Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Having insulated electrode (e.g., MOSFET, MOS diode)

Subclass of:

257 - Active solid-state devices (e.g., transistors, solid-state diodes)

257213000 - FIELD EFFECT DEVICE

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
257327000 Short channel insulated gate field effect transistor 2266
257368000 Insulated gate field effect transistor in integrated circuit 2199
257314000 Variable threshold (e.g., floating gate memory device) 2010
257347000 Single crystal semiconductor layer on insulating substrate (SOI) 858
257296000 Insulated gate capacitor or insulated gate transistor combined with capacitor (e.g., dynamic memory cell) 835
257290000 Light responsive or combined with light responsive device 563
257410000 Gate insulator includes material (including air or vacuum) other than SiO 2 356
257355000 With overvoltage protective means 217
257295000 With ferroelectric material layer 206
257408000 Including lightly doped drain portion adjacent channel (e.g., lightly doped drain, LDD device) 162
257412000 Gate electrode of refractory material (e.g., polysilicon or a silicide of a refractory or platinum group metal) 159
257365000 With plural, separately connected, gate electrodes in same device 149
257402000 With permanent threshold adjustment (e.g., depletion mode) 96
257409000 With means to increase breakdown voltage (e.g., field shield electrode, guard ring, etc.) 55
257364000 With resistive gate electrode 9
257367000 Insulated gate controlled breakdown of pn junction (e.g., field plate diode) 7
257289000 Significant semiconductor chemical compound in bulk crystal (e.g., GaAs) 4
20100072523SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device includes a first MIS transistor and a second MIS transistor. The first MIS transistor includes a first gate electrode includes a second metal film formed on a first gate insulating film, and an insulating film formed, extending over side surfaces of the first gate electrode and upper surfaces of regions located in the first active region laterally outside the first gate electrode. The second MIS transistor includes a second gate electrode including a first metal film formed on a second gate insulating film and a conductive film formed on the first metal film, and the insulating film formed, extending over side surfaces of the second gate electrode and upper surfaces of regions located in the second active region laterally outside the second gate electrode. The first and second metal films are made of different metal materials.03-25-2010
20080237663FABRICATION OF SELF-ALIGNED GALLIUM ARSENIDE MOSFETS USING DAMASCENE GATE METHODS - A method for fabricating a gallium arsenide MOSFET device is presented. A dummy gate is formed over a gallium arsenide substrate. Source-drain extensions are implanted into the substrate adjacent the dummy gate. Dummy spacers are formed along dummy gate sidewalls and over a portion of the source-drain extensions. Source-drain regions are implanted. Insulating spacers are formed on dummy oxide spacer sidewalls. A conductive layer is formed over the source-drain regions. The conductive layer is annealed to form contacts to the source-drain regions. The dummy gate and the dummy oxide spacers are removed to form a gate opening. A passivation layer is in-situ deposited in the gate opening. The surface of the passivation layer is oxidized to create an oxide layer. A dielectric layer is ex-situ deposited over the oxide layer. A gate metal is deposited over the dielectric layer to form a gate stack in the gate opening.10-02-2008
20080277699Recess Etch for Epitaxial SiGe - A PMOS transistor and a method for fabricating a PMOS transistor. The method may include providing a semiconductor wafer having a PMOS transistor gate stack, source/drain extension regions, and active regions. The method may also include forming epi sidewalls, performing a ex-situ recess etch, and performing an in-situ recess etch. The ex-situ recess etch and the in-situ recess etch form recessed active regions. The PMOS transistor is formed by a method using ex-situ and in-situ etch and has epitaxial SiGe regions with a greatest width at the surface of the semiconductor wafer.11-13-2008
20090179236Recess Etch for Epitaxial SiGe - A PMOS transistor and a method for fabricating a PMOS transistor. The method may include providing a semiconductor wafer having a PMOS transistor gate stack, source/drain extension regions, and active regions. The method may also include forming epi sidewalls, performing a ex-situ recess etch, and performing an in-situ recess etch. The ex-situ recess etch and the in-situ recess etch form recessed active regions. The PMOS transistor is formed by a method using ex-situ and in-situ etch and has epitaxial SiGe regions with a greatest width at the surface of the semiconductor wafer.07-16-2009
Entries
DocumentTitleDate
20110175149Semiconductor Device and Method of Fabricating the Same - A semiconductor device includes an isolation layer defining an active region formed in a semiconductor substrate. A first recessing process is performed on the isolation layer to expose edge portions of the active region. A first rounding process is performed to round the edge portions of the active region. A second recessing process is performed on the isolation layer. A second rounding process is performed to round the edge portions of the active region.07-21-2011
20110175148Methods of Forming Conductive Features and Structures Thereof - Methods of forming features and structures thereof are disclosed. In one embodiment, a method of forming a feature includes forming a first material over a workpiece, forming a first pattern for a lower portion of the feature in the first material, and filling the first pattern with a sacrificial material. A second material is formed over the first material and the sacrificial material, and a second pattern for an upper portion of the feature is formed in the second material. The sacrificial material is removed. The first pattern and the second pattern are filled with a third material.07-21-2011
20130043518Semiconductor Device And Method Of Fabricating The Same - A method of fabricating a semiconductor device includes forming an interlayer dielectric on a substrate, the interlayer dielectric including first and second openings respectively disposed in first and second regions formed separately in the substrate; forming a first conductive layer filling the first and second openings; etching the first conductive layer such that a bottom surface of the first opening is exposed and a portion of the first conductive layer in the second opening remains; and forming a second conductive layer filling the first opening and a portion of the second opening.02-21-2013
20130043516Semiconductor Device and Manufacturing Method Thereof - A method for manufacturing a semiconductor device includes forming a contact etch stop layer on an active area of a substrate that has a gate stack formed thereon. The gate stack includes a metal gate and a metal oxide. The contact etch stop layer includes a silicon oxide layer sandwiched between a first and a silicon nitride layers, the second silicon nitride layer is disposed on the active area. The method further includes forming a contact hole extending through an interlayer dielectric layer on the first silicon nitride layer using the first silicon nitride layer as a protection for the active area, removing a portion the first silicon nitride layer disposed at the bottom of the contact hole using the silicon oxide layer as a protection for the active area, and removing the metal oxide using the second silicon nitride layer as a protection for the active area.02-21-2013
20130043517Semiconductor Structure And Method For Manufacturing The Same - The present invention provides a method for manufacturing a semiconductor structure, which comprises: providing a substrate, and forming a dielectric layer and a dummy gate layer on the substrate; performing doping and annealing to the dummy gate layer; patterning the dummy gate layer to form a dummy gate, wherein the top cross section of the dummy gate is larger than the bottom cross section of the dummy gate; forming sidewall spacers and source/drain regions; depositing an interlayer dielectric layer and planarizing the same; removing the dummy gate to form an opening within the sidewall spacers; and forming a gate in the opening. Accordingly, the present invention further provides a semiconductor structure. The present invention proposes to form a dummy gate in the shape of a reverse taper, which is capable of alleviating processing difficulty of removing the dummy gate and filling gate material at subsequent steps, and thereby favorably avoiding occurrence of voids or the like and enhancing reliability of devices.02-21-2013
20130043515Strained Channel Field Effect Transistor and the Method for Fabricating the Same - The present invention discloses a strained channel field effect transistor and a method for fabricating the same. The field effect transistor comprises a substrate, a source/drain, a gate dielectric layer, and a gate, characterized in that, an “L” shaped composite isolation layer, which envelops a part of a side face of the source/drain adjacent to a channel and the bottom of the source/drain, is arranged between the source/drain and the substrate; the composite isolation layer is divided into two layers, that is, an “L” shaped insulation thin layer contacting directly with the substrate and an “L” shaped high stress layer contacting directly with the source and the drain. The field effect transistor of such a structure improves the mobility of charge carriers by introducing stress into the channel by means of the high stress layer, while fundamentally improving the device structure of the field effect transistor and improving the short channel effect suppressing ability of the device.02-21-2013
20130043514MULTIPHASE ULTRA LOW K DIELECTRIC MATERIAL - A multiphase ultra low k dielectric process incorporating an organo-silicon precursor including an organic porogen, high frequency radio frequency power just above plasma initiation in a PECVD chamber and energy post treatment. A porous SiCOH dielectric material having a k less than 2.7 and a modulus of elasticity greater than 7 GPa. A graded carbon adhesion layer of SiO02-21-2013
20130043513SHALLOW TRENCH ISOLATION STRUCTURE AND FABRICATING METHOD THEREOF - A fabricating method of a shallow trench isolation structure includes the following steps. Firstly, a substrate is provided, wherein a high voltage device area is defined in the substrate. Then, a first etching process is performed to partially remove the substrate, thereby forming a preliminary shallow trench in the high voltage device area. Then, a second etching process is performed to further remove the substrate corresponding to the preliminary shallow trench, thereby forming a first shallow trench in the high voltage device area. Afterwards, a dielectric material is filled in the first shallow trench, thereby forming a first shallow trench isolation structure.02-21-2013
20130026546INTEGRATED CIRCUIT COMPRISING AN ISOLATING TRENCH AND CORRESPONDING METHOD - An integrated circuit including at least one isolating trench that delimits an active area made of a monocrystalline semiconductor material, the or each trench including an upper portion including an insulating layer that encapsulates a lower portion of the trench, the lower portion being at least partly buried in the active area and the encapsulation layer including nitrogen or carbon.01-31-2013
20130026545MULTIPLE WELL DRAIN ENGINEERING FOR HV MOS DEVICES - At least one N-well implant having a different doping level is formed in a silicon substrate by first etching the substrate with an alignment target for aligning future process masks thereto. This alignment target is outside of any active device area. By using at least one N-well implant having a different doping level in combination with the substrate, a graded junction in the drift area of a metal oxide semiconductor (MOS) field effect transistor (FET) can be created and a pseudo Ldd structure may be realized thereby.01-31-2013
20110101425SEMICONDUCTOR DEVICE WITH INCREASED SNAPBACK VOLTAGE - Methods and apparatus are provided for fabricating a semiconductor device structure. The semiconductor device structure comprises a buried region having a first conductivity type, a first region having a second conductivity type overlying the buried region, a source region having the first conductivity type overlying the first region, and a drain region having the first conductivity type overlying the first region. The semiconductor device structure further comprises a second region having the first conductivity type overlying the buried region, the second region abutting the buried region to form an electrical contact with the buried region, and a first resistance configured electrically in series with the second region and the buried region. The combined series resistance of the first resistance and the second region is greater than a resistance of the buried region.05-05-2011
20090309139ASYMMETRIC GATE ELECTRODE AND METHOD OF MANUFACTURE - The invention relates to an asymmetric gate electrode and method of manufacturing an asymmetric gate electrode. The method includes: forming a source region and drain region in a substrate; forming a symmetrical gate structure over a channel formed between the source region and the drain region; depositing a material on the substrate and planarizing the material to a top of the symmetrical gate structure; recessing the symmetrical gate structure to below a surface of the material; forming spacers in the recess; protecting one edge of the spacer while etching another edge of the spacer to remove a portion thereof; and recessing the symmetrical gate structure on a side closest to the source region while the another edge of the spacer protects the symmetrical gate structure on a side closest to the drain region to form an asymmetrical gate electrode.12-17-2009
20130043512Semiconductor Device Manufacturing Methods and Methods of Forming Insulating Material Layers - Semiconductor device manufacturing methods and methods of forming insulating material layers are disclosed. In one embodiment, a method of forming a composite insulating material layer of a semiconductor device includes providing a workpiece and forming a first sub-layer of the insulating material layer over the workpiece using a first plasma power level. A second sub-layer of the insulating material layer is formed over the first sub-layer of the insulating material layer using a second plasma power level, and the workpiece is annealed.02-21-2013
20130043511INTEGRATED CIRCUITS AND METHODS OF FORMING INTEGRATED CIRCUITS - An integrated circuit includes a gate electrode disposed over a substrate. A source/drain (S/D) region is disposed adjacent to the gate electrode. The S/D region includes a diffusion barrier structure disposed in a recess of the substrate. The diffusion barrier structure includes a first portion and a second portion. The first portion is adjacent to the gate electrode. The second portion is distant from the gate electrode. An N-type doped silicon-containing structure is disposed over the diffusion barrier structure. The first portion of the diffusion barrier structure is configured to partially prevent N-type dopants of the N-type doped silicon-containing structure from diffusing into the substrate. The second portion of the diffusion barrier structure is configured to substantially completely prevent N-type dopants of the N-type doped silicon-containing structure from diffusing into the substrate.02-21-2013
20090230440SINGLE EVENT TRANSIENT HARDENED MAJORITY CARRIER FIELD EFFECT TRANSISTOR - Described herein is a majority carrier device. Specifically, an exemplary device may comprise source, channel, and drain regions in a thin semiconductor layer, and the source, channel, and drain region may all share a single doping type of varying concentrations. Further, the device may comprise an insulating layer above the channel region and a gate region above the insulating layer, such that the gate modulates the channel. The device described herein may eliminate the parasitic bipolar transistor and the sensitivity to excess minority carrier generation that results from single event effects (SEE) such as heavy ion hits.09-17-2009
20110193145CRYSTAL PHASE STABILIZING STRUCTURE - It is possible to achieve the above interface structure stabilization by forming a structure in which a fraction of Ni atoms are substituted with Pt atoms only in the first interface layer, thereby lowering the interface energy while suppressing the variation of the characteristics of NiSi and NiSi/Si interface to the minimum extent. Therefore, it is possible to contribute to the improvement of the yield ratio of elements or the improvement of reliability through the stabilization of the crystal phase of NiSi. The NiSi is formed, for example, on the surface layer of a source drain in a transistor.08-11-2011
20110193143ELECTRONIC DEVICE INCLUDING DOPED REGIONS BETWEEN CHANNEL AND DRAIN REGIONS AND A PROCESS OF FORMING THE SAME - An electronic device can include a drain region of a transistor, wherein the drain region has a first conductivity type. The electronic device can also include a channel region of the transistor, wherein the channel region has a second conductivity type opposite the first conductivity type. The electronic device can further include a first doped region having the first conductivity type, wherein the first doped region extends from the drain region towards the channel region. The electronic device can still further include a second doped region having the first conductivity type, wherein the second doped region is disposed between the first doped region and the channel region.08-11-2011
20130037870SEMICONDUCTOR DEVICE, AND MANUFACTURING METHOD FOR SAME - Disclosed is a manufacturing method for a semiconductor device that prevents excessive etching of a conductive layer, even if the section where a conductive layer contact hole is formed is etched a plurality of times. A light-shielding film 02-14-2013
20130037868SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device includes: a first nitride semiconductor layer; a second nitride semiconductor layer formed over the first nitride semiconductor layer; and a gate electrode facing the second nitride semiconductor layer via a gate insulating film. Because the second nitride semiconductor layer is formed by stacking plural semiconductor layers with their Al composition ratios different from each other, the Al composition ratio of the second nitride semiconductor layer changes stepwise. The semiconductor layers forming the second nitride semiconductor layer are polarized in the same direction so that, among the semiconductor layers, a semiconductor layer nearer to the gate electrode has higher (or lower) intensity of polarization. In other words, the intensities of polarization of the semiconductor layers change with an inclination based on their distances from the gate electrode so that, at each interface between two semiconductor layers, the amount of negative charge becomes larger than that of positive charge.02-14-2013
20130037867SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - According to one embodiment, a semiconductor device includes a substrate, a gate electrode, a channel region, a source region and a drain region. The source region forms a first boundary with the channel region, and the drain region forms a second boundary with the channel region. A side of the gate electrode at the side of the source region has a plurality of convex portions extending along a gate length direction, a side of the gate electrode at the side of the drain region is parallel to a gate width direction, the first boundary and the second boundary have shapes corresponding to the side of the gate electrode at the side of the source region and the side of the gate electrode at the side of the drain region, and the length of the first boundary is more than the length of the second boundary.02-14-2013
20130037866METHOD OF FORMING A SEMICONDUCTOR DEVICE - A method for forming a semiconductor device includes providing a substrate and depositing a gate stack having a side periphery on the substrate. A first liner dielectric layer is deposited on the substrate and the gate stack. A first spacer dielectric layer is deposited on the first liner dielectric layer. The first spacer dielectric layer is selectively etched such that the first spacer dielectric layer remains adjacent at least a portion of the side periphery of the gate stack. A first resist mask is disposed on a first portion of the first spacer dielectric layer such that the first portion of the first spacer dielectric layer is protected by the resist mask and a second portion of the first spacer dielectric layer is not protected by the resist mask. The first spacer dielectric layer is etched such that the second portion is removed and the first portion remains.02-14-2013
20130037869SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE - According to one embodiment, a manufacturing method of a semiconductor device includes a step of forming a dummy-fin semiconductor on a semiconductor substrate; a step of forming an insulating layer, into which a lower part of the dummy-fin semiconductor is buried, on the semiconductor substrate; a step of forming a fin semiconductor, which is bonded to a side face at an upper part of the dummy-fin semiconductor, on the insulating layer; and a step of removing the dummy-fin semiconductor on the insulating layer with the fin semiconductor being left on the insulating layer.02-14-2013
20130037865SEMICONDUCTOR STRUCTURE HAVING A WETTING LAYER - A semiconductor structure which includes a semiconductor substrate and a metal gate structure formed in a trench or via on the semiconductor substrate. The metal gate structure includes a gate dielectric; a wetting layer selected from the group consisting of cobalt and nickel on the gate dielectric lining the trench or via and having an oxygen content of no more than about 200 ppm (parts per million) oxygen; and an aluminum layer to fill the remainder of the trench or via. There is also disclosed a method of forming a semiconductor structure in which a wetting layer is formed from cobalt amidinate or nickel amidinate deposited by a chemical vapor deposition process.02-14-2013
20090085075METHOD OF FABRICATING MOS TRANSISTOR AND MOS TRANSISTOR FABRICATED THEREBY - A method of fabricating a MOS transistor, and a MOS transistor fabricated by the method. The method can include forming a gate pattern on a semiconductor substrate. The gate pattern can be formed by sequentially stacking a gate electrode and a capping layer pattern. The capping layer pattern is formed to have a lower capping layer pattern and an upper capping layer pattern. The lower capping layer pattern is formed to a smaller width than the upper capping layer pattern.04-02-2009
20120175689HYDROGEN PASSIVATION OF INTEGRATED CIRCUITS - An integrated circuit with a passivation trapping layer. An integrated circuit with a hydrogen or deuterium releasing layer underlying a passivation trapping layer. Method for forming an integrated circuit having a hydrogen or deuterium releasing layer. Method for forming an integrated circuit having a passivation trapping layer.07-12-2012
20100072522SEMICONDUCTOR DEVICE AND FABRICATION METHOD THEREOF - A semiconductor device fabrication method includes the steps of (a) forming a dielectric film on a semiconductor substrate; (b) etching the dielectric film by a dry process; and (c) supplying thermally decomposed atomic hydrogen onto the semiconductor substrate under a prescribed temperature condition, to remove a damaged layer produced in the semiconductor substrate due to the dry process.03-25-2010
20100072521METHOD FOR FORMING SILICIDE OF SEMICONDUCTOR DEVICE - A silicide forming method for a semiconductor device. A silicide forming method may include forming a gate electrode by depositing a gate oxide film and/or polysilicon over a silicon substrate and patterning. A silicide forming method may include forming a nitride film spacer over sidewalls of a gate electrode and simultaneously performing source/drain implant and amophization implant over a silicon substrate. A silicide forming method may include depositing an insulating film after performing source/drain and amophization implants. A silicide forming method may include partially and/or entirely exposing a source/drain and/or gate electrode disposed under an insulating film by etching an insulating film. A silicide forming method may include applying a metal film over a silicon substrate and forming silicide over regions etched by performing heat treatment over a source/drain and/or gate electrode.03-25-2010
20130075795Aerogel dielectric layer - A circuit board assembly includes a circuit board, a chip attached to the circuit board and a dielectric layer. The chip has a circuit facing the circuit board and spaced from it. The dielectric layer includes an aerogel. In one embodiment, the aerogel has a dielectric constant of approximately 2.0 or less and a compression strength of at least approximately 100 psi.03-28-2013
20130207166Methods and Apparatus for Doped SiGe Source/Drain Stressor Deposition - A semiconductor device system, structure and method of manufacture of a source/drain with SiGe stressor material to address effects due to dopant out-diffusion are disclosed. In an embodiment, a semiconductor substrate is provided with a gate structure, and recesses for source and drain are formed on opposing sides of the gate structure. Doped stressors are embedded into the recessed source and drain regions, and a plurality of layers of undoped stressor, lightly doped stressor, highly doped stressor, and a cap layer are formed in an in-situ epitaxial process. In another embodiment the doped stressor material is boron doped epitaxial SiGe. In an alternative embodiment an additional layer of undoped stressor material is formed.08-15-2013
20130032866SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A transistor includes an island-like semiconductor film over a substrate, and a conductive film forming a gate electrode over the island-like semiconductor film with a gate insulating film interposed therebetween. The semiconductor film includes a channel forming region, a first impurity region forming a source or drain region, and a second impurity region. The channel forming region is overlapped with the gate electrode crossing the island-like semiconductor film. The first impurity region is adjacent to the channel forming region. The second impurity region is adjacent to the channel forming region and the first impurity region. The first impurity region and the second impurity region have different conductivity. The second impurity region and the channel forming region have different conductivity or have different concentration of an impurity element contained in the second impurity region and the channel forming region in a case of having the same conductivity.02-07-2013
20130032865FABRICATION OF FIELD-EFFECT TRANSISTORS WITH ATOMIC LAYER DOPING - Field effect transistors fabricated using atomic layer doping processes are disclosed. In accordance with an embodiment of an atomic layer doping method, a semiconducting surface and a dopant gas mixture are prepared. Further, a dopant layer is grown on the semiconducting surface by applying the dopant gas mixture to the semiconducting surface under a pressure that is less than 500 Torr and a temperature that is between 300° C. and 750° C. The dopant layer includes at least 4×1002-07-2013
20130032864TRANSISTOR WITH BOOT SHAPED SOURCE/DRAIN REGIONS - Devices are formed with boot shaped source/drain regions formed by isotropic etching followed by anisotropic etching. Embodiments include forming a gate on a substrate, forming a first spacer on each side of the gate, forming a source/drain region in the substrate on each side of the gate, wherein each source/drain region extends under a first spacer, but is separated therefrom by a portion of the substrate, and has a substantially horizontal bottom surface. Embodiments also include forming each source/drain region by forming a cavity to a first depth adjacent the first spacer and forming a second cavity to a second depth below the first cavity and extending laterally underneath the first spacers.02-07-2013
20130075797SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - In one embodiment, a semiconductor device includes a semiconductor substrate, and a fin disposed on a surface of the semiconductor substrate and having a side surface of a (110) plane. The device further includes a gate insulator disposed on the side surface of the fin, and a gate electrode disposed on the side surface and an upper surface of the fin via the gate insulator. The device further includes a plurality of epitaxial layers disposed on the side surface of the fin in order along a height direction of the fin.03-28-2013
20130075796SEMICONDUCTOR DEVICE AND FABRICATION METHOD THEREOF - A method of fabricating a semiconductor device is disclosed. A dummy gate feature is formed between two active gate features over a substrate. An isolation structure is in the substrate and the dummy gate feature is over the isolation structure. In at least one embodiment, a non-conductive material is used for forming the dummy gate feature to replace a sacrificial gate electrode.03-28-2013
20100038687Selective deposition of amorphous silicon films on metal gates - A microelectronic device includes a metal gate with a metal gate upper surface. The metal gate is disposed in an interlayer dielectric first layer. The interlayer dielectric first layer also has an upper surface that is coplanar with the metal gate upper surface. A dielectric etch stop layer is disposed on the metal gate upper surface but not on the interlayer dielectric first layer upper surface.02-18-2010
20100032733SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device includes: a semiconductor substrate having an element formation region containing impurities of a first conductivity type; a gate electrode formed on the element formation region with a gate insulating film interposed therebetween; and a silicon alloy layer formed on a lateral side of the gate electrode in the element formation region, and containing impurities of a second conductivity type. A boundary layer containing impurities of the second conductivity type is formed between the silicon alloy layer and the element formation region.02-11-2010
20100032732ELECTRICAL ANTIFUSE HAVING A MULTI-THICKNESS DIELECTRIC LAYER - An electrical antifuse comprising a field effect transistor includes a gate dielectric having two gate dielectric portions. Upon application of electric field across the gate dielectric, the magnitude of the electrical field is locally enhanced at the boundary between the thick and thin gate dielectric portions due to the geometry, thereby allowing programming of the electrical antifuse at a lower supply voltage between the two electrodes, i.e., the body and the gate electrode of the transistor, across the gate dielectric.02-11-2010
20130082310Semiconductor Structure and Method for Manufacturing the Same - The invention provides a semiconductor structure, comprising a substrate, a semiconductor fin, a gate stack, source/drain regions and a semiconductor body, wherein: the semiconductor fin is located on the semiconductor body, and is connected with the semiconductor body, and both ends of the semiconductor body are connected with the substrate; the gate stack covers the central portion of the semiconductor fin, and extends to the surface of the substrate; and the source/drain regions are located at the end portions of the semiconductor fin; and wherein, cavities are formed in the substrate at both sides of the semiconductor fin, and an insulating material is filled into the cavities. Correspondingly, the invention further provides a method for manufacturing a semiconductor structure. By isolating the semiconductor body under the semiconductor fin from the substrate under the semiconductor body, not only the substrate region under the semiconductor fin is effectively reduced, but also the leakage current between the semiconductor device and the substrate is reduced, and the performance of the semiconductor device is improved.04-04-2013
20090121261STRUCTURE AND METHOD FOR COMPACT LONG-CHANNEL FETs - A compact semiconductor structure including at least one FET located upon and within a surface of a semiconductor substrate in which the at least one FET includes a long channel length and/or a wide channel width and a method of fabricating the same are provided. In some embodiments, the ordered, nanosized pattern is oriented in a direction that is perpendicular to the current flow. In such an embodiment, the FET has a long channel length. In other embodiments, the ordered, nanosized pattern is oriented in a direction that is parallel to that of the current flow. In such an embodiment, the FET has a wide channel width. In yet another embodiment, one ordered, nanosized pattern is oriented in a direction perpendicular to the current flow, while another ordered, nanosized pattern is oriented in a direction parallel to the current flow. In such an embodiment, a FET having a long channel length and wide channel width is provided.05-14-2009
20090121263SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD - A semiconductor device comprises a first conductive film formed downward, perpendicular to a substrate, penetrating through a first insulating film, a second conductive film formed downward along an outer wall of a second insulating film, a third insulating film formed from the bottom of the second conductive film to the top of the substrate in an area sandwiched between the first and second insulating films, contacting with at least the bottom of the second conductive film and an outer wall on a side which does not contact with the second insulating film, and a first impurity diffusion area of a first conductivity type, a second impurity diffusion area of a second conductivity type, a third impurity diffusion area of the first conductivity type and a fourth impurity diffusion area of the first conductivity type in a high concentration layered within the area sandwiched between the first and third insulating films.05-14-2009
20090121262SEMICONDUCTOR DEVICE CAPABLE OF IMPROVING CONTACT RESISTANCE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device includes a gate formed over a semiconductor substrate; a junction region formed in a portion of the semiconductor substrate corresponding to both sides of the gate and including a projection, of which at least some portion thereof projects from the surface of the portion of the semiconductor substrate; and a contact plug formed so as to cover the projection.05-14-2009
20090321795SELECTIVE FORMATION OF DIELECTRIC ETCH STOP LAYERS - Methods to selectively form a dielectric etch stop layer over a patterned metal feature. Embodiments include a transistor incorporating such an etch stop layer over a gate electrode. In accordance with certain embodiments of the present invention, a metal is selectively formed on the surface of the gate electrode which is then converted to a silicide or germanicide. In other embodiments, the metal selectively formed on the gate electrode surface enables a catalytic growth of a silicon or germanium mesa over the gate electrode. At least a portion of the silicide, germanicide, silicon mesa or germanium mesa is then oxidized, nitridized, or carbonized to form a dielectric etch stop layer over the gate electrode only.12-31-2009
20100044762METHOD FOR FORMING A SEMICONDUCTOR DEVICE AND STRUCTURE THEREOF - A non-planar semiconductor device (02-25-2010
20120205728Semiconductor Structure and Method for Manufacturing the Same - The present invention provides a method for manufacturing a semiconductor structure, comprising: providing a substrate, and forming a dummy gate stack on the substrate, sidewall spacers on sidewalls of the dummy gate stack, and source/drain regions at both sides of the dummy gate stack, wherein the dummy gate stack comprising a dummy gate; forming a first contact layer on surfaces of the source/drain regions; forming an interlayer dielectric layer to cover the first contact layer; removing the dummy gate or the dummy gate stack material to form an opening, filling the opening with a first conductive material or with a gate dielectric layer and a first conductive material to form a gate stack structure; forming through holes within the interlayer dielectric layer, so that a portion of the first contact layer or a portion of the first contact layer and the source/drain regions are exposed in the through holes; forming a second contact layer on the exposed portions of the regions; filling the through holes with a second conductive material to form contact vias. Besides, the present invention further provides a semiconductor structure, which is favorable for reducing the contact resistance.08-16-2012
20090159939SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD FOR THE SAME - A semiconductor device includes a first diffusion region including germanium atoms and first impurity atoms, provided on a surface layer of a semiconductor substrate, the first impurity atoms contributing to electric conductivity, and a second diffusion region including second impurity atoms, provided shallower than the first diffusion region from a surface of the first diffusion region, the second impurity atoms not contributing to the electric conductivity.06-25-2009
20090159938METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE OBTAINED WITH SUCH A METHOD - The invention relates to a method of manufacturing a semiconductor device (06-25-2009
20080237659SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - A method of fabricating a semiconductor device is provided. Devices are formed on a core region and a non-core region in a substrate. A strain process is performed to the device on the core region but is not performed to the device on the non-core region.10-02-2008
20100109056METHODS FOR PROTECTING GATE STACKS DURING FABRICATION OF SEMICONDUCTOR DEVICES AND SEMICONDUCTOR DEVICES FABRICATED FROM SUCH METHODS - Methods for protecting gate stacks during fabrication of semiconductor devices and semiconductor devices fabricated from such methods are provided. In an embodiment, a method for fabricating a semiconductor device comprises forming a gate stack comprising a first gate stack-forming layer overlying a semiconductor substrate and forming first sidewall spacers about sidewalls of the gate stack. After the step of forming the first sidewall spacers, a portion of the first gate stack-forming layer is exposed. The exposed portion is anisotropically etched using the gate stack and the first sidewall spacers as an etch mask. Second sidewall spacers are formed adjacent the first sidewall spacers after the step of anisotropically etching.05-06-2010
20100109057Fin field effect transistor and method of fabricating the same - A fin field effect transistor includes a fin protruding from a semiconductor substrate, a gate insulating layer formed so as to cover upper and lateral surfaces of the fin, and a gate electrode formed across the fin so as to cover the gate insulating layer. An upper edge of the fin is rounded so that an electric field concentratedly applied to the upper edge of the fin through the gate electrode is dispersed. A thickness of a portion of the gate insulating layer formed on an upper surface of the fin is greater than a thickness of a portion of the gate insulating layer formed on a lateral surface of the fin, in order to reduce an electric field applied through the gate electrode.05-06-2010
20100109058CONDUCTIVE OXYNITRIDE AND METHOD FOR MANUFACTURING CONDUCTIVE OXYNITRIDE FILM - An electrode formed using a transparent conductive oxide is likely to be crystallized by heat treatment performed in the manufacturing process of a semiconductor device. In the case of a thin film element using an electrode having a significantly uneven surface due to crystallization, a short circuit is likely to occur and thus reliability of the element is degraded. An object is to provide a light-transmitting conductive oxynitride which is not crystallized even if subjected to heat treatment and a manufacturing method thereof. It is found that an oxynitride containing indium, gallium, and zinc, to which hydrogen atoms are added as impurities, is a light-transmitting conductive film which is not crystallized even if heated at 350° C. and the object is achieved.05-06-2010
20100044760SELF-ALIGNED IMPACT-IONIZATION FIELD EFFECT TRANSISTOR - An impact ionisation MOSFET is formed with the offset from the gate to one of the source/drain regions disposed vertically within the device structure rather than horizontally. The semiconductor device comprises a first source/drain region having a first doping level; a second source/drain region having a second doping level and of opposite dopant type to the first source/drain region, the first and second source/drain regions being laterally separated by an intermediate region having a doping level less than either of the first and second doping levels; a gate electrode electrically insulated from, and disposed over, the intermediate region, the first and second source/drain regions being laterally aligned with the gate electrode; where the entire portion of the first source/drain region that forms a boundary with the intermediate region is separated vertically from the top of the intermediate region.02-25-2010
20130082311SEMICONDUCTOR DEVICES WITH RAISED EXTENSIONS - Transistor devices and methods of their fabrication are disclosed. In one method, a dummy gate structure is formed on a substrate. Bottom portions of the dummy gate structure are undercut. In addition, stair-shaped, raised source and drain regions are formed on the substrate and within at least one undercut formed by the undercutting. The dummy gate structure is removed and a replacement gate is formed on the substrate.04-04-2013
20130082309SEMICONDUCTOR DEVICE AND FABRICATION METHOD THEREOF - A method for fabricating a semiconductor device is disclosed. A strained material is formed in a cavity of a substrate and adjacent to an isolation structure in the substrate. The strained material has a corner above the surface of the substrate. The disclosed method provides an improved method for forming the strained material adjacent to the isolation structure with an increased portion in the cavity of the substrate to enhance carrier mobility and upgrade the device performance. The improved formation method is achieved by providing a treatment to redistribute at least a portion of the corner in the cavity.04-04-2013
20130082308SEMICONDUCTOR DEVICES WITH RAISED EXTENSIONS - Transistor devices and methods of their fabrication are disclosed. In one method, a dummy gate structure is formed on a substrate. Bottom portions of the dummy gate structure are undercut. In addition, stair-shaped, raised source and drain regions are formed on the substrate and within at least one undercut formed by the undercutting. The dummy gate structure is removed and a replacement gate is formed on the substrate.04-04-2013
20100025744SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SAME - A semiconductor device includes a gate electrode over a semiconductor substrate, a channel region provided in the semiconductor substrate below the gate electrode, and a strain generation layer configured to apply stress to the channel region, the strain generation layer being configured to apply greater stress in absolute value to the source edge of the channel region than to the drain edge of the channel region.02-04-2010
20130087837METHOD FOR FABRICATING SEMICONDUCTOR DEVICE - A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a gate structure thereon; forming a first cap layer on a surface of the substrate and sidewall of the gate structure; forming a second cap layer on the first cap layer; forming a third cap layer on the second cap layer; performing an etching process to partially remove the third cap layer, the second cap layer, and the first cap layer to form a first spacer and a second spacer on the sidewall of the gate structure; and forming a contact etch stop layer (CESL) on the substrate to cover the second spacer, wherein the third cap layer and the CESL comprise same deposition condition.04-11-2013
20120181587SEMICONDUCTOR DEVICE - A semiconductor device includes a MISFET. The semiconductor device also includes a silicon nitride film 07-19-2012
20120181586Semiconductor device and manufacturing method thereof - The invention discloses a novel MOSFET device fabricated by a gate last process and its implementation method, the device comprising: a substrate; a gate stack structure located on a channel region in the substrate, on either side of which is eliminated the conventional isolation spacer; an epitaxially grown ultrathin metal silicide constituting a source/drain region. Wherein the device eliminates the high resistance region below the conventional isolation spacer; a dopant segregation region with imlanted ions is formed between the source/drain and the channel region, which decreases the Schottky barrier height between the metal silicide source/drain and the channel. At the same time, the epitaxially grown metal silicide can withstand a second high-temperature annealing used for improving the performance of a high-k gate dielectric material, which further improves the performance of the device. The MOSFET according to the invention reduces the parasitic resistance and capacitance greatly and thereby decreases the RC delay, thus improving the switching performance of the MOSFET device significantly.07-19-2012
20120181585Combined-source Mos Transistor with Comb-shaped Gate, and Method for Manufacturing the Same - The present invention discloses a combined-source MOS transistor with a Schottky Barrier and a comb-shaped gate structure, and a method for manufacturing the same. The combined-source MOS transistor includes: a control gate electrode layer, a gate dielectric layer, a semiconductor substrate, a highly-doped source region and a highly-doped drain region, wherein a Schottky source region is connected to a side of the highly-doped source region which is far from a channel, one end of the control gate extends to the highly-doped source region, the extended gate region is an extension gate in a form of a comb-shaped and the original control gate region is a main gate; an active region covered by the extension gate is also a channel region, and is a substrate material; the highly-doped source region which is formed by highly doping is located on both sides of each comb finger of the extension gate; and a Schottky junction is formed at a location where the Schottky source region and the channel under the extension gate are located. As compared with an existing MOSFET, in the invention, a higher turn-on current, a lower leakage current and a steeper subthreshold slope may be obtained under the same process condition and the same active region size.07-19-2012
20120181584Resistive Field Effect Transistor Having an Ultra-Steep Subthreshold Slope and Method for Fabricating the Same - The invention discloses a resistive field effect transistor (ReFET) having an ultra-steep subthreshold slope, which relates to a field of field-effect-transistor logic device and circuit in CMOS ultra-large-scale-integrated circuit (ULSI). The resistive field effect transistor comprises a control gate electrode layer, a gate dielectric layer, a semiconductor substrate, a doped source region and a doped drain region, wherein the control gate is configured to adopt a stacked gate structure in which a bottom layer or a bottom electrode layer, a middle layer or a resistive material layer, and a top layer or a top electrode layer are sequentially formed. Compared with the existing methods for breaking the conventional subthreshold slope limititation, the device of the invention has a larger on-current, a lower operation voltage, and a better subthreshold feature.07-19-2012
20090045440METHOD OF FORMING AN MOS TRANSISTOR AND STRUCTURE THEREFOR - In one embodiment, an MOS transistor is formed with trench gates. The gate structure of the trench gates generally has a first insulator that has a first thickness in one region of the gate and a second thickness in a second region of the gate.02-19-2009
20130049080SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE - According to one embodiment, a semiconductor device includes a fin-type semiconductor, a gate electrode that is formed on a side surface of the fin-type semiconductor with a gate dielectric film therebetween in a state where both end portions of the fin-type semiconductor are exposed, source/drain formed in both end portions of the fin-type semiconductor, an offset spacer and a sidewall spacer that are formed on a side surface of the source/drain and a side surface of the gate electrode in a state where a surface of an upper portion of the fin-type semiconductor is exposed, and a silicide layer that is formed on a surface of the source/drain in the upper portion of the fin-type semiconductor.02-28-2013
20130049079Small-Outline Package for a Power Transistor - According to an exemplary embodiment, a small-outline package includes a power transistor having a source and a drain, the power transistor situated on a paddle of a leadframe of the small-outline package. The source of the power transistor is electrically connected to a plurality of source leads. The drain of the power transistor is electrically and thermally connected to a top side of the paddle of the leadframe, the paddle of the leadframe being exposed from a bottom surface of the small-outline package, thereby providing a direct electrical contact to the drain from a bottom side of the paddle of the leadframe.02-28-2013
20130049077High Performance Power Transistor Having Ultra-Thin Package - A field-effect transistor package includes a leadframe with a first linear thickness (02-28-2013
20130049078SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device and a manufacturing method thereof is provided. The method comprises: providing a substrate for the semiconductor device with a gate structure and a first dielectric interlayer being formed thereon, said gate structure comprising a metal gate and an upper surface of said first dielectric interlayer being substantially flush with an upper surface of said gate; forming an interface layer to cover at least the upper surface of said gate such that the upper surface of said gate is protected from being oxidized; and forming a second dielectric interlayer on said interface layer.02-28-2013
20090315085SEMICONDUCTOR DEVICE - In order to realize a higher reliability TFT and a high reliability semiconductor device, an NTFT of the present invention has a channel forming region, n-type first, second, and third impurity regions in a semiconductor layer. The second impurity region is a low concentration impurity region that overlaps a tapered potion of a gate electrode with a gate insulating film interposed therebetween, and the impurity concentration of the second impurity region increases gradually from the channel forming region to the first impurity region. And, the third impurity region is a low concentration impurity region that does not overlap the gate electrode.12-24-2009
20090302357AMPLIFIERS USING GATED DIODES - A circuit comprises a control line and a two terminal semiconductor device having first and second terminals. The first terminal is coupled to a signal line, and the second terminal is coupled to the control line. The two terminal semiconductor device is adapted to have a capacitance when a voltage on the first terminal relative to the second terminal is above a threshold voltage and to have a smaller capacitance when a voltage on the first terminal relative to the second terminal is below the threshold voltage. The control line is coupled to a control signal and the signal line is coupled to a signal and is output of the circuit. A signal is placed on the signal line and voltage on the control line is modified (e.g., raised in the case of n-type devices, or lowered for a p-type devices). When the signal falls below the threshold voltage, the two terminal semiconductor device acts as a very small capacitor and the output of the circuit will be a small value. When the signal is above the threshold voltage, the two terminal semiconductor device acts as a large capacitor and the output of the circuit will be influenced by both the value of the signal and the value of the modified voltage on the control line and therefore the signal will be amplified.12-10-2009
20120217557SEMICONDUCTOR DEVICE - A semiconductor device includes: a semiconductor substrate of a compound semiconductor material; a buffer layer, a channel layer, and a Schottky junction forming layer sequentially disposed on the semiconductor substrate, the buffer layer, the channel layer, and the Schottky junction forming layer each being compound semiconductor materials; a source electrode and a drain electrode located on the Schottky junction forming layer; and a gate electrode disposed between the source and drain electrodes and forming a Schottky junction with the Schottky junction forming layer. The carrier density in the channel layer varies with distance from a top surface of the channel layer and is inversely proportional to the third power of depth into the channel layer from the top surface of the channel layer. The buffer layer has a lower electron affinity than the channel layer and is a different compound semiconductor material from the channel layer.08-30-2012
20120217556SEMICONDUCTOR DEVICE - A semiconductor device featuring a semiconductor chip having a first main surface and a second, opposing main surface and including a MOSFET having source and gate electrodes formed on the first main surface and a drain electrode thereof formed on the second main surface, first and second conductive members acting as lead terminals for the source and gate electrodes, respectively, are disposed over the first main surface, each of the first and second conductive members has a part overlapped with the chip in a plan view, a sealing body sealing the chip and parts of the first and second conductive members such that a part of the first conductive member is projected outwardly from a first side surface of the sealing body and parts of the first and second conductive members are projected outwardly from the opposing second side surface of the sealing body in a plan view.08-30-2012
20120217555SEMICONDUCTOR DEVICE - A first semiconductor device of an embodiment includes a first semiconductor layer of a first conductivity type, a first control electrode, an extraction electrode, a second control electrode, and a third control electrode. The first control electrode faces a second semiconductor layer of the first conductivity type, a third semiconductor layer of a second conductivity type, and a fourth semiconductor layer of a first conductivity type, via a first insulating film. The second control electrode and the third control electrode are electrically connected to the extraction electrode, and face the second semiconductor layer under the extraction electrode, via the second insulating film. At least a part of the second control electrode and the whole of the third control electrode are provided under the extraction electrode. The electrical resistance of the second control electrode is higher than the electrical resistance of the third control electrode.08-30-2012
20120217554SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A semiconductor device and a method for fabricating the same are provided which can increase the effective channel area and maintain a transistor characteristic. Since the semiconductor device comprises a recess filled with a gate spacer, a gate threshold voltage can be maintained even though the ion-implanting concentration of the active region is not uniform. The semiconductor device comprises: a device isolation film that defines an active region formed over a semiconductor substrate; a line-type recess with a given depth formed to be extended along a first direction to intersect at the active region; and a gate formed to be extended along a second direction to intersect at the active region, wherein a spacer including a high K material is disposed at sidewalls.08-30-2012
20120217553SEMICONDUCTOR STRUCTURE AND METHOD FOR FORMING THE SAME - The present invention provides a semiconductor structure, comprising: a substrate; a gate formed on the substrate, and a source and drain formed in the substrate and disposed at two sides of the gate; raised portions formed on the source and the drain, respectively, a height of the raised portions being approximate to a height of the gate; and a metal silicide layer and contact holes formed on the raised portions and on the gate. By virtue of the raised portions added to the source/drain in an embodiment of the present invention, the height difference between the gate and the source/drain may be decreased, such that the formation of the contact holes becomes much easier.08-30-2012
20120217552METAL LINE STRUCTURE AND MANUFACTURING METHOD FOR TRENCH - Exemplary metal line structure and manufacturing method for a trench are provided. In particular, the metal line structure includes a substrate, a target layer, a trench and a conductor line. The target layer is formed on the substrate. The trench is formed in the target layer and has a micro-trench formed at the bottom thereof. A depth of the micro-trench is not more than 50 angstroms. The conductor line is inlaid into the trench.08-30-2012
20130069129COMPOUND SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - Disclosed is a compound semiconductor device in which a first protective film, which is homogeneous and composed of a single material (SiN, in this case) and therefore has a uniform dielectric constant, continuously covers a compound semiconductor layer; an oxygen-containing protective component, which is a second protective film composed of an oxide film, is formed so as to cover one edge portion of an opening formed in the first protective film; and a gate electrode is formed so as to fill the opening and so as to embrace therein the second protective film.03-21-2013
20130069128SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD OF THE SAME - According to the embodiments, a semiconductor device includes a first semiconductor layer which has a projection extending along a surface of the first semiconductor layer. A gate electrode is over a surface of the projection with an intervening gate insulator. A second semiconductor layer on a portion of the side surface of the projection other than a portion covered with the gate electrode has a trench. A source/drain area is formed in the second semiconductor layer. A silicide film is over a surface of the second semiconductor layer including a surface in the trench. A conductive plug contacts the silicide film.03-21-2013
20130056804SEMICONDUCTOR DEVICE - A semiconductor device includes a MIS transistor. The MIS transistor includes an active region surrounded by an isolation region in a semiconductor substrate, a gate insulating film formed on the active region and the isolation region, and having a high dielectric constant film, and a gate electrode formed on the gate insulating film. A nitrided region is formed in at least part of a portion of the gate insulating film that is located on the isolation region. A concentration of nitrogen contained in the nitrided region is nx, and a concentration of nitrogen contained in a portion of the gate insulating film that is located on the active region is n, wherein a relationship of nx>n is satisfied.03-07-2013
20130056803SEMICONDUCTOR DEVICE - Power supply plugs, which couple a power supply active region to a power supply metal interconnect, include a plurality of first plugs, which are arranged at first pitches of a predetermined length, and a second plug, which is spaced apart from the closest one of the first plugs by a center-to-center distance different from an integral multiple of the predetermined length. Among the power supply plugs, the second plug is closest to a third plug, which is an interconnect plug closest to the power supply active region and the power supply metal interconnect.03-07-2013
20130056805TRANSISTORS HAVING STRESSED CHANNEL REGIONS AND METHODS OF FORMING TRANSISTORS HAVING STRESSED CHANNEL REGIONS - A method of forming a field effect transistor and a field effect transistor. The method includes (a) forming gate stack on a silicon layer of a substrate; (b) forming two or more SiGe filled trenches in the silicon layer on at least one side of the gate stack, adjacent pairs of the two or more SiGe filled trenches separated by respective silicon regions of the silicon layer; and (c) forming source/drains in the silicon layer on opposite sides of the gate stack, the source/drains abutting a channel region of the silicon layer under the gate stack.03-07-2013
20130056802IMPLANT FREE EXTREMELY THIN SEMICONDUCTOR DEVICES - A semiconductor device and a method of fabricating a semiconductor device are disclosed. In one embodiment, the method comprises providing a semiconductor substrate, epitaxially growing a Ge layer on the substrate, and epitaxially growing a semiconductor layer on the Ge layer, where the semiconductor layer has a thickness of 03-07-2013
20120112250Semiconductor Device Including Graphene And Method Of Manufacturing The Semiconductor Device - In a semiconductor device including graphene, a gate insulating layer may be formed between a gate electrode and a graphene layer, and an interlayer insulating layer may be formed under a portion of the graphene layer under which the gate insulating layer is not formed. The gate insulating layer may include a material that has higher dielectric permittivity than the interlayer insulating layer.05-10-2012
20120112249HIGH PERFORMANCE SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - A method for fabricating a semiconductor device employs the way of first performing thermal annealing to the source/drain regions and then forming an ion-implanted region, such as a retrograde well. The method comprises the steps of: removing said dummy gate so as to expose said dummy gate dielectric layer and form an opening; performing ion implantation on the substrate from the opening to form an ion-implanted region; removing the dummy gate dielectric layer; performing thermal annealing to activate the dopants of the ion-implanted region; and depositing a new gate dielectric layer and a new metal gate in the opening in sequence, wherein the formed new gate dielectric layer covers the substrate and the inner walls of the sidewall spacers. By means of the present invention, it is possible to avoid inappropriately introducing the dopants of the ion-implanted region into the source region and the drain region, such that the profile of the ion-implanted region does not overlap with the dopants of the source/drain regions, thereby avoiding increasing the band-to-band leakage current in a MOSFET device. As a result, the performance of the device is improved.05-10-2012
20090267119SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - The semiconductor device includes a silicon substrate having a channel region, a gate electrode formed over the channel region, buried semiconductor regions formed in a surface of the silicon substrate on both sides of the gate electrode, for applying to the surface of the silicon substrate a first stress in a first direction parallel to the surface of the silicon substrate, and stressor films formed on the silicon substrate between the channel region and the buried semiconductor regions in contact with the silicon substrate, for applying to the silicon substrate a second stress in a second direction which is opposite to the first direction.10-29-2009
20130062669SILICIDE FORMATION AND ASSOCIATED DEVICES - Improved silicide formation and associated devices are disclosed. An exemplary method includes providing a semiconductor material having spaced source and drain regions therein, forming a gate structure interposed between the source and drain regions, performing a gate replacement process on the gate structure to form a metal gate electrode therein, forming a hard mask layer over the metal gate electrode, forming silicide layers on the respective source and drain regions in the semiconductor material, removing the hard mask layer to expose the metal gate electrode, and forming source and drain contacts, each source and drain contact being conductively coupled to a respective one of the silicide layers.03-14-2013
20130062672SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - The present disclosure provides a semiconductor device and a method for manufacturing the same. The semiconductor device comprises: a semiconductor layer comprising a plurality of semiconductor sub-layers; and a plurality of fins formed in the semiconductor layer and adjoining the semiconductor layer, wherein at least two of the plurality of fins comprise different numbers of the semiconductor sub-layers and have different heights. According to the present disclosure, a plurality of semiconductor devices with different dimensions and different driving abilities can be integrated on a single wafer.03-14-2013
20130062671NITRIDE SEMICONDUCTOR DEVICE - A nitride semiconductor device includes a first semiconductor layer, a second semiconductor layer, a conductive substrate, a first electrode, a second electrode, and a control electrode. The second semiconductor layer is directly bonded to the first semiconductor layer. The conductive substrate is provided on and electrically connected to the first semiconductor layer. The first electrode and the second electrode are provided on and electrically connected to a surface of the second semiconductor layer on a side opposite to the first semiconductor layer. The control electrode is provided on the surface of the second semiconductor layer between the first electrode and the second electrode. The first electrode is electrically connected to a drain electrode of a MOSFET formed of Si. The control electrode is electrically connected to a source electrode of the MOSFET. The conductive substrate is electrically connected to a gate electrode of the MOSFET.03-14-2013
20130062670Device with Engineered Epitaxial Region and Methods of Making Same - An engineered epitaxial region compensates for short channel effects of a MOS device by providing a blocking layer to reduce or prevent dopant diffusion while at the same time reducing or eliminating the side effects of the blocking layer such as increased leakage current of a BJT device and/or decreased breakdown voltage of a rectifier. These side effects are reduced or eliminated by a non-conformal dopant-rich layer between the blocking layer and the substrate, which lessens the abruptness of the junction, thus lower the electric field at the junction region. Such a scheme is particularly advantageous for system on chip applications where it is desirable to manufacture MOS, BJT, and rectifier devices simultaneously with common process steps.03-14-2013
20110012178SEMICONDUCTOR WAFER, METHOD OF MANUFACTURING A SEMICONDUCTOR WAFER, AND SEMICONDUCTOR DEVICE - Provided is a semiconductor wafer having decreased interface state density at the semiconductor-insulator interface, a method of manufacturing this semiconductor wafer, and a semiconductor device.01-20-2011
