Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


With heat sink means

Subclass of:

257 - Active solid-state devices (e.g., transistors, solid-state diodes)

257666000 - LEAD FRAME

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20130043572Bump-On-Leadframe Semiconductor Package With Low Thermal Resistance - In a bump-on-leadframe semiconductor package a metal bump formed on a integrated circuit die is used to facilitate the transfer of heat generated in a semiconductor substrate to a metal heat slug and then to an external mounting surface. A structure including arrays of thermal vias may be used to transfer the heat from the semiconductor substrate to the metal bump02-21-2013
20130026616POWER DEVICE PACKAGE MODULE AND MANUFACTURING METHOD THEREOF - The present invention relates to a power device package module and a manufacturing method thereof. In one aspect of the present invention, a power device package module includes: a control unit a first lead frame, a control chip and a first coupling portion that are mounted on a first substrate, wherein the first lead frame and the first coupling portion are electrically connected to the control chip, and individually molded; and a power unit including a second lead frame, a power chip and a second coupling portion that are mounted on a second substrate, wherein the second lead frame and the second coupling portion are electrically connected to the power chip, and individually molded, wherein the individually molded control unit and power unit are coupled by the first coupling portion and the second coupling portion.01-31-2013
20130026615DOUBLE-SIDE EXPOSED SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD - A double-side exposed semiconductor device includes an electric conductive first lead frame attached on top of a thermal conductive but electrical nonconductive second lead frame and a semiconductor chip flipped and attached on top of the first lead frame. The gate and source electrodes on top of the flipped chip form electrical connections with gate and source pins of the first lead frame respectively. The flipped chip and center portions of the first and second lead frames are then encapsulated with a molding compound, such that the heat sink formed at the center of the second lead frame and the drain electrode at bottom of the semiconductor chip are exposed on two opposite sides of the semiconductor device. Thus, heat dissipation performance of the semiconductor device is effectively improved without increasing the size of the semiconductor device.01-31-2013
20100019361Multi Lead Frame Power Package - According to an embodiment of the invention, a system, operable to facilitate dissipation of thermal energy, includes a mold compound, a die, a first lead frame, and a second lead frame. The die is disposed within the mold compound, and in operation generates thermal energy. The first lead frame is disposed at least partially within the mold compound and is operable to facilitate transmission of a signal. The second lead frame is disposed at least partially within the compound, at least partially separated from the first lead frame, and is operable to facilitate a dissipation of thermal energy.01-28-2010
20090194856MOLDED PACKAGE ASSEMBLY - A semiconductor die package is disclosed. The semiconductor die package is suitable for mounting on a circuit substrate such as a circuit board. The semiconductor die package comprises a leadframe structure and a semiconductor die coupled to the leadframe structure. A plurality of first conductive structures is attached to the semiconductor die, and a plurality of second conductive structures is attached to the plurality of first conductive structures. The semiconductor die package also comprises a molding material that covers at least portions of plurality of first conductive structures, the leadframe structure, and the semiconductor die.08-06-2009
20130087899DIODE CELL MODULES - Diode cell modules for use within photovoltaic systems, including lead frames including first leads extending from the first outlet terminal, second leads spaced from the first leads, second outlet terminals extending from the second leads, and diodes. In some examples, first leads define base portions connected to the first outlet terminal and diode portions extending from the base portions transverse to the first outlet terminal. In some examples, second leads may define a base portion and diode portions extending from the base portion substantially parallel to the diode portion of the first lead. In some examples, diodes may be in electrical contact with the diode portion of the first lead and with the diode portion of the second lead. In some examples, the first leads and second leads may be thermally conductive. In some examples, diodes may define die interfaces that are substantially fully engaged with diode portions of leads.04-11-2013
20100072587IC SOCKET HAVING HEAT DISSIPATION FUNCTION - It is an object of the present invention to provide an IC socket that has a configuration to promote heat dissipation from an IC device in a simple configuration, and prevent overheating of the IC device under test. Contact pins 03-25-2010
20100072586QUAD FLAT PACK IN QUAD FLAT PACK INTEGRATED CIRCUIT PACKAGE SYSTEM - An integrated circuit package system includes: providing a base package having a first integrated circuit with an inner lead on a periphery thereof and connected thereto with interconnects, and the inner lead partially encapsulated by an inner encapsulation; mounting an outer lead on the periphery of the base package; mounting a second integrated circuit above the base package and connected to the outer lead with the interconnects; and partially encapsulating, the base package and the outer leads with an outer encapsulation leaving a bottom surface of the inner lead and a bottom surface of the outer lead exposed.03-25-2010
20130075882PACKAGE STRUCTURE - A package structure including a first leadframe, a second leadframe, a power pin, a ground pin, a first pin, several first wires, several second wires, and a package body is disclosed. The first leadframe is used for electrically coupling to the drains of a first power transistor and the second power transistor. The ground pin is electrically coupled to the first leadframe. The first pin is connected with the first leadframe through a conductive region used for increasing the amount of current which can be loaded by the first pin. The first wires are used for electrically coupling between the first leadframe and the source of the second power transistor, for reducing the internal resistance of the second power transistor. The second wires are used for electrically coupling between the ground pin and the source of the first power transistor, for reducing the internal resistance of the first power transistor.03-28-2013
20100044841SEMICONDUCTOR DEVICE - A semiconductor device includes a carrier, a chip attached to the carrier, a sealant vapor deposited over the chip and the carrier, and encapsulation material deposited over the sealed chip and the sealed carrier.02-25-2010
20090236705APPARATUS AND METHOD FOR SERIES CONNECTION OF TWO DIE OR CHIPS IN SINGLE ELECTRONICS PACKAGE - An apparatus and method for a two semiconductor device package where the semiconductor devices are connected in electrical series. The first device is mounted P-side down on an electrically conductive substrate. Non-active area on the P side is isolated from the electrically conductive substrate. The second device is mounted P-side up at a spaced apart location on the substrate. Opposite sides of each are electrically connected to leads to complete the series connection of the two devices. A method of manufacturing such a package includes providing an electrically conductive lead frame, mounting one device P-side up and flipping the other device and mounting it P-side down on the lead frame with non-active area of the P side isolated from the lead frame, and connecting the other side of each device to separate leads. Isolation of the non-active area of the P side of the device can be through modification of the substrate or lead frame surface by grooves or raised portions. Alternatively, it can be by adding an electrically isolating coating on the non-active area of the P-side of a semiconductor device to allow it to be mounted P side down on an electrically conductive substrate or mounting location without modification to the substrate or lead frame.09-24-2009
20100059870CHIP PACKAGE STRUCTURE - A chip package structure including a substrate, at least one chip, a plurality of leads, a heat dissipation device, a molding compound, and at least one insulating sheet is provided. The chip is disposed on the substrate. The leads are electrically connected to the substrate. The molding compound having a top surface encapsulates the chip, the substrate, and a portion of the leads. The heat dissipation device is disposed on the top surface of the molding compound. The insulating sheet disposed between the heat dissipation device and at least one of the leads has a bending line dividing the insulating sheet into a main body disposed on the molding compound and a bending portion extending from the main body.03-11-2010
20100065950Leaded semiconductor power module with direct bonding and double sided cooling - A leaded semiconductor power module includes a first heatsink, an electrically insulated substrate thermally coupled to the first heatsink, one or more semiconductor chips, a leadframe substrate, and a second heatsink thermally coupled to the leadframe substrate, the assembly being overmolded with an encapsulant to expose the first heatsink, the second heatsink and peripheral terminals of the leadframe substrate. The semiconductor chips are electrically and structurally coupled to both the insulated substrate and the leadframe substrate, and conductive spacers electrically and structurally couple the insulated substrate to the leadframe substrate.03-18-2010
20130087900Thermally Enhanced Low Parasitic Power Semiconductor Package - A semiconductor device includes a source region, a gate region and a drain region. A first leadframe subassembly is coupled to the drain region. on a second side of the die are attached to a second leadframe subassembly. A second leadframe subassembly has a first portion electrically coupled with the source region and a second portion electrically coupled with the gate region. The first leadframe subassembly is attached to a third leadframe subassembly. A die is interposed between the first leadframe subassembly and the second leadframe subassembly. The height of the third leadframe subassembly provides a standoff for a distance between the first leadframe subassembly and the second leadframe subassembly.04-11-2013
20120181676POWER SEMICONDUCTOR DEVICE PACKAGING - Embodiments of the present invention relate to the use of stamping to form features on a lead frame of a semiconductor device package. In one embodiment, portions of the lead frame such as pins are moved out of the horizontal plane of a diepad by stamping. In certain embodiments, indentations or a complex cross-sectional profile, such as chamfered, may be imparted to portions of the pins and/or diepad by stamping. The complexity offered by such a stamped cross-sectional profile serves to enhance mechanical interlocking of the lead frame within the plastic molding of the package body. Other techniques such as selective electroplating and/or formation of a brown oxide guard band to limit spreading of adhesive material during die attach, may be employed alone or in combination to facilitate fabrication of a package having such stamped features.07-19-2012
20090045492LEAD FRAME, SEMICONDUCTOR DEVICE, METHOD OF MANUFACTURING THE LEAD FRAME, AND METHOD OF MANUFACTURING THE SEMICONDUCTOR DEVICE - A lead frame is provided which can prevent a short circuit between wires and the ends of adjacent leads, the short circuit being caused by wire sweep during the injection of molding resin, in a configuration where the electrodes of a semiconductor chip and the leads disposed around the semiconductor chip. The lead having sides substantially perpendicular to the direction of a resin flow has an end whose upstream side relative to the resin flow is constricted.02-19-2009
20110001225SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A method includes: mounting a plurality of semiconductor elements on a substrate having wirings; connecting electrically electrodes of the semiconductor elements and the wirings; sealing the semiconductor elements with a resin, which is carried out by bringing a thermal conductor having a concavity and the substrate to be in contact with each other so that the semiconductor elements are positioned within the concavity and by filling the concavity with the resin; and separating respective semiconductor elements 01-06-2011
