Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Light responsive structure

Subclass of:

257 - Active solid-state devices (e.g., transistors, solid-state diodes)

257183000 - HETEROJUNCTION DEVICE

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
257186000 Avalanche photodetection structure 19
257188000 Having narrow energy band gap ( 11
257187000 Having transistor structure 9
257185000 Staircase (including graded composition) device 7
Entries
DocumentTitleDate
20090242932Large-area pin diode with reduced capacitance - The invention provides a design of PIN diode having a low capacitance and a large area of effective collection of photo-generated charge. The low capacitance is obtained by replacing a continuous collector layer in the diode by a sparse array of collector disks interconnected by narrow metallic runners at a different structural level separated from the collector discs by an interlevel dielectric.10-01-2009
20110193133PHOTO DETECTION DEVICE - A highly sensitive and wide spectra-range mesa type photodetector having the impurity diffusion along the mesa-sidewall is provided with.08-11-2011
20100148216SEMICONDUCTOR LIGHT RECEIVING ELEMENT AND METHOD FOR MANUFACTURING SEMICONDUCTOR LIGHT RECEIVING ELEMENT - A semiconductor light detecting element having a mesa structure comprises: a first semiconductor layer having n-type conductivity located on a semiconductor substrate, a light absorbing layer located on the first semiconductor layer, and a second semiconductor layer located on the light absorbing layer; a burying layer burying peripheries of the light absorbing layer and the second semiconductor layer. The burying layer has a band gap larger than the band gap of the light absorbing layer. The second semiconductor layer has a first region having p-type conductivity, and a second region having i-type or n-type conductivity and located between the first region and the burying layer.06-17-2010
20130037855SI-GE LAMINATED THIN FILM AND INFRARED SENSOR USING SAME - Provided is a Si—Ge laminated thin film including at least one Si layer and at least one Ge layer, which are alternately laminated on a substrate (02-14-2013
20130037854PHOTODETECTOR - A photodetector is provided, comprising: a radiation-absorbing semiconductor region and a collection semiconductor region separated by and each in contact with a barrier semiconductor region; wherein, at least in the absence of an applied bias voltage, the band gap between the valence band energy and the conduction band energy of the barrier semiconductor region is offset from the band gap between the valence band energy and the conduction band energy of the radiation-absorbing semiconductor region so as to form an energy barrier between the radiation-absorbing semiconductor region and the collection semiconductor region which resists the flow of minority carriers from the radiation-absorbing semiconductor region to the collection semiconductor region. Also provided is a method of manufacturing a photodetector.02-14-2013
20100078679LIGHT-RECEIVING DEVICE AND MANUFACTURING METHOD FOR A LIGHT-RECEIVING DEVICE - Provided is a light-receiving device which has light-receiving sensitivity superior to that of a conventional Schottky diode type light-receiving device and also has sufficiently-strengthened junction of a Schottky electrode. A first contact layer formed of AlGaN and having conductivity, a light-receiving layer formed of AlGaN, and a second contact layer formed of AlN and having a thickness of 5 nm are epitaxially formed on a predetermined substrate in the stated order, and a second electrode is brought into Schottky junction with the second contact layer, to thereby form MIS junction. Further, after the Schottky junction, heat treatment is performed under a nitrogen gas atmosphere at 600° C. for 30 seconds.04-01-2010
20100072514HIGH OPERATING TEMPERATURE BARRIER INFRARED DETECTOR WITH TAILORABLE CUTOFF WAVELENGTH - A barrier infrared detector with absorber materials having selectable cutoff wavelengths and its method of manufacture is described. A GaInAsSb absorber layer may be grown on a GaSb substrate layer formed by mixing GaSb and InAsSb by an absorber mixing ratio. A GaAlAsSb barrier layer may then be grown on the barrier layer formed by mixing GaSb and AlSbAs by a barrier mixing ratio. The absorber mixing ratio may be selected to adjust a band gap of the absorber layer and thereby determine a cutoff wavelength for the barrier infrared detector. The absorber mixing ratio may vary along an absorber layer growth direction. Various contact layer architectures may be used. In addition, a top contact layer may be isolated into an array of elements electrically isolated as individual functional detectors that may be used in a detector array, imaging array, or focal plane array.03-25-2010