20110012177Nanostructure For Changing Electric Mobility - A structure and a method for a semiconductor including a nanostructure semiconductor channel. The semiconductor may include a dielectric and an electrode, the electrode attached to the dielectric, a semiconductor channel may be disposed proximate to the dielectric, wherein the semiconductor channel has an electric mobility and is configured to have at least one dimension, and wherein the dielectric may be configured to apply a force at the at least one dimension.01-20-2011
20090236642TRANSISTOR AND CVD APPARATUS USED TO DEPOSIT GATE INSULATING FILM THEREOF - In a transistor adapted to suppress characteristic degradation resulting from fluorine contained in a deposited film, the concentration of fluorine contained in a gate insulating film is reduced to 1.0×1009-24-2009
20090236641Method of manufacturing semiconductor device for providing improved isolation between contact and cell gate electrode - A manufacture method is provided for forming a semiconductor device. The method includes: forming a plurality of gate electrodes through etching a conductive film deposited on a semiconductor substrate; forming a first nitride film to cover the gate electrodes; partially exposing the semiconductor substrate in a region between adjacent two of the gate electrodes through performing an etch-back process on the first nitride film; thermally oxidizing a residual of the gate electrode film remaining in the region between the adjacent two of the gate electrodes to change the residual into an thermal oxide film; and forming a contact in the region between the adjacent two of the gate electrodes.09-24-2009
20130069127FIELD EFFECT TRANSISTOR AND FABRICATION METHOD THEREOF - A method for fabricating a field effect transistor according to an exemplary embodiment of the present disclosure includes: forming an active layer, a cap layer, an ohmic metal layer and an insulating layer on a substrate; forming multilayered photoresists on the insulating layer; patterning the multilayered photoresists to form a photoresist pattern including a first opening for gate electrode and a second opening for field electrode; etching the insulating layer by using the photoresist pattern as an etching mask so that the insulating layer in the first opening is etched more deeply and the cap layer is exposed through the first opening; etching the cap layer exposed by etching the insulating layer through the first opening to form a gate recess region; and depositing a metal on the gate recess region and the etched insulating layer to form a gate-field electrode layer.03-21-2013
20130069126GERMANIUM-BASED NMOS DEVICE AND METHOD FOR FABRICATING THE SAME - An embodiment of the invention provides a germanium-based NMOS device and a method for fabricating the same, which relates to fabrication process technology of an ultra-large-scale-integrated (ULSI) circuit. The germanium-based NMOS device has two dielectric layer interposed between a metal source/drain and a substrate. The bottom dielectric layer includes a dielectric material having a high pinning coefficient S such as hafnium oxide, silicon nitride, hafnium silicon oxide or the like, and the top dielectric layer includes a dielectric material having a low conduction band offset ΔE03-21-2013
20130069125SEMICONDUCTOR DEVICE, ELECTROSTATIC DISCHARGE PROTECTION DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device, an electrostatic discharge protection device and manufacturing method thereof are provided. The electrostatic discharge protection device includes a gate, a gate dielectric layer, an N-type source region, an N-type drain region, an N-type doped region and a P-type doped region. The gate dielectric layer is disposed on a substrate. The gate is disposed on the gate dielectric layer. The N-type source region and the N-type drain region are disposed in the substrate at two sides of the gate, respectively. The N-type doped region is disposed in the N-type drain region and connects to the top of the N-type drain region. The P-type doped region is disposed under the N-type drain region and connects to the bottom of the N-type drain region.03-21-2013
20130069124MOSFET INTEGRATED CIRCUIT WITH UNIFORMLY THIN SILICIDE LAYER AND METHODS FOR ITS MANUFACTURE - An MOSFET device having a Silicide layer of uniform thickness, and methods for its fabrication, are provided. One such method involves depositing a metal layer over wide and narrow contact trenches on the surface of a silicon semiconductor substrate. Upon formation of a uniformly thin amorphous intermixed alloy layer at the metal/silicon interface, the excess (unreacted) metal is removed. The device is annealed to facilitate the formation of a thin silicide layer on the substrate surface which exhibits uniform thickness at the bottoms of both wide and narrow contact trenches.03-21-2013
20130069123CMOS SEMICONDUCTOR DEVICES HAVING STRESSOR REGIONS AND RELATED FABRICATION METHODS - Semiconductor devices and related fabrication methods are provided. An exemplary fabrication method involves forming first doped stressor regions in a first region of semiconductor material, forming second doped stressor regions in a second region of semiconductor material after forming the first doped stressor regions, and after forming the second doped stressor regions, annealing the semiconductor device structure to activate ions of the first and second doped stressor regions concurrently. The amount of time for the annealing is chosen to inhibit diffusion of the ions of the first and second doped stressor regions.03-21-2013
20080303070PREVENTING CAVITATION IN HIGH ASPECT RATIO DIELECTRIC REGIONS OF SEMICONDUCTOR DEVICE - Methods for preventing cavitation in high aspect ratio dielectric regions in a semiconductor device, and the device so formed, are disclosed. The invention includes depositing a first dielectric in the high aspect ratio dielectric region between a pair of structures, and then removing the first dielectric to form a bearing surface adjacent each structure. The bearing surface prevents cavitation of the interlayer dielectric that subsequently fills the high aspect ratio region.12-11-2008
20120104476ELECTRONIC DEVICE WITH ASYMMETRIC GATE STRAIN - The use of strained gate electrodes in integrated circuits results in a transistor having improved carrier mobility, improved drive characteristics, and reduced source drain junction leakage. The gate electrode strain can be obtained through non symmetric placement of stress inducing structures as part of the gate electrode.05-03-2012
20120235215PERFORMANCE ENHANCEMENT IN TRANSISTORS BY REDUCING THE RECESSING OF ACTIVE REGIONS AND REMOVING SPACERS - Sophisticated transistors for semiconductor devices may be formed on the basis of a superior process sequence in which an increased space between closely spaced gate electrode structures may be obtained in combination with a reduced material loss in the active regions. To this end, an offset spacer conventionally used for laterally profiling the drain and source extension regions is omitted and the spacer for the deep drain and source areas may be completely removed.09-20-2012
20120235214LOCALLY 2 SIDED CHC DRAM ACCESS TRANSISTOR STRUCTURE - A method for forming a DRAM memory with a two-sided transistor includes: providing a silicon finFET structure having at least two fins, and a trench between the fins; forming high ohmic gates on either side of the fins; forming a hole between each pair of high ohmic gates to enable connection between the pair of high ohmic gates; forming a gate on one side of the trench and underneath one of the pair of high ohmic gate; forming a layer of oxide over the gate; and depositing tungsten in the trench to form a thick layer of metal at the bottom to form a word line.09-20-2012
20120235213SEMICONDUCTOR STRUCTURE WITH A STRESSED LAYER IN THE CHANNEL AND METHOD FOR FORMING THE SAME - The present invention provides a semiconductor structure with a stressed layer in the channel and method for forming the same. The semiconductor structure comprises a substrate; a gate stack, including a gate dielectric layer formed over the substrate, gate layer formed over the gate dielectric layer, a source region and a drain region formed in the substrate by both sides of the gate stack; one or more spacers formed on both sides of the gate stack; and an embedded stressed layer formed under the gate stack in the substrate. In the embodiments of the present invention, the carrier mobility can be effectively increased by the embedded stressed layer added in the channel under the gate stack, so that the driving current of transistors is improved. Moreover, the technological process for forming this embedded stressed layer in the present invention has a lower thermal budget, which therefore assists in maintaining a higher stress level in the channel region. Besides, apart from the advantage in the aspect of stress, the embedded stressed layer in the channel can further decrease the diffusion/invasion of B (boron) from the heavily doped source and drain regions.09-20-2012
20130161707Resistive Memory and Methods for Forming the Same - A device includes an active region formed of a semiconductor material, a gate dielectric at a surface of the active region, and a gate electrode over the gate dielectric. A first source/drain region and a second source/drain region are on opposite sides of the gate electrode. A Contact Etch Stop Layer (CESL) is over the first and the second source/drain regions. An Inter-Layer Dielectric (ILD) includes a top surface substantially level with a top surface of the gate electrode. A first contact plug is over and electrically connected to the first source/drain region. A second contact plug is over and aligned to the second source/drain region. The second contact plug and the second source/drain region are spaced apart from each other by a portion of the first CESL to form a capacitor.06-27-2013
20130161708SEMICONDUCTOR STRUCTURE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor structure and a method for manufacturing the same are provided. The semiconductor structure includes a substrate, a die and a medium. The substrate has an upper substrate surface. The substrate has a trench extended downward from the upper substrate surface. The trench has a side trench surface. The die is in the trench. The die has a lower die surface and a side die surface. The lower die surface is below the upper substrate surface. A part of the trench between the side trench surface and the side die surface is filled with the medium.06-27-2013
20110068379METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - A gate pattern is formed on a semiconductor substrate. An interlayer insulating layer is formed on the semiconductor substrate and then etched by using a SEG mask to form a SEG contact formation region. An exposed portion of the semiconductor substrate in the SEG contact formation region is uniformly grown and a source/drain region is formed in a grown portion of the semiconductor substrate through an ion implantation process.03-24-2011
20110079828METAL GATE FET HAVING REDUCED THRESHOLD VOLTAGE ROLL-OFF - A structure and method to create a metal gate having reduced threshold voltage roll-off. A method includes: forming a gate dielectric material on a substrate; forming a gate electrode material on the gate dielectric material; and altering a first portion of the gate electrode material. The altering causes the first portion of the gate electrode material to have a first work function that is different than a second work function associated with a second portion of the gate electrode material.04-07-2011
20120211807System and Method for Source/Drain Contact Processing - System and method for reducing contact resistance and prevent variations due to misalignment of contacts is disclosed. A preferred embodiment comprises a non-planar transistor with source/drain regions located within a fin. An inter-layer dielectric overlies the non-planar transistor, and contacts are formed to the source/drain region through the inter-layer dielectric. The contacts preferably come into contact with multiple surfaces of the fin so as to increase the contact area between the contacts and the fin.08-23-2012
20110278651NMOS TRANSISTOR DEVICES AND METHODS FOR FABRICATING SAME - NMOS transistors having controlled channel strain and junction resistance and methods for the fabrication of same are provided herein. In some embodiments, an NMOS transistor may include a transistor stack comprising a gate dielectric and a gate electrode formed atop a p-type silicon region; and a source/drain region disposed on both sides of the transistor stack and defining a channel region therebetween and beneath the transistor stack, the source drain region including a first silicon layer having a lattice adjusting element and one or more second silicon layers having a lattice adjusting element and an n-type dopant disposed atop the first silicon layer.11-17-2011
20110278650POWER SEMICONDUCTOR DEVICE - A problem associated with n-channel power MOSFETs and the like that the following is caused even by relatively slight fluctuation in various process parameters is solved: source-drain breakdown voltage is reduced by breakdown at an end of a p-type body region in proximity to a portion in the vicinity of an annular intermediate region between an active cell region and a chip peripheral portion, arising from electric field concentration in that area. To solve this problem, the following measure is taken in a power semiconductor device having a superjunction structure in the respective drift regions of a first conductivity type of an active cell region, a chip peripheral region, and an intermediate region located therebetween: the width of at least one of column regions of a second conductivity type comprising the superjunction structure in the intermediate region is made larger than the width of the other regions.11-17-2011
20090159936DEVICE WITH ASYMMETRIC SPACERS - An asymmetrical spacer adjacent a gate is formed. This asymmetry is used to form offset regions in a device.06-25-2009
20130161709SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device includes a carrier transit layer above a substrate, a carrier supply layer above the carrier transit layer, an etching stopper layer above the carrier supply layer, the etching stopper layer being coupled to a gate electrode, and a cap layer above the etching stopper layer, the cap layer being coupled to each of a source electrode and a drain electrode and having a conduction band energy lower than that of the etching stopper layer, wherein a portion of the etching stopper layer on the cap layer includes Silicon.06-27-2013
20080265293Thin film transistor and method for fabricating the same, and liquid crystal display device and method for manufacturing the same - A thin film transistor (TFT) including a nanowire semiconductor layer having nanowires aligned in one direction in a channel region is disclosed. The nanowire semiconductor layer is selectively formed in the channel region. A method for fabricating the TFT, a liquid crystal display (LCD) device using the TFT, and a method for manufacturing the LCD device are also disclosed. The TFT fabricating method includes forming alignment electrodes on the insulating film such that the alignment electrodes face each other, to define a channel region, forming an organic film, to expose the channel region, coating a nanowire-dispersed solution on an entire surface of a substrate including the organic film, forming a nanowire semiconductor layer in the channel region by generating an electric field between the alignment electrodes such that nanowires of the nanowire semiconductor layer are aligned in a direction, and removing the organic film.10-30-2008
20110298021SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A method for manufacturing a semiconductor device, includes: forming an insulating film containing silicon, oxygen and carbon on at least one of a first substrate and a second substrate; and bonding the first substrate and the second substrate together, with the insulating film interposed therebetween. There can be provided a method capable of manufacturing a semiconductor device having high element density, high performance and high reliability, with high yield.12-08-2011
20110298020SEMICONDUCTOR DEVICE - A semiconductor device, wherein a first metallic member is bonded to a first electrode of a semiconductor element via a first metallic body containing a first precious metal, and a second metallic member is bonded to a second electrode via a second metallic body containing a second precious metal.12-08-2011
20110298018TRANSISTOR AND MANUFACTURING METHOD OF THE SAME - The invention provides a transistor, including: a substrate having a channel region; a source region and a drain region on two ends of the channel region of the substrate respectively; a gate high-K dielectric layer on a top surface of the substrate above the channel region between the source region and the drain region; an interfacial layer under the gate high-K dielectric layer, including a first portion near the source region and a second portion near the drain region, wherein an equivalent oxide thickness of the first portion is larger than that of the second portion. An asymmetric replacement metal gate forms an asymmetric interfacial layer, which is thin at the drain region side and thick at the source region side. At the thin drain region side, the short channel effect is significant and the asymmetric interfacial layer advantageously suppresses the short channel effect. At the thick source region side, the carrier mobility has a large influence on the device, and the asymmetric interfacial layer prevents the carrier mobility from decreasing. Further, the asymmetric replacement metal gate implements an asymmetric metal work function.12-08-2011
20110298017REPLACEMENT GATE MOSFET WITH SELF-ALIGNED DIFFUSION CONTACT - A replacement gate field effect transistor includes at least one self-aligned contact that overlies a portion of a dielectric gate cap. A replacement gate stack is formed in a cavity formed by removal of a disposable gate stack. The replacement gate stack is subsequently recessed, and a dielectric gate cap having sidewalls that are vertically coincident with outer sidewalls of the gate spacer is formed by filling the recess over the replacement gate stack. An anisotropic etch removes the dielectric material of the planarization layer selective to the material of the dielectric gate cap, thereby forming at least one via cavity having sidewalls that coincide with a portion of the sidewalls of the gate spacer. A portion of each diffusion contact formed by filling the at least one via cavity overlies a portion of the gate spacer and protrudes into the dielectric gate cap.12-08-2011
20100171156Method for Forming Semiconductor Contacts - In one embodiment of the invention, contact patterning may be divided into two or more passes which may allow designers to control the gate height critical dimension relatively independent from the contact top critical dimension.07-08-2010
20120286337FIN FIELD-EFFECT TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME - Embodiments of the present invention disclose a method for manufacturing a Fin Field-Effect Transistor. When a fin is formed, a dummy gate across the fin is formed on the fin, a spacer is formed on sidewalls of the dummy gate, and a cover layer is formed on the first dielectric layer and on the fin outside the dummy gate and the spacer, then, an self-aligned and elevated source/drain region is formed at both sides of the dummy gate by the spacer, wherein the upper surfaces of the gate and the source/drain region are in the same plane. The upper surfaces of the gate and the source/drain region are in the same plane, making alignment of the contact plug easier; and the gate and the source/drain region are separated by the spacer, thereby improving alignment accuracy, solving inaccurate alignment of the contact plug, and improving device AC performance.11-15-2012
20120286336SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING SEMICONDUCTOR DEVICE - Disclosed is a semiconductor device and a method for fabricating the semiconductor device. The method for fabricating the semiconductor device comprises steps of: forming a side cliff in a substrate in accordance with a gate mask pattern, the side cliff being substantially vertical to a substrate surface; forming a dielectric layer on the substrate that comprises the side cliff; etching the dielectric layer to have the dielectric layer left only on the side cliff, as a dielectric wall; and burying the side cliff by a substrate growth, the burying is performed up to a level higher than the upper end of the dielectric wall.11-15-2012
20120286335SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device and a manufacturing method thereof are disclosed. The method comprises: providing a substrate with a first dielectric layer and a gate, wherein the gate is embedded in the first dielectric layer and an upper portion of the gate is an exposed first metal; and covering only the exposed first metal with a conductive material that is harder to be oxidized than the first metal by a selective deposition. An advantage of the present invention is that the metal of the upper surface of the gate is prevented from being oxidized by covering the metal gate with the conductive material that is relatively harder to be oxidized, thereby facilitating the formation of an effective electrical connection to the gate.11-15-2012
20120007155SEMICONDUCTOR DEVICES WITH EXTENDED ACTIVE REGIONS - A method of making a semiconductor device is achieved in and over a semiconductor layer. A trench is formed adjacent to a first active area. The trench is filled with insulating material. A masking feature is formed over a center portion of the trench to expose a first side of the trench between a first side of the masking feature and the first active area. A step of etching into the first side of the trench leaves a first recess in the trench. A first epitaxial region is grown in the first recess to extend the first active area to include the first recess and thereby form an extended first active region.01-12-2012
20110284934SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - There are provided a semiconductor device and a method of fabricating the same. The semiconductor device comprises: a semiconductor substrate of a first conductive type; a gate formed on the semiconductor substrate; and a heavily doped region of the first conductive type and a heavily doped region of a second conductive type formed respectively in the semiconductor substrate at either side of the gate, wherein the heavily doped region of the second conductive type is separated from the channel region under the gate and partially separated from the semiconductor substrate by a dielectric layer. By means of this semiconductor device, it is possible to provide excellent switching behavior.11-24-2011
20110291163Reduction of Defect Rates in PFET Transistors Comprising a Si/Ge Semiconductor Material Formed by Epitaxial Growth - In sophisticated semiconductor devices, the defect rate that may typically be associated with the provision of a silicon/germanium material in the active region of P-channel transistors may be significantly decreased by incorporating a carbon species prior to or during the selective epitaxial growth of the silicon/germanium material. In some embodiments, the carbon species may be incorporated during the selective growth process, while in other cases an ion implantation process may be used. In this case, superior strain conditions may also be obtained in N-channel transistors.12-01-2011
20120098043SEMICONDUCTOR DEVICE HAVING METAL GATE AND MANUFACTURING METHOD THEREOF - A method of manufacturing a semiconductor device having metal gate includes providing a substrate having a semiconductor device and a contact etch stop layer (CESL) and a dielectric layer covering the semiconductor device formed thereon, wherein the semiconductor device having at least a dummy gate, performing a dummy gate removal step to form at least an opening in the semiconductor device and to simultaneously remove a portion of the CESL such that a top surface of the CESL is lower than the semiconductor device and the dielectric layer and a plurality of recesses is obtained, and performing a recess elimination step to form a substantially even surface of the dielectric layer.04-26-2012
20120098042SEMICONDUCTOR DEVICE WITH REDUCED JUNCTION LEAKAGE AND AN ASSOCIATED METHOD OF FORMING SUCH A SEMICONDUCTOR DEVICE - Disclosed is a semiconductor device having a p-n junction with reduced junction leakage in the presence of metal silicide defects that extend to the junction and a method of forming the device. Specifically, a semiconductor layer having a p-n junction is formed. A metal silicide layer is formed on the semiconductor layer and a dopant is implanted into the metal silicide layer. An anneal process is performed causing the dopant to migrate toward the metal silicide-semiconductor layer interface such that the peak concentration of the dopant will be within a portion of the metal silicide layer bordering the metal silicide-semiconductor layer interface and encompassing the defects. As a result, the silicide to silicon contact is effectively engineered to increase the Schottky barrier height at the defect, which in turn drastically reduces any leakage that would otherwise occur, when the p-n junction is in reverse polarity.04-26-2012
20120098041SELF-ALIGNED BODY FULLY ISOLATED DEVICE - A device having a self-aligned body on a first side of a gate is disclosed. The self-aligned body helps to achieve very low channel length for low Rdson. The self-aligned body is isolated, enabling to bias the body at different bias potentials. The device may be configured into a finger architecture having a plurality of transistors with commonly coupled, sources, commonly coupled gates, and commonly coupled drains to achieve high drive current outputs.04-26-2012
20090184347COATING LIQUID FOR GATE INSULATING FILM, GATE INSULATING FILM AND ORGANIC TRANSISTOR - To provide a coating fluid for a gate insulating film, which can be baked at a low temperature of at most 180° C.; a gate insulating film having excellent solvent resistance and further having good characteristics in e.g. specific resistance or semiconductor mobility; and an organic transistor employing the gate insulating film.07-23-2009
20100264469MOSFET INCLUDING EPITAXIAL HALO REGION - A metal oxide semiconductor field effect transistor structure and a method for fabricating the metal oxide semiconductor field effect transistor structure provide for a halo region that is physically separated from a gate dielectric. The structure and the method also provide for a halo region aperture formed horizontally and crystallographically specifically within a channel region pedestal within the metal oxide semiconductor field effect transistor structure. The halo region aperture is filled with a halo region formed using an epitaxial method, thus the halo region may be formed physically separated from the gate dielectric. As a result, performance of the metal oxide semiconductor field effect transistor is enhanced.10-21-2010
20090189203SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device according to an embodiment of the present invention includes a substrate, a gate insulation film formed on the substrate, a gate electrode formed on the gate insulation film, sidewall insulation films provided on side surfaces of the gate electrode, and stress application layers embedded in source and drain regions located, on a surface of the substrate, at a position which sandwiches the gate electrode, and applying stress to a channel region located under the gate insulation film in the substrate, a height of upper ends of interfaces between the substrate and the stress application layers being higher than a height of a lower end of an interface between the substrate and the gate insulation film.07-30-2009
20090189204SILICON THIN FILM TRANSISTORS, SYSTEMS, AND METHODS OF MAKING SAME - Systems and methods of fabricating silicon-based thin film transistors (TFTs) on flexible substrates. The systems and methods incorporate and combine deposition processes such as chemical vapor deposition and plasma-enhance vapor deposition, printing, coating, and other deposition processes, with laser annealing, etching techniques, and laser doping, all performed at low temperatures such that the precision, resolution, and registration is achieved to produce a high performing transistor. Such TFTs can be used in applications such as displays, packaging, labeling, and the like.07-30-2009
20090189205SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device having a source electrode and a drain electrode formed over a semiconductor substrate, a gate electrode formed over the semiconductor substrate and disposed between the source electrode and the drain electrode, a protection film made of an insulating material and formed between the source electrode and the gate electrode and between the drain electrode and the gate electrode, and a gate side opening formed at least in one of a portion of the protection film between the source electrode and the gate electrode and a portion of the protection film between the drain electrode and the gate electrode and disposed away from all of the gate electrode, the source electrode and the drain electrode.07-30-2009
20090189201INWARD DIELECTRIC SPACERS FOR REPLACEMENT GATE INTEGRATION SCHEME - Inward dielectric spacers for a replacement gate integration scheme are described. A semiconductor device is fabricated by first providing a substrate having thereon a placeholder gate electrode disposed in a dielectric layer. The placeholder gate electrode is removed to from a trench in the dielectric layer. A pair of dielectric spacers is then formed adjacent to the sidewalls of the trench. Finally, a gate electrode is formed in the trench and adjacent to the pair of dielectric layers.07-30-2009
20090152602SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - The present invention provides a semiconductor device having a low-k film including an interconnect layer and a highly-reliable through-substrate contact plug. The semiconductor device includes: 06-18-2009
20090152600PROCESS FOR REMOVING ION-IMPLANTED PHOTORESIST - A method of manufacturing an IC that comprises fabricating a semiconductor device. Fabricating the device includes depositing a photoresist layer on a substrate surface and implanting one or more dopant species through openings in the photoresist layer into the substrate, and, into the photoresist layer, thereby forming an implanted photoresist layer. Fabricating the device also includes removing the implanted photoresist layer. Removing the implanted photoresist layer includes exposing the implanted photoresist layer to a mixture that includes sulfuric acid, hydrogen peroxide and ozone. The mixture is at a temperature of at least about 130°.06-18-2009
20090146193Conductive Interconnects - A method of making a conductive interconnect structure includes the steps of: electrodepositing a metal on a conductive surface (06-11-2009
20090146194SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE - The local bending of a silicon nanowire induces tensile strain in the wire due to the stretching of the silicon lattice. This in turn enhances the mobility of the free carriers (electrons) in the direction of transport along the wire. Thus, for example, when Gate-All-Around MOSFETs are fabricated along the nanowire, the mobility enhancement will translate into an improvement in the performance (current drive, speed) of the silicon nanowire MOSFETs. In summary, a semiconductor device comprises a substrate and a nanowire in connection with the substrate at a drain and at a source region, and the nanowire is bent to achieve enhanced mobility of charge carriers.06-11-2009
20090020791PROCESS METHOD TO FABRICATE CMOS CIRCUITS WITH DUAL STRESS CONTACT ETCH-STOP LINER LAYERS - Exemplary embodiments provide IC CMOS devices having dual stress layers and methods for their manufacture using a buffer layer stack between the two types of the stress layers. The buffer layer stack can include multiple buffer layers formed between a first type stress layer (e.g., a tensile stress layer) and a second type stress layer (e.g., a compressive stress layer) during the CMOS fabrication. Specifically, the buffer layer stack can be formed after the etching process of the first type stress layer but prior to the etching process of the second type stress layer, and thus to protect the etched first type stress layer during the subsequent etching process of the overlaid second type stress layer. In addition, a portion of the buffer layer stack can be formed between, for example, the compressive stress layer and the underlying PMOS device to enhance their adhesion.01-22-2009
20080237661ULTRA-ABRUPT SEMICONDUCTOR JUNCTION PROFILE - The present invention discloses a method including: providing a substrate; forming recessed regions adjacent to both sides of a gate on the substrate; performing an angled co-implant of a species in two steps with two different energies and two different doses into the recessed regions; forming Silicon-Germanium in the recessed regions; forming source/drain extensions adjacent to both sides of the gate with a dopant; and performing an anneal to activate the dopant.10-02-2008
20080237662SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - A method of fabricating a semiconductor device is provided. A MOS transistor is formed on a substrate, and then a contact etching stop layer (CESL) is formed over the substrate. A first UV-curing process is performed to increase the stress of the CESL. A dielectric layer is formed on the CESL, and then a second UV-curing process is performed to increase the stress of the dielectric layer. A CMP process is conducted, and then a cap layer is formed on the dielectric layer.10-02-2008
20080237658SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - A method of fabricating a semiconductor device is provided. A MOS transistor is formed on a substrate, and then a contact etching stop layer (CESL) is formed over the substrate. A first UV-curing process is performed to increase the stress of the CESL. A dielectric layer is formed on the CESL, and then a second UV-curing process is performed to increase the stress of the dielectric layer. A CMP process is conducted, and then a cap layer is formed on the dielectric layer.10-02-2008
20080283879TRANSISTOR HAVING GATE DIELECTRIC LAYER OF PARTIAL THICKNESS DIFFERENCE AND METHOD OF FABRICATING THE SAME - A transistor having a gate dielectric layer of partial thickness difference and a method of fabricating the same are provided. The method includes forming a gate dielectric layer having a main portion with a relatively thin thickness formed on a semiconductor substrate, and a sidewall portion with a relatively thick thickness formed on both sides of the main portion. A first gate is formed overlapping the main portion of the gate dielectric layer, and forming a second gate layer covering the sidewall portion of the gate dielectric layer and covering the first gate. The second gate layer is etched, thereby forming second gates patterned with a spacer shape on sidewalls of the first gate. The exposed sidewall portion of the gate dielectric layer is selectively etched using the second gates as a mask, thereby forming a pattern of the gate dielectric layer to be aligned with the second gates. A source/drain is formed in a portion of the semiconductor substrate exposed by the second gates.11-20-2008
20080265292Novel HVNMOS structure for reducing on-resistance and preventing BJT triggering - A high-voltage metal-oxide-semiconductor (HVMOS) device and methods for forming the same are provided. The HVMOS device includes a substrate; a first high-voltage n-well (HVNW) region buried in the substrate; a p-type buried layer (PBL) horizontally adjoining the first HVNW region; a second HVNW region on the first HVNW region; a high-voltage p-well (HVPW) region over the PBL; an insulating region at a top surface of the second HVNW region; a gate dielectric extending from over the HVPW region to over the second HVNW region, wherein the gate dielectric has a portion over the insulating region; and a gate electrode on the gate dielectric.10-30-2008
20080265291MOSFET DEVICE INCLUDING A SOURCE WITH ALTERNATING P-TYPE AND N-TYPE REGIONS - Apparatus and methods are provided for fabricating semiconductor devices with reduced bipolar effects. One apparatus includes a semiconductor body (10-30-2008
20100012992METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - A method of manufacturing a semiconductor device includes forming a Metal Insulator Semiconductor (MIS) transistor over a semiconductor substrate, forming a nickel silicide layer on a surface of source/drain region of the MIS transistor, the nickel silicide layer containing platinum or tungsten, forming a stress film over the surface of the MIS transistor, and selectively removing the stress film so as to expose at least a part of the nickel silicide layer on the surface of source/drain region.01-21-2010
20110193144SEMICONDUCTOR DEVICE HAVING ELEVATED STRUCTURE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device includes a semiconductor substrate; a gate stack overlying the substrate, a spacer formed on sidewalls of the gate stack, and a protection layer overlying the gate stack for filling at least a portion of a space surrounded by the spacer and the top surface of the gate stack. A top surface of the spacer is higher than a top surface of the gate stack.08-11-2011
20100264472PATTERNING METHOD, AND FIELD EFFECT TRANSISTORS - A patterning method with a filling material with a T-shaped cross section is used as a mask during patterning to produce structures having sublithographic dimensions, such as a double-fin field effect transistor.10-21-2010
20120292670Post-Silicide Process and Structure For Stressed Liner Integration - A method of fabricating a semiconductor device and a corresponding semiconductor device are provided. The method can include implanting a species into a silicide region, the silicide region contacting a semiconductor region of a substrate. A stressed liner may then be formed overlying the silicide region having the implanted species therein. In a particular example, prior to forming the stressed liner, a step of annealing can be performed within an interval less than one second to elevate at least a portion of the silicide region to a peak temperature ranging from 800 to 950° C. The method may reduce the chance of deterioration in the silicide region, e.g., the risk of void formation, due to processing used to form the stressed liner.11-22-2012
20120292673Semiconductor Device and Manufacturing Method Thereof - A semiconductor device and manufacture method thereof is disclosed. The method includes: forming a gate on a substrate; forming a stack including a first material layer, a second material layer, and a third material layer from inner to outer in sequence; etching the stack to form sidewall spacers on opposite sidewalls of the gate; performing ion implantation to form a source region and a drain region; partially or completely removing the remaining portion of the third material layer; performing a pre-cleaning process, wherein all or a portion of the remaining portion of the second material layer is removed; forming silicide on top of the source region, the drain region, and the gate; depositing a stress film to cover the silicide and the remaining portion of the first material layer. According to the above method, the stress proximity technique (SPT) can be realized while avoiding silicide loss.11-22-2012
20120292672FINFET INTEGRATED CIRCUITS AND METHODS FOR THEIR FABRICATION - FINFET ICs and methods for their fabrication are provided. In accordance with one embodiment a FINFET IC is fabricated by forming in a substrate a region doped with an impurity of a first doping type. The substrate region is etched to form a recess defining a fin having a height and sidewalls and the recess adjacent the fin is filled with an insulator having a thickness less than the height. Spacers are formed on the sidewalls and a portion of the insulator is etched to expose a portion of the sidewalls. The exposed portion of the sidewalls is doped with an impurity of the first doping type, the exposed sidewalls are oxidized, and the sidewall spacers are removed. A gate insulator and gate electrode are formed overlying the fin, and end portions of the fin are doped with an impurity of a second doping type to form source and drain regions.11-22-2012
20120292671Method of Forming Spacers That Provide Enhanced Protection for Gate Electrode Structures - Disclosed herein is a method of forming a semiconductor device. In one example, the method comprises forming a gate electrode structure above a semiconducting substrate and forming a plurality of spacers proximate the gate electrode structures, wherein the plurality of spacers comprises a first silicon nitride spacer positioned adjacent a sidewall of the gate electrode structure, a generally L-shaped silicon nitride spacer positioned adjacent the first silicon nitride spacer, and a silicon dioxide spacer positioned adjacent the generally L-shaped silicon nitride spacer.11-22-2012
20120032239METHOD FOR INTRODUCING CHANNEL STRESS AND FIELD EFFECT TRANSISTOR FABRICATED BY THE SAME - The present invention relates to CMOS ultra large scale integrated circuits, and provides a method for introducing channel stress and a field effect transistor fabricated by the same. According to the present invention, a strained dielectric layer is interposed between source/drain regions and a substrate of a field effect transistor, and a strain is induced in a channel by the strained dielectric layer which directly contacts the substrate, so as to improve a carrier mobility of the channel and a performance of the device. The specific effects of the invention include: a tensile strain may be induced in the channel by using the strained dielectric layer having a tensile strain in order to increase an electron mobility of the channel; a compressive strain may be induced in the channel by using the strained dielectric layer having a compressive strain in order to increase a hole mobility of the channel. According to the invention, not only an effectiveness of the introduction of channel stress is ensued, but the device structure of the field effect transistor is also improved fundamentally, so that a capability for suppressing a short channel effect of the device is increased.02-09-2012
20090309141SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD OF THE SAME - A disclosed semiconductor device includes multiple gate electrodes disposed on a semiconductor substrate; and multiple sidewall spacers disposed on sidewalls of the gate electrodes. The thickness of the sidewall spacers is larger on the sidewalls along longer sides of the gate electrodes than on the sidewalls along shorter sides of the gate electrodes.12-17-2009
20090309140IN-SITU CARBON DOPED e-SiGeCB STACK FOR MOS TRANSISTOR - An integrated circuit containing a PMOS transistor with p-channel source/drain (PSD) regions which include a three layer PSD stack containing Si—Ge, carbon and boron. The first PSD layer is Si—Ge and includes carbon at a density between 5×1012-17-2009
20090267117ENHANCED STRESS FOR TRANSISTORS - A transistor disposed on a substrate includes a gate, spacers on gate sidewalls, and diffusion regions adjacent to the gate. Silicide contacts on the diffusion regions are displaced from the spacers by a distance G. Stressors may be provided in the diffusion region to induce a first stress in the channel region of the transistor.10-29-2009
20090267118METHOD FOR FORMING CARBON SILICON ALLOY (CSA) AND STRUCTURES THEREOF - Methods for forming carbon silicon alloy (CSA) and structures thereof are disclosed. The method provides improvement in substitutionality and deposition rate of carbon in epitaxially grown carbon silicon alloy layers (i.e., substituted carbon in Si lattice). In one embodiment of the disclosed method, a carbon silicon alloy layer is epitaxially grown on a substrate at an intermediate temperature with a silicon precursor, a carbon (C) precursor in the presence of an etchant and a trace amount of germanium material (e.g., germane (GeH10-29-2009
20110147814SEMICONDUCTOR DEVICE MANUFACTURING METHOD AND SEMICONDUCTOR DEVICE - A semiconductor device includes a vertical type semiconductor element formed by using a silicon substrate, a P type impurity diffusion layer being formed at a back surface of the silicon substrate. The surface of the P type impurity diffusion layer is wet etched to expose a single silicon crystal surface of the P type impurity diffusion layer, and a metal layer having a work function of 4.5 eV or more is disposed to the single silicon crystal surface so that an ohmic contact is made between the single silicon crystal surface of the P type impurity diffusion layer and the metal layer without making a silicon-metal alloy layer between the P type impurity diffusion layer and the metal layer.06-23-2011
20110147812POLISH TO REMOVE TOPOGRAPHY IN SACRIFICIAL GATE LAYER PRIOR TO GATE PATTERNING - Techniques are disclosed for fabricating FinFET transistors (e.g., double-gate, trigate, etc). A sacrificial gate material (such as polysilicon or other suitable material) is deposited on fin structure, and polished to remove topography in the sacrificial gate material layer prior to gate patterning. A flat, topography-free surface (e.g., flatness of 50 nm or better, depending on size of minimum feature being formed) enables subsequent gate patterning and sacrificial gate material opening (via polishing) in a FinFET process flow. Use of the techniques described herein may manifest in structural ways. For instance, a top gate surface is relatively flat (e.g., flatness of 5 to 50 nm, depending on minimum gate height or other minimum feature size) as the gate travels over the fin. Also, a top down inspection of gate lines will generally show no or minimal line edge deviation or perturbation as the line runs over a fin.06-23-2011
20110147809FORMING A CARBON CONTAINING LAYER TO FACILITATE SILICIDE STABILITY IN A SILICON GERMANIUM MATERIAL - A method includes forming a silicon germanium layer, forming a layer comprising carbon and silicon on a top surface of the silicon germanium layer, forming a metal layer above the layer comprising carbon and silicon, and performing a thermal treatment to convert at least the layer comprising carbon and silicon to form a metal silicide layer.06-23-2011
20110062502SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - The present invention proposes a method of forming a dual contact hole, comprising steps of: forming a source/drain region and a replacement gate structure on a semiconductor substrate, the replacement gate structure including a replacement gate; depositing a first inter-layer dielectric layer; planarizing the first inter-layer dielectric layer to expose the replacement gate in the replacement gate structure; removing the replacement gate and depositing to form a metal gate; etching to form a first source/drain contact opening in the first inter-layer dielectric layer; sequentially depositing a liner and filling conductive metal in the first source/drain contact opening to form a first source/drain contact hole; depositing a second inter-layer dielectric layer on the first inter-layer dielectric layer; etching to form a second source/drain contact opening and a gate contact opening in the second inter-layer dielectric layer; and sequentially depositing a liner and filling conductive metal in the second source/drain contact opening and the gate contact opening to form a second source/drain contact hole and a gate contact hole. The present invention also proposes a semiconductor device manufactured by the above process.03-17-2011
20110062501METHOD FOR SELF-ALIGNING A STOP LAYER TO A REPLACEMENT GATE FOR SELF-ALIGNED CONTACT INTEGRATION - Semiconductor devices with replacement gate electrodes and integrated self aligned contacts are formed with enhanced gate dielectric layers and improved electrical isolation properties between the gate line and a contact. Embodiments include forming a removable gate electrode on a substrate, forming a self aligned contact stop layer over the removable gate electrode and the substrate, removing a portion of the self aligned contact stop layer over the removable gate electrode and the electrode itself leaving an opening, forming a replacement gate electrode of metal, in the opening, transforming an upper portion of the metal into a dielectric layer, and forming a self aligned contact. Embodiments include forming the contact stop layer of a dielectric material, e.g., a hafnium oxide, an aluminum oxide, or a silicon carbide and transforming the upper portion of the metal into a dielectric layer by oxidation, fluorination, or nitridation. Embodiments also include forming a hardmask layer over the removable gate electrode to protect the electrode during silicidation in source/drain regions of the semiconductor device.03-17-2011
20090206376SEMICONDUCTOR DEVICE - A conventional semiconductor device has a problem that, when a vertical PNP transistor as a power semiconductor element is used in a saturation region, a leakage current into a substrate is generated. In a semiconductor device of the present invention, two P type diffusion layers as a collector region are formed around an N type diffusion layer as a base region. One of the P type diffusion layers is formed to have a lower impurity concentration and a narrower diffusion width than the other P type diffusion layer. In this structure, when a vertical PNP transistor is turned on, a region where the former P type diffusion layer is formed mainly serves as a parasite current path. Thus, a parasitic transistor constituted of a substrate, an N type buried layer and a P type buried layer is prevented from turning on, and a leakage current into the substrate is prevented.08-20-2009
20090152601Strained NMOS transistor featuring deep carbon doped regions and raised donor doped source and drain - Some embodiments of the present invention include providing carbon doped regions and raised source/drain regions to provide tensile stress in NMOS transistor channels.06-18-2009
20090090942Wiring structure, array substrate, display device having the same and method of manufacturing the same - A wiring structure includes a substrate, a copper oxide layer having 16˜39 at % oxygen on the substrate and a copper layer on the copper oxide layer. The copper oxide layer has a thickness of 10-1000 Å and the copper layer has a thickness of 300-8000 Å. The copper layer and the copper oxide layer further have an alloy element less than 10 wt % and the alloy element is selected from the group of Ag, Ni, Mg, Zr, N.04-09-2009
20090090938CHANNEL STRESS ENGINEERING USING LOCALIZED ION IMPLANTATION INDUCED GATE ELECTRODE VOLUMETRIC CHANGE - A method for fabricating a semiconductor structure uses a volumetric change ion implanted into a volumetric change portion of a gate electrode that is located over a channel region within a semiconductor substrate to form a volume changed portion of the gate electrode located over the channel region within the semiconductor substrate. The volume changed portion of the gate electrode is typically bidirectionally symmetrically graded in a vertical direction. The volume-changed portion of the gate electrode has a first stress that induces a second stress different than the first stress into the channel region of the semiconductor substrate.04-09-2009
20090090941SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - Aimed at providing a highly reliable semiconductor device appropriately increased in stress at the channel region so as to improve carrier injection rate, thereby dramatically improved in transistor characteristics, and made adaptable also to recent narrower channel width, and a method of manufacturing the same, and a method of manufacturing the same, a first sidewall composed of a stress film having expandability is formed on the side faces of a gate electrode, a second sidewall composed of a film having smaller stress is formed on the first sidewall, and a semiconductor, which is a SiC layer for example, is formed as being positioned apart from the first sidewall while placing the second sidewall in between.04-09-2009
20090189202ELECTRONIC DEVICE INCLUDING A GATE ELECTRODE HAVING PORTIONS WITH DIFFERENT CONDUCTIVITY TYPES AND A PROCESS OF FORMING THE SAME - An electronic device can include a gate electrode having different portions with different conductivity types. In an embodiment, a process of forming the electronic device can include forming a semiconductor layer over a substrate, wherein the semiconductor layer has a particular conductivity type. The process can also include selectively doping a region of the semiconductor layer to form a first doped region having an opposite conductivity type. The process can further include patterning the semiconductor layer to form a gate electrode that includes a first portion and a second portion, wherein the first portion includes a portion of the first doped region, and the second region includes a portion of the semiconductor layer outside of the first doped region. In a particular embodiment, the electronic device can have a gate electrode having edge portions of one conductivity type and a central portion having an opposite conductivity type.07-30-2009
20110169058NICKEL-SILICIDE FORMATION WITH DIFFERENTIAL PT COMPOSITION - Embodiments of the invention provide a method of forming nickel-silicide. The method may include depositing first and second metal layers over at least one of a gate, a source, and a drain region of a field-effect-transistor (FET) through a physical vapor deposition (PVD) process, wherein the first metal layer is deposited using a first nickel target material containing platinum (Pt), and the second metal layer is deposited on top of the first metal layer using a second nickel target material containing no or less platinum than that in the first nickel target material; and annealing the first and second metal layers covering the FET to form a platinum-containing nickel-silicide layer at a top surface of the gate, source, and drain regions.07-14-2011
20110198676FIN TRANSISTOR STRUCTURE AND METHOD OF FABRICATING THE SAME - A fin transistor structure and a method of fabricating the same are disclosed. In one aspect the method comprises providing a bulk semiconductor substrate, patterning the semiconductor substrate to form a fin with it body directly tied to the semiconductor substrate, patterning the fin so that gaps are formed on the bottom of the fin at source/drain regions of the transistor structure to be formed. This is performed wherein a portion of the fin corresponding to the channel region of the transistor structure to be formed is directly tied to t he semiconductor substrate, while other portions of the fin at the source/drain regions are separated from the surface of the semiconductor substrate by the gaps. Also, filling an insulation material into the gaps, and fabricating the transistor structure based on the semiconductor substrate with the fin formed thereon are disclosed. Thereby, it is possible to reduce the leakage current while maintaining the advantages of body-tied structures.08-18-2011
20090152599Silicon Germanium and Polysilicon Gate Structure for Strained Silicon Transistors - An integrated circuit semiconductor device, e.g., MOS, CMOS. The device has a semiconductor substrate. The device also has a dielectric layer overlying the semiconductor substrate and a gate structure overlying the dielectric layer. A dielectric layer forms sidewall spacers on edges of the gate structure. A recessed region is within a portion of the gate structure within the sidewall spacer structures. An epitaxial fill material is within the recessed region. The device has a source recessed region and a drain recessed region within the semiconductor substrate and coupled to the gate structure. The device has an epitaxial fill material within the source recessed region and within the drain recessed region. A channel region is between the source region and the drain region is in a strain characteristic from at least the fill material formed in the source region and the drain region. Depending upon the embodiment, the fill material can be any suitable species such as silicon germanium, silicon carbide, and others.06-18-2009
20110198675SPACER STRUCTURE OF A FIELD EFFECT TRANSISTOR - This disclosure relates to a spacer structure of a field effect transistor. An exemplary structure for a field effect transistor includes a substrate; a gate structure that has a sidewall overlying the substrate; a silicide region in the substrate on one side of the gate structure having an inner edge closest to the gate structure; a first oxygen-sealing layer adjoining the sidewall of the gate structure; an oxygen-containing layer adjoining the first oxygen-sealing layer on the sidewall and further including a portion extending over the substrate; and a second oxygen-sealing layer adjoining the oxygen-containing layer and extending over the portion of the oxygen-containing layer over the substrate, wherein an outer edge of the second oxygen-sealing layer is offset from the inner edge of the silicide region.08-18-2011
20090294810MICROSTRUCTURE DEVICE INCLUDING A COMPRESSIVELY STRESSED LOW-K MATERIAL LAYER - A nitrogen-containing silicon carbide material may be deposited on the basis of a single frequency or mixed frequency deposition recipe with a high internal compressive stress level up to 1.6 GPa or higher. Thus, this dielectric material may be advantageously used in the contact level of sophisticated integrated circuits, thereby providing high strain levels while not unduly contributing to signal propagation delay.12-03-2009
20090294808Thin Film Transistor, Method for Manufacturing the Same and Film Formation Apparatus - One embodiment of the present invention is a method for manufacturing a bottom gate type thin film transistor having a gate electrode, a gate insulating film, an oxide semiconductor active layer, a source electrode and a drain electrode on a flexible plastic substrate of a supporting substrate, the method including continuously forming the gate insulating film and the oxide semiconductor active layer on the flexible plastic substrate with the gate electrode inside a vacuum film formation chamber of a film formation apparatus, the apparatus being a type of winding up continuously the roll-shaped substrate, and the gate insulating film and the oxide semiconductor active layer formed without being exposed to air.12-03-2009
20090294806Method of Improving Minority Lifetime in Silicon Channel and Products Thereof - Performance of field effect transistors and other channel dependent devices formed on a monocrystalline substrate is improved by carrying out a high temperature anneal in a nitrogen releasing atmosphere while the substrate is coated by a sacrificial oxide coating containing easily diffusible atoms that can form negatively charged ions and can diffuse deep into the substrate. In one embodiment, the easily diffusible atoms comprise at least 5% by atomic concentration of chlorine atoms in the sacrificial oxide coating and the nitrogen releasing atmosphere includes NO. The high temperature anneal is carried out for less than 10 hours at a temperature less than 1100° C.12-03-2009
20090278178SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - Disclosed is a semiconductor device which includes a MIS FET on a surface of a substrate, an insulating film on the substrate to cover the MIS FET, an opening that gets to an impurity diffusing region formed in the insulating film, another opening that gets to a gate electrode or to an extension part of the gate electrode formed in the insulating film, and an electrically conductive member including mainly copper filled in each of the openings. The insulating film includes a layer including, as main components, silicon, oxygen, carbon and hydrogen (FIG. 11-12-2009
20090283806MOSFET WITH ASYMMETRICAL EXTENSION IMPLANT - A method for fabricating a MOSFET (e.g., a PMOS FET) includes providing a semiconductor substrate having surface characterized by a (110) surface orientation or (110) sidewall surfaces, forming a gate structure on the surface, and forming a source extension and a drain extension in the semiconductor substrate asymmetrically positioned with respect to the gate structure. An ion implantation process is performed at a non-zero tilt angle. At least one spacer and the gate electrode mask a portion of the surface during the ion implantation process such that the source extension and drain extension are asymmetrically positioned with respect to the gate structure by an asymmetry measure.11-19-2009
20090289285Semiconductor device and method of fabricating the same - Provided is a semiconductor device including a transistor that has a silicide layer formed over a semiconductor substrate. The gate electrode of each transistor is composed of a polysilicon electrode and the silicide layer formed thereon. Each transistor further has source/drain impurity-diffused layers composed of low-concentration doped regions and high-concentration doped regions, and silicide layers formed over the source/drain impurity-diffused layers. The surface of each silicide layer is positioned above the surface of the semiconductor substrate. The silicide layers contain a silicidation-suppressive metal, and have a concentration profile of the silicidation-suppressive metal over a region of the silicide layers ranging from the surface to a predetermined depth, such as increasing the concentration from the surface of each silicide layer in the depth-wise direction of the semiconductor substrate.11-26-2009
20110169059METHODS OF FORMING NICKEL SULPHIDE FILM ON A SEMICONDUCTOR DEVICE - Embodiments of the present invention describe a method of forming nickel sulfide layer on a semiconductor device. A nickel sulfide layer is formed on a substrate by alternatingly exposing the substrate to a nickel-containing precursor and a sulfur-containing precursor.07-14-2011
20090294807Methods of Fabricating Transistors and Structures Thereof - Methods of fabricating transistors, semiconductor devices, and structures thereof are disclosed. In one embodiment, a method of fabricating a transistor includes forming a gate dielectric over a workpiece, and forming a gate over the gate dielectric. Sidewall spacers are formed over the gate dielectric and the gate, the sidewall spacers comprising germanium oxide (GeO or GeO12-03-2009
20110169060WIRE STRUCTURE, METHOD FOR FABRICATING WIRE, THIN FILM TRANSISTOR SUBSTRATE, AND METHOD FOR FABRICATING THE THIN FILM TRANSISTOR SUBSTRATE - Provided are a wire structure, a method for fabricating a wire, a thin film transistor (TFT) substrate and a method for fabricating a TFT substrate. The wire structure includes a barrier layer formed on a substrate and including a copper layer and a copper solid solution layer.07-14-2011
20090261390 SEMICONDUCTOR MEMORY DEVICE AND A METHOD OF MANUFACTURING THE SAME - A memory cell of an SRAM has two drive MISFETs and two vertical MISFETs. The p channel vertical MISFETs are formed above the n channel drive MISFETs. The vertical MISFETs respectively mainly include a laminate formed of a lower semiconductor layer, intermediate semiconductor layer and upper semiconductor layer laminated in this sequence, a gate insulating film of silicon oxide formed on the surface of the side wall of the laminate, and a gate electrode formed so as to cover the side wall of the laminate. The vertical MISFETs are perfect depletion type MISFETs.10-22-2009
20090261389COMPOSITION FOR OXIDE SEMICONDUCTOR THIN FILM, FIELD EFFECT TRANSISTOR USING THE COMPOSITION, AND METHOD OF FABRICATING THE TRANSISTOR - A composition for an oxide semiconductor thin film, a field effect transistor (FET) using the composition, and a method of fabricating the FET are provided. The composition includes an aluminum oxide, a zinc oxide, and a tin oxide. The thin film formed of the composition remains in amorphous phase at a temperature of 400° C or less. The FET using an active layer formed of the composition has improved electrical characteristics and can be fabricated using a low-temperature process without expensive raw materials, such as In and Ga.10-22-2009
20090261388DICE BY GRIND FOR BACK SURFACE METALLIZED DIES - Semiconductor device processing and methods for dicing a semiconductor wafer into a plurality of individual dies that can have back surface metallization are described. The methods comprise providing a wafer with pre-diced streets in the wafer's front surface, applying a sidewall masking mechanism to the front surface of the wafer so as to substantially fill the pre-diced streets, thinning the back surface of the wafer so as to dice the wafer (e.g., by grinding, etching, or both) and expose a portion of the sidewall masking mechanism from the back surface of the wafer, and applying a material, such as metal, to the back surface of the diced wafer. These methods can prevent the metal from being deposited on die sidewalls and may allow the separation of individual dies without causing the metal to peel from the back surface of one or more adjacent dies. Other embodiments are also described.10-22-2009
20120292674SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device and method for manufacturing the same are provided. A substrate with an active area and a first interlayer dielectric formed over the substrate is provided. The first interlayer dielectric has a first opening exposing a portion of a surface of the active area, the first opening being filled with a fill material. A second interlayer dielectric is formed over the first interlayer dielectric with a second opening substantially exposing an upper portion of the fill material in the corresponding first opening. The fill material is then removed and the first opening and the second opening are filled with a conductive material to form a contact.11-22-2012
20110266597SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device includes an isolation layer formed on a semiconductor substrate; an active region defined by the isolation layer; at least one gate line formed to overlap with the active region; at least one first active tab formed on a first interface of the active region which overlaps with the gate line; and a first gate tab formed on a second interface facing away from the first interface in such a way as to project from the gate line.11-03-2011
20110266596Semiconductor device and method of making the same - In a method of the present invention during a salicide process, before a second thermal process, a dopant is implanted at a place located in a region ranging from a Ni11-03-2011
