amount detector.05-10-2012
20120112524BRAKE CONTROL APPARATUS - In a brake control apparatus employing a pump for producing a flow of brake fluid in a hydraulic brake circuit, an electric motor for driving the pump, and a control unit, the control unit includes a motor speed estimation section configured to estimate a revolution speed of the motor based on an inter-terminal voltage of the motor and a motor characteristic of the motor. Also provided is a motor speed control section configured to control a speed of the motor based on the motor speed estimated by the motor speed estimation section and a preset target motor speed.05-10-2012
20080284239Brake System for a Vehicle - The invention relates to a brake system for a vehicle having at least one brake circuit which includes at least one wheel brake, one inlet valve, one outlet valve, and one return device. The return device has at least one first pump device and one second pump device, having respective inlet valves and outlet valves. The pump devices have a delivery cycle offset from each other. An additional valve is located in every supply line of every pump device for preventing negative pressure produced in an intake phase of one of the pump devices from being applied to an inlet valve of another pump device.11-20-2008
20130062934MECHANICAL ATTENUATOR FOR A VEHICLE BRAKING SYSTEM - An attenuator assembly for use in a vehicle braking system includes a rigid tube disposed within a bore of a hydraulic control unit (HCU) for reduced HCU package size. An attenuator is disposed in the rigid tube and includes a metallic biasing member.03-14-2013
20130062933COMPACT ATTENUATOR FOR A VEHICLE BRAKING SYSTEM - An attenuator assembly is located in an attenuator chamber of a housing in a vehicle braking system and includes an orifice defining a fluid dampening flow path. The orifice has an outlet opening. A biasing member defines a closing member of the orifice. The size of the outlet opening changes continuously between a first open position and a second open position.03-14-2013
20120193974BRAKING SYSTEM FOR A VEHICLE - A braking system is described for a vehicle, including: a master brake cylinder having at least one chamber, which is hydraulically connected to at least one wheel brake cylinder for braking a wheel of the vehicle; a hydraulic actuating device, which actuates a piston of the master brake cylinder in order to thereby pressurize hydraulic fluid in the chamber; an accumulator, which stores hydraulic fluid under pressure and supplies it to the actuating device for actuating the piston of the master brake cylinder; and a pump, which, in a first operating mode of the braking system, conveys hydraulic fluid from a tank to the accumulator and, in a second operating mode of the braking system, pumps hydraulic fluid from the wheel brake cylinder to the master brake cylinder.08-02-2012
20110049972STROKE SIMULATOR AND BRAKE CONTROL APPARATUS - A stroke simulator generates a reaction force in response to the operation of a brake pedal. The stroke simulator includes a stroke simulator housing, a stroke simulator piston, disposed slidably in the housing, which divides the interior of the stroke simulator housing into a first volumetric chamber and a second volumetric chamber, a stroke simulator spring, disposed in the second volumetric chamber, which generates a reaction force in response to the operation of the brake pedal by elastic deformation caused by the sliding of the stroke simulator piston, and a first supply port and a second supply port, provided for the first volumetric chamber and the second volumetric chamber, respectively, which are capable of supplying the operating oil pressure into the respective volumetric chambers when the brake pedal is operated.03-03-2011
20120153711COMPRESSED AIR SUPPLY SYSTEM, COMPRESSED AIR SUPPLY DEVICE FOR VEHICLE, AND METHOD OF CONTROLLING AIR COMPRESSOR - The operation of an air compressor is controlled to control engine performance to thereby improve the performance of the vehicle. A compressor (06-21-2012
20100207446HYDRAULIC UNIT FOR REGULATING THE BRAKE PRESSURE IN A VEHICLE BRAKE SYSTEM - The invention is based on a hydraulic unit for regulating the brake pressure in a vehicle brake system. Hydraulic units of such a type are the core component of an anti-lock vehicle brake system, of a drive slip vehicle brake system or of a vehicle brake system which regulates driving stability. The invention proposes a particularly advantageous arrangement of the required recesses in a housing block of a hydraulic unit. On account of the arrangement, the housing block can be reduced in terms of its dimensions, and can be produced with a lower weight and more simply in terms of production. For this purpose, according to the invention, the pressure fluid connection from one of the ports of the master brake cylinder to the suction side of one of the pump elements extends through the valve receptacle of the switching valve.08-19-2010
20110006594HYDRAULIC BRAKE SYSTEM WITH CONTROLLED BOOST - An electronically controlled boosted brake system including an isolation valve between a source of pressurized fluid and a boost valve for selectively restricting the flow of fluid from the source to the boost valve. Another feature of the brake system relates to an accumulator valve connected between the boost valve and the accumulator for controlling when the operating pressure of the accumulator is supplied to the boost valve. Yet another feature is a unique master cylinder design including at least one primary piston positioned within a housing in an overlapping relationship with portions of a pair of secondary pistons.01-13-2011
20100264723BRAKE FLUID PRESSURE CONTROL DEVICE - To efficiently make a brake fluid pressure control device compact and lightweight. A brake fluid pressure control device 10-21-2010
20110227404VEHICULAR BRAKE AND METHOD THERFOR - In one aspect, the present invention is directed to a vehicular brake (09-22-2011
20100176652BRAKING DEVICE - A braking device includes: an input member configured to interlock with a displacement of a brake pedal; an output member which is movable relatively to and independently of the input member and is configured to generate a fluid pressure in a master cylinder; a braking mechanism configured to exert a braking force on a wheel by the fluid pressure generated in the master cylinder; drive means configured to drive the output member independently of the input member; and a clutch mechanism which is provided between the input member and the output member and configured to engage the input member with the output member so as to allow the input and output members to uniformly move when the output member is not driven by the drive means, and to cancel the engagement between the input member and the output member when the output member is driven by the drive means.07-15-2010
20100237689GEAR PUMP AND GEAR PUMP FOR BRAKE APPARATUS - A gear pump includes: a drive shaft; a first gear; a second gear; a first plate disposed between the first gear and the second gear, and arranged to liquid-tightly seal the first surfaces of the first and second gear; a pair of second plates disposed, respectively, on the second surfaces of the first and second gears, and arranged to liquid-tightly seal the second surfaces of the first and second gears, each of the second plates including a tooth top sealing portion having a seal surface arranged to seal a tooth top of the first gear and a tooth top of the second gear, and to form a suction portion with the first plate and the second plate; and an urging member arranged to urge the drive shaft toward the seal surface of the tooth top sealing portion of one of the first and second plates.09-23-2010
20100237688MOTOR VEHICLE BRAKING ASSEMBLY - A vehicle braking assembly comprising a master cylinder (09-23-2010