20100133585GROWTH OF GERMANIUM EPITAXIAL THIN FILM WITH NEGATIVE PHOTOCONDUCTANCE CHARACTERISTICS AND PHOTODIODE USING THE SAME - A method of growing a germanium (Ge) epitaxial thin film having negative photoconductance characteristics and a photodiode using the same are provided. The method of growing the germanium (Ge) epitaxial thin film includes growing a germanium (Ge) thin film on a silicon substrate at a low temperature, raising the temperature to grow the germanium (Ge) thin film, and growing the germanium (Ge) thin film at a high temperature, wherein each stage of growth is performed using reduced pressure chemical vapor deposition (RPCVD). The three-stage growth method enables formation of a germanium (Ge) epitaxial thin film characterized by alleviated stress on a substrate, a lowered penetrating dislocation density, and reduced surface roughness.06-03-2010
20090039387SOLID-STATE IMAGING ELEMENT AND METHOD FOR MANUFACTURING THE SAME - A solid-state imaging element includes a layered substrate made of silicon and composed of, for example, an N-type substrate, a P-type layer, and an N-type layer. In the layered substrate, an imaging region in which a plurality of pixels are arranged and a peripheral circuit region are formed. A recess reaching the reverse face of the P-type layer is formed in a reverse face portion of the layered substrate in the imaging region, and a reflective film is formed on at least the inner face of the recess. Light is reflected on the reverse face and the obverse face of the layered substrate.02-12-2009
20120098032NON-VACUUM METHOD FOR FABRICATION OF A PHOTOVOLTAIC ABSORBER LAYER - The present invention provides a non-vacuum method of depositing a photovoltaic absorber layer based on electrophoretic deposition of a mixture of nanoparticles with a controlled atomic ratio between the elements. The nanoparticles are first dispersed in a liquid medium to form a colloidal suspension and then electrophoretically deposited onto a substrate to form a thin film photovoltaic absorber layer. The absorber layer may be subjected to optional post-deposition treatments for photovoltaic absorption.04-26-2012
20120025265PHOTODETECTOR STRUCTURE AND METHOD OF MANUFACTURING THE SAME - A method of manufacturing a photodetector structure is provided. The method includes forming a structural layer by making a trench in a bulk silicon substrate and filling the trench with a cladding material, forming a single-crystallized silicon layer on the structural layer, and forming a germanium layer on the single-crystallized silicon layer.02-02-2012
20090146178PHOTODIODE - A photodiode in which increased sensitivity and speed are balanced. The photodiode includes: a semiconductor substrate; a plurality of active regions formed on the substrate by selective epitaxial growth; and a comb electrode provided for each of the plurality of active regions and in communication with each other to electrically connect the active regions together.06-11-2009
20110204416ORGANIC HYBRID PLANAR-NANOCRYSTALLINE BULK HETEROJUNCTIONS - A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.08-25-2011
20080258174Optical Device and Method of Fabricating the Same - Disclosed is an optical device including an optical member and a contact layer stacked on at least one of top and bottom surfaces of the optical member. The contact layer has at least one transparent conducting oxynitride (TCON) layer. The TCON consists of at least one of indium (In), tin (Sn), zinc (Zn), cadmium (Cd), gallium (Ga), aluminum (Al), magnesium (Mg), titanium (Ti), molybdenum (Mo), nickel (Ni), copper (Cu), silver (Ag), gold (Au), platinum (Pt), rhodium (Rh), iridium (Ir), ruthenium (Ru), and palladium (Pd).10-23-2008
20090146179Planar arrays of photodiodes - An apparatus includes a light detector. The light detector includes a substrate with a planar surface and an array of photodiodes located along the planar surface. Each photodiode has a sequence of different semiconductor layers stacked vertically over the planar surface. The photodiodes are electrically connected in series.06-11-2009
20100270589PHOTODETECTORS CONVERTING OPTICAL SIGNAL INTO ELECTRICAL SIGNAL - Provided is a photodetector converting an optical signal into an electrical signal. The photodetector includes: a plurality of semiconductor layers sequentially stacked on a substrate; a plurality of photoelectric conversion units formed in the semiconductor layers, respectively, and having different spectral sensitivities from each other; and buffer layers interposed between the adjacent semiconductor layers, respectively. Each of the buffer layers alleviates stress between the adjacent semiconductor layers.10-28-2010
20120068225BISPECTRAL MULTILAYER PHOTODIODE DETECTOR AND METHOD FOR MANUFACTURING SUCH A DETECTOR - A bispectral detector comprising upper and lower semiconductor layers of a first conductivity type in order to absorb a first and a second electromagnetic spectrum, separated by an intermediate layer that forms a barrier; semiconductor zones of a second conductivity type implanted in upper layer and lower layer and each implanted at least partially in the bottom of an opening that passes through upper layer and intermediate layer; and conductor elements connected to semiconductor zones. At least that part of each opening that passes through upper layer is separated from the latter by a semiconductor cap layer: whereof the concentration of dopants of the second conductivity type is greater than 1003-22-2012
