Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


With heterojunction

Subclass of:

257 - Active solid-state devices (e.g., transistors, solid-state diodes)

257079000 - INCOHERENT LIGHT EMITTER STRUCTURE

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
257096000 Plural heterojunctions in same device 53
257095000 With contoured external surface (e.g., dome shape to facilitate light emission) 17
Entries
DocumentTitleDate
20110198634SEMICONDUCTOR LIGHT-EMITTING APPARATUS AND METHOD OF MANUFACTURING THE SAME - A semiconductor light-emitting apparatus that has high luminous efficiency and a high breakdown voltage as well as reduced breakdown voltage variation among lots. The semiconductor light-emitting apparatus includes a first clad layer and a second clad layer. An average dopant concentration of the second clad layer is lower than that of the first clad layer. The light-emitting apparatus also includes an active layer having an average dopant concentration of 2×1008-18-2011
20110204395HYBRID LIGHT EMITTING DIODE CHIP AND LIGHT EMITTING DIODE DEVICE HAVING THE SAME, AND MANUFACTURING METHOD THEREOF - Disclosed is a hybrid LED chip: comprising a first clad layer of P-type semiconductor material; a second clad layer of N-type semiconductor material; an active layer between the first and second clad layers; a first bonding metal layer on the first clad layer; a second bonding metal layer on the second clad layer; a ceramic substrate positioned on and bonded to the first and second bonding metal layers, wherein the ceramic substrate includes at least one first via hole to expose the first bonding metal layer, and at least one second via hole to expose the second bonding metal layer; a P-type electrode formed by burying a conductive material in the at least one first via hole; and an N-type electrode formed by burying a conductive material in the at least one second via hole, wherein the first and second via holes in the ceramic substrate are formed in cylindrical shapes, and the circumferential surface of each cylindrical shape is provided with an intaglio pattern.08-25-2011
20090121240Nitride Semiconductor Device and Method for Manufacturing the Same - There is provided a nitride semiconductor device with low leakage current and high efficiency in which, while a zinc oxide based compound such as Mg05-14-2009
20080258159METHOD FOR PREPARING METAL PHOSPHIDE NANOCRYSTAL FROM PHOSPHITE COMPOUND AND METHOD FOR PASSIVATING NANOCRYSTAL CORE WITH THE SAME - Disclosed herein is a method for the preparation of metal phosphide nanocrystals using a phosphite compound as a phosphorous precursor. More specifically, disclosed herein is a method for preparing metal phosphide nanocrystals by reacting a metal precursor with a phosphite compound in a solvent. A method is also provided for passivating a metal phosphide layer on the surface of a nanocrystal core by reacting a metal precursor with a phosphite compound in a solvent. The metal phosphide nanocrystals have uniform particle sizes and various shapes.10-23-2008
20100078660Group III Nitride compound semiconductor light-emitting device and method for producing the same - An n-type layer of a light-emitting device has a structure in which a first n-type layer, a second n-type layer and a third n-type layer are sequentially laminated in this order on a sapphire substrate, and an n-electrode composed of V/Al is formed on the second n-type layer. The first n-type layer and the second n-type layer are n-GaN, and the third n-type layer is n-InGaN. The n-type impurity concentration of the second n-type layer is higher than that of the first n-type layer and the third n-type layer.04-01-2010
20100117104INTEGRATED SEMICONDUCTOR OPTICAL DEVICE AND OPTICAL APPARATUS USING THE SAME - In an integrated semiconductor optical device, a first cladding layer is made of a first conductivity type semiconductor. A first active layer for forming a first semiconductor optical device is provided on the first cladding layer in a first area of a principal surface of a substrate. A second active layer for forming a second semiconductor optical device is provided on the first cladding layer in a second area of the principal surface. A second cladding layer made of a second conductivity type semiconductor is provided on the second active layer. A third cladding layer made of a first conductivity type semiconductor is provided on the first active layer. A tunnel junction region is provided between the first active layer and the third cladding layer. The first active layer is coupled to the second active layer by butt joint. The second and third cladding layers form a p-n junction.05-13-2010
20130032834LED HAVING A LOW DEFECT N-TYPE LAYER THAT HAS GROWN ON A SILICON SUBSTRATE - A vertical GaN-based blue LED has an n-type GaN layer that was grown directly on Low Resistance Layer (LRL) that in turn was grown over a silicon substrate. In one example, the LRL is a low sheet resistance GaN/AlGaN superlattice having periods that are less than 300 nm thick. Growing the n-type GaN layer on the superlattice reduces lattice defect density in the n-type layer. After the epitaxial layers of the LED are formed, a conductive carrier is wafer bonded to the structure. The silicon substrate is then removed. Electrodes are added and the structure is singulated to form finished LED devices. In some examples, some or all of the LRL remains in the completed LED device such that the LRL also serves a current spreading function. In other examples, the LRL is entirely removed so that no portion of the LRL is present in the completed LED device.02-07-2013
20130032835Device with Inverted Large Scale Light Extraction Structures - An interface including roughness components for improving the propagation of radiation through the interface is provided. The interface includes a first profiled surface of a first layer comprising a set of large roughness components providing a first variation of the first profiled surface having a first characteristic scale and a second profiled surface of a second layer comprising a set of small roughness components providing a second variation of the second profiled surface having a second characteristic scale. The first characteristic scale is approximately an order of magnitude larger than the second characteristic scale. The surfaces can be bonded together using a bonding material, and a filler material also can be present in the interface.02-07-2013