20100133670Top-side Cooled Semiconductor Package with Stacked Interconnection Plates and Method - A top-side cooled semiconductor package with stacked interconnection plate is disclosed. The semiconductor package includes a circuit substrate with terminal leads, a semiconductor die atop the circuit substrate, a low thermal resistance intimate interconnection plate for bonding and interconnecting a top contact area of the semiconductor die with the circuit substrate, a low thermal resistance stacked interconnection plate atop the intimate interconnection plate for top-side cooling, a molding encapsulant for encapsulating the package except for exposing a top surface of the stacked interconnection plate to maintain effective top-side cooling. The top portion of the stacked interconnection plate can include a peripheral overhang above the intimate interconnection plate. The peripheral overhang allows for a maximized exposed top surface area for heat dissipation independent of otherwise areal constraints applicable to the intimate interconnection plate. The stacked interconnection plate can be partially etched or three dimensionally formed to create the peripheral overhang.06-03-2010
20090302444RESIN SEALED SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREFOR - A resin sealed semiconductor device includes a first semiconductor switching device having a first emitter terminal and a first collector terminal bonded to its top and bottom surfaces respectively, a second semiconductor switching device having a second emitter terminal and a second collector terminal bonded to its top and bottom surfaces respectively, a first heat sink directly or indirectly bonded to the first collector terminal, a second heat sink directly or indirectly bonded to the second collector terminal, and a molding resin integrally covering the first and second semiconductor switching devices. The first and second heat sinks are exposed from the molding resin. The first emitter terminal faces and is spaced apart from the second emitter terminal.12-10-2009
20130056861SEMICONDUCTOR DEVICES AND METHODS OF ASSEMBLING SAME - A method of forming a semiconductor device includes affixing a die to a heat sink to form a die and heat sink assembly and then placing the die and heat sink assembly on a support element. A semiconductor device includes a die and heat sink assembly disposed on a support element. The die and heat sink assembly is pre-assembled prior to being disposed on the support element.03-07-2013
20120112332RESIN-SEALED SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A resin-sealed semiconductor device includes a power element (05-10-2012
20130062745SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, SEMICONDUCTOR DEVICE MOUNTING STRUCTURE AND POWER SEMICONDUCTOR DEVICE - A semiconductor device includes a plurality of die pad sections, a plurality of semiconductor chips, each of which is arranged in each of the die pad sections, a resin encapsulation portion having a recess portion for exposing at least a portion of the die pad sections, the resin encapsulation portion configured to cover the die pad sections and the semiconductor chips, and a heat radiation layer arranged in the recess portion. The heat radiation layer includes an elastic layer exposed toward a direction in which the recess portion is opened. The heat radiation layer directly faces at least a portion of the die pad sections. The elastic layer overlaps with at least a portion of the die pad sections when seen in a thickness direction of the heat radiation layer.03-14-2013
20130062744POWER MODULE PACKAGE - Disclosed herein is a power module package, including: a first substrate having one surface and the other surface; first vias formed to penetrate from one surface of the first substrate to the other surface thereof; a metal layer formed on one surface of the first substrate; semiconductor devices formed on the metal layer; and a metal plate formed on the other surface of the first substrate.03-14-2013
20130062743POWER MODULE PACKAGE AND METHOD FOR MANUFACTURING THE SAME - Disclosed herein are a power module package and a method for manufacturing the same. The power module package includes: a heat dissipation plate including a first heat dissipation plate and a second heat dissipation plate disposed to be spaced apart from each other; insulating layers formed on the heat dissipation plate; metal layers formed on the insulating layers, semiconductor devices mounted on the metal layers; and lead spacers formed to connect the metal layer of the first heat dissipation plate side or the metal layer of the second heat dissipation plate side with the semiconductor layers, wherein the semiconductor devices formed on the metal layers of the first heat dissipation plate side and the semiconductor devices formed on the metal layer of the second heat dissipation plate side are disposed in a multi-layered type.03-14-2013
20110012241Semiconductor Chip Package - A semiconductor chip package comprises a lead frame having a chip carrier having a first surface and an opposite second surface. A first semiconductor chip is mounted on the first surface, having a plurality of bonding pads thereon, wherein the first semiconductor chip has an area larger that that of the chip carrier. A package substrate has a central region attached to the second surface of the chip carrier, having an area larger than that of the first semiconductor chip, wherein the package substrate comprises a plurality of fingers on a top surface thereof in a marginal region of the package substrate, which are arranged in an array with a row of inner fingers adjacent to the first semiconductor chip and a row of outer fingers adjacent to an edge of the package substrate, wherein the inner and outer fingers are electrically connected to the bonding pads of the first semiconductor chip and the lead frame respectively.01-20-2011
20090236708SEMICONDUCTOR PACKAGE HAVING A BRIDGED PLATE INTERCONNECTION - A semiconductor package is disclosed. The package includes a leadframe having drain, source and gate leads, and a semiconductor die coupled to the leadframe, the semiconductor die having a plurality of metallized source contacts. A bridged source plate interconnection has a bridge portion, valley portions disposed on either side of the bridge portion, plane portions disposed on either side of the valley portions and the bridge portion, and a connection portion depending from one of the plane portions, the bridged source plate interconnection connecting the source lead with the plurality of metallized source contacts. The bridge portion is disposed in a plane above the plane of the valley portions while the plane portions are disposed in a plane intermediate the plane of the bridge portion and the plane of the valley portions.09-24-2009
20090236707ELECTRONIC DEVICES WITH ENHANCED HEAT SPREADING - An electronic device with enhanced heat spread. A printed circuit board is disposed in a casing and includes a first metal ground layer, a second metal ground layer, and a metal connecting portion. The first metal ground layer is opposite the second metal ground layer. The metal connecting portion is connected between the first and second metal ground layers. The second metal ground layer is connected to the casing. A chip is electrically connected to the printed circuit board and includes a die and a heat-conducting portion connected to the die and soldered with the first metal ground layer. Heat generated by the chip is conducted to the casing through the heat-conducting portion, first metal ground layer, metal connecting portion, and second metal ground layer.09-24-2009
20090236706SEMICONDUCTOR CHIP PACKAGE - A semiconductor chip package comprises a lead frame having a chip carrier having a first surface and an opposite second surface. A first semiconductor chip is mounted on the first surface, having a plurality of bonding pads thereon, wherein the first semiconductor chip has an area larger that that of the chip carrier. A package substrate has a central region attached to the second surface of the chip carrier, having an area larger than that of the first semiconductor chip, wherein the package substrate comprises a plurality of fingers on a top surface thereof in a marginal region of the package substrate, which are arranged in an array with a row of inner fingers adjacent to the first semiconductor chip and a row of outer fingers adjacent to an edge of the package substrate, wherein the inner and outer fingers are electrically connected to the bonding pads of the first semiconductor chip and the lead frame respectively.09-24-2009
20130161803Semiconductor Package with Conductive Heat Spreader - A semiconductor package that includes a semiconductor die and a heat spreader thermally coupled to the semiconductor and disposed at least partially within the molded housing of the package.06-27-2013
20110278706Power Electronic Device Package - A power electronic device package comprising a base member, a device layer, multiple leads, and an encapsulant is provided. The base member is thermally conductive for heat dissipation. The device layer comprises one or more power electronic devices mounted on the base member. The power electronic devices are selectively electrically connected to each other and to the base member to form an internal electronic circuit. The leads extend outwardly from the base member and are electrically connected to the internal electronic circuit. The encapsulant encases the internal electronic circuit, a portion of the base member, and a portion of the leads. The power electronic device package is configured as a transfer molded power module with multiple leads and increased power handling capability. In an embodiment, the base member is electrically conductive to operate as an electrical terminal. The base member may also be isolatably connected to the internal electronic circuit.11-17-2011
20120181677SEMICONDUCTOR DEVICE PACKAGE WITH TWO COMPONENT LEAD FRAME - Embodiments of the present invention relate to the use of stamping to form features on a lead frame of a semiconductor device package. In one embodiment, portions of the lead frame such as pins are moved out of the horizontal plane of a diepad by stamping. In certain embodiments, indentations or a complex cross-sectional profile, such as chamfered, may be imparted to portions of the pins and/or diepad by stamping. The complexity offered by such a stamped cross-sectional profile serves to enhance mechanical interlocking of the lead frame within the plastic molding of the package body. Other techniques such as selective electroplating and/or formation of a brown oxide guard band to limit spreading of adhesive material during die attach, may be employed alone or in combination to facilitate fabrication of a package having such stamped features.07-19-2012
20120001308SEMICONDUCTOR MODULE AND METHOD OF MANUFACTURING THE SAME - In a semiconductor module, a first heat sink is disposed on a rear surface of a first semiconductor chip constituting an upper arm, and a second heat sink is disposed on a front surface of the first semiconductor chip through a first terminal. A third heat sink is disposed on a rear surface of a second semiconductor chip constituting a lower arm, and a fourth heat sink is disposed on a front surface of the second semiconductor chip through a second terminal. A connecting part for connecting between the upper arm and the lower arm is integral with the first terminal, and is connected to the third heat sink while being inclined relative to the first terminal.01-05-2012
20110298112SEMICONDUCTOR MODULE AND SEMICONDUCTOR DEVICE - A semiconductor module includes a semiconductor chip, a semiconductor frame, a circuit board, and a screw. The semiconductor frame has a main surface having a concave portion in which the semiconductor chip is mounted. The semiconductor frame is thermally and electrically connected with the semiconductor chip through a die bonding material. The circuit board has a grounding pattern and is arranged above the main surface of the semiconductor frame. The screw electrically connects the main surface of the semiconductor frame and the outer peripheral portion of the concave portion to the grounding pattern of the circuit board and mechanically connects the semiconductor frame to the circuit board.12-08-2011