20100102365SEMICONDUCTOR DEVICE - A semiconductor device includes a silicon substrate having a protrusion, a gate insulating film formed over an upper surface of the protrusion of the silicon substrate, a gate electrode formed over the gate insulating film, a source/drain region formed in the silicon substrate on the side of the gate electrode, a first side wall formed over the side surface of the protrusion of the silicon substrate, the first side wall containing an insulating material. a second side wall formed over the first side wall, the second side wall having a bottom portion formed below the upper surface of the protrusion of the silicon substrate, the second side wall containing a material having a Young's modulus greater than that of the silicon substrate, and a stress film formed over the gate electrode and the second side wall.04-29-2010
20100102364Method for Providing a Self-Aligned Conductive Structure - An embodiment according to the present invention comprises a method for providing a self-aligned conductive structure comprising providing a first structure on a surface, wherein the first structure comprises a first and a second layer, and providing an intermediate structure on the surface, wherein the intermediate structure at least partially abuts the first structure laterally at a first lateral edge of the first structure. The method further comprises removing at least a part of the second layer, the part being adjacent to the first lateral edge, and providing the conductive structure such that the conductive structure replaces at least the removed part of the second layer and abuts the first lateral edge.04-29-2010
20080246062Semiconductor based controllable high resistance device - The field of invention is in the area of MOS integrated circuits operating with very low currents in the weak inversion region or sub threshold. The method aims at providing linear resistor with a value in the multi-mega ohm range.10-09-2008
20090166686Edge-Contacted Vertical Carbon Nanotube Transistor - A vertical device geometry for a carbon-nanotube-based field effect transistor has one or multiple carbon nanotubes formed in a trench.07-02-2009
20090166685SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - A semiconductor device according to one embodiment includes: a semiconductor substrate; a first impurity diffusion suppression layer formed on the semiconductor substrate for suppressing diffusion of a channel impurity; an impurity channel layer formed on the first impurity diffusion suppression layer and containing the channel impurity; a second impurity diffusion suppression layer formed on the impurity channel layer for suppressing diffusion of the channel impurity; a channel layer formed on the second impurity diffusion suppression layer; a gate insulating film formed on the channel layer; and a gate electrode formed on the gate insulating film.07-02-2009
20130009221SEMICONDUCTOR DEVICES INCLUDING EPITAXIAL LAYERS AND RELATED METHODS - A semiconductor device may include a semiconductor layer having a first conductivity type, a well region of a second conductivity type in the semiconductor layer wherein the first and second conductivity types are different, and a terminal region of the first conductivity type in the well region. An epitaxial semiconductor layer may be on the surface of the semiconductor layer including the well region and the terminal region with the epitaxial semiconductor layer having the first conductivity type across the well and terminal regions. A gate electrode may be on the epitaxial semiconductor layer so that the epitaxial semiconductor layer is between the gate electrode and portions of the well region surrounding the terminal region at the surface of the semiconductor layer.01-10-2013
20130009217Transistor, Method for Manufacturing Transistor, and Semiconductor Chip Comprising the Transistor - It is provided a transistor, a method for manufacturing the transistor, and a semiconductor chip comprising the transistor. A method for manufacturing a transistor may comprise: defining an active area on a semiconductor substrate, and forming on the active area a gate stack, a primary spacer, and source/drain regions, wherein the primary spacer surrounds the gate stack, and the source/drain regions are embedded in the active area and self-aligned with opposite sides of the primary spacer; forming a semiconductor spacer surrounding the primary spacer, and cutting off the ends of the semiconductor spacer in the width direction of the gate stack so as to isolate the source/drain regions from each other; and covering the surfaces of the source/drain regions and the semiconductor spacer with a layer of metal or alloy, and annealing the resulting structure, so that a metal silicide is formed on the surfaces of the source/drain regions, and so that the semiconductor spacer is transformed into a silicide spacer simultaneously. As such, the risk of transistor failure due to atoms or ions of Ni entering the channel region through the source/drain extension regions is reduced.01-10-2013
20130009220SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A transistor which is formed using an oxide semiconductor layer and has electric characteristics needed for the intended use, and a semiconductor device including the transistor are provided. The transistor is formed using an oxide semiconductor stack including at least a first oxide semiconductor layer in contact with a source electrode layer and a drain electrode layer and a second oxide semiconductor layer which is provided over the first oxide semiconductor layer and has an energy gap different from that of the first oxide semiconductor layer. There is no limitation on the stacking order of the first oxide semiconductor layer and the second oxide semiconductor layer as long as their energy gaps are different from each other.01-10-2013
20130009218METAL OXIDE SEMICONDUCTOR FIELD TRANSISTOR - A metal oxide semiconductor field transistor including a source region, a drain region, a gate and a gate dielectric layer is provided. The drain region is located in a substrate. The drain region has an elliptical spiral shape and a starting portion of the drain region is strip or water drop or has a curvature of 0.02 to 0.0025 [1/um]. The source region located in the substrate is around the drain region. The gate is located above the substrate and between the source region and the drain region. The gate dielectric layer is located between the gate and the substrate.01-10-2013
20130009219SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - Provided are a transistor which has electrical characteristics requisite for its purpose and uses an oxide semiconductor layer and a semiconductor device including the transistor. In the bottom-gate transistor in which at least a gate electrode layer, a gate insulating film, and the semiconductor layer are stacked in this order, an oxide semiconductor stacked layer including at least two oxide semiconductor layers whose energy gaps are different from each other is used as the semiconductor layer. Oxygen and/or a dopant may be added to the oxide semiconductor stacked layer.01-10-2013
20080283878Method and Apparatus for Monitoring Endcap Pullback - Various apparatus and methods of monitoring endcap pullback are disclosed. In one aspect, an apparatus is provided that includes a substrate that has a plurality of semiconductor regions. Each of the plurality of semiconductor regions has a border with an insulating structure. A transistor is positioned in each of the plurality of semiconductor regions. Each of the transistors includes a gate that has a first lateral dimension and an end that has a position relative to its border. A voltage source is electrically coupled to the transistors whereby levels of currents flowing through the transistors are indicative of the positions of the ends of the gates relative to their borders.11-20-2008
20080290380SEMICONDUCTOR DEVICE WITH RAISED SPACERS - A semiconductor device includes a substrate and a gate formed on the substrate. A gate spacer is formed next to the gate. The gate spacer has a height greater than the height of the gate. A method of forming a semiconductor device includes providing a substrate with a gate layer. A hard mask layer is formed over the gate layer, and both layers are then etched using a pattern, forming a gate and a hard mask. A spacer layer is then deposited over the substrate, gate, and hard mask. The spacer layer is etched to form a gate spacer next to the gate. The hard mask is then removed.11-27-2008
20120032240SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device includes a field effect transistor including: a semiconductor substrate including a channel forming region; a gate insulating film formed at the channel forming region on the semiconductor substrate; a gate electrode formed over the gate insulating film; a first stress application layer formed over the gate electrode and applying stress to the channel forming region; a source/drain region formed on a surface layer portion of the semiconductor substrate at both sides of the gate electrode and the first stress application layer; and a second stress application layer formed over the source/drain region in a region other than at least a region of the first stress application layer and applying stress different from the first stress application layer to the channel forming region.02-09-2012
20080303067SPLIT GATE MEMORY CELL USING SIDEWALL SPACERS - A self-aligned split gate bitcell includes first and second regions of charge storage material separated by a gap devoid of charge storage material. Spacers are formed along sidewalls of sacrificial layer extending above and on opposite sides of the bitcell stack, wherein the spacers are separated from one another by at least a gap length. Etching the bitcell stack, selective to the spacers, forms a gap that splits the bitcell stack into first and second gates which together form the split gate bitcell stack. A storage portion of bitcell stack is also etched, wherein etching extends the gap and separates the corresponding layer into first and second separate regions, the extended gap being devoid of charge storage material. Dielectric material is deposited over the gap and etched back to expose a top surface of the sacrificial layer, which is thereafter removed to expose sidewalls of the split gate bitcell stack.12-11-2008
20080308850TRANSISTOR WITH REDUCED CHARGE CARRIER MOBILITY AND ASSOCIATED METHODS - A device includes a first transistor including a fin and a second transistor including a fin, the fin of the first transistor having a lower charge carrier mobility than the fin of the second transistor. In a method, the fin of the first transistor is treated to have a lower charge carrier mobility than the fin of the second transistor.12-18-2008
20110204423SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - Disclosed is a semiconductor device that comprises a first semiconductor layer of one conductivity type provided on a substrate; a second semiconductor layer of the one conductivity type provided on the first semiconductor layer and having a lower impurity concentration than the first semiconductor layer; an isolation region extending from one principal face of the second semiconductor layer to reach the substrate; a first region in an element region of the second semiconductor layer isolated by the isolation region and having an opposite conductivity type; a second region of the one conductivity type provided in the element region extending from the one principal face to reach the first semiconductor layer and having an impurity concentration higher than the second semiconductor layer; and an insulation region extending from the one principal face to the first semiconductor layer, kept away from the substrate, and provided between the first and the second regions.08-25-2011
20080246061STRESS LAYER STRUCTURE - A stress layer structure disposed on a substrate including a device region and a non-device region is provided. The device region includes active regions and a non-active region. The stress layer structure has stress patterns, at least one partition line, and at least one dummy stress pattern. Each of the stress patterns is disposed on the substrate of each of the active regions, respectively. The partition line exposes a portion of the substrate and divides the two adjacent stress patterns. The dummy stress pattern is disposed on the substrate in the partition line.10-09-2008
20080265290DOUBLE MESH FINFET - A multiple gate field-effect transistor is built from an overlapping mesh assembly. The assembly comprises a first layer comprising a semiconductor material formed into at least one fin, a least one source, and at least one drain. The first layer comprises a portion of a first mesh, electrically separated from the rest of the mesh. Similarly, a second layer is formed over the first layer and electrically isolated from the first layer, the second layer being electrically conductive and comprising a gate for the at least one fin of the transistor. The second layer comprises a portion of a second mesh offset from the first mesh and overlapping the first mesh, the second layer of the MuGFET device electrically separated from the rest of the second mesh.10-30-2008
20100127310Semiconductor device and method for producing the same - A semiconductor device comprising at least two wiring layers on a substrate or a surface layer of the substrate, wherein a lower wiring layer of the two wiring layers contains silicon, and a silicon carbide layer is placed between the lower wiring layer and an upper wiring layer.05-27-2010
20080272411SEMICONDUCTOR DEVICE WITH MULTIPLE TENSILE STRESSOR LAYERS AND METHOD - A semiconductor device has at least two tensile stressor layers that are cured with UV radiation. A second tensile stressor layer is formed after a first stressor layer. In some examples, the tensile stressor layers include silicon nitride and hydrogen. In some examples, the second tensile stressor layer has a greater shrinkage percentage due to the curing than the first tensile stressor layer. In one form, the second tensile stressor layer after the curing exerts a greater tensile stress than the first tensile stressor layer. The tensile stressors layers are utilized to improve carrier mobility in an N-channel transistor and thus enhance transistor performance. In one form a single group of overlying tensile stressor layers is provided with each layer being increasingly thicker and having increasingly more hydrogen prior to being cured. In other embodiments multiple overlying groups are formed, each group having a similar repeating depth and hydrogen profile.11-06-2008
20130119444SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - An integrated circuit device and method for manufacturing the integrated circuit device are disclosed. The disclosed method comprises forming a wedge-shaped recess with an initial bottom surface in the substrate; transforming the wedge-shaped recess into an enlarged recess with a height greater than the height of the wedge-shaped recess; and epitaxially growing a strained material in the enlarged recess.05-16-2013
20130119445CMOS DEVICE FOR REDUCING RADIATION-INDUCED CHARGE COLLECTION AND METHOD FOR FABRICATING THE SAME - A CMOS device for reducing a radiation-induced charge collection and a method for fabricating the same. In the CMOS device, a heavily doped charge collection-suppressed region is disposed directly under the source region and the drain region. The region has a doping type opposite that of the source region and the drain region, and has a doping concentration not less than that of the source region and the drain region. The charge collection-suppressed region has a lateral part slightly less than or equal to that of the source region and the drain region, and has a lateral range toward to the channel not exceed the edges of the source region and the drain region. The CMOS device may greatly reduce a range of the funnel that appears under the action of a single particle, so that charges collected instantaneously under a force of an electric field may be reduced.05-16-2013
20110204424SEMICONDUCTOR DEVICE - An object is to provide a semiconductor device in which damages of an element such as a transistor are reduced even when physical force such as bending is externally applied to generate stress in the semiconductor device. A semiconductor device includes a semiconductor film including a channel formation region and an impurity region, which is provided over a substrate, a first conductive film provided over the channel formation region with a gate insulating film interposed therebetween, a first interlayer insulating film provided to cover the first conductive film, a second conductive film provided over the first interlayer insulating film so as to overlap with at least part of the impurity region, a second interlayer insulating film provided over the second conductive film, and a third conductive film provided over the second interlayer insulating film so as to be electrically connected to the impurity region through an opening.08-25-2011
20080258186Source and Drain Formation in Silicon on Insulator Device - A silicon on insulator device has a silicon layer (10-23-2008
20080258185Semiconductor structure with dielectric-sealed doped region - Leakage current can be substantially reduced by the formation of a seal dielectric in place of the conventional junction between source/drain region(s) and the substrate material. Trenches are formed in the substrate and lined with a seal dielectric prior to filling the trenches with semiconductor material. Preferably, the trenches are overfilled and a CMP process planarizes the overfill material. An epitaxial layer can be grown atop the trenches after planarization, if desired.10-23-2008
20100270600SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE AND METHOD OF DESIGNING THE SAME - A method of designing a semiconductor integrated circuit device includes: arranging standard cells constituting a MISFET; analyzing an operation timing and/or power consumption of the arranged standard cells; identifying one of the standard cells that is desired to have improved properties as a cell of interest based on the obtained analysis result; optimizing an arrangement and a shape of blank areas around the cell of interest taking into account an influence of a well proximity effect; and replacing the blank area and/or the cell of interest with a WPE-reduced or WPE-enhancing cell.10-28-2010
20090090940SEMICONDUCTOR DEVICE - A semiconductor device is provided, which includes a first insulating layer over a first substrate, a transistor over the first insulating layer, a second insulating layer over the transistor, a first conductive layer connected to a source region or a drain region of the transistor through an opening provided in the second insulating layer, a third insulating layer over the first conductive layer, and a second substrate over the third insulating layer. The transistor comprises a semiconductor layer, a second conductive layer, and a fourth insulating layer provided between the semiconductor layer and the second conductive layer. One or plural layers selected from the first insulating layer, the second insulating layer, the third insulating layer, and the fourth insulating layer have a step portion which is provided so as not to overlap with the transistor.04-09-2009
20100140674MOSFET WITH MULTIPLE FULLY SILICIDED GATE AND METHOD FOR MAKING THE SAME - A field-effect transistor is provided. The field-effect transistor includes a gate structure including a fully silicided gate material overlying a gate dielectric disposed on a substrate, the fully silicided gate material having an upper region and a lower region, wherein the lower region has a first lateral dimension in accordance with a lateral dimension of the gate dielectric, and the upper region has a second lateral dimension different from the first lateral dimension.06-10-2010
20100140673PRINTING SHIELDED CONNECTIONS AND CIRCUITS - An embodiment is a method and apparatus to construct a shielded cable, wire, or circuit. A first insulator layer is deposited on a first conductor or semiconductor layer. A second conductor or semiconductor layer is deposited on the first insulator layer. A second insulator layer is deposited on the first insulator layer. The second insulator layer covers the second conductor or semiconductor layer and defines a shielded region. A third conductor or semiconductor layer is deposited on the first conductor or semiconductor layer. The third conductor or semiconductor layer covers the first and second insulator layers. At least one of the first, second, and third conductor or semiconductor layers, and the first and second insulator layers is deposited by printing.06-10-2010
20090179235SEMICONDUCTOR DEVICE, DC/DC CONVERTER AND POWER SUPPLY - A semiconductor device in which the self-turn-on phenomenon is prevented that can significantly improve power conversion efficiency. The semiconductor device is a system-in-package for power supply applications in which a high-side switch, a low-side switch, and two drivers are included in a single package. The device includes an auxiliary switch disposed between the gate and source of said low-side switch, and a low-side MOSFET 07-16-2009
20090127596PHOTOMASK, SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A photomask includes a light-blocking section that blocks light and also includes a light intensity difference section that controls the intensity of light. The light-blocking section is disposed between the light intensity difference section and a light-transmissive region transmitting light.05-21-2009
20100264468Method Of Fabrication Of A FinFET Element - The present disclosure provides a FinFET element and method of fabricating a FinFET element. The FinFET element includes a germanium-FinFET element (e.g., a multi-gate device including a Ge-fin). In one embodiment, the method of fabrication the Ge-FinFET element includes forming silicon fins on a substrate and selectively growing an epitaxial layer including germanium on the silicon fins. A Ge-condensation process may then be used to selectively oxidize the silicon of the Si-fin and transform the Si-fin to a Ge-fin. The method of fabrication provided may allow use of SOI substrate or bulk silicon substrates, and CMOS-compatible processes to form the Ge-FinFET element.10-21-2010
20110186915REPLACEMENT GATE APPROACH BASED ON A REVERSE OFFSET SPACER APPLIED PRIOR TO WORK FUNCTION METAL DEPOSITION - In a replacement gate approach, a spacer may be formed in the gate opening after the removal of the placeholder material, thereby providing a superior cross-sectional shape upon forming any electrode metals in the gate opening. Moreover, the spacer may be used for reducing the gate length, while not requiring more complex gate patterning strategies.08-04-2011
20110186914FIELD EFFECT TRANSISTOR (FET) AND METHOD OF FORMING THE FET WITHOUT DAMAGING THE WAFER SURFACE - Disclosed are a field effect transistor structure and a method of forming the structure. A gate stack is formed on the wafer above a designated channel region. Spacer material is deposited and anisotropically etched until just prior to exposing any horizontal surfaces of the wafer or gate stack, thereby leaving relatively thin horizontal portions of spacer material on the wafer surface and relatively thick vertical portions of spacer material on the gate sidewalls. The remaining spacer material is selectively and isotropically etched just until the horizontal portions of spacer material are completely removed, thereby leaving only the vertical portions of the spacer material on the gate sidewalls. This selective isotropic etch removes the horizontal portions of spacer material without damaging the wafer surface. Raised epitaxial source/drain regions can be formed on the undamaged wafer surface adjacent to the gate sidewall spacers in order to tailor source/drain resistance values.08-04-2011
20100200897TRANSISTOR AND METHOD OF MANUFACTURING THE SAME - A method of manufacturing a transistor (08-12-2010
20090184348Slim Spacer Implementation to Improve Drive Current - Slim spacers are implemented in transistor fabrication. More particularly, wide sidewall spacers are initially formed and used to guide dopants into source/drain regions in a semiconductor substrate. The wide sidewall spacers are then removed and slim sidewall spacers are formed alongside a gate stack of the transistor. The slim spacers facilitate transferring stress from an overlying pre metal dielectric (PMD) liner to a channel of the transistor, and also facilitate reducing a resistance in the transistor by allowing silicide regions to be formed closer to the channel. This mitigates yield loss by facilitating predictable or otherwise desirable behavior of the transistor.07-23-2009
20090140303SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device and a method for manufacturing the same includes forming a via pattern having a matrix form in a dielectric layer. The via pattern includes a via slit provided at the center of the via pattern and a plurality of via holes provided at an outer periphery of the via pattern and surrounding the via slit. Metal plugs are formed in the via holes.06-04-2009
20090140302SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - A method of fabricating a semiconductor device according to one embodiment of the invention includes: forming a gate electrode on a semiconductor substrate through a gate insulating film; forming offset spacers on side surfaces of the gate electrode, respectively; etching the semiconductor substrate with a channel region below the offset spacers and the gate electrode being left by using the offset spacers as a mask; forming a first epitaxial layer made of a crystal having a lattice constant different from that of a crystal constituting the semiconductor substrate on the semiconductor substrate thus etched; etching at least a portion of the first epitaxial layer adjacent to the channel region to a predetermined depth from a surface of the first epitaxial layer toward the semiconductor substrate side; and forming a second epitaxial layer containing therein a conductivity type impurity on the first epitaxial layer thus etched.06-04-2009
20090140301REDUCING CONTACT RESISTANCE IN P-TYPE FIELD EFFECT TRANSISTORS - Reducing contact resistance in p-type field effect transistors is generally described. In one example, an apparatus includes a first semiconductor substrate, a first noble metal film including palladium (Pd) coupled with the first semiconductor substrate, a second noble metal film including platinum (Pt) coupled with the first noble metal film, and a third metal film including an electrically conductive metal coupled with the second noble metal film, wherein the first, second, and third metal films form one or more contacts having reduced specific contact resistance between the first semiconductor substrate and the one or more contacts.06-04-2009
20120139015METAL SEMICONDUCTOR ALLOY CONTACT WITH LOW RESISTANCE - A method of forming a semiconductor device is provided that includes forming a gate structure on a channel portion of a semiconductor substrate, forming an interlevel dielectric layer over the gate structure, and forming a opening through the interlevel dielectric layer to an exposed surface of the semiconductor substrate containing at least one of the source region and the drain region. A metal semiconductor alloy contact is formed on the exposed surface of the semiconductor substrate. At least one dielectric sidewall spacer is formed on sidewalls of the opening. An interconnect is formed within the opening in direct contact with the metal semiconductor alloy contact.06-07-2012
20120068233TRANSISTORS HAVING STRESSED CHANNEL REGIONS AND METHODS OF FORMING TRANSISTORS HAVING STRESSED CHANNEL REGIONS - A method of forming a field effect transistor and a field effect transistor. The method includes (a) forming gate stack on a silicon layer of a substrate; (b) forming two or more SiGe filled trenches in the silicon layer on at least one side of the gate stack, adjacent pairs of the two or more SiGe filled trenches separated by respective silicon regions of the silicon layer; and (c) forming source/drains in the silicon layer on opposite sides of the gate stack, the source/drains abutting a channel region of the silicon layer under the gate stack.03-22-2012
20090321796SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - A semiconductor device according to one embodiment includes: a substrate having an element region where a semiconductor element is formed; a via hole formed in a portion of the substrate adjacent to the element region; a conducting portion provided in the via hole via an insulating layer; and a buffer layer provided between the substrate and the insulating layer, wherein the buffer layer is made of a material in which a difference in thermal expansion coefficient between the substrate and the buffer layer is smaller than that between the substrate and the insulating layer.12-31-2009
20110140181Removal of Masking Material - Methods for removing a masking material, for example, a photoresist, and electronic devices formed by removing a masking material are presented. For example, a method for removing a masking material includes contacting the masking material with a solution comprising cerium. The cerium may be comprised in a salt. The salt may be cerium ammonium nitrate.06-16-2011
20090242947SEMICONDUCTOR DEVICE AND FABRICATION METHOD FOR THE SEMICONDUCTOR DEVICE - A semiconductor device and a fabrication method for the semiconductor device which can remove the sacrifice layer deposited on the semiconductor device surface in a short time and whose manufacturing yield can be improved are provided. The semiconductor device and the fabrication method for the semiconductor device includes a field effect transistor 10-01-2009
20090050942SELF-ALIGNED SUPER STRESSED PFET - The embodiments of the invention comprise a self-aligned super stressed p-type field effect transistor (PFET). More specifically, a field effect transistor comprises a channel region comprising N-doped material and a gate above the channel region. The field effect transistor also includes a source region on a first side of the channel region and a drain region on a second side of the channel region opposite the first side. The source and drain regions each comprise silicon germanium, wherein the silicon germanium has structural indicia of epitaxial growth.02-26-2009
20090101943Reversely Tapered Contact Structure Compatible With Dual Stress Liner Process - A semiconductor device having a silicon layer, a transistor having an electrical connection region in the silicon layer; and a conductive plug formed on and in electrical contact with the electrical connection region, the plug having side walls that taper inward away from the silicon layer.04-23-2009
20110220974SEMICONDUCTOR DEVICE - According to an embodiment, the present invention provides a semiconductor device that is easily integrated with other electronic circuits and functions as an oscillator with high frequency accuracy. The semiconductor device includes: a semiconductor substrate; an element region; an element isolation region that surrounds the element region; a field effect transistor including a gate electrode that is formed on the element region, source and drain regions, and a channel region that is interposed between the source region and the drain region; gate, source, and drain terminals that are used to apply a voltage to the gate electrode, the source region, and the drain region, respectively; and an output terminal that is electrically connected to the channel region. When the threshold voltage of the field effect transistor is V09-15-2011
20110220975METHOD OF FORMING A SEMICONDUCTOR DEVICE FEATURING A GATE STRESSOR AND SEMICONDUCTOR DEVICE - A semiconductor device is formed in a semiconductor layer. A gate stack is formed over the semiconductor layer and comprises a first conductive layer and a second layer over the first layer. The first layer is more conductive and provides more stopping power to an implant than the second layer. A species is implanted into the second layer. Source/drain regions are formed in the semiconductor layer on opposing sides of the gate stack. The gate stack is heated after the step of implanting to cause the gate stack to exert stress in the semiconductor layer in a region under the gate stack.09-15-2011
20090085073MOSFET STRUCTURE AND METHOD OF MANUFACTURE - A method of forming a portion (04-02-2009
20090101945SEMICONDUCTOR DEVICE - A semiconductor device includes: a semiconductor substrate; an N-type MOSFET formed in a surface of the semiconductor substrate; a tensile stress film provided on the semiconductor substrate at least around a directly overlying region of a channel region of the N-type MOSFET and having tensile stress therein; and a compressive stress film provided in the directly overlying region of the channel region and having compressive stress therein.04-23-2009
20090101944ELECTRONIC DEVICE AND METHOD FOR MANUFACTURING THE SAME - It is made possible to form an interelectrode gap with high precision, without a decrease in the simplicity and convenience of the process to be carried out by an ink jet technique. A method for manufacturing an electronic device, includes: applying a water repellent agent onto a substrate by an ink jet technique to form a water repellent region on the substrate; dropping a solution containing a conductive ink material along edges of the water repellent region on the substrate by the ink jet technique to form a source electrode and a drain electrode; and forming a semiconductor layer to cover the water repellent region, the source electrode, and the drain electrode.04-23-2009
20090101942PLANAR FIELD EFFECT TRANSISTOR STRUCTURE AND METHOD - Disclosed is a transistor that incorporates epitaxially deposited source/drain semiconductor films and a method for forming the transistor. A crystallographic etch is used to form recesses between a channel region and trench isolation regions in a silicon substrate. Each recess has a first side, having a first profile, adjacent to the channel region and a second side, having a second profile, adjacent to a trench isolation region. The crystallographic etch ensures that the second profile is angled so that all of the exposed recess surfaces comprise silicon. Thus, the recesses can be filled by epitaxial deposition without divot formation. Additional process steps can be used to ensure that the first side of the recess is formed with a different profile that enhances the desired stress in the channel region.04-23-2009
20120104477SEMICONDUCTOR DEVICE AND FABRICATION METHOD THEREOF - A semiconductor device fabrication method includes the steps of (a) forming a dielectric film on a semiconductor substrate; (b) etching the dielectric film by a dry process; and (c) supplying thermally decomposed atomic hydrogen onto the semiconductor substrate under a prescribed temperature condition, to remove a damaged layer produced in the semiconductor substrate due to the dry process.05-03-2012
20120104474TRANSISTOR AND METHOD FOR FORMING THE SAME - The present invention relates to a transistor and the method for forming the same. The transistor of the present invention comprises a semiconductor substrate; a gate dielectric layer formed on the semiconductor substrate; a gate formed on the gate dielectric layer; a source region and a drain region located in the semiconductor substrate and on respective sides of the gate, wherein at least one of the source region and the drain region comprises at least one dislocation; an epitaxial semiconductor layer containing silicon located on the source region and the drain region; and a metal silicide layer on the epitaxial semiconductor layer.05-03-2012
20120104473TRANSISTOR AND METHOD FOR FORMING THE SAME - The present invention relates to a transistor and the method for forming the same. The transistor of the present invention comprises a semiconductor substrate; a gate dielectric layer formed on the semiconductor substrate; a gate formed on the gate dielectric layer; a channel region under the gate dielectric layer; and a source region and a drain region located in the semiconductor substrate and on respective sides of the channel region, wherein at least one of the source and drain regions comprises a set of dislocations that are adjacent to the channel region and arranged in the direction perpendicular to a top surface of the semiconductor substrate, and the set of dislocations comprises at least two dislocations.05-03-2012
20120104472FIN-LIKE FIELD EFFECT TRANSISTOR (FINFET) DEVICE AND METHOD OF MANUFACTURING SAME - A FinFET device and method for fabricating a FinFET device is disclosed. An exemplary method includes providing a semiconductor substrate; forming a first fin structure and a second fin structure over the semiconductor substrate; forming a gate structure over a portion of the first and second fin structures, such that the gate structure traverses the first and second fin structures; epitaxially growing a first semiconductor material on exposed portions of the first and second fin structures, such that the exposed portions of the first and second fin structures are merged together; and epitaxially growing a second semiconductor material over the first semiconductor material.05-03-2012
20120104471CONTACT STRUCTURE FOR REDUCING GATE RESISTANCE AND METHOD OF MAKING THE SAME - A semiconductor device having a gate on a substrate with source/drain (S/D) regions adjacent to the gate. A first dielectric layer overlays the gate and the S/D regions, the first dielectric layer having first contact holes over the S/D regions with first contact plugs formed of a first material and the first contact plugs coupled to respective S/D regions. A second dielectric layer overlays the first dielectric layer and the first contact plugs. A second contact hole formed in the first and second dielectric layers is filled with a second contact plug formed of a second material. The second contact plug is coupled to the gate and interconnect structures formed in the second dielectric layer, the interconnect structures coupled to the first contact plugs. The second material is different from the first material, and the second material has an electrical resistance lower than that of the first material.05-03-2012
20120104470REPLACEMENT GATE MOSFET WITH RAISED SOURCE AND DRAIN - A disposable dielectric spacer is formed on sidewalls of a disposable material stack. Raised source/drain regions are formed on planar source/drain regions by selective epitaxy. The disposable dielectric spacer is removed to expose portions of a semiconductor layer between the disposable material stack and the source/drain regions including the raised source/drain regions. Dopant ions are implanted to form source/drain extension regions in the exposed portions of the semiconductor layer. A gate-level dielectric layer is deposited and planarized. The disposable material stack is removed and a gate stack including a gate dielectric and a gate electrode fill a cavity formed by removal of the disposable material stack. Optionally, an inner dielectric spacer may be formed on sidewalls of the gate-level dielectric layer within the cavity prior to formation of the gate stack to tailor a gate length of a field effect transistor.05-03-2012
20120104469REPLACEMENT GATE MOSFET WITH A HIGH PERFORMANCE GATE ELECTRODE - In a replacement gate scheme, a continuous material layer is deposited on a bottom surface and a sidewall surface in a gate cavity. A vertical portion of the continuous material layer is removed to form a gate component of which a vertical portion does not extend to a top of the gate cavity. The gate component can be employed as a gate dielectric or a work function metal portion to form a gate structure that enhances performance of a replacement gate field effect transistor.05-03-2012
20090212333METHOD OF MANUFACTURING A BURIED-GATE SEMICONDUCTOR DEVICE AND CORRESPONDING INTEGRATED CIRCUIT - A semiconductor device includes a semiconductor channel region and a gate region, wherein the gate region includes at least one buried part extending under the channel region. The buried part of the gate region is formed from a cavity under the channel region. The cavity is filled with a first material. An opening is made to access the first material. In one implementation, aluminum is deposited in the opening in contact with the first material. An anneal is performed to cause the aluminum to be substituted for the first material in the cavity. In another implementation, a second material different from the first material is deposited in the opening. An anneal is performed to cause an alloy of the first and second materials to be formed in the cavity.08-27-2009
20130214336METHOD FOR FILLING TRENCH WITH METAL LAYER AND SEMICONDUCTOR STRUCTURE FORMED BY USING THE SAME - A method for filling a trench with a metal layer is disclosed. A deposition apparatus having a plurality of supporting pins is provided. A substrate and a dielectric layer disposed thereon are provided. The dielectric layer has a trench. A first deposition process is performed immediately after the substrate is placed on the supporting pins to form a metal layer in the trench, wherein during the first deposition process a temperature of the substrate is gradually increased to reach a predetermined temperature. When the temperature of the substrate reaches the predetermined temperature, a second deposition process is performed to completely fill the trench with the metal layer.08-22-2013
20090200583Feature Patterning Methods - Methods of patterning features of semiconductor devices and methods of processing and fabricating semiconductor devices are disclosed. In one embodiment, a method of processing a semiconductor device includes forming first sidewall spacers on a first hard mask, removing the first hard mask, and forming a first material layer over the first sidewall spacers. A second hard mask is formed over the first material layer and the first sidewall spacers. Second sidewall spacers are formed on the second hard mask, and the second hard mask is removed. At least the first sidewall spacers are patterned using the second sidewall spacers as a mask.08-13-2009
20090108304PROTECTING SEMICONDUCTING OXIDES - In transistor structures such as thin film transistors (TFTs) in an array of cells, a layer of semiconducting oxide material that includes a channel is protected by a protective layer that includes low-temperature encapsulant material. The semiconducting oxide material can be a transition metal oxide material such as zinc oxide, and can be in an active layered substructure that also includes channel end electrodes. The low-temperature encapsulant can, for example, be an organic polymer such as poly(methyl methacrylate) or parylene, deposited on an exposed region of the oxide layer such as by spinning, spin-casting, evaporation, or vacuum deposition or an inorganic polymer deposited such as by spinning or liquid deposition. The protective layer can include a lower sublayer of low-temperature encapsulant on the exposed region and an upper sublayer of inorganic material on the lower sublayer. For roll-to-roll processing, a mechanically flexible, low-temperature substrate can be used.04-30-2009
20090230442Semiconductor apparatus and manufacturing method of the same - Provided is a semiconductor apparatus including a substrate region, an active region on the substrate region, a gate pattern on the active region, and first and second impurities-doped regions along both edges of the active region that do not overlap the gate pattern. The length of the first and second impurities-doped regions in the horizontal direction may be shorter than in the vertical direction. The first and second impurities-doped regions may be formed to be narrow along both edges of the active region so as not to overlap the gate pattern.09-17-2009
20090230441Device and Method for Switching Electric Signals and Powers - A device for switching an electric signal having a first member having a p-doped area with a first terminal and an n-doped area with a second terminal and a second member coupled to the first member to cause a mechanical deformation of the first member in an area of a transition from the p-doped area into the n-doped area.09-17-2009
20090230438SELECTIVE NITRIDATION OF TRENCH ISOLATION SIDEWALL - A method is provided of forming a trench isolation region adjacent to a single-crystal semiconductor region for a transistor. Such method can include, for example, recessing a single-crystal semiconductor region to define a first wall of the semiconductor region, a second wall remote from the first wall and a plurality of third walls extending between the first and second walls, each of the first and second walls extending in a first direction. In one embodiment, the first direction may be a <110> crystallographic direction of a wafer such as a silicon direction, for example. Oxidation-inhibiting regions can be formed at the first and second walls of the semiconductor region selectively with respect to the third walls. A dielectric region can then be formed adjacent to the first, second and third walls of the semiconductor region for a trench isolation region. During the formation of the dielectric region, the oxidation-inhibiting regions reduce oxidation of the semiconductor region at the first and second walls relative to the plurality of third walls. A transistor formed in the semiconductor region can have a channel whose length is oriented in the first direction by processing including annealing, which at least partially oxidizes the semiconductor region at the third walls.09-17-2009
20090194797INSULATING FILM AND SEMICONDUCTOR DEVICE INCLUDING THE SAME - It is made possible to provide an insulating film that can reduce the leakage current. An insulating film includes: an amorphous oxide dielectric film containing a metal, hydrogen, and nitrogen. The nitrogen amount [N] and the hydrogen amount [H] in the oxide dielectric film satisfy the following relationship: {[N]−[H]}/2≦1.0×1008-06-2009
20090001432Channel layer for a thin film transistor, thin film transistor including the same, and methods of manufacturing the same - Provided is a channel layer for a thin film transistor, a thin film transistor and methods of forming the same. A channel layer for a thin film transistor may include IZO (indium zinc oxide) doped with a transition metal. A thin film transistor may include a gate electrode and the channel layer formed on a substrate, a gate insulating layer formed between the gate electrode and channel layer, and a source electrode and a drain electrode which contact ends of the channel layer.01-01-2009
20090212332FIELD EFFECT TRANSISTOR WITH REDUCED OVERLAP CAPACITANCE - In a first structure, a metal gate portion may be laterally recessed from a substantially vertical surface of a gate conductor thereabove. A cavity is formed between the metal gate portion and a gate spacer. In a second structure, a disposable gate portion is removed after laterally recessing a metal gate portion therebeneath and forming a dielectric layer having a surface coplanar with a top surface of the disposable gate portion. (We have to include the inner spacer without a metal recess). An inner gate spacer is formed over a periphery of the metal gate portion provide a reduced overlap capacitance. In a third structure, a thin dielectric layer is employed to form a cavity next to the metal gate portion in conjunction with the inner gate spacer to provide reduced overlap capacitance.08-27-2009
20090212334SEMICONDUCTOR DEVICE AND A METHOD FOR MANUFACTURING THE SAME - Disclosed are embodiments relating to a semiconductor device and a method of manufacturing a semiconductor device that may prevent an increase of a dielectric effective constant of the IMD. In embodiments, a semiconductor device may include a substrate having a source/drain area, a gate electrode formed on the semiconductor substrate, a first inter-metal dielectric layer formed on the semiconductor substrate and having a first damascene pattern, a first barrier layer formed on the damascene pattern, a first metal line formed on the first barrier layer, and a first metal capping layer formed in the first damascene pattern.08-27-2009
20090095990METAL-OXIDE-SEMICONDUCTOR TRANSISTOR AND METHOD OF FORMING THE SAME - A method of forming a metal-oxide-semiconductor (MOS) transistor device is provided. First, a semiconductor substrate is prepared. Subsequently, a gate structure is formed on the semiconductor substrate. The gate structure includes a first strip portion and a second strip portion that is not parallel to the first strip portion. The gate structure further includes a junction between the first strip portion and the second strip portion. Thereafter, a stressed cap layer is formed on the semiconductor substrate, and covers the gate structure. Next, a portion of the stressed cap layer is removed to expose the junction between the first strip portion and the second strip portion.04-16-2009
20090242944METHOD OF FORMING A SEMICONDUCTOR DEVICE USING STRESS MEMORIZATION - A stress memorization technique (SMT) film is deposited over a semiconductor device. The SMT film is annealed with a low thermal budget anneal that is sufficient to create and transfer the stress of the SMT film to the semiconductor device. The SMT film is then removed. After the SMT film is removed, a second anneal is applied to the semiconductor device sufficiently long and at a sufficiently high temperature to activate dopants implanted for forming device source/drains. The result of this approach is that there is minimal gate dielectric growth in the channel along the border of the channel.10-01-2009
20090242945Semiconductor device and method of fabricating the same - In a method of fabricating a semiconductor device on a substrate having a pillar pattern, a gate electrode is formed on the pillar pattern without etching the latter. A conductive pattern is filled between adjacent pillar patterns, a spacer is formed above the conductive pattern and surrounding sidewalls of each pillar pattern, and the gate electrode is formed by etching the conductive pattern using the spacer as an etch barrier.10-01-2009
20090250732Semiconductor device and method of fabricating the same - In a method of fabricating a semiconductor device on a substrate having thereon a conductive layer, the conductive layer is patterned to form a plurality of opened regions. A gate insulation layer is formed on a sidewall of each of the opened regions. A pillar pattern is formed in each opened region. On each pillar pattern, a gate electrode, which encloses the pillar pattern, is formed by removing the conductive layer between the pillar patterns.10-08-2009
20090250731Field-effect transistor structure and fabrication method thereof - A field-effect transistor (FET) structure is provided. The FET structure includes a gate substrate, a dielectric layer, conductive electrodes, and a carbon nanotube (CNT). The gate substrate is made of a conductive material. The dielectric layer is disposed on the substrate. The conductive electrodes are disposed on the dielectric layer, and contain nickel and chromium. The CNT is disposed on the dielectric layer and electrically connects two conductive electrodes10-08-2009
20090256178SEMICONDUCTOR DEVICE HAVING MISFETS AND MANUFACTURING METHOD THEREOF - A semiconductor device includes a dielectric film and gate electrode that are stacked on a substrate, sidewalls formed to cover the side surfaces of the electrode and dielectric film, and SiGe films formed to sandwich the sidewalls, electrode and dielectric film, filled in portions separated from the sidewalls, having upper portions higher than the surface of the substrate and having silicide layers formed on regions of exposed from the substrate. The lower portion of the SiGe film that faces the electrode is formed to extend in a direction perpendicular to the surface of the substrate and the upper portion is inclined and separated farther apart from the gate electrode as the upper portion is separated away from the surface of the substrate. The surface of the silicide layer of the SiGe film that faces the gate electrode is higher than the channel region.10-15-2009
20120193688ION IMPLANTED AND SELF ALIGNED GATE STRUCTURE FOR GaN TRANSISTORS - A self-aligned transistor gate structure that includes an ion-implanted portion of gate material surrounded by non-implanted gate material on each side. The gate structure may be formed, for example, by applying a layer of GaN material over an AlGaN barrier layer and implanting a portion of the GaN layer to create the gate structure that is laterally surrounded by the GaN layer.08-02-2012
20120193687REDUCED S/D CONTACT RESISTANCE OF III-V MOSFET USING LOW TEMPERATURE METAL-INDUCED CRYSTALLIZATION OF n+ Ge - Embodiments of this invention provide a method to fabricate an electrical contact. The method includes providing a substrate of a compound Group III-V semiconductor material having at least one electrically conducting doped region adjacent to a surface of the substrate. The method further includes fabricating the electrical contact to the at least one electrically conducting doped region by depositing a single crystal layer of germanium over the surface of the substrate so as to at least partially overlie the at least one electrically conducting doped region, converting the single crystal layer of germanium into a layer of amorphous germanium by implanting a dopant, forming a metal layer over exposed surfaces of the amorphous germanium layer, and performing a metal-induced crystallization (MIC) process on the amorphous germanium layer having the overlying metal layer to convert the amorphous germanium layer to a crystalline germanium layer and to activate the implanted dopant. The electrical contact can be a source or a drain contact of a transistor.08-02-2012
20120193686SEMICONDUCTOR DEVICES HAVING ENCAPSULATED STRESSOR REGIONS AND RELATED FABRICATION METHODS - Apparatus and related fabrication methods are provided for semiconductor device structures having silicon-encapsulated stressor regions. One method for fabricating a semiconductor device structure involves the steps of forming a gate structure overlying the semiconductor substrate, forming recesses in the semiconductor substrate about the gate structure, forming a stress-inducing semiconductor material in the recesses, and forming a silicon material in the recesses overlying the stress-inducing semiconductor material. In an exemplary embodiment, the silicon material formed in the recesses is epitaxially-grown on the stress-inducing semiconductor material.08-02-2012
20090127595SEMICONDUCTOR STRUCTURE WITH FIELD SHIELD AND METHOD OF FORMING THE STRUCTURE - Disclosed is semiconductor structure that incorporates a field shield below a semiconductor device (e.g., a field effect transistor (FET) or a diode). The field shield is sandwiched between upper and lower isolation layers on a wafer. A local interconnect extends through the upper isolation layer and connects the field shield to a selected doped semiconductor region of the device (e.g., a source/drain region of a FET or a cathode or anode of a diode). Current that passes into the device, for example, during back-end of the line charging, is shunted by the local interconnect away from the upper isolation layer and down into the field shield. Consequently, an electric charge is not allowed to build up in the upper isolation layer but rather bleeds from the field shield into the lower isolation layer and into the substrate below. This field shield further provides a protective barrier against any electric charge that becomes trapped within the lower isolation layer or substrate05-21-2009
20090315084SEMICONDUCTOR DEVICE AND SEMICONDUCTOR SUBSTRATE - A semiconductor device includes a semiconductor substrate, a gate pattern disposed on the semiconductor substrate, a body region disposed on the gate pattern and a first impurity doping region and a second impurity doping region. The gate pattern is disposed below the body region and the first impurity doping region and the second impurity doping region.12-24-2009
20100148229INSULATING RESIN COMPOSITION - An insulating resin composition is provided. The insulating resin composition includes (A) a silicon-based polymer having either primary or secondary amine groups or both, (B) an organometallic compound, and (C) a solvent. The physicochemical properties of the insulating resin composition are maintained during processing steps for the fabrication of a semiconductor device. Therefore, the use of the insulating resin composition prevents deterioration of the characteristics of the semiconductor device arising from defects, spots, aggregates, and the like, in an insulating film and reduces the hysteresis of the semiconductor device to improve the characteristics of the semiconductor device.06-17-2010
20100148228SEMICONDUCTOR AND MANUFACTURING METHOD OF THE SAME - A semiconductor device includes a gate formed on a semiconductor substrate. A first junction region is formed on a first side of the gate and a second junction region formed on a second side of the gate. A bit line is formed over the gate to be electrically coupled with the first junction region. A first metal plug is formed electrically coupling the second junction region. A bit line contact plug is provided between the first junction region and the bit line, and electrically couples the first junction region and the bit line. A second metal plug is formed over the first metal plug and electrically couples the first metal plug. The junction region of a gate in a core or peripheral region is connected to the metal line using a metal plug so that bit lines formed in the core and peripheral area can have a pattern similar to that formed in a cell region.06-17-2010
20090085074TRENCH MOSFET AND METHOD OF MANUFACTURE UTILIZING FOUR MASKS - In accordance with the invention, a trench MOSFET semiconductor device is manufactured in accordance with a process comprising the steps of: providing a heavily doped N+ silicon substrate; utilizing a first mask to define openings for the trench gate and termination; utilizing a second mask as a source mask with openings determining the size and shape of a diffused source junction depth; utilizing a third mask as a contact mask to define contact hole openings; and utilizing a fourth mask as a metal mask, whereby only the first, second, third and fourth masks are utilized in the manufacture of the trench MOSFET semiconductor device.04-02-2009
20100155791METHOD OF FABRICATING SEMICONDUCTOR DEVICE AND THE SEMICONDUCTOR DEVICE - A method of fabricating a semiconductor device includes forming trench-like recesses in a semiconductor substrate, the recesses including one or more recesses each of which has an opening width of not more than a predetermined value, forming a first insulating film above the substrate after the recesses have been formed, so that one or a plurality of voids are formed in the one or more recesses whose opening widths are not more than the predetermined value, removing part of the first insulating film so that a beam is left which spans the openings so that the beam passes over upper surfaces of the one or more recesses and so that at least the voids are exposed in a portion of the substrate except the beam, and filling the voids in the recesses with a material with fluidity, thereby forming second insulating films in the recesses.06-24-2010
20100155795SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device according to an embodiment includes: a substrate on which a source/drain region is formed; a gate oxide that includes a first oxide formed on the substrate and implanted with fluorine impurity, and a second oxide formed on the first oxide; a gate electrode that is formed on the gate oxide; and a spacer that is formed on a side of the gate electrode.06-24-2010
20100155794REWORK METHOD OF METAL STRUCTURE OF SEMICONDUCTOR DEVICE - A rework method of a metal structure and devices thereof. A rework method may include forming a first metal layer over an insulating layer having a contact plug, a metal interconnection layer over a first metal layer and/or a second metal layer over a metal interconnection layer. A rework method may include performing a first wet etch process to remove first and/or second metal layers, except for a portion below a metal interconnection layer, removing a metal interconnection layer through a second wet etch process and/or planarizing a remaining portion of a first metal layer and/or a surface of an insulating layer through a first planarization process. An increase of a size of a contact hole, for example due to an over exposure of a contact hole, may be minimized.06-24-2010
20100155793SELF ALIGNED FIELD EFFECT TRANSISTOR STRUCTURE - Provided is a self aligned filed effect transistor structure. The self aligned field effect transistor structure includes: an active region on a substrate; a U-shaped gate insulation pattern on the active region; and a gate electrode self-aligned by the gate insulation pattern and disposed in an inner space of the gate insulation pattern.06-24-2010
20120032238CONTACT ETCH STOP LAYERS OF A FIELD EFFECT TRANSISTOR - An exemplary structure for a field effect transistor according to at least one embodiment comprises a substrate comprising a surface; a gate structure comprising sidewalls and a top surface over the substrate; a spacer adjacent to the sidewalls of the gate structure; a first contact etch stop layer over the spacer and extending along the surface of the substrate; an interlayer dielectric layer adjacent to the first contact etch stop layer, wherein a top surface of the interlayer dielectric layer is coplanar with the top surface of the gate structure; and a second contact etch stop layer over the top surface of the gate structure.02-09-2012
20130214335Replacement Gate Approach for High-K Metal Gate Stacks by Using a Multi-Layer Contact Level - In a replacement gate approach, the dielectric material for laterally encapsulating the gate electrode structures may be provided in the form of a first interlayer dielectric material having superior gap filling capabilities and a second interlayer dielectric material that provides high etch resistivity and robustness during a planarization process. In this manner, undue material erosion upon replacing the placeholder material may be avoided, which results in reduced yield loss and superior device uniformity.08-22-2013
20100187579TRANSISTOR DEVICES AND METHODS OF MAKING - In an embodiment, a method of fabricating a transistor device comprises: providing a semiconductor topography comprising a gate conductor disposed above a semiconductor substrate between a pair of dielectric spacers; anisotropically etching exposed regions of the semiconductor substrate on opposite sides of the dielectric spacers to form recessed regions in the substrate; oxidizing exposed surfaces of the substrate in the recessed regions to form an oxide thereon; removing the oxide from bottoms of the recessed regions while retaining the oxide upon sidewalls of the recessed regions; and isotropically etching the substrate such that the recessed regions undercut the pair of dielectric spacers.07-29-2010
20100258848COMPENSATED GATE MISFET AND METHOD FOR FABRICATING THE SAME - A MISFET, such as a GaN transistor, with low gate leakage. In one embodiment, the gate leakage is reduced with a compensated GaN layer below the gate contact and above the barrier layer. In another embodiment, the gate leakage is reduced by employing a semi-insulating layer below the gate contact and above the barrier layer.10-14-2010
20090294809REDUCTION OF METAL SILICIDE DIFFUSION IN A SEMICONDUCTOR DEVICE BY PROTECTING SIDEWALLS OF AN ACTIVE REGION - By protecting sidewall portions of active semiconductor regions during a silicidation process, the probability of creating nickel silicide pipes may be reduced. Consequently, yield losses caused by the shorting of PN junctions in sophisticated semiconductor devices may be reduced.12-03-2009
20100012990MOSFETS INCLUDING CRYSTALLINE SACRIFICIAL STRUCTURES - A sub-micron channel length MOSFET includes a seamless epitaxial channel region in a substrate of the MOSFET and a buried device isolation layer beneath the seamless epitaxial channel region. In some embodiments according to the invention, a buried device isolation layer includes the buried device isolation layer beneath a central portion of the seamless epitaxial channel and absent from sidewalls of source/drain regions of the MOSFET.01-21-2010
20100012989SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - A semiconductor device, and a method of fabricating the semiconductor device, which is able to prevent a leaning phenomenon from occurring between the adjacent storage nodes. The method includes forming a plurality of multi-layered pillar type storage nodes each of which is buried in a plurality of mold layers, wherein the uppermost layers of the multi-layered pillar type storage nodes are fixed by a support layer, etching a portion of the support layer to form an opening, and supplying an etch solution through the opening to remove the multiple mold layers. A process of depositing and etching the mold layer by performing the process 2 or more times to form the multi-layered pillar type storage node. Thus, the desired capacitance is sufficiently secured and the leaning phenomenon is avoided between adjacent storage nodes.01-21-2010
20100176425TRANSISTOR WITH WIRE SOURCE AND DRAIN - Field-effect transistor that includes at least a gate, a layer of insulator, a drain, a source, a semi-conductor material connecting the source to the drain, the gate and the layer of insulator each surrounding the assembly constituted by the source, the drain and the semi-conductor material, the layer of insulator being arranged between the gate and said assembly.07-15-2010
20100176426TRANSISTOR AND METHOD OF MANUFACTURING THE SAME - A method of manufacturing a transistor (07-15-2010
20100148227ELECTRONIC DEVICE INCLUDING AN INSULATING LAYER HAVING DIFFERENT THICKNESSES AND A CONDUCTIVE ELECTRODE AND A PROCESS OF FORMING THE SAME - An electronic device includes a transistor, wherein the electronic device can include a semiconductor layer having a primary surface, a channel region, a gate electrode, a source region, a conductive electrode, and an insulating layer lying between the primary surface of the semiconductor layer and the conductive electrode. The insulating layer has a first region and a second region, wherein the first region is thinner than the second region. The channel region, gate electrode, source region, or any combination thereof can lie closer to the first region than the second region. The thinner portion can allow for faster switch of the transistor, and the thicker portion can allow a relatively large voltage difference to be placed across the insulating layer. Alternative shapes for the transitions between the different regions of the insulating layer and exemplary methods to achieve such shapes are also described.06-17-2010
20100193847METAL GATE TRANSISTOR WITH BARRIER LAYER - A semiconductor fabrication process for forming a gate electrode for a metal-oxide-semiconductor (MOS) transistor includes forming a gate electrode layer of an electrically conductive ceramic, e.g., titanium nitride, overlying a gate dielectric layer, e.g., a high K dielectric. A gate barrier layer is then formed overlying the gate electrode layer. The gate barrier layer may be a metal or transition metal material including, as an example, titanium. Portions of the gate electrode layer and the gate barrier layer are then etched or otherwise removed to form the gate electrode.08-05-2010