20100276731Inorganic Nanocrystal Bulk Heterojunctions - A bulk heterojunction comprising an intermixed blend of fully inorganic n- and p-type particles and its method of manufacture are described. The particles are preferably nanometer-scale, spherical-shaped particles known as nanocrystals which are assembled into a densely packed three-dimensional array. The nanocrystals are preferably fabricated from a photo-active material which, in combination with the nanocrystal shape and size, can be engineered to produce a bulk heterojunction with a specific absorption spectrum. The bulk heterojunction is preferably formed by dispersing a predetermined ratio of the desired n- and p-type nanocrystals in an organic solvent and employing low-cost solution processing techniques to deposit a film having the desired thickness, relative concentration of nanocrystal types, and degree of intermixing onto a substrate. When incorporated as the active layer in optoelectronic devices such solar cells, fully inorganic bulk heterojunctions offer significant improvements in performance while maintaining the low costs associated with organic processing techniques.11-04-2010
20120104460OPTOELECTRONIC DEVICES INCLUDING HETEROJUNCTION - Embodiments of the invention generally relate to optoelectronic semiconductor devices such as photovoltaic devices including solar cells. In one aspect, an optoelectronic semiconductor device includes an absorber layer made of gallium arsenide (GaAs) and having only one type of doping. An emitter layer is located closer than the absorber layer to a back side of the device, the emitter layer made of a different material than the absorber layer and having a higher bandgap than the absorber layer. A heterojunction formed between the emitter layer and the absorber layer, and a p-n junction is formed between the emitter layer and the absorber layer and at least partially within the different material at a location offset from the heterojunction. The p-n junction causes a voltage to be generated in the device in response to the device being exposed to light at a front side of the device.05-03-2012
20080315252IMAGE SENSOR AND METHOD FOR MANUFACTURING THE SAME - An image sensor provides enhanced integration of transistor circuitry and photo diodes. The image sensor simultaneously improves resolution and sensitivity. An image sensor an a method for manufacturing prevents defects in a photo diode by adopting a vertical photo diode structure. An image sensor includes a substrate which may include at least one circuit element. A bottom electrode and a first conductive layer may be sequentially formed over the substrate. A strained intrinsic layer may be formed over the first conductive layer. A second conductive layer may be formed over the strained intrinsic layer. An upper electrode may be formed over the second conductive layer.12-25-2008
20110227131PHOTOVOLTAIC DEVICE WITH CRYSTALLINE LAYER - A method for manufacturing a multilayered structure may include forming a transparent conductive oxide layer including cadmium stannate adjacent to a substrate and annealing the structure in an annealing environment including a reducing agent at a temperature greater than 500 degrees C. to crystallize the cadmium stannate.09-22-2011
20090250722METHOD FOR FORMING A COMPOUND SEMI-CONDUCTOR THIN-FILM - A method is provided for fabricating a thin film semiconductor device. The method includes providing a plurality of raw semiconductor materials. The raw semiconductor materials undergo a pre-reacting process to form a homogeneous compound semiconductor target material. The compound semiconductor target material is deposited onto a substrate to form a thin film having a composition substantially the same as a composition of the compound semiconductor target material.10-08-2009
20100155777DIGITAL ALLOY ABSORBER FOR PHOTODETECTORS - In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.06-24-2010
20130126941SEMICONDUCTOR OPTICAL DEVICE - A semiconductor optical device includes a first clad layer, a second clad layer and an optical waveguide layer sandwiched between the first clad layer and the second clad layer, wherein the optical waveguide layer includes a first semiconductor layer, a second semiconductor layer disposed on the first semiconductor layer and extending in one direction, and a third semiconductor layer covering a top surface of the second semiconductor layer, and wherein the first semiconductor layer includes an n-type region disposed on one side of the second semiconductor layer, a p-type region disposed on the other side of the second semiconductor layer, and an i-type region disposed between the n-type region and the p-type region, and wherein the second semiconductor layer has a band gap narrower than band gaps of the first semiconductor layer and the third semiconductor layer.05-23-2013