20130075770Method and System for Epitaxy Processes on Miscut Bulk Substrates - A method for providing (Al,Ga,In)N thin films on Ga-face c-plane (Al,Ga,In)N substrates using c-plane surfaces with a miscut greater than at least 0.35 degrees toward the m-direction. Light emitting devices are formed on the smooth (Al,Ga,In)N thin films. Devices fabricated on the smooth surfaces exhibit improved performance.03-28-2013
20100044729WARM-WHITE LIGHT EMTITTING DIODE AND ITS HALIDE PHOSPHOR POWDER - The invention relates to a halide phosphor powder for warm-white light emitting diode, which is a kind of low-color-temperature phosphor powder of halide nitride based on garnet of rare earth oxides, uses cerium as activating agent and is characterized in that chloride (Cl02-25-2010
20100096650NITRIDE SEMICONDUCTOR LIGHT EMITTING ELEMENT - Provided is a nitride semiconductor light emitting element capable of producing an emission spectrum having two peaks with stable ratio of emission peak intensity. The nitride semiconductor light emitting 04-22-2010
20090159907TEXTURED LIGHT EMITTING DIODES - A high fill factor textured light emitting diode structure comprises: a first textured cladding and contact layer (06-25-2009
20100109032SEMICONDUCTOR LIGHT EMITTING DEVICE - Disclosed are a semiconductor light emitting device. The semiconductor light emitting device includes a plurality of compound semiconductor layers including a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer; a pad under the plurality of compound semiconductor layers; an electrode layer on the plurality of compound semiconductor layers; and a shock supporting member disposed on the plurality of compound semiconductor layers and corresponding to the pad.05-06-2010
20080290355Warm white LED and its phosphor that provides orange-yellow radiation - A phosphor providing orange-yellow radiation for use in warm white LEDs (light emitting diodes) is disclosed to include a substrate prepared from a rear-earth garnet and an activating agent prepared from cerium. The phosphor has a constant radiation maximum value under excitement of InGaN, and the total chemical stoichiometric equation of the phosphor substrate is (ΣLn)11-27-2008
20100133562High Brightness LED Utilizing a Roughened Active Layer and Conformal Cladding - A light emitting device and method for making the same are disclosed. The device includes an active layer disposed between first and second layers. The first layer has top and bottom surfaces. The top surface includes a first material of a first conductivity type, including a plurality of pits in the substantially planar surface. The active layer overlies the top surface of the first layer and conforms to the top surface, the active layer generating light characterized by a wavelength when holes and electrons recombine therein. The second layer includes a second material of a second conductivity type, the second layer overlying the active layer and conforming to the active layer. The device can be constructed on a substrate having a lattice constant sufficiently different from that of the first material to give rise to dislocations in the first layer that are used to form the pits.06-03-2010
20090315047Warm white light-emitting diode and thin film and its red phosphor powder - The invention discloses a red phosphor powder which is based on strontium (Sr) aluminiate and using europium (Eu) as exciting agent, and is characterized by that its chemical equivalence formula is (SrO)12-24-2009
20130056771SEMICONDUCTOR LIGHT EMITTING DEVICE - Disclosed is a semiconductor light emitting device. The semiconductor light emitting device comprises a first conductive semiconductor layer, an active layer under the first conductive semiconductor layer, a second conductive semiconductor layer under the active layer, a second electrode layer under the second conductive semiconductor layer, and a transmissive conductive layer at least one part between the second conductive semiconductor layer and the second electrode layer.03-07-2013
20130056770Patterned Substrate Design for Layer Growth - A patterned surface for improving the growth of semiconductor layers, such as group III nitride-based semiconductor layers, is provided. The patterned surface can include a set of substantially flat top surfaces and a plurality of openings. Each substantially flat top surface can have a root mean square roughness less than approximately 0.5 nanometers, and the openings can have a characteristic size between approximately 0.1 micron and five microns.03-07-2013
20090072253SEMICONDUCTOR LIGHT EMITTING DEVICE, METHOD FOR MANUFACTURING SAME, AND METHOD FOR FORMING UNDERLYING LAYER - Disclosed herein is a semiconductor light emitting device including: (A) an underlying layer configured to be formed on a major surface of a substrate having a {100} plane as the major surface; (B) a light emitting part; and (C) a current block layer, wherein the underlying layer is composed of a III-V compound semiconductor and is formed on the major surface of the substrate by epitaxial growth, the underlying layer extends in parallel to a <110> direction of the substrate, a sectional shape of the underlying layer obtained when the underlying layer is cut along a virtual plane perpendicular to the <110> direction of the substrate is a trapezoid, and oblique surfaces of the underlying layer corresponding to two oblique sides of the trapezoid are {111}B planes, and the top surface of the underlying layer corresponding to an upper side of the trapezoid is a {100} plane.03-19-2009
20110012146SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - There is provided a light-emitting device including a second electrode which exhibits a stable behavior in a process for manufacturing a light-emitting device or during an operation of a light-emitting device. A light-emitting device includes a first compound semiconductor layer 01-20-2011
20110012145GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE - There is provided a GaN-based semiconductor light emitting device including: a substrate; and an n-type GaN-based semiconductor layer, an active layer and a p-type GaN-based semiconductor layer sequentially deposited on the substrate, wherein the active layer includes: a first barrier layer including Al01-20-2011
20090095965NITRIDE SEMICONDUCTOR LIGHT EMITTING DIODE - A nitride semiconductor light emitting diode (LED) comprises an n-type nitride semiconductor layer; an electron emitting layer formed on the n-type nitride semiconductor layer, the electron emitting layer being composed of a nitride semiconductor layer including a transition element of group III; an active layer formed on the electron emitting layer; and a p-type nitride semiconductor layer formed on the active layer.04-16-2009