20080246333Combination Secondary Master Cylinder and Brake Pedal Compliance Device for Automotive Braking System - A combination secondary master cylinder and brake pedal compliance device for an automotive braking system includes a cylinder having a signal chamber, a working chamber, and a compliance chamber. Elastic devices mounted within the working chamber and compliance chamber allow the apparent compliance of the friction braking system attached to the combination device to remain at a relatively constant value notwithstanding the presence of varying amounts of powertrain braking.10-09-2008
20120242140PUMP DEVICE - A pump device comprising a first side plate arranged at one axial side of a drive gear and having a first contact surface contacting to a first side surface of the drive gear, a friction coefficient of the first contact surface being smaller than that of the first side surface of the drive gear, a second side plate arranged at the other axial side of the drive gear and having a second contact surface contacting to a second side surface of the drive gear, a friction coefficient of the second contact surface being smaller than that of the second side surface of the drive gear and a seal member incorporated with the first and second side plates to constitute a pump chamber, the seal member sealing tops of teeth of the drive gear and having a friction coefficient that is smaller than that of the tops of the teeth.09-27-2012
20110101772CONTROL VALVE FOR A VEHICLE BRAKE SYSTEM, AND VEHICLE BRAKE SYSEM HAVING SUCH A CONTROL VALVE - The invention relates to a control valve for a vehicle brake system having a first fluid connection, a second fluid connection, and a decompressed connection toward the atmosphere. An adjustment spring applies a spring force to a control piston moving in longitudinal direction on the decompressed side, the control piston completely releasing a fluid connection between the first fluid connection and the second fluid connection in an initial position, and to a corresponding vehicle brake system having such a control valve. According to the invention the control valve includes a valve body having a seal seat and a sealing element coupled to a control piston. A sealing region of the sealing element interacts with the seal seat of the valve body in order to limit an effective pressure present on the second fluid connection to a predetermined maximum pressure value. The effective diameter of the control piston is greater than or equal to an effective diameter of the sealing element.05-05-2011
20110074208PUMP UNIT FOR ELECTRONIC CONTROL BRAKE SYSTEM - Disclosed is a pump unit for an electronic control brake system. The pump unit includes first to third pumps arranged on a first plane at angular positions of 120°, 60°, and 180°, respectively, and fourth to sixth pumps arranged on a second plane spaced apart from the first plane in parallel to the first plane. The fourth to sixth pumps are arranged at angular positions 60°, 120°, and 180°, respectively, so that the hydraulic pressure pulsation is reduced during the pump operation and a brake oil pressure is rapidly formed.03-31-2011
20110074207BRAKE DEVICE - A brake device comprising a master cylinder (03-31-2011
20130193748CHECK VALVE AND BRAKING SYSTEM USING THE SAME - In a check valve in which a valve part is disposed in a valve part accommodating recess movably relative to a piston part, among the valve part accommodating recess, an anti-valve seat side accommodation space formed between a surface of the valve part accommodating recess in an anti-valve seat side of the valve part and a wall surface of the valve part accommodating recess are communicated to exit side fluid passages.08-01-2013
20110254361BRAKE SYSTEM FOR MOTOR VEHICLES - A brake system for motor vehicles, having a pump for conveying brake fluid into a brake pressure line; a motor able to be connected to an on-board voltage source, for driving the pump; and a control device for the motor, wherein an electric energy-storage device is provided in addition to the on-board voltage source, and the control device is designed to connect the motor to the energy-storage device intermittently. The energy-storage device may be a booster battery or a capacitor.10-20-2011
20110254360Brake System with Selector Valve for Selecting Between Two Modes of Operation - A system for use in a vehicle with a brake pedal and a brake circuit. The system includes a master cylinder assembly configured to pressurize fluid therein in response to movement of the brake pedal, a sensor assembly configured to generate a pedal position signal indicative of position of the brake pedal, an electronic control unit configured to (i) generate a brake request signal in response to generation of the pedal position signal, and (ii) generate a selector control signal, and a selector valve assembly being moved from a first mode to a second mode in response to generation of the selector control signal, the master cylinder assembly is (i) isolated from fluid communication with the brake circuit when the selector valve assembly is positioned in the first mode, and (ii) in fluid communication with the brake circuit when the selector valve assembly is positioned in the second mode.10-20-2011
20110254359VEHICULAR BRAKE SYSTEM OPERABLE IN DUAL MODES - A system for use in a vehicle with a brake pedal and a brake circuit which includes a master cylinder assembly, a sensor assembly configured to generate a pedal position signal indicative of position of the brake pedal, an electronic control unit configured to (i) generate a brake request signal in response to generation of the pedal position signal, and (ii) generate a selector control signal, and a selector valve assembly operable in a first mode and a second mode, the selector valve assembly being moved from the first mode to the second mode in response to generation of the selector control signal, the master cylinder assembly is (i) isolated from fluid communication with the brake circuit when the selector valve assembly is positioned in the first mode, and (ii) in fluid communication with the brake circuit when the selector valve assembly is positioned in the second mode.10-20-2011
20100213757HYDRAULIC UNIT - A hydraulic unit for a motor vehicle brake system operating on the recirculation principle, in which each brake circuit has in the region of the hydraulic unit a prefilling location which opens into the pump suction conduit between the pressure-retaining valve and the change-over valve for the purpose of receiving brake fluid. The hydraulic unit can thereby be prefilled with lower complexity and cost in terms of time and processes prior to installation in the vehicle.08-26-2010
20110316328METHOD OF ELIMINATING SEIZURE OF SLAVE CYLINDER OF BRAKE DEVICE - In a brake device, when a piston (12-29-2011
20080265663Active Brake Pads Retraction System and Method - Brake pads are retracted with respect to the brake rotor responsive to predetermined conditions of the motor vehicle in which braking is not required. Selective application of negative brake line pressure causes the caliper pistons to retract with respect to their respective caliper cylinders, thereby causing the brake pads to retract from the brake rotor. The predetermined conditions of the motor vehicle when braking is not required include when the motor vehicle is cruising or is parked.10-30-2008
20110049973braking device for a motor vehicle - In a braking device for a motor vehicle having a first group and a second group of brake circuits, each brake circuit being associated with one group of wheels, and at least the first group of brake circuit being implemented as hydraulic brake circuits, at least one group of wheels being connected to at least one operating unit, which may cause a deceleration of the wheels, the task of a comfortable connection of recuperation brake applications to conventional brake applications is achieved in that a control unit controls the brake application of the brake circuit or circuits of the second group and optionally the deceleration effect of the operating unit or assemblies, the first group of brake circuits being activatable directly by the driver using a brake operating unit.03-03-2011