20090321785LIGHT RECEIVING DEVICE - A light receiving device having small dark current and capable of sensing light in the wavelength range of 2.0 μm to 3.0 μm with high sensitivity is provided. The light receiving device has an InP substrate, and a light receiving layer formed by alternately stacking a larger layer formed of GaInNAsSbP mixed crystal having nitrogen content of at most 5% in 5 group, larger lattice constant than that of InP and thickness between hc and 11hc, the critical thickness hc being determined as hc=b(1−ν cos12-31-2009
20090140291PHOTO-DETECTOR FOR DETECTING IMAGE SIGNAL OF INFRARED LASER RADAR AND METHOD OF MANUFACTURING THE SAME - A photo-detector, in which metal wiring for connecting electrodes is arranged on a planarized surface and thus the metal wiring arrangement is simplified, and a method of manufacturing the same are provided. The photo-detector includes a multi-layer compound semiconductor layer formed on a compound semiconductor substrate. A number of p-n junction diodes are arranged in a regular order in a selected region of the compound semiconductor layer, and an isolation region for individually isolating the p-n junction diodes is formed by implanting impurity ions in the multi-layer compound semiconductor layer. The isolation region and the surface of the compound semiconductor layer are positioned on the same level. The isolation region may be a Fe-impurity region.06-04-2009
20100219449METHOD AND APPARATUS FOR HETEROJUNCTION BARRIER DIODE DETECTOR FOR ULTRAHIGH SENSITIVITY - The disclosure relates to a zero-bias heterojunction diode detector with varying impedance. The detector includes a substrate supporting a Schottky structure and an Ohmic contact layer. A metallic contact layer is formed over the Ohmic layer. The Schottky structure comprises a plurality of barrier layers and each of the plurality of barriers layers includes a first material and a second material. In one embodiment, the composition percentage of the second material in each of the barrier layers increases among the plurality of barrier layers from the substrate to the metal layer in order to provide a graded periodicity for the Schottky structure.09-02-2010
20100295095DEPLETION-LESS PHOTODIODE WITH SUPPRESSED DARK CURRENT AND METHOD FOR PRODUCING THE SAME - The invention relates to a photo-detector with a reduced G-R noise, which comprises a sequence of a p-type contact layer, a middle barrier layer and an n-type photon absorbing layer, wherein the middle barrier layer has an energy bandgap significantly greater than that of the photon absorbing layer, and there is no layer with a narrower energy bandgap than that in the photon-absorbing layer.11-25-2010
20100308372PHOTOELECTRIC CONVERSION DEVICE, PRODUCTION METHOD THEREOF AND IMAGING DEVICE - Provided is a photoelectric conversion device comprising an electrically conductive film, a photoelectric conversion film, and a transparent electrically conductive film, wherein the photoelectric conversion film contains a fullerene or a fullerene derivative and a photoelectric conversion material having an absorption spectrum satisfying at least either the following condition (A) or (B):12-09-2010
20100133584SEMICONDUCTOR DEVICE STRUCTURE AND METHOD OF MANUFACTURE THEREOF - A semiconductor device structure comprising a first bulk crystal semiconductor material and a second bulk crystal semiconductor material provided on a surface of the first bulk crystal semiconductor material with or without a deliberate intermediate region, the second bulk crystal semiconductor material being a Group II-VI material dissimilar to the first bulk crystal semiconductor material, wherein portions of the first and/or second bulk crystal semiconductor material have been selectively removed to produce a patterned area of reduced thickness of the first and/or second bulk crystal semiconductor and preferably to expose a patterned area of the said surface of the first and/or second bulk crystal semiconductor material.06-03-2010
20110108884PHOTOELECTRIC CONVERSION ELEMENT - Disclosed is a photoelectric conversion element comprising an anode, a cathode, and an active layer between the anode and the cathode, wherein the active layer includes an n-type semiconductor and a p-type semiconductor, and an area of a p-n junction between the n-type semiconductor and the p-type semiconductor is 100 μm05-12-2011
20110024793BULK HETEROJUNCTION SOLAR CELL AND METHOD OF MANUFACTURING THE SAME - Provided are a bulk heterojunction solar cell, including: a substrate; a rear electrode formed on a top surface of the substrate; a core layer comprising a copper indium gallium diselenide (CIGS) layer in which a CIGS powder is formed on a top surface of the rear electrode to be porous, an n-type buffer layer coated on the CIGS powder, and an n-type ZnO layer coated on the n-type buffer layer; and a grid electrode formed on a top surface of the core layer, and a method of manufacturing the same. A porous p-type semiconductor layer is formed by sintering CIGS powders, and then, the n-type semiconductor is coated on the surface of the CIGS powders by using a wet method such that a much larger junction area than a physical size of the solar cell is formed and a power output of the solar cell can be greatly increased.02-03-2011