20100230732FIELD EFFECT TRANSISTOR WITH AIR GAP DIELECTRIC - A field effect transistor (FET) that includes a drain formed in a first plane, a source formed in the first plane, a channel formed in the first plane and between the drain and the source and a gate formed in the first plane. The gate is separated from at least a portion of the body by an air gap. The air gap is also in the first plane.09-16-2010
20100224916SEMICONDUCTOR DEVICE - It is made possible to optimize the effective work function of the metal for a junction and suppress the resistance as far as possible at the interface between a semiconductor or a dielectric material and a metal. A semiconductor device includes: a semiconductor film; a Ti oxide film formed on the semiconductor film, and including at least one element selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, Nb, Mo, Tc, Ru, Rh, Pd, Ta, W, Re, Os, Ir, and Pt; and a metal film formed on the Ti oxide film.09-09-2010
20100237391PROCESS FOR MANUFACTURING A LARGE-SCALE INTEGRATION MOS DEVICE AND CORRESPONDING MOS DEVICE - A process for manufacturing a MOS device and the MOS device manufactured thereby are disclosed. The process includes in a semiconductor layer forming a gate structure above the semiconductor layer; forming a first doped region within a first surface portion of the semiconductor layer; and irradiating the first doped region with electromagnetic radiation, to carry out annealing thereof. Prior to the irradiating step, a dielectric mirror is formed above a second surface portion of the semiconductor layer. The dielectric mirror, which may be of the Bragg-reflector type, reflects at least in part the electromagnetic radiation, and protects underlying regions from the electromagnetic radiation.09-23-2010
20100001323METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE - Provided is a semiconductor device manufacturing method by which sufficient stress can be applied to a channel region within allowable ranges of concentrations of Ge and C in a mixed crystal layer. A semiconductor device is also provided. A dummy gate electrode 01-07-2010
20110210380CONTACT BARS WITH REDUCED FRINGING CAPACITANCE IN A SEMICONDUCTOR DEVICE - In sophisticated semiconductor devices, the contact structure may be formed on the basis of contact bars formed in a lower portion of an interlayer dielectric material, which may then be contacted by contact elements having reduced lateral dimensions so as to preserve a desired low overall fringing capacitance. The concept of contact bars of reduced height level may be efficiently combined with sophisticated replacement gate approaches.09-01-2011
20120139016SEMICONDUCTOR DEVICE AND METHOD FOR FORMING THE SAME - A semiconductor device and a method for forming the same are provided. The method includes: providing a substrate having a gate structure and first spacers on both sidewalls of the gate structure formed on a top surface of the substrate; forming first openings in the substrate by using the first spacers as a mask, wherein the first openings are located on both sides of the gate structure; forming second openings by etching the first openings with an etching gas, wherein each of the second openings is an expansion of a corresponding one of the first openings toward the gate structure and extends to underneath an adjacent first spacer; and forming epitaxial layers in the first openings and the second openings.06-07-2012
20120139014STRUCTURE AND METHOD FOR LOW TEMPERATURE GATE STACK FOR ADVANCED SUBSTRATES - A low-temperature metal gate stack for a field-effect transistor that is electrically activated at temperatures below 1000° C. The metal gate stack is composed of low melting materials that can be deposited by physical vapor deposition (PVD) onto a substrate.06-07-2012
20110006349FIELD EFFECT TRANSISTOR HAVING CHANNEL SILICON GERMANIUM - Field effect transistors and methods of making field effect transistors are provided. The field effect transistor can contain a semiconductor substrate containing shallow trench isolations; a silicon germanium layer in a trench at an upper surface of the semiconductor substrate between the shallow trench isolations; a gate feature on the silicon germanium layer; and metal silicides on the upper potions of silicon germanium layer and semiconductor substrate that are not covered by the gate feature. The silicon germanium layer has a bottom surface and a top surface having a (100) plane and side surfaces having two or more planes.01-13-2011
20100252868ENHANCED FIELD EFFECT TRANSISTOR - An enhanced FET capable of controlling current above and below a gate of the FET. The FET is formed on a semiconductor substrate. A source and drain are formed in the substrate (or in a well in the substrate). A first epitaxial layer of similar doping to the source and drain are grown on the source and drain, the first epitaxial layer is thicker than the gate, but not so thick as to cover the top of the gate. A second epitaxial layer of opposite doping is grown on the first epitaxial layer thick enough to cover the top of the gate. The portion of the second epitaxial layer above the gate serves as a body through which the gate controls current flow between portions of the first epitaxial layer over the drain and the source.10-07-2010
20100252869SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - A semiconductor device according to one embodiment includes: a gate electrode formed on a semiconductor substrate via a gate insulating film; Si:C layers formed on the semiconductor substrate in sides of the gate electrode; p-type source/drain regions formed in sides of the gate electrode in the semiconductor substrate, and a part of the p-type source/drain regions being formed in the Si:C layers; and silicide layers formed on the Si:C layers.10-07-2010
20100133595FIELD EFFECT TRANSISTOR STRUCTURE WITH ABRUPT SOURCE/DRAIN JUNCTIONS - Microelectronic structures embodying the present invention include a field effect transistor (FET) having highly conductive source/drain extensions. Formation of such highly conductive source/drain extensions includes forming a passivated recess which is back filled by epitaxial deposition of doped material to form the source/drain junctions. The recesses include a laterally extending region that underlies a portion of the gate structure. Such a lateral extension may underlie a sidewall spacer adjacent to the vertical sidewalls of the gate electrode, or may extend further into the channel portion of a FET such that the lateral recess underlies the gate electrode portion of the gate structure. In one embodiment the recess is back filled by an in-situ epitaxial deposition of a bilayer of oppositely doped material. In this way, a very abrupt junction is achieved that provides a relatively low resistance source/drain extension and further provides good off-state subthreshold leakage characteristics. Alternative embodiments can be implemented with a back filled recess of a single conductivity type.06-03-2010
20090020793FIELD EFFECT TRANSISTOR - A transistor comprising 01-22-2009
20110057237SEMICONDUCTOR DEVICES AND METHODS OF FORMING THEREOF - Provided is a semiconductor device. The semiconductor device includes: a substrate; an active layer on the substrate; a capping layer on the active layer; source/drain electrodes on the capping layer; a gate electrode on the active layer; and a first void region on a first sidewall of the gate electrode and a second void region on a second sidewall facing the first sidewall.03-10-2011
20100078689TRANSISTOR WITH EMBEDDED SI/GE MATERIAL HAVING REDUCED OFFSET TO THE CHANNEL REGION - A strain-inducing semiconductor alloy may be formed on the basis of cavities which may have a non-rectangular shape, which may be maintained even during corresponding high temperature treatments by providing an appropriate protection layer, such as a silicon dioxide material. Consequently, a lateral offset of the strain-inducing semiconductor material may be reduced, while nevertheless providing a sufficient thickness of corresponding offset spacers during the cavity etch process, thereby preserving gate electrode integrity. For instance, P-channel transistors may have a silicon/germanium alloy with a hexagonal shape, thereby significantly enhancing the overall strain transfer efficiency.04-01-2010
20100078688NITRIDE SEMICONDUCTOR DEVICE, NITRIDE SEMICONDUCTOR PACKAGE, AND METHOD FOR MANUFACTURING NITRIDE SEMICONDUCTOR DEVICE - A nitride semiconductor device of the present invention includes: a nitride semiconductor laminated structure including an n-type first layer, a second layer that is laminated on the first layer and contains a p-type impurity, and an n-type third layer laminated on the second layer, each layer of the nitride semiconductor laminated structure being made of a Group III nitride semiconductor, and having a wall surface extending from the first, second, to third layers; a fourth layer that is formed on the wall surface in the second layer and that has a different conductive characteristic from that of the second layer; a gate insulating film formed to contact the fourth layer; and a gate electrode formed as facing the fourth layer with the gate insulating film being sandwiched between the gate electrode and the fourth layer.04-01-2010
20100127312GRAPHENE DEPOSITION AND GRAPHENATED SUBSTRATES - Methods, devices, systems and/or articles related to techniques for forming a graphene film on a substrate, and the resulting graphene layers and graphenated substrates are generally disclosed. Some example techniques may be embodied as methods or processes for forming graphene. Some other example techniques may be embodied as devices employed to manipulate, treat, or otherwise process substrates, graphite, graphene and/or graphenated substrates as described herein. Graphene layers and graphenated substrates produced by the various techniques and devices provided herein are also disclosed.05-27-2010
20090273011Metal-Oxide-Semiconductor Device Including an Energy Filter - A MOS device includes first and second source/drains spaced apart relative to one another. A channel is formed in the device between the first and second source/drains. A gate is formed in the device between the first and second source/drains and proximate the channel, the gate being electrically isolated from the first and second source/drains and the channel. The gate is configured to control a conduction of the channel as a function of a potential applied to the gate. The MOS device further includes an energy filter formed between the first source/drain and the channel. The energy filter includes an impurity band operative to control an injection of carriers from the first source/drain into the channel.11-05-2009
20090242946SEMICONDUCTOR DEVICE AND FABRICATION METHOD FOR THE SEMICONDUCTOR DEVICE - A semiconductor device which could strengthen the mechanical strength of the protective film and with which packaging of the wafer level with electric high reliability is performed and a fabrication method for the semiconductor device are provided. The semiconductor device includes a semiconductor substrate; a field effect transistor including a gate electrode, a drain electrode, and a source electrode which are formed on the semiconductor substrate; a hollow protective film provided on the semiconductor substrate so that an inner surface bonds to the upper surface of the one or both of the drain electrode and the source electrode of the field effect transistor, wherein the hollow protective film includes a first cap layer contacting the upper surface of the one or both of the drain electrode and the source electrode, and a second cap layer placed on the first cap layer.10-01-2009
20090146192MOS transistor and method of forming the MOS transistor with a SiON etch stop layer that protects the transistor from PID and hot carrier degradation - A MOS transistor is formed with a dual-layer silicon oxynitride (SiON) etch stop film that protects the transistor from plasma induced damage (PID) and hot carrier degradation, thereby improving the reliability of the transistors. The first SiON layer is formed with SiH06-11-2009
20090184346Nonvolatile memory and three-state FETs using cladded quantum dot gate structure - The present invention discloses structures and method of fabricating cladded quantum dot gate nonvolatile memory and three-state field-effect transistor devices that can be scaled down to sub-22 nm dimensions and embedded along side with other functional circuits. Another innovation is the design of transport channel, which comprises an asymmetric coupled well structure comprising two or more wells. This structure enhances the retention time in nonvolatile memory by increasing the effective separation between channel charge and the quantum dots located in the floating gate. The cladded quantum dot gate FETs can be designed in Si, InGaAs—InP and other material systems. The 3-state FET devices form the basis of novel digital circuits using multiple valued logic and advanced analog circuits. One or more layers of SiO07-23-2009
20090127594MOS TRANSISTORS HAVING NiPtSi CONTACT LAYERS AND METHODS FOR FABRICATING THE SAME - MOS transistors and methods for fabricating MOS transistors are provided. One exemplary method comprises providing a silicon substrate having an impurity-doped region disposed at a surface of the silicon substrate. A first layer is sputter-deposited onto the impurity-doped region using a first sputtering target comprising nickel and a first concentration of platinum. A second layer is sputter-deposited onto the first layer using a second sputtering target comprising nickel and a second concentration of platinum, wherein the second concentration of platinum is less than the first.05-21-2009
20090039399SEMICONDUCTOR DEVICE AND FABRICATION METHOD OF THE SAME - A semiconductor device in which semiconductor epitaxial layers are embedded in the source/drain regions includes an element formation region formed in the major surface of a semiconductor substrate, a gate electrode formed on a part of the element formation region, the semiconductor epitaxial layers formed in the source/drain regions of the element formation region so as to sandwich the channel region below the gate electrode, and silicide layers formed on the gate electrode and semiconductor epitaxial layers. Each semiconductor epitaxial layer has a three-layered structure in which first semiconductor films different in material or composition from the semiconductor substrate sandwich a second semiconductor film having a silicidation reactivity higher than that of the first semiconductor films. Each silicide layer extends to the second semiconductor film along the interface between the semiconductor substrate and semiconductor epitaxial layer.02-12-2009
20090114958Wiring Board and Method for manufacturing the Same - A wiring board with an electronic device comprising a plurality of trenches arranged in parallel on a substrate, a common trench communicating the plurality of trenches with each other at one of their ends on the substrate, a metal layer formed at the bottom of the plurality of trenches, and an electrode layer connected with the metal layer and formed on a bottom of the common trench, wherein the electrode layer on the bottom of the common trench constitutes a source electrode or a drain electrode of a field effect transistor, whereby the wiring board and an electronic circuit having a good fine wire pattern and a good narrow gap between the patterns using a coating material can be formed, and a reduction for a cost of an organic thin film electronic device and the electronic circuit can be attained since they can be realized through a development of a printing technique.05-07-2009
20100219455III-NITRIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR - An active layer of a first conductive-type includes a channel area. A first contact area and a second contact area of a second conductive-type are formed at positions across the channel area. A source electrode is formed on the first contact area. A drain electrode is formed on the second contact area. A gate electrode is formed above the channel area via a gate insulating layer. A reduced surface field zone of the second conductive-type is formed in the channel area at a position close to the second contact area. Thickness of the reduced surface field zone is 30 nanometers to 100 nanometers.09-02-2010
20090114956SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device includes a semiconductor substrate, a gate insulating film formed over the semiconductor substrate, a gate electrode formed on the gate insulating film, a first semiconductor layer which is embedded into a portion on both sides of the gate electrode in the semiconductor substrate, and which includes Si and a 4B group element other than Si, and a second semiconductor layer which is embedded into the portion on both sides of the gate electrode in the semiconductor substrate, so as to be superposed on the first semiconductor layer, and which includes Si and a 4B group element other than Si, wherein the gate electrode is more separated from an end of the first semiconductor layer than from an end of the second semiconductor layer.05-07-2009
20080303068FIELD EFFECT TRANSISTOR USING CARBON BASED STRESS LINER - A stress liner for use within a semiconductor structure that includes a field effect device has a dielectric constant less than about 7 and a compressive stress greater than about 5 GPa. The stress liner may be formed of a carbon based material, preferably a tetrahedral amorphous carbon (ta-C) material including at least about 60 atomic percent carbon and no greater than C about 40 atomic percent hydrogen. The carbon based material may be either a dielectric material, or given appropriate additional dielectric isolation structures, a semiconductor material. In particular, a ta-C stress liner may be formed using a filtered cathodic vacuum arc (FCVA) physical vapor deposition (PVD) method.12-11-2008
20090108306UNIFORM RECESS OF A MATERIAL IN A TRENCH INDEPENDENT OF INCOMING TOPOGRAPHY - Columnar elements which extend to varying heights above a major surface of a substrate, e.g., polysilicon studs within trenches in the substrate, are recessed to a uniform depth below the major surface. The columnar elements are etched selectively with respect to a material exposed at the surface in an at least partly lateral direction so that the columnar elements are recessed to a uniform depth below the major surface at walls of the trenches.04-30-2009
20080272410Self-Aligned Spacer Contact - A metal-oxide-semiconductor field-effect transistor (MOSFET) having self-aligned spacer contacts is provided. In accordance with embodiments of the present invention, a transistor, having a gate electrode and source/drain regions formed on opposing sides of the gate electrode, is covered with a first dielectric layer. A first contact opening is formed in the first dielectric layer to expose at least a portion of one of the source/drain regions. A second dielectric layer is formed over the first dielectric layer. Thereafter, an inter-layer dielectric layer is formed over the second dielectric layer and a second contact opening is formed through the inter-layer dielectric layer. In an embodiment, an etch-back process may be performed on the second dielectric layer prior to forming the inter-layer dielectric layer.11-06-2008
20110101427TRANSISTOR INCLUDING A HIGH-K METAL GATE ELECTRODE STRUCTURE FORMED PRIOR TO DRAIN/SOURCE REGIONS ON THE BASIS OF A SUPERIOR IMPLANTATION MASKING EFFECT - When forming a sophisticated high-k metal gate stack in an early manufacturing stage, the dielectric cap layer may be efficiently removed without unduly affecting the drain and source extension regions. To this end, a specifically designed sidewall spacer structure may be used, such as a silicon dioxide spacer element in combination with a silicon nitride etch stop liner. The spacer structure may thus enable the removal of the dielectric cap layer while still maintaining the functions of an implantation mask and a silicidation mask during the further processing.05-05-2011
20090108308TRANSISTOR AND METHOD OF FABRICATING THE SAME - A transistor and a method of fabricating the same are provided. The transistor includes a SiGe epitaxial layer formed in a recess region of a substrate at both side of a gate electrode and a SiGe capping layer formed on the SiGe epitaxial layer. The transistor further includes a SiGe seed layer formed under the SiGe epitaxial layer and a silicon capping layer formed on the SiGe capping layer.04-30-2009
20090108305SEMICONDUCTOR HAVING A CORNER COMPENSATION FEATURE AND METHOD - A semiconductor device includes an active semiconductor material. A transistor gate overlies a first portion of the active semiconductor material. A second portion intersects the first portion at a corner which is distorted during manufacture resulting in rounding of the corner. The active semiconductor material extends into the corner to create a concave corner. To reduce the corner rounding, a compensation feature extends from a first edge of the first portion by an amount less than needed to provide an electrical contact structure on the compensation feature. The feature is positioned laterally further away from the corner than the overlying transistor gate. The compensation feature is positioned from the corner by a dimension that is within 0.4 to 0.6 of the wavelength of light used to image features of the semiconductor device. Due to optical distortion the compensation feature itself has a nonlinear shape.04-30-2009
20100295104SEMICONDUCTOR STRUCTURES HAVING BOTH ELEMENTAL AND COMPOUND SEMICONDUCTOR DEVICES ON A COMMON SUBSTRATE - A semiconductor structure comprising: a substrate; a seed layer supported by the substrate; an elemental semiconductor layer disposed over a first portion of the seed layer; and a compound semiconductor layer disposed on a second portion of the seed layer. The first portion of the seed layer is electrically insulated from the second portion of the seed layer. A first semiconductor device is formed in the elemental semiconductor layer. A second semiconductor device is formed in the compound semiconductor layer. The second semiconductor device includes: a first electrode in contact with a first region of the compound semiconductor layer; a second electrode in contact with a second region of the compound semiconductor layer; and a third electrode. The third electrode controls carriers passing in a third region of the compound semiconductor layer disposed between the first region and the second region. A fourth electrode is in electrical contact with the second portion of the seed layer.11-25-2010
20100295106TRANSISTOR STRUCTURE AND DYNAMIC RANDOM ACCESS MEMORY STRUCTURE INCLUDING THE SAME - A dynamic random access memory structure is disclosed, in which, the active area is a donut-type pillar at which a novel vertical transistor is disposed and has a gate filled in the central cavity of the pillar and upper and lower sources/drains located in the upper and the lower portions of the pillar respectively. A buried bit line is formed in the substrate beneath the transistor. A word line is horizontally disposed above the gate. A capacitor is disposed above the word line as well as the gate and electrically connected to the upper source/drain through a node contact. The node contact has a reverse-trench shape with the top surface electrically connected to the capacitor and with the bottom of the sidewalls electrically connected to the upper source/drain. The word line passes through the space confined by the reverse-trench shape.11-25-2010
20100295105SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A method for manufacturing a semiconductor device includes: an element portion formation step of forming an element portion on a base layer; a delaminating layer formation step of forming a delaminating layer in the base layer; a bonding step of bonding the base layer having the element portion to a substrate; and a separation step of separating and removing a portion of the base layer in the depth direction along the delaminating layer by heating the base layer bonded to the substrate. The method further includes, after the separation step, an ion implantation step of ion-implanting a p-type impurity element in the base layer for adjusting the impurity concentration of a p-type region of the element.11-25-2010
20100295103GATE ETCH OPTIMIZATION THROUGH SILICON DOPANT PROFILE CHANGE - Improved semiconductor devices comprising metal gate electrodes are formed with reduced performance variability by reducing the initial high dopant concentration at the top portion of the silicon layer overlying the metal layer. Embodiments include reducing the dopant concentration in the upper portion of the silicon layer, by implanting a counter-dopant into the upper portion of the silicon layer, removing the high dopant concentration portion and replacing it with undoped or lightly doped silicon, and applying a gettering agent to the upper surface of the silicon layer to form a thin layer with the gettered dopant, which layer can be removed or retained.11-25-2010
20090114957SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device and a method thereof that maximizes DC and AC parameter properties of a MOS transistor having a buried channel. The device includes a semiconductor substrate having a device separation film, a gate pattern formed over the semiconductor substrate, a well region formed in the semiconductor substrate, the well region including a first doped region formed at a first predetermined depth, a second doped region formed at a second predetermined depth and a third doped region formed at a third predetermined depth, trenches formed at a source/drain region around the gate pattern, and a source/drain formed in the trenches. In accordance with embodiments, the first predetermined depth is lower than the second and third predetermined depths and the third predetermined depth is greater than the second predetermined depth.05-07-2009
20130134486Methods of Patterning Features in a Structure Using Multiple Sidewall Image Transfer Technique - Disclosed herein are methods of patterning features in a structure, such as a layer of material used in forming integrated circuit devices or in a semiconducting substrate, using a multiple sidewall image transfer technique. In one example, the method includes forming a first mandrel above a structure, forming a plurality of first spacers adjacent the first mandrel, forming a plurality of second mandrels adjacent one of the first spacers, and forming a plurality of second spacers adjacent one of the second mandrels. The method also includes performing at least one etching process to selectively remove the first mandrel and the second mandrels relative to the first spacers and the second spacers and thereby define an etch mask comprised of the first spacers and the second spacer and performing at least one etching process through the etch mask on the structure to define a plurality of features in the structure.05-30-2013
20100301402SEMICONDUCTOR DEVICE - Provided is a semiconductor device which is capable of preventing an increase in power consumption of an SGT, i.e., a three-dimensional semiconductor transistor, due to an increase in off-leak current. The semiconductor device comprises: a first-conductive type first silicon pillar: a first dielectric surrounding a side surface of the first silicon pillar; a gate surrounding the dielectric; a second silicon pillar provided underneath the first silicon pillar; and a third silicon pillar provided on a top of the first silicon pillar. The second silicon pillar has a second-conductive type high-concentration impurity region formed in a surface thereof except at least a part of a contact surface region with the first silicon pillar, and a first-conductive type impurity region formed therein and surrounded by the second-conductive type high-concentration impurity region. The third silicon pillar has a second-conductive type high-concentration impurity region formed in a surface thereof except at least a part of a contact surface region with the first silicon pillar, and a first-conductive type impurity region formed therein and surrounded by the second-conductive type high-concentration impurity region of the third silicon pillar. The first-conductive type impurity region of each of the second silicon pillar and the third silicon pillar has a length greater than that of a depletion layer extending from a base portion of the second-conductive type high-concentration impurity region of a respective one of the second silicon pillar and the third silicon pillar.12-02-2010
20110248323ION IMPLANTATION APPARATUS, ION IMPLANTATION METHOD, AND SEMICONDUCTOR DEVICE - In the plasma-based ion implantation for accelerating positive ions of a plasma and implanting the positive ions into a substrate to be processed on a holding stage in a processing chamber where the plasma has been excited, ion implantation is achieved in the following manner: an RF power having a frequency of 4 MHz or greater is applied to the holding stage to cause a self-bias voltage to generate on the surface of the substrate. The RF power is applied a plurality of times in the form of pulses.10-13-2011
20110127589SEMICONDUCTOR STRUCTURE HAIVNG A METAL GATE AND METHOD OF FORMING THE SAME - A method of forming a semiconductor structure having a metal gate. Firstly, a semiconductor substrate is provided. Subsequently, at least a gate structure is formed on the semiconductor substrate. Afterwards, a spacer structure is formed to surround the gate structure. Then, an interlayer dielectric is formed. Afterwards, a planarization process is performed for the interlayer dielectric. Then, a portion of the sacrificial layer is removed to form an initial etching depth, such that an opening is formed to expose a portion of the spacer structure. The portion of the spacer structure exposed to the opening is removed so as to broaden the opening. Afterwards, remove the sacrificial layer completely via the opening. Finally, a gate conductive layer is formed to fill the opening.06-02-2011
20110127588ENHANCING MOSFET PERFORMANCE BY OPTIMIZING STRESS PROPERTIES - A device and method for improving performance of a transistor includes gate structures formed on a substrate having a spacing therebetween. The gate structures are formed in an operative relationship with active areas fainted in the substrate. A stress liner is formed on the gate structures. An angled ion implantation is applied to the stress liner such that ions are directed at vertical surfaces of the stress liner wherein portions of the stress liner in contact with the active areas are shielded from the ions due to a shadowing effect provided by a height and spacing between adjacent structures.06-02-2011
20100308379METHODS FOR FORMING A TRANSISTOR WITH A STRAINED CHANNEL - A semiconductor device and method for fabricating a semiconductor device providing reduced short channel effects is disclosed. The method comprises providing a substrate comprising a first material; forming at least one gate stack over the substrate; forming one or more recesses in the substrate, wherein the one or more recesses define at least one source region and at least one drain region; and forming a pocket, a first layer comprising a second material, and a second layer comprising a third material in the one or more recesses, the pocket being disposed between the first layer and the substrate.12-09-2010
20110127591METHOD FOR PROGRAMMING AN ANTI-FUSE ELEMENT, AND SEMICONDUCTOR DEVICE - A method for programming an anti-fuse element in which the ratio between current values before and after writing is increased to ensure accuracy in making a judgment about how writing has been performed on the anti-fuse element. The method for programming the anti-fuse element as a transistor includes the steps of applying a prescribed gate voltage to a gate electrode to break down a gate dielectric film, and moving the silicide material of a silicide layer formed on a surface of at least one of a first impurity diffusion region and a second impurity diffusion region, into the gate dielectric film in order to couple the gate electrode with at least the one of the first impurity diffusion region and the second impurity diffusion region electrically through the silicide material.06-02-2011
20110127590INCREASING STABILITY OF A HIGH-K GATE DIELECTRIC OF A HIGH-K GATE STACK BY AN OXYGEN RICH TITANIUM NITRIDE CAP LAYER - In a replacement gate approach, the oxygen contents of a cap material may be increased, thereby providing more stable characteristics of the cap material itself and of the high-k dielectric material. Consequently, upon providing a work function adjusting metal species at a very advanced manufacturing stage, corresponding additional treatments may be reduced in number or may even be completely avoided, while at the same time threshold voltage variations may be reduced.06-02-2011
20110108896WAFER LEVEL CHIP SCALE PACKAGE AND PROCESS OF MANUFACTURE - Power wafer level chip scale package (CSP) and process of manufacture are enclosed. The power wafer level chip scale package includes all source, gate and drain electrodes located on one side of the device, which is convenient for mounting to a printed circuit board (PCB) with solder paste.05-12-2011
20100133594SEMICONDUCTOR STRUCTURE AND METHOD OF FABRICATING THE SAME - A semiconductor structure including a substrate, a gate dielectric layer, a gate, a source region and a drain region is provided. The gate dielectric layer is disposed on the substrate. At least one recess is disposed in the substrate. The gate is disposed on the gate dielectric layer and in the recess. The source and drain regions are respectively disposed in the substrate beside the gate.06-03-2010
20110115001ELECTRONIC CONTROL DEVICE - An electronic control device controls a control object. An electronic component configured to control the control object is mounted on an electronic substrate. An electrical signal line is formed on the electronic substrate. The electrical signal line transmits an electrical signal. A metal is press-fitted into the electronic substrate and passes through the electronic substrate to be exposed to both surfaces of the electronic substrate. An electronic element has a contact surface portion which comes into contact with a surface of the electronic substrate when the electronic element is mounted on the electronic substrate. The electronic element is connected to the electrical signal line. The electronic element is mounted on the electronic substrate such that the contact surface portion comes into contact with the metal exposed to the both surfaces of the electronic substrate and the electrical signal line connected to the contact surface portion does not come into contact with the metal.05-19-2011
20110108895METHOD OF FORMING ASYMMETRIC SPACERS AND METHODS OF FABRICATING SEMICONDUCTOR DEVICE USING ASYMMETRIC SPACERS - A method of fabricating asymmetrical spacers, structures fabricated using asymmetrical spacers and an apparatus for fabricating asymmetrical spacers. The method includes: forming on a substrate, a structure having a top surface and opposite first and second sidewalls and having a longitudinal axis parallel to the sidewalls; forming a conformal layer on the top surface of the substrate, the top surface of the structure and the sidewalls of the structure; tilting the substrate about a longitudinal axis relative to a flux of reactive ions, the flux of reactive ions striking the conformal layer at acute angle; and exposing the conformal layer to the flux of reactive ions until the conformal layer is removed from the top surface of the structure and the top surface of the substrate leaving a first spacer on the first sidewall and a second spacer on the second sidewall, the first spacer thinner than the second spacer.05-12-2011
20110108894METHOD OF FORMING STRAINED STRUCTURES IN SEMICONDUCTOR DEVICES - The present disclosure provides a method of fabricating that includes providing a semiconductor substrate; forming a gate structure on the substrate; performing an implantation process to form a doped region in the substrate; forming spacers on sidewalls of the gate structure; performing an first etching to form a recess in the substrate, where the first etching removes a portion of the doped region; performing a second etching to expand the recess in the substrate, where the second etching includes an etchant and a catalyst that enhances an etching rate at a remaining portion of the doped region; and filling the recess with a semiconductor material.05-12-2011
20110001172THREE-DIMENSIONAL INTEGRATED CIRCUIT STRUCTURE - A semiconductor structure includes an interconnect region and a semiconductor stack bonded to the interconnect region through a bonding region. The stack includes two semiconductor layers having different electrical properties. The stack also includes single crystalline semiconductor material. The stack can be processed to form a mesa structure and the mesa structure can be processed to from a vertically oriented semiconductor device.01-06-2011
20110024803SEMICONDUCTOR DEVICE WITH INTEGRATED CHANNEL STOP AND BODY CONTACT - A channel stop is provided for a semiconductor device that includes at least one active region. The channel stop is configured to surround the semiconductor device, to abut the at least one active region at a periphery of the semiconductor device, and to share an electrical connection with the at least one active region.02-03-2011
20110024806SEMICONDUCTOR DEVICES WITH ENCLOSED VOID CAVITIES - Field effect devices and ICs with very low gate-drain capacitance Cgd are provided by forming a substantially empty void between the gate and the drain regions. For vertical FETS a cavity is etched in the semiconductor (SC) and provided with a gate dielectric liner. A poly-SC gate deposited in the cavity has a central fissure (empty pipe) extending through to the underlying SC. This fissure is used to etch the void in the SC beneath the poly-gate. The fissure is then closed by a dielectric plug formed by deposition or oxidation without significantly filling the etched void. Conventional process steps are used to provide the source and body regions around the cavity containing the gate, and to provide a drift space and drain region below the body region. The etched void between the gate and drain provides lower Cgd and Ron*Qg than can be achieved using low k dielectrics.02-03-2011
20110024804METHOD FOR FORMING HIGH GERMANIUM CONCENTRATION SIGE STRESSOR - A method for producing a SiGe stressor with high Ge concentration is provided. The method includes providing a semiconductor substrate with a source area, a drain area, and a channel in between; depositing the first SiGe film layer on the source area and/or the drain area; performing a low temperature thermal oxidation, e.g., a high water vapor pressure wet oxidation, to form an oxide layer at the top of the first SiGe layer and to form the second SiGe film layer with high Ge percentage at the bottom of the first SiGe film layer without Ge diffusion into the semiconductor substrate; performing a thermal diffusion to form the SiGe stressor from the second SiGe film layer, wherein the SiGe stressor provides uniaxial compressive strain on the channel; and removing the oxide layer. A Si cap layer can be deposited on the first SiGe film layer prior to performing oxidation.02-03-2011
20110031541Two-Step STI Formation Process - A method of forming an integrated circuit structure includes providing a semiconductor substrate; forming a first isolation region in the semiconductor substrate; after the step of forming the first isolation region, forming a metal-oxide-semiconductor (MOS) device at a surface of the semiconductor substrate, wherein the step of forming the MOS device comprises forming a source/drain region; and after the step of forming the MOS device, forming a second isolation region in the semiconductor substrate.02-10-2011
20110031538CMOS STRUCTURE WITH MULTIPLE SPACERS - A semiconductor device includes a substrate having shallow trench isolation and source/drain regions located therein, a gate stack located on the substrate between the source/drain regions, a first gate spacer on the sidewall of the gate stack, and a second gate spacer on the sidewall of the first gate spacer.02-10-2011
20110031540SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device includes a field effect transistor and a strain generating layer to apply a stress to a channel region of the field effect transistor. The strain generating layer contains at least one of oxygen and nitrogen of 1.0×1002-10-2011
20110031539SEMICONDUCTOR DEVICES HAVING LINE TYPE ACTIVE REGIONS AND METHODS OF FABRICATING THE SAME - In a semiconductor device having line type active regions and a method of fabricating the semiconductor device, the semiconductor device includes a device isolation layer which defines the line type active regions in a in a semiconductor substrate. Gate electrodes which are parallel to each other and intersect the line type active regions are disposed over the semiconductor substrate. Here, the gate electrodes include both a device gate electrode and a recessed device isolation gate electrode. Alternatively, each of the gate electrodes is constituted of a device gate electrode and a plan type device isolation gate electrode, and a width of the plan type device isolation gate electrode greater than a width of the device gate electrode.02-10-2011
20110042730Semiconductor device manufacturing method and semiconductor device - A formation method of an element isolation film according to which a high-voltage transistor with an excellent characteristic can be formed is provided. On a substrate, a gate oxide film is previously formed. A CMP stopper film is formed thereon, and thereafter, a gate oxide film and a CMP stopper film are etched. The semiconductor substrate is etched to form a trench. Further, before the trench is filled with a field insulating film, an liner insulating film is formed at a trench interior wall, and a concave portion at the side surface of the gate oxide film under the CMP stopper film is filled with the liner insulating film. In this manner, formation of void in the element isolation film laterally positioned with respect to the gate oxide film can be prevented.02-24-2011
20110042729METHOD FOR IMPROVING SELECTIVITY OF EPI PROCESS - The present disclosure provides a method of fabricating a semiconductor device that includes providing a semiconductor substrate, forming a gate structure over the substrate, forming a material layer over the substrate and the gate structure, implanting Ge, C, P, F, or B in the material layer, removing portions of the material layer overlying the substrate at either side of the gate structure, forming recesses in the substrate at either side of the gate structure, and depositing a semiconductor material in the recesses by an expitaxy process.02-24-2011
20110042728SEMICONDUCTOR DEVICE WITH ENHANCED STRESS BY GATES STRESS LINER - In one embodiment, a method is provided for forming stress in a semiconductor device. The semiconductor device may include a gate structure on a substrate, wherein the gate structure includes at least one dummy material that is present on a gate conductor. A conformal dielectric layer is formed atop the semiconductor device, and an interlevel dielectric layer is formed on the conformal dielectric layer. The interlevel dielectric layer may be planarized to expose at least a portion of the conformal dielectric layer that is atop the gate structure, in which the exposed portion of the conformal dielectric layer may be removed to expose an upper surface of the gate structure. The upper surface of the gate structure may be removed to expose the gate conductor. A stress inducing material may then be formed atop the at least one gate conductor.02-24-2011
20110115000Semiconductor Device having Strain Material - A semiconductor device having strain material is disclosed. In a particular embodiment, the semiconductor device includes a first cell including a first gate between a first drain and a first source. The semiconductor device also includes a second cell adjacent to the first cell. The second cell includes a second gate between a second drain and a second source. The semiconductor device further includes a shallow trench isolation area between the first source and the second source. A first amount of strain material over the first source and over the second source is greater than a second amount of strain material over the first drain and over the second drain.05-19-2011
20130153974TWO-STEP SILICIDE FORMATION - One embodiment of the present invention comprises a transistor having a source/drain region within a substrate, an extension region within the substrate adjoining the source/drain region and extending toward a gate on the substrate, and a dielectric spacer against the gate wherein the dielectric spacer covers at least part of the extension region. A silicide intermix layer is formed over both the source/drain region and a portion of the extension region. A silicide contact is formed through the silicide intermix layer over the source/drain region.06-20-2013
20110084320SEMICONDUCTOR DEVICE INCLUDING METAL SILICIDE LAYER AND METHOD FOR MANUFACTURING THE SAME - A device formed from a method of fabricating a fine metal silicide layer having a uniform thickness regardless of substrate doping. A planar vacancy is created by the separation of an amorphousized surface layer of a silicon substrate from an insulating layer, a metal source enters the vacancy through a contact hole through the insulating later connecting with the vacancy, and a heat treatment converts the metal in the vacancy into metal silicide. The separation is induced by converting the amorphous silicon into crystalline silicon.04-14-2011
20100163939TRANSISTOR DEVICE COMPRISING AN EMBEDDED SEMICONDUCTOR ALLOY HAVING AN ASYMMETRIC CONFIGURATION - In sophisticated semiconductor devices, an asymmetric transistor configuration may be obtained on the basis of a strain-inducing semiconductor alloy. To this end, strain relaxation implantation processes may be performed at the drain side according to some illustrative embodiments, while, in other cases, the deposition of the strain-inducing alloy may be performed in an asymmetric manner with respect to the drain side and the source side of the transistor.07-01-2010
20100163938METHOD FOR FORMING SILICIDE IN SEMICONDUCTOR DEVICE - A method of forming a silicide in a semiconductor device includes: forming a poly gate on and/or over the upper portion of a silicon substrate having an active area and an STI formed therein; forming a spacer wall on and/or over both sidewalls of the poly gate; forming source/drain by performing high-concentration ion implantation; forming a silicide blocking pattern on and/or over both sidewalls of the spacer wall and on the STI; forming a multilayer silicide material on and/or over substantially the entire surface of the silicon substrate having the silicide blocking pattern formed thereover; and performing an RTA process on the multilayer silicide material to form a silicide by reaction between the poly gate and the source/drain electrode.07-01-2010
20100163937METHODS OF FORMING NICKEL SULFIDE FILM ON A SEMICONDUCTOR DEVICE - Embodiments of the present invention describe a method of forming nickel sulfide layer on a semiconductor device. A nickel sulfide layer is formed on a substrate by alternatingly exposing the substrate to a nickel-containing precursor and a sulfur-containing precursor.07-01-2010
20100224915METHOD FOR PRODUCING SEMICONDUCTOR CHIP, AND FIELD EFFECT TRANSISTOR AND METHOD FOR MANUFACTURING SAME - According to a method of the present invention for manufacturing a semiconductor piece, at least two semiconductor layers (09-09-2010
20100219456FORMING INTEGRATED CIRCUITS WITH REPLACEMENT METAL GATE ELECTRODES - In a metal gate replacement process, a stack of at least two polysilicon layers or other materials may be formed. Sidewall spacers may be formed on the stack. The stack may then be planarized. Next, the upper layer of the stack may be selectively removed. Then, the exposed portions of the sidewall spacers may be selectively removed. Finally, the lower portion of the stack may be removed to form a T-shaped trench which may be filled with the metal replacement.09-02-2010
20110079830METAL GATE STRUCTURE AND METHOD OF MANUFACTURING SAME - A method of manufacturing a metal gate structure includes providing a substrate (04-07-2011
20100213517HIGH VOLTAGE SEMICONDUCTOR DEVICE - This invention describes implementation of medium/high voltage semiconductor devices with a better voltage-blocking capability versus specific on-resistanσe trade off. This approach can be implemented in baseline and submicron CMOS without any additional process steps. Said devices comprise dielectric regions and semiconductor regions formed between them. Conductive extentions are formed on the dielectric regions, said extentions interacting capacitively with the semiconducter regions.08-26-2010
20110241087METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, AND SEMICONDUCTOR DEVICE - A gate insulating film is formed on a substrate. Next, a gate electrode film is formed on the gate insulating film. A mask film is formed on a portion of the gate electrode film. The gate electrode film is selectively removed by etching using the mask film as a mask. A gate sidewall film is formed so as to be in contact with the lateral surfaces of the mask film and the gate electrode film. The mask film is formed of a laminated film in which at least a first film, a second film and a third film are laminated in this order. The second film has a higher etching selectivity ratio than that of the third film with respect to the gate sidewall film. The third film has a higher etching selectivity ratio than that of the second film with respect to the gate electrode film.10-06-2011
20110241088FIELD EFFECT TRANSISTOR, METHOD OF MANUFACTURING FIELD EFFECT TRANSISTOR, AND METHOD OF FORMING GROOVE - A field effect transistor includes a high resistance layer on a substrate, a semiconductor operation layer that is formed on the high resistance layer and includes a channel layer that has the carbon concentration of not more than 1×1010-06-2011
20110241086ALUMINUM FUSES IN A SEMICONDUCTOR DEVICE COMPRISING METAL GATE ELECTRODE STRUCTURES - In sophisticated semiconductor devices, electronic fuses may be provided on the basis of a replacement gate approach by using the aluminum material as an efficient metal for inducing electromigration in the electronic fuses. The electronic fuse may be formed on an isolation structure, thereby providing an efficient thermal decoupling of the electronic fuse from the semiconductor material and the substrate material, thereby enabling the provision of efficient electronic fuses in a bulk configuration, while avoiding incorporation of fuses into the metallization system.10-06-2011
20110241085DUAL SIDEWALL SPACER FOR SEAM PROTECTION OF A PATTERNED STRUCTURE - A semiconducting device with a dual sidewall spacer and method of forming are provided. The method includes: depositing a first spacer layer over a patterned structure, the first spacer layer having a seam propagating through a thickness of the first spacer layer near an interface region of a surface of the substrate and a sidewall of the patterned structure, etching the first spacer layer to form a residual spacer at the interface region, where the residual spacer coats less than the entirety of the sidewall of the patterned structure, depositing a second spacer layer on the residual spacer and on the sidewall of the patterned structure not coated by the residual spacer, the second spacer layer being seam-free on the seam of the residual spacer, and etching the second spacer layer to form a second spacer coating the residual spacer and coating the sidewall of the patterned structure not coated by the residual spacer.10-06-2011
20110241084Semiconductor Device with a Buried Stressor - A semiconductor device, such as a PMOS or NMOS device, having localized stressors is provided. Recesses are formed on opposing sides of a gate electrode. A stress-inducing region is formed along a bottom of the recess, and a stressed layer is formed over the stress-inducing region. By having a stress-inducing region with a larger lattice structure than the stressed layer, a tensile strain may be created in a channel region of the semiconductor device and may be suitable for an NMOS device. By having a stress-inducing region with a smaller lattice structure than the stressed layer, a compressive strain may be created in the channel region of the semiconductor device and may be suitable for a PMOS device. Embodiments may be applied to various types of substrates and semiconductor devices, such as planar transistors and finFETs.10-06-2011
20100078690SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE AND A METHOD FOR MANUFACTURING A SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE - As a method for constituting a pre-metal interlayer insulating film, such method is considered as forming a CVD silicon oxide-based insulating film having good filling properties of a silicon oxide film by ozone TEOS, reflowing the film at high temperatures to planarize it, then stacking a silicon oxide film having good CMP scratch resistance by plasma TEOS, and, further, planarizing it by CMP. However, it was made clear that, in a process for forming a contact hole, crack in the pre-metal interlayer insulating film is exposed in the contact hole, into which barrier metal intrudes to cause short-circuit defects.04-01-2010
20110084321SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - It is an object of the present invention to provide a semiconductor device where, even in a case of stacking a plurality of semiconductor elements provided over a substrate, the stacked semiconductor elements can be electrically connected through the substrate, and a manufacturing method thereof. According to one feature of the present invention, a method for manufacturing a semiconductor device includes the steps of selectively forming a depression in an upper surface of a substrate or forming an opening which penetrates the upper surface through a back surface; forming an element group having a transistor so as to cover the upper surface of the substrate and the depression, or the opening; and exposing the element group formed in the depression or the opening by thinning the substrate from the back surface. A means for thinning the substrate can be performed by partially removing the substrate by performing grinding treatment, polishing treatment, etching by chemical treatment, or the like from the back surface of the substrate.04-14-2011
20100038686SOI SUBSTRATES AND DEVICES ON SOI SUBSTRATES HAVING A SILICON NITRIDE DIFFUSION INHIBITION LAYER AND METHODS FOR FABRICATING - Semiconductor-on-insulator substrates and methods for fabricating semiconductor-on-insulator substrates are provided. One exemplary method comprises providing a first silicon-comprising substrate, providing a second silicon-comprising substrate, forming a first silicon nitride layer overlying the second silicon-comprising substrate, and coupling the first silicon-comprising substrate to the second silicon-comprising substrate such that the first silicon nitride layer is interposed between the two substrates.02-18-2010
20090218605Methods of Enhancing Performance of Field-Effect Transistors and Field-Effect Transistors Made Thereby - Methods of enhancing the performance of a field-effect transistor (FET) by providing a percolating network of metallic islands to the inversion layer of the FET so as to effectively reduce the channel length of the FET. The metal islands can be provided in a number of ways, including Volmer-Weber metallic film growth, breaking apart continuous metallic film, patterning metallic coating, dispersing metallic particles in a semiconducting material, applying a layer of composite particles having metallic cores and semiconducting shells and co-sputtering metallic and semiconducting materials, among others. FETs made using disclosed methods have a novel channel structures that include metallic islands spaced apart by semiconducting material.09-03-2009
20090218604Semiconductor Device and Method for Manufacturing the Same - A semiconductor device includes a PMOS transistor of a peripheral circuit region. The PMOS transistor is formed over a silicon germanium layer to have a compressive strain structure, thereby increasing hole mobility of a channel region in operation of the device. The semiconductor device may include a second active region including a silicon layer connected to a first active region of a semiconductor substrate, a silicon germanium layer formed over the silicon layer expected to be a PMOS region, and a PMOS gate formed over the silicon germanium layer.09-03-2009
20090321797METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - A method of manufacturing a semiconductor device including at least one step of: forming a transistor on and/or over a semiconductor substrate; forming silicide on and/or over a gate electrode and a source/drain region of the transistor; removing an uppermost oxide film from a spacer of the transistor; and forming a contact stop layer on and/or over the entire surface of the substrate including the gate electrode.12-31-2009
20100012991SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING SEMICONDUCTOR DEVICE - A method for fabricating a semiconductor device, comprising: forming n-channel field-effect transistors on a silicon substrate; forming a first insulating film covering the field-effect transistors; shrinking the first insulating film; forming a second insulating film over the first insulating film; and shrinking the second insulating film, wherein the forming an insulating film covering the field-effect transistors and the shrinking the insulating film are repeated a plurality of time.01-21-2010
20120146113SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A method for fabricating a semiconductor device, the method comprising: forming a metal containing film on a substrate; exposing the metal containing film to an ammonia radical in a reaction chamber; evacuating gas generated in the exposing by supplying an inert gas into the reaction chamber; and after repeating the exposing and the supplying a predetermined number of times, forming a silicon nitride film covering the metal containing film in the reaction chamber without atmospheric exposure.06-14-2012
20120146114SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A method of manufacturing a semiconductor device according to an embodiment includes: forming a plurality of semiconductor layers located at a distance from one another on a first insulating film; forming a gate insulating film that covers both side faces and an upper face of each of the semiconductor layers; forming a gate electrode of a polysilicon film to cover the gate insulating film of each of the semiconductor layers; forming a second insulating film on an entire surface; exposing an upper face of the gate electrode by performing selective etching on a portion of the second insulating film; siliciding the gate electrode; and forming a stress applying film that applies a stress in a direction perpendicular to the extending direction of each of the semiconductor layers and parallel to an upper face of the first insulating film.06-14-2012
20100044761SEMICONDUCTOR DEVICE AND METHODS FOR FABRICATING SAME - A semiconductor device is provided which includes a substrate including an inactive region and an active region, a gate electrode structure having portions overlying the active region, a compressive layer overlying the active region, and a tensile layer overlying the inactive region and located outside the active region. The active region has a lateral edge which defines a width of the active region, and a transverse edge which defines a length of the active region. The gate electrode structure includes: a common portion spaced apart from the active region; a plurality of gate electrode finger portions integral with the common portion, and a plurality of fillet portions integral with the common portion and the gate electrode finger portions. A portion of each gate electrode finger portion overlies the active region. The fillet portions are disposed between the common portion and the gate electrode finger portions, and do not overlie the active region. The compressive layer also overlies the gate electrode finger portions, and the tensile layer is disposed adjacent the transverse edge of the active region.02-25-2010
20090032850N-channel MOS Transistor Fabricated Using A Reduced Cost CMOS Process - An NMOS transistor includes a semiconductor substrate of a first conductivity type, first and second well regions of a second conductivity type formed spaced apart in the substrate, a conductive gate formed over the region between the spaced apart first and second well regions where the region of the substrate between the spaced apart first and second well regions forms the channel region, dielectric spacers formed on the sidewalls of the conductive gate, first and second heavily doped source and drain regions of the second conductivity type formed in the semiconductor substrate and being self-aligned to the edges of the dielectric spacers. The first and second well regions extend from the respective heavily doped regions through an area under the spacers to the third well region. The first and second well regions bridge the source and drain regions to the channel region of the transistor formed by the third well.02-05-2009
20100059801SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A semiconductor device includes a gate insulating film formed on a semiconductor region of a first conductivity type; a gate electrode formed on the gate insulating film; an offset spacer formed on a side surface of the gate electrode; an inner sidewall formed on the side surface of the gate electrode with the offset spacer interposed therebetween, and having an L-shaped cross section; and an insulating film formed to cover the gate electrode, the offset spacer, the inner sidewall, and a part of the semiconductor region located laterally outward from the inner sidewall. The offset spacer includes an inner offset spacer formed on the side surface of the gate electrode and an outer offset spacer formed to cover the side surface of the gate electrode and the inner offset spacer. The outer offset spacer is in contact with a top end and outer side surface of the inner offset spacer.03-11-2010
20100059800SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD FOR SEMICONDUCTOR DEVICE - A semiconductor device including: a SiC substrate; an AlGaN layer formed on the SiC substrate; a source electrode and a drain electrode formed on the AlGaN layer so as to be spaced from each other; an insulation film formed between the source electrode and the drain electrode and having a band-like opening in parallel to the source electrode and the drain electrode; a gate electrode formed at the opening in the insulation film; and a drain-side field plate electrode formed integrally with the gate electrode on the drain electrode side of the gate electrode and having a drain electrode side end portion spaced from the insulation film, thus restraining degradation in performance.03-11-2010
20110175147FIELD-EFFECT TRANSISTOR DEVICE HAVING A METAL GATE STACK WITH AN OXYGEN BARRIER LAYER - A field effect transistor device and method which includes a semiconductor substrate, a dielectric gate layer, preferably a high dielectric constant gate layer, overlaying the semiconductor substrate and an electrically conductive oxygen barrier layer overlaying the gate dielectric layer. In one embodiment, there is a conductive layer between the gate dielectric layer and the oxygen barrier layer. In another embodiment, there is a low resistivity metal layer on the oxygen barrier layer.07-21-2011
20110101429SEMICONDUCTOR DEVICE STRUCTURES WITH DUAL FIN STRUCTURES AND ELECTRONIC DEVICE - Fin-FET devices and methods of fabrication are disclosed. The Fin-FET devices include dual fins that may be used to provide a trench region between a source region and a drain region. In some embodiments, the dual fins may be formed by forming a trench with fin structures on opposite sides in a protruding region of a substrate. The dual fins may be useful in forming single-gate, double-gate or triple-gate fin-PET devices. Electronic systems including such fin-FET devices are also disclosed.05-05-2011
20110101426SEMICONDUCTOR DEVICE COMPRISING REPLACEMENT GATE ELECTRODE STRUCTURES WITH AN ENHANCED DIFFUSION BARRIER - In sophisticated semiconductor devices, the integrity of the device level may be enhanced after applying a replacement gate approach by providing an additional diffusion barrier layer, such as a silicon nitride layer, thereby obtaining a similar degree of diffusion blocking capabilities as in semiconductor devices without performing a replacement gate approach.05-05-2011
20110073920SUPERIOR FILL CONDITIONS IN A REPLACEMENT GATE APPROACH BY CORNER ROUNDING BASED ON A SACRIFICIAL FILL MATERIAL - In a replacement gate approach, a top area of a gate opening may receive a superior cross-sectional shape on the basis of a material erosion process, wherein a sacrificial material may protect sensitive materials, such as a high-k dielectric material, in the gate opening. In one illustrative embodiment, the sacrificial material may be applied after depositing a work function adjusting species in the gate opening.03-31-2011
20110073922CONTACT FORMING METHOD, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND SEMICONDUCTOR DEVICE - A semiconductor device manufacturing method includes the steps of ion-implanting a p-type or an n-type impurity into a Si layer portion to become a p-type or an n-type contact region of a semiconductor device, forming a metal film for a contact on a surface of the contact region without performing heat treatment for activating implanted ions after the ion-implanting step, and forming a silicide of a metal of the metal film by causing the metal to react with the Si layer portion by heating. It is desired to simultaneously perform the step of forming the silicide and the step of activating the implanted ions by heat treatment after the metal film is formed.03-31-2011
20100127311SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A semiconductor device and a method of manufacturing a semiconductor device. A method of manufacturing a semiconductor device may include forming a gate electrode over a semiconductor substrate, a second conductive type ion implantation region at opposite sides of a gate electrode, a second conductive type ion implantation region as a first conductive type second ion implantation region by implanting a first conductive type impurity over opposite sides of said gate electrode, and/or forming a first conductive type first ion implantation region that substantially surrounds a first conductive type second ion implantation region. A method of manufacturing a semiconductor device may form an N type MOSFET and/or a P type MOSFET using a single photolithography process for each N+ source/drain photolithography process and/or P+ source/drain photolithography process.05-27-2010
20110079829FINFETS AND METHODS FOR FORMING THE SAME - A Fin field effect transistor (FinFET) includes a fin-channel body over a substrate. A gate electrode is disposed over the fin-channel body. At least one source/drain (S/D) region is disposed adjacent to the fin-channel body. The at least one S/D region is substantially free from including any fin structure.04-07-2011