20120013174BRAKE APPARATUS - A brake apparatus includes: a master cylinder that forms a driving fluid pressure chamber, which drives master pistons as brake fluid is supplied and discharged; a pressure adjusting part adjusting a driving fluid pressure of the driving fluid pressure chamber; a reaction force generator that forms a reaction force chamber and that is configured to generate a reaction force fluid pressure in the reaction force chamber in accordance with an operating amount of the brake operation member; a brake fluid path, which connects the reaction force chamber to the driving fluid pressure chamber, and a valve device configured to block, at a current-on state, flowing of the brake fluid, and that communicates, at a current-off state, the reaction force chamber to the driving fluid pressure chamber through the brake fluid path to enable the flowing of the brake fluid.01-19-2012
20130221734BRAKE CONTROL DEVICE FOR VEHICLE - In the brake control device, a wheel-cylinder hydraulic pressure (Pw) obtained by adding the linear-valve pressure difference to a master-cylinder hydraulic pressure (Pm) is applied to the wheel cylinder while the vehicle is running. When an operation of a brake pedal is started while the vehicle is running (t08-29-2013
20080203812Brake Control Apparatus for Vehicle - A brake control apparatus for a vehicle includes a first calculating portion for calculating a master cylinder pressure, a first determining portion for determining whether or not the brake operation is performed, a second calculating portion for calculating a target wheel cylinder pressure, a third calculating portion for calculating a controlled pressure, a controlling portion for controlling a pressure difference control valve, a second determining portion for determining whether or not the vehicle is stopped, and a driving portion for specifying a drive pattern of a motor to a first motor drive pattern in a case where the vehicle is not stopped, the motor driving a pump for discharging a brake fluid, the driving means specifying the drive pattern to a second motor drive pattern in a case where the vehicle is stopped, the driving means driving the motor based on the motor driving pattern specified.08-28-2008
20120313427VEHICLE BRAKE DEVICE AND VEHICLE BRAKE DEVICE CONTROL METHOD - In a BBW type brake device, if a slave cylinder becomes inoperable, when a master cylinder is operated for the first time, a master cut valve is opened to charge brake fluid into a reservoir of a hydraulic modulator, and since the brake fluid charged into the reservoir is increased in pressure by driving a hydraulic pump when the master cut valve is closed, wheel cylinders are operated. Since the amount of brake fluid on the downstream side relative to the master cut valve is increased by charging the reservoir with brake fluid, it is possible to increase the pressure of the brake fluid of the reservoir by driving the hydraulic pump and generate brake fluid pressure by a hydraulic modulator that is higher than the brake fluid pressure generated by the master cylinder, thereby generating sufficient braking force without increasing the depressing force applied to a brake pedal.12-13-2012
20120133200BRAKE SYSTEM AND METHOD - A hydraulic system for an aircraft includes a brake operation device, a pressure supply, a reservoir, a shut-off valve, and a wheel brake. The shut-off valve is in fluid communication with and is disposed between the pressure supply and the brake valve. The shut-off valve can include a poppet, a first valve seat and a second valve seat. Movement of the poppet is controlled by operation of the brake operation device. The poppet is movable between a first position where the poppet acts against the first valve seat and a second position where the poppet acts against the second valve seat. In the first position, fluid flow is blocked between the pressure supply and the brake valve through the shut-off valve. In the second position, fluid flow is allowed between the pressure supply and the brake valve through the shut-off valve. The wheel brake is in fluid communication with and downstream from the shut-off valve.05-31-2012
20120248861FLUID PRESSURE BOOSTER AND FLUID PRESSURE BRAKE APPARATUS HAVING THE SAME - A fluid pressure booster and a fluid pressure brake apparatus having the same are provided. The fluid pressure booster includes an auxiliary fluid pressure source having a pump and a pressure accumulator, a pressure adjusting device which adjusts fluid pressure supplied from the auxiliary fluid pressure source to a value corresponding to an operating amount of a brake operation member by displacement of a spool valve and introduces the same into a boost chamber, a boost piston which receives the fluid pressure introduced into the boost chamber to generate assist force and operates a master piston of a master cylinder by assisted force, and a displacement absorption member which is provided at a position to which thrust force of the master piston is applied, and which is compressed in an axial direction when transfer power between the boost piston and the master piston exceeds a setting value.10-04-2012
20120187750HILL ROLL-BACK AND ROLL-FORWARD CONTROL SYSTEMS AND METHODS - A triggering module selectively generates a triggering signal when a vehicle is stopped, a grade of a surface is one of greater than a predetermined positive grade and less than a predetermined negative grade, and a brake pedal position is greater than a predetermined position. A brake actuator provides brake fluid to a braking system when the brake pedal position is greater than the predetermined position. A brake releasing module, after the triggering signal is generated, begins releasing the brake fluid from the braking system a predetermined period after the brake pedal position reaches the predetermined position. A brake applying module selectively operates a brake fluid pump after the triggering signal is generated based on a comparison of a vehicle speed and a predetermined vehicle speed. The brake fluid pump provides brake fluid to the braking system when the brake fluid pump is operated.07-26-2012
20120256478Hydraulic Vehicle Braking System - A hydraulic vehicle braking system having a primary braking cylinder to which the vehicle braking system is connected via a separating valve is disclosed. The vehicle breaking system includes slip control. A pedal path simulator is a spring-loaded hydraulic accumulator, which can be connected to the primary brake cylinder via a differential pressure controlled simulator valve. The simulator valve opens when a braking pressure in the vehicle braking system is greater than a primary braking cylinder pressure; otherwise, the simulator valve is closed. If the separating valve is closed during slip control, for example, the primary braking cylinder forces braking fluid through the opened simulator valve into the hydraulic accumulator upon actuation so that a normal pedal characteristic occurs at least approximately when the separating valve is closed.10-11-2012
20120228925ELECTRONICALLY CONTROLLED HYDRAULIC BRAKE SYSTEM - A hydraulic brake system equipped for anti-slip control and for active brake interventions has a self-priming pump. A pressure retention valve prevents the brake system's low-pressure accumulator and the wheel brakes from being evacuated below atmospheric pressure during a sensitive brake operation. A two-position valve deactivates the bias of the pressure retention valve by opening a fluid path from the low-pressure accumulator to the pump when it is desired that the wheel brakes be retracted farther to reduce drag and excessive wear of the brake friction elements.09-13-2012