20110298113INTEGRATED CIRCUIT PACKAGING SYSTEM WITH INCREASED CONNECTIVITY AND METHOD OF MANUFACTURE THEREOF - A method of manufacture of an integrated circuit packaging system includes: forming a lead frame having contact pads and connection leads; coupling a base integrated circuit to the contact pads; coupling a chip interconnect between the base integrated circuit, the connection leads, the contact pads, or a combination thereof; molding a package body on the connection leads, the base integrated circuit, and the chip interconnects, including having the contact pads exposed; and forming a bottom surface on the package body including forming the connection leads to be coplanar with the bottom surface.12-08-2011
20110291249Semiconductor Device and Method of Forming Conductive Posts and Heat Sink Over Semiconductor Die Using Leadframe - A semiconductor device has a prefabricated multi-die leadframe with a base and integrated raised die paddle and a plurality of bodies extending from the base. A thermal interface layer is formed over a back surface of a semiconductor die or top surface of the raised die paddle. The semiconductor die is mounted over the raised die paddle between the bodies of the leadframe with the TIM disposed between the die and raised die paddle. An encapsulant is deposited over the leadframe and semiconductor die. Vias can be formed in the encapsulant. An interconnect structure is formed over the leadframe, semiconductor die, and encapsulant, including into the vias. The base is removed to separate the bodies from the raised die paddle. The raised die paddle provides heat dissipation for the semiconductor die. The bodies are electrically connected to the interconnect structure. The bodies operate as conductive posts for electrical interconnect.12-01-2011
20110291250SEMICONDUCTOR CHIP PACKAGE - A semiconductor chip package is provided. The semiconductor chip package includes a lead frame having a chip carrier. A semiconductor chip is mounted on the chip carrier, having a plurality of bonding pads thereon. A package substrate has a cavity therein to accommodate the chip carrier and the semiconductor chip, wherein at least one of the bonding pads of the semiconductor chip is electrically coupled to the package substrate.12-01-2011
20080303124Lead frame-BGA package with enhanced thermal performance and I/O counts - Methods and apparatus for integrated circuit (IC) packages with improved thermal performance and input/output capabilities are described. An integrated circuit (IC) package includes a leadframe, an IC die, a substrate having opposing first and second surfaces, a first wirebond, and a second wirebond. The leadframe includes a die attach pad having opposing first and second surfaces and a plurality of leads that emanate in an outward direction from the die attach pad. The IC die is coupled to the first surface of the die attach pad. The substrate is coupled to the die attach pad. Contact pads on the first surface of the substrate are electrically connected to bond fingers on the second surface of the substrate. The first wirebond couples a first bond pad on a first surface of the IC die to a bond finger on the second surface of the substrate. The second wirebond couples a second bond pad on the first surface of the IC die to a lead of the plurality of leads.12-11-2008
20120098111High current capacity inner leads for semiconductor devices, interposer and leadframe - The invention can be used for improving performance of laser diodes, solar cells, microprocessors and other devices. The invention enables to create semiconductor devices and systems comprising several electronic components and having a great area of die, a great number of leads, high operating current and high heat dissipation. This is achieved by the following manner: offered leads are made of copper foil; the rigidity of the foil is decreased by means of creating of alternating narrow trenches and narrow through splits; the offered leads are microspring; additional improvement of performance can be achieved by the bending of inner leads along wide trenches. Offered leads can be directly connected to the dice.04-26-2012
20100283134High Power Ceramic on Copper Package - According to an embodiment of a high power package, the package includes a copper heat sink, a ceramic lead frame and a semiconductor chip. The copper heat sink has a thermal conductivity of at least 350 W/m K. The ceramic lead frame is attached to the copper heat sink with an epoxy. The semiconductor chip is attached to the copper heat sink on the same side as the lead frame with an electrically conductive material having a melting point of about 280° C. or greater.11-11-2010
20110169150Semiconductor Package with Single Sided Substrate Design and Manufacturing Methods Thereof - A semiconductor package includes a substrate unit, a die electrically connected to first contact pads, and a package body covering a first patterned conductive layer and the die. The substrate unit includes: (1) the first patterned conductive layer; (2) a first dielectric layer exposing a part of the first patterned conductive layer to form the first contact pads; (3) a second patterned conductive layer; (4) a second dielectric layer defining openings extending from the first patterned conductive layer to the second patterned conductive layer, where the second patterned conductive layer includes second contact pads exposed by the second dielectric layer; and (5) conductive posts extending from the first patterned conductive layer to the second contact pads through the openings, each of the conductive posts filling a corresponding one of the openings. At least one of the conductive posts defines a cavity.07-14-2011
20090152695SEMICONDUCTOR COMPONENT AND METHOD OF MANUFACTURE - A semiconductor component having a semiconductor chip mounted on a packaging substrate and a method for manufacturing the semiconductor component that uses batch processing steps for fabricating the packaging substrate. A heatsink is formed using an injection molding process. The heatsink has a front surface for mating with a semiconductor chip and a leadframe assembly. The heatsink also has a back surface from which a plurality of fins extend. The leadframe assembly includes a leadframe having leadframe leads extending from opposing sides of the leadframe to a central area of the leadframe. A liquid crystal polymer is disposed in a ring-shaped pattern on the leadframe leads. The liquid-crystal polymer is partially cured. The leadframe assembly is mounted on the front surface of the heatsink and the liquid crystal polymer is further cured to form a packaging assembly, which is then singulated into packaging substrates.06-18-2009
20100123227INTEGRATED CIRCUIT PACKAGING SYSTEM WITH INCREASED CONNECTIVITY AND METHOD OF MANUFACTURE THEREOF - A method of manufacture of an integrated circuit packaging system includes: forming a lead frame having contact pads and connection leads; coupling a base integrated circuit to the contact pads; coupling a chip interconnect between the base integrated circuit, the connection leads, the contact pads, or a combination thereof; molding a package body on the connection leads, the base integrated circuit, and the chip interconnects, includes having the contact pads exposed; and forming a bottom surface on the package body including forming the connection leads to be coplanar with the bottom surface.05-20-2010
20090057853Semiconductor power module with flexible circuit leadframe - A semiconductor power module includes a semiconductor chip thermally interfaced to a ceramic substrate and a leadframe defined by a flexible circuit disposed intermediate the chip and the ceramic substrate. The flexible circuit includes a conductor layer that is selectively encased in an insulated jacket to ensure adequate electrical insulation between the conductor layer and adjacent conductive surfaces. Preferably, the module is constructed for double side cooling by sandwiching the chip between a pair of ceramic substrates and providing intermediate flexible circuit leadframes on both sides of the chip for electrically accessing the chip terminals.03-05-2009
20110198741Integrated Circuit Package with Enlarged Die Paddle - An integrated circuit package system having a body with a top surface, a bottom surface, and a plurality of side surfaces has a leadframe and encapsulating material that encapsulates at least a portion of the leadframe. The leadframe and encapsulating material are part of the body. The leadframe has a die paddle for supporting a die, and a plurality of leads spaced from the die paddle. The encapsulating material thus also separates the die paddle from the plurality of leads. At least a first portion of the die paddle is exposed to the top surface, while at least a second portion of the die paddle is exposed to the bottom surface.08-18-2011
20090091010WIRELESS SEMICONDUCTOR PACKAGE FOR EFFICIENT HEAT DISSIPATION - Disclosed in this specification is a wireless semiconductor package with multiple dies, at least two of which are attached to a thermally and electrically conductive heat sink. The package provides an efficient means for dissipating heat.04-09-2009
20090091011SEMICONDUCTOR DEVICE HAVING INTERCONNECTED CONTACT GROUPS - The present invention is related to a method of producing a semiconductor device and the resulting device. The method is suitable in the first place for producing high power devices, such as High Electron Mobility Transistors (HEMT), in particular HEMT-devices with multiples source-gate-drain groups or multiple base bipolar transistors. According to the method, the interconnect between the source contacts is not produced by air bridge structures, but by etching vias through the semiconductor layer directly to the ohmic contacts and applying a contact layer on the backside of the device.04-09-2009
20090283879SEMICONDUCTOR DEVICE AND METHOD - A chip carrier includes first, second and third layers with the second layer situated between the first and third layers. The first and third layers are formed of a first material and the second layer is formed of a second material. The second layer has a plurality of holes extending therethrough and the first material fills the holes.11-19-2009
20090283880Semiconductor Chip Package Assembly with Deflection- Resistant Leadfingers - The invention relates to leadframes and semiconductor chip package assemblies using leadframes, and to methods for their assembly. A disclosed embodiment of the invention includes a semiconductor package leadframe with a chip mounting surface for receiving a semiconductor chip and a plurality of leadfingers. The leadfingers have a proximal end for receiving one or more wirebond, and a distal end for providing an electrical path from the proximal end. One or more of the leadfingers also has an offset portion at its proximal end for increasing the clearance between the leadfinger and underlying heat spreader, increasing the stiffness of the leadfinger, and increasing leadfinger deflection-resistance and spring-back. The offset is in the direction opposite the plane of a heat spreader thermally coupled to the mounting surface. Preferred embodiments of the invention further include a semiconductor chip affixed to the mounting surface and a plurality of bondwires operably coupling bond pads of the chip to the offset portions of the proximal ends of individual leadfingers.11-19-2009
20090294937TWO-WAY HEAT EXTRACTION FROM PACKAGED SEMICONDUCTOR CHIPS - One embodiment of the invention is a semiconductor device (12-03-2009
20080246130Semiconductor Package Structure Having Enhanced Thermal Dissipation Characteristics - In an exemplary embodiment, a packaged device having enhanced thermal dissipation characteristics includes a semiconductor chip having a major current carrying or heat generating electrode. The semiconductor chip is oriented so that the major current carrying electrode faces the top of the package or away from the next level of assembly. The packaged device further includes a conductive clip for coupling the major current carrying electrode to a next level of assembly, and a heat spreader device formed on or integral with the conductive clip. A portion of the heat spreader device may be optionally exposed.10-09-2008
20080283984Package structure and manufacturing method thereof - A package structure and a manufacturing method thereof are provided. The package structure includes a leadframe, a die, a solder layer and several connecting components. The leadframe includes a heat dissipation pad and several leads. The heat dissipation pad is disposed in a substantial center of the leadframe. The leads are surrounding the heat dissipation pad. The die having an active surface is disposed on the leadframe. The solder layer is disposed between the active surface and the heat dissipation pad. The connecting components are disposed between the active surface and the leads. The die is electrically connected to the leadframe through the solder layer and the connecting components.11-20-2008