20110068378SEMICONDUCTOR DEVICES AND METHODS OF FORMING SEMICONDUCTOR DEVICES HAVING DIFFUSION REGIONS OF REDUCED WIDTH - Semiconductor devices and methods for forming semiconductor devices are provided, including semiconductor devices that comprise one or more diffusion region in a semiconductor, the one or more diffusion regions being adjacent to a gate formed adjacent to a surface of the semiconductor (e.g., a semiconductor substrate). The one or more diffusion regions comprise a first width at a depth below the surface of the semiconductor and a second width near the surface of the semiconductor, the second width of at the one or more diffusion regions being less than about 40% greater than the first width.03-24-2011
20110101428SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - According to an aspect of an embodiment, a semiconductor device has a semiconductor substrate, a gate insulating film on the semiconductor substrate, a gate electrode formed on the gate insulating film, an impurity diffusion region formed in an area of the semiconductor substrate adjacent to the gate electrode to a first depth to the semiconductor substrate, the impurity diffusion region containing impurity, an inert substance containing region formed in the area of the semiconductor substrate to a second depth deeper than the first depth, the inert substance containing region containing an inert substance, and a diffusion suppressing region formed in the area of the semiconductor substrate to a third depth deeper than the second depth, the diffusion suppressing region containing a diffusion suppressing substance suppressing diffusion of the impurity.05-05-2011
20110073921SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD OF THE SAME - The bonding time of a metallic ribbon is shortened in the semiconductor device which connects a lead frame with the bonding pad of a semiconductor chip with a metallic ribbon. The bottom of the wedge tool is divided into two by the V-groove at the first branch and the second branch. In order to do bonding of the Al ribbon to the source pad of the silicon chip, and the source post of the lead frame, first, the first branch and second branch of the wedge tool are contacted by pressure to Al ribbon on the source pad, and supersonic vibration is applied to it. Subsequently, the first branch is contacted by pressure to Al ribbon on the source post, and supersonic vibration is applied to it. Here, since the width of the first branch is narrower than the width of the source post, Al ribbon is not joined at the end surface of the width direction of the source post.03-31-2011
20110073919METHOD OF FABRICATING FINFET DEVICE - The present disclosure provides a FinFET device and method of fabricating a FinFET device. The method includes providing a substrate, forming a fin structure on the substrate, forming a gate structure including a gate dielectric and gate electrode, the gate structure overlying a portion of the fin structure, forming a protection layer over another portion of the fin structure, and thereafter performing an implantation process to form source and drain regions.03-31-2011
20110024805USING HIGH-K DIELECTRICS AS HIGHLY SELECTIVE ETCH STOP MATERIALS IN SEMICONDUCTOR DEVICES - A spacer structure in sophisticated semiconductor devices is formed on the basis of a high-k dielectric material, which provides superior etch resistivity compared to conventionally used silicon dioxide liners. Consequently, a reduced thickness of the etch stop material may nevertheless provide superior etch resistivity, thereby reducing negative effects, such as dopant loss in the drain and source extension regions, creating a pronounced surface topography and the like, as are typically associated with conventional spacer material systems.02-03-2011
20090026507Semiconductor device and method of fabricating same - There are disclosed TFTs that have excellent characteristics and can be fabricated with a high yield. The TFTs are fabricated, using an active layer crystallized by making use of nickel. Gate electrodes are comprising tantalum. Phosphorus is introduced into source/drain regions. Then, a heat treatment is performed to getter nickel element in the active layer and to drive it into the source/drain regions. At the same time, the source/drain regions can be annealed out. The gate electrodes of tantalum can withstand this heat treatment.01-29-2009
20100301401SEMICONDUCTOR DEVICE AND RELATED FABRICATION METHODS THAT USE COMPRESSIVE MATERIAL WITH A REPLACEMENT GATE TECHNIQUE - A semiconductor device and related method of fabricating it are provided. An exemplary fabrication process begins by forming a gate structure overlying a layer of semiconductor material, the gate structure comprising a gate insulator overlying the layer of semiconductor material and comprising a temporary gate element overlying the gate insulator. The process continues by forming a layer of compressive material overlying the gate structure, and by removing a first portion of the compressive material to expose an upper surface of the temporary gate element, while leaving a second portion of the compressive material intact and external to sidewalls of the temporary gate element. Thereafter, at least a portion of the temporary gate element is removed, while leaving the second portion of the compressive material intact, resulting in a gate recess. The process continues by at least partially filling the gate recess with a gate electrode material.12-02-2010
20110248321Self-Aligned Contacts for Field Effect Transistor Devices - A method for forming a field effect transistor includes forming a gate stack, a spacer adjacent to opposing sides of the gate stack, a silicide source region and a silicide drain region on opposing sides of the spacer, epitaxially growing silicon on the source region and the drain region; forming a liner layer on the gate stack and the spacer, removing a portion of the liner layer to expose a portion of the hardmask layer, removing the exposed portions of the hardmask layer to expose a silicon layer of the gate stack, removing exposed silicon to expose a portion of a metal layer of the gate stack, the source region, and the drain region; and depositing a conductive material on the metal layer of the gate stack, the silicide source region, and the silicide drain region.10-13-2011
20100264470NMOS TRANSISTOR DEVICES AND METHODS FOR FABRICATING SAME - NMOS transistors having controlled channel strain and junction resistance and methods for the fabrication of same are provided herein. In some embodiments, a method for forming an NMOS transistor may include providing a substrate having a p-type silicon region and a gate stack disposed thereon, the gate stack partially defining a source and a drain region; depositing an undoped first silicon layer having a lattice adjusting element atop the p-type silicon region and within the source and the drain regions; and depositing a second silicon layer having a lattice adjusting element and an n-type dopant atop the undoped first silicon layer.10-21-2010
20100264471Enhancing MOSFET performance with stressed wedges - The present invention relates to improved metal-oxide-semiconductor field effect transistor (MOSFET) devices with stress-inducing structures located above the gate structure or at or near the source and drain regions. Specifically, a dielectric layer in on the MOSFET and at least one stress-inducing wedge is pressed into the dielectric layer to induce a stress in the channel of the MOSFET. The at least one stress-inducing wedge is located above the gate of an n-channel MOSFET (nMOSFET) and the at least one stress-inducing wedge is located in or near the source and drain regions, but not above the gate of a p-channel MOSFET (pMOSFET). The former creates tensile stress in the channel of an nMOSFET and then enhance the performance of the nMOSFET. The latter produces compressive stress in the channel of a pMOSFET and then enhance the performance of the pMOSFET.10-21-2010
20100078691TRANSISTOR WITH EMBEDDED SI/GE MATERIAL HAVING ENHANCED ACROSS-SUBSTRATE UNIFORMITY - In sophisticated semiconductor devices, a strain-inducing semiconductor alloy may be positioned close to the channel region by forming cavities on the basis of a wet chemical etch process, which may have an anisotropic etch behavior with respect to different crystallographic orientations. In one embodiment, TMAH may be used which exhibits, in addition to the anisotropic etch behavior, a high etch selectivity with respect to silicon dioxide, thereby enabling extremely thin etch stop layers which additionally provide the possibility of further reducing the offset from the channel region while not unduly contributing to overall process variability.04-01-2010
20110163360METHOD FOR FORMING A TRANSISTOR HAVING GATE DIELECTRIC PROTECTION AND STRUCTURE - A transistor structure is formed by providing a semiconductor substrate and providing a gate above the semiconductor substrate. The gate is separated from the semiconductor substrate by a gate insulating layer. A source and a drain are provided adjacent the gate to define a transistor channel underlying the gate and separated from the gate by the gate insulating layer. A barrier layer is formed by applying nitrogen or carbon on opposing outer vertical sides of the transistor channel between the transistor channel and each of the source and the drain. In each of the nitrogen and the carbon embodiments, the vertical channel barrier retards diffusion of the source/drain dopant species into the transistor channel. There are methods for forming the transistor structure.07-07-2011
20110163359LITHOGRAPHY FOR PRINTING CONSTANT LINE WIDTH FEATURES - An anisotropic wet etch of a semiconductor layer generates facets joined by a ridge running along the center of a pattern in a dielectric hardmask layer on the semiconductor layer. The dielectric hardmask layer is removed and a conformal masking material layer is deposited. Angled ion implantation of Ge, B, Ga, In, As, P, Sb, or inert atoms is performed parallel to each of the two facets joined by the ridge causing damage to implanted portions of the masking material layer, which are removed selective to undamaged portions of the masking material layer along the ridge and having a constant width. The semiconductor layer and a dielectric oxide layer underneath are etched selective to the remaining portions of the dielectric nitride. Employing remaining portions of the dielectric oxide layer as an etch mask, the gate conductor layer is patterned to form gate conductor lines having a constant width.07-07-2011
20110163358SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A method for fabricating a semiconductor device includes forming a trench in a substrate, forming a gate electrode buried over the trench to form a buried gate pattern, etching portions of the substrate on both sides of the buried gate pattern to a certain depth, performing an ion implantation process on the substrate to form source/drain junctions, and forming metal patterns over the source/drain junctions.07-07-2011
20110163357METHOD FOR FABRICATING SEMICONDUCTOR DEVICES USING STRESS ENGINEERING - A method for fabricating a semiconductor device is presented. The method comprises providing a gate stack including a gate dielectric and gate electrode over a substrate. Stressor regions comprising stressor material incorporated into substitutional sites of the substrate are formed within the substrate on opposed sides of the gate stack. A first stressor layer having a first stress value is formed over the semiconductor device after forming the stressor regions followed by an anneal to memorize at least a portion of the first stress value in the semiconductor device, wherein the anneal is conducted at a low temperature.07-07-2011
20110163356HYBRID TRANSISTOR - A method of forming a device is disclosed. The method includes providing a substrate having an active area. A gate is formed on the substrate. First and second current paths through the gate are formed. The first current path serves a first purpose and the second current path serves a second purpose. The gate controls selection of the current paths.07-07-2011
20100012988METAL OXIDE SEMICONDUCTOR DEVICES HAVING IMPLANTED CARBON DIFFUSION RETARDATION LAYERS AND METHODS FOR FABRICATING THE SAME - Semiconductor devices and methods for fabricating semiconductor devices are provided. One exemplary method comprises providing a silicon-comprising substrate having a first surface, etching a recess into the first surface, the recess having a side surface and a bottom surface, implanting carbon ions into the side surface and the bottom surface, and forming an impurity-doped, silicon-comprising region overlying the side surface and the bottom surface.01-21-2010
20090001431Method for forming semiconductor contacts - In one embodiment of the invention, contact patterning may be divided into two or more passes which may allow designers to control the gate height critical dimension relatively independent from the contact top critical dimension.01-01-2009
20110254062FIELD EFFECT TRANSISTOR AND METHOD OF MANUFACTURING THE SAME - A field effect transistor which can operate at a low threshold value includes: an n-type semiconductor region; a source region and a drain region separately formed in the n-type semiconductor region; a first insulating film formed in the semiconductor region between the source region and the drain region and containing silicon and oxygen; a second insulating film formed on the first insulating film and containing at least one material selected from Hf, Zr, and Ti and oxygen; and a gate electrode formed on the second insulating film. Ge is doped in an interface region including an interface between the first insulating film and the second insulating film, and an area density of the Ge has a peak on a first insulating film side in the interface region.10-20-2011
20090289284High shrinkage stress silicon nitride (SiN) layer for NFET improvement - A method (and semiconductor device) of forming a high shrinkage stressed silicon nitride layer for use as a contact etch stop layer (CESL) or capping layer in a stress management technique (SMT) provides increased tensile stress to a channel of an nFET device to enhance carrier mobility. A spin-on polysilazane-based dielectric material is applied to a semiconductor substrate and baked to form a film layer. The film layer is cured to remove hydrogen from the film which causes shrinkage in the film when it recrystallizes into silicon nitride. The resulting silicon nitride stressed layer introduces an increased level of tensile stress to the transistor channel region.11-26-2009
20090278179CHIP SCALE SURFACE MOUNT PACKAGE FOR SEMICONDUCTOR DEVICE AND PROCESS OF FABRICATING THE SAME - A semiconductor package has contacts on both sides of the dice on a wafer scale. The back side of the wafer is attached to a metal plate. The scribe lines separating the dice expose the metal plate without extending through the metal plate. A metal layer may be formed on the front side of the dice, covering the exposed portions of the metal plate and extending to side edges of the dice. The metal layer may cover connection pads on the front side of the dice. A second set of scribe lines are made coincident with the first set. Therefore, the metal layer remains on the side edges of the dice coupling the front and the back. As a result, the package is rugged and provides a low-resistance electrical connection between the back and front sides of the dice.11-12-2009
20080315267Device Performance Improvement Using FlowFill as Material for Isolation Structures - A trench is formed in the surface of a provided semiconductor body. An oxide is deposited in the trench and a cap is deposited on the oxide, wherein the combination of the cap and the oxide impart a mechanical stress on the semiconductor body.12-25-2008
20080315268Methods and Apparatus for Semiconductor Memory Devices Manufacturable Using Bulk CMOS Process Manufacturing - The present invention discloses semiconductor devices that can be manufactured utilizing standard process of manufacturing and that can hold information. In accordance with a presently preferred embodiment of the present invention, one or more semiconductor devices can be formed in a well on a substrate where isolation trenches surround one or more devices to create storage regions (floating wells) that is capable of holding a charge. Depending on the charge in the storage region (floating well), it can represent information. The semiconductor devices of the present invention can be manufactured using the standard process of manufacturing (bulk cmos processing).12-25-2008
20080303069TWO STEP PHOTORESIST STRIPPING METHOD SEQUENTIALLY USING ION ACTIVATED AND NON-ION ACTIVATED NITROGEN CONTAINING PLASMAS - A two-step nitrogen plasma method is used for stripping a photoresist layer from over a substrate. A first step within the two-step nitrogen plasma method uses a nitrogen plasma with ion activation to form from the photoresist layer over the substrate a treated photoresist layer over the substrate. A second step within the two-step nitrogen plasma method uses a second nitrogen plasma without ion activation to remove the treated photoresist layer from over the substrate. The method is particularly useful for stripping a patterned photoresist layer that is used for forming a gate electrode from a gate electrode material layer.12-11-2008
20120199889SEMICONDUCTOR DEVICE AND FIELD EFFECT TRANSISTOR - Provided is a semiconductor device in which the trade-off between the withstand voltage and the on-resistance is improved and the performance is increased.08-09-2012
20080265294Semiconductor device manufacturing method including forming a metal silicide layer on an indium-containing layer - The present invention provides a semiconductor device manufacturing method of a semiconductor device having a contact plug, in which a contact hole formed by a surface portion of a high-concentration N-type diffusion layer formed on a semiconductor silicon substrate surface and an interlayer insulating film is implanted with indium ions at an energy ranging from 30 to 120 keV and an implantation amount ranging from 1.0×1010-30-2008
20110254061TRANSISTOR AND METHOD OF FABRICATING THE SAME - A transistor including a gate, an active stacked structure, a dielectric layer, a source and a drain. The gate is located over a first surface of the dielectric layer. The active stacked structure, including a first active layer and a second active layer, is located over a second surface of the dielectric layer. The source and the drain are located over the second surface of the dielectric layer and at two sides of the active stacked structure and extend between the first active layer and the second active layer of the active stacked structure.10-20-2011
20110254060Metal Gate Structure and Fabricating Method thereof - A method of fabricating a metal gate structure is provided. Firstly, a high-K gate dielectric layer is formed on a semiconductor substrate. Then, a first metal-containing layer having a surface away from the gate dielectric layer is formed on the gate dielectric layer. After that, the surface of the first metal-containing layer is treated to improve the nitrogen content thereof of the surface. Subsequently, a silicon layer is formed on the first metal-containing layer. Because the silicon layer is formed on the surface having high nitrogen content, the catalyzing effect to the silicon layer resulted from the metal material in the first metal-containing layer can be prevented. As a result, the process yield is improved.10-20-2011
20090273010REMOVAL OF IMPURITIES FROM SEMICONDUCTOR DEVICE LAYERS - A method for removing impurities from at least one semiconductor device layer during manufacturing of a semiconductor device is disclosed. The semiconductor device layer has a compound semiconductor material and/or germanium. Each heating process performed during the manufacturing of the semiconductor device after provision of the semiconductor device layer has a low thermal budget determined by temperatures equal to or lower than about 900° C. and time periods equal to or lower than about 5 minutes. In one aspect, the method includes providing a germanium gettering layer with a higher solubility for the impurities than the semiconductor device layer. The germanium gettering layer is provided at least partly in direct or indirect contact with the at least one semiconductor device layer, such that impurities can diffuse from the at least one semiconductor device layer to the germanium gettering layer.11-05-2009
20110001171POWER CONVERTER INTEGRATED CIRCUIT FLOOR PLAN AND PACKAGE - For a DC to DC converter circuit integrated on a packaged die, the relative positions of various die pads and power MOSFETs on the die for a small outline integrated circuit package are described.01-06-2011
20120199891SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SAME - A semiconductor device includes: a gate electrode (08-09-2012
20120199888FIN FIELD-EFFECT TRANSISTOR STRUCTURE - A fin field-effect transistor structure includes a silicon substrate, a fin channel, a gate insulator layer and a gate conductor layer. The fin channel is formed on a surface of the silicon substrate, wherein the fin channel has at least one slant surface. The gate insulator layer formed on the slant surface of the fin channel. The gate conductor layer formed on the gate insulator layer.08-09-2012
20120199886SEALED AIR GAP FOR SEMICONDUCTOR CHIP - A semiconductor chip, including a substrate; a dielectric layer over the substrate; a gate within the dielectric layer, the gate including a sidewall; a source and a drain in the substrate adjacent to the gate; a tapered contact contacting a portion of one of the source or the drain; and a sealed air gap between the sidewall and the contact.08-09-2012
20120168830SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device according to an embodiment includes: a substrate; a first semiconductor layer formed on the substrate and having a strain; a second and a third semiconductor layers formed at a distance from each other on the first semiconductor layer, and having a different lattice constant from a lattice constant of the first semiconductor layer; a gate insulating film formed on a first portion of the first semiconductor layer, the first portion being located between the second semiconductor layer and the third semiconductor layer; and a gate electrode formed on the gate insulating film. At least one of outer surface regions of the second semiconductor layer and a second portion of the first semiconductor layer is a first silicide region, and at least one of outer surface regions of the third semiconductor layer and a third portion of the first semiconductor layer is a second silicide region, the second and third portions being located immediately below the second and third semiconductor layers respectively.07-05-2012
20120168831NON-VOLATILE MEMORY DEVICE AND METHOD FOR FABRICATING THE SAME - A method for fabricating a non-volatile memory device includes: providing a substrate which includes a cell region where a plurality of memory cells are to be formed and a peripheral circuit region where a plurality of peripheral circuit devices are to be formed; forming the memory cells that are stacked perpendicularly to the substrate of the cell region; and forming a first conductive layer for forming a gate electrode of a selection transistor over the memory cells while forming the first conductive layer in the peripheral circuit region simultaneously, wherein the first conductive layer of the peripheral circuit region functions as a resistor body of at least one peripheral circuit device of the peripheral circuit devices.07-05-2012
20120168829MOS TRANSISTOR AND METHOD FOR FORMING THE SAME - The invention provides a MOS transistor and a method for forming the MOS transistor. The MOS transistor includes a semiconductor substrate; a gate stack on the semiconductor substrate, and including a gate dielectric layer and a gate electrode on the semiconductor substrate in sequence; a source region and a drain region, respectively at sidewalls of the gate stack sidewalls of the gate stack and in the semiconductor; sacrificial metal spacers on sidewalls of the gate stack sidewalls of the gate stack, and having tensile stress or compressive stress. This invention scales down the equivalent oxide thickness, improves uniformity of device performance, raises carrier mobility and promotes device performance.07-05-2012
20120199890TRANSISTOR STRUCTURE - A transistor structure is provided in the present invention. The transistor structure includes: a substrate comprising a P-type well, a gate disposed on the P-type well, a first spacer disposed on the gate, an N-type source/drain region disposed in the substrate at two sides of the gate, a silicon cap layer covering the N-type source/drain region, a second spacer around the first spacer and the second spacer directly on and covering a portion of the silicon cap layer and a silicide layer disposed on the silicon cap layer.08-09-2012
20080203449SOURCE/DRAIN STRESSOR AND METHOD THEREFOR - A method for forming a semiconductor device is provided. The method includes forming a gate structure overlying a substrate. The method further includes forming a sidewall spacer adjacent to the gate structure. The method further includes performing an angled implant in a direction of a source side of the semiconductor device. The method further includes annealing the semiconductor device. The method further includes forming recesses adjacent opposite ends of the sidewall spacer in the substrate to expose a first type of semiconductor material. The method further includes epitaxially growing a second type of semiconductor material in the recesses, wherein the second type of semiconductor material has a lattice constant different from a lattice constant of the first type of semiconductor material to create stress in a channel region of the semiconductor device.08-28-2008
20080203448STRESSED DIELECTRIC DEVICES AND METHODS OF FABRICATING SAME - A structure and a method of making the structure. The structure includes a field effect transistor including: a first and a second source/drain formed in a silicon substrate, the first and second source/drains spaced apart and separated by a channel region in the substrate; a gate dielectric on a top surface of the substrate over the channel region; and an electrically conductive gate on a top surface of the gate dielectric; and a dielectric pillar of a first dielectric material over the gate; and a dielectric layer of a second dielectric material over the first and second source/drains, sidewalls of the dielectric pillar in direct physical contact with the dielectric layer, the dielectric pillar having no internal stress or an internal stress different from an internal stress of the dielectric layer.08-28-2008
20080203447LOW-TEMPERATURE ELECTRICALLY ACTIVATED GATE ELECTRODE AND METHOD OF FABRICATING SAME - A gate electrode structure is provided, which includes, from bottom to top, an optional, yet preferred metallic layer, a Ge rich-containing layer and a Si rich-containing layer. The sidewalls of the Ge rich-containing layer include a surface passivation layer. The inventive gate electrode structure serves as a low-temperature electrically activated gate electrode of a MOSFET in which the materials thereof as well as the method of fabricating the same are compatible with existing MOSFET fabrication techniques. The inventive gate electrode structure is electrically activated at low processing temperatures (on the order of less than 750° C.). Additionally, the inventive gate electrode structure also minimizes gate-depletion effects, does not contaminate a standard MOS fabrication facility and has sufficiently low reactivity of the exposed surfaces that renders such a gate electrode structure compatible with conventional MOSFET processing steps.08-28-2008
20100320513SEMICONDUCTOR DEVICE AND A METHOD OF MANUFACTURING THE SAME - A method of manufacturing a semiconductor device (12-23-2010
20100320511SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device is fabricated by forming a semiconductor substrate as a convex shape to increase a effective channel of a transistor and by stacking a first silicon germanium layer and a first silicon layer on the semiconductor substrate to form a first layer and stacking a second silicon germanium layer and a second silicon layer on the first layer to form a second layer such that the current reduced due to the increased effective channel is ensured, thereby being capable of high speed performance.12-23-2010
20100320512Semiconductor device manufacturing method and semiconductor device - Disclosed is a semiconductor device manufacturing method in which a silicon nitride film is formed to cover an n-channel transistor formed on a semiconductor substrate and to apply a tensile stress in a channel length direction to a channel of the n-channel transistor, the method includes: forming a first-layer silicon nitride film above the n-channel transistor; irradiating the first-layer silicon nitride film with ultraviolet radiation; and after the ultraviolet irradiation, forming at least one silicon nitride film thinner than the first-layer silicon nitride film above the first-layer silicon nitride film. Silicon nitride films formed to apply the tensile stress is formed by respective steps.12-23-2010
20100320510Interfacial Barrier for Work Function Modification of High Performance CMOS Devices - A semiconductor structure may include a semiconductor bulk region with a gate stack on the semiconductor bulk region. The source region and the drain region in the semiconductor bulk region may be located on opposing sides of a channel region below the gate stack. An interfacial layer coupled to the channel region may modify a workfunction of a metal-semiconductor contact. In a MOSFET, the metal-semiconductor contact may be between a metal contact and the source region and the drain region. In a Schottky barrier-MOSFET, the metal-semiconductor contact may be between a silicide region in the source region and/or the drain region and the channel region. The interfacial layer may use a dielectric-dipole mitigated scheme and may include a conducting layer and a dielectric layer. The dielectric layer may include lanthanum oxide or aluminum oxide used to tune the workfunction of the metal-semiconductor contact.12-23-2010
20100320509Method for forming and integrating metal gate transistors having self-aligned contacts and related structure - According to one exemplary embodiment, a method for forming at least one metal gate transistor with a self-aligned source/drain contact includes forming a metal gate over a substrate. The method further includes forming a source/drain region in the substrate adjacent to the metal gate. The method also includes forming a conformal etch stop layer over the metal gate and the source/drain region. The method further includes forming a source/drain contact over the source/drain region, where the conformal etch stop layer imposes a pre-determined distance between the source/drain contact and the metal gate, thereby causing the source/drain contact to be self-aligned to the metal gate.12-23-2010
20130168748FIN FET STRUCTURE WITH DUAL-STRESS SPACERS AND METHOD FOR FORMING THE SAME - This application discloses a Fin FET structure and a method for forming the same. In the Fin FET structure, there are lower stress spacers disposed over the lower portion of the fin's opposite sidewalls, asserting one stress type to suppress the carrier mobility; there are also upper stress spacers disposed over the upper portion of the fin's opposite sidewalls, asserting an opposite stress type to increase the carrier mobility. Therefore, the leakage current in the fin FET is reduced and the device performance is improved. In the method, the stress spacers are formed by depositing stress layers and etching back the stress layers, where stress types and magnitudes are controllable, resulting in a simple process.07-04-2013
20130168749BORDERLESS CONTACT STRUCTURE EMPLOYING DUAL ETCH STOP LAYERS - Each gate structure formed on the substrate includes a gate dielectric, a gate conductor, a first etch stop layer, and a gate cap dielectric. A second etch stop layer is formed over the gate structures, gate spacers, and source and drain regions. A first contact-level dielectric layer and a second contact-level dielectric layer are formed over the second etch stop layer. Gate contact via holes extending at least to the top surface of the gate cap dielectrics are formed. Source/drain contact via holes extending to the interface between the first and second contact-level dielectric layers are subsequently formed. The various contact via holes are vertically extended by simultaneously etching exposed gate cap dielectrics and exposed portions of the first contact-level dielectric layer, then by simultaneously etching the first and second etch stop layers. Source/drain contact vias self-aligned to the outer surfaces gate spacers are thereby formed.07-04-2013
20130168742INTEGRATED CIRCUIT CONFIGURATION AND FABRICATING METHOD THEREOF - An integrated circuit configuration includes a substrate, a diffusion region, a gate structure, an extension conductor structure, a dielectric layer, a contact structure, and a metal conductor line. The diffusion region is formed in the substrate. The gate structure is formed over the substrate and spanned across the diffusion region. The extension conductor structure is formed over the semiconductor substrate and contacted with the diffusion region. The extension conductor structure is extended externally to a first position along a surface of the substrate, wherein the first position is outside the diffusion region. The dielectric layer is formed over the substrate, the gate structure and the extension conductor structure. The contact structure is penetrated through the dielectric layer to be contacted with the first position of the extension conductor structure. The metal conductor line is formed on the dielectric layer and contacted with the contact structure.07-04-2013
20120199887METHODS OF CONTROLLING TUNGSTEN FILM PROPERTIES - Methods, apparatus, and systems for depositing tungsten having tailored stress levels are provided. According to various embodiments, the methods involve depositing high stress or low stress tungsten films. In certain embodiments depositing high stress tungsten involves a multi-stage chemical vapor deposition (CVD) process including a low temperature deposition followed by a high temperature deposition. In certain embodiments depositing low stress tungsten involves a CVD process using a relatively low tungsten precursor flow. Also provided are new classes of high and low stress tungsten films, which may also have low resistivity and/or high reflectivity. Also provided are integration methods involving depositing high or low stress tungsten, for example as contacts and/or metal gates, and semiconductor devices incorporating the tungsten films.08-09-2012
20110254064SEMICONDUCTOR DEVICE WITH CARBON ATOMS IMPLANTED UNDER GATE STRUCTURE - An exemplary semiconductor device includes a substrate, a spacer, a metal silicide layer and carbon atoms. The substrate has a gate structure formed thereon. The spacer is formed on the sidewall of the gate structure. The spacer has a first side adjacent to the gate structure and a second side away from the gate structure. The metal silicide layer is formed on the substrate and adjacent to the second side of the spacer but away from the first side of the spacer. The carbon atoms are formed into the substrate and adjacent to the first side of the spacer but away from the second side of the spacer.10-20-2011
20110254063SEMICONDUCTOR DEVICE STRUCTURE AND METHOD FOR MANUFACTURING THE SAME - The present invention provides a MOS device, which comprises: a substrate; an interface layer thin film formed on the substrate; a high k gate dielectric layer formed on the interface layer thin film; and a metal gate formed on the high k gate dielectric layer. The metal gate comprises, upwardly in order, a metal gate work function layer, an oxygen absorption element barrier layer, a metal gate oxygen absorbing layer, a metal gate barrier layer and a polysilicon layer. A metal gate oxygen absorbing layer is introduced into the metal gate for the purpose of preventing the outside oxygen from coming into the interface layer and absorbing the oxygen in the interface layer during a annealing process, such that the interface layer is reduced to be thinner and the EOT of MOS devices are effectively reduced; meanwhile, by adding an oxygen absorption element barrier layer, the “oxygen absorption element” is prevented from diffusing into the high k gate dielectric layer and giving rise to unfavorable impact thereon; in this way, the high k/metal gate system can be more easily integrated, and the performance of the device can be further improved accordingly.10-20-2011
20110133258SHIELDED GATE TRENCH MOSFET WITH INCREASED SOURCE-METAL CONTACT - A semiconductor device formed on a semiconductor substrate having a substrate top surface, includes: a gate trench extending from the substrate top surface into the semiconductor substrate; a gate electrode in the gate trench; a dielectric material disposed over the gate electrode; a body region adjacent to the gate trench; a source region embedded in the body region, at least a portion of the source region extending above the dielectric material; a contact trench that allows contact such as electrical contact between the source region and the body region; and a metal layer disposed over at least a portion of a gate trench opening, at least a portion of the source region, and at least a portion of the contact trench.06-09-2011
20100155792TRANSPARENT TRANSISTOR AND METHOD OF MANUFACTURING THE SAME - Provided is a transparent transistor including a substrate, source and drain electrodes formed on the substrate, each having a multi-layered structure of a lower transparent layer, a metal layer and an upper transparent layer, a channel formed between the source and drain electrodes, and a gate electrode aligned with the channel. Here, the lower transparent layer or the upper transparent layer is formed of a transparent semiconductor layer, which is the same as the channel. Thus, the use of the multi-layered transparent conductive layer can ensure transparency and conductivity, overcome a problem of contact resistance between the source and drain electrodes and a semiconductor, and improve processibility by patterning the multi-layered transparent conductive layer all at once, while deposition is performed layer by layer.06-24-2010
20100123173Semiconductor device and method of manufacturing the same - A semiconductor device includes a three-dimensional structure that extends in a channel direction, a stress film having residual stress acting on a first side surface of the three-dimensional structure, a gate insulating film that is formed over a second side surface of the three-dimensional structure, and a gate electrode that covers the three-dimensional structure with the gate insulating film interposed therebetween and extends in a direction in which the first and second side surfaces are opposite to each other. The three-dimensional structure has a channel region between a source electrode and a drain electrode.05-20-2010
20110133259STRESSED BARRIER PLUG SLOT CONTACT STRUCTURE FOR TRANSISTOR PERFORMANCE ENHANCEMENT - A method for forming a slot contact structure for transistor performance enhancement. A contact opening is formed to expose a contact region, and a slot contact is disposed within the contact opening in order to induce a stress on an adjacent channel region. In an embodiment, a stress inducing barrier plug is disposed within a portion of the contact opening and the remainder of the contact opening is filled with a lower resistivity contact metal. By selecting the proper materials and deposition parameters, the slot contact can be tuned to induce a tensile or compressive stress on the adjacent channel region, thus being applicable for both p-type and n-type devices.06-09-2011
20110079827STRUCTURE AND METHOD TO CREATE A DAMASCENE LOCAL INTERCONNECT DURING METAL GATE DEPOSITION - A method and structure to create damascene local interconnect during metal gate deposition. A method includes: forming a gate dielectric on an upper surface of a substrate; forming a mandrel on the gate dielectric; forming an interlevel dielectric (ILD) layer on a same level as the mandrel; forming a trench in the ILD layer; removing the mandrel; and forming a metal layer on the gate dielectric and in the trench.04-07-2011
20110079826SEMICONDUCTOR DEVICE, METHOD FOR FABRICATING THE SAME AND APPARATUS FOR FABRICATING THE SAME - A method for fabricating a semiconductor device includes forming a gate electrode on a surface of a substrate via a gate insulating film, forming an insulating film on a side surface of the gate electrode, and exposing an oxygen plasma onto the surface of the substrate. An electron temperature of the oxygen plasma in a vicinity of the surface of the substrate is equal to or less than about 1.5 eV.04-07-2011
20120146111CHIP PACKAGE AND MANUFACTURING METHOD THEREOF - An embodiment of the invention provides a chip package including a semiconductor substrate, a drain electrode, a source electrode and a gate electrode. The semiconductor substrate has a first surface and an opposite second surface wherein the second surface has a recess. The drain electrode is disposed on the first surface and covers the recess. The source electrode is disposed on the second surface in a position corresponding to the drain electrode covering the recess. The gate electrode is disposed on the second surface. An embodiment of the invention further provides a manufacturing method of a chip package.06-14-2012
20120146112FINFET WITH REDUCED GATE TO FIN OVERLAY SENSITIVITY - Embodiments of the invention provide a relatively uniform width fin in a Fin Field Effect Transistors (FinFETs) and apparatus and methods for forming the same. A fin structure may be formed such that the surface of a sidewall portion of the fin structure is normal to a first crystallographic direction. Tapered regions at the end of the fin structure may be normal to a second crystal direction. A crystallographic dependent etch may be performed on the fin structure. The crystallographic dependent etch may remove material from portions of the fin normal to the second crystal direction relatively faster, thereby resulting in a relatively uniform width fin structure.06-14-2012
20120146108CHIP PACKAGE AND METHOD FOR FORMING THE SAME - An embodiment of the invention provides a chip package which includes: a semiconductor substrate having a first surface and an opposite second surface; a drain region located in the semiconductor substrate; a source region located in the semiconductor substrate; a gate located on the semiconductor substrate or at least partially buried in the semiconductor substrate, wherein a gate dielectric layer is between the gate and the semiconductor substrate; a drain conducting structure disposed on the first surface of the semiconductor substrate and electrically connected to the drain region; a source conducting structure disposed on the second surface of the semiconductor substrate and electrically connected to the source region; and a gate conducting structure disposed on the first surface of the semiconductor substrate and electrically connected to the gate.06-14-2012
20120146107SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - Disclosed are a semiconductor device and a method of manufacturing the same. In the semiconductor device according to an exemplary embodiment of the present disclosure, at the time of forming a source electrode, a drain electrode, a field plate electrode, and a gate electrode on a substrate having a heterojunction structure such as AlGaN/GaN, the field plate electrode made of the same metal as the gate electrode is formed on the side surface of a second support part positioned below a head part of the gate electrode so as to prevent the gate electrode from collapsing and improve high-frequency and high-voltage characteristic of the semiconductor device.06-14-2012
20110260220SEMICONDUCTOR DEVICE AND FABRICATION THEREOF - A method for forming a semiconductor device is disclosed. A substrate including a gate dielectric layer and a gate electrode layer sequentially formed thereon is provided. An offset spacer is formed on sidewalls of the gate dielectric layer and the gate electrode layer. A carbon spacer is formed on a sidewall of the offset spacer, and the carbon spacer is then removed. The substrate is implanted to form a lightly doped region using the gate electrode layer and the offset spacer as a mask. The method may also include providing a substrate having a gate dielectric layer and a gate electrode layer sequentially formed thereon. A liner layer is formed on sidewalls of the gate electrode layer and on the substrate. A carbon spacer is formed on a portion of the liner layer adjacent the sidewall of the gate electrode layer. A main spacer is formed on a sidewall of the carbon spacer. The carbon spacer is removed to form an opening between the liner layer and the main spacer. The opening is sealed by a sealing layer to form an air gap.10-27-2011
20100065895Method for producing at least one porous layer - A method for producing at least one porous layer on a substrate, whereby a suspension, which contains particles from a layer-forming material or molecular precursors of the layer-forming material, as well as at least one organic component, is applied to the substrate, the precursors of the layer-forming material are subsequently reacted to produce the layer-forming material following application to the substrate, in a next step, the particles from the layer-forming material are sintered, and the at least one organic component is subsequently removed. Also, a field-effect transistor having at least one gate electrode, the gate electrode having an electrically conductive, porous coating which was applied in accordance with the method.03-18-2010
20100059799METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - The present invention relates to a method for manufacturing a semiconductor device, and provides to reduce a contact resistance of a landing plug by forming the landing plug in such a manner that a polysilicon layer is deposited only on the surface of a landing plug contact hole, and a metal layer is buried in the rest of the landing plug contact hole in the process of forming a storage node contact or a bit line contact.03-11-2010
20110147813SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A method for fabricating a semiconductor device includes: forming a fin-type semiconductor region on a substrate; and introducing an n-type impurity into at least a side of the fin-type semiconductor region by a plasma doping process, thereby forming an n-type impurity region in the side of the fin-type semiconductor region. In the introducing the n-type impurity, when a source power in the plasma doping process is denoted by a character Y [W], the supply of a gas containing the n-type impurity per unit time and per unit volume is set greater than or equal to 5.1×1006-23-2011
20110147811TWO-DIMENSIONAL CONDENSATION FOR UNIAXIALLY STRAINED SEMICONDUCTOR FINS - Techniques are disclosed for enabling multi-sided condensation of semiconductor fins. The techniques can be employed, for instance, in fabricating fin-based transistors. In one example case, a strain layer is provided on a bulk substrate. The strain layer is associated with a critical thickness that is dependent on a component of the strain layer, and the strain layer has a thickness lower than or equal to the critical thickness. A fin is formed in the substrate and strain layer, such that the fin includes a substrate portion and a strain layer portion. The fin is oxidized to condense the strain layer portion of the fin, so that a concentration of the component in the strain layer changes from a pre-condensation concentration to a higher post-condensation concentration, thereby causing the critical thickness to be exceeded.06-23-2011
20110147810METHOD OF FABRICATING STRAINED STRUCTURE IN SEMICONDUCTOR DEVICE - The present disclosure provides a semiconductor device that includes a semiconductor substrate, a gate structure disposed on a portion of the substrate, and strained structures disposed at either side of the portion of the substrate and formed of a semiconductor material different from the semiconductor substrate. The portion of the substrate is T shaped having a horizontal region and a vertical region that extends from the horizontal region in a direction away from a surface of the substrate.06-23-2011
20100025742TRANSISTOR HAVING A STRAINED CHANNEL REGION CAUSED BY HYDROGEN-INDUCED LATTICE DEFORMATION - A lattice distortion may be achieved by incorporating a hydrogen species into a semiconductor material, such as silicon, without destroying the lattice structure. For example, by incorporating the hydrogen species on the basis of an electron shower, a tensile strain component may be obtained in the channel of N-channel transistors.02-04-2010
20100025745METHOD OF FORMING A LOW CAPACITANCE SEMICONDUCTOR DEVICE AND STRUCTURE THEREFOR - In one embodiment a transistor is formed with a gate structure having an opening in the gate structure. An insulator is formed on at least sidewalls of the opening and a conductor is formed on the insulator.02-04-2010
20100025743TRANSISTOR WITH EMBEDDED SI/GE MATERIAL HAVING ENHANCED BORON CONFINEMENT - By incorporating a diffusion hindering species at the vicinity of PN junctions of P-channel transistors comprising a silicon/germanium alloy, diffusion related non-uniformities of the PN junctions may be reduced, thereby contributing to enhanced device stability and increased overall transistor performance. The diffusion hindering species may be provided in the form of carbon, nitrogen and the like.02-04-2010
20100025741SEMICONDUCTOR MEMORY DEVICE AND METHOD OF FABRICATING THE SAME - The present invention discloses a method of fabricating a semiconductor memory device including forming sequentially a gate insulating layer and a first conductive pattern on a semiconductor substrate; forming a protective layer on surfaces of the first conductive pattern and the gate insulating layer; performing an etching process to form a trench, the etching process being performed such that the protective layer remains on side walls of the first conductive pattern to form a protective pattern; forming an isolation layer in the trench; etching the isolation layer; removing the protective pattern above a surface of the isolation layer; and forming sequentially a dielectric layer and a second conductive layer on surfaces of the isolation layer, the protective pattern and the first conductive pattern.02-04-2010
20100025740Semiconductor Device and Method for Fabricating the Same - A method for fabricating a semiconductor device comprises forming a partial-insulated substrate comprising an insulating region located below both a channel region of a cell transistor and one of a storage node contact region and a bit line contact region, and forming a cell transistor comprising a fin region on the partial-insulated substrate.02-04-2010
20110215386SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SEMICONDUCTOR DEVICE - Unintended full siliciding of a polysilicon gate electrode is prevented.09-08-2011
20110215387Semiconductor Constructions - The invention includes semiconductor constructions containing optically saturable absorption layers. An optically saturable absorption layer can be between photoresist and a topography, with the topography having two or more surfaces of differing reflectivity relative to one another. The invention also includes methods of patterning photoresist in which a saturable absorption layer is provided between the photoresist and a topography with surfaces of differing reflectivity, and in which the differences in reflectivity are utilized to enhance the accuracy with which an image is photolithographically formed in the photoresist.09-08-2011
20110215385SEMICONDUCTOR DEVICE - An object is to provide a semiconductor device which achieves miniaturization as well as suppressing a defect. Further, another object is to provide a semiconductor device which achieves miniaturization as well as keeping favorable characteristics. Is provided a semiconductor device including: a source wiring and a drain wiring each of which include a first conductive layer and a second conductive layer having a smaller thickness than the first conductive layer; an insulating layer which has an opening portion and is provided over the source wiring and the drain wiring; an oxide semiconductor layer which is in contact with part of the second conductive layer of the source wiring or the drain wiring in the opening portion; a gate insulating layer provided over the oxide semiconductor layer; and a gate electrode provided over the gate insulating layer.09-08-2011
20110215384SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - In manufacturing processes of a semiconductor device including a shallow trench element isolation region and an interlayer insulating film of a multilayer structure, it is necessary to repeatedly use CMP, but since the CMP itself is costly, the repeated use of the CMP is a cause to increase the manufacturing cost.09-08-2011
20120146110SEMICONDUCTOR DEVICE AND FORMING METHOD OF THE SAME - A semiconductor device includes contact structures and conductive wires formed over the contact structures and coupled to the respective contact structures. Part of each of the conductive wires crosses the contact structure.06-14-2012
20100155790N-FET with a Highly Doped Source/Drain and Strain Booster - A structure and method of making an N-FET with a highly doped source/drain and strain booster are presented. The method provides a substrate with a Ge channel region. A gate dielectric is formed over the Ge channel and a gate electrode is formed over the gate dielectric. Sacrificial gate spacers are disposed on the sidewalls of the gate dielectric and gate electrode. Cavities are etched into the substrate extending under the sacrificial gate spacers. Si06-24-2010
20090072279Capacitor-less memory and abrupt switch based on hysteresis characteristics in punch-through impact ionization mos transistor (PI-MOS) - The present invention exploits the impact ionization induced by drain voltage increase and the onset of a bipolar parasitic in an Ω-gate field effect metal oxide insulator transistor (called PI-MOS), in order to obtain a memory effect and abrupt current switching.03-19-2009
20110018040METHODS OF FABRICATING TRANSISTORS INCLUDING SELF-ALIGNED GATE ELECTRODES AND SOURCE/DRAIN REGIONS - Methods of forming Group III-nitride transistor device include forming a protective layer on a Group III-nitride semiconductor layer, forming a via hole through the protective layer to expose a portion of the Group III-nitride semiconductor layer, and forming a masking gate on the protective layer. The masking gate includes an upper portion having a width that is larger than a width of the via hole and having a lower portion extending into the via hole. The methods further include implanting source/drain regions in the Group III-nitride semiconductor layer using the masking gate as an implant mask.01-27-2011
20110079831Metal Oxide Semiconductor Field Effect Transistors (MOSFETS) Including Recessed Channel Regions - Unit cells of metal oxide semiconductor (MOS) transistors are provided having an integrated circuit substrate and a MOS transistor on the integrated circuit substrate. The MOS transistor includes a source region, a drain region and a gate. The gate is between the source region and the drain region. A channel region is provided between the source and drain regions. The channel region has a recessed region that is lower than bottom surfaces of the source and drain regions. Related methods of fabricating transistors are also provided.04-07-2011
20120037965SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - In an LCD driver, in a high voltage resistant MISFET, end portions of a gate electrode run onto electric field relaxing insulation regions. Wires to become source wires or drain wires are formed on an interlayer insulation film of the first layer over the high voltage resistant MISFET. At this moment, when a distance from an interface between a semiconductor substrate and a gate insulation film to an upper portion of the gate electrode is defined as “a”, and a distance from the upper portion of the gate electrode to an upper portion of the interlayer insulation film on which the wires are formed is defined as “b”, a relation of a>b is established. In such a high voltage resistant MISFET structured in this manner, the wires are arranged so as not to be overlapped planarly with the gate electrode of the high voltage resistant MISFET.02-16-2012
20120037966MINUTE STRUCTURE, MICROMACHINE, ORGANIC TRANSISTOR, ELECTRIC APPLIANCE, AND MANUFACTURING METHOD THEREOF - A micromachine is generally formed using a semiconductor substrate such as a silicon wafer. One of the objects of the present invention is to realize further reduction in cost by integrating a minute structure and a semiconductor element controlling the minute structure over one insulating surface in one step. A minute structure has a structure in which a first layer formed into a frame-shape are provided over an insulating surface, a space is formed inside the frame, and a second layer is formed to cross over the first layer. Such a minute structure and a thin film transistor can be integrated over one insulating surface in one step.02-16-2012
20110084319Method of fabricating a silicon tunneling field effect transistor (TFET) with high drive current - A method (and semiconductor device) of fabricating a TFET device provides a source region having at least a portion thereof positioned underneath a gate dielectric. In one embodiment, the TFET includes an N+ drain region and a P+ source region in a silicon substrate, where the N+ drain region is silicon and the P+ source region is silicon germanium (SiGe). The source region includes a first region of a first type (e.g., P+ SiGe) and a second region of a second type (undoped SiGe), where at least a portion of the source region is positioned below the gate dielectric. This structure decreases the tunneling barrier width and increases drive current (Id).04-14-2011
20090020792ISOLATED TRI-GATE TRANSISTOR FABRICATED ON BULK SUBSTRATE - A method of forming an isolated tri-gate semiconductor body comprises patterning a bulk substrate to form a fin structure, depositing an insulating material around the fin structure, recessing the insulating material to expose a portion of the fin structure that will be used for the tri-gate semiconductor body, depositing a nitride cap over the exposed portion of the fin structure to protect the exposed portion of the fin structure, and carrying out a thermal oxidation process to oxidize an unprotected portion of the fin structure below the nitride cap. The oxidized portion of the fin isolates the semiconductor body that is being protected by the nitride cap. The nitride cap may then be removed. The thermal oxidation process may comprise annealing the substrate at a temperature between around 900° C. and around 1100° C. for a time duration between around 0.5 hours and around 3 hours.01-22-2009
20120305995PERFORMANCE ENHANCEMENT IN TRANSISTORS BY PROVIDING AN EMBEDDED STRAIN-INDUCING SEMICONDUCTOR MATERIAL ON THE BASIS OF A SEED LAYER - In sophisticated semiconductor devices, transistors may be formed on the basis of a high-k metal gate electrode structure provided in an early manufacturing phase, wherein an efficient strain-inducing mechanism may be implemented by using an embedded strain-inducing semiconductor alloy. In order to reduce the number of lattice defects and provide enhanced etch resistivity in a critical zone, i.e., in a zone in which a threshold voltage adjusting semiconductor alloy and the strain-inducing semiconductor material are positioned in close proximity, an efficient buffer material or seed material, such as a silicon material, is incorporated, which may be accomplished during the selective epitaxial growth process.12-06-2012
20120146109SEMICONDUCOR DEVICE - A semiconductor device such as a transistor with an excellent OFF characteristic even when a channel is short is provided. A periphery of a source is surrounded by an extension region and a halo region, a periphery of a drain is surrounded by an extension region and a halo region, and a substrate with low impurity concentration is not in contact with the source or the drain. Moreover, a high-work-function electrode is provided via a gate insulator, and electrons entering the vicinity of a surface of the substrate from the extension regions are eliminated. With such a structure, the impurity concentration of the channel region can be decreased even when the channel is short, and a favorable transistor characteristic can be obtained.06-14-2012
20130200441INTEGRATED CIRCUIT CONTACT STRUCTURE AND METHOD - An integrated circuit having a mis-alignment tolerant electrical contact is formed by providing a semiconductor containing substrate over which is a first FET gate laterally bounded by a first dielectric region, replacing an upper portion of the first FET gate with a second dielectric region, applying a mask having an opening extending partly over an adjacent source or drain contact region of the substrate and over a part of the second dielectric region above the first FET gate, forming an opening through the first dielectric region extending to the contact region and the part of the second dielectric region, and filling the opening with a conductor making electrical connection with the contact region but electrically insulated from the first FET gate by the second dielectric region. A further FET gate may also be provided having an electrical contact thereto formed separately from the source-drain contact.08-08-2013
20130200443Interface Engineering to Optimize Metal-III-V Contacts - Techniques for fabricating self-aligned contacts in III-V FET devices are provided. In one aspect, a method for fabricating a self-aligned contact to III-V materials includes the following steps. At least one metal is deposited on a surface of the III-V material. The at least one metal is reacted with an upper portion of the III-V material to form a metal-III-V alloy layer which is the self-aligned contact. An etch is used to remove any unreacted portions of the at least one metal. At least one impurity is implanted into the metal-III-V alloy layer. The at least one impurity implanted into the metal-III-V alloy layer is diffused to an interface between the metal-III-V alloy layer and the III-V material thereunder to reduce a contact resistance of the self-aligned contact.08-08-2013
20120037964ILLUMINATION APPARATUS - A point light source is converted into a plane light source having a satisfactory uniformity. The point light source is converted into a line light source by means of a linear light guiding plate, and further into the plane light source by means of a plane-like light guiding plate. Light from the point light source is reflected at a lamp reflector to be incident on at least two side surfaces of the plane-like light guiding plate.02-16-2012
20120037963SEMICONDUCTOR DEVICE WITH PROTECTIVE FILMS AND MANUFACTURING METHOD THEREOF - A semiconductor device includes a semiconductor substrate having a drain region, a source region and an impurity diffusion region; an oxide film formed on the impurity diffusion region; a first protective film including a SiN film as a principle component and being formed on the oxide film; and a second protective film containing carbon and being formed on the first protective film. A method of manufacturing the semiconductor device, includes doping an impurity into a semiconductor substrate, thereby forming a drain region, a source region and an impurity diffusion region; forming an oxide film on the impurity diffusion region; forming a first protective film including a SiN film as a principle component on the oxide film; and forming a second protective film containing carbon on the first protective film.02-16-2012
20120037962SEMICONDUCTOR STRUCTURE HAVING A CONTACT-LEVEL AIR GAP WITHIN THE INTERLAYER DIELECTRICS ABOVE A SEMICONDUCTOR DEVICE AND A METHOD OF FORMING THE SEMICONDUCTOR STRUCTURE USING A SELF-ASSEMBLY APPROACH - Disclosed are embodiments of a semiconductor structure having a contact-level air gap within the interlayer dielectrics above a semiconductor device in order to minimize parasitic capacitances (e.g., contact-to-contact capacitance, contact-to-diffusion region capacitance, gate-to-contact capacitance, gate-to-diffusion region capacitance, etc.). Specifically, the structure can comprise a semiconductor device on a substrate and at least three dielectric layers stacked above the semiconductor device. An air gap is positioned with the second dielectric layer aligned above the semiconductor device and extending vertically from the first dielectric layer to the third dielectric layer. Also disclosed are embodiments of a method of forming such a semiconductor structure using a self-assembly approach.02-16-2012
20080272412METHOD AND STRUCTURE TO REDUCE CONTACT RESISTANCE ON THIN SILICON-ON-INSULATOR DEVICE - A method (and system) of reducing contact resistance on a silicon-on-insulator device, including controlling a silicide depth in a source-drain region of the device.11-06-2008
20100038685ENHANCED DISLOCATION STRESS TRANSISTOR - A device is provided. The device includes a transistor formed on a semiconductor substrate, the transistor having a conduction channel. The device includes at least one edge dislocation formed adjacent to the conduction channel on the semiconductor substrate. The device also includes at least one free surface introduced above the conduction channel and the at least one edge dislocation.02-18-2010
20090072280PMOS TRANSISTOR WITH INCREASED EFFECTIVE CHANNEL LENGTH IN THE PERIPHERAL REGION AND METHOD OF MANUFACTURING THE SAME - In manufacturing a PMOS transistor, a semiconductor substrate having an active region and a field region is formed with a hard mask layer, which covers a center portion of the active region on the substrate in a lengthwise direction of a channel. The hard mask layer exposes the center portion of the active region in a widthwise direction of the channel and covers both edges of the substrate and the field region adjacent to the both edges. The substrate is etched to a predetermined depth using the hard mask layer as an etching barrier. The hard mask layer is then removed. A gate covering the center portion of the active region is formed on the lengthwise direction of the channel. Source and drain regions are formed at both edges of the gate.03-19-2009