20110121641VEHICLE BRAKE FLUID PRESSURE CONTROL APPARATUS - A vehicle brake fluid pressure control apparatus includes: a normally open electromagnetic valve which adjusts a differential pressure between an upstream side and a downstream side; and a control unit including a memory part which stores a valve closing map which shows a relationship between the differential pressure between the upstream side and the downstream side of the pressure regulator valve and an output current value for closing the pressure regulator valve and a valve opening map which shows a relationship between the differential pressure and an output current value for opening the pressure regulator valve, wherein when attempting to reduce a fluid pressures, the control unit executes a current value switching control which controls a current flowing to the pressure regulator valve by selecting alternately an output current value of the valve opening map and an output current value of the valve closing map.05-26-2011
20100327653AIR BRAKING SYSTEM - An air braking unit for use in an air braking system. The air braking unit is arranged to be positioned, in use, at a vehicle wheel, and comprises an inlet for receiving, in use, compressed air from a central source. At least one first valve is arranged to selectively allow compressed air from the inlet to enter a wheel brake chamber in use. At least one second valve is arranged to selectively allow air from the brake chamber to be released via an outlet to the atmosphere in use and control means controls the first and second valves to operate to selectively control the air pressure in the brake chamber in use.12-30-2010
20100231033HYDRAULIC UNIT FOR SLIP-CONTROLLED BRAKING SYSTEMS - A hydraulic unit for slip-controlled braking systems has a plurality of receiving holes for transport devices associated with a plurality of hydraulic circuits bundled into groups, wherein the receiving holes are disposed at a distance from each in parallel with the upper side and a drive shaft having eccentrics located at the plane spacing for driving the transport devices. In order to provide a compromise optimized for manufacturing a small, convenient hydraulic unit, it is proposed that three theoretical planes (E09-16-2010
20120326493BRAKE FLUID PRESSURE CONTROL DEVICE - A brake fluid pressure control device includes: a electromagnetic control valve; a electromagnetic booster valve; a electromagnetic decompression valve; a pump, which are incorporated in a single housing; and an electronic control unit, wherein, the pump draws up at least one of brake fluid, which is supplied from the main reservoir, and brake fluid, which is discharged from the wheel cylinder, and then the pump returns the drawn brake fluid to an area that extends from the electromagnetic control valve of a main flow path up to the electromagnetic booster valve; and a fluid reservoir, which communicates with both the decompression path and an intake port of the pump, and which is arranged inside the housing so that the brake fluid in the fluid reservoir flows toward the intake port of the pump by gravity.12-27-2012
20120091786Vehicle Hydraulic Brake System with Wheel Slip Control - A vehicle hydraulic brake system with wheel slip control includes two brake circuits and brake pressurization valves and brake pressure-reduction valves for each wheel brake. The two brake circuits are connected by a connecting valve in the form of a non-return valve on a side of the wheel brakes remote from the brake pressure valves. The connecting valve permits a more rapid build-up of the wheel brake pressure in the wheel brakes of the one brake circuit when a brake pressure in the other brake circuit is lower.04-19-2012
20100176653BRAKE APPARATUS - A brake apparatus includes a master cylinder generating a master cylinder hydraulic pressure corresponding to a pressing operation to a brake pedal, a braking mechanism, a pressurizing mechanism generating a brake fluid pressure by use of a motor irrespective of the pressing operation, a control portion controlling an electric current applied to the motor corresponding to the pressing operation, a valve, a hydraulic pressure sensor detecting the brake fluid pressure generated by the pressurizing mechanism, and a failure determining portion executing a failure determination of the motor on the basis of the brake fluid pressure detected by the hydraulic pressure sensor by adjusting the degree of opening of the valve so as to be a interrupting position for interrupting the flow of the brake fluid pressure and by applying an electric current to the motor in order to generate the brake fluid pressure so as to be a predetermined pressure.07-15-2010
20120139331BRAKE APPARATUS - A brake apparatus including a housing, a piston body disposed within each of a pair of closed-ended bores formed in the housing, a first elastic member that biases the piston body toward a closed end of the respective bores, a fluid passage opened to the closed end of the respective bores, a pressure regulating valve disposed in the fluid passage, and a rotary gear pump disposed in a region between the pressure regulating valve disposed in the fluid passage opened to the closed end of one of the bores and the pressure regulating valve disposed in the fluid passage opened to the closed end of the other of the bores. The fluid passages are formed to be offset from respective central axes of the piston bodies in such a direction that the fluid passages are spaced apart from each other.06-07-2012
20130169033METHOD FOR OPERATING A HYDRAULIC BRAKE SYSTEM OF A MOTOR VEHICLE AND A HYDRAULIC BRAKING SYSTEM - A method for operating a hydraulic brake system of a motor vehicle, comprising a pressure generating device used to build up additional brake pressure in a master brake cylinder or in addition to a master brake cylinder and in opposition to further pedal actuation wherein the additional pressure is a function of the pedal actuation travel distance. A method that reduces the limitations of a braking system's physical parameters on the build-up of additional braking pressure.07-04-2013
20080224533BRAKE CONTROL APPARATUS AND PROCESS OF CONTROLLING THE SAME - A brake control apparatus for a vehicle includes a wheel cylinder, a pump for pressurizing a brake fluid in the wheel cylinder, and an electric motor for driving the pump. A controller operates the electric motor so as to conform an internal pressure of the wheel cylinder to a desired internal pressure of the wheel cylinder, and produces a torque applied to the electric motor in a first rotational direction, while the pump is stopping from a state in which the electric motor is rotating in a second rotational direction opposite to the first rotational direction so as to allow the pump to pressurize the brake fluid in the wheel cylinder.09-18-2008
20120248860FLUID PRESSURE BOOSTER AND FLUID PRESSURE BRAKE APPARATUS HAVING THE SAME - A fluid pressure booster and a fluid pressure brake apparatus having the fluid pressure booster are provided. The fluid pressure booster includes an auxiliary fluid pressure source including a power-operated pump and a pressure accumulator, a pressure adjusting device which adjusts fluid pressure supplied from the auxiliary fluid pressure source to a value corresponding to an operating amount of a brake operation member by displacement of a spool valve and introduces the adjusted fluid pressure into a boost chamber, a boost piston which receives the fluid pressure introduced into the boost chamber to generate assist force and operates a master piston of a master cylinder by assisted force, and a damper chamber which communicates with one or both of the boost chamber and a pressure chamber of the master cylinder.10-04-2012