20080290484Leadframe Strip and Mold Apparatus for an Electronic Component and Method of Encapsulating an Electronic Component - A leadframe strip comprises a plurality of units arranged in a line. Each unit provides two component positions, each having a chip support substrate. The chip support substrates of the two component positions are mechanically linked by at least one support bar. The two component positions of a unit are molded at essentially the same time to produce a plastic housing for a package in each component position. The central portion of the first support bars remains outside of the plastic housing of the two packages.11-27-2008
20120292752Thermally Enhanced Semiconductor Package with Exposed Parallel Conductive Clip - One exemplary disclosed embodiment comprises a semiconductor package including an inside pad, a transistor, and a conductive clip coupled to the inside pad and a terminal of the transistor. A top surface of the conductive clip is substantially exposed at the top of the package, and a side surface of the conductive clip is exposed at a side of the package. By supporting the semiconductor package on an outside pad during the fabrication process and by removing the outside pad during singulation, the conductive clip may be kept substantially parallel and in alignment with the package substrate while optimizing the package form factor compared to conventional packages. The exposed top surface of the conductive clip may be further attached to a heat sink for enhanced thermal dissipation.11-22-2012
20110204500POWER DEVICE PACKAGES HAVING THERMAL ELECTRIC MODULES USING PELTIER EFFECT AND METHODS OF FABRICATING THE SAME - Provided are power device packages, which include thermal electric modules using the Peltier effect and thus can improve operational reliability by rapidly dissipating heat generated during operation to the outside, and methods of fabricating the same. An exemplary power device package includes: a thermal electric module having a first surface and a second surface opposite each other, and a plurality of n-type impurity elements and a plurality of p-type impurity elements alternately and electrically connected to each other in series; a lead frame attached to the first surface of the thermal electric module by an adhesive member; at least one power semiconductor chip and at least one control semiconductor chip, each chip being mounted on and electrically connected to the lead frame; and a sealing member sealing the thermal electric module, the chips, and at least a portion of the lead frame, but exposing the second surface of the module.08-25-2011
20080246131CHIP PACKAGE STRUCTURE - A chip package structure including a circuit pattern, a frame, a first adhesive layer, a plurality of leads, an insulating adhesive layer, a chip, a plurality of first bonding wires, a plurality of second bonding wires, and a molding compound is provided. The frame and leads are disposed around the circuit pattern. The first adhesive layer fastens the frame and the circuit pattern. The insulating adhesive layer is disposed between the leads and the frame. The chip has a plurality of bonding pads and is disposed on the first adhesive layer. The first bonding wires electrically connect the bonding pads individually to the circuit pattern. The second bonding wires electrically connect the leads individually to the circuit pattern. Thus, the bonding pads are electrically connected with the leads through the first bonding wires, the circuit pattern, and the second bonding wires. The molding compound covers foregoing components.10-09-2008
20100264528QUAD FLAT PACK IN QUAD FLAT PACK INTEGRATED CIRCUIT PACKAGE SYSTEM AND METHOD FOR MANUFACTURING THEREOF - A method for manufacturing an integrated circuit package system includes: providing a base package having a first integrated circuit with an inner lead on a periphery thereof and connected thereto with interconnects, and the inner lead partially encapsulated by an inner encapsulation; mounting an outer lead on the periphery of the base package; mounting a second integrated circuit above the base package and connected to the outer lead with the interconnects; and partially encapsulating, the base package and the outer leads with an outer encapsulation leaving a bottom surface of the inner lead and a bottom surface of the outer lead exposed.10-21-2010
20130119525Power Semiconductor Unit, Power Module, Power Semiconductor Unit Manufacturing Method, and Power Module Manufacturing Method - Heat radiation surfaces 05-16-2013
20090085180Packaging carrier with high heat dissipation and method for manufacturing the same - The present invention relates a packaging carrier with high heat dissipation for packaging a chip, comprising: a carrier body, an interfacial metal layer, at least one diamond-like carbon thin film, a plated layer, and an electrode layer. Herein, the packaging carrier further comprises through holes. The present invention further discloses a method for manufacturing the aforementioned packaging carrier, comprising: providing a carrier body; forming an interfacial metal layer on the upper surface of the carrier body; forming a diamond-like carbon thin film on the interfacial metal layer; forming a plated layer on the diamond-like carbon thin film; forming an electrode layer on the lower surface of the carrier body; and forming through holes extending through all or part of the aforementioned elements. The present invention uses a diamond-like carbon thin film and through holes for heat dissipation in three dimensions to improve heat dissipation of an electronic device.04-02-2009
20080258275CONTROLLING WARPING IN INTEGRATED CIRCUIT DEVICES - Techniques for integrated circuit device fabrication are provided. In one aspect, an integrated circuit device comprises a base, at least one die attached to the base, and a counterbalancing layer on at least a portion of at least one side of the base adapted to compensate for at least a portion of a thermal expansion difference existing between the base and the die. In another aspect, warping of an integrated circuit device comprising at least one die attached to a base is controlled by applying a counterbalancing layer to at least a portion of at least one side of the base adapted to compensate for at least a portion of a thermal expansion difference existing between the base and the die.10-23-2008
20100200971High current capacity inner leads for semiconductor device - The invention can be used for improving performance of laser diodes, solar cells, microprocessors and other devices. The invention enables to create semiconductor devices having a great area of die, a great number of leads, a high operating current and a high heat dissipation. This is achieved by the following manner: offered leads are made of copper foil; the rigidity of the foil is decreased by means of disposing of alternating parallel narrow trenches on both sides of the foil; the offered leads are microspring; additional decreasing of rigidity can be achieved by the bending of foil along wide trenches that are created for this aim. Offered leads can be directly connected to the die.08-12-2010
20090127681SEMICONDUCTOR PACKAGE AND METHOD OF FABRICATING THE SAME - Provided are a semiconductor package and a method of fabricating the same. The semiconductor package includes a first die-pad on which a semiconductor chip is mounted on a bottom surface of the first die-pad, a support plate disposed adjacent to a lateral surface of the first die-pad, a support prop protruding from the support plate, and supporting the first die-pad, and a package body that encapsulates the first die-pad, the semiconductor chip, and the support plate.05-21-2009
20090127680INTEGRATED CIRCUIT PACKAGE-IN-PACKAGE SYSTEM WITH WIRE-IN-FILM ENCAPSULANT - A multiple encapsulation integrated circuit package-in-package system includes: dicing a top integrated circuit wafer having a bottom encapsulant thereon to form a top integrated circuit die with the bottom encapsulant; positioning internal leadfingers adjacent and connected to a bottom integrated circuit die; pressing the bottom encapsulant on to the bottom integrated circuit die; connecting the top integrated circuit die to external leadfingers adjacent the internal leadfingers; and forming a top encapsulant over the top integrated circuit die.05-21-2009
20090140402SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A method includes: mounting a plurality of semiconductor elements on a substrate having wirings; connecting electrically electrodes of the semiconductor elements and the wirings; sealing the semiconductor elements with a resin, which is carried out by bringing a thermal conductor having a concavity and the substrate to be in contact with each other so that the semiconductor elements are positioned within the concavity and by filling the concavity with the resin; and separating respective semiconductor elements 06-04-2009
20120104581Semiconductor package device with a heat dissipation structure and the packaging method thereof - The present invention provide a heat dissipation structure on the active surface of the die to increase the performance of the heat conduction in longitude direction of the semiconductor package device, so that the heat dissipating performance can be improved when the semiconductor package device is associated with the exterior heat dissipation mechanism.05-03-2012
20110221048Package Having Spaced Apart Heat Sink - An integrated circuit (IC) package that includes a lead frame, and a die affixed to a first surface of a pad of the lead frame. The die is wire bonded to the lead frame. The package includes a heat sink spaced apart from a second surface of the pad, where the second surface opposes the first surface. Molding compound encapsulates the lead frame and the die. The molding compound is disposed between the heat sink and the second surface of the pad and is enabled access between the heat sink and the second surface through protruding features disposed on the heat sink, the second surface, and/or some combination of the two.09-15-2011
20080315379Semiconductor packages including thermal stress buffers and methods of manufacturing the same - Provided is a semiconductor package and method of manufacturing the same. The semiconductor package may include a semiconductor chip, an encapsulant encapsulating the semiconductor chip, a lead unit, and a partially encapsulated by the encapsulating thermal stress buffer which absorbs thermal stress of the semiconductor chip or the encapsulant.12-25-2008
20100148329QUAD FLAT NO LEAD (QFN) INTEGRATED CIRCUIT (IC) PACKAGE HAVING A MODIFIED PADDLE AND METHOD FOR DESIGNING THE PACKAGE - A QFN IC package is provided that has all of the advantages of the typical QFN IC package, but in addition, has a paddle that is configured to facilitate trace routing and/or via placement on the PWB or PCB on which the IC package is mounted. By configuring the paddle as necessary or desired in order to facilitate routing and/or via placement, the overall size of the PWB or PCB can be reduced without sacrificing the thermal or electrical performance advantages that the paddle provides. In addition, the reduction in the overall size of the PWB or PCB results in reduced cost.06-17-2010
20100155914Power Module Having Stacked Flip-Chip and Method of Fabricating the Power Module - Provided are a power module having a stacked flip-chip and a method of fabricating the power module. The power module includes a lead frame; a control device part including a control device chip; a power device part including a power device chip and being electrically connected to the lead frame; and an interconnecting substrate of which the control and power device parts are respectively disposed at upper and lower portions, and each of the control and power device chips may be attached to one of the lead frame and the interconnecting substrate using a flip-chip bonding method. The method includes forming bumps on power and control device chips on a wafer level; separately sawing the power and control device chips into individual chips; adhering the power device chip onto a thermal substrate and the control device chip onto an interconnecting substrate; combining a lead frame, the thermal substrate, and the interconnecting substrate with one another in a multi-jig; and sealing the power and control device chips, and the control and power device chips may be attached to one of the lead frame and the interconnecting substrate using a flip-chip bonding method.06-24-2010