20110024792Photovoltaic Device Using Single Wall Carbon Nanotubes and Method of Fabricating the Same - A photovoltaic device and methods for forming the same. In one embodiment, the photovoltaic device has a silicon substrate, and a film comprising a plurality of single wall carbon nanotubes disposed on the silicon substrate, wherein the plurality of single wall carbon nanotubes forms a plurality of heterojunctions with the silicon in the substrate.02-03-2011
20110031529SEMICONDUCTOR PHOTODIODE DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor photodiode device includes a semiconductor substrate, a first buffer layer containing a material different from that of the semiconductor substrate in a portion thereof, a first semiconductor layer formed above the buffer layer and having a lattice constant different from that of the semiconductor substrate, a second buffer layer formed above the first semiconductor layer and containing an element identical with that of the first semiconductor layer in a portion thereof, and a second semiconductor layer formed above the buffer layer in which a portion of the first semiconductor layer is formed of a plurality of island shape portions each surrounded with an insulating film, and the second buffer layer allows adjacent islands of the first semiconductor layer to coalesce with each other and is in contact with the insulating film.02-10-2011
20090218594SEMICONDUCTOR LIGHT RECEIVING ELEMENT - A semiconductor photosensitive element comprises: a semiconductor substrate of a first conductivity type; a first light absorption layer, a first semiconductor layer of a second conductivity type, a first semiconductor layer of the first conductivity type, a second light absorption layer, and a second semiconductor layer of a second conductivity type, arranged in this order on the semiconductor substrate; a first electrode connected to the second semiconductor layer of the second conductivity type; a second electrode connected to the semiconductor substrate; and a third electrode electrically connecting the first semiconductor layer of the first conductivity type to the first semiconductor layer of the second conductivity type. The third electrode is located outside a light detection region for detecting optical signals.09-03-2009
20110068367DOUBLE-SIDED HETEROJUNCTION SOLAR CELL BASED ON THIN EPITAXIAL SILICON - One embodiment of the present invention provides a double-sided heterojunction solar cell. The solar cell includes a lightly doped epitaxial crystalline Si (c-Si) base layer, a front-side passivation layer situated on the front side of the lightly doped epitaxial c-Si base layer, a back-side passivation layer situated on the back side of the lightly doped epitaxial c-Si base layer, a front-side emitter situated on the surface of the front-side passivation layer, a back surface field (BSF) layer situated on the surface of the back-side passivation layer, a front-side electrode, and a back-side electrode.03-24-2011
20120175676Inductively Coupled Photodetector and Method of Forming an Inductively Coupled Photodetector - A photodetector detects the absence or presence of light by detecting a change in the inductance of a coil. The magnetic field generated when a current flows through the coil passes through an electron-hole generation region. Charged particles in the electron-hole generation region come under the influence of the magnetic field, and generate eddy currents whose magnitudes depend on whether light is absent or present. The eddy currents generate a magnetic field that opposes the magnetic field generated by current flowing through the coil.07-12-2012
20110248315STRUCTURED PILLAR ELECTRODES - An electrode comprising a plurality of structured pillars dispersed across a base contact and its method of manufacture are described. In one embodiment the structured pillars are columnar structures having a circular cross-section and are dispersed across the base surface as a uniformly spaced two-dimensional array. The height, diameter, and separation of the structured pillars are preferably on the nanometer scale and, hence, electrodes comprising the pillars are identified as nanostructured pillar electrodes. The nanostructured pillars may be formed, for example, by deposition into or etching through a surface template using standard lithography processes. Structured pillar electrodes offer a number of advantages when incorporated into optoelectronic devices such as photovoltaic cells. These include improved charge collection efficiency via a reduction in the carrier transport distance and an increase in electrode-photoactive layer interface surface area. These improvements contribute to an increase in the power conversion efficiency of photovoltaic devices.10-13-2011
20090001412PHOTODETECTOR AND PRODUCTION METHOD THEREOF - The invention offers a photodetector that has an N-containing InGaAs-based absorption layer having a sensitivity in the near-infrared region and that suppresses the dark current and a production method thereof. The photodetector is provided with an InP substrate 01-01-2009