20110316057WIRING BOARD, SEMICONDUCTOR DEVICE, AND MANUFACTURING METHODS THEREOF - It is an object to reduce defective conduction in a wiring board or a semiconductor device whose integration degree is increased. It is another object to manufacture a highly reliable wiring board or semiconductor device with high yield. In a wiring board or a semiconductor device having a multilayer wiring structure, a conductive layer having a curved surface is used in connection between conductive layers used for the wirings. The top of a conductive layer in a lower layer exposed by removal of an insulating layer therearound has a curved surface, so that coverage of the conductive layer in the lower layer with a conductive layer in an upper layer stacked thereover can be favorable. A conductive layer is etched using a resist mask having a curved surface, so that a conductive layer having a curved surface is formed.12-29-2011
20120153366Semiconductor Device Comprising Self-Aligned Contact Bars and Metal Lines With Increased Via Landing Regions - When forming metal lines of the metal zero level, a reduced bottom width and an increased top width may be achieved by using appropriate patterning regimes, for instance using a spacer structure after forming an upper trench portion with a top width, or forming the lower portion of the trenches and subsequently applying a further mask and etch regime in which the top width is implemented. In this manner, metal lines connecting to self-aligned contact bars may be provided so as to exhibit a bottom width of 20 nm and less, while the top width may allow reliable contact to any vias of the metallization system.06-21-2012
20110316056Semiconductor device and method of manufacturing the same - The present invention relates to a method of manufacturing a semiconductor device having a shared contact for connection between a source/drain region and a gate electrode. After formation of a gate electrode via a gate insulating film on a semiconductor substrate, a top surface of the substrate is covered with a cover film. After removal of the cover film from at least one of sidewall surface of the gate electrode and a part of the top surface of the substrate adjacent to the sidewall surface, a semiconductor layer is epitaxially grown on a top surface of an exposed substrate to electrically connect the substrate and the at least one sidewall surface of the gate electrode. Then, a source/drain region is formed in a top surface part of the substrate or the semiconductor layer using the gate electrode as a mask.12-29-2011
20120043593Semiconductor Device Structure and Method for Manufacturing the same - The present invention presents a method for manufacturing a semiconductor device structure as well as the semiconductor device structure. Said method comprises: providing a semiconductor substrate; forming a first insulating layer on the semiconductor substrate; forming a shallow trench isolation embedded in the first insulating layer and the semiconductor substrate; forming a channel region embedded in the semiconductor substrate; and forming a gate stack stripe on the channel region. Said method further comprises, before forming the channel region, performing a source/drain implantation on the semiconductor substrate. By means of forming the source/drain regions in a self-aligned manner before forming the channel region and the gate stack, said method achieves the advantageous effects of the replacement gate process without using a dummy gate, thereby simplifying the process and reducing the cost.02-23-2012
20120043594Micro-Electro-Mechanical Device And Manufacturing Method For The Same - It is an object of the present invention to provide a micro-electro-mechanical-device having a microstructure and a semiconductor element over one surface. In particular, it is an object of the present invention to provide a method for simplifying the process of forming the microstructure and the semiconductor element over one surface. A space in which the microstructure is moved, that is, a movable space for the microstructure is formed by procecssing an insulating layer which is formed in a process of forming the semiconductor element. The movable space can be formed by forming the insulating layer having a plurality of openings and making the openings face each other to be overlapped each other.02-23-2012
20110156110Field Effect Transistors Having Gate Electrode Silicide Layers with Reduced Surface Damage - Methods of forming integrated circuit devices include forming a field effect transistor having a gate electrode, a sacrificial spacer on a sidewall of the gate electrode and silicided source/drain regions. The sacrificial spacer is used as an implantation mask when forming highly doped portions of the source/drain regions. The sacrificial spacer is then removed from the sidewall of the gate electrode. A stress-inducing electrically insulating layer, which is configured to induce a net tensile stress (for NMOS transistors) or compressive stress (for PMOS transistors) in a channel region of the field effect transistor, is then formed on the sidewall of the gate electrode.06-30-2011
20110156109METHOD AND SYSTEM FOR MANIPULATING ORGANIC NANOSTRUCTURES - A method of manipulating an organic nanostructure is disclosed. The method comprises: contacting a liquid sample having the organic nanostructure therein with an arrangement of electrodes, and applying voltage to the arrangement of electrodes to manipulate and immobilize the organic nanostructure over the electrodes by electrokinetics.06-30-2011
20110156108SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - An insulating cover film is formed over at least a portion of a gate electrode in the direction of the channel width. A diffusion layer is formed to a portion of a substrate situating at a device forming region, thereby forming a source and a drain of a transistor. An insulating layer is formed over the device forming region, over the gate electrode, and over the insulating cover film. A contact is formed to the insulating layer and connected to the diffusion layer. A silicide layer is formed over the gate electrode. A side wall is formed higher than the gate electrode in a region in which the insulating cover film is formed. Then, the contact faces a region of the gate electrode in which the insulating cover film is formed.06-30-2011
20110156107Self-aligned contacts - A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.06-30-2011
20120043592SEMICONDUCTOR DEVICE AND METHOD FOR FORMING THE SAME - The present invention provides a semiconductor device. The semiconductor device comprises contact plugs that comprise a first contact plug formed by a first barrier layer arranged on the source and drain regions and a tungsten layer arranged on the first barrier layer; and second contact plugs comprising a second barrier layer arranged on both of the metal gate and the first contact plug and a conductive layer arranged on the second barrier layer. The conductivity of the conductive layer is higher than that of the tungsten layer. A method for forming the semiconductor device is also provided. The present invention provides the advantage of enhancing the reliability of the device when using the copper contact technique.02-23-2012
20120043591SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device includes a substrate, a semiconductor, a first surface passivation film including nitride, a second passivation film, a gate electrode, and a source electrode and a drain electrode. The semiconductor layer is provided on the substrate. The first surface passivation film including nitride is provided on the semiconductor layer and has at least two openings. The second surface passivation film covers an upper surface and a side surface of the first surface passivation film. The gate electrode is provided on a part of the second surface passivation film. The source electrode and the drain electrode are respectively provided on the two openings. In addition, the second surface passivation film includes a material of which melting point is higher than the melting points of the gate electrode, the source electrode, and the drain electrode.02-23-2012
20120056250DYNAMIC SCHOTTKY BARRIER MOSFET DEVICE AND METHOD OF MANUFACTURE - A device for regulating a flow of electric current and its manufacturing method are provided. The device includes metal-insulator-semiconductor source-drain contacts forming Schottky barrier or Schottky-like junctions to the semiconductor substrate. The device includes an interfacial layer between the semiconductor substrate and a metal source and/or drain electrode, thereby dynamically adjusting a Schottky barrier height by applying different bias conditions. The dynamic Schottky barrier modulation provides increased electric current for low drain bias conditions, reducing the sub-linear turn-on characteristic of Schottky barrier MOSFET devices and improving device performance.03-08-2012
20120056249INTERLAYER FOR ELECTRONIC DEVICES - Embodiments in accordance with the present invention provide for the use of polycycloolefins in electronic devices and more specifically to the use of such polycycloolefins as interlayers applied to fluoropolymer layers used in the fabrication of electronic devices, the electronic devices that encompass such polycycloolefin interlayers and processes for preparing such polycycloolefin interlayers and electronic devices.03-08-2012
20120061738Gate Stack Structure, Semiconductor Device and Method for Manufacturing the Same - A gate stack structure comprises an isolation dielectric layer formed on and embedded into a gate. A sidewall spacer covers opposite side faces of the isolation dielectric layer, and the isolation dielectric layer located on an active region is thicker than the isolation dielectric layer located on a connection region. A method for manufacturing the gate stack structure comprises removing part of the gate in thickness, the thickness of the removed part of the gate on the active region is greater than the thickness of the removed part of the gate on the connection region so as to expose opposite inner walls of the sidewall spacer; forming an isolation dielectric layer on the gate to cover the exposed inner walls. There is also provided a semiconductor device and a method for manufacturing the same. The methods can reduce the possibility of short-circuit occurring between the gate and the second contact hole and can be compatible with the dual-contact-hole process.03-15-2012
20120061736Transistor and Method for Forming the Same - The present invention relates to a stress-enhanced transistor and a method for forming the same. The method for forming the transistor according to the present invention comprises the steps of forming a mask layer on a semiconductor substrate on which a gate has been formed, so that the mask layer covers the gate and the semiconductor substrate; patterning the mask layer so as to expose at least a portion of each of a source region and a drain region; amorphorizing the exposed portions of the source region and the drain region; removing the mask layer; and annealing the semiconductor substrate so that a dislocation is formed in the exposed portion of each of the source region and the drain region.03-15-2012
20120007154TSV Formation Processes Using TSV-Last Approach - A device includes a semiconductor substrate having a front surface and a back surface opposite the front surface. An insulation region extends from the front surface into the semiconductor substrate. An inter-layer dielectric (ILD) is over the insulation region. A landing pad extends from a top surface of the ILD into the insulation region. A through-substrate via (TSV) extends from the back surface of the semiconductor substrate to the landing pad.01-12-2012
20120043590Linear-Cap Varactor Structures for High-Linearity Applications - A device includes a well region over a substrate, and a heavily doped well region over the well region, wherein the well region and the heavily doped well region are of a same conductivity type. A gate dielectric is formed on a top surface of the heavily doped well region. A gate electrode is formed over the gate dielectric. A source region and a drain region are formed on opposite sides of the heavily doped well region. The source region and the drain region have bottom surfaces contacting the well region, and wherein the source region and the drain region are of opposite conductivity types.02-23-2012
20120205729FIELD EFFECT TRANSISTOR WITH NARROW BANDGAP SOURCE AND DRAIN REGIONS AND METHOD OF FABRICATION - A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.08-16-2012
20120205727SEMICONDUCTOR DEVICE INCLUDING MULTIPLE METAL SEMICONDUCTOR ALLOY REGION AND A GATE STRUCTURE COVERED BY A CONTINUOUS ENCAPSULATING LAYER - A method of forming a semiconductor device is provided that in some embodiments encapsulates a gate silicide in a continuous encapsulating material. By encapsulating the gate silicide in the encapsulating material, the present disclosure substantially eliminates shorting between the gate structure and the interconnects to the source and drain regions of the semiconductor device.08-16-2012
20110095347VERTICAL DIODE USING SILICON FORMED BY SELECTIVE EPITAXIAL GROWTH - Some embodiments relate to an apparatus that exhibits vertical diode activity to occur between a semiconductive body and an epitaxial film that is disposed over a doping region of the semiconductive body. Some embodiments include an apparatus that causes both vertical and lateral diode activity. Some embodiments include a gated vertical diode for a finned semiconductor apparatus. Process embodiments include the formation of vertical-diode apparatus.04-28-2011
20110095346SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING SAME - There are disclosed TFTs that have excellent characteristics and can be fabricated with a high yield. The TFTs are fabricated, using an active layer crystallized by making use of nickel. Gate electrodes are comprising tantalum. Phosphorus is introduced into source/drain regions. Then, a heat treatment is performed to getter nickel element in the active layer and to drive it into the source/drain regions. At the same time, the source/drain regions can be annealed out. The gate electrodes of tantalum can withstand this heat treatment.04-28-2011
20110095343BI-LAYER nFET EMBEDDED STRESSOR ELEMENT AND INTEGRATION TO ENHANCE DRIVE CURRENT - A semiconductor structure including a bi-layer nFET embedded stressor element is disclosed. The bi-layer nFET embedded stressor element can be integrated into any CMOS process flow. The bi-layer nFET embedded stressor element includes an implant damaged free first layer of a first epitaxy semiconductor material having a lattice constant that is different from a lattice constant of a semiconductor substrate and imparts a tensile strain in a device channel of an nFET gate stack. Typically, and when the semiconductor is composed of silicon, the first layer of the bi-layer nFET embedded stressor element is composed of Si:C. The bi-layer nFET embedded stressor element further includes a second layer of a second epitaxy semiconductor material that has a lower resistance to dopant diffusion than the first epitaxy semiconductor material. Typically, and when the semiconductor is composed of silicon, the second layer of the bi-layer nFET embedded stressor element is composed of silicon. Only the second layer of the bi-layer nFET embedded stressor element includes the implanted source/drain regions.04-28-2011
20110095342Printed Material Constrained By Well Structures And Devices Including Same - A first patterned contact layer, for example a gate electrode, is formed over an insulative substrate. Insulating and functional layers are formed at least over the first patterned contact layer. A second patterned contact layer, for example source/drain electrodes, is formed over the functional layer. Insulative material is then selectively deposited over at least a portion of the second patterned contact layer to form first and second wall structures such that at least a portion of the second patterned contact layer is exposed, the first and second wall structures defining a well therebetween. Electrically conductive or semiconductive material is deposited within the well, for example by jet-printing, such that the first and second wall structures confine the conductive or semiconductive material and prevent spreading and electrical shorting to adjacent devices. The conductive or semiconductive material is in electrical contact with the exposed portion of the second patterned contact layer to form, e.g., an operative transistor.04-28-2011
20110095340Soft error reduction circuit and method - In some embodiments, complementary charge-collecting diffusions (transistor diffusions, e.g., drain or source areas) are disposed close to each other. In some embodiments, dummy (“off”) transistors are incorporated to bring complementary diffusions (diffusions of the same charge type and having complementary digital logic levels) closer to each other than otherwise might be possible and thus, to enhance common-mode charge collection for the complementary diffusion areas.04-28-2011
20110095345Methods of Fabricating Field Effect Transistors Having Protruded Active Regions - Provided are a field effect transistor, a method of manufacturing the same, and an electronic device including the field effect transistor. The field effect transistor may have a structure in which a double gate field effect transistor and a recess channel array transistor are formed in a single transistor in order to improve a short channel effect which occurs as field effect transistors become more highly integrated, a method of manufacturing the same, and an electronic device including the field effect transistor. The field effect transistor can exhibit stable device characteristics even when more highly integrated in such a manner that both the length and width of a channel increase and particularly the channel can be significantly long, and can be manufactured simply.04-28-2011
20110095341METHODS FOR PROTECTING GATE STACKS DURING FABRICATION OF SEMICONDUCTOR DEVICES AND SEMICONDUCTOR DEVICES FABRICATED FROM SUCH METHODS - Methods for protecting gate stacks during fabrication of semiconductor devices and semiconductor devices fabricated from such methods are provided. Methods for fabricating a semiconductor device include providing a semiconductor substrate having an active region and a shallow trench isolation (STI) region. Epitaxial layer is formed on the active region to define a lateral overhang portion in a divot at the active region/STI region interface. A gate stack is formed having a first gate stack-forming layer overlying the semiconductor substrate. First gate stack-forming layer includes a non-conformal layer of metal gate-forming material which is directionally deposited to form a thinned break portion just below the lateral overhang portion. After the step of forming the gate stack, a first portion of the non-conformal layer is in the gate stack and a second portion is exposed. The thinned break portion at least partially isolates the first and second portions during subsequent etch chemistries.04-28-2011
20110095344Method of Improving Minority Lifetime in Silicon Channel and Products Thereof - Performance of field effect transistors and other channel dependent devices formed on a monocrystalline substrate is improved by carrying out a high temperature anneal in a nitrogen releasing atmosphere while the substrate is coated by a sacrificial oxide coating containing easily diffusible atoms that can form negatively charged ions and can diffuse deep into the substrate. In one embodiment, the easily diffusible atoms comprise at least 5% by atomic concentration of chlorine atoms in the sacrificial oxide coating and the nitrogen releasing atmosphere includes NO. The high temperature anneal is carried out for less than 10 hours at a temperature less than 1100° C.04-28-2011
20110095339Semiconductor device and method for manufacturing the same - A semiconductor device has at least two main carbon-rich regions and two additional carbon-rich regions. The main carbon-rich regions are separately located in a substrate so that a channel region is located between them. The additional carbon-rich regions are respectively located underneath the main carbon-rich regions. The carbon concentrations is higher in the main carbon-rich regions and lower in the additional carbon-rich regions, and optionally, the absolute value of a gradient of the carbon concentration of the bottom portion of the main carbon-rich regions is higher than the absolute value of a gradient of the carbon concentration of the additional carbon-rich regions. Therefore, the leakage current induced by a lattice mismatch effect at the carbon-rich and the carbon-free interface can be minimized.04-28-2011
20090032851Method for Producing a Semiconductor Body Having a Recombination Zone, Semiconductor Component Having a Recombination Zone, and Method for Producing Such a Semiconductor Component - In a method for producing a semiconductor body, impurities which act as recombination centers in the semiconductor body and form a recombination zone are introduced into the semiconductor body during the process of producing the semiconductor body. In a semiconductor component, comprising a semiconductor body having a front surface and an opposite rear surface, and also a recombination zone formed by impurities between the front and rear surfaces, wherein the impurities act as recombination centres, the surface state density at the front and rear surfaces of the semiconductor body is just as high as the surface state density at a front and rear surface of an identical semiconductor body without a recombination zone.02-05-2009
20120012906Si-Ge-Si SEMICONDUCTOR STRUCTURE HAVING DOUBLE GRADED JUNCTIONS AND METHOD FOR FORMING THE SAME - A Si—Ge—Si semiconductor structure having double compositionally-graded hetero-structures is provided, comprising: a substrate; a buffer layer or an insulation layer formed on the substrate; a strained SiGe layer formed on the buffer layer or the insulation layer, wherein a Ge content in a central portion of the strained SiGe layer is higher than the Ge content in an upper surface or in a lower surface of the strained SiGe layer, and the Ge content presents a compositionally-graded distribution from the central portion to the upper surface and to the lower surface respectively. According to the present disclosure, a compositionally-graded hetero-structure replaces an abrupt hetero-structure so as to form a triangular hole carrier potential well, so that most of hole carriers may be distributed in the strained SiGe layer with high Ge content and a reduction of the carrier mobility caused by interface scattering may be avoided, thus further improving a performance of a device.01-19-2012
20120012904METAL-OXIDE SEMICONDUCTOR TRANSISTOR AND METHOD FOR FABRICATING THE SAME - A method for fabricating a metal-oxide semiconductor (MOS) transistor is disclosed. The method includes the steps of: providing a semiconductor substrate; forming a silicon layer on the semiconductor substrate; performing a first photo-etching process on the silicon layer for forming a gate pattern; forming an epitaxial layer in the semiconductor substrate adjacent to two sides of the gate pattern; and performing a second photo-etching process on the gate pattern to form a slot in the gate pattern while using the gate pattern to physically separate the gate pattern into two gates.01-19-2012
20120012903METHOD FOR MAKING A DISILICIDE - Methods for fabricating a semiconductor device are disclosed. A metal-rich silicide and/or a mono-silicide is formed on source/drain (S/D) regions. A millisecond anneal is provided to the metal-rich silicide and/or the mono-silicide to form a di-silicide with limited spikes at the interface between the silicide and substrate. The di-silicide has an additive which can lower the electron Schottky barrier height.01-19-2012
20120012905SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device is disclosed which includes a silicide substrate, a nitride layer, two STIs, and a strain nitride. The silicide substrate has two doping areas. The nitride layer is deposited on the silicide substrate. The silicide substrate and the nitride layer have a recess running through. The two doping areas are at two sides of the recess. The end of the recess has an etching space bigger than the recess. The top of the silicide substrate has a fin-shaped structure. The two STIs are at the two opposite sides of the silicide substrate (recess). The strain nitride is spacer-formed in the recess and attached to the side wall of the silicide substrate, nitride layer, two STIs. The two doping areas cover the strain nitride. As a result, the efficiency of semiconductor is improved, and the drive current is increased.01-19-2012
20120112252SEMICONDUCTOR STRUCTURE AND METHOD FOR MANUFACTURING THE SAME - The present invention provides a method for manufacturing a semiconductor structure, which lies in covering a first dielectric layer with a second dielectric layer, forming a first contact hole with a small inner diameter within the second dielectric layer first, then etching the first dielectric layer to form a second contact hole with a much great inner diameter, and finally filling a conductive material into the first contact hole and the second contact hole to form contact plugs. Accordingly, the present invention further provides a semiconductor structure favorable for reducing contact resistance.05-10-2012
20120112251Reduction of random telegraph signal (RTS) and 1/f noise in silicon MOS devices, circuits, and sensors - The effects of random telegraph noise signal (RTS) or equivalently l/f noise on MOS devices, circuits, and sensors is described. Techniques are disclosed for minimizing this RTS and low frequency noise by minimizing the number of ionized impurity atoms in the wafer, substrate, well, pillar, or fin behind the channel of the MOS transistors. This noise reduction serves to reduce the errors in devices, sensors, and analog integrated circuits and error rates in digital integrated circuits and memories.05-10-2012
20110049587Method of forming a germanium silicide layer, semiconductor device including the germanium silicide layer, and method of manufacturing the semiconductor device - Example embodiments relate to a method of forming a germanium (Ge) silicide layer, a semiconductor device including the Ge silicide layer, and a method of manufacturing the semiconductor device. A method of forming a Ge silicide layer according to example embodiments may include forming a metal layer including vanadium (V) on a silicon germanium (SiGe) layer. The metal layer may have a multiple-layer structure and may further include at least one of platinum (Pt) and nickel (Ni). The metal layer may be annealed to form the germanium silicide layer. The annealing may be performed using a laser spike annealing (LSA) method.03-03-2011
20110049586Device to Detect and Measure Static Electric Charge03-03-2011
20110049585MAINTAINING INTEGRITY OF A HIGH-K GATE STACK BY PASSIVATION USING AN OXYGEN PLASMA - In semiconductor devices, integrity of a titanium nitride material may be increased by exposing the material to an oxygen plasma after forming a thin silicon nitride-based material. The oxygen plasma may result in an additional passivation of any minute surface portions which may not be appropriately covered by the silicon nitride-based material. Consequently, efficient cleaning recipes, such as cleaning processes based on SPM, may be performed after the additional passivation without undue material loss of the titanium nitride material. In this manner, sophisticated high-k metal gate stacks may be formed with a very thin protective liner material on the basis of efficient cleaning processes without unduly contributing to a pronounced yield loss in an early manufacturing stage.03-03-2011
20110049584SEMICONDUCTOR DEVICE - According to one embodiment, a semiconductor device, may include a semiconductor substrate including a first semiconductor layer of a first conductivity type and a second semiconductor layer of a second conductivity type different from the first conductivity type, the first semiconductor having a resistance value in a range from 100 Ω·cm to 10000 Ω·cm, the second semiconductor layer having a resistance value in a range from 100 Ω·cm to 10000 Ω·cm, the second semiconductor layer provided on the first semiconductor layer, a first region being formed in the second semiconductor layer and including a first conductivity type of well region and a second conductivity type of well region, a first insulating layer formed on the second semiconductor layer; and a wiring layer located in a second region different from the first region and constituting a passive device insulated by the first insulating layer, wherein no well region is formed in the second semiconductor layer located in the second region.03-03-2011
20110049583Recessed contact for multi-gate FET optimizing series resistance - A transistor, which can be referred to as a multi-gate transistor or as a FinFET, includes a gate structure having a length, a width and a height. The transistor further includes at least one electrically conductive channel or fin between a source region and a drain region that passes through the width of the gate structure. The channel has a first height (h03-03-2011
20110049582ASYMMETRIC SOURCE AND DRAIN STRESSOR REGIONS - A method forms a structure has a substrate having at least one semiconductor channel region, a gate dielectric on the upper surface of the substrate over the semiconductor channel region, and a gate conductor on the gate dielectric. Asymmetric sidewall spacers are located on the sidewalls of the gate conductor and asymmetric source and drain regions are located within the substrate adjacent the semiconductor channel region. One source/drain region is positioned closer to the midpoint of the gate conductor than is the other source/drain region. The source and drain regions comprise a material that induces physical stress upon the semiconductor channel region.03-03-2011
20100019292Transistor having a metal nitride layer pattern, etchant and methods of forming the same - A transistor having a metal nitride layer pattern, etchant and methods of forming the same is provided. A gate insulating layer and/or a metal nitride layer may be formed on a semiconductor substrate. A mask layer may be formed on the metal nitride layer. Using the mask layer as an etching mask, an etching process may be performed on the metal nitride layer, forming the metal nitride layer pattern. An etchant, which may have an oxidizing agent, a chelate agent and/or a pH adjusting mixture, may perform the etching. The methods may reduce etching damage to a gate insulating layer under the metal nitride layer pattern during the formation of a transistor.01-28-2010
20100102363AIR GAP SPACER FORMATION - Miniaturized complex transistor devices are formed with reduced leakage and reduced miller capacitance. Embodiments include transistors having reduced capacitance between the gate electrode and source/drain contact, as by utilizing a low-K dielectric constant sidewall spacer material. An embodiment includes forming a gate electrode on a semiconductor substrate, forming a sidewall spacer on the side surfaces of the gate electrode, forming source/drain regions by ion implantation, forming an interlayer dielectric over the gate electrode, sidewall spacers, and substrate, and forming a source/drain contact through the interlayer dielectric. The sidewall spacers and interlayer dielectric are then removed. A dielectric material, such as a low-K dielectric material, is then deposited in the gap between the gate electrode and the source/drain contact so that an air gap is formed, thereby reducing the parasitic “miller” capacitance.04-29-2010
20090090939SELF-ASSEMBLED SIDEWALL SPACER - A semiconductor structure is provided that includes a spacer directly abutting a topographic edge of at least one patterned material layer. The spacer is a non-removable polymeric block component of a self-assembled block copolymer. A method of forming such a semiconductor structure including the inventive spacer is also provided that utilizes self-assembled block copolymer technology.04-09-2009
20120104475FIELD EFFECT TRANSISTORS (FETS) AND METHODS OF MANUFACTURE - An improved field effect transistors (FETs) and methods of manufacturing the field effect transistors (FETs) are provided. The method of manufacturing a zero capacitance random access memory cell (ZRAM) includes comprises forming a finFET on a substrate and enhancing a storage capacitance of the finFET. The enhancement can be by either adding a storage capacity to the finFET or altering a portion of the finFET after formation of a fin body of the finFET.05-03-2012
20120061737SEMICONDUCTOR DEVICE, METHOD OF FABRICATING THE SAME, AND PATTERNING MASK UTILIZIED BY THE METHOD - A semiconductor device. The device comprises an active region isolated by an isolation structure on a substrate. The device further comprises a gate electrode extending across the active area and overlying the substrate, a pair of source region and drain region, disposed on either side of the gate electrode on the substrate in the active area, and a gate dielectric layer disposed between the substrate and the gate electrode. The gate dielectric layer comprises a relatively-thicker high voltage (HV) dielectric portion and a relatively-thinner low voltage (LV) dielectric portion, wherein the HV dielectric portion occupies a first intersection among the drain region, the isolation structure, and the gate electrode, and a second intersection among the source region, the isolation structure, and the gate electrode.03-15-2012
20120153364OXIDE MATERIAL AND SEMICONDUCTOR DEVICE - An object is to provide a material suitably used for a semiconductor included in a transistor, a diode, or the like. Another object is to provide a semiconductor device including a transistor in which the condition of an electron state at an interface between an oxide semiconductor film and a gate insulating film in contact with the oxide semiconductor film is favorable. Further, another object is to manufacture a highly reliable semiconductor device by giving stable electric characteristics to a transistor in which an oxide semiconductor film is used for a channel. A semiconductor device is formed using an oxide material which includes crystal with c-axis alignment, which has a triangular or hexagonal atomic arrangement when seen from the direction of a surface or an interface and rotates around the c-axis.06-21-2012
20110068380SEMICONDUCTOR DEVICE WITH BULB-TYPE RECESSED CHANNEL AND METHOD FOR FABRICATING THE SAME - A method for fabricating a semiconductor device includes providing a substrate having a bulb-type recessed region, forming a gate insulating layer over the bulb-type recessed region and the substrate, and forming a gate conductive layer over the gate insulating layer. The gate conductive layer fills the bulb-type recessed region. The gate conductive layer includes two or more conductive layers and a discontinuous interface between the conductive layers.03-24-2011
20120153362SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A method comprising, introducing a dopant type into a semiconductor layer to define a well region of the semiconductor layer, the well region comprising a channel region, and introducing a dopant type into the well region to define a multiple implant region substantially coinciding with the well region but excluding the channel region.06-21-2012
20120153365SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device includes a first buried bit line (06-21-2012
20120153363SEMICONDUCTOR DEVICE WITH BURIED GATES AND FABRICATION METHOD THEREOF - A semiconductor device includes a substrate having a cell region and a peripheral region, a buried gate formed over the substrate of the cell region, a peripheral gate formed over the substrate of the peripheral region and comprising a conductive layer, an inter-layer dielectric layer that covers the substrate, and a peripheral bit line formed inside the inter-layer dielectric layer and contacting the conductive layer.06-21-2012
20100096673SEMICONDUCTOR DEVICE STRUCTURE HAVING ENHANCED PERFORMANCE FET DEVICE - A method for making a semiconductor device structure, includes: providing a substrate; forming on the substrate: a first layer below and second layers on a gate with spacers, source and drain regions adjacent to the gate, silicides on the gate and source and drain regions; disposing a stress layer over the structure resulting from the forming step; disposing an insulating layer over the stress layer; removing portions of the insulating layer to expose a top surface of the stress layer; removing the top surface and other portions of the stress layer and portions of the spacers to form a trench, and then disposing a suitable stress material into the trench.04-22-2010
20090140300ELECTRONIC TAG CHIP - In order to extend the communication distance of an electronic tag chip, it is required to reduce power consumption of the electronic tag chip. After having formed capacitors and diodes on an SOI (Silicon on Insulator), remove a silicon substrate of the SOI. It becomes possible to reduce the capacitors and diodes of the electronic tag chip in parasitic capacitance relative to the ground, which makes it possible to reduce the power consumption of the electronic tag chip, thereby enabling the electronic tag chip to increase in communication distance thereof.06-04-2009
20120126296INTEGRATED CIRCUITS AND FABRICATION METHODS THEREOF - A method of forming an integrated circuit includes forming a gate structure over a substrate. Portions of the substrate are removed to form recesses adjacent to the gate structure. A silicon-containing material structure is formed in each of the recesses. The silicon-containing material structure has a first region and a second region, the second region is closer to the gate structure than the first region, and the first region is thicker than the second region05-24-2012
20120126295BORDERLESS CONTACT FOR REPLACEMENT GATE EMPLOYING SELECTIVE DEPOSITION - A self-aligned gate cap dielectric can be employed to form a self-aligned contact to a diffusion region, while preventing electrical short with a gate conductor due to overlay variations. In one embodiment, an electroplatable or electrolessly platable metal is selectively deposited on conductive materials in a gate electrode, while the metal is not deposited on dielectric surfaces. The metal portion on top of the gate electrode is converted into a gate cap dielectric including the metal and oxygen. In another embodiment, a self-assembling monolayer is formed on dielectric surfaces, while exposing metallic top surfaces of a gate electrode. A gate cap dielectric including a dielectric oxide is formed on areas not covered by the self-assembling monolayer. The gate cap dielectric functions as an etch-stop structure during formation of a via hole, so that electrical shorting between a contact via structure formed therein and the gate electrode is avoided.05-24-2012
20110089474SEMICONDUCTOR DEVICE INCLUDING MISFET AND ITS MANUFACTURE METHOD - An active region made of Si or SiGe is formed in a surface part of a substrate. A gate electrode is disposed over the active region. A gate insulating film is disposed between the gate electrode and the substrate. A source and a drain are formed in the surface part of the substrate on sides of the gate electrode. A surface of the active region under the gate electrode includes a slope surface being upward from a border of the active region toward an inner side of the active region. The slope surface has a crystal plane equivalent to (04-21-2011
20120119269METHOD FOR PRODUCING ELECTRONIC DEVICE, ELECTRONIC DEVICE, SEMICONDUCTOR DEVICE, AND TRANSISTOR - A technique is provided which prevents an increase in the resistivity of a conductive wiring film. A conductive layer containing Ca in a content rate of 0.3 atom % or more is provided on the surfaces of each of conductive wiring films which are to be exposed to a gas containing a Si atom in a chemical structure at a high temperature. When a gate insulating layer or a protection film containing Si is formed on the surface of the conductive layer, the Si atoms do not diffuse into the conductive layer and a resistance value does not increase, even if the conductive layer is exposed to the raw material gas containing Si in a chemical structure . Further, a CuCaO layer can be formed as an adhesive layer for preventing Si diffusion from a glass substrate or a silicon semiconductor.05-17-2012
20120119268Mixed Junction Source/Drain Field-Effect-Transistor and Method of Making the Same - The present invention is related to microelectronic technologies, and discloses specifically a mixed junction source/drain field-effect-transistor and methods of making the same. The field-effect-transistor with mixed junction source/drain comprises a semiconductor substrate, a gate structure, sidewalls, and source and drain regions having mixed junction structures, which are combinations of Schottky and P-N junctions. Compared with Schottky junction field-effect-transistors, the mixed junction source/drain field-effect-transistor described in the present invention has the characteristics of relatively low source/drain leakage. At the same time, this field-effect-transistor has lower source/drain series resistances than that associated with P-N junction field-effect-transistors.05-17-2012
20120119266Stressor in Planar Field Effect Transistor Device - A field effect transistor device includes a gate stack portion disposed on a substrate, and a channel region in the substrate having a depth partially defined by the gate stack portion and a silicon region of the substrate, the silicon region having a sloped profile such that a distal regions of the channel region have greater depth than a medial region of the channel region.05-17-2012
20120119265SOURCE TIP OPTIMIZATION FOR HIGH VOLTAGE TRANSISTOR DEVICES - The present disclosure provides a method for fabricating a high-voltage semiconductor device. The method includes designating first, second, and third regions in a substrate. The first and second regions are regions where a source and a drain of the semiconductor device will be formed, respectively. The third region separates the first and second regions. The method further includes forming a slotted implant mask layer at least partially over the third region. The method also includes implanting dopants into the first, second, and third regions. The slotted implant mask layer protects portions of the third region therebelow during the implanting. The method further includes annealing the substrate in a manner to cause diffusion of the dopants in the third region.05-17-2012
20120119267SEMICONDUCTOR DEVICE PRODUCTION METHOD AND SEMICONDUCTOR DEVICE - A semiconductor device production method includes: forming a semiconductor region including a first region, a second region connecting with the first region and having a width smaller than that of the first region, and a third region connecting with the second region and having a width smaller than that of the second region; forming a gate electrode including a first part crossing the third region and a second part extending from the first part across the first region; forming a side wall insulation film on the gate electrode to cover part of the second region while exposing the remaining part of the second region; implanting a second conductivity type impurity into the first region and the remaining part of the second region; performing heat treatment; removing part of the side wall insulation film, and forming a silicide layer on the first region and the remaining part of the second region.05-17-2012
20120211810TRANSISTOR WITH EMBEDDED SI/GE MATERIAL HAVING ENHANCED ACROSS-SUBSTRATE UNIFORMITY - In sophisticated semiconductor devices, a strain-inducing semiconductor alloy may be positioned close to the channel region by forming cavities on the basis of a wet chemical etch process, which may have an anisotropic etch behavior with respect to different crystallographic orientations. In one embodiment, TMAH may be used which exhibits, in addition to the anisotropic etch behavior, a high etch selectivity with respect to silicon dioxide, thereby enabling extremely thin etch stop layers which additionally provide the possibility of further reducing the offset from the channel region while not unduly contributing to overall process variability.08-23-2012
20120211809SEMICONDUCTOR DEVICE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC APPLIANCE - Provided are a semiconductor device with less leakage current is reduced, a semiconductor device with both of high field effect mobility and low leakage current, an electronic appliance with low power consumption, and a manufacturing method of a semiconductor device in which leakage current can be reduced without an increase in the number of masks. The side surface of a semiconductor layer formed of a semiconductor film having high carrier mobility is not in contact with any of a source electrode and a drain electrode. Further, such a transistor structure is formed without an increase in the number of photomasks and can be applied to an electronic appliance.08-23-2012
20120211808FIN-TRANSISTOR FORMED ON A PATTERNED STI REGION BY LATE FIN ETCH - When forming sophisticated semiconductor devices, three-dimensional transistors in combination with planar transistors may be formed on the basis of a replacement gate approach and self-aligned contact elements by forming the semiconductor fins in an early manufacturing stage, i.e., upon forming shallow trench isolations, wherein the final electrically effective height of the semiconductor fins may be adjusted after the provision of self-aligned contact elements and during the replacement gate approach.08-23-2012
20100289068Thin Film Transistor Structure - A thin film transistor structure is provided. The thin film transistor structure includes a source and a drain. The corresponding opposite surfaces of the source and the drain are at least partially complementary and continuous convex-concave surfaces so that the charging ability of the thin film transistor would be increased due to an extending length of the continuous convex-concave surfaces.11-18-2010
20120126294WAFER FILL PATTERNS AND USES - A method of forming a semiconductor device having a substrate, an active region and an inactive region includes: forming a hardmask layer over the substrate; transferring a first pattern into the hardmask layer in the active region of the semiconductor device; forming one or more fills in the inactive region; forming a cut-away hole within, covering, or partially covering, the one or more fills to expose a portion of the hardmask layer, the exposed portion being within the one or more fills; and exposing the hardmask layer to an etchant to divide the first pattern into a second pattern including at least two separate elements.05-24-2012
20120126297SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device in which a metal silicide layer is formed by a salicide process is improved in reliability. By a salicide process according to a partial reaction method, metal silicide layers are formed over respective surfaces of gate electrodes, n05-24-2012
20120161210Embedding Metal Silicide Contact Regions Reliably Into Highly Doped Drain and Source Regions by a Stop Implantation - When forming metal silicide regions, such as nickel silicide regions, in sophisticated transistors requiring a shallow drain and source dopant profile, superior controllability may be achieved by incorporating a silicide stop layer. To this end, in some illustrative embodiments, a carbon species may be incorporated on the basis of an implantation process in order to significantly modify the metal diffusion during the silicidation process. Consequently, an increased thickness of the metal silicide may be provided, while not unduly increasing the probability of creating contact failures.06-28-2012
20120161212CONTINUOUS METAL SEMICONDUCTOR ALLOY VIA FOR INTERCONNECTS - A contact structure is disclosed in which a continuous metal semiconductor alloy is located within a via contained within a dielectric material. The continuous semiconductor metal alloy is in direct contact with an upper metal line of a first metal level located atop the continuous semiconductor metal alloy and at least a surface of each source and drain diffusion region located beneath the continuous metal semiconductor alloy. The continuous metal semiconductor alloy includes a lower portion that is contained within an upper surface of each source and drain region, and a vertical pillar portion extending upward from the lower portion.06-28-2012
20120161211SEMICONDUCTOR DEVICE - A semiconductor device includes an isolation pattern disposed on a substrate, the isolation pattern defining an active part, a gate pattern crossing the active part on the substrate, the gate pattern including a dielectric pattern and a first conductive pattern, and the dielectric pattern being between the active part and the first conductive pattern, a pair of doping regions in the active part adjacent to side walls of the gate pattern, the gate pattern being between the pair of doping regions, and a diffusion barrier element injection region disposed in an upper region of the active part.06-28-2012
20120161209ELECTRONIC INTERCONNECTS AND DEVICES WITH TOPOLOGICAL SURFACE STATES AND METHODS FOR FABRICATING SAME - An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.06-28-2012
20100207177METHOD FOR PRODUCING A COPPER CONTACT - A method for producing a contact through the pre-metal dielectric (PMD) layer of an integrated circuit, between the front end of line and the back end of line, and the device produced thereby are disclosed. The PMD layer includes oxygen. In one aspect, the method includes producing a hole in the PMD, depositing a conductive barrier layer at the bottom of the hole, depositing a CuMn alloy on the bottom and side walls of the hole, filling the remaining portion of the hole with Cu. The method further includes performing an anneal process to form a barrier on the side walls of the hole, wherein the barrier has an oxide including Mn. The method further includes performing a CMP process.08-19-2010
20100207176Metal oxide semiconductor devices having doped silicon-compromising capping layers and methods for fabricating the same - Methods are provided for forming a semiconductor device comprising a semiconductor substrate. In accordance with an exemplary embodiment, a method comprises the steps of forming a high-k dielectric layer overlying the semiconductor substrate, forming a metal-comprising gate layer overlying the high-k dielectric layer, forming a doped silicon-comprising capping layer overlying the metal-comprising gate layer, and depositing a silicon-comprising gate layer overlying the doped silicon-comprising capping layer.08-19-2010
20100207175SEMICONDUCTOR TRANSISTOR DEVICE HAVING AN ASYMMETRIC EMBEDDED STRESSOR CONFIGURATION, AND RELATED MANUFACTURING METHOD - A semiconductor transistor device is provided. The transistor device includes a layer of semiconductor material, a gate structure overlying the layer of semiconductor material, a source region in the layer of semiconductor material, and a drain region in the layer of semiconductor material. The source region has a stress-inducing semiconductor material located therein, while the drain region is free of any stress-inducing semiconductor material. This asymmetric arrangement of stress-inducing elements results in relatively high source-body leakage, and relatively low drain-body leakage, which is beneficial in analog circuit applications.08-19-2010
20120132967THROUGH SILICON VIA AND METHOD OF FABRICATING SAME - A through silicon via structure and a method of fabricating the through silicon via. The method includes: (a) forming a trench in a silicon substrate, the trench open to a top surface of the substrate; (b) forming a silicon dioxide layer on sidewalls of the trench, the silicon dioxide layer not filling the trench; (c) filling remaining space in the trench with polysilicon; after (c), (d) fabricating at least a portion of a CMOS device in the substrate; (e) removing the polysilicon from the trench, the dielectric layer remaining on the sidewalls of the trench; (f) re-filling the trench with an electrically conductive core; and after (f), (g) forming one or more wiring layers over the top surface of the substrate, a wire of a wiring level of the one or more wiring levels closet to the substrate contacting a top surface of the conductive core.05-31-2012
20120132966SEMICONDUCTOR STRUCTURES HAVING IMPROVED CONTACT RESISTANCE - Self-assembled polymer technology is used to form at least one ordered nanosized pattern within material that is present in a conductive contact region of a semiconductor structure. The material having the ordered, nanosized pattern is a conductive material of an interconnect structure or semiconductor source and drain diffusion regions of a field effect transistor. The presence of the ordered, nanosized pattern material within the contact region increases the overall area (i.e., interface area) for subsequent contact formation which, in turn, reduces the contact resistance of the structure. The reduction in contact resistance in turn improves the flow of current through the structure. In addition to the above, the inventive methods and structures do not affect the junction capacitance of the structure since the junction area remains unchanged.05-31-2012
20120313154MOS Transistor Having Combined-Source Structure With Low Power Consumption and Method for Fabricating the Same - The present invention discloses a MOS transistor having a combined-source structure with low power consumption, which relates to a field of field effect transistor logic devices and circuits in CMOS ultra-large-scaled integrated circuits. The MOS transistor includes a control gate electrode layer, a gate dielectric layer, a semiconductor substrate, a Schottky source region, a highly-doped source region and a highly-doped drain region. An end of the control gate extends to the highly-doped source region to form a T shape, wherein the extending region of the control gate is an extending gate and the remaining region of the control gate is a main gate. The active region covered by the extending gate is a channel region, and material thereof is the substrate material. A Schottky junction is formed between the Schottky source region and the channel under the extending gate. The combined-source structure according to the invention combines a Schottky barrier and a T-shaped gate, improves the performance of the device, and the fabrication method thereof is simple. Thus, a higher turn-on current, a lower leakage current, and a steeper subthreshold slope can be obtained, and the present application can be applied in the field of low power consumption and have a higher practical value.12-13-2012
20120313149SEMICONDUCTOR STRUCTURE AND METHOD FOR MANUFACTURING THE SAME - The present invention provides a semiconductor structure and a method for manufacturing the same. The method comprises the following steps: providing a semiconductor substrate, forming sequentially a gate dielectric layer, a metal gate, a CMP stop layer, and a poly silicon layer on the semiconductor substrate; etching the gate dielectric layer, the metal gate, the CMP stop layer and the poly silicon layer to form a gate stack; forming a first interlayer dielectric layer on the semiconductor substrate to cover the gate stack on the semiconductor substrate and the portions on both sides of the gate stack; performing a planarization process, such that the CMP stop layer is exposed and flushed with the upper surface of the first interlayer dielectric layer. Accordingly, the present invention further provides a semiconductor structure. Through adding the CMP stop layer, the present invention is able to effectively shorten the height of a metal gate, thus effectively reduces the capacitance between the metal gate and contact regions, and therefore optimizes the subsequent process for etching through holes.12-13-2012
20120313148SELF-ALIGNED TRENCH CONTACT AND LOCAL INTERCONNECT WITH REPLACEMENT GATE PROCESS - A semiconductor device fabrication process includes forming insulating mandrels over one or more replacement metal gates on a semiconductor substrate. The mandrels include a first insulating material. Each mandrel has approximately the same width as its underlying gate with each mandrel being at least as wide as its underlying gate. Mandrel spacers are formed around each insulating mandrel. The mandrel spacers include the first insulating material. Each mandrel spacer has a profile that slopes from being wider at the bottom to narrower at the top. A second insulating layer of the second insulating material is formed over the transistor. Trenches to the sources and drains of the gates are formed by removing the second insulating material from portions of the transistor between the mandrels. Trench contacts to the sources and drains of the gates are formed by depositing conductive material in the first trenches.12-13-2012
20090057731SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - In a MOS transistor, a structure of trenches or fins arranged in parallel to a gate length direction is formed in a stepwise manner along a gate width direction to thereby reduce a step height of each step. Even if the MOS transistor includes a deep trench or a high fin in order to increase driving performance per unit area, a uniform impurity concentration in a channel region, a source diffusion layer, and a drain diffusion layer can be made by an ion implantation method. Accordingly, there can be obtained a stable characteristic that variation in the characteristic due to a surface on which the channel is formed does not appear, and a lateral MOS transistor with high driving performance having a reduced on-resistance per unit area can be provided.03-05-2009
20090057730METHODS FOR FORMING SELF-ALIGNED BORDERLESS CONTACTS FOR STRAIN ENGINEERED LOGIC DEVICES AND STRUCTURE THEREOF - A method for forming a borderless contact for a semiconductor FET (Field Effect Transistor) device, the method comprising, forming a gate conductor stack on a substrate, forming spacers on the substrate, such that the spacers and the gate conductor stack partially define a volume above the gate conductor stack, wherein the spacers are sized to define the volume such that a stress liner layer deposited on the gate conductor stack substantially fills the volume, depositing a liner layer on the substrate, the spacers, and the gate conductor stack, depositing a dielectric layer on the liner layer, etching to form a contact hole in the dielectric layer, etching to form the contact hole in the liner layer, such that a portion of a source/drain diffusion area formed in the substrate is exposed and depositing contact metal in the contact hole.03-05-2009
20090057729SEMICONDUCTOR DEVICE AND METHODS FOR FABRICATING SAME - A semiconductor device is provided which includes a substrate including an inactive region and an active region, a gate electrode structure having portions overlying the active region, a compressive layer overlying the active region, and a tensile layer overlying the inactive region and located outside the active region. The active region has a lateral edge which defines a width of the active region, and a transverse edge which defines a length of the active region. The gate electrode structure includes: a common portion spaced apart from the active region; a plurality of gate electrode finger portions integral with the common portion, and a plurality of fillet portions integral with the common portion and the gate electrode finger portions. A portion of each gate electrode finger portion overlies the active region. The fillet portions are disposed between the common portion and the gate electrode finger portions, and do not overlie the active region. The compressive layer also overlies the gate electrode finger portions, and the tensile layer is disposed adjacent the transverse edge of the active region.03-05-2009
20120168833FORMATION OF FINFET GATE SPACER - Gate spacers are formed in FinFETS having a bottom portion of a first material extending to the height of the fins, and a top portion of a second material extending above the fins. An embodiment includes forming a fin structure on a substrate, the fin structure having a height and having a top surface and side surfaces, forming a gate substantially perpendicular to the fin structure over a portion of the top and side surfaces, for example over a center portion, forming a planarizing layer over the gate, the fin structure, and the substrate, removing the planarizing layer from the substrate, gate, and fin structure down to the height of the fin structure, and forming spacers on the fin structure and on the planarizing layer, adjacent the gate.07-05-2012
20120168834FIELD EFFECT TRANSISTOR (FET) AND METHOD OF FORMING THE FET WITHOUT DAMAGING THE WAFER SURFACE - Disclosed are a field effect transistor structure and a method of forming the structure. A gate stack is formed on the wafer above a designated channel region. Spacer material is deposited and anisotropically etched until just prior to exposing any horizontal surfaces of the wafer or gate stack, thereby leaving relatively thin horizontal portions of spacer material on the wafer surface and relatively thick vertical portions of spacer material on the gate sidewalls. The remaining spacer material is selectively and isotropically etched just until the horizontal portions of spacer material are completely removed, thereby leaving only the vertical portions of the spacer material on the gate sidewalls. This selective isotropic etch removes the horizontal portions of spacer material without damaging the wafer surface. Raised epitaxial source/drain regions can be formed on the undamaged wafer surface adjacent to the gate sidewall spacers in order to tailor source/drain resistance values.07-05-2012
20120168832ASYMMETRIC FIELD EFFECT TRANSISTOR STRUCTURE AND METHOD - Disclosed are embodiments of an asymmetric field effect transistor structure and a method of forming the structure in which both series resistance in the source region (R07-05-2012
20110186916SEMICONDUCTOR RESISTORS FORMED IN A SEMICONDUCTOR DEVICE COMPRISING METAL GATES BY REDUCING CONDUCTIVITY OF A METAL-CONTAINING CAP MATERIAL - In semiconductor devices comprising sophisticated high-k metal gate electrode structures, resistors may be formed on the basis of a semiconductor material by increasing the sheet resistance of a conductive metal-containing cap material on the basis of an implantation process. Consequently, any complex etch techniques for removing the conductive cap material may be avoided.08-04-2011
20120248511SEMICONDUCTOR STRUCTURE AND METHOD FOR SLIMMING SPACER - A semiconductor structure including a substrate and a gate structure disposed on the substrate is disclosed. The gate structure includes a gate dielectric layer disposed on the substrate, a gate material layer disposed on the gate dielectric layer and an outer spacer with a rectangular cross section. The top surface of the outer spacer is lower than the top surface of the gate material layer.10-04-2012
20120248513SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A space is provided under part of a semiconductor layer. Specifically, a structure in which an eaves portion (a projecting portion, an overhang portion) is formed in the semiconductor layer. The eaves portion is formed as follows: a stacked-layer structure in which a conductive layer, an insulating layer, and a semiconductor layer are stacked in this order is etched collectively to determine a pattern of a gate electrode; and a pattern of the semiconductor layer is formed while side-etching is performed.10-04-2012
20120248509STRUCTURE AND PROCESS FOR METAL FILL IN REPLACEMENT METAL GATE INTEGRATION - Processes for metal fill in replacement metal gate integration schemes and resultant devices are provided herein. The method includes forming a dummy gate on a semiconductor substrate. The dummy gate includes forming a metal layer between a first material and a second material. The method further includes partially removing the dummy gate to form an opening bounded by a spacer material. The method further includes forming a recess in the spacer material to widen a portion of the opening. The method further includes removing a remaining portion of the dummy gate through the opening to form a trench having the recess forming an upper portion thereof. The method further includes filling the trench and the recess with a replacement metal gate stack.10-04-2012
20120248510BACKSIDE BEVEL PROTECTION - The disclosure provides methods and structures for preventing exposing polysilicon layer and silicon substrate on the substrate backside to polysilicon etching chemistry during removal of the dummy polysilicon layer in replacement gate structures. A thermal deposition process or processes are used to deposit a dielectric layer for offset spacers and/or a contact etch stop layer (CESL) to cover the polysilicon layer on the substrate backside. Such mechanisms reduce or eliminate particles originated at bevel of substrate backside, due to complete removal of the polysilicon layer at the backside bevel and the resultant etching of silicon substrate.10-04-2012
20100052019SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - Provided are a semiconductor device and a fabricating method thereof. The semiconductor device includes a substrate having a trench that defines an active region, an isolation layer that buries the trench, a pro-oxidant region formed at an upper corner portion of the trench to enhance oxidation at the upper corner portion of the trench when a gate insulation layer is grown on the active region, and a gate conductive layer formed on the gate insulation layer.03-04-2010
20100052018CONTINUOUS METAL SEMICONDUCTOR ALLOY VIA FOR INTERCONNECTS - A contact structure is disclosed in which a continuous metal semiconductor alloy is located within a via contained within a dielectric material. The continuous semiconductor metal alloy is in direct contact with an upper metal line of a first metal level located atop the continuous semiconductor metal alloy and at least a surface of each source and drain diffusion region located beneath the continuous metal semiconductor alloy. The continuous metal semiconductor alloy can be derived from either a semiconductor nanowire or an epitaxial grown semiconductor material. The continuous metal semiconductor alloy includes a lower portion that is contained within an upper surface of each source and drain region, and a vertical pillar portion extending upward from the lower portion. The lower portion of the continuous metal semiconductor alloy and the vertical pillar portion are not separated by a material interface. Instead, the two portions of the continuous metal semiconductor alloy are of unitary construction, i.e., a single piece.03-04-2010
20120313150THIN FILM TRANSISTOR AND METHOD OF MANUFACTURING THE SAME, AND ELECTRONIC APPARATUS - A thin film transistor includes: an organic semiconductor layer which is formed from a metal-containing material containing at least one of a metallic element and a semi-metallic element capable of reacting with an etching gas; a source electrode and a drain electrode spaced apart from each other; and an organic conductive layer which is inserted between the organic semiconductor layer and the source and drain electrodes in the regions where the organic semiconductor layer overlaps with the source and drain electrodes and which is formed from a non-metal-containing material not containing at least one of a metallic element and a semi-metallic element capable of reacting with the etching gas.12-13-2012