20090051018SEMICONDUCTOR COMPONENT AND METHOD OF MANUFACTURE - In various embodiments, semiconductor components and methods to manufacture these components are disclosed. In one embodiment, a method to manufacture a semiconductor component is disclosed. The semiconductor includes a heat sink and a semiconductor die that has a first terminal on a top surface of the semiconductor die, a second terminal on the top surface of the die, and a third terminal on the bottom surface of the die. The method includes attaching a first portion of a leadframe structure to the first terminal of the semiconductor die. The method further includes attaching the second terminal of the semiconductor die to the heat sink after the attaching of the first portion of the leadframe structure to the first terminal of the semiconductor die, wherein the leadframe structure is spaced apart from the heat sink and is electrically isolated from the heat sink. Other embodiments are described and claimed.02-26-2009
20100176498POWER MODULE PACKAGE HAVING EXCELLENT HEAT SINK EMISSION CAPABILITY AND METHOD FOR MANUFACTURING THE SAME - A power module package includes a power circuit element, a control circuit element, a lead frame, an aluminum oxide substrate having a heat sink and an insulation layer, and a sealing resin. The control circuit element is electrically connected with the power circuit element to control chips within the power circuit element. The lead frame has external connection terminal leads in its edge and has a first surface to which the power circuit element and the control circuit element are attached and a second surface which is used as a heat transmission path. The heat sink is a plate made of metal such as aluminum and the electrical insulation layer is formed at least on an upper surface of the heat sink and made of aluminum oxide. The electrical insulation layer may be formed over an entire surface of the heat sink. Here, the insulation layer is attached to the second surface by an adhesive, on a region below where the power circuit element is attached, to the first surface of the lead frame. In addition, the sealing resin encloses the power circuit element and the control circuit element, the lead frame, and the metal oxide substrate and exposes the external connection terminals of the lead frame.07-15-2010
20100148328POWER QUAD FLAT NO-LEAD SEMICONDUCTOR DIE PACKAGES WITH ISOLATED HEAT SINK FOR HIGH-VOLTAGE, HIGH-POWER APPLICATIONS, SYSTEMS USING THE SAME, AND METHODS OF MAKING THE SAME - Disclosed are PQFN semiconductor die packages for high-voltage, high-power applications, systems using the packages, and methods of making the packages. An exemplary package comprises a leadframe, a semiconductor die disposed on the leadframe, and a heat sink member disposed on the semiconductor die and the leadframe and integrated into the molding material of the package. The heat sink member has an electrically insulating substrate with a high breakdown voltage, and one or more conductive layers disposed on a first surface of the substrate that electrically interconnect the semiconductor to one or more leads of the leadframe.06-17-2010
20100237479Lead Frame Based, Over-Molded Semiconductor Package with Integrated Through Hole Technology (THT) Heat Spreader Pin(s) and Associated Method of Manufacturing - A method and apparatus are provided for manufacturing a lead frame based, over-molded semiconductor package (09-23-2010
20100219516Power management integrated circuit - An integrated circuit (IC) package is disclosed. The IC package includes a first die; and a second die bonded to the CPU die in a three dimensional packaging layout.09-02-2010
20100252918MULTI-DIE PACKAGE WITH IMPROVED HEAT DISSIPATION - The present invention discloses a multi-die package which facilitates heat dissipation for a high power consumption die. In the package, part of the lead frame is bent so as to be exposed at the surface of the package. On the opposite side of the exposed surface, a high power consumption die is attached. The other die with lower power consumption is not at the surface of the multi-die package.10-07-2010
20130127029TWO LEVEL LEADFRAME WITH UPSET BALL BONDING SURFACE AND DEVICE PACKAGE - A leadframe, device package, and mode of construction configured to attain a thin profile and improved thermal performance. Leadframes of this invention include a raised die attachment pad arrange above distal ends of leadframe leads. A package will further include a die electrically coupled with an underside surface of the raised die attachment pad, in one example, using ball bonds, the whole sealed in an encapsulant that exposed a bottom portion of the die and a portion of a lead. Two leadframe stacks of such packages are also disclosed as are methods of manufacture.05-23-2013
20090039483HEAT SLUG AND SEMICONDUCTOR PACKAGE - A heat slug includes a heat spreading member and a supporting member. The supporting member extends outwardly from the edge of the heat spreading member. The tips of the supporting member are formed with a plurality of contact portions, wherein each said contact portion has a bottom face inclined to the surface of the chip carrier at an angle of more than 5 degrees. The present invention further provides a semiconductor package.02-12-2009
20090115037INTEGRATED CIRCUIT PACKAGE WITH INTEGRATED HEAT SINK - An IC package and methods for making the same are described. The IC package includes a die and a heat sink that is attached to the back surface of the die with a thermal interface material layer. The heat sink includes a base and a partition. The partition extends around the periphery of the base and is offset from the outer edge of the base such that a ledge region is formed that surrounds the periphery of the base. The inner surfaces of the partition define an inner region that includes heat dissipation structures. A molding material encapsulates at least portions of the die and the ledge region around the periphery of the heat sink while leaving the inner region of the heat sink unencapsulated by molding material and exposed. The molding material covering the ledge region provides a locking feature that secures the heat sink in the package.05-07-2009
20090115038Semiconductor Packages and Methods of Fabricating the Same - Provided are semiconductor packages and methods of fabricating the same. An exemplary semiconductor package includes a die pad including a dimple filled with an insulating material in an upper surface or a lower surface thereof. A semiconductor chip is mounted on the upper surface of the first die pad. A package body encapsulates the first die pad and the first semiconductor chip and includes a pinhole. A bottom surface of the pinhole terminates at the insulating material.05-07-2009
20090072362THERMAL ENHANCED UPPER AND DUAL HEAT SINK EXPOSED MOLDED LEADLESS PACKAGE - A semiconductor package includes a semiconductor device 03-19-2009
20080283983SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A portion of a frame body is fixed on a surface of a heat-radiating plate, and on frame body, a semiconductor chip is die-bonded. Next, a prescribed electrode of semiconductor chip and corresponding lead terminal and the like are electrically connected by a prescribed wire. Next, the lead frame is set in a metal mold such that the semiconductor chip is covered with resin from above the semiconductor chip. Thermoplastic resin is introduced into the metal mold, and semiconductor chip and the like are sealed. By taking out the resulting body from the metal mold, a semiconductor is formed. Thus, a semiconductor device can be provided with reduced manufacturing cost.11-20-2008
20100295160QUAD FLAT PACKAGE STRUCTURE HAVING EXPOSED HEAT SINK, ELECTRONIC ASSEMBLY AND MANUFACTURING METHODS THEREOF - A quad flat package (QDP) structure having an exposed heat sink is provided. The QDP structure includes a leadframe, a chip, a heat sink, an insulating layer and a molding compound. The leadframe includes a die pad and multiple leads surrounding the die pad. The chip is disposed on the die pad and electrically connected to the die pad and the leads. The heat sink has a top surface, a bottom surface opposite thereto, and a side surface connected to the top and the bottom surfaces. The die pad is disposed in a central area of the top surface of the heat sink and electrically connected to the heat sink. The molding compound encapsulates the chip, the die pad, an inner lead portion of each lead and heat sink, and exposes the bottom surface of the heat sink and an outer lead portion of each lead.11-25-2010
20110108964SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A portion of a frame body is fixed on a surface of a heat-radiating plate, and on frame body, a semiconductor chip is die-bonded. Next, a prescribed electrode of semiconductor chip and corresponding lead terminal and the like are electrically connected by a prescribed wire. Next, the lead frame is set in a metal mold such that the semiconductor chip is covered with resin from above the semiconductor chip. Thermoplastic resin is introduced into the metal mold, and semiconductor chip and the like are sealed. By taking out the resulting body from the metal mold, a semiconductor is formed. Thus, a semiconductor device can be provided with reduced manufacturing cost.05-12-2011
20100164078PACKAGE ASSEMBLY FOR SEMICONDUCTOR DEVICES - Semiconductor packages and methods for making and using such semiconductor packages are described. The semiconductor packages contain a dual gauge heat sink exposed on an upper part of the package, a leadframe containing a gate lead and an exposed drain pad on a lower part of the package, and a semiconductor die containing an IC device located between the heat sink and the leadframe. The gate of the IC device is connected to the gate lead of the leadframe using a bond interconnect wire or a gate interconnect clip located and placed under the heat sink and in between the heat sink and main leadframe. Such a configuration provides both a simple design for the semiconductor package and a simple method of manufacturing. Other embodiments are described.07-01-2010
20110127658Muti Thickness Lead Frame - A lead frame includes a lead frame 06-02-2011
20110121440SEMICONDUCTOR DEVICE AND LEAD FRAME THEREOF - A semiconductor device includes a semiconductor element and a lead frame. The lead frame includes a first lead, a second lead, a third lead, a fourth lead, and a fifth lead placed parallel to one another. The first and second leads are placed adjoining to each other and constitute a first lead group, and the third and fourth leads are placed adjoining to each other and constitute a second lead group. The spacing between the first lead group and the fifth lead, the spacing between the second lead group and the fifth lead, and the spacing between the first lead group and the second lead group are larger than the spacing between the first lead and the second lead and the spacing between the third lead and the fourth lead.05-26-2011
20090039482Package Including a Microprocessor & Fourth Level Cache - A method, apparatus and system with a package including an integrated circuit disposed between die including a microprocessor and a die including a fourth level cache.02-12-2009
20100038758SEMICONDUCTOR MODULE WITH TWO COOLING SURFACES AND METHOD - A semiconductor module with two cooling surfaces and method. One embodiment includes a first carrier with a first cooling surface and a second carrier with a second cooling surface. The first cooling surface is arranged in a first plane, the second cooling surface is arranged in a second plane, at an angle different from 0° relative to the first plane.02-18-2010
20110175212DUAL DIE SEMICONDUCTOR PACKAGE - A dual die semiconductor package has a grid array of electrical contacts on a bottom surface of a substrate. There is a first semiconductor die with a base surface mounted to an upper surface of the substrate and the first semiconductor die has first die upper surface external electrical connection pads on an upper surface that are electrically connected to respective electrical contacts of the grid array. There is also a second semiconductor die with a base surface mounted to an upper surface of a lead frame flag. There are second die upper surface external electrical connection pads on an upper surface of the second semiconductor die. The dual die semiconductor package includes leads and at least some of the leads are electrically connected to respective pads that provide the second die upper surface external electrical connection pads. A package body at encloses the first semiconductor die and the second semiconductor die. The electrical contacts of the grid array and part of each of the leads protrude from the package body to form external package electrical connections. Also, at least part of a base surface of the lead frame flag directly under the second semiconductor die is left exposed by the package body and provides a heat sink.07-21-2011