20100140661APPARATUS FOR CONVERTING OF INFRARED RADIATION INTO ELECTRICAL CURRENT - An apparatus is described for converting infrared radiation into electric current with a photodiode which comprises two semiconductor layers (06-10-2010
20110001165EPITAXIALLY-GROWN POSITION SENSITIVE DETECTOR - A unit cell for use in an imaging system may include an absorber layer of semiconductor material formed on a semiconductor substrate, at least one contact including semiconductor material formed on the semiconductor substrate and electrically coupled to the absorber layer, and a cap layer of semiconductor material formed on the semiconductor substrate and electrically coupled to and formed between the absorber layer and the at least one contact. The absorber layer may be configured to absorb incident photons such that the absorbed photons excite electrons in the absorber layer to generate a photocurrent. The at least one contact may be configured to conduct the photocurrent to one or more electrical components external to the unit cell. The cap layer may be configured to conduct the photocurrent between the absorber layer and the at least one contact.01-06-2011
20110049565OPTOELECTRONIC DEVICE AND PROCESS FOR MAKING SAME - The present invention discloses an optoelectronic device, comprising: a substrate made of a first material; a region in the substrate, the region being made of a second material different from the first material; and a photo diode formed in the region by ion implantation. The second material for example is silicon germanium (Si1-xGex) or silicon carbide (Si1-yCy), wherein 003-03-2011
20110169048InGaAsSbN PHOTODIODE ARRAYS - Embodiments of detectors made using lattice matched photoabsorbing layers are disclosed. A photodiode apparatus in accordance with one or more embodiments of the present invention comprises an indium phosphide substrate, and a photoabsorbing region comprising at least an indium gallium arsenide antimonide nitride (InGaAsSbN) layer, wherein the InGaAsSbN layer has a thickness of at least 100 nanometers and is nominally lattice-matched to the indium phosphide substrate.07-14-2011
20100012973DARK CURRENT REDUCTION FOR LARGE AREA PHOTODIODES - A method of fabricating a large area photodiode is provided. The method includes providing a substrate having a first contact layer formed thereon. Also, the method includes forming a dielectric layer on the first contact layer and patterning selective areas of the dielectric layer to form a plurality of dielectric windows. Each of the dielectric windows has an open region exposing the first contact layer. Furthermore, the method includes epitaxially growing photodiode material(s) in the dielectric windows, wherein each of the dielectric windows are individualized photodiode structures.01-21-2010
20080290368PHOTOVOLTAIC CELL WITH SHALLOW EMITTER - A photovoltaic semiconductor apparatus for use in forming a solar cell with shallow emitter is disclosed. The apparatus includes first and second adjacent oppositely doped volumes of semiconductor material forming a semiconductor heterojunction. The apparatus also includes a first passivation layer of material on the front side, the first passivation layer having a first outer surface and a plurality of openings therethrough defining corresponding unpassivated areas of the front side that are unpassivated by the first passivation layer. The apparatus further includes a first conductive anti-reflective coating on the first outer surface of the passivation layer and on the corresponding unpassivated areas of the front side. A back side surface of the apparatus may be finished in various ways including forming a passivation layer with openings as on the front side, forming a third doped volume adjacent the second doped volume, or forming a layer of aluminum with laser-fired contacts on a passivation layer on the back side surface. The apparatus may further includes second conductive coating on the back side surface. The apparatus further includes first and second electrodes for collecting electric current correspondingly from front and back sides of photovoltaic apparatus.11-27-2008
20120043584Low-noise large-area photoreceivers with low capacitance photodiodes - A quad photoreceiver includes a low capacitance quad InGaAs p-i-n photodiode structure formed on an InP (100) substrate. The photodiode includes a substrate providing a buffer layer having a metal contact on its bottom portion serving as a common cathode for receiving a bias voltage, and successive layers deposited on its top portion, the first layer being drift layer, the second being an absorption layer, the third being a cap layer divided into four quarter pie shaped sections spaced apart, with metal contacts being deposited on outermost top portions of each section to provide output terminals, the top portions being active regions for detecting light. Four transimpedance amplifiers have input terminals electrically connected to individual output terminals of each p-i-n photodiode.02-23-2012
20080237633Radiation Detector - The invention specifies a radiation detector for detecting radiation (10-02-2008