20130093237Hydraulic Vehicle Brake System - A hydraulic vehicle brake system including a brake line for conducting a hydraulic pressure medium and a brake pressure sensor attached to a non-pressurized storage vessel. The brake wheel has a first pressure modulation valve on the inlet side and a second pressure modulation valve on the outlet side of a low-pressure accumulator. A pump is disposed on the return line upstream of the low-pressure accumulator for removing pressurizing medium from the low-pressure accumulator to regulate the brake pressure via the first pressure modulation valve and also via an isolation valve disposed in the brake line upstream of the first pressure modulation valve. An electromagnetically opening changeover valve is inserted in a pump suction line discharging into the return line between the brake pressure sensor and the low-pressure accumulator. The pressure acting on the brake pressure sensor can be fed to the low-pressure accumulator, bypassing the wheel brake.04-18-2013
20110273006BRAKE CONTROL APPARATUS - A brake control apparatus includes a brake unit. The brake unit includes: a first port set hydraulically connected to a master cylinder via a first fluid line set; a second port set hydraulically connected to a wheel cylinder set via a second fluid line set; a first fluid passage hydraulically connecting the first port set to the second port set; a first switching valve arranged to vary a state of fluid communication through the first fluid passage; a fluid pressure source arranged to produce a fluid pressure supplied to the second port set; a fluid accommodating section adapted to accommodate a variable amount of brake fluid; a branch fluid passage hydraulically connecting the first port set to the fluid accommodating section; and a second switching valve arranged to vary a state of fluid communication through the branch fluid passage.11-10-2011
20100308644CONTROL DEVICE OF INDUSTRIAL VEHICLE, AND INDUSTRIAL VEHICLE LOADED WITH THE DEVICE - There is provided a control device of an industrial vehicle and an industrial vehicle loaded with this device, capable of reliably detecting operator absence, thereby avoiding the danger of an accident occurring during this absence. In a control device 12-09-2010
303011000 Pressure control 28
20130162012BRAKING DEVICE - A braking device comprises: a master cylinder; an electrical pressure adjusting unit; a reaction force generating unit, which forms a reaction force chamber and which generate a reaction hydraulic pressure in the reaction force chamber; a reservoir for brake fluid; an inter-chamber brake fluid path; a reservoir path that connects the reservoir and the inter-chamber brake fluid path; and a normally-closed control valve, wherein the electrical pressure adjusting unit includes an electrical pump which is directly connected with the driving hydraulic pressure chamber to supply the brake fluid to the driving hydraulic pressure chamber, and wherein at least one of electromagnetic valves provided in the electrical pressure adjusting unit and the reaction force generating unit is a normally-opened electromagnetic valve, which is provided in the inter-chamber brake fluid path and is configured to communicate the inter-chamber brake fluid path in a non-conduction state.06-27-2013
20090096279BRAKE CONTROL APPARATUS AND PROCESS - A brake control apparatus includes a fluid pressure sensor to sense an actual master cylinder pressure, a pump to suck a brake fluid from the master cylinder through a hydraulic circuit connecting the master cylinder to a wheel cylinder and a controller to perform a brake assist control to supply a discharge pressure of the pump to the wheel cylinder in accordance with the sensed actual master cylinder pressure signal. The controller calculates a modified master cylinder pressure by modifying the actual master cylinder pressure in accordance with an operating condition of the pump, calculates a base pressure in accordance with a variation of the modified master cylinder pressure, and calculates a target wheel cylinder pressure in accordance with the base pressure, to control a braking force by controlling an actual wheel cylinder pressure of the wheel cylinder in accordance with the target wheel cylinder pressure.04-16-2009
20100084913ELECTRONIC CONTROL BRAKE SYSTEM - Disclosed herein is an electronic control brake system that has a compact structure while rapidly forming an oil pressure during active control and reducing pressure pulsation, simultaneously. The electronic control brake system includes a master cylinder assembly to provide braking force, a plurality of brake cylinders to achieve braking, first and second hydraulic circuits connecting the master cylinder and the plurality of brake cylinders to form a closed circuit, a pump unit installed in the first and second hydraulic circuits to achieve active control, and a motor to drive the pump unit. The pump unit includes first, second, third, and fourth pumps, the first pump and the second are respectively arranged in planes, being orthogonal with the rotary axis X of the motor, located in different layers in the direction of a rotary axis of the motor at an angular position of 0 degrees from the rotary axis of the motor, the third pump arranged in the same plane as the first pump at an angular position of 270 degrees from the rotary axis X of the motor, and the fourth pump is arranged in the same plane as the second pump at an angular position of 90 degrees from the rotary axis of the motor. The first pump and the third pump are connected to the first hydraulic circuit, and the second pump and the fourth pump are connected to the second hydraulic circuit.04-08-2010
20080246334Anti-lock hydraulic braking system, in particular for motorized two-wheel vehicles - An anti-lock hydraulic braking system has a wheel brake circuit with a main brake cylinder, wheel brake cylinder and switching valve, and an auxiliary pressure circuit, connected in parallel between the switching valve and wheel brake cylinder on the wheel brake circuit. With ABS control, the switching valve can be switched from a basic position, where it hydraulically connects the main brake cylinder and wheel brake cylinder, to a switched position where it prevents a build-up of braking pressure on the wheel brake cylinder via the main brake cylinder, while the braking pressure on the wheel brake cylinder can be modulated by the auxiliary pressure circuit.10-09-2008
20090096280BRAKE BOOST CONTROL APPARATUS - A brake boost control apparatus has a brake operation member, a master cylinder, a wheel cylinder, a hydraulic pump, a master cylinder pressure detection section detecting a pressure of the brake fluid, a brake stroke amount detection section detecting a stroke amount of the brake operation member, a hydraulic pressure control section that controls a pressure of the wheel cylinder, a boost section which boosts the pressure of the brake fluid and increases the wheel cylinder pressure, and a control unit. The control unit controls at least one of the hydraulic pump and the hydraulic pressure control section so that the stroke amount detected by the brake stroke amount detection section under a boost operation by the boost section and the pressure detected by the master cylinder pressure detection section are maintained at a predetermined relationship.04-16-2009