20110175213SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device includes: at least one semiconductor element having electrode terminals; a metal plate supporting the semiconductor element; and a wiring board covering the semiconductor element and including a plurality of insulating layers and wiring layers alternately stacked and external connection terminals on a surface, the wiring layers being electrically connected to each other by vias. The electrode terminals and the external connection terminals are electrically connected via at least one of the wiring layers and the vias. At least one of the electrode terminals, the is wiring layers, and the vias is electrically connected to the metal plate.07-21-2011
20100127364SEMICONDUCTOR DEVICE AND HEAT RADIATION MEMBER - A semiconductor device includes a semiconductor element mounted on a substrate; at least one electronic part arranged around the semiconductor element; and a heat radiation member bonded to a backside of the semiconductor element by a bonding material. The heat radiation member has an isolation part extending between an outer circumference of the semiconductor element and the electronic part.05-27-2010
20110068445CHIP PACKAGE AND PROCESS THEREOF - A chip package and a process thereof are provided. The chip package includes a lead frame, a heat sink, a chip and a molding compound. The lead frame includes a chip pad and a plurality of leads, wherein the chip pad has a first surface and a second surface opposite thereto. The heat sink has a third surface and a fourth surface opposite thereto, wherein the lead frame is disposed on the third surface of the heat sink through the second surface of the chip pad, and the fourth surface of the heat sink is exposed. The chip is disposed on the first surface of the chip pad and electrically connected to each of the chip pad and the leads. The molding compound encapsulates the chip, the chip pad, the heat sink and a portion of each of the leads.03-24-2011
20120119341Semiconductor packages with reduced solder voiding - An example semiconductor package with reduced solder voiding is described, which has a leadframe having an I/O pad and a thermal pad, a fabricated semiconductor die having a bond pad, where the fabricated semiconductor die is attached to a top surface of the thermal pad, and a wire bond connecting the bond pad to the I/O pad, where a bottom surface of the thermal pad has channels.05-17-2012
20090001532Plastic-Encapsulated Semiconductor Device with an Exposed Radiator at the Top and Manufacture Thereof - A plastic-encapsulated semiconductor device is provided which comprises a plastic-encapsulant 01-01-2009
20100244211MULTICHIP DISCRETE PACKAGE - A multichip discrete package with a leadframe having a plurality of leads and a first die attach pad (DAP), the first DAP having side portions that extend above the first DAP, a first discrete die bonded to the first DAP, at least a first wirebond which forms an electrical connections between the first discrete die and a first selected one of the plurality of leads, a metal plate attached to tops of the side portions forming a second DAP, a second discrete die bonded to the second DAP, at least a second wirebond which forms an electrical connections between the second discrete die and a second selected one of the leads; and encapsulating material formed around the first and second die and the first and second DAPs.09-30-2010
20080203550Component, Power Component, Apparatus, Method Of Manufacturing A Component, And Method Of Manufacturing A Power Semiconductor Component - A component has a device applied to a device carrier, a first conducting layer grown onto the device and onto the device carrier, and an insulating material applied to the first conducting layer such that only a portion of the first conducting layer is covered.08-28-2008
20110163429Semiconductor Chip Package Assembly with Deflection-Resistant Leadfingers - The invention relates to leadframes and semiconductor chip package assemblies using leadframes, and to methods for their assembly. A disclosed embodiment of the invention includes a semiconductor package leadframe with a chip mounting surface for receiving a semiconductor chip and a plurality of leadfingers. The leadfingers have a proximal end for receiving one or more wirebond, and a distal end for providing an electrical path from the proximal end. One or more of the leadfingers also has an offset portion at its proximal end for increasing the clearance between the leadfinger and underlying heat spreader, increasing the stiffness of the leadfinger, and increasing leadfinger deflection-resistance and spring-back. The offset is in the direction opposite the plane of a heat spreader thermally coupled to the mounting surface. Preferred embodiments of the invention further include a semiconductor chip affixed to the mounting surface and a plurality of bondwires operably coupling bond pads of the chip to the offset portions of the proximal ends of individual leadfingers.07-07-2011
20110163428SEMICONDUCTOR PACKAGES WITH EMBEDDED HEAT SINK - Semiconductor packages and methods for making and using the same are described. The semiconductor packages contain a leadframe having an array of holes with a layout corresponding to the land pad array of the package, wherein the holes contain a thermally-conductive dielectric material with a via therein containing an electrically conductive material. The electrically conductive materials can extend past the bottom of the leadframe to form the land pad array of the packages. With such a configuration, the leadframe can act as an embedded heat sink in the package and there is no need to mount an additional heat sink to the package for thermal dissipation, allowing a thinner package to be manufactured. With such a configuration, the semiconductor packages have a full land pad array, providing a smaller footprint and a higher I/O capacity. Other embodiments are also described.07-07-2011
20110133320SEMICONDUCTOR PACKAGE AND METHOD OF MANUFACTURING THE SAME - A semiconductor package includes a metal plate, a power element, a lead frame having a die pad, a resin sheet having insulation properties, a control circuit that controls the power element, and a mold resin. The power element is mounted on the die pad, and the die pad is mounted on the metal plate via the resin sheet. The resin sheet is expanded including at least a lower surface of the die pad while the lower surface of the resin sheet is smaller than an surface of the metal plate, and the control circuit is arranged in a region on the metal plate, which region is other than the region where the power element is arranged.06-09-2011
20110073999MIXED ALLOY LEAD FRAME FOR PACKAGING POWER SEMICONDUCTOR DEVICES AND ITS FABRICATION METHOD - This invention discloses a mixed alloy lead frame for power semiconductor devices, which includes a plurality of heat sinks and a pin array; the heat sinks are made of the first material, with positioning holes on their upper parts and welding zones at the center of their lower parts, while the pin array is made of the second material, which is different from the first material, with a plurality of sets of terminals leading out from its upper end and lower end respectively. The heat sinks are positioned on the lead frame assembly welding plate, the pin is positioned in the area between the upper heat sinks and lower heat sinks on the lead frame assembly welding plate. The mixed alloy lead frame for power semiconductor devices in this invention improves the heat dissipation of lead frame, reduces the fabrication cost of lead frame, and enhances the flexibility of fabrication.03-31-2011
20100019360INTEGRATED CIRCUIT PACKAGE WITH ETCHED LEADFRAME FOR PACKAGE-ON-PACKAGE INTERCONNECTS - Methods, systems, and apparatuses for integrated circuit packages, and for package stacking, are provided. An electrically conductive frame is attached to a first surface of a substrate. The electrically conductive frame includes a perimeter ring portion, a plurality of leads, and a plurality of interconnect members positioned within a periphery formed by the perimeter ring portion. Each interconnect member is coupled to the perimeter ring portion by a respective lead. A first end of each interconnect member is coupled to the first surface of the substrate. An encapsulating material is applied to the first surface of the substrate, without covering a second end of each interconnect member with the encapsulating material. The perimeter ring portion is removed from the electrically conductive frame to isolate the plurality of interconnect members. A first integrated circuit package is formed in this manner. A second integrated circuit package may be mounted to the first package. Signals of the first package may be electrically coupled with the second package at the exposed second ends of the interconnect members. Side surfaces of the interconnect members may be exposed at sides of the first package.01-28-2010
20090174044Multi-chip package - A semiconductor package is disclosed. Particularly, a multi-chip package is disclosed, which can stably maintain insulation between a plurality of semiconductor chips and effectively release heat to the outside. The semiconductor package includes an insulation layer including a diamond layer formed by a chemical vapor deposition method between a lead frame or a heat sink and the semiconductor chips disposed thereon.07-09-2009
20110304032NO LEAD PACKAGE WITH HEAT SPREADER - A no-lead electronic package including a heat spreader and method of manufacturing the same. This method includes the steps of selecting a matrix or mapped no-lead lead frame with die receiving area and leads for interconnect; positioning an integrated circuit device within the central aperture and electrically interconnecting the integrated circuit device to the leads; positioning a heat spreader in non-contact proximity to the integrated circuit device such that the integrated circuit device is disposed between the leads and the heat spreader; and encapsulating the integrated device and at least a portion of the heat spreader and leads in a molding resin.12-15-2011
20090294936FOUR MOSFET FULL BRIDGE MODULE - A molded, leadless packaged semiconductor multichip module includes 12-03-2009
20090008754RESIN-SEALED SEMICONDUCTOR DEVICE, LEADFRAME WITH DIE PADS, AND MANUFACTURING METHOD FOR LEADFRAME WITH DIE PADS - A resin-sealed semiconductor device with built-in heat sink prevents internal bulging and cracking caused by exfoliation of a semiconductor element from the heat sink when the vapor pressure of moisture absorbed into a gap between the semiconductor element and the heat sink rises during mounting of the semiconductor device to a printed circuit board using lead-free solder. By providing a plurality of separated die pads (01-08-2009
20120104582High Power Ceramic on Copper Package - According to an embodiment of a high power package, the package includes a heat sink containing enough copper to have a thermal conductivity of at least 350 W/mK, an electrically insulating attached to the heat sink with an epoxy and a semiconductor chip attached to the heat sink on the same side as the lead frame with an electrically conductive material having a melting point of 280° C. or greater.05-03-2012
20120001309SEMICONDUCTOR APPARATUS - A semiconductor apparatus according to aspects of the invention can include a metal base; resin case having a bonding plane facing metal base; a coating groove formed in bonding plane and holding adhesive for bonding resin case to metal base at a predetermined position, with the top plane of the wall that forms coating groove being spaced apart from the plane which contains bonding plane such that an escape space is formed between the metal base and the resin case; the escape space receiving the excess amount of adhesive which has flowed out from the coating groove; and a receiver groove communicating to the escape space and receiving securely the excess amount of adhesive which the escape space has failed to receive. If an excess amount of adhesive too much for the receiver groove to receive is coated, the excess amount of adhesive can be received in a stopper groove.01-05-2012
20110156226INTERPOSER AND SEMICONDUCTOR DEVICE - An interposer and a semiconductor device including the interposer are provided, which can prevent thermal warpage of an insulative substrate thereof. The interposer is provided with a semiconductor chip in a semiconductor device andmay be disposed between the semiconductor chip and a mount board. The interposer includes: a substrate of an insulative resin; an island on one surface of the substrate to be bonded to a rear surface of the chip; a thermal pad on the other surface opposite the one surface opposed to the island with the intervention of the substrate; and a thermal via extending through the substrate from the one surface to the other surface to thermally connect the island to the thermal pad.06-30-2011