20100171132LIGHT EMITTING DEVICE AND METHOD FOR FABRICATING THE SAME - A light-emitting device is provided. The light-emitting device comprises a light-emitting layer having a first quaternary clad layer with a first material having a first composition ratio and a second material having a second composition ratio, a second quaternary clad layer with a third material having a third composition ratio and a fourth material having a fourth composition ratio, and an activation layer contacted with first clad layer and the second clad layer between them; a first electrode electrically contacted with the light-emitting layer; and, a second electrode electrically contacted with the light-emitting layer, wherein the first quaternary clad layer and the second quaternary clad layer have a predetermined energy band gap by controlling the first, second, third and fourth composition ratio, for removing the piezoelectric field and spontaneous polarization applied to the activation layer.07-08-2010
20110284890LIGHT EMITTING DEVICE GROWN ON A RELAXED LAYER - In some embodiments of the invention, a device includes a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, and a semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region. The second semiconductor layer is disposed between the first semiconductor layer and the third semiconductor layer. The third semiconductor layer is disposed between the second semiconductor layer and the light emitting layer. A difference between the in-plane lattice constant of the first semiconductor layer and the bulk lattice constant of the third semiconductor layer is no more than 1%. A difference between the in-plane lattice constant of the first semiconductor layer and the bulk lattice constant of the second semiconductor layer is at least 1%. The third semiconductor layer is at least partially relaxed.11-24-2011
20090101925Light Emitting Element and Method for Manufacturing the Same - A light emitting element including: a growth substrate, which has, as a main plane, a plane on which cleavage directions are orthogonal to each other; a first nitride semiconductor layer formed on the main plane of the growth substrate; an active layer formed on the first nitride semiconductor layer; and a second nitride semiconductor layer formed on the active layer. An angle formed on the main plane by the side of the growth substrate and one of the cleavage directions is ranging approximately from 30° to 60°.04-23-2009
20120267655LIGHT-EMITTING DEVICE WITH LOW FORWARD VOLTAGE AND METHOD FOR FABRICATING THE SAME - A light emitting device with reduced forward voltage V10-25-2012
20120025233LIGHT EMITTING DEVICE - According to one embodiment, a light emitting device includes a light emitting layer, a first electrode, a first and second layers, and a cladding layer. The first layer has a first impurity concentration of a first conductivity type, and allows a carrier to be diffused in the light emitting layer. The second layer has a second impurity concentration of the first conductivity type higher than the first impurity concentration, and includes a first and second surfaces. The first surface is with the first layer. The second surface has a formation region and a non-formation region of the first electrode. The non-formation region includes convex structures with an average pitch not more than a wavelength of the emission light. The cladding layer is provided between the first layer and the light emitting layer and has an impurity concentration of the first conductivity type.02-02-2012
20080272382Light emitting device and method of manufacturing the same - A light emitting device and a method of manufacturing the same are disclosed. The light emitting device includes a buffer layer formed on a substrate, a nitride semiconductor layer including a first semiconductor layer, an active layer, and a second semiconductor layer, which are sequentially stacked on the buffer layer, a portion of the first semiconductor layer being exposed to the outside by performing mesa etching from the second semiconductor layer to the portion of the first semiconductor layer, and at least one nanocone formed on the second semiconductor layer.11-06-2008
20090315046GROUP-III NITRIDE COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE, METHOD OF MANUFACTURING GROUP-III NITRIDE COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE, AND LAMP - The present invention provides a group-III nitride compound semiconductor light-emitting device having high productivity and good emission characteristics, a method of manufacturing a group-III nitride compound semiconductor light-emitting device, and a lamp. A method of manufacturing a group-III nitride compound semiconductor light-emitting device includes a step of forming on a substrate 11 a semiconductor layer made of a group-III nitride compound semiconductor including Ga as a group-III element using a sputtering method. The substrate 11 and a sputtering target are arranged so as to face each other, and a gap between the substrate 11 and the sputtering target is in the range of 20 to 100 mm. In addition, when the semiconductor layer is formed by the sputtering method, a bias of more than 0.1 W/cm12-24-2009
20090146162FABRICATION OF NONPOLAR INDIUM GALLIUM NITRIDE THIN FILMS, HETEROSTRUCTURES AND DEVICES BY METALORGANIC CHEMICAL VAPOR DEPOSITION - A method for the fabrication of nonpolar indium gallium nitride (InGaN) films as well as nonpolar InGaN-containing device structures using metalorganic chemical vapor deposition (MOVCD). The method is used to fabricate nonpolar InGaN/GaN violet and near-ultraviolet light emitting diodes and laser diodes.06-11-2009
20090146160GALLIUM NITRIDE SEMICONDUCTOR LIGHT EMITTING ELEMENT - Provided is a gallium nitride semiconductor light emitting element capable of stabilizing a drive voltage by reducing carrier depletion attributable to spontaneous polarization and piezo polarization generated at the interface between an AlGaN semiconductor layer and a GaN semiconductor layer.06-11-2009
20090146161GROUP III NITRIDE COMPOUND SEMICONDUCTOR STACKED STRUCTURE - An object of the present invention is to obtain a group III nitride compound semiconductor stacked structure where a group III nitride compound semiconductor layer having good crystallinity is stably stacked on a dissimilar substrate.06-11-2009