20090127925Linear single channel hydraulic control unit - A hydraulic control unit for a motor vehicle having a motor providing a drive shaft driving a rotatable piston bearing surface at a proximal end of the motor, a hydraulic block providing cavities housing a pumping assembly and fluid control valves, and a control section providing solenoid coils receiving portions of the fluid control valves, with the pump cavity being disposed on a first end of the hydraulic block and the valve cavities being disposed on an opposite end of the hydraulic block, and the pumping assembly being reciprocalably driven by the rotatable piston bearing surface along an axis radially disposed from and otherwise parallel to the axis of rotation of the rotatable piston bearing surface. In another aspect, a pump element having a ball bearing assembly mounted at an oblique angle with respect to the axis of rotation of a seat, and a pumping assembly reciprocally bearing against an outer portion of the ball bearing assembly.05-21-2009
20100181824HYDRAULIC VEHICLE BRAKE SYSTEM AND METHOD FOR OPERATING THE HYDRAULIC VEHICLE BRAKE SYSTEM - A hydraulic vehicle brake system, which has a brake pressure signal generator which can be activated by a brake activation device, wherein the brake pressure signal generator can be connected to wheel brakes of the vehicle via at least one hydraulic line and is composed essentially of a master brake cylinder and a hydraulic booster which is connected upstream and which has a return flow chamber and a boosting chamber, a working piston arranged therein and a control piston, wherein the working piston is operatively connected in the force outputting direction to a master brake cylinder piston via an activation element, and a hydraulic pressure of a hydraulic pressure source can be applied to the booster via an inlet for the purpose of boosting braking force, wherein an outlet of the booster can be connected to a reservoir vessel.07-22-2010
20100187901BRAKE CONTROL APPARATUS AND METHOD FOR CONTROLLING THE BRAKE - To provide a brake control apparatus and method for controlling the brake which is capable of preventing a fluctuation of a brake pedal stroke amount when switching a regenerative braking force to a hydraulic braking force.07-29-2010
20100219678ELECTROHYDRAULIC BRAKE UNIT FOR A LAND VEHICLE - An electrohydraulic brake unit for a hydraulic, single- or multiple-circuit brake system that enables regenerative braking is provided. It comprises a unit body, which comprises electrically actuable fluid control valves and hydraulic connection lines between the fluid control valves, an electronic closed-/open-loop control circuit for supplying trigger signals for the fluid control valves in order to modulate the hydraulic pressure in the brake circuits, and a fluid feed pump. In the unit body a simulator for regenerative braking is at least partially integrated, which comprises at least one cylinder/piston arrangement, with which at least one resetting spring arrangement, in the form of at least one spring element, is associated. This simulator projects at least partially out of the unit body.09-02-2010
20100295363BRAKE CONTROL SYSTEM AND BRAKE CONTROL METHOD - A brake control system includes a wheel cylinder, a brake pedal, a master cylinder in which communication between it and an external master cylinder reservoir is cut off when the operating amount of the brake pedal is equal to or greater than a predetermined value, an internal reservoir, and a pump which selectively discharges hydraulic fluid in two directions, one being a direction that increases the hydraulic pressure in the wheel cylinder by drawing up hydraulic fluid from the internal reservoir, and the other being a direction that stores hydraulic fluid in the internal reservoir. The pump is driven to discharge hydraulic fluid in the direction that stores hydraulic fluid when communication is open between the master cylinder and the master cylinder reservoir, and driven to discharge hydraulic fluid in the direction that increases the hydraulic pressure when communication is cut off between the master cylinder and the master cylinder reservoir. A further invention is directed to a brake control method.11-25-2010
20110025120BRAKE SYSTEM FOR AUTOMOTIVE VEHICLE - A brake system for an automotive vehicle includes a controller for operating friction and powertrain braking subsystems so that hydraulic pressure to the friction brakes is minimized during powertrain braking, while at the same time emulating the driver-interface operating characteristics of a pure friction-braking system during all operating conditions.02-03-2011
20110109152BRAKE SYSTEM FOR A VEHICLE - The invention relates to a brake system for a vehicle, with a main brake cylinder, a fluid control unit, and at least one wheel brake. The fluid control unit has, for brake pressure modulation in at least one brake circuit a switchover valve, an intake valve and a recirculating pump for each brake circuit. According to the invention, the fluid control unit has, for each brake circuit, a sliding valve which is connected into a suction line between the recirculating pump and the main brake cylinder. The sliding valve restricts the effective pressure on a suction side of the recirculating pump to a predeterminable maximum pressure value. In this case, the sliding valve can be arranged in series with or parallel to the intake valve.05-12-2011
20110115283SEALING STRUCTURE FOR PISTON AND PISTON PUMP AND BRAKE HYDRAULIC PRESSURE CONTROL DEVICE INCORPORATING THE STRUCTURE - A sealing structure is provided wherein an annular groove formed in a pump cylinder of a piston pump receives therein a seal ring made of a synthetic resin material and having an inner circumferential surface fluid-tightly contacting an outer circumferential surface of the pump piston and an O-ring arranged on the outer circumferential side of the seal ring and urging the seal ring radially inward. The seal ring is formed at its axial end portions with flange portions for preventing the O-ring from coming off. In the state that the seal ring and the O-ring are fitted in the annular groove, the flange portions do not receive a load from the O-ring, and a surface pressure which the seal ring applies to the outer circumferential surface of the piston at an axial center portion thereof is set to be higher than surface pressures which it applies to the outer circumferential surface of the piston at axial end portions thereof.05-19-2011
20090091180BRAKE CONTROL APPARATUS, AND PROCESS OF OPERATING THE SAME - In a brake control apparatus, a fluid passage section is hydraulically connected between a hydraulic pressure source and a wheel cylinder. A first pressure sensor measures a first quantity correlated to a hydraulic pressure outputted by the hydraulic pressure source. A second pressure sensor measures a second quantity correlated to an internal pressure of the wheel cylinder. A controller controls a braking force of a wheel by the wheel cylinder. The controller is configured to: allow the first pressure sensor to obtain a value of the first quantity, and allow the second pressure sensor to obtain a value of the second quantity, while allowing a selector to regulate fluid communication between the hydraulic pressure source and the wheel cylinder; and calibrate the first and second pressure sensors with respect to each other in accordance with the obtained values of the first and second quantities.04-09-2009
20100038959LINEAR DUAL CHANNEL HYDRAULIC CONTROL UNIT - A linear dual channel hydraulic control unit for a motor vehicle, having a motor section with an output shaft having a first output shaft end and an opposing second output shaft end. A rotationally adjustable wobble plate having an apex portion is fixed onto either end of the output shaft. A hydraulic block is mated onto either end of the motor section. Each hydraulic block includes an inlet for fluid communication with a braking fluid source and an outlet for fluid communication with a braking system brake, a pump cavity housing a pumping assembly and having an opening disposed on a first end, and first and second valve cavities housing first and second fluid control valves. Mated to each hydraulic block is a control sections providing first and second solenoid coils receiving portions of the first and second fluid control valves. The pumping assembly is reciprocally driven by the rotatable piston bearing surface along an axis radially disposed from and otherwise parallel to the axis of rotation of the rotatable piston bearing surface. Each of the wobble plates includes an apex that can be rotationally offset relative to the other about the axis of rotation ‘A’ to control the timing of the output cycle of the pumping assemblies; thereby reducing or eliminating the natural harmonic vibrations of the pumping assemblies and/or minimizing the current draw of the motor.02-18-2010