20110049689SEMICONDUCTOR DEVICE WITH ACENE HEAT SPREADER - A semiconductor device in which an adhesion between a lead and a sealing body (mold sealing body) is improved to prevent the peering is provided. In a semiconductor device having a semiconductor chip, a plurality of leads electrically connected to the semiconductor chip and mainly made of metal and a sealing body for sealing the semiconductor chip, in order to improve the adhesion between the lead and the sealing body (mold sealing body), a material combination with good lattice matching is used as a combination of a surface material of the lead and a material of the sealing body, and the sealing body mainly made of acene is used.03-03-2011
20090108423SEMICONDUCTOR PACKAGE - A semiconductor package includes a leadframe defining a die pad, a chip electrically coupled to the die pad, encapsulation material covering the chip and the die pad, and a plurality of lead ends exposed relative to the encapsulation material and configured for electrical communication with the chip, and a nitrogen-containing hydrocarbon coating disposed over at least the lead ends of the leadframe, where the hydrocarbon coating is free of metal particles.04-30-2009
20110084371MODULAR LOW STRESS PACKAGE TECHNOLOGY - A protective modular package cover has first and second fastening sections located at opposing first and second ends with one or more subassembly receiving sections disposed thereto and is configured to fasten the protective modular package cover to a core. Each fastening section has a foot surface located on a bottom surface of a fastening section and configured to make contact with the core, a mounting hole configured to receive a fastener, and a torque element. Each subassembly receiving section is configured to receive a subassembly and has a cross member formed along the underside of the protective modular package cover. Activation of the first torque element transfers a downward clamping force generated at the fastening element to a top surface of one or more subassemblies disposed in the one or more subassembly receiving sections via the cross member of each of the one or more subassembly receiving sections.04-14-2011
20120025358SEMICONDUCTOR ELEMENT WITH SEMICONDUCTOR DIE AND LEAD FRAMES - A semiconductor element to be mounted on a circuit carrier includes a semiconductor die and at least one lead frame. In order to reduce the size required for mounting a semiconductor die on a circuit carrier, a semiconductor element includes a semiconductor die and at least one lead frame. The at least one lead frame is directly attached to the semiconductor die at a connection region of the semiconductor die, and the connection region provides an electrical connection to and mechanical support for the semiconductor die.02-02-2012
20120025359SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A conventional semiconductor device has a problem that a frame constituting a heat sink is expensive and the heat sink is highly likely to come off a resin package. A semiconductor device of the present invention reduces the frame price because a heat sink is formed by subjecting a frame with a uniform thickness to pressing or something similar. Furthermore, the heat sink is less likely to come off a resin package because step regions of the heat sink are pressed as connection regions to be connected to the other frame in which leads are arranged, and thereby, resin constituting the resin package goes around the step regions and reaches up to back surfaces of the respective step regions. Moreover, a structure which makes the heat sink much less likely to come off is realized because recessed portions are arranged in the step regions of the heat sink.02-02-2012
20120306064CHIP PACKAGE - A chip package including a lead frame, a heat sink, a chip and a molding compound is provided. The lead frame includes a chip pad and a plurality of leads, wherein the chip pad has a first surface and a second surface opposite thereto. The heat sink has a third surface and a fourth surface opposite thereto, wherein the lead frame is disposed on the third surface of the heat sink through the second surface of the chip pad, and the fourth surface of the heat sink is exposed. The chip is disposed on the first surface of the chip pad and electrically connected to each of the chip pad and the leads. The molding compound encapsulates the chip, the chip pad, the heat sink and a portion of each of the leads.12-06-2012
20120153448SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE - A semiconductor device includes: a substrate; a semiconductor element installed on the substrate so that a surface formed with an electrode is directed to the substrate; a chip capacitor installed on the substrate; and a conductive material covering a rear surface opposite to the surface of the semiconductor element and joining to one terminal electrode of the chip capacitor.06-21-2012
20120313229PACKAGE STRUCTURE AND MANUFACTURING METHOD THEREOF - The invention discloses a package structure for better heat-dissipation or EMI performance. A first conductive element and a second conductive element are both disposed between the top lead frame and the bottom lead frame. The first terminal of the first conductive element is electrically connected to the bottom lead frame, and the second terminal of the first conductive element is electrically connected to the top lead frame. The third terminal of the second conductive element is electrically connected to the bottom lead frame, and the fourth terminal of the second conductive element is electrically connected to the top lead frame. In one embodiment, a heat dissipation device is disposed on the top lead frame. In one embodiment, the molding compound is provided such that the outer leads of the top lead frame are exposed outside the molding compound.12-13-2012
20120161303POWER SEMICONDUCTOR MODULE - A driver IC which is operated by a power supply system insulated from a control IC is mounted in the vicinity of a switching element on a first conductor pattern. A second conductor pattern connected to a source terminal or an emitter terminal of the switching element is electrically connected to a third conductor pattern on which the driver IC is mounted. A ground terminal of the driver IC is electrically connected to the third conductor pattern, and a drive terminal of the driver IC is electrically connected to a gate terminal or a base terminal of the switching element.06-28-2012
20120161302SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device according to the present disclosure includes: a plate (06-28-2012
20110180915ELECTRONIC DEVICE AND METHOD OF MANUFACTURING THE SAME - An electronic device includes a heat sink, a substrate mounted on the heat sink, a coating layer formed on the substrate, a lead frame fixed to the heat sink, and a mold resin sealing the substrate and the lead frame. The coating layer is made of one of a polyimide-based resin and a polyamideimide-based resin. The lead frame has a fixing terminal fixed to the heat sink through an adhesive layer. The adhesive layer is made of the same material as the coating layer.07-28-2011
20120168919SEMICONDUCTOR PACKAGE AND METHOD OF FABRICATING THE SAME - A semiconductor package and a method of manufacturing the same, and more particularly, to a package of a power module semiconductor and a method of manufacturing the same. The semiconductor package includes a substrate including a plurality of conductive patterns spaced apart from one another; a plurality of semiconductor chips disposed on the conductive patterns; a connecting member for electrically connecting the conductive patterns to each other, for electrically connecting the semiconductor chips to each other, or for electrically connecting the conductive pattern and the semiconductor chip; and a sealing member for covering the substrate, the semiconductor chips, and the connecting member, wherein a lower surface of the substrate and an upper surface of the connecting member are exposed to the outside by the sealing member.07-05-2012
20120175755SEMICONDUCTOR DEVICE INCLUDING A HEAT SPREADER - A semiconductor device includes a semiconductor chip including back side metal, a substrate, and an electrically conductive heat spreader directly contacting the back side metal. The semiconductor chip includes a sintered joint directly contacting the heat spreader and electrically coupling the heat spreader to the substrate.07-12-2012
20090102030INTEGRATED CIRCUIT PACKAGE WITH ETCHED LEADFRAME FOR PACKAGE-ON-PACKAGE INTERCONNECTS - Methods, systems, and apparatuses for integrated circuit packages, and for package stacking, are provided. An electrically conductive frame is attached to a first surface of a substrate. The electrically conductive frame includes a perimeter ring portion, a plurality of leads, and a plurality of interconnect members positioned within a periphery formed by the perimeter ring portion. Each interconnect member is coupled to the perimeter ring portion by a respective lead. A first end of each interconnect member is coupled to the first surface of the substrate. An encapsulating material is applied to the first surface of the substrate, without covering a second end of each interconnect member with the encapsulating material. The perimeter ring portion is removed from the electrically conductive frame to isolate the plurality of interconnect members. A first integrated circuit package is formed in this manner. A second integrated circuit package may be mounted to the first package. Signals of the first package may be electrically coupled with the second package at the exposed second ends of the interconnect members. Side surfaces of the interconnect members may be exposed at sides of the first package.04-23-2009
20120074545THIN FLIP CHIP PACKAGE STRUCTURE - A thin flip chip package structure comprises a substrate, a chip and a heat dissipation paste, wherein the substrate comprises an insulating layer and a trace layer. The insulating layer comprises a first insulating portion and a second insulating portion, the first insulating portion comprises a first upward surface, a first downward surface, a first thickness and a recess formed on the first downward surface, wherein the recess comprises a bottom surface. The second insulating portion comprises a second upward surface, a second downward surface and a second thickness larger than the first thickness. The trace layer is at least formed on the second insulating portion, the chip disposed on top of the substrate is electrically connected with the trace layer and comprises a plurality of bumps, and the heat dissipation paste is disposed at the recess.03-29-2012
20090321901THERMALLY BALANCED HEAT SINKS - According to example embodiments, a device configured to dissipate heat from a first chip and a second chip on a multi-chip package includes a primary heat sink configured to contact an upper surface of the first chip, a secondary heat sink configured to contact an upper surface of the second chip, the secondary heat sink disposed within the primary heat sink and movable in relation to the primary heat sink, and a thermally conductive substance disposed in contact with the primary heat sink and the secondary heat sink.12-31-2009
20100327418INTEGRATED CIRCUIT PACKAGE SYSTEM USING HEAT SLUG - An integrated circuit package system includes a substrate having an integrated circuit die thereon; a heat slug having a tie bar, the tie bar having characteristics of singulation from an adjacent heat slug; and an encapsulant molded on the substrate, the heat slug, and the integrated circuit die includes the encapsulant which fills all of the space between the integrated circuit die and the heat slug.12-30-2010
20110227206INTEGRATED CIRCUIT PACKAGING SYSTEM WITH LEAD FRAME AND METHOD OF MANUFACTURE THEREOF - A method of manufacture of an integrated circuit packaging system includes: providing a base substrate; attaching a base device over the base substrate; attaching a leadframe having a leadframe pillar adjacent the base device over the base substrate; applying a base encapsulant over the base device, the base substrate, and the leadframe; removing a portion of the base encapsulant and a portion of the leadframe providing the leadframe pillar partially exposed; and attaching a base substrate connector to the base substrate directly below the leadframe pillar.09-22-2011