20110147771LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE AND LIGHTING SYSTEM - Disclosed are a light emitting device, a light emitting device package, and a lighting system. The light emitting device includes an oxide including gallium aluminum over a gallium oxide substrate, a nitride including gallium aluminum over the oxide including gallium aluminum, and a light emitting structure over the nitride including gallium aluminum.06-23-2011
20100127285SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device is provided. The semiconductor light emitting device comprises a conductive supporting member, an N-type semiconductor layer on the conductive supporting member; an active layer on the N-type semiconductor layer, a P-type semiconductor layer on the active layer, an ohmic contact layer on the P-type semiconductor layer, and an electrode on the ohmic contact layer.05-27-2010
20100123149SEMICONDUCTOR LIGHT EMITTING DEVICE - Disclosed is a semiconductor light emitting device. The semiconductor light emitting device includes a plurality of compound semiconductor layers including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; a dot type conductive layer on the compound semiconductor layers; and an electrode layer on the dot type conductive layer.05-20-2010
20110193115LIGHT EMITTING DIODES AND ASSOCIATED METHODS OF MANUFACTURING - Light emitting diodes and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode (LED) includes a substrate, a semiconductor material carried by the substrate, and an active region proximate to the semiconductor material. The semiconductor material has a first surface proximate to the substrate and a second surface opposite the first surface. The second surface of the semiconductor material is generally non-planar, and the active region generally conforms to the non-planar second surface of the semiconductor material.08-11-2011
20100123148SEMICONDUCTOR LIGHT EMITTING DEVICE - Provided are a semiconductor light emitting device and a method for manufacturing the same. The semiconductor light emitting device comprises a plurality of compound semiconductor layers, a first electrode, a second electrode layer, and a conductive support member. The plurality of compound semiconductor layers comprises a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer. The first electrode is formed under the compound semiconductor layer. The second electrode layer is formed on the compound semiconductor layer. The second electrode layer has an unevenness. The conductive support member is formed on the second electrode layer.05-20-2010
20120292649SEMICONDUCTOR LIGHT EMITTING DEVICE, WAFER, AND METHOD FOR MANUFACTURING NITRIDE SEMICONDUCTOR CRYSTAL LAYER - According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, a light emitting layer, a second semiconductor layer, and a low refractive index layer. The first semiconductor layer has a first major surface and a second major surface being opposite to the first major surface. The light emitting layer has an active layer provided on the second major surface. The second semiconductor layer is provided on the light emitting layer. The low refractive index layer covers partially the first major surface and has a refractive index lower than the refractive index of the first semiconductor layer.11-22-2012
20090309111SEMICONDUCTOR LIGHT EMITTING DEVICE INCLUDING GRADED REGION - One or more regions of graded composition are included in a III-P light emitting device, to reduce the V12-17-2009
20100084669LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME - A light emitting device and a method for manufacturing the same are provided. The light emitting device includes: a first substrate having electrical conductivity; a foundation layer; a bonded metal layer configured to bond one major surface of the foundation layer to the first substrate; a mask layer provided on the other major surface of the foundation layer, having a window, and made of an insulator; and a multilayer body selectively provided on the foundation layer exposed to the window, and including a light emitting layer.04-08-2010
20090256165METHOD OF GROWING AN ACTIVE REGION IN A SEMICONDUCTOR DEVICE USING MOLECULAR BEAM EPITAXY - A method of making an (Al, Ga, In)N semiconductor device having a substrate and an active region is provided. The method includes growing the active region using a combination of (i) plasma-assisted molecular beam epitaxy; and (ii) molecular beam epitaxy with a gas including nitrogen-containing molecules in which the nitrogen-containing molecules dissociate at a surface of the substrate at a temperature which the active region is grown.10-15-2009
20100078659Light-emitting element - A light-emitting element includes a semiconductor laminated structure including a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type different from the first conductivity type and an active layer sandwiched by the first and second semiconductor layers, a first electrode on one surface side of the semiconductor laminated structure, a conductive reflective layer on an other surface side of the semiconductor laminated structure for reflecting light emitted from the active layer, a contact portion partially formed between the semiconductor laminated structure and the conductive reflective layer and being in ohmic contact with the semiconductor laminated structure, and a second electrode on a part of a surface of the conductive reflective layer on the semiconductor laminated structure without contacting the semiconductor laminated structure for feeding current to the contact portion.04-01-2010
20110062466AlxGa(1-x)As Substrate, Epitaxial Wafer for Infrared LEDs, Infrared LED, Method of Manufacturing AlxGa(1-x)As Substrate, Method of Manufacturing Epitaxial Wafer for Infrared LEDs, and Method of Manufacturing Infrared LEDs03-17-2011
20090250712LIGHT EMITTING DEVICE - A light emitting device is provided, which includes a light-emitting structure and a magnetic material. The light-emitting structure has an exciting binding energy of a bandgap. The magnetic material is coupled with the light-emitting structure to produce a magnetic field in the light-emitting structure. The exciting binding energy may be higher than about 25.8 meV at room temperature.10-08-2009