20120313152SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A transistor which includes an oxide semiconductor and is capable of high-speed operation and a method of manufacturing the transistor. In addition, a highly reliable semiconductor device including the transistor and a method of manufacturing the semiconductor device. The semiconductor device includes an oxide semiconductor layer including a channel formation region, and a source and drain regions which are provided so that the channel formation region is interposed therebetween and have lower resistance than the channel formation region. The channel formation region and the source and drain regions each include a crystalline region.12-13-2012
20120175688Semiconductor Package with Reduced On-Resistance and Top Metal Spreading Resistance with Application to Power Transistor Packaging - Some exemplary embodiments of a semiconductor package including a semiconductor device having electrodes on opposite major surfaces connectable to a planar support surface without a bondwire and a control electrode disposed in a corner position for reducing top-metal spreading resistance and device on-resistance have been disclosed. One exemplary structure comprises a semiconductor device having a first major surface including a first electrode and a second major surface including a second electrode and a control electrode, wherein the control electrode is disposed in a corner of the second major surface, and wherein the first electrode, the second electrode, and the control electrode are electrically connectable to a planar support surface without a bondwire. The pads of the device may be arranged in a balanced grid to maintain device stability during integration. A minimum gap distance between die pads allows the placement of vias in the planar support surface.07-12-2012
20090095992SEMICONDUCTOR DEVICE INCLUDING MOS FIELD EFFECT TRANSISTOR AND METHOD FOR MANUFACTURING THE SEMICONDUCTOR DEVICE - Element isolation regions are formed in a semiconductor substrate of a first conductivity type. A gate insulator is formed on the semiconductor substrate between the element isolation regions. A gate electrode is formed on the gate insulator. Sidewall insulating films are formed on side surfaces of the gate electrode. Trenches are formed on the semiconductor substrate between the element isolation regions and the gate electrode. A first epitaxial semiconductor layer of a second conductivity type is formed by the epitaxial growth method in each of the trenches. The first epitaxial semiconductor layer has a facet. A silicide film is formed on the first epitaxial semiconductor layer. A semiconductor region of the second conductivity type is formed in the semiconductor substrate under the first epitaxial semiconductor layer.04-16-2009
20090095991METHOD OF FORMING STRAINED MOSFET DEVICES USING PHASE TRANSFORMABLE MATERIALS - A method of forming a strained metal oxide semiconductor field effect transistor (MOSFET) device includes forming a gate conductor and gate insulator layer over a semiconductor substrate; forming source and drain regions in the semiconductor substrate, thereby defining the MOSFET device; forming a phase transformable material layer over the MOSFET device, wherein the phase transformable layer is in a first phase upon initial formation thereof, and following the initial formation of the phase transformable material layer, converting the phase transformable layer from the first phase to a second phase, wherein the second phase results in the phase transformable layer applying a longitudinal stress on a channel of the MOSFET device.04-16-2009
20120313151SEMICONDUCTOR DEVICE INCLUDING CONTACT STRUCTURE, METHOD OF FABRICATING THE SAME, AND ELECTRONIC SYSTEM INCLUDING THE SAME - A semiconductor device includes a gate structure on a semiconductor substrate, an impurity region at a side of the gate structure and the impurity region is within the semiconductor substrate, an interlayer insulating layer covering the gate structure and the impurity region, a contact structure extending through the interlayer insulating layer and connected to the impurity region, and an insulating region. The contact structure includes a first contact structure that has a side surface surrounded by the interlayer insulating layer and a second contact structure that has a side surface surrounded by the impurity region. The insulating region is under the second contact structure.12-13-2012
20100270599TRANSISTOR STRUCTURE WITH HIGH RELIABILITY AND METHOD FOR MANUFACTURING THE SAME - A transistor structure with high reliability includes a substrate unit, a solid ozone boundary layer, a gate oxide layer and a gate electrode. In addition, the substrate unit has a substrate body, a source electrode exposed on a top surface of the substrate body, and a drain electrode exposed on the top surface of the substrate body and separated from the source electrode by a predetermined distance. The solid ozone boundary layer is gradually grown on the top surface of the substrate body by continually mixing gaseous ozone into deionized water under 40˜95□, and the solid ozone boundary layer is formed between the source electrode and the drain electrode and formed on the substrate body. The gate oxide layer is formed on a top surface of the solid ozone boundary layer. The gate electrode is formed on a top surface of the gate oxide layer.10-28-2010
20100270598METHOD FOR FORMING HIGHLY STRAINED SOURCE/DRAIN TRENCHES - A multi-step etching process produces trench openings in a silicon substrate that are immediately adjacent transistor structures formed over the substrate surface. The multi-step etching process is a Br-based etching operation with one step including nitrogen and a further step deficient of nitrogen. The etching process does not attack the transistor structure and forms an opening bounded by upper surfaces that extend downwardly from the substrate surface and are substantially vertical, and lower surfaces that bulge outwardly from the upper vertical sections and undercut the transistor structure. The aggressive undercut produces a desirable stress in the etched silicon surface. The openings are then filled with a suitable source/drain material and SSD transistors with desirable I10-28-2010
20120074472Power Semiconductor Device Having Gate Electrode Coupling Portions for Etchant Control - A general insulated gate power semiconductor active element with many gate electrodes arranged in parallel has a laminated structure including a barrier metal film and a thick aluminum electrode film formed over the gate electrodes via an interlayer insulating film. When the aluminum electrode film is embedded in between the gate electrodes in parallel, voids may be generated with the electrodes. Such voids allow the etchant to penetrate in wet etching, which may promote the etching up to a part of the electrode film in an active cell region which is to be left. Thus, an insulated gate power semiconductor device is provided to include gate electrodes protruding outward from the inside of the active cell region, and a gate electrode coupling portion for coupling the gate electrodes outside the active cell region. The gate electrode coupling portion is covered with a metal electrode covering the active cell region.03-29-2012
20120074471Transistor Structure for Improved Static Control During Formation of the Transistor - A method of forming a shadow mask vapor deposited transistor includes shadow mask vapor depositing a semiconductor segment. An electrically conductive drain contact is shadow mask vapor deposited on a first part of the semiconductor segment and a first insulator is shadow mask vapor deposited on the drain contact. An electrically conductive source contact is shadow mask vapor deposited on a second part of the semiconductor segment spaced from the drain contact and a second insulator is shadow mask vapor deposited on the source contact. A third insulator is shadow mask vapor deposited over at least part of each of the first and second insulators and the semiconductor segment between the drain contact and the source contact. An electrically conductive gate contact is shadow mask vapor deposited on the third insulator and in spaced relation to the semiconductor segment between the drain contact and the source contact.03-29-2012
20100006907SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - In a FET using a SiGe film as a channel region, dispersion of the Ge concentration in the SiGe film and dispersion of the film thickness of the SiGe film are suppressed.01-14-2010
20100244107REDUCING SILICIDE RESISTANCE IN SILICON/GERMANIUM-CONTAINING DRAIN/SOURCE REGIONS OF TRANSISTORS - In sophisticated P-channel transistors, a high germanium concentration may be used in a silicon/germanium alloy, wherein an additional semiconductor cap layer may provide enhanced process conditions during the formation of a metal silicide. For example, a silicon layer may be formed on the silicon/germanium alloy, possibly including a further strain-inducing atomic species other than germanium, in order to provide a high strain component while also providing superior conditions during the silicidation process.09-30-2010
20100244106Fabrication and structure of asymmetric field-effect transistors using L-shaped spacers - Fabrication of an asymmetric field-effect transistor (09-30-2010
20090065817DIELECTRIC SPACER REMOVAL - The present invention relates to semiconductor devices, and more particularly to a process and structure for removing a dielectric spacer selective to a surface of a semiconductor substrate with substantially no removal of the semiconductor substrate. The method of the present invention can be integrated into a conventional CMOS processing scheme or into a conventional BiCMOS processing scheme. The method includes forming a field effect transistor on a semiconductor substrate, the FET comprising a dielectric spacer and the gate structure, the dielectric spacer located adjacent a sidewall of the gate structure and over a source/drain region in the semiconductor substrate; depositing a first nitride layer over the FET; and removing the nitride layer and the dielectric spacer selective to the semiconductor substrate with substantially no removal of the semiconductor substrate.03-12-2009
20120313153SYSTEM AND METHOD OF PLATING CONDUCTIVE GATE CONTACTS ON METAL GATES FOR SELF-ALIGNED CONTACT INTERCONNECTIONS - According to one embodiment of the invention, the gate contact is formed by a selective deposition on the gate electrode. One acceptable technique for the selective deposition is by plating. Plating is one process by which a metal structure, such as a gate contact, may be formed directly on the gate electrode. The plating is carried out by immersing the semiconductor die in a plating solution with the gate electrode exposed. The gate contact is plated onto the gate electrode and thus is ensured of being fully aligned exactly to the gate electrode. After this, the appropriate dielectric layers are formed adjacent the gate contact and over the source and drain to ensure that the gate electrode is electrically isolated from other components of the transistor.12-13-2012
20120223372TWO-STEP SILICIDE FORMATION - An aspect of the invention includes a method for forming a semiconductor device with a two-step silicide formation. First, a silicide intermix layer is formed over a source/drain region and a portion of an adjacent extension region. Any spacers removed to accomplish this may be replaced. Dielectric material covers the silicide intermix layer over the source/drain region. A contact opening for a via is etched into the dielectric material. A second silicide contact is formed on the silicide intermix layer, or may be formed within the source/drain region as long as the second silicide contact still contacts the silicide intermix layer.09-06-2012
20120187460METHOD FOR FORMING METAL SEMICONDUCTOR ALLOYS IN CONTACT HOLES AND TRENCHES - A method of forming a semiconductor device is provided that includes forming a first metal semiconductor alloy on a semiconductor containing surface, forming a dielectric layer over the first metal semiconductor alloy, forming an opening in the dielectric layer to provide an exposed surface the first metal semiconductor alloy, and forming a second metal semiconductor alloy on the exposed surface of the first metal semiconductor alloy. In another embodiment, the method includes forming a gate structure on a channel region of a semiconductor substrate, forming a dielectric layer over at least a source region and a drain region, forming an opening in the dielectric layer to provide an exposed surface the semiconductor substrate, forming a first metal semiconductor alloy on the exposed surface of the semiconductor substrate, and forming a second metal semiconductor alloy on the first metal semiconductor alloy.07-26-2012
20120223373SEMICONDUCTOR DEVICE INCLUDING A CRYSTAL SEMICONDUCTOR LAYER, ITS FABRICATION AND ITS OPERATION - In one embodiment, a method of fabricating a semiconductor device having a crystalline semiconductor layer includes preparing a semiconductor substrate and forming a preliminary active pattern on the semiconductor substrate. The preliminary active pattern includes a barrier pattern and a non-single crystal semiconductor pattern. A sacrificial non-single crystal semiconductor layer covers the preliminary active pattern and the semiconductor substrate. By crystallizing the sacrificial non-single crystal semiconductor layer and the non-single crystal semiconductor pattern, using the semiconductor substrate as a seed layer, the sacrificial non-single crystal semiconductor layer and the non-single crystal semiconductor pattern are changed to a sacrificial crystalline semiconductor layer and a crystalline semiconductor pattern, respectively. The crystalline semiconductor pattern and the barrier pattern constitute an active pattern. The sacrificial crystalline semiconductor layer is removed.09-06-2012
20120256240METHOD FOR INCREASING PENETRATION DEPTH OF DRAIN AND SOURCE IMPLANTATION SPECIES FOR A GIVEN GATE HEIGHT - The thickness of drain and source areas may be reduced by a cavity etch used for refilling the cavities with an appropriate semiconductor material, wherein, prior to the epitaxial growth, an implantation process may be performed so as to allow the formation of deep drain and source areas without contributing to unwanted channel doping for a given critical gate height. In other cases, the effective ion blocking length of the gate electrode structure may be enhanced by performing a tilted implantation step for incorporating deep drain and source regions.10-11-2012
20120256239Ultra-Thin Power Transistor and Synchronous Buck Converter Having Customized Footprint - A packaged power transistor device (10-11-2012
20120187459SEMICONDUCTOR DEVICE INCLUDING AN EPITAXY REGION - A method is described which includes providing a substrate and forming a first spacer material layer abutting a gate structure on the substrate. A second spacer material layer is formed adjacent and abutting the gate structure and overlying the first spacer material layer. The first spacer material layer and the second spacer material layer are then etched concurrently to form first and second spacers, respectively. An epitaxy region is formed (e.g., grown) on the substrate which includes an interface with each of the first and second spacers. The second spacer may be subsequently removed and the first spacer remain on the device decreases the aspect ratio for an ILD gap fill. An example composition of the first spacer is SiCN.07-26-2012
20120228680FIELD EFFECT TRANSISTOR AND SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURING SAME - Current drive efficiency is deteriorated in the conventional FET. The FET 09-13-2012
20120228679METHOD FOR PROTECTING A GATE STRUCTURE DURING CONTACT FORMATION - Various methods for protecting a gate structure during contact formation are disclosed. An exemplary method includes: forming a gate structure over a substrate, wherein the gate structure includes a gate and the gate structure interposes a source region and a drain region disposed in the substrate; patterning a first etch stop layer such that the first etch stop layer is disposed on the source region and the drain region; patterning a second etch stop layer such that the second etch stop layer is disposed on the gate structure; and forming a source contact, a drain contact, and a gate contact, wherein the source contact and the drain contact extend through the first etch stop layer and the gate contact extends through the second etch stop layer, wherein the forming the source contact, the drain contact, and the gate contact includes simultaneously removing the first etch stop layer and the second etch stop layer to expose the gate, source region, and drain region.09-13-2012
20120228678SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - According to an embodiment of a semiconductor device and a method of manufacturing the same, buried gates are formed in a semiconductor substrate including a cell region and a peripheral region, with the cell region and the peripheral region formed to have a step therebetween. Next, a spacer is formed in a region between the cell region and the peripheral region to block an oxidation path between a gate oxide layer and another insulating layer. Embodiments may reduce damage to active regions and prevent IDD failure because a gate pattern is formed on a guard region provided at a periphery of the cell region.09-13-2012
20090001430ELIMINATE NOTCHING IN SI POST SI-RECESS RIE TO IMPROVE EMBEDDED DOPED AND INSTRINSIC SI EPITAZIAL PROCESS - A dielectric element, and method of manufacturing the same, is disclosed for a semiconductor structure which comprises a substrate having a gate formed on a top surface of the substrate. The substrate and gate define a gap in a region between the gate and the substrate. A specified amount of dielectric on the substrate, at least a portion of which is in the gap, forms the dielectric element which substantially prevents unwanted electrical connectivity between the gate and the substrate.01-01-2009
20110121370EMBEDDED STRESSOR FOR SEMICONDUCTOR STRUCTURES - A method of fabricating an embedded stressor within a semiconductor structure and a semiconductor structure including the embedded stressor includes forming forming a dummy gate stack over a substrate of stressor material, anistropically etching sidewall portions of the substrate subjacent to the dummy gate stack to form the embedded stressor having angled sidewall portions, forming conductive material onto the angled sidewall portions of the embedded stressor, removing the dummy gate stack, planarizing the conductive material, and forming a gate stack on the conductive material.05-26-2011
20080296638Semiconductor device and method of manufacturing the same - A semiconductor device includes an active pattern on a substrate, the active pattern including a protrusion with a lower surface on the substrate and an upper surface opposite the lower surface, a width of the protrusion gradually decreasing from the lower surface to the upper surface, the upper surface of the protrusion being sharp and defining a first active region of the active pattern along a first direction, isolation layer patterns on the substrate in recesses at both sides of the active pattern, the isolation layer patterns exposing the first active region, a gate structure on the first active region and on the isolation layer patterns, the gate structure extending along a second direction, the first and second directions being perpendicular to each other, and source/drain regions under the first active region at both sides of the gate structure.12-04-2008
20080296637SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device includes first gate structures, second gate structures, a first capping layer pattern, a second capping layer pattern, first spacers, second spacers, third spacers, and a substrate having first impurity regions and second impurity regions. The first gate structures are arranged on the substrate at a first pitch. The second gate structures are arranged on the substrate at a second pitch greater than the first pitch. The first capping layer pattern has segments extending along side faces of the first gate structures and segments extending along the substrate. The second capping layer pattern has segments extending along the second gate structures and segments extending along the substrate. The first spacers and the second spacers are stacked on the second capping layer pattern. The third spacers are formed on the first capping layer pattern.12-04-2008
20100327331SEMICONDUCTOR DEVICE - The present invention proposes a dummy metal fill structure which makes it possible to reduce variations in transistor characteristics as much as possible even if mask misalignment occurs, as well as to ensure the intended planarizing effect of the metal CMP process. The dummy metal fill formed above the gate electrode extends in the gate length direction with both ends thereof protruding from a region corresponding to the gate electrode. Even if a mask for forming a wiring layer is misaligned and the position of the dummy metal fill is misaligned from an intended position, the shape of the dummy metal fill within a region of the gate electrode is kept symmetric with respect to the center of the gate electrode.12-30-2010
20120319180LARGE DIMENSION DEVICE AND METHOD OF MANUFACTURING SAME IN GATE LAST PROCESS - An integrated circuit device and methods of manufacturing the same are disclosed. In an example, integrated circuit device includes a gate structure disposed over a substrate; a source region and a drain region disposed in the substrate, wherein the gate structure interposes the source region and the drain region; and at least one post feature embedded in the gate structure.12-20-2012
20120261728EMBEDDED STRESSOR FOR SEMICONDUCTOR STRUCTURES - A semiconductor structure includes a semiconductor substrate; a gate stack on the semiconductor substrate; a plurality of spacers disposed on laterally opposing sides of the gate stack; source and drain regions proximate to the spacers, and a channel region subjacent to the gate stack and disposed between the source and drain regions; and a stressor subjacent to the channel region, and embedded within the semiconductor substrate, the embedded stressor being formed of a triangular-shape.10-18-2012
20120261726DIVOT ENGINEERING FOR ENHANCED DEVICE PERFORMANCE - An integrated circuit device and method for manufacturing the same are disclosed. An exemplary device includes a semiconductor substrate having a substrate surface; a trench isolation structure disposed in the semiconductor substrate, the trench isolation structure having a trench isolation structure surface that is substantially planar to the substrate surface; and a gate feature disposed over the semiconductor substrate, wherein the gate feature includes a portion that extends from the substrate surface to a depth in the trench isolation structure, the portion being defined by a trench isolation structure sidewall and a semiconductor substrate sidewall, such that the portion tapers from a first width at the substrate surface to a second width at the depth, the first width being greater than the second width.10-18-2012
20120261727SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING LOCAL INTERCONNECT STRUCTURE THEREOF - A semiconductor device and a method for manufacturing a local interconnect structure for a semiconductor device is provided. The method includes forming removable sacrificial sidewall spacers between sidewall spacers and outer sidewall spacers on two sides of a gate on a semiconductor substrate, and forming contact through-holes at source/drain regions in the local interconnect structure between the sidewall spacer and the outer sidewall spacer on the same side of the gate immediately after removing the sacrificial sidewall spacers. Once the source/drain through-holes are filled with a conductive material to form contact vias, the height of the contact vias shall be same as the height of the gate. The contact through-holes, which establish the electrical connection between a subsequent first layer of metal wiring and the source/drain regions or the gate region at a lower level in the local interconnect structure, shall be made in the same depth.10-18-2012
20120261725Stabilized Metal Silicides in Silicon-Germanium Regions of Transistor Elements - Generally, the present disclosure is directed to methods of stabilizing metal silicide contact regions formed in a silicon-germanium active area of a semiconductor device, and devices comprising stabilized metal silicides. One illustrative method disclosed herein includes performing an activation anneal to activate dopants implanted in an active area of a semiconductor device, wherein the active area comprises germanium. Additionally, the method includes, among other things, performing an ion implantation process to implant ions into the active area after performing the activation anneal, forming a metal silicide contact region in the active area, and forming a conductive contact element to the metal silicide contact region.10-18-2012
20110037106SEMICONDUCTOR DEVICE AND METHOD OF PRODUCING THE SAME - A semiconductor device improves a Schottky-barrier field-effect transistor. In a semiconductor device including a gate electrode formed with interposition of a gate insulating film on a channel formed on a semiconductor substrate, and a Schottky source/drain formed within a top surface of the substrate to be positioned on both sides of the gate insulating film so that end portions of the Schottky source and the Schottky drain do not cover a lower end portion of the gate insulating film and so as to form Schottky junctions with the semiconductor substrate, a Schottky barrier height at an interface between the end portion of the Schottky source and the semiconductor substrate and a Schottky barrier height at an interface between the end portion of the Schottky drain and the semiconductor substrate are different from Schottky barrier heights at interfaces between portions except the end portions of the Schottky source/drain and the substrate.02-17-2011
20110037105SELF-ALIGNED SELECTIVE METAL CONTACT TO SOURCE/DRAIN DIFFUSION REGION - A transistor structure includes a semiconductor substrate with a first surface, a diffusion region at the first surface of the substrate, a sacrificial gate formed on the diffusion region, and insulating side walls formed adjacent to the sacrificial gate. A metal gate is formed by etching out the sacrificial gate and filling in the space between the insulating side walls with gate metals. Silicided source and drain contacts are formed over the diffusion region between the side walls of two adjacent aluminum gates. One or more oxide layers are formed over the substrate. Vias are formed in the oxide layers by plasma etching to expose the silicided source and drain contacts, which simultaneously oxidizes the aluminum gate metal. A first metal is selectively formed over the silicided contact by electroless deposition, but does not deposit on the oxidized aluminum gate.02-17-2011
20120299068SEMICONDUCTOR DEVICE AND METHOD OF PRODUCING THE SAME - It is an object to provide an SGT production method capable of obtaining a structure for reducing a resistance of a gate, a desired gate length, desired source and drain configurations and a desired diameter of a pillar-shaped semiconductor. The object is achieved by a semiconductor device production method which comprises the steps of: forming a pillar-shaped first-conductive-type semiconductor layer; forming a second-conductive-type semiconductor layer underneath the pillar-shaped first-conductive-type semiconductor layer; forming a gate dielectric film and a gate electrode around the pillar-shaped first-conductive-type semiconductor layer; forming a sidewall-shaped dielectric film on an upper region of a sidewall of the pillar-shaped first-conductive-type semiconductor layer and in contact with a top of the gate; forming a sidewall-shaped dielectric film on a sidewall of the gate; and forming a second-conductive-type semiconductor layer in an upper portion of the pillar-shaped first-conductive-type semiconductor layer and on the second-conductive-type semiconductor layer formed underneath the pillar-shaped first-conductive-type semiconductor layer.11-29-2012
20120319182SEMICONDUCTOR DEVICE PRODUCTION METHOD AND SEMICONDUCTOR DEVICE - A semiconductor device production method includes: forming in a silicon substrate first and second region of first and second conductivity type in contact with each other; forming a gate electrode above the first and the second region; forming an insulation film covering part of the gate electrode and part of the second region; forming a source region and a drain region of the second conductivity type; forming interlayer insulation film covering the gate electrode and the insulation film; and forming in the interlayer insulation film first, second and third contact hole reaching the source region, the drain region, and the gate electrode, respectively, and at least one additional hole reaching the insulation film, and forming a conductive film in the first, the second, and the third contact hole and the additional hole to form first, second and third electrically conductive via and electrically conductive member.12-20-2012
20120319179METAL GATE AND FABRICATION METHOD THEREOF - A metal gate includes a substrate, a gate dielectric layer, a work function metal layer, an aluminum nitride layer and a stop layer. The gate dielectric layer is located on the substrate. The work function metal layer is located on the gate dielectric layer. The aluminum nitride layer is located on the work function metal layer. The stop layer is located on the aluminum nitride layer.12-20-2012
20120319184METHODS AND DEVICES FOR SHIELDING A SIGNAL LINE OVER AN ACTIVE REGION - A multi-path transistor includes an active region including a channel region and an impurity region. A gate is dielectrically separated from the channel region. A signal line is dielectrically separated from the impurity region. A conductive shield is disposed between, and dielectrically separated from, the signal line and the channel region. In some multi-path transistors, the channel region includes an extension-channel region under the conductive shield and the multi-path transistor includes different conduction paths, at least one of the different conduction paths being in the extension-channel region to conduct substantially independent of a voltage on the signal line. In other multi-path transistors, the conductive shield is operably coupled to the impurity region and the multi-path transistor includes different conduction paths, at least one of the different conduction paths being under the conductive shield to conduct substantially independent of a voltage on the signal line.12-20-2012
20120319183SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - One object of the present invention is to provide a structure of a transistor including an oxide semiconductor in a channel formation region in which the threshold voltage of electric characteristics of the transistor can be positive, which is a so-called normally-off switching element, and a manufacturing method thereof. A second oxide semiconductor layer which has greater electron affinity and a smaller energy gap than a first oxide semiconductor layer is formed over the first oxide semiconductor layer. Further, a third oxide semiconductor layer is formed to cover side surfaces and a top surface of the second oxide semiconductor layer, that is, the third oxide semiconductor layer covers the second oxide semiconductor layer.12-20-2012
20120319181SEMICONDUCTOR STRUCTURE AND METHOD FOR MANUFACTURING THE SAME - The present invention provides a semiconductor structure, which comprises a substrate, a semiconductor base, a cavity, a gate stack, sidewall spacers, source/drain regions and a contact layer; wherein, the gate stack is located on the semiconductor base, the sidewall spacers are located on sidewalls of the gate stack, the source/drain regions are embedded within the semiconductor base and located on both sides of the gate stack, the cavity is embedded within the substrate, and the semiconductor base is suspended over the cavity, the thickness in the middle portion of the semiconductor base is greater than the thicknesses at both ends of the semiconductor base in a direction along the gate length, and both ends of the semiconductor base are connected with the substrate in a direction along the gate width; the contact layer covers exposed surfaces of the source/drain regions. Accordingly, the present invention further provides a method for manufacturing a semiconductor structure, which is favorable for reducing the contact resistance at the source/drain regions, enhancing the device performance, lowering the cost and simplifying the manufacturing process.12-20-2012
20110227136SPACER PROTECTION AND ELECTRICAL CONNECTION FOR ARRAY DEVICE - The present disclosure provides a method of forming an electrical device. The method may begin with forming a gate structure on a substrate, in which a spacer is present in direct contact with a sidewall of the gate structure. A source region and a drain region is formed in the substrate. A metal semiconductor alloy is formed on the gate structure, an outer sidewall of the spacer and one of the source region and the drain region. An interlevel dielectric layer is formed over the metal semiconductor alloy. A via is formed through the interlevel dielectric stopping on the metal semiconductor alloy. An interconnect is formed to the metal semiconductor alloy in the via. The present disclosure also includes the structure produced by the method described above.09-22-2011
20090230439Strain Bars in Stressed Layers of MOS Devices - A semiconductor structure includes an active region; a gate strip overlying the active region; and a metal-oxide-semiconductor (MOS) device. A portion of the gate strip forms a gate of the MOS device. A portion of the active region forms a source/drain region of the MOS device. The semiconductor structure further includes a stressor region over the MOS device; and a stressor-free region inside the stressor region and outside the region over the active region.09-17-2009
20120080729FIELD EFFECT TRANSISTOR - A lateral field-effect transistor capable of improving switching speed and reducing operationally defective products is provided. A gate wiring has a base, a plurality of fingers protruding from the base, and a connection connecting tips of adjacent fingers. The finger of the gate wiring is arranged between the finger of a source wiring and the finger of a drain wiring. The base of the gate wiring is arranged between the base of the source wiring and the fingers of the drain wiring and intersects with the fingers of the source wiring, with an insulating film interposed between the base of the gate wiring and the fingers.04-05-2012
20120280293STRUCTURES AND METHODS FOR REDUCING DOPANT OUT-DIFFUSION FROM IMPLANT REGIONS IN POWER DEVICES - In accordance with an embodiment, a method of forming a semiconductor structure can include forming a source region of a first conductivity type in a well region of a second conductivity type within a semiconductor region, and forming a first diffusion barrier region disposed between the source region and the well region. The method can include forming a heavy body region of the second conductivity type in the well region and forming a second diffusion bather region having a portion on a side of the heavy body region with a thickness different than a thickness of a portion on a bottom portion of the heavy body region. The method can also include forming a gate electrode, and forming a dielectric insulating the gate electrode from the semiconductor region.11-08-2012
20120280292SEMICONDUCTOR DEVICES WITH SCREENING COATING TO INHIBIT DOPANT DEACTIVATION - A semiconductor device and a method for fabricating the semiconductor device. The device includes: a doped semiconductor having a source region, a drain region, a channel between the source and drain regions, and an extension region between the channel and each of the source and drain regions; a gate formed on the channel; and a screening coating on each of the extension regions. The screening coating includes: (i) an insulating layer that has a dielectric constant that is no greater than about half that of the extension regions and is formed directly on the extension regions, and (ii) a screening layer on the insulating layer, where the screening layer screens the dopant ionization potential in the extension regions to inhibit dopant deactivation.11-08-2012
20120280290LOCAL INTERCONNECT STRUCTURE SELF-ALIGNED TO GATE STRUCTURE - A common cut mask is employed to define a gate pattern and a local interconnect pattern so that local interconnect structures and gate structures are formed with zero overlay variation relative to one another. A local interconnect structure may be laterally spaced from a gate structure in a first horizontal direction, and contact another gate structure in a second horizontal direction that is different from the first horizontal direction. Further, a gate structure may be formed to be collinear with a local interconnect structure that adjoins the gate structure. The local interconnect structures and the gate structures are formed by a common damascene processing step so that the top surfaces of the gate structures and the local interconnect structures are coplanar with each other.11-08-2012
20120280294METHOD FOR DEPINNING THE FERMI LEVEL OF A SEMICONDUCTOR AT AN ELECTRICAL JUNCTION AND DEVICES INCORPORATING SUCH JUNCTIONS - An electrical device in which an interface layer comprising arsenic is disposed between and in contact with a conductor and a semiconductor. In some cases, the interface layer may be a monolayer of arsenic.11-08-2012
20120280288INVERSION THICKNESS REDUCTION IN HIGH-K GATE STACKS FORMED BY REPLACEMENT GATE PROCESSES - A method of forming a transistor device includes forming an interfacial layer on a semiconductor substrate, corresponding to a region between formed doped source and drain regions in the substrate; forming a high dielectric constant (high-k) layer on the interfacial layer, the high-k layer having a dielectric constant greater than about 7.5; forming a doped metal layer on the high-k layer; performing a thermal process so as to cause the doped metal layer to scavenge oxygen atoms diffused from the interfacial layer such that a final thickness of the interfacial layer is less than about 5 angstroms (Å); and forming a metal gate material over the high-k dielectric layer.11-08-2012
20120280291SEMICONDUCTOR DEVICE INCLUDING GATE OPENINGS - According to example embodiments, a semiconductor device includes a substrate, a device isolation layer over the substrate that defines an active region of the substrate, a gate electrode crossing over the active region in between a source region and a drain region of the active region. The gate electrode defines at least one gate opening. The at least one gate opening may expose a portion of a boundary between the active region and the device isolation layer.11-08-2012
20120280287Integrated Circuit Layouts with Power Rails under Bottom Metal Layer - A circuit includes a semiconductor substrate; a bottom metal layer over the semiconductor substrate, wherein no additional metal layer is between the semiconductor substrate and the bottom metal layer; and a cell including a plug-level power rail under the bottom metal layer.11-08-2012
20120280289Method of Increasing the Germanium Concentration in a Silicon-Germanium Layer and Semiconductor Device Comprising Same - Disclosed herein is a method of forming a semiconductor device. In one example, the method comprises forming layer of silicon germanium on a P-active region of a semiconducting substrate wherein the layer of silicon germanium has a first concentration of germanium, and performing an oxidation process on the layer of silicon germanium to increase a concentration of germanium in at least a portion of the layer of silicon germanium to a second concentration that is greater than the first concentration of germanium.11-08-2012
20110284936SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - A semiconductor device and a method of fabricating a semiconductor device. The semiconductor device includes an interlayer insulation layer pattern, a metal wire pattern exposed by a passage formed by a via hole formed in the interlayer insulation layer pattern to input and output an electrical signal, and a plated layer pattern directly contacting the metal wire pattern and filling the via hole. The method includes forming an interlayer insulation layer having a metal wire pattern to input and output an electrical signal formed therein, forming a via hole to define a passage that extends through the interlayer insulation layer until at least a part of the metal wire pattern is exposed, and forming a plated layer pattern to fill the via hole and to directly contact the metal wire pattern by using the metal wire pattern exposed through the via hole as a seed metal layer.11-24-2011
20110284932BODY CONTACT STRUCTURES AND METHODS OF MANUFACTURING THE SAME - A body contact structure which reduce parasitic capacitance and improves body resistance of a device and methods of manufacture. The method includes forming a gate insulator material and gate electrode material on a substrate. The method further includes patterning the gate insulator material and the gate electrode material to form a gate structure having a shape with a first portion isolated from a second portion. The method further includes forming source and drain regions on sides of the first portion and a body contact at a side and under an area of the second portion, and forming an interlevel dielectric within a space that isolates the first portion from the second portion of the gate structure, and over the gate structure, source and drain regions and the body contact.11-24-2011
20120139017WIRELESS CHIP - The invention provides a wireless chip which can secure the safety of consumers while being small in size, favorable in communication property, and inexpensive, and the invention also provides an application thereof. Further, the invention provides a wireless chip which can be recycled after being used for managing the manufacture, circulation, and retail. A wireless chip includes a layer including a semiconductor element, and an antenna. The antenna includes a first conductive layer, a second conductive layer, and a dielectric layer sandwiched between the first conductive layer and the second conductive layer, and has a spherical shape, an ovoid shape, an oval spherical shape like a go stone, an oval spherical shape like a rugby ball, or a disc shape, or has a cylindrical shape or a polygonal prism shape in which an outer edge portion thereof has a curved surface.06-07-2012
20130020617Nickel Alloy Target Including a Secondary Metal - A target includes nickel and a secondary metal. The secondary metal has a volume percentage between about 1 percent and about 10 percent. The secondary metal has a density between about 5,000 kg/m01-24-2013
20130020619METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A method for manufacturing a semiconductor device is disclosed, which reduces a step difference between a peripheral region and a cell region. In the semiconductor device, a metal contact of the peripheral region is configured in a multi-layered structure. Prior to forming a bit line and a storage node contact in the cell region, a contact and a line are formed in the peripheral region, such that a step difference between the cell region and the peripheral region is reduced, resulting in a reduction in parasitic capacitance between lines.01-24-2013
20130020618SEMICONDUCTOR DEVICE, FORMATION METHOD THEREOF, AND PACKAGE STRUCTURE - A semiconductor device, a formation method thereof, and a package structure are provided. The semiconductor device comprises: a semiconductor substrate in which a metal-oxide-semiconductor field-effect transistor (MOSFET) is formed; a dielectric layer, provided on the semiconductor substrate and covering the MOSFET, wherein a plurality of interconnection structures are formed in the dielectric layer; and at least one heat dissipation path, embedded in the dielectric layer between the interconnection structures, for liquid or gas to circulate in the heat dissipation path, wherein openings of the heat dissipation path are exposed on the surface of the dielectric layer. The present invention can improve heat dissipation efficiency, and prevent chips from overheating.01-24-2013
20120326216DEVICES AND METHODS TO OPTIMIZE MATERIALS AND PROPERTIES FOR REPLACEMENT METAL GATE STRUCTURES - Devices and methods for device fabrication include forming a gate structure with a sacrificial material. Silicided regions are formed on source/drain regions adjacent to the gate structure or formed at the bottom of trench contacts within source/drain areas. The source/drain regions or the silicided regions are processed to build resistance to subsequent thermal processing and adjust Schottky barrier height and thus reduce contact resistance. Metal contacts are formed in contact with the silicided regions. The sacrificial material is removed and replaced with a replacement conductor.12-27-2012
20120326215METHOD FOR FABRICATION OF III-NITRIDE DEVICE AND THE III-NITRIDE DEVICE THEREOF - A III-nitride device is provided comprising a semiconductor substrate; a stack of active layers on the substrate, each layer comprising a III-nitride material; a gate, a source and a drain contact on the stack, wherein a gate, a source and a drain region of the substrate are projections of respectively the gate, the source and the drain contact in the substrate; and a trench in the substrate extending from a backside of the substrate (side opposite to the one in contact with the stack of active layers) to an underlayer of the stack of active layers in contact with the substrate, the trench completely surrounding the drain region, being positioned in between an edge of the gate region towards the drain and an edge of the drain region towards the gate and having a width such that the drain region of the substrate is substantially made of the semiconductor material.12-27-2012
20120326214SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A semiconductor device includes: a semiconductor substrate including an active region defined by an isolation layer; a gate line defining a bit line contact region in the active region and extending in one direction; a dielectric layer covering the semiconductor substrate and the gate line formed in the semiconductor substrate; a bit line contact hole formed in the dielectric layer and exposing the bit line contact region; and a bit line contact spaced apart from a sidewall of the bit line contact hole and formed in the bit line contact hole.12-27-2012
20120286338CONTROL OF FLATBAND VOLTAGES AND THRESHOLD VOLTAGES IN HIGH-K METAL GATE STACKS AND STRUCTURES FOR CMOS DEVICES - A high-k metal gate stack and structures for CMOS devices and a method for forming the devices. The gate stack includes a high-k dielectric having a high dielectric constant greater than approximately 3.9, a germanium (Ge) material layer interfacing with the high-k dielectric, and a conductive electrode layer disposed above the high-k dielectric or the Ge material layer. The gate stack optimizes a shift of the flatband voltage or the threshold voltage to obtain high performance in p-FET devices.11-15-2012
20120326217SEMICONDUCTOR DEVICE INCLUDING MULTIPLE METAL SEMICONDUCTOR ALLOY REGION AND A GATE STRUCTURE COVERED BY A CONTINUOUS ENCAPSULATING LAYER - A method of forming a semiconductor device is provided that in some embodiments encapsulates a gate silicide in a continuous encapsulating material. By encapsulating the gate silicide in the encapsulating material, the present disclosure substantially eliminates shorting between the gate structure and the interconnects to the source and drain regions of the semiconductor device.12-27-2012
20100213518Impurity Doped UV Protection Layer - An ultra-violet (UV) protection layer is formed over a semiconductor workpiece before depositing a UV curable dielectric layer. The UV protection layer prevents UV light from reaching and damaging underlying material layers and electrical devices. The UV protection layer comprises a layer of silicon doped with an impurity, wherein the impurity comprises O, C, H, N, or combinations thereof. The UV protection layer may comprise SiOC:H, SiON, SiN, SiCO:H, combinations thereof, or multiple layers thereof, as examples.08-26-2010
20090108307Coaxial Transistor Structure - The present invention discloses a coaxial transistor formed on a substrate, particularly a coaxial metal-oxide-semiconductor field-effect transistor (CMOSFET). The chips or substrates of the CMOSFETs can be stacked up and connected via through-holes to form a coaxial complementary metal-oxide-semiconductor field-effect transistor (CCMOSFET), which is both full-symmetric and full-complementarily, has a higher integration and is free of the latch-up problem.04-30-2009
20090261391Complementary Metal Oxide Semiconductor Integrated Circuit Using Raised Source Drain and Replacement Metal Gate - A complementary metal oxide semiconductor integrated circuit may be formed with a PMOS device formed using a replacement metal gate and a raised source drain. The raised source drain may be formed of epitaxially deposited silicon germanium material that is doped p-type. The replacement metal gate process results in a metal gate electrode and may involve the removal of a nitride etch stop layer.10-22-2009
20100187578STRESS ENHANCED TRANSISTOR DEVICES AND METHODS OF MAKING - Stress enhanced transistor devices and methods of fabricating the same are disclosed. In one embodiment, a transistor device comprises: a gate conductor spaced above a semiconductor substrate by a gate dielectric, wherein the semiconductor substrate comprises a channel region underneath the gate conductor and recessed regions on opposite sides of the channel region, wherein the channel region comprises undercut areas under the gate conductor; a stressed material embedded in the undercut areas of the channel region under the gate conductor; and epitaxially grown source and drain regions disposed in the recessed regions of the semiconductor substrate laterally adjacent to the stressed material.07-29-2010
20130009222TRANSISTORS WITH IMMERSED CONTACTS - Embodiments of a semiconductor structure include a first current electrode region, a second current electrode region, and a channel region. The channel region is located between the first current electrode region and the second current electrode region, and the channel region is located in a fin structure of the semiconductor structure. A carrier transport in the channel region is generally in a horizontal direction between the first current electrode region and the second current electrode region. A contact extends into the first current electrode region and is electrically coupled to the first current electrode region.01-10-2013
20130009223PATTERNING METHOD, METHOD OF MANUFACTURING ORGANIC FIELD EFFECT TRANSISTOR, AND METHOD OF MANUFACTURING FLEXIBLE PRINTED CIRCUIT BOARD - In the condition where a nozzle for applying a coating liquid is disposed on the lower side of a substrate and a substrate surface controlled in wettability is faced down, the nozzle and the substrate are moved relative to each other, whereby the coating liquid is applied to a desired region of the substrate, and then the coating liquid is dried, to obtain a pattern included a dried coating layer.01-10-2013
20130009216Semiconductor Device With a Dislocation Structure and Method of Forming the Same - A semiconductor device with bi-layer dislocation and method of fabricating the semiconductor device is disclosed. The exemplary semiconductor device and method for fabricating the semiconductor device enhance carrier mobility. The method includes providing a substrate having a gate stack. The method further includes performing a first pre-amorphous implantation process on the substrate and forming a first stress film over the substrate. The method also includes performing a first annealing process on the substrate and the first stress film. The method further includes performing a second pre-amorphous implantation process on the annealed substrate, forming a second stress film over the substrate and performing a second annealing process on the substrate and the second stress film.01-10-2013
20130015511SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD OF SEMICONDUCTOR DEVICEAANM MIYATA; ToshitakaAACI KanagawaAACO JPAAGP MIYATA; Toshitaka Kanagawa JPAANM AOKI; NobutoshiAACI KanagawaAACO JPAAGP AOKI; Nobutoshi Kanagawa JP - According to one embodiment, a semiconductor device includes a fin-type semiconductor layer formed on a semiconductor substrate, a source layer connected to one end of the fin-type semiconductor layer, a drain layer connected to the other end of the fin-type semiconductor layer, and a gate electrode that includes a first sub electrode that is arranged on the source layer side of the fin-type semiconductor layer to extend toward the drain layer side on the base side of the fin-type semiconductor layer and has a first work function and a second sub electrode that is arranged on the drain layer side of the fin-type semiconductor layer and has a second work function different from the first work function.01-17-2013
20130015509LOW RESISTANCE SOURCE AND DRAIN EXTENSIONS FOR ETSOIAANM Haran; Balasubramanian S.AACI WatervlietAAST NYAACO USAAGP Haran; Balasubramanian S. Watervliet NY USAANM Jagannathan; HemanthAACI GuilderlandAAST NYAACO USAAGP Jagannathan; Hemanth Guilderland NY USAANM Kanakasabapathy; Sivananda K.AACI NiskayunaAAST NYAACO USAAGP Kanakasabapathy; Sivananda K. Niskayuna NY USAANM Mehta; SanjayAACI NiskayunaAAST NYAACO USAAGP Mehta; Sanjay Niskayuna NY US - A gate dielectric is patterned after formation of a first gate spacer by anisotropic etch of a conformal dielectric layer to minimize overetching into a semiconductor layer. In one embodiment, selective epitaxy is performed to sequentially form raised epitaxial semiconductor portions, a disposable gate spacer, and raised source and drain regions. The disposable gate spacer is removed and ion implantation is performed into exposed portions of the raised epitaxial semiconductor portions to form source and drain extension regions. In another embodiment, ion implantation for source and drain extension formation is performed through the conformal dielectric layer prior to an anisotropic etch that forms the first gate spacer. The presence of the raised epitaxial semiconductor portions or the conformation dielectric layer prevents complete amorphization of the semiconductor material in the source and drain extension regions, thereby enabling regrowth of crystalline source and drain extension regions.01-17-2013
20130015510Transistor, Semiconductor Device, and Method for Manufacturing the SameAANM Yan; JiangAACI NewburghAAST NYAACO USAAGP Yan; Jiang Newburgh NY USAANM Zhao; LichuanAACI BeijingAACO CNAAGP Zhao; Lichuan Beijing CN - The invention provides a transistor, a semiconductor device and a method for manufacturing the same. The method for manufacturing a transistor comprises: defining an active area on a semiconductor substrate, forming a dummy gate stack on the active area, primary spacers surrounding said dummy gate stack, and an insulating layer surrounding said primary spacers, and forming source/drain regions embedded in said active area; removing the dummy gate in said dummy gate stack to form a first recessed portion surrounded by the primary spacers; filling Cu simultaneously in said first recessed portion and in the source/drain contact holes penetrating said insulating layer to form a gate and source/drain contacts. By filling the gate and the source/drain contact holes with the metal Cu simultaneously in the Gate Last structure, the gate serial resistance and the source/drain contact holes resistance in the Gate Last process are decreased. Besides, the effect of metal filling is improved in small scale, and the process complexity and difficulty is efficiently decreased.01-17-2013
20130015512LOW RESISTANCE SOURCE AND DRAIN EXTENSIONS FOR ETSOI - A gate dielectric is patterned after formation of a first gate spacer by anisotropic etch of a conformal dielectric layer to minimize overetching into a semiconductor layer. In one embodiment, selective epitaxy is performed to sequentially form raised epitaxial semiconductor portions, a disposable gate spacer, and raised source and drain regions. The disposable gate spacer is removed and ion implantation is performed into exposed portions of the raised epitaxial semiconductor portions to form source and drain extension regions. In another embodiment, ion implantation for source and drain extension formation is performed through the conformal dielectric layer prior to an anisotropic etch that forms the first gate spacer. The presence of the raised epitaxial semiconductor portions or the conformation dielectric layer prevents complete amorphization of the semiconductor material in the source and drain extension regions, thereby enabling regrowth of crystalline source and drain extension regions.01-17-2013
20120146106SEMICONDUCTOR DEVICES HAVING THROUGH-CONTACTS AND RELATED FABRICATION METHODS - Apparatus for semiconductor device structures and related fabrication methods are provided. One method for fabricating a semiconductor device structure involves forming a layer of dielectric material overlying a doped region formed in a semiconductor substrate adjacent to a gate structure and forming a conductive contact in the layer of dielectric material. The conductive contact overlies and electrically connects to the doped region. The method continues by forming a second layer of dielectric material overlying the conductive contact, forming a voided region in the second layer overlying the conductive contact, forming a third layer of dielectric material overlying the voided region, and forming another voided region in the third layer overlying at least a portion of the voided region in the second layer. The method continues by forming a conductive material that fills both voided regions to contact the conductive contact.06-14-2012
20110147815SEMICONDUCTOR DEVICE AND PRODUCTION METHOD THEREOF - Disclosed is a semiconductor device wherein device characteristics are improved by applying a strong stress to a channel region. The semiconductor device includes a semiconductor substrate, a gate insulating film formed over a first plane of the semiconductor substrate, a gate electrode formed over the gate insulating film, a gate sidewall insulating film formed over the sidewall of the gate electrode, source/drain diffusion layer regions into which impurities are implanted, the source/drain diffusion layer regions being adjacent to a channel region formed in the semiconductor substrate below the gate electrode, and a stress applying film formed over the source/drain diffusion layer regions except over the upper part of the gate electrode; and recesses or protrusions are formed in the region where the source/drain diffusion layer regions are formed over the first plane of the semiconductor substrate.06-23-2011
20130020616SILICIDED DEVICE WITH SHALLOW IMPURITY REGIONS AT INTERFACE BETWEEN SILICIDE AND STRESSED LINER - A method of forming a semiconductor device includes forming a silicide contact region of a field effect transistor (FET); forming a shallow impurity region in a top surface of the silicide contact region; and forming a stressed liner over the FET such that the shallow impurity region is located at an interface between the silicide contact region and the stressed liner, wherein the shallow impurity region comprises one or more impurities, and is configured to hinder diffusion of silicon within the silicide contact region and prevent morphological degradation of the silicide contact region.01-24-2013
20130168743STRAINED TRANSISTOR STRUCTURE - A strain enhanced transistor is provided having a strain inducing layer overlying a gate electrode. The gate electrode has sloped sidewalls over the channel region of the transistor.07-04-2013
20120241824SPACER STRUCTURE WHEREIN CARBON-CONTAINING OXIDE FILM FORMED WITHIN - A spacer structure contains a carbon-containing oxide film positioned on a gate sidewall and a nitride film covering the carbon-containing oxide film. The carbon-containing oxide film has low etch rate so that the spacer structure can have a good profile during etching the carbon-containing oxide film.09-27-2012
20120241823POWER SEMICONDUCTOR DEVICE - A power semiconductor device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer provided thereon, mutually separated columnar third semiconductor layers of a second conductivity type extending within the second semiconductor layer, island-like fourth semiconductor layers of the second conductivity type provided on the third semiconductor layers, fifth semiconductor layers of the first conductivity type, sixth semiconductor layers of the second conductivity type, a gate electrode, a first electrode, and a second electrode. The fifth semiconductor layers are selectively provided on the fourth semiconductor layers. The sixth semiconductor layer electrically connects two adjacent fourth semiconductor layers. The first electrode is in electrical connection with the first semiconductor. The second electrode is in electrical connection with the fourth semiconductor layers and the fifth semiconductor layers via the openings in the gate electrode.09-27-2012
20080251819SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device may include a semiconductor substrate, a diffusion layer provided over the semiconductor substrate, source and drain diffusion regions provided in upper regions of the diffusion layer, a gate insulating film provided over the source and drain diffusion regions and the diffusion layer, a gate electrode provided on the gate insulating film and positioned over the diffusion layer, a passivation film provided over the gate insulating film and the gate electrode, an insulating film that covers the passivation film, and contact plugs that penetrate the insulating film, the passivation film, and the gate insulating film, so that the contact plugs reach the source and drain diffusion regions. The contact plugs are positioned near side walls of the gate electrode. Fluorine is implanted to the passivation film. Fluorine is diffused to a silicon-insulator interface between the gate insulating film and the diffusion layer under the gate electrode.10-16-2008
20080237660METHOD TO DEPOSIT SILICON FILM ON A SUBSTRATE - A semiconductor device and a method to fabricate a semiconductor device on a silicon substrate are illustrated. The semiconductor may comprise an amorphous silicon film, in the source/drain region of a semiconductor, having low amount of hydrogen and high concentration of carbon and phosphorous, which enhances performance of the semiconductor device.10-02-2008
20080230816SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A method of manufacturing a semiconductor device has forming a first silicon film over the first insulating film, forming a second silicon film over the first silicon film, a first etching the second silicon film in a depth, which the first silicon film is not exposed, in first condition, a second etching a remaining portion of the second silicon film and the first silicon film in a depth, which the first insulating film is not exposed, in second condition which gives a higher vertical etching component ratio than the first condition; and a third etching a remaining portion of the first silicon film in third condition which an etching rate for the first silicon film is larger than an etching rate for the first insulating film as compared to the second condition, wherein an impurity concentration of a first conductivity type of the first silicon film is higher than an impurity concentration of first conductivity type of the second silicon film.09-25-2008
20080230815Mitigation of gate to contact capacitance in CMOS flow - Sidewall spacers that are primarily oxide, instead of nitride, are formed adjacent to a gate stack of a CMOS transistor. Individual sidewall spacers are situated between a conductive gate electrode of the gate stack and a conductive contact of the transistor. As such, a capacitance can develop between the gate electrode and the contact, depending on the dielectric constant of the interposed sidewall spacer. Accordingly, forming sidewall spacers out of oxide, which has a lower dielectric constant than nitride, mitigates capacitance that can otherwise develop between these features. Such capacitance is undesirable, at least, because it can inhibit transistor switching speeds. Accordingly, fashioning sidewall spacers as described herein can mitigate yield loss by reducing the number of devices that have unsatisfactory switching speeds and/or other undesirable performance characteristics.09-25-2008
20080230814Methods for fabricating a semiconductor device - A method for fabricating a semiconductor device comprises providing a silicon-containing substrate with first, second, and third regions. First, second, and third gate stacks respectively overlie a portion of the silicon-containing substrate in the first, second, and third regions. A spacer is formed on opposing sidewalls of each of the first, second, and third gate stacks, the spacer overlying a portion of the silicon-containing substrate in the first, second, and third regions, respectively. A source/drain region is formed in a portion of the silicon-containing substrate in the first, second, and third regions, with the source/drain region adjacent to the first, second, and third gate stacks, respectively. The first, second, and third gate stacks have first, second, and third gate dielectric layers of various thicknesses and at least one thereof with a relatively thin thickness is treated by NH09-25-2008
20130168744Semiconductor Device Having a Metal Gate and Fabricating Method Thereof - The present invention provides a method of forming a semiconductor device having a metal gate. A substrate is provided and a gate dielectric and a work function metal layer are formed thereon, wherein the work function metal layer is on the gate dielectric layer. Then, a top barrier layer is formed on the work function metal layer. The step of forming the top barrier layer includes increasing a concentration of a boundary protection material in the top barrier layer. Lastly, a metal layer is formed on the top barrier layer. The present invention further provides a semiconductor device having a metal gate.07-04-2013
20130168745NONVOLATILE MEMORY DEVICE AND METHOD FOR FABRICATING THE SAME - A nonvolatile memory device includes a gate structure in which a plurality of interlayer dielectric layers and a plurality of gate electrodes are alternately stacked; a pass gate electrode lying under the gate structure; a sub channel hole defined in the pass gate electrode; a pair of main channel holes defined through the gate structure and communicating with the sub channel hole; a channel layer formed on inner walls of the pair of main channel holes and the sub channel hole; and a metallic substance layer contacting the channel layer in the sub channel hole.07-04-2013