20110001351Method and Device for the Reproducible Generation of a Specifiable Final Pressure in a Braking System - To achieve a specifiable, and thus reproducible final pressure in at least one part of the brake circuit, the pump is first actuated for pressure buildup or pressure reduction when the valve is closed. When a first specified setpoint pressure is reached, or when a pressure threshold value is exceeded, the valve is put into an open position using a first actuation. After the pump is switched off, the actuation of the valve is modified in such a way that, during a specifiable time, a continuous change of the first actuation is undertaken all the way up to a second actuation, in which the valve assumes a holding position, particularly while taking into consideration the pressure difference which prevails at the valve.01-06-2011
20110215638BRAKE SYSTEM - Provided is a brake system capable of preventing fuel efficiency of a vehicle from being lowered. After an operation of a brake pedal (09-08-2011
20080284240Brake Control System for Vehicle and Control Method Thereof - Provided are a brake control system for a vehicle and a control method thereof. The brake control system includes: a traction valve 11-20-2008
20120007418Brake Control Apparatus - A brake control apparatus has a master cylinder pressure detection section that detects a master cylinder pressure produced by driver's brake operation, a pump that draws brake fluid in a master cylinder and discharges the brake fluid to a wheel cylinder that is provided in a wheel, and a control unit that controls a wheel cylinder pressure in response to the detected master cylinder pressure. The control unit has a master cylinder pressure correction section that corrects the detected master cylinder pressure in accordance with a discharge flow quantity of the pump, and a wheel cylinder pressure control section that controls the wheel cylinder pressure by the brake fluid discharged from the pump on the basis of the corrected master cylinder pressure.01-12-2012
20090200858Wheel Motor Device - A wheel motor device according to the present invention includes a hydraulic motor main body forming an HST in cooperation with the hydraulic pump main body, a motor shaft supporting the hydraulic motor main body in a relatively non-rotatable manner, a speed-reduction gear mechanism for reducing the speed of the rotational power output from the motor shaft, a first output member for outputting the rotational power whose speed has been reduced by the speed-reduction gear mechanism toward a corresponding first driving wheel, a casing accommodating the hydraulic motor main body and the speed-reduction gear mechanism, and a brake mechanism selectively and operatively applying a brake force to the first output member. The brake mechanism includes a brake shaft supported by the casing, a speed-increasing gear mechanism for increasing the speed of the rotational power output from the motor shaft and operatively transmitting the same to the brake shaft, and a brake unit for selectively and operatively applying the brake force to the brake shaft.08-13-2009
20100117445CONTROL DEVICE FOR A BRAKE APPARATUS - The control device adapted to a vehicle brake apparatus includes a vacuum obtaining portion, a master cylinder pressure obtaining portion and a boosting control portion for executing a boosting control which controls supplying of a boosting pressure established by driving the hydraulic pressure pump and controlling the pressure differential control valve so that the boosting pressure agrees to a target boosting pressure obtained with a target boosting gain smaller than a basic boosting gain which indicates a servo-ratio of the vacuum booster up to the time, when the master cylinder pressure becomes equal to or more than a boosting limit pressure which is a master cylinder pressure corresponding to a boosting limit of the vacuum booster at the vacuum obtained by the vacuum pressure obtaining portion, in addition to the master cylinder pressure established in response to the operation of the brake operation member.05-13-2010
20110089753HYDRAULIC PISTON PUMP - The invention relates to a hydraulic piston pump, particularly for a slip-controllable vehicle braking system. A piston pump according to the invention includes a hydraulically permanently permeable stopper, the throughflow of which is carried out as a function of the pressure in an outflow channel of the piston pump. A pressure medium flow only takes place if the pressure level in the outflow channel has exceeded a threshold value. The latter takes place, for example, if the kinematic viscosity of the flowing pressure medium decreases due to low ambient temperatures, or if a throughflow of the outflow channel is obstructed. By means of the proposed solution, excess pressure increases in the interior of the piston pump can be avoided, and the resulting loads for the pressurized pump components and the drive can be reduced. Otherwise, the operating behavior of the piston pump according to the invention corresponds to that of a known piston pump.04-21-2011
20120133201Attenuator For A Vehicle Braking System - A vehicle braking system includes a slip control system operable in an electronic stability control (ESC) mode to automatically and selectively apply the brakes in an attempt to stabilize the vehicle when an instability condition has been sensed. The slip control system is further operable in an adaptive cruise control (ACC) mode to automatically apply the brakes to slow the vehicle in response to a control signal. The slip control system includes a variable speed motor drive piston pump for supplying pressurized fluid pressure to the brakes through a valve arrangement. In the ESC mode, the pump motor operates in an ESC speed range, and in the ACC mode, the pump motor operates in an ACC speed range lower than the ESC speed range. The slip control system further includes an attenuator connected to a pump outlet for dampening pump output pressure pulses prior to application to the brakes. The attenuator includes an elastomeric member located in an attenuator chamber of a housing. The attenuator chamber defines a shoulder and the elastomeric member includes a flange which rests on the shoulder and locates the elastomeric member in a predetermined axial position within the attenuator chamber. An outside wall of the elastomeric member includes circumferentially extending grooves defining ribs between adjacent grooves.05-31-2012
20120074769HYDRAULIC BRAKE APPARATUS FOR VEHICLE - A hydraulic brake apparatus for a vehicle is provided. The hydraulic brake apparatus includes a master cylinder, a high hydraulic pressure source, a brake assist mechanism, a liquid reservoir, an electronic control device, a hydraulic control device and is configured such that the master cylinder is actuated by a force assisted by the brake assist mechanism to generate a hydraulic pressure and a braking force according to the hydraulic pressure is applied to a wheel of the vehicle. The hydraulic brake apparatus further includes driving pressure reducing valve which is configured such that when a hydraulic pressure in a master pressure input port is higher than that in the driving pressure input port by a predetermined value, the hydraulic brake apparatus is actuated based on the pressure difference to open a hydraulic pressure discharge path extending from a driving hydraulic pressure chamber to the liquid reservoir.03-29-2012