20090090922METHOD OF MANUFACTURING GALLIUM NITRIDE-BASED COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE, GALLIUM NITRIDE-BASED COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE, AND LAMP - Provided are a method of manufacturing a gallium nitride-based compound semiconductor light-emitting device with a low driving voltage (Vf) and high light outcoupling efficiency, a gallium nitride-based compound semiconductor light-emitting device, and a lamp. In the method of manufacturing the gallium nitride-based compound semiconductor light-emitting device, a transparent conductive oxide film 04-09-2009
20100006875WHITE LIGHT-EMITTING DIODE AND ITS LIGHT CONVERSION LAYER - The present invention discloses a white light-emitting diode based on In—Ga—N nitride heterojunction is characterized by that the light-emitting diode has primary blue light emission of a specific wavelength and a light conversion layer so as to generate white light. Further, the present invention also discloses a light conversion layer and its fluorine oxygen garnet phosphor powder.01-14-2010
20090090921NITRIDE SEMICONDUCTOR LIGHT EMITTING DIODE - A nitride semiconductor light emitting diode (LED) comprises an n-type nitride semiconductor layer; an electron emitting layer formed on the n-type nitride semiconductor layer, the electron emitting layer being composed of a nitride semiconductor layer including a transition element of group III; an active layer formed on the electron emitting layer; and a p-type nitride semiconductor layer formed on the active layer.04-09-2009
20090189167LIGHT EMITTING DEVICE WITH HIGH LIGHT EXTRACTION EFFICIENCY - An exemplary solid-state light emitting device includes a substrate, a light emitting structure, a first electrode and a second electrode have opposite polarities with each other. The light emitting structure includes a first-type semiconductor layer, a second-type semiconductor layer and an active layer between the first-type semiconductor layer and the second-type semiconductor layer. The first electrode electrically is connected with the first-type semiconductor layer. The first electrode includes a first contact pad and a current induced electrode spaced apart and insulated from each other. The second electrode has an opposite polarity with respect to the first electrode. The second electrode includes a transparent conductive layer formed on and electrically connected with the second-type semiconductor layer and a metallic conductive layer formed on the transparent conductive layer and in electrical contact therewith.07-30-2009
20110198633SEMICONDUCTOR LIGHT EMITTING DEVICE - According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, and a light emitting portion. The light emitting portion is provided between the semiconductor layers and includes barrier layers and well layers alternately stacked. An n-side end well layer which is closest to the n-type semiconductor layer contains In08-18-2011
20100123147SEMICONDUCTOR LIGHT EMITTING DEVICE - Disclosed is a semiconductor light emitting device. The semiconductor light emitting device includes a light emitting structure including a plurality of compound semiconductor layers including a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer; an electrode layer on the plurality of compound semiconductor layers; and a channel layer including protrusion and formed along a peripheral portion of an upper surface of the plurality of compound semiconductor layers.05-20-2010
20090272993SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device comprises a first nitride semiconductor layer comprising a plurality of concave portions, a reflector in at least one of the concave portions of the first nitride semiconductor layer, and a second nitride semiconductor layer on the first nitride semiconductor layer.11-05-2009
20090272992Semiconductor Light-Emitting Device and Process for Producing the Same - A semiconductor light emitting device of the present invention includes a substrate (11-05-2009
20090283782Nitride Semiconductor Device - There is provided a nitride semiconductor light emitting device having a vertical type device in which a pair of electrodes is formed on both sides of a chip, by using a semiconductor substrate, and having high luminous efficiency by using Mg11-19-2009
20090267091SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device includes a substrate 10-29-2009
20090050914SEMICONDUCTOR LIGHT-EMITTING DEVICE WITH SELECTIVELY FORMED BUFFER LAYER ON SUBSTRATE - The invention discloses a semiconductor light-emitting device and a method of fabricating the same. The semiconductor light-emitting device according to the invention includes a substrate, a buffer layer, a multi-layer structure, and an ohmic electrode structure. The buffer layer is selectively formed on an upper surface of the substrate such that the upper surface of the substrate is partially exposed. The multi-layer structure is formed to overlay the buffer layer and the exposed upper surface of the substrate. The multi-layer structure includes a light-emitting region. The buffer layer assists a bottom-most layer of the multi-layer structure in lateral and vertical epitaxial growth. The ohmic electrode structure is formed on the multi-layer structure.02-26-2009
20090008657Semiconductor light-emitting device with low-density defects and method of fabricating the same - A semiconductor light-emitting device and a method of fabricating the same are provided. The semiconductor light-emitting device includes a substrate, a multi-layer structure and an ohmic electrode structure. The substrate has a first upper surface and a plurality of first recesses formed in the first upper surface. The multi-layer structure is formed on the first upper surface of the substrate and includes a light-emitting region. A bottom-most layer of the multi-layer structure is formed on the first upper surface of the substrate. The bottom-most layer has a second upper surface and a plurality of second recesses formed in the second upper surface. The second recesses project on the first upper surface. The ohmic electrode structure is formed on the multi-layer structure.01-08-2009
20090261361III-NITRIDE LIGHT EMITTING DEVICE WITH DOUBLE HETEROSTRUCTURE LIGHT EMMITTING REGION - A III-nitride light emitting layer is disposed between an n-type region and a p-type region in a double heterostructure. At least a portion of the III-nitride light emitting layer has a graded composition.10-22-2009