20120273930SEMICONDUCTOR PACKAGE STRUCTURE AND METHOD OF FABRICATING THE SAME - A semiconductor package structure is provided, including: a semiconductor chip having electrode pads disposed thereon and metal bumps disposed on the electrode pads; an encapsulant encapsulating the semiconductor chip; a dielectric layer formed on the encapsulant and having a plurality of patterned intaglios formed therein for exposing the metal bumps; a wiring layer formed in the patterned intaglios of the dielectric layer and electrically connected to the metal bumps; and a metal foil having a plurality of metal posts disposed on a surface thereof such that the metal foil is disposed on the encapsulant with the metal posts penetrating the encapsulant so as to extend to the inactive surface of the semiconductor chip. Compared with the prior art, the present invention reduces the overall thickness of the package structure, increases the electrical transmission efficiency and improves the heat dissipating effect.11-01-2012
20100230791LEADFRAME PACKAGE FOR LIGHT EMITTING DIODE DEVICE - An LED leadframe package with surface tension function to enable the production of LED package with convex lens shape by using dispensing method is disclosed. The LED leadframe package of the invention is a PPA supported package house for LED packaging with metal base, four identical metal electrodes, and PPA plastic to fix the metal electrodes and the heat dissipation base together, four ring-alike structures with a sharp edge and with a tilted inner surface, and three ring-alike grooves formed between sharp edge ring-alike structures.09-16-2010
20120280376INTEGRATED CIRCUIT PACKAGING SYSTEM WITH PAD CONNECTION AND METHOD OF MANUFACTURE THEREOF - A method of manufacture of an integrated circuit packaging system includes: forming a peripheral lead having a peripheral lead bottom side, a peripheral lead top side, a peripheral lead non-horizontal side, a peripheral lead horizontal ridge, and a peripheral lead conductive plate, the peripheral lead horizontal ridge protruding from the peripheral lead non-horizontal side; forming a central lead adjacent to the peripheral lead; forming a first top distribution layer on the peripheral lead top side; connecting an integrated circuit to the first top distribution layer; applying an insulation layer directly on a bottom extent of the first top distribution layer and a peripheral lead ridge lower side of the peripheral lead horizontal ridge; and attaching a heatsink to the central lead under the integrated circuit.11-08-2012
20120326284INTEGRATED CIRCUIT PACKAGING SYSTEM WITH THERMAL EMISSION AND METHOD OF MANUFACTURE THEREOF - A method of manufacture of an integrated circuit packaging system includes: forming a lead array having an innermost space with an innermost lead having an inner lead profile different around an inner non-horizontal side of the innermost lead; forming a middle lead having a middle lead profile the same around a lead side of the middle lead; placing an integrated circuit in the innermost space adjacent to the innermost lead; and forming a package encapsulation over the integrated circuit, the innermost lead, and the middle lead.12-27-2012
20120241930FOLDED LEADFRAME MULTIPLE DIE PACKAGE - A multiple die package includes a folded leadframe for interconnecting at least two die attached to another leadframe. In a synchronous voltage regulator the folded leadframe, which is formed from a single piece of material, connects the high side switching device with the low side switching device to provide a low resistance, low inductance connection between the two devices.09-27-2012
20080237817INTEGRATED CIRCUIT PACKAGE SYSTEM WITH HEAT SINK SPACER STRUCTURES - An integrated circuit package system comprising: providing a package substrate; attaching an integrated circuit die over the package substrate wherein the integrated circuit die has a mount height; attaching an attachment structure having a height substantially the same as the mount height and planar dimensions predetermined to fit adjacent the integrated circuit die and over the package substrate; and attaching a heat dissipation device over the integrated circuit die and the attachment structure.10-02-2008
20080230880Leadframe Array with Riveted Heat Sinks - The invention provides improved rivet and heat sink arrangements in leadframes and IC packages. The invention discloses a semiconductor device leadframe array with numerous leadframes having integrated circuit sites provided for receiving individual integrated circuit chips. Support strips are arranged adjacent to and supporting the integrated circuit sites in an array of one or more rows. Package areas provided each include one or integrated circuit site for ultimate encapsulation in an integrated circuit package. Rivet points are located on the support strips outside of the package areas. An array of heat sinks having corresponding rivet points is riveted to the leadframe array to complete the assembly. Alternative embodiments of the invention provide apparatus and methods for the assembly of an integrated circuit package with a leadframe having an operably coupled integrated circuit chip. One or more support strips supporting the leadframe include rivet points adjacent to the integrated circuit mounting site. A heat sink is secured in coplanar contact with the leadframe using rivets secured in the rivet points of the leadframe and corresponding rivet points in the heat sink. Individual package assemblies made using the invention provide heat sinks secured in contact with the leadframe, integrated circuit, or both, without the necessity for the inclusion of glues, thermal compounds, welds, tapes, or rivets within the package assembly.09-25-2008
20080224286Vertically mountable semiconductor device package - A semiconductor package that includes a die with electrodes on opposite surfaces thereof and respective conductive clip electrically and mechanically coupled to the electrode and configured for vertical mounting of the package.09-18-2008
20080224285Power module having stacked flip-chip and method of fabricating the power module - Provided are a power module having a stacked flip-chip and a method of fabricating the power module. The power module includes a lead frame; a control device part including a control device chip; a power device part including a power device chip and being electrically connected to the lead frame; and an interconnecting substrate of which the control and power device parts are respectively disposed at upper and lower portions, and each of the control and power device chips may be attached to one of the lead frame and the interconnecting substrate using a flip-chip bonding method. The method includes forming bumps on power and control device chips on a wafer level; separately sawing the power and control device chips into individual chips; adhering the power device chip onto a thermal substrate and the control device chip onto an interconnecting substrate; combining a lead frame, the thermal substrate, and the interconnecting substrate with one another in a multi-jig; and sealing the power and control device chips, and the control and power device chips may be attached to one of the lead frame and the interconnecting substrate using a flip-chip bonding method.09-18-2008
20130099364Top-side Cooled Semiconductor Package with Stacked Interconnection Plates and Method - A top-side cooled semiconductor package with stacked interconnection plate is disclosed. The semiconductor package includes a circuit substrate with terminal leads, a semiconductor die atop the circuit substrate, a low thermal resistance intimate interconnection plate for bonding and interconnecting a top contact area of the semiconductor die with the circuit substrate, a low thermal resistance stacked interconnection plate atop the intimate interconnection plate for top-side cooling, a molding encapsulant for encapsulating the package except for exposing a top surface of the stacked interconnection plate to maintain effective top-side cooling. The top portion of the stacked interconnection plate can include a peripheral overhang above the intimate interconnection plate. The peripheral overhang allows for a maximized exposed top surface area for heat dissipation independent of otherwise areal constraints applicable to the intimate interconnection plate. The stacked interconnection plate can be partially etched or three dimensionally formed to create the peripheral overhang.04-25-2013
20130175678Power Semiconductor Module and Manufacturing Method Thereof - A power semiconductor module includes a power semiconductor element formed with a plurality of control electrodes on one main surface, a first conductor plate bonded by way of a first solder material to one of the main surfaces of the power semiconductor element, and a second conductor plate bonded by way of a second solder material on the other main surface of the power semiconductor element. A first protrusion section protruding from the base section of the applicable first conductor plate and including a first protrusion surface formed over the upper side, is formed over the first conductor plate. A second protrusion section including a second protrusion surface formed facing opposite one of the main surfaces of the power semiconductor element. The first solder material is interposed between the power semiconductor element and the first conductor plate while avoiding the plural control electrodes. If there is an projection from a perpendicular direction by one of the main surfaces of the power semiconductor element, the second protrusion section is formed so that the projecting section on a specified side of the second protrusion surface overlaps the projecting section of the step section formed between the base section of the first conductor plate and the first protrusion section. The plural control electrodes on the power semiconductor element are formed along the specified side of the second protrusion surface.07-11-2013
20080197462SEMICONDUCTOR PACKAGE - A semiconductor package is provided with a package main body including a base portion configured by joining thin plates integrally, and a semiconductor device accommodating portion provided on one surface of the base portion, electric terminals electrically connected to a semiconductor device in the accommodating portion and exposed to an outer surface of the accommodating portion, and a heat high-transfer element including at least one layer-like member provided in the base portion. The layer-like member is configured independent of the base portion by a material having a thermal conductivity higher than that of the base portion, and extends from a position corresponding to a heat-generation site of the semiconductor device to a position in an outside of the heat-generation site corresponding position.08-21-2008
20130154068PACKAGED LEADLESS SEMICONDUCTOR DEVICE - A packaged leadless semiconductor device (06-20-2013
20130154069SEMICONDUCTOR PACKAGE - Disclosed herein is a semiconductor package, including: a first heat dissipation substrate; a first lead frame that is formed on the first heat dissipation substrate by patterning; a first semiconductor device formed on the first lead frame; a second semiconductor device that is stacked on the first semiconductor device; a second lead frame that is patterned and bonded to the second semiconductor device; and a second heat dissipation substrate formed on the first lead frame.06-20-2013
20130154070SEMICONDUCTOR PACKAGE - Disclosed herein is a semiconductor package. The semiconductor package includes: semiconductor elements, a first heat dissipation substrate formed under the semiconductor elements, a first lead frame electrically connecting the lower portions of the semiconductor elements to an upper portion of the first heat dissipation substrate, a second heat dissipation substrate formed over the semiconductor elements, and a second lead frame having a protrusion formed to be protruded from a lower surface thereof and electrically connecting the upper portions of the semiconductor elements to a lower portion of the second heat dissipation substrate.06-20-2013
20130207249ASSEMBLY HAVING STACKED DIE MOUNTED ON SUBSTRATE - Metal rerouting interconnects at one or more sides of a die or multiple die segments can form edge bonding pads for electrical connection. Insulation can be applied to surfaces of the die or multiple die segments after optional thinning and singulation, and openings can be made in the insulation to the electrical connection pads. After being placed atop one another in a stack, vertically adjacent die or die segments can be electrically interconnected using a flexible bond wire or bond ribbon attached to an electrical connection pad exposed within such opening, the bond wire or ribbon protruding horizontally, and an electrically conductive polymer, or epoxy, filaments or lines can be applied to the stack.08-15-2013

Patent applications in class With heat sink means