20080296967VEHICLE BRAKE HYDRAULIC PRESSURE CONTROL SYSTEM - A controller which controls an electric motor in such a manner that a rotational speed detected in a motor rotational speed detecting module 12-04-2008
20120319466Method for activating a switching valve in a hydraulic motor vehicle brake system - In a method for carrying out an automatic braking in a motor vehicle with the aid of a pump which delivers a brake fluid in the direction of the wheel brakes, the brake pressure prevailing in the brake circuit is limited by a valve, which is overflowed when a settable pressure threshold is reached, and thus limiting the brake pressure. The dynamics of the pressure build-up is improved if the valve opens only at higher pressures, since a greater share of the volume flow coming from the hydraulic pump is then in fact conducted to the wheel brakes and is not able to flow off prematurely via the valve.12-20-2012
20120080936SHAFT SEALING APPARATUS, PUMP APPARATUS AND BRAKE HYDRAULIC PRESSURE CONTROL DEVICE USING SAME - A shaft sealing device comprising: a first member; a second member provided with a through-hole through which the first member passes; a sealing member configured to seal a gap between the through-hole and the first member; a rotation restricting part restricting relative rotation between the first and second members; and an axial displacement restricting part restricting the axial displacement of the sealing member. The rotation restricting part includes a first contact portion provided on the first member, a second contact portion provided on the sealing member and an inclined surface included on the first contact portion. The axial displacement restricting part includes a stopper surface. When the sealing member rotates in one direction relative to the second member by being dragged by the first member, the sealing member contacts the stopper surface to restrict the axial displacement of the sealing member.04-05-2012
20100201183BRAKE UNIT OF A SLIP-CONTROLLED MOTOR VEHICLE BRAKE SYSTEM WITH A FLUID SUPPLY DEVICE - A brake unit of a slip-controlled motor vehicle brake system with a fluid supply device with an electrically operated fluid supply device provides a pressurised hydraulic or pneumatic fluid in the brake circuits of the brake system. The fluid supply device has a pressure chamber with at least one fluid inlet and at least one fluid outlet. One non-return valve each is provided at the fluid inlet and the fluid outlet. A piston which protrudes into the pressure chamber is movable at least into one of two end positions by means of an electric drive device. In the one end position, a minimum volume is defined by the pressure chamber and the piston. In the other end position, a maximum volume is defined by the pressure chamber and the piston.08-12-2010
303012000 Vacuum 6
20130057055BRAKING CONTROL SYSTEM - Provided is a braking control system including: an internal combustion engine serving as a power source of a vehicle; a brake servo unit operated by a negative pressure supplied thereto; a passage configured to supply an intake negative pressure of the internal combustion engine to the brake servo unit; and a negative pressure pump configured to generate a negative pressure by being driven by power transmitted from a wheel of the vehicle and transmit the generated negative pressure to the brake servo unit, wherein the negative pressure pump is driven so as to supply the negative pressure to the brake servo unit during execution of inertia running in which the internal combustion engine stops and the vehicle runs by inertia.03-07-2013
20100102621Travel Limiting Element in a Brake Servo Device and Brake Servo Device - The invention relates to a travel limiting element in a brake booster device for a motor vehicle brake system, comprising a pair of longitudinal legs which are connected together via at least one transverse leg, wherein the travel limiting element can be brought into contact with a stop of the brake booster device. In favour of a simple design and cost-effective production, the travel limiting element comprises two dimensionally stable reinforcement braces which extend along the longitudinal legs, and the transverse leg is made of a damping material which surrounds the two longitudinal legs at least in sections.04-29-2010
20090015059VEHICLE BRAKE CONTROLLER AND VEHICLE BRAKE CONTROL METHOD - Each time a prescribed cycle comes to an end, an ECU estimates an average retaining amount of brake fluid in a reservoir of the current prescribed cycle on the assumption that a pump has sucked a constant amount of brake fluid in the current prescribed cycle. The ECU calculates deviation between the average retaining amount at the end of the previous prescribed cycle and the average retaining amount at the end of the current prescribed cycle. The greater the deviation is, the greater a deviation correction amount the ECU sets. The ECU performs deviation pump control in which the target suction amount of the pump is set based on the reference suction amount and the deviation correction amount.01-15-2009
20110089754BRAKE AUXILIARY SYSTEM OF ELECTRIC CAR - The invention discloses a brake auxiliary system having a vacuum container, which comprises an auxiliary power supply, a vacuum pump, a vacuum booster and a vacuum container, wherein the vacuum container and the vacuum booster are both connected with the vacuum pump which supplied power by the auxiliary power supply, a pressure detector and a delay control switch are disposed on the vacuum container, keeping the vacuum degree in the vacuum container within a certain range. The vacuum container of the present invention makes the vacuum pump enable to work intermittently, avoiding frequent start of the vacuum pump when brake and also extending the life of the brake. Because of the pressure detector and the delay control switch, the vacuum inside the vacuum container is kept stable, and the efficiency of vacuum booster is ensured. The invention has low cost, simple and reliable structure, it is green and energy-saving, and it can reduce the energy consumption of the electric car auxiliary power supply and increase the driving miles.04-21-2011
20100019566BRAKE BOOSTER DEVICE WITH DAMPING ELEMENT - The present invention relates to a brake booster device for a vehicle brake system comprising a force input element, a control valve arrangement actuable via the force input element, a chamber arrangement disposed in a housing and comprising a vacuum chamber and a working chamber, which is separated from the vacuum chamber by a movable wall and connectable selectively to a vacuum source or the atmosphere, and a force output element, wherein the movable wall is biased into a normal position by means of a resetting spring accommodated at least partially in the housing and wherein the housing is penetrated by at least one fastening bolt. In this case, it is provided that at least one damping element acts for the purpose of vibration damping on the resetting spring, wherein the at least one damping element is mounted on the at least one fastening bolt.01-28-2010
20130140878BRAKE SYSTEM FOR VEHICLE - A brake system for a vehicle having a VIS actuator of an intake manifold, a vacuum pipe connected to the VIS actuator, and a vacuum pump connected to the vacuum pipe may be provided, which includes a vacuum hose having one end connected to the vacuum pipe to generate additional negative pressure, wherein the vacuum hose may be connected to a vacuum chamber. The brake negative pressure may be supplemented without increasing the capacity of the vacuum pump to improve the braking performance.06-06-2013

Patent applications in class WITH PUMP

Patent applications in all subclasses WITH PUMP