20090166650LIGHT-EMITTING DEVICE OF GROUP III NITRIDE-BASED SEMICONDUCTOR AND MANUFACTURING METHOD THEREOF - A light-emitting device of Group III nitride-based semiconductor comprises a substrate, a first Group III nitride layer and a second Group III nitride layer. The substrate comprises a first surface and a plurality of convex portions protruding from the first surface. Each convex portion is surrounded by a part of the first surface. The first Group III nitride layer is jointly formed by lateral growth starting at top surfaces of the convex portions. The second Group III nitride layer is formed on the first surface, wherein a thickness of the second Group III nitride layer is less than a height of the convex portion. Moreover, the first Group III nitride layer and the second Group III nitride layer are made of a same material.07-02-2009
20120292648NITRIDE SEMICONDUCTOR DEVICE, NITRIDE SEMICONDUCTOR WAFER, AND METHOD FOR MANUFACTURING NITRIDE SEMICONDUCTOR LAYER - According to one embodiment, a nitride semiconductor device includes a foundation layer and the functional layer. The foundation layer is formed on an amorphous layer and includes aluminum nitride. The functional layer is formed on the foundation layer and includes a nitride semiconductor.11-22-2012
20100102338III-Nitride Semiconductor Light Emitting Device - The present disclosure relates to a III-nitride semiconductor light-emitting device including a substrate, a plurality of III-nitride semiconductor layers including a first nitride semiconductor layer formed over the substrate and having a first conductivity type, a second nitride semiconductor layer formed over the first nitride semiconductor layer and having a second conductivity type different from the first conductivity type, and an active layer disposed between the first nitride semiconductor layer and the second nitride semiconductor layer and generating light by recombination of electrons and holes, and an opening formed along the plurality of III-nitride semiconductor layers from the substrate, and including a first scattering surface scattering the light generated in the active layer and a second scattering surface having a different slope from that of the first scattering surface.04-29-2010
20110204394SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - According to one embodiment, a semiconductor light emitting device includes n-type and p-type semiconductor layers, barrier layers, and a well layer. The n-type and p-type semiconductor layers and the barrier layers include nitride semiconductor. The barrier layers are provided between the n-type and p-type semiconductor layers. The well layer is provided between the barrier layers, has a smaller band gap energy than the barrier layers, and includes InGaN. At least one of the barrier layers includes first, second, and third layers. The second layer is provided closer to the p-type semiconductor layer than the first layer. The third layer is provided closer to the p-type semiconductor layer than the second layer. The second layer includes Al08-25-2011
20080251800Undoped and Unintentionally Doped Buffer Structures - A method of forming electronic device precursors and devices with reduced cracking in relevant layers is disclosed along with resulting structures. The method includes the steps of growing a transition layer of undoped Group III nitride on a substrate that is other than a Group III nitride, growing an active structure of Group III nitride on the undoped layer, and removing the substrate from the undoped layer.10-16-2008
20080237616SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor light emitting device, includes an active layer radiating a light having a predetermined wavelength; a first semiconductor layer of a first conductivity type, provided on the active layer. A semiconductor substrate has a first principal surface in contact with the active layer, a second principal surface facing the first principal surface, and side surfaces connected to the second principal surface. Each of the side surfaces has a bevel angle in a range from about 45 degrees to less than 90 degrees with respect to the second principal surface. A second semiconductor layer of a second conductivity type is provided under the active layer. A first electrode is provided under the second semiconductor layer. A distance between the active layer and the first electrode depends on the wavelength and a refractive index of the second semiconductor layer.10-02-2008
20090166649Nitride Semiconductor Light Emitting Device and Fabrication Method Thereof - The present invention relates to a nitride semiconductor light emitting device including: a substrate having a predetermined pattern formed on a surface thereof by an etch; a protruded portion disposed on a non-etched region of the substrate, and having a first buffer layer and a first nitride semiconductor layer stacked thereon; a second buffer layer formed on the etched region of the substrate; a second nitride semiconductor layer formed on the second buffer layer and the protruded portion; a third nitride semiconductor layer formed on the second nitride semiconductor layer; an active layer formed on the third nitride semiconductor layer to emit light; and a fourth nitride semiconductor layer formed on the active layer. According to the present invention, the optical extraction efficiency of the nitride semiconductor light emitting device can be enhanced.07-02-2009
20120032209SEMICONDUCTOR LIGHT EMITTING DEVICE - According to one embodiment, a semiconductor light emitting device includes: semiconductor layers; a multilayered structural body; and a light emitting portion. The multilayered structural body is provided between the semiconductor layers, and includes a first layer and a second layer including In. The light emitting portion is in contact with the multilayered structural body between the multilayered structural body and p-type semiconductor layer, and includes barrier layers and a well layer including In with an In composition ratio among group III elements higher than an In composition ratio among group III elements in the second layer. An average lattice constant of the multilayered structural body is larger than that of the n-type semiconductor layer. Difference between the average lattice constant of the multilayered structural body and that of the light emitting portion is less than difference between that of the multilayered structural body and that of the n-type semiconductor layer.02-09-2012