20100096665InGaAsSbN PHOTODIODE ARRAYS - Embodiments of detectors made using lattice matched photoabsorbing layers are disclosed. A photodiode apparatus in accordance with one or more embodiments of the present invention comprises an indium phosphide substrate, and a photoabsorbing region comprising at least an indium gallium arsenide antimonide nitride (InGaAsSbN) layer, wherein the InGaAsSbN layer has a thickness of at least 100 nanometers and is nominally lattice-matched to the indium phosphide substrate.04-22-2010
20100078680SEMICONDUCTOR SENSOR STRUCTURES WITH REDUCED DISLOCATION DEFECT DENSITIES AND RELATED METHODS FOR THE SAME - Non-silicon based semiconductor devices are integrated into silicon fabrication processes by using aspect-ratio-trapping materials. Non-silicon light-sensing devices in a least a portion of a crystalline material can output electrons generated by light absorption therein. Exemplary light-sensing devices can have relatively large micron dimensions. As an exemplary application, complementary-metal-oxide-semiconductor photodetectors are formed on a silicon substrate by incorporating an aspect-ratio-trapping technique.04-01-2010
20120175677PHOTOCELL - A photocell which operates at multiple wavelengths for efficient power generation from broadband incident radiation. According to a preferred embodiment, the photocell is a multi-layer device that includes a first outer layer, a middle layer and an inner layer disposed on a substrate. All three layers are formed from II-VI semiconductor layers. The device is arranged such that the outer layer has a high band gap, the middle layer has a band gap which is less than half the band gap of the outer layer and the inner layer has a band gap which is less than half that of the substrate. Thus, there is a step change in band gap between various layers.07-12-2012
20120074463SEMICONDUCTOR WAFER, PHOTOELECTRIC CONVERSION DEVICE, METHOD OF PRODUCING SEMICONDUCTOR WAFER, AND METHOD OF PRODUCING PHOTOELECTRIC CONVERSION DEVICE - Provided is a semiconductor wafer including: a base wafer containing silicon; an inhibitor that has been formed on the base wafer, has an aperture in which a surface of the base wafer is exposed, and inhibits crystal growth; and a light-absorptive structure that has been formed inside the aperture in contact with a surface of the base wafer exposed inside the aperture, where the light-absorptive structure includes a first semiconductor and a second semiconductor.03-29-2012
20120074462LONG WAVELENGTH INFRARED SENSOR MATERIALS AND METHOD OF SYNTHESIS THEREOF - A dilute nitrogen alloy of InN03-29-2012
20120313142IMAGING DEVICE, METHOD FOR FABRICATING IMAGING DEVICE, AND IMAGING APPARATUS - According to an aspect of the invention, an imaging device includes a plurality of photoelectric conversion elements and a read-out portion. The photoelectric conversion elements are arranged above a substrate. The read-out portion reads out signal corresponding to charges which are generated from each of the photoelectric conversion elements. Each of the photoelectric conversion elements includes a first electrode that collects the charge, a second electrode that is disposed opposite to the first electrode, a photoelectric conversion layer that generates the charges and disposed between the first electrode and the second electrode, and an electron blocking layer that is disposed between the first electrode and the photoelectric conversion layer. Distance between the first electrodes of adjacent photoelectric conversion elements is 250 nm or smaller. Each of the electron blocking layers has a change in surface potential of −1 to 3 eV from a first face to a second face.12-13-2012
20120187449SEMICONDUCTOR WAFER, SEMICONDUCTOR BAR, METHOD OF MANUFACTURING SEMICONDUCTOR WAFER, METHOD OF MANUFACTURING SEMICONDUCTOR BAR, AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - A semiconductor wafer has a plurality of optical semiconductor devices (namely, semiconductor lasers) which are formed from epitaxially grown layers and arranged across the surface of the semiconductor wafer. The InGaAs epitaxial layer of the semiconductor wafer has an opening (or groove) which continuously extends along and between the plurality of optical semiconductor devices, and which exposes the layer underlying the InGaAs epitaxial layer to at least the layer overlying the InGaAs epitaxial layer. The semiconductor wafer may be scribed along this opening to form a vertically extending crack therein.07-26-2012
20110037097EXTENDED WAVELENGTH DIGITAL ALLOY NBN DETECTOR - A strain-balanced photodetector is provided for detecting infrared light at an extended cutoff wavelength in the range of 4.5 μm or more. An InAsSb absorber layer has an Sb content is grown in a lattice-mismatched condition to a GaSb substrate, and a plurality of GaAs strain-compensating layers are interspersed within the absorber layer to balance the strain of the absorber layer due to the lattice mismatch. The strain-compensation layers allow the absorber to achieve a thickness exhibiting sufficient absorption efficiency while extending the cutoff wavelength beyond that possible in a lattice-matched state. Additionally, the strain-compensation layers are sufficiently thin to be substantially quantum-mechanically transparent such that they do not substantially affect the transmission efficiency of the absorber. The photodetector is preferably formed as a majority carrier filter photodetector exhibiting minimal dark current, and may be provided individually or in a focal plane array.02-17-2011