20130168746SEMICONDUCTOR DEVICE AND RELATED MANUFACTURING METHOD - A semiconductor device manufacturing method includes providing a mask on a semiconductor member. The method further includes providing a dummy element to cover a portion of the mask that overlaps a first portion of the semiconductor member and to cover a second portion of the semiconductor member. The method further includes removing a third portion of the semiconductor member, which has not been covered by the mask or the dummy element. The method further includes providing a silicon compound that contacts the first portion of the semiconductor member. The method further includes removing the dummy element to expose and to remove the second portion of the semiconductor member. The method further includes forming a gate structure that overlaps the first portion of the semiconductor member. The first portion of the semiconductor member is used as a channel region and is supported by the silicon compound.07-04-2013
20130168747Semiconductor Device and Method for Manufacturing A Semiconductor Device - The present invention discloses a method for manufacturing a semiconductor device. According to the method provided by the present disclosure, a dummy gate is formed on a substrate, removing the dummy gate to form an opening having side walls and a bottom gate, a dielectric material is formed on at least a portion of the sidewalls of the opening and the bottom surface of the opening, and a pre-treatment is performed to a portion of the dielectric material layer on the sidewalls of the opening, and thus the properties of the dielectric material is changed, and then the pre-treated dielectric material on the sidewalls of the opening is removed by a selective process. The semiconductor device manufactured by using the method of the present disclosure is capable of effectively reducing parasitic capacitance.07-04-2013
20130140612FIELD-EFFECT TRANSISTOR HAVING BACK GATE AND METHOD OF FABRICATING THE SAME - A back-bias region is disposed on a substrate. A buried insulating layer covers the substrate and the back-bias region. A body is formed on the buried insulating layer and partially overlaps the back-bias region. A drain is in contact with the body. A gate electrode covers top and lateral surfaces of the body.06-06-2013
20080224185SEMICONDUCTOR DEVICE HAVING A METAL CARBIDE GATE WITH AN ELECTROPOSITIVE ELEMENT AND A METHOD OF MAKING THE SAME - A semiconductor device structure is formed over a semiconductor substrate and has a gate dielectric over the semiconductor substrate and a gate over the gate dielectric. The gate, at an interface with the gate dielectric, comprises a transition metal, carbon, and an electropositive element. The transition metal comprises one of group consisting of tantalum, titanium, hafnium, zirconium, molybdenum, and tungsten. The electropositive element comprises one of a group consisting of a Group IIA element, a Group IIIB element, and lanthanide series element.09-18-2008
20080224184Transistor Manufacture - A method of making a source-gated transistor is described, in which a gate (09-18-2008
20130175586SEMICONDUCTOR DEVICE - A method for fabricating a semiconductor device includes: forming a fin-type semiconductor region on a substrate; and introducing an n-type impurity into at least a side of the fin-type semiconductor region by a plasma doping process, thereby forming an n-type impurity region in the side of the fin-type semiconductor region. In the introducing the n-type impurity, when a source power in the plasma doping process is denoted by a character Y [W], the supply of a gas containing the n-type impurity per unit time and per unit volume is set greater than or equal to 5.1×1007-11-2013
20130175583SEMICONDUCTOR DEVICES HAVING DIELECTRIC CAPS ON CONTACTS AND RELATED FABRICATION METHODS - Fabrication methods for semiconductor device structures are provided. One method for fabricating a semiconductor device structure involves forming a first layer of a first dielectric material overlying a doped region formed in a semiconductor substrate, forming a first conductive contact electrically connected to the doped region within the first layer, forming a dielectric cap on the first conductive contact, forming a second layer of a second dielectric material overlying the dielectric cap and a gate structure overlying the semiconductor substrate, and forming a second conductive contact electrically connected to the gate structure within the second layer.07-11-2013
20130175584FinFETs and the Methods for Forming the Same - A method includes providing a plurality of semiconductor fins parallel to each other, and includes two edge fins and a center fin between the two edge fins. A middle portion of each of the two edge fins is etched, and the center fin is not etched. A gate dielectric is formed on a top surface and sidewalls of the center fin. A gate electrode is formed over the gate dielectric. The end portions of the two edge fins and end portions of the center fin are recessed. An epitaxy is performed to form an epitaxy region, wherein an epitaxy material grown from spaces left by the end portions of the two edge fins are merged with an epitaxy material grown from a space left by the end portions of the center fin to form the epitaxy region. A source/drain region is formed in the epitaxy region.07-11-2013
20130175585Methods of Forming Faceted Stress-Inducing Stressors Proximate the Gate Structure of a Transistor - Disclosed herein are various methods of forming faceted stress-inducing stressors proximate the gate structure of a transistor. In one example, a method includes forming a first recess in an active region of a semiconducting substrate, forming a first semiconductor material in the first recess and forming a gate structure above the first semiconductor material. In this example, the method includes the additional steps of performing a crystalline orientation-dependent etching process on the first semiconductor material to define a plurality of second recesses proximate the gate structure, wherein each of the second recesses has a faceted edge, and forming a first region of stress-inducing semiconductor material in each of the second recesses, wherein each of the first regions of stress-inducing semiconductor material has a faceted edge that engages a corresponding faceted edge in one of the second recesses.07-11-2013
20130175587SELF-ALIGNED CONTACT FOR REPLACEMENT GATE DEVICES - A conductive top surface of a replacement gate stack is recessed relative to a top surface of a planarization dielectric layer by at least one etch. A dielectric capping layer is deposited over the planarization dielectric layer and the top surface of the replacement gate stack so that the top surface of a portion of the dielectric capping layer over the replacement gate stack is vertically recessed relative to another portion of the dielectric layer above the planarization dielectric layer. The vertical offset of the dielectric capping layer can be employed in conjunction with selective via etch processes to form a self-aligned contact structure.07-11-2013
20090159937Simple Scatterometry Structure for Si Recess Etch Control - Dimensions of structures in integrated circuits are shrinking with each new fabrication technology generation. Maintaining control of profiles of structures in transistors and interconnects is becoming more important to sustaining profitable integrated circuit production facilities. Measuring profiles of structures with many elements in integrated circuits, such as MOS transistor gates with recessed regions for Si—Ge epitaxial layers, is not cost effective for the commonly used metrology techniques: SEM, TEM and AFM. Scatterometry is technically unfeasible due to the number of elements and optical constants. The instant invention is a simplified scatterometry structure which reproduces the profiles of a structure to be profiled in a simpler structure that is compatible with conventional scatterometric techniques. A method of fabricating a transistor and an integrated circuit using the inventive simplified scatterometry structure are also disclosed.06-25-2009
20130181266SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - In a method of fabricating a semiconductor device on a substrate having thereon a conductive layer, the conductive layer is patterned to form a plurality of opened regions. A gate insulation layer is formed on a side wall of each of the opened regions. A pillar pattern is formed in each opened region. On each pillar pattern, a gate electrode, which encloses the pillar pattern, is formed by removing the conductive layer between the pillar patterns.07-18-2013
20130181261BORDERLESS CONTACT STRUCTURE - A borderless contact structure or partially borderless contact structure and methods of manufacture are disclosed. The method includes forming a gate structure and a space within the gate structure, defined by spacers. The method further includes blanket depositing a sealing material in the space, over the gate structure and on a semiconductor material. The method further includes removing the sealing material from over the gate structure and on the semiconductor material, leaving the sealing material within the space. The method further includes forming an interlevel dielectric material over the gate structure. The method further includes patterning the interlevel dielectric material to form an opening exposing the semiconductor material and a portion of the gate structure. The method further includes forming a contact in the opening formed in the interlevel dielectric material.07-18-2013
20130181262Performing Treatment on Stressors - A method includes forming a gate stack over a semiconductor substrate, wherein the gate stack includes a gate dielectric and a gate electrode over the gate dielectric. A portion of the semiconductor substrate adjacent to the gate stack is recessed to form a recess. A semiconductor region is epitaxially grown in the recess. The semiconductor region is implanted with a p-type impurity or an n-type impurity. A dry treatment is performed on the semiconductor region.07-18-2013
20130181259STEP-LIKE SPACER PROFILE - Interlayer dielectric gap fill processes are enhanced by forming gate spacers with a step-like or tapered profile. Embodiments include forming a gate electrode on a substrate, depositing a spacer material over the gate electrode, etching the spacer material to form a first spacer on each side of the gate electrode, and pulling back the first spacers to form second spacers which have a step-like profile. Embodiments further include depositing a second spacer material over the gate electrode and the second spacers, and etching the second spacer material to form a third spacer on each second spacer, the second and third spacers forming an outwardly tapered composite spacer.07-18-2013
20130181260METHOD FOR FORMING N-SHAPED BOTTOM STRESS LINER - Semiconductor devices with n-shaped bottom stress liners are formed. Embodiments include forming a protuberance on a substrate, conformally forming a sacrificial material layer over the protuberance, forming a gate stack above the sacrificial material layer on a silicon layer, removing the sacrificial material layer to form a tunnel, and forming a stress liner in the tunnel conforming to the shape of the protuberance. Embodiments further include forming a silicon layer over the sacrificial material layer and lining the tunnel with a passivation layer prior to forming the stress liner.07-18-2013
20080217665SEMICONDUCTOR DEVICE STRUCTURE HAVING ENHANCED PERFORMANCE FET DEVICE - A method for making a semiconductor device structure, includes: providing a substrate; forming on the substrate: a first layer below and second layers on a gate with spacers, source and drain regions adjacent to the gate, silicides on the gate and source and drain regions; disposing a stress layer over the structure resulting from the forming step; disposing an insulating layer over the stress layer; removing portions of the insulating layer to expose a top surface of the stress layer; removing the top surface and other portions of the stress layer and portions of the spacers to form a trench, and then disposing a suitable stress material into the trench.09-11-2008
20120248512ON-GATE CONTACTS IN A MOS DEVICE - A MOS device, (10-04-2012
20120248508FORMING BORDERLESS CONTACT FOR TRANSISTORS IN A REPLACEMENT METAL GATE PROCESS - Embodiments of the present invention provide a method of forming a semiconductor structure. The method includes creating an opening inside a dielectric layer, the dielectric layer being formed on top of a substrate and the opening exposing a channel region of a transistor in the substrate; depositing a work-function layer lining the opening and covering the channel region; forming a gate conductor covering a first portion of the work-function layer, the first portion of the work-function layer being on top of the channel region; and removing a second portion of the work-function layer, the second portion of the work-function layer surrounding the first portion of the work-function layer, wherein the removal of the second portion of the work-function layer insulates the first portion of the work-function layer from rest of the work-function layer.10-04-2012
20120248507METAL GATE STRUCTURE AND MANUFACTURING METHOD THEREOF - A manufacturing method of a metal gate structure includes providing a substrate having at least a first metal oxide layer formed thereon, and transferring the surface of the first metal oxide layer into a second metal oxide layer. The first metal oxide layer includes a metal oxide (M10-04-2012
20130134489PIXEL STRUCTURE AND FABRICATING METHOD THEREOF - A fabrication method of a pixel structure and a pixel structure are provided. A first patterned metal layer including scan lines and a gate is formed on a substrate. A first insulation layer, a semiconductor layer, an etching stop pattern and a metal layer are formed sequentially on the first patterned metal layer. The metal layer and the semiconductor layer are patterned to form a second patterned metal layer and a patterned semiconductor layer. The second patterned metal layer includes data lines, a source and a drain. The patterned semiconductor layer includes a first semiconductor pattern completely overlapping the second patterned metal layer and a second semiconductor pattern without overlapping the second patterned metal layer, wherein the second semiconductor pattern includes a channel pattern and a marginal pattern. The channel pattern is between the source and the drain and the marginal pattern surrounds the first semiconductor pattern.05-30-2013
20130134487POWER TRANSISTOR DEVICE WITH SUPER JUNCTION AND MANUFACTURING METHOD THEREOF - The present invention provides a power transistor device with a super junction including a substrate, a first epitaxial layer, a second epitaxial layer, and a third epitaxial layer. The first epitaxial layer is disposed on the substrate, and has a plurality of trenches. The trenches are filled up with the second epitaxial layer, and a top surface of the second epitaxial layer is higher than a top surface of the first epitaxial layer. The second epitaxial layer has a plurality of through holes penetrating through the second epitaxial layer and disposed on the first epitaxial layer. The second epitaxial layer and the first epitaxial layer have different conductivity types. The through holes are filled up with the third epitaxial layer, and the third epitaxial layer is in contact with the first epitaxial layer. The third epitaxial layer and the first epitaxial layer have the same conductivity type.05-30-2013
20130092988SELF-ALIGNED SILICIDE FORMATION ON SOURCE/DRAIN THROUGH CONTACT VIA - According to certain embodiments, a silicide layer is formed after the fabrication of a functional gate electrode using a gate-last scheme. An initial semiconductor structure has at least one impurity regions formed on a semiconductor substrate, a sacrifice film formed over the impurity region, an isolation layer formed over the sacrifice film and a dielectric layer formed over the isolation film. A via is patterned into the dielectric layer of the initial semiconductor structure and through the thickness of the isolation layer such that a contact opening is formed in the isolation layer. The sacrifice film underlying the isolation layer is then removed leaving a void space underlying the isolation layer. Then, a metal silicide precursor is placed within the void space, and the metal silicide precursor is converted to a silicide layer through an annealing process.04-18-2013
20130092986SEMICONDUCOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device and a method for manufacturing the same, the method comprising: providing a semiconductor substrate; forming a dummy gate area on the substrate, forming spacers on sidewalls of the gate area, and forming source and drain areas in the semiconductor substrate on both sides of the dummy gate area, the dummy gate area comprising an interface layer and a dummy gate electrode; forming a dielectric cap layer on the dummy gate area and source and drain areas; planarizing the device with the dielectric cap layer on the source and drain areas as a stop layer; further removing the dummy gate electrode to expose the interface layer; and forming replacement gate area on the interface layer. The thickness of the gate groove may be controlled by the thickness of the dielectric cap layer, and the replacement gates of desired thickness and width may be further formed upon requirements. Thus, the aspect ratio of the gate groove is reduced and a sufficient low gate resistance is ensured.04-18-2013
20130092985Spacer for Semiconductor Structure Contact - An embodiment is a semiconductor structure. The semiconductor structure comprises an epitaxial region, a gate structure, a contact spacer, and an etch stop layer. The epitaxial region is in a substrate. A top surface of the epitaxial region is elevated from a top surface of the substrate, and the epitaxial region has a facet between the top surface of the substrate and the top surface of the epitaxial region. The gate structure is on the substrate. The contact spacer is laterally between the facet of the epitaxial region and the gate structure. The etch stop layer is over and adjoins each of the contact spacer and the top surface of the epitaxial region. A ratio of an etch selectivity of the contact spacer to an etch selectivity of the etch stop layer is equal to or less than 3:1.04-18-2013
20130092984FINFET DEVICE AND METHOD OF MANUFACTURING SAME - A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate including a fin structure including one or more fins disposed on the substrate. The semiconductor device further includes a dielectric layer disposed on a central portion of the fin structure and traversing each of the one or more fins. The semiconductor device further includes a work function metal disposed on the dielectric layer and traversing each of the one or more fins. The semiconductor device further includes a strained material disposed on the work function metal and interposed between each of the one or more fins. The semiconductor device further includes a signal metal disposed on the work function metal and on the strained material and traversing each of the one or more fins.04-18-2013
20130113026FIN FIELD EFFECT TRANSISTOR GATE OXIDE - The present disclosure provides for methods of fabricating a semiconductor device and such a device. A method includes providing a substrate including at least two isolation features, forming a fin substrate above the substrate and between the at least two isolation features, forming a silicon liner over the fin substrate, and oxidizing the silicon liner to form a silicon oxide liner over the fin substrate.05-09-2013
20130113028SEMICONDUCTOR DEVICE AND FIELD EFFECT TRANSISTOR - A semiconductor device comprises a substrate 05-09-2013
20130113027Metal Oxide Semiconductor Transistor and Manufacturing Method Thereof - The present invention provides a MOS transistor, including a substrate, a gate oxide, a gate, a source/drain region and a silicide layer. The gate oxide is disposed on the substrate and the gate is disposed on the gate oxide. The source/drain region is disposed in the substrate at two sides of the gate. The silicide layer is disposed on the source/drain region, wherein the silicide layer includes a curved bottom surface. The present invention further provides a manufacturing method of the MOS transistor.05-09-2013
20130113025SEMICONDUCTOR DEVICE STRUCTURE AND METHOD FOR MANUFACTURING THE SAME - The present invention provides a semiconductor device structure and a method for manufacturing the same. The method comprises: providing a semiconductor substrate, forming a first insulating layer on the surface of the semiconductor substrate; forming a shallow trench isolation embedded in the first insulating layer and the semiconductor substrate; forming a stripe-type trench embedded in the first insulating layer and the semiconductor substrate; forming a channel region in the trench; forming a gate stack line on the channel region and source/drain regions on opposite sides of the channel region. Embodiments of the present invention are applicable to manufacture of semiconductor devices.05-09-2013
20130126951Method of Fabricating FinFET Device and Structure Thereof - The present disclosure provides a FinFET device and method of fabricating a FinFET device. The method includes providing a substrate, forming a fin structure on the substrate, forming a gate structure including a gate dielectric and gate electrode, the gate structure overlying a portion of the fin structure, forming a protection layer over another portion of the fin structure, and thereafter performing an implantation process to form source and drain regions.05-23-2013
20130126950Semiconductor Device and Method of Formation - A system and method for forming a semiconductor device is provided. An embodiment comprises forming a silicide region on a substrate along with a transition region between the silicide region and the substrate. The thickness of the silicide precursor material layer along with the annealing conditions are controlled such that there is a larger ratio of one atomic species within the transition region than another atomic species, thereby increasing the hole mobility within the transition region.05-23-2013
20130126949MOS DEVICE AND METHOD FOR FABRICATING THE SAME - A method for fabricating a metal oxide semiconductor (MOS) device is described, including following steps. Two recesses are formed in a substrate. A first epitaxy growth process is performed, so as to form a first semiconductor compound layer in each of the recesses. A second epitaxy growth process is performed with an epitaxial temperature lower than 700° C., so as to form a cap layer on each of the first semiconductor compound layers. Each of the cap layers includes a second semiconductor compound layer protruding from a surface of the substrate. The first and the second semiconductor compound layers are composed of a first Group IV element and a second Group IV element, wherein the second Group IV element is a nonsilicon element. The content of the second Group IV element in the second semiconductor compound layers is less than that in the first semiconductor compound layers.05-23-2013
20130134488Semiconductor Device and Manufacturing Method thereof - A semiconductor device and a manufacturing method thereof are provided. The fin semiconductor device includes a fin formed on a substrate and an insulating material layer formed on the substrate and surrounding the fin. The fin has a semiconductor layer that has a source region portion and a drain region portion. The fin includes a first channel control region, a second channel control region, and a channel region between the two channel control regions, all of which are positioned between the source region portion and the drain region portion. The two channel control regions may have the same conductivity type, different from the channel region.05-30-2013
20130146949MECHANISMS FOR FORMING STRESSOR REGIONS IN A SEMICONDUCTOR DEVICE - The embodiments of processes and structures described above provide mechanisms for improving mobility of carriers. The dislocations in the source and drain regions and the strain created by the doped epitaxial materials next to the channel region of a transistor both contribute to the strain in the channel region. As a result, the device performance is improved.06-13-2013
20130146950SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device and manufacture method thereof include a silicide material formed on a source region and a drain region on opposite sides of a gate, wherein the gate having sidewalls on both side surfaces is formed on a substrate. The gate has a first sidewall spacer and a second sidewall spacer on each sidewall, the first spacer has a horizontal portion and a vertical portion, the horizontal portion is located between the second sidewall spacer and the substrate, the vertical portion is located between the second sidewall spacer and the sidewalls. A protecting layer is selectively deposited on the silicide material.06-13-2013
20130146951CROSS-HAIR CELL WORDLINE FORMATION - Methods and devices depicting fabrication of non-planar access devices having fins and narrow trenches, among which is a method that includes wet etching a conductor to form a recessed region and subsequently etching the conductor to form gates on the fins. The wet etching may include formation of recesses which are may be backfilled with a fill material to form spacers on the conductor. Portions of a plug may be removed during the wet etch to form overhanging spacers to provide further protection of the conductor during the dry etch.06-13-2013
20080197384Field Effect Transistor Arrangement - A field effect transistor arrangement includes an electrically insulating layer, a source region, a drain region and a channel region arranged between source region and drain region, wherein the source region, the drain region and the channel region are in each case arranged on or above the electrically insulating layer, and also a gate region having an electrically insulating gate layer and an electrically conductive gate layer, which adjoins the channel region or is arranged at a distance from the latter and which extends at least partly along the channel region, wherein the source region and the drain region are in each case produced from electrically conductive carbon, and wherein the channel region is produced from strained silicon.08-21-2008
20080197383METHOD OF MANUFACTURING A SEMICONDUCTOR ELEMENT AND SEMICONDUCTOR ELEMENT - A method of manufacturing a semiconductor element. A dislocation region is formed between a first layer and a second layer, the dislocation region including a plurality of dislocations. First interstitials in the first layer are at least partially eliminated using the dislocations in the dislocation region. Vacancies are formed in the second layer. Second interstitials in the second layer are at least partially eliminated using the vacancies in the second layer.08-21-2008
20110248322Piezoelectric Gate-Induced Strain - An embodiment is a semiconductor device. The semiconductor device comprises a substrate, an electrode over the substrate, and a piezoelectric layer disposed between the substrate and the electrode. The piezoelectric layer causes a strain in the substrate when an electric field is generated by the electrode.10-13-2011
20130099294MOSFETs with Multiple Dislocation Planes - A method includes forming a metal-oxide-semiconductor field-effect transistor (MOSFET), which includes forming a first dislocation plane adjacent to a gate electrode of the MOSFET, and forming a second dislocation plane adjacent to the gate electrode of the MOSFET. The first and the second dislocation planes are on a same side of the gate electrode, and extend into source/drain regions of the MOSFET.04-25-2013
20100308383SEMICONDUCTOR DEVICE HAVING A POROUS INSULATION LAYER WITH A PERMEATION PREVENTION LAYER COATING THE PORES AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device having a porous insulation layer with a permeation prevention layer coating the pores for use in protecting against hydrogen permeation into source and drain areas is presented. The semiconductor device includes a conductive pattern, an insulation layer, and a permeation prevention layer. The conductive pattern is formed on a semiconductor substrate. The insulation layer is formed on a surface of the conductive pattern and includes a porous layer having a plurality of pores. The permeation prevention layer is formed on exposed surfaces of the pores in the porous layer.12-09-2010
20100308382SEMICONDUCTOR STRUCTURES AND METHODS FOR REDUCING SILICON OXIDE UNDERCUTS IN A SEMICONDUCTOR SUBSTRATE - Methods are provided for fabricating semiconductor structures with an etch resistant layer that reduces undercuts in a silicon oxide layer of a semiconductor substrate. The semiconductor substrate is provided having the silicon oxide layer. The etch resistant layer is formed which uses at least a portion of the silicon oxide layer. A silicon-comprising material layer is formed overlying the etch resistant layer. The silicon-comprising material layer has an etch rate greater than an etch rate of the etch resistant layer when subjected to an etchant. The silicon-comprising material layer is etched with an etchant to form a fin structure on the silicon oxide layer. The etch resistant layer may be formed by ion implantation, diffusing nitrogen-supplying species into the silicon oxide layer, or forming an insulator material layer overlying the silicon oxide layer.12-09-2010
20100308381FINFET STRUCTURES WITH STRESS-INDUCING SOURCE/DRAIN-FORMING SPACERS AND METHODS FOR FABRICATING THE SAME - Methods for fabricating FinFET structures with stress-inducing source/drain-forming spacers and FinFET structures having such spacers are provided herein. In one embodiment, a method for fabricating a FinFET structure comprises fabricating a plurality of parallel fins overlying a semiconductor substrate. Each of the fins has sidewalls. A gate structure is fabricated overlying a portion of each of the fins. The gate structure has sidewalls and overlies channels within the fins. Stress-inducing sidewall spacers are formed about the sidewalls of the fins and the sidewalls of the gate structure. The stress-inducing sidewall spacers induce a stress within the channels. First conductivity-determining ions are implanted into the fins using the stress-inducing sidewall spacers and the gate structure as an implantation mask to form source and drain regions within the fins.12-09-2010
20100308380DUAL DAMASCENE PROCESSING FOR GATE CONDUCTOR AND ACTIVE AREA TO FIRST METAL LEVEL INTERCONNECT STRUCTURES - A method of forming a semiconductor device includes forming a first interlevel dielectric (ILD) layer over one or more transistor structures formed on a substrate, the one or more transistor structures including an active area, source/drain contact and a gate conductor formed over the substrate; forming a first metal (M1) level trench in an upper portion of the first ILD layer, followed by forming vias in a lower portion of the first ILD layer, down to the source/drain contact and down to the gate conductor; and filling both the trench and vias with a conductive material, thereby resulting in a dual damascene metal process at and below the M1 level of the semiconductor device.12-09-2010
20120273853SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SAME - A semiconductor device includes a first transistor including a first source/drain region and a first sidewall spacer, and a second transistor including a second source/drain region and a second sidewall spacer, the first sidewall spacer has a first width and the second sidewall spacer has a second width wider than the first width, and the first source/drain region has a first area and the second source/drain region has a second area larger than the first area.11-01-2012
20120273852TRANSISTORS HAVING TEMPERATURE STABLE SCHOTTKY CONTACT METALS - A semiconductor structure having: a semiconductor comprising a indium gallium phosphide and molybdenum metal in Schottky contact with the semiconductor.11-01-2012
20120273848BORDERLESS CONTACT STRUCTURE EMPLOYING DUAL ETCH STOP LAYERS - Each gate structure formed on the substrate includes a gate dielectric, a gate conductor, a first etch stop layer, and a gate cap dielectric. A second etch stop layer is formed over the gate structures, gate spacers, and source and drain regions. A first contact-level dielectric layer and a second contact-level dielectric layer are formed over the second etch stop layer. Gate contact via holes extending at least to the top surface of the gate cap dielectrics are formed. Source/drain contact via holes extending to the interface between the first and second contact-level dielectric layers are subsequently formed. The various contact via holes are vertically extended by simultaneously etching exposed gate cap dielectrics and exposed portions of the first contact-level dielectric layer, then by simultaneously etching the first and second etch stop layers. Source/drain contact vias self-aligned to the outer surfaces gate spacers are thereby formed.11-01-2012
20120273851SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A manufacturing method of a semiconductor device includes forming a structure comprising an interlayer dielectric layer on a substrate, an ultra-low-k material layer on the interlayer dielectric layer and a plug. The plug passes through the interlayer dielectric layer and the ultra-low-k material layer, and is formed of a first metal material. The method further includes removing an upper portion of the plug by etching to form a recessed portion, and filling the recessed portion with a second metal material. According to the method, contact-hole photolithography is performed only once, and thus avoids alignment issues that may occur when contact-hole photolithography needs to be performed twice.11-01-2012
20120273850SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A semiconductor device and a method for fabricating the same are disclosed. A fin of the semiconductor device including a fin-shaped channel region is configured in the form of a non-uniform structure, and a leakage current caused by the electric field effect generated in the semiconductor device is prevented from being generated, resulting in an increased operation stability of the semiconductor device.11-01-2012
20120273849Electronic Module Metalization System, Apparatus, and Methods of Forming Same - Embodiments of electronic module metallization systems and apparatus and methods for forming same are described generally herein. Other embodiments may be described and claimed.11-01-2012
20130187209SEMICONDUCTOR DEVICES HAVING ENCAPSULATED STRESSOR REGIONS AND RELATED FABRICATION METHODS - Apparatus and related fabrication methods are provided for semiconductor device structures having silicon-encapsulated stressor regions. One semiconductor device includes a semiconductor substrate, a gate structure overlying the semiconductor substrate, stressor regions formed in the semiconductor substrate proximate the gate structure, and a silicon material overlying the stressor regions, the silicon material encapsulating the stressor regions.07-25-2013
20110233627MOS STRUCTURES THAT EXHIBIT LOWER CONTACT RESISTANCE AND METHODS FOR FABRICATING THE SAME - MOS structures that exhibit lower contact resistance and methods for fabricating such MOS structures are provided. In one method, a semiconductor substrate is provided and a gate stack is fabricated on the semiconductor substrate. With the gate stack serving as a mask, impurity dopants are implanted into a semiconductor material having a first surface and disposed proximate to the gate stack. A trench is etched into the semiconductor material such that the semiconductor material has a trench surface within the trench. Further, a metal silicide layer is formed on the first surface of the semiconductor material and on the trench surface. Also, a contact to at least a portion of the metal silicide layer on the first surface and at least a portion of the metal silicide layer on the trench surface is fabricated.09-29-2011
20110233626SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD OF THE SAME - A semiconductor device capable of improving the driving power and a manufacturing method therefor are provided. In a semiconductor device, a gate structure formed by successively stacking a gate oxide film and a silicon layer is arranged over a semiconductor substrate. An oxide film is arranged long the lateral side of the gate structure and another oxide film is arranged along the lateral side of the oxide film and the upper surface of the substrate. In the side wall oxide film comprising these oxide films, the minimum value of the thickness of the first layer along the lateral side of the gate structure is less than the thickness of the second layer along the upper surface of the substrate.09-29-2011
20110233625SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device includes a semiconductor chip; and a scribe line disposed in an adjacent way to and around the semiconductor chip. The scribe line comprises an interlayer insulating film and an accessory. The accessory comprises a first portion with a layer shape formed on the interlayer insulating film and a second portion extending downward from the first portion into the interlayer insulating film in a thickness direction thereof.09-29-2011
20110233624SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD OF THE SAME - One aspect of the present invention is a semiconductor device includes: source and drain regions; a gate electrode formed on the source and drain regions; a sidewall formed on a side surface of the gate electrode; a first silicide film formed on the source and drain regions a predetermined distance away from the sidewall; and a second silicide film formed on the gate electrode a predetermined distance away from the sidewall.09-29-2011
20110233623SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - There is provided a semiconductor device and a method of manufacturing the same. The semiconductor device includes a base substrate; a semiconductor layer having a receiving groove, a protrusion part, a first carrier injection layer, at least two insulating patterns, and a second carrier injection layer provided on the base substrate, the insulating patterns being disposed to traverse the first carrier injection layer and the second carrier injection layer being spaced apart from the first carrier injection layer and disposed on a lower portion of the protrusion part; a source electrode and a drain electrode disposed to be spaced apart from each other on the semiconductor layer; and a gate electrode insulated from the source electrode and the drain electrode and having a recess part recessed into the receiving groove, wherein a lowest portion of the receiving groove contacts an uppermost layer of the first carrier injection layer or is disposed above the uppermost layer thereof, and an insulating pattern, disposed at an innermost portion of the semiconductor layer among the insulating patterns, traverses the first carrier injection layer and is disposed at the outside of both sides of the receiving groove in a thickness direction thereof.09-29-2011
20110233622SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - According to one embodiment, a semiconductor device comprises an active area extending in a first direction, a contact plug located on a first portion of the active area, and a transistor located on a second portion adjacent to the first portion of the active area in the first direction. A width of a top surface area of the first portion in a second direction perpendicular to the first direction is smaller than that of a top surface area of the second portion in the second direction.09-29-2011
20130187204HIGH FREQUENCY SEMICONDUCTOR SWITCH - There is provided a high frequency semiconductor switch for improving insertion loss characteristics and harmonic characteristics by providing good voltage distribution in a gate wiring. The field effect transistor includes a source wiring electrically connected to a source region formed on a substrate and extending unidirectionally; a drain wiring electrically connected to a drain region formed on the substrate and extending in parallel with the source wiring; a gate having a parallel portion extending between the source wiring and the drain wiring in approximately parallel with the source wiring and the drain wiring; a gate wiring applying voltage to the gate; and a gate via electrically connecting the gate to the gate wiring, the parallel portion including two ends and formed with a path applying voltage to each of the two ends from the gate via.07-25-2013
20130187205EPITAXIAL REPLACEMENT OF A RAISED SOURCE/DRAIN - Disclosed is a semiconductor article which includes a semiconductor substrate; a gate structure having a spacer adjacent to a conducting material of the gate structure wherein a corner of the spacer is faceted to create a faceted space between the faceted spacer and the semiconductor substrate; and a raised source/drain adjacent to the gate structure, the raised source/drain filling the faceted space and having a surface parallel to the semiconductor substrate. Also disclosed is a method of making the semiconductor article.07-25-2013
20130187206FinFETs and Methods for Forming the Same - A device includes a semiconductor fin, a gate dielectric on sidewalls of the semiconductor fin, a gate electrode over the gate dielectric, and isolation regions. The isolation regions include a first portion on a side of the semiconductor fin, wherein the first portion is underlying and aligned to a portion of the gate electrode. The semiconductor fin is over a first top surface of the first portion of the isolation regions. The isolation regions further include second portions on opposite sides of the portion of the gate electrode. The second top surfaces of the second portions of the isolation regions are higher than the first top surface of the isolation regions.07-25-2013
20130187202SPACER PROFILE ENGINEERING USING FILMS WITH CONTINUOUSLY INCREASED ETCH RATE FROM INNER TO OUTER SURFACE - Interlayer dielectric gap fill processes are enhanced by forming gate spacers with a tapered profile. Embodiments include forming a gate electrode on a substrate, depositing a spacer material over the gate electrode and substrate, the spacer layer having a first surface nearest the gate electrode and substrate, a second surface furthest from the gate electrode and substrate, and a continuously increasing etch rate from the first surface to the second surface, and etching the spacer layer to form a spacer on each side of the gate electrode. Embodiments further include forming the spacer layer by depositing a spacer material and continuously decreasing the density of the spacer material during deposition or depositing a carbon-containing spacer material and causing a gradient of carbon content in the spacer layer.07-25-2013
20130187203FORMATION OF THE DIELECTRIC CAP LAYER FOR A REPLACEMENT GATE STRUCTURE - Gate to contact shorts are reduced by forming dielectric caps in replaced gate structures. Embodiments include forming a replaced gate structure on a substrate, the replaced gate structure including an ILD having a cavity, a first metal on a top surface of the ILD and lining the cavity, and a second metal on the first metal and filling the cavity, planarizing the first and second metals, forming an oxide on the second metal, removing the oxide, recessing the first and second metals in the cavity, forming a recess, and filling the recess with a dielectric material. Embodiments further include dielectric caps having vertical sidewalls, a trapezoidal shape, a T-shape, or a Y-shape.07-25-2013
20130181267WAFER FILL PATTERNS AND USES - A semiconductor device includes an active region including an element formed in a double etch, double exposure method and an inactive region including one or more fills, at least one of the one or more fills including a cut-away hole formed therein, where the cut-away holes expose a layer in the inactive region used for an endpoint detection.07-18-2013
20130181265Methods of Forming a Gate Cap Layer Above a Replacement Gate Structure and a Semiconductor Device That Includes Such a Gate Structure and Cap Layer - Disclosed herein are various methods of forming a gate cap layer above a replacement gate structure, and a device having such a cap layer. In one example, a device disclosed herein includes a replacement gate structure having a dished upper surface, sidewall spacers positioned proximate the replacement gate structure and a gate cap layer positioned above the replacement gate structure, wherein the gate cap layer has a bottom surface that corresponds to the dished upper surface of the replacement gate structure.07-18-2013
20130181264SEMICONDUCTOR STRUCTURE AND PROCESS THEREOF - A semiconductor structure includes at least a fin-shaped structure, a gate, a source/drain region, an interdielectric layer and an epitaxial structure. At least a fin-shaped structure is located on a bottom substrate. The gate covers the fin-shaped structure. The source/drain region is located in the fin-shaped structure next to the gate. The interdielectric layer covers the gate and the fin-shaped structure, wherein the interdielectric layer has a plurality of contact holes, respectively exposing at least a part of the source/drain region. The epitaxial structure is located in each of the contact holes, directly contacts and is only located on the source/drain region. Additionally, a semiconductor process formed said semiconductor structure is also provided.07-18-2013
20130181263Methods of Forming a Dielectric Cap Layer on a Metal Gate Structure - Disclosed herein are various methods of forming isolation structures on FinFETs and other semiconductor devices, and the resulting devices that have such isolation structures. In one example, the method includes forming a plurality of spaced-apart trenches in a semiconducting substrate, wherein the trenches define a fin for a FinFET device, forming a layer of insulating material in the trenches, wherein the layer of insulating material covers a lower portion of the fin but not an upper portion of the fin, forming a protective material on the upper portion of the fin, and performing a heating process in an oxidizing ambient to form a thermal oxide region on the covered lower portion of the fin.07-18-2013
20110284935SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device includes: a semiconductor substrate; a gate electrode formed on the semiconductor substrate with a gate insulating film interposed therebetween; a side wall spacer formed on a side wall of the gate electrode; source/drain regions formed in opposing portions of the semiconductor substrate with the gate electrode and the side wall spacer interposed therebetween; and a stress-applying insulating film covering the gate electrode, the side wall spacer, and an upper surface of the semiconductor substrate. A gate-length-direction thickness of an upper portion of the side wall spacer is at least larger than a gate-length-direction thickness of a middle portion thereof.11-24-2011
20110284933ELECTRIC CONTACTING OF SEMICONDUCTOR COMPONENTS HAVING LOW CONTACT RESISTANCE - The present invention relates to a semiconductor component which comprises at least one electric contact surface for the electric contacting of a semiconductor region (11-24-2011
20110298019COMPACT FIELD EFFECT TRANSISTOR WITH COUNTER-ELECTRODE AND FABRICATION METHOD - An etching mask, comprising the delineation pattern of the gate electrode, of a source contact, a drain contact and a counter-electrode contact, is formed on a substrate of semi-conductor on insulator type. The substrate is covered by a layer of dielectric material and a gate material. The counter-electrode contact is located in the pattern of the gate electrode. The gate material is etched to define the gate electrode, the source contact and drain contacts and the counter-electrode contact. A part of the support substrate is released through the pattern of the counter-electrode contact area. An electrically conductive material is deposited on the free part of the support substrate to form the counter-electrode contact.12-08-2011
20130119446METHOD FOR DEPINNING THE FERMI LEVEL OF A SEMICONDUCTOR AT AN ELECTRICAL JUNCTION AND DEVICES INCORPORATING SUCH JUNCTIONS - An electrical device in which an interface layer comprising arsenic is disposed between and in contact with a conductor and a semiconductor. In some cases, the interface layer may be a monolayer of arsenic.05-16-2013
20110309417Method for Reshaping Silicon Surfaces with Shallow Trench Isolation - A method for making a semiconductor device by reshaping a silicon surface with a sacrificial layer is presented. In the present invention the steps of forming a sacrificial dielectric layer and removing the sacrificial dielectric layer are repeated multiple times in order to remove sharp edges from the silicon surface near the field oxides. Another aspect of the present invention includes making a MOSFET transistor that incorporates the forming and removing of multiple sacrificial layers into the process.12-22-2011
20110309416STRUCTURE AND METHOD TO REDUCE FRINGE CAPACITANCE IN SEMICONDUCTOR DEVICES - A method of forming a semiconductor device is provided that includes providing a gate structure on a semiconductor substrate that includes at a gate conductor. Forming a sacrificial material layer on at least the sidewall surfaces of the gate conductor, and forming a raised source region and a raised drain region on the semiconductor substrate, wherein the raised source region and the raised drain are separated from the gate conductor by the sacrificial material layer. The sacrificial material layer is removed to provide a void separating the gate structure from the raised source and drain regions. An encapsulating material layer is formed bridging the gate structure to each of the raised source region and the raised drain region to provide an air gap separating the gate structure from the raised source regions and the raised drain regions.12-22-2011
20130187207REPLACEMENT SOURCE/DRAIN FINFET FABRICATION - A finFET is formed having a fin with a source region, a drain region, and a channel region between the source and drain regions. The fin is etched on a semiconductor wafer. A gate stack is formed having an insulating layer in direct contact with the channel region and a conductive gate material in direct contact with the insulating layer. The source and drain regions are etched to expose a first region of the fin. A portion of the first region is then doped with a dopant.07-25-2013
20130187208SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - According to one embodiment, a semiconductor device comprises an active area extending in a first direction, a contact plug located on a first portion of the active area, and a transistor located on a second portion adjacent to the first portion of the active area in the first direction. A width of a top surface area of the first portion in a second direction perpendicular to the first direction is smaller than that of a top surface area of the second portion in the second direction.07-25-2013
20120018786HIGHLY STRAINED SOURCE/DRAIN TRENCHES IN SEMICONDUCTOR DEVICES - A semiconductor device is formed by a multi-step etching process that produces trench openings in a silicon substrate immediately adjacent transistor gate structures formed over the substrate surface. The multi-step etching process is a Br-based etching operation with one step including nitrogen and a further step deficient of nitrogen. The etching process does not attack the transistor structure and forms the openings. The openings are bounded by upper surfaces that extend downwardly from the substrate surface and are substantially vertical, and lower surfaces that bulge outwardly from the upper vertical sections and undercut the transistor structure. The openings may be filled with a suitable source/drain material to produce SSD transistors with desirable I01-26-2012
20120018785FINFET SEMICONDUCTOR DEVICE - The present disclosure provides a FinFET element. The FinFET element includes a germanium-FinFET element (e.g., a multi-gate device including a Ge-fin). In one embodiment, device includes a fin having a first portion including Ge and a second portion, underlying the first portion and including an insulating material (e.g., silicon dioxide). A gate structure may be formed on the fin.01-26-2012
20120018784Method for Forming a Nickelsilicide FUSI Gate01-26-2012
20120018783SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SAME - According to one embodiment, a method is disclosed for manufacturing a semiconductor device. A side face parallel to a channel direction of a plurality of gate electrodes provided above a semiconductor substrate is included as a part of an inner wall of an isolation groove provided between the adjacent gate electrodes. The method can include forming a first isolation groove penetrating through a conductive film serving as the gate electrode to reach the semiconductor substrate. The method can include forming a protection film covering a side wall of the first isolation groove including a side face of the gate electrode. The method can include forming a second isolation groove by etching the semiconductor substrate exposed to a bottom surface of the first isolation groove. The method can include oxidizing an inner surface of the second isolation groove provided on each of both sides of the gate electrode to form first insulating films, which are connected to each other under the gate electrode. In addition, the method can include filling an inside of the first isolation groove and an inside of the second isolation groove with a second insulating film.01-26-2012
20130193492SILICON CARBON FILM STRUCTURE AND METHOD - An improved silicon carbon film structure is disclosed. The film structure comprises multiple layers of silicon carbon and silicon. The multiple layers form stress film structures that have increased substitutional carbon content, and serve to induce stresses that improve carrier mobility for certain types of field effect transistors.08-01-2013
20130193493SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THEREOF - In a semiconductor device including a transistor using an oxide semiconductor film, stable electric characteristics can be provided and high reliability can be achieved. A structure of the semiconductor device, which achieves high-speed response and high-speed operation, is provided. In a semiconductor device including a transistor in which an oxide semiconductor film, a gate insulating film, and a gate electrode layer are stacked in order and a sidewall insulating layer is provided on the side surface of the gate electrode layer, the sidewall insulating layer has an oxygen-excess regions, which is formed in such a manner that a first insulating film is formed and then is subjected to oxygen doping treatment, a second insulating is formed over the first insulating film, and a stacked layer of the first insulating film and the second insulating film are etched.08-01-2013
20130193494TRANSISTOR WITH COUNTER-ELECTRODE CONNECTION AMALGAMATED WITH THE SOURCE/DRAIN CONTACT - The field effect device includes an active area made from semi-conducting material and a gate electrode separated from the active area by a dielectric gate material. A counter-electrode is separated from the active area by a layer of electrically insulating material. Two source/drain contacts are arranged on the active area on each side of the gate electrode. One of the source/drain contacts is made from a single material, overspills from the active area and connects the active area with the counter-electrode. The counter-electrode contact is delineated by a closed peripheral insulating pattern.08-01-2013
20130200442SALICIDE FORMATION USING A CAP LAYER - A semiconductor device having a source feature and a drain feature formed in a substrate. The semiconductor device having a gate stack over a portion of the source feature and over a portion of the drain feature. The semiconductor device further having a first cap layer formed over substantially the entire source feature not covered by the gate stack, and a second cap layer formed over substantially the entire drain feature not covered by the gate stack. A method of forming a semiconductor device including forming a source feature and drain feature in a substrate. The method further includes forming a gate stack over a portion of the source feature and over a portion of the drain feature. The method further includes depositing a first cap layer over substantially the entire source feature not covered by the gate stack and a second cap layer over substantially the entire drain feature not covered by the gate stack.08-08-2013
20130200444SCHOTTKY BARRIER FIELD EFFECT TRANSISTOR WITH CARBON-CONTAINING INSULATION LAYER AND METHOD FOR FABRICATING THE SAME - A Schottky barrier field effect transistor with a carbon-containing insulation layer and a method for fabricating the same are provided. The Schottky barrier field effect transistor comprises: a substrate; a gate stack formed on the substrate; a metal source and a metal drain formed in the substrate on both sides of the gate stack respectively; and the carbon-containing insulation layer formed between the substrate and the metal source and between the substrate and the metal drain respectively, in which a material of the carbon-containing insulation layer is organic molecular chains containing an alkyl group.08-08-2013
20130200445HVMOS TRANSISTOR STRUCTURE HAVING OFFSET DISTANCE AND METHOD FOR FABRICATING THE SAME - An HVMOS transistor structure includes: a first ion well of a first conductivity type and a second ion well of a second conductivity type different from the first conductivity type formed over a substrate, wherein the first ion well and the second ion well have a junction at their interface; a gate overlying the first ion well and the second ion well; a drain region of the first conductivity type, in the first ion well, spaced apart from a first sidewall of the gate by an offset distance; and a source region of the first conductivity type in the second ion well. In addition, a method for fabricating the HVMOS transistor structure described above is also provided.08-08-2013
20130099295REPLACEMENT GATE FABRICATION METHODS - Semiconductor devices and related fabrication methods are provided. An exemplary fabrication method involves forming a pair of gate structures having a dielectric region disposed between a first gate structure of the pair and a second gate structure of the pair, and forming a voided region in the dielectric region between the first gate structure and the second gate structure. The first and second gate structures each include a first gate electrode material, wherein the method continues by removing the first gate electrode material to provide second and third voided regions corresponding to the gate structures and forming a second gate electrode material in the first voided region, the second voided region, and the third voided region.04-25-2013
20120068234METHOD FOR SELF-ALIGNING A STOP LAYER TO A REPLACEMENT GATE FOR SELF-ALIGNED CONTACT INTEGRATION - Semiconductor devices with replacement gate electrodes and integrated self aligned contacts are formed with enhanced gate dielectric layers and improved electrical isolation properties between the gate line and a contact. Embodiments include forming a removable gate electrode on a substrate, forming a self aligned contact stop layer over the electrode and the substrate, removing a portion of the self aligned contact stop layer over the electrode and the electrode itself leaving an opening, forming a replacement gate electrode of metal, in the opening, transforming an upper portion of the metal into a dielectric layer, and forming a self aligned contact. Embodiments include forming the contact stop layer of a dielectric material, and transforming the upper portion of the metal into a dielectric layer. Embodiments also include forming a hardmask layer over the removable gate electrode to protect the electrode during silicidation in source/drain regions of the semiconductor device.03-22-2012
20120299069COPPER-FILLED TRENCH CONTACT FOR TRANSISTOR PERFORMANCE IMPROVEMENT - Methods of fabricating a first contact to a semiconductor device, which fundamentally comprises providing a semiconductor device formed on a substrate. The substrate further includes a conductive surface. A dielectric layer is formed over the substrate and has an opening exposing the conductive surface. The opening extends an entire length of the semiconductor device, partway down the entire length of the device, extending from the device onto adjacent field of the device, or and a combination thereof. A barrier layer is formed within the opening. A copper containing material fills the opening to form a first contact to the semiconductor device.11-29-2012
20120074473Semiconductor Device - A method for fabricating a semiconductor device comprises forming a partial-insulated substrate comprising an insulating region located below both a channel region of a cell transistor and one of a storage node contact region and a bit line contact region, and forming a cell transistor comprising a fin region on the partial-insulated substrate.03-29-2012
20130092987MOS TRANSISTOR WITH NO HUMP EFFECT - A MOS transistor formed in an active area of a semiconductor substrate and having a polysilicon gate doped according to a first conductivity type, the gate including two lateral regions of the second conductivity type.04-18-2013
20120086058TUNNEL FIELD EFFECT TRANSISTOR - A tunnel field effect transistor and a method of making the same. The transistor includes a semiconductor substrate. The transistor also includes a gate located on a major surface of the substrate. The transistor further includes a drain of a first conductivity type. The transistor also includes a source of a second conductivity type extending beneath the gate. The source is separated from the gate by a channel region and a gate dielectric. The transistor is operable to allow charge carrier tunnelling from an inversion layer through an upper surface of the source.04-12-2012
20120086057NONVOLATILE MEMORY DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor memory device includes a gate insulating layer formed over a semiconductor substrate; a first conductive layer pattern for select transistors and memory cells formed on the gate insulating layer; a dielectric layer formed on the first conductive layer pattern; a second conductive layer pattern formed on the dielectric layer on the first conductive layer pattern for the memory cells; and select lines made of material having lower resistance than the second conductive layer pattern and coupled to the first conductive layer pattern for the select transistors.04-12-2012
20120086056Superior Integrity of a High-K Gate Stack by Forming a Controlled Undercut on the Basis of a Wet Chemistry - In sophisticated semiconductor devices, the encapsulation of sensitive gate materials, such as a high-k dielectric material and a metal-containing electrode material, which are provided in an early manufacturing stage may be achieved by forming an undercut gate configuration. To this end, a wet chemical etch sequence is applied after the basic patterning of the gate layer stack, wherein at least ozone-based and hydrofluoric acid-based process steps are performed in an alternating manner, thereby achieving a substantially self-limiting removal behavior.04-12-2012
20120086055DEVICES WITH GATE-TO-GATE ISOLATION STRUCTURES AND METHODS OF MANUFACTURE - Devices having gate-to-gate isolation structures and methods of manufacture are provided. The method includes forming a plurality of trenches in a pad film to form raised portions. The method further includes depositing a hard mask in the trenches and over the upper pad film. The method further includes forming a plurality of fins including the raised portions and a second plurality of fins including the hard mask deposited in the trenches, each of which are separated by a deep trench. The method further includes removing the hard mask on the plurality of fins including the raised portions and the second plurality of fins resulting in a dual height fin array. The method further includes forming gate electrodes within each deep trench between each fin of the dual height fin array, burying the second plurality of fins and abutting sides of the plurality of fins including the raised portions. The plurality of fins including the raised portions electrically and physically isolate adjacent gate electrode of the gate electrodes.04-12-2012
20120086054SEMICONDUCTOR STRUCTURE AND METHOD FOR MAKING THE SAME - A semiconductor structure is disclosed. The semiconductor structure includes a gate structure disposed on a substrate, a source and a drain respectively disposed in the substrate at two sides of the gate structure, a source contact plug disposed above the source and electrically connected to the source and a drain contact plug disposed above the drain and electrically connected to the drain. The source contact plug and the drain contact plug have relatively asymmetric element properties.04-12-2012
20120086053TRANSISTOR HAVING NOTCHED FIN STRUCTURE AND METHOD OF MAKING THE SAME - A transistor includes a notched fin covered under a shallow trench isolation layer. One or more notch may be used, the size of which may vary along a lateral direction of the fin. In some embodiments, The notch is formed using anisotropic wet etching that is selective according to silicon orientation. Example wet etchants are tetramethylammonium hydroxide (TMAH) or potassium hydroxide (KOH).04-12-2012
20120086052HIGH VOLTAGE MOS DEVICE AND METHOD FOR MAKING THE SAME - A high-voltage metal-oxide-semiconductor (HVMOS) device may include a source, a drain, a gate positioned proximate to the source, a drift region disposed substantially between the drain and a region of the gate and the source, and a self shielding region disposed proximate to the drain. A corresponding method is also provided.04-12-2012
20130207167TUNNELING FIELD EFFECT TRANSISTOR AND METHOD FOR FABRICATING THE SAME - A tunneling field effect transistor and a method for fabricating the same are provided. The tunneling field effect transistor comprises: a semiconductor substrate; a channel region formed in the semiconductor substrate, with one or more isolation structures formed in the channel region; a first buried layer and a second buried layer formed in the semiconductor substrate and located at both sides of the channel region respectively, the first buried layer being first type non-heavily-doped, and the second buried layer being second type non-heavily-doped; a source region and a drain region formed in the semiconductor substrate and located on the first buried layer and the second buried layer respectively; and a gate dielectric layer formed on the one or more isolation structures, and a gate formed on the gate dielectric layer.08-15-2013