20120032210 Semiconductor Device with Efficient Carrier Recombination - The present invention introduces the novel, improved design approach of the semiconductor devices that utilize the effect of carrier recombination, for example, to produce the electromagnetic radiation. The approach is based on the separate control over the injection of the electrons and holes into the active region of the device. As a result, better recombination efficiencies can be achieved, and the effect of the wavelength shift of the produced radiation can be eliminated. The devices according to the present invention outperform existing solid state light and electromagnetic radiation sources and can be used in any applications where solid state light sources are currently involved, as well as any applications future discovered.02-09-2012
20080277678Light emitting device and method for making the same - A method for making a light emitting device includes: forming a multi-layer structure on a substrate; forming a patterned mask material on one side of the multi-layer structure such that the patterned mask material covers an etch region of the multi-layer structure; forming a roughened layer on the multi-layer structure; removing the patterned mask material from the multi-layer structure so as to expose the etch region of the multi-layer structure; forming an etch mask material on the roughened layer; dry etching the multi-layer structure at the exposed etch region so as to define an electrode-forming region on the first semiconductor layer that corresponds to the etch region of the multi-layer structure; and forming an electrode on the electrode-forming region of the first semiconductor layer.11-13-2008
20080283852Light-emitting device and a method for producing the same - A light-emitting device and a method to from the device are is described. The device described herein may realize the transversely single mode operation by the buried mesa configuration even when the active layer contains aluminum. The method provides a step to form the mesa on a semiconductor substrate with an average dislocation density of 500 to 5000 cm11-20-2008
20080283850Reflective Positive Electrode and Gallium Nitride-Based Compound Semiconductor Light-Emitting Device Using the Same - It is an object of the present invention to provide a gallium nitride-based compound semiconductor light-emitting device which has a highly reflective positive electrode that has high reverse voltage and excellent reliability with low contact resistance to the p-type gallium nitride-based compound semiconductor layer.11-20-2008
20080308823OVERVOLTAGE-PROTECTED LIGHT-EMITTING SEMICONDUCTOR DEVICE, AND METHOD OF FABRICATION - A light-generating semiconductor region is grown by epitaxy on a silicon substrate. The light-generating semiconductor region is a lamination of layers of semiconducting nitrides containing a Group III element or elements. The silicon substrate has a p-type impurity-diffused layer formed therein by thermal diffusion of the Group III element or elements from the light-generating semiconductor region as a secondary product of the epitaxial growth of this region on the substrate. The p-type impurity-diffused layer is utilized as a part of overvoltage protector diodes which are serially interconnected with each other and in parallel with the LED section of the device between a pair of electrodes.12-18-2008
20080315222SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor light emitting device and a method of manufacturing the same are provided. The semiconductor light emitting device comprises a substrate, a mask seed layer formed on the substrate and comprising a TI group element, a nitride layer formed on the mask seed layer and comprising a III group element, a first conductive semiconductor layer on the nitride layer, an active layer on the first conductive layer, and a second conducive semiconductor layer on the active layer.12-25-2008
20080277679Light-emitting device - A light-emitting device, including a compound semiconductor layer disposed on a substrate, includes a light-emitting layer, and a dielectric constant change structure formed in a part of the compound semiconductor layer including a main surface as a light extraction surface of the compound semiconductor layer. The dielectric constant change structure is devoid of revolution symmetry provided by randomly changing a periodicity of a dielectric constant in a two-dimensional lattice pattern, with respect to a photonic crystal structure in which more than two kinds of materials having different dielectric constants are periodically and alternately disposed on the main surface in the two-dimensional lattice pattern.11-13-2008
20080210959Light emitting apparatus - In order to provide light emitting devices which have simple constructions and thus can be fabricated easily, and can stably provide high light emission efficiencies for a long time period, a light emitting device includes an n-type nitride semiconductor layer at a first main surface side of a nitride semiconductor substrate, a p-type nitride semiconductor layer placed more distantly from the nitride semiconductor substrate than the n-type nitride semiconductor layer at the first main surface side and a light emitting layer placed between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer at the first main surface side. The nitride semiconductor substrate has a resistivity of 0.5 Ω·cm or less and the p-type nitride semiconductor layer side is down-mounted so that light is emitted from the second main surface of the nitride semiconductor substrate at the opposite side from the first main surface.09-04-2008
20080251801METHOD OF PRODUCING GROUP III-V COMPOUND SEMICONDUCTOR, SCHOTTKY BARRIER DIODE, LIGHT EMITTING DIODE, LASER DIODE, AND METHODS OF FABRICATING THE DIODES - There are provided a method of producing a group III-V compound semiconductor, a Schottky barrier diode, a light emitting diode, a laser diode and methods of fabricating the diodes, that can achieve a reduced n type carrier density. The method of producing a group III-V compound semiconductor is a method of producing the compound semiconductor by metal organic chemical vapor deposition employing a material containing a group III element. Initially the step of preparing a seed substrate is performed. Then the step of growing a group III-V compound semiconductor on the seed substrate is performed by employing as a group III element-containing material an organic metal containing at most 0.01 ppm of silicon, at most 10 ppm of oxygen and less than 0.04 ppm of germanium.10-16-2008