20080217651Photodetector - A photodetector is provided. The photodetector includes a base piece; a germanium layer mounted on the base piece and including a first area and a second area; a first metal electrode mounted on the first area; an insulation layer mounted on the second area; and a second metal electrode mounted on the insulation layer.09-11-2008
20130092980PHOTODETECTOR STRUCTURES INCLUDING CROSS-SECTIONAL WAVEGUIDE BOUNDARIES - A photodetector structure can include a silicon substrate and a silicon layer on the silicon substrate, that can include a first portion of an optical transmission medium that further includes a silicon cross-sectional transmission face. A germanium layer can be on the silicon substrate and can include a second portion of the optical transmission medium, adjacent to the first portion can include a germanium cross-sectional transmission face butt-coupled to the silicon cross-sectional transmission face.04-18-2013
20100308371Tetra-Lateral Position Sensing Detector - The present invention is directed to a position sensing detector made of a photodiode having a semi insulating substrate layer; a buffered layer that is formed directly atop the semi-insulating substrate layer, an absorption layer that is formed directly atop the buffered layer substrate layer, a cap layer that is formed directly atop the absorption layer, a plurality of cathode electrodes electrically coupled to the buffered layer or directly to the cap layer, and at least one anode electrode electrically coupled to a p-type region in the cap layer. The position sensing detector has a photo-response non-uniformity of less than 2% and a position detection error of less than 10 μm across the active area.12-09-2010
20120273837SOLID STATE IMAGING DEVICE - According to one embodiment, a solid state imaging device includes a photoelectric converting portion including a semiconductor region and a semiconductor film. The semiconductor region has a first region and a second region. The first region is of a second conductivity type. The first region is provided in a semiconductor substrate. The second region is of a first conductivity type. The first conductivity type is a different conductivity type from the second conductivity type. The second region is provided on the first region. The semiconductor film is of the second conductivity type. The semiconductor film is provided on the semiconductor region. An absorption coefficient of a material of the semiconductor film to a visible light is higher than an absorption coefficient of a material of the semiconductor substrate to the visible light. A thickness of the semiconductor film is smaller than a thickness of the semiconductor region.11-01-2012
20110303949SEMICONDUCTOR LIGHT-RECEIVING ELEMENT - A semiconductor light-detecting element includes: a semiconductor substrate of a first conductivity type; a light absorption recoupling layer of the first conductivity type, a multilayer reflection film of the first conductivity type, a light absorbing layer, and a window layer, which are laminated, in that order, on the semiconductor substrate; a doped region of a second conductivity type in part of the window layer; a first electrode connected to the doped region; and a second electrode connected to an underside of the semiconductor substrate. The band gap energy of the window layer is larger than the band gap energy of the light absorbing layer, and the band gap energy of the light absorption recoupling layer is smaller than the band gap energy of the semiconductor substrate.12-15-2011
20110309410REDUCED DARK CURRENT PHOTODETECTOR - A photo-detector comprising: a photo absorbing layer comprising an n-doped semiconductor exhibiting a valence band energy level; a barrier layer, a first side of the barrier layer adjacent a first side of the photo absorbing layer, the barrier layer exhibiting a valence band energy level substantially equal to the valence band energy level of the doped semiconductor of the photo absorbing layer; and a contact area comprising a doped semiconductor, the contact area being adjacent a second side of the barrier layer opposing the first side, the barrier layer exhibiting a thickness and a conductance band gap sufficient to prevent tunneling of majority carriers from the photo absorbing layer to the contact area and block the flow of thermalized majority carriers from the photo absorbing layer to the contact area. Alternatively, a p-doped semiconductor is utilized, and conductance band energy levels of the barrier and photo absorbing layers are equalized.12-22-2011

Patent applications in class Light responsive structure

Patent applications in all subclasses Light responsive structure