20090078946LIGHT EMITTING DEVICE - A light emitting device is disclosed. The light emitting device includes a substrate including a thin film transistor, an insulating film disposed over the thin film transistor, a first electrode disposed over the thin film transistor and connected to the thin film transistor, a function layer including at least one of a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer, which are sequentially disposed over the first electrode, and a second electrode disposed on the function layer. A thickness of the first electrode is substantially 0.29 to 0.35 times a thickness of the function layer. A thickness of the second electrode is substantially 0.29 to 0.69 times the thickness of the function layer.03-26-2009
20090152577LIGHT EMITTING DIODE AND MANUFACTURING METHOD THEREOF - A light emitting diode comprises a substrate having a first surface and a second surface, a light emitting epitaxy structure placed on the first surface of the substrate, and a compound reflection layer placed on the second surface of the substrate. The second surface of the substrate further has a protection structure.06-18-2009
20090152576Blue-green light-emitting semiconductor and phosphor for same - A blue-green light emitting semiconductor having an In—Ga—N heterostructure and covered with a light-converting layer formed of a thermosetting polymer layer and an inorganic phosphor having a long wave Stokes radiation displacement characteristic, characterized in that the In—Ga—N semiconductor heterostructure emits light in near ultraviolet region λ=375˜405 nm, the light-converting layer converts the emission λ=375˜405 nm to wavelength λ=505˜515 nm; the wavelength light emitted by the light-converting layer has Stokes displacement 135˜105 nm, color coordinates 0.1506-18-2009
20090152575Orange-yellow silicate phosphor and warm white semiconductor using same - A silicate phosphor prepared from Mg06-18-2009
20090127571METHOD FOR FABRICATING SEMICONDUCTOR LAYER AND LIGHT-EMITTING DIODE - A semiconductor layer containing defects only in a small density, possessing good quality and exhibiting a large ionic bonding property as to GaN, for example, is formed on a semiconductor layer, such as a silicon carbide layer, which is made of a material possessing a small ionicity and exhibiting a strong covalent bonding property. A method for forming a semiconductor layer includes forming on the surface of a first semiconductor layer 05-21-2009
20100200877NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor light emitting device including a first semiconductor layer, an active layer formed on the first semiconductor layer, a second semiconductor layer formed on the active layer, and at least one SiN08-12-2010
20120068207OPTICAL DEVICE, SEMICONDUCTOR WAFER, METHOD OF PRODUCING OPTICAL DEVICE, AND METHOD OF PRODUCING SEMICONDUCTOR WAFER - Provided is an optical device including a base wafer containing silicon, a plurality of seed crystals disposed on the base wafer, and a plurality of Group 3-5 compound semiconductors lattice-matching or pseudo lattice-matching the plurality of seed crystals. At least one of the Group 3-5 compound semiconductors has a photoelectric semiconductor formed therein, the photoelectric semiconductor including a light emitting semiconductor that emits light in response to a driving current supplied thereto or a light receiving semiconductor that generates a photocurrent in response to light applied thereto, and at least one of the plurality of Group 3-5 compound semiconductors other than the Group 3-5 compound semiconductor having the photoelectric semiconductor has a heterojunction transistor formed therein.03-22-2012
20110220928SEMICONDUCTOR LIGHT EMITTING ELEMENT AND METHOD FOR MANUFACTURING SAME - According to one embodiment, a semiconductor light emitting element includes a stacked body, a first and second electrode, a support substrate, a protective film and a dielectric film. The stacked body includes a first semiconductor, a second semiconductor layer and a light emitting portion. The first electrode is provided on a first major surface of the stacked body. The second electrode is provided on a second major surface of the stacked body. The support substrate is provided on the second major surface via a bonding metal. The protective film is provided on at least a side surface of the stacked body except the second major surface. The dielectric film is provided between the bonding metal and a region of the second major surface not provided with the second electrode, and between the bonding metal and a surface of the protective film on the second major surface side.09-15-2011
20090050915Group III-V nitride semiconductor substrate and method for producing same - A group III-V nitride semiconductor substrate includes a first region of group III-V nitride semiconductor crystal grown on a facet on a heterosubstrate, and a second region of the group III-V nitride semiconductor crystal grown on a plane with a predetermined plane orientation on the heterosubstrate. The first region has an area ratio of not more than 10% to the second region in a plane of the substrate. A method for producing a group III-V nitride semiconductor substrate includes a first crystal growth step of supplying a source gas of a group III-V nitride semiconductor onto a heterosubstrate at a first partial pressure to grow the group III-V nitride semiconductor on a plane with a predetermined plane orientation and a facet on the heterosubstrate, and a second crystal growth step of supplying onto the heterosubstrate the source gas at a second partial pressure higher than the first partial pressure to grow the semiconductor on the plane with the predetermined plane orientation and the facet after the first crystal growth step is conduced for a predetermined time period so as to suppress a crystal growth of the semiconductor on the facet.02-26-2009
20090050913METHOD FOR ACHIEVING LOW DEFECT DENSITY ALGAN SINGLE CRYSTAL BOULES - A method for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation. In order to achieve high growth rates, preferably a dual growth zone reactor is used in which a first, high temperature zone is used for crystal nucleation and a second, low temperature zone is used for rapid crystal growth. Although the process can be used to grow crystals in which the as-grown material and the seed crystal are of different composition, preferably the two crystalline structures have the same composition, thus yielding improved crystal quality. 02-26-2009
20110140141Method for Production of a Radiation-Emitting Semiconductor Chip - A method for micropatterning a radiation-emitting surface of a semiconductor layer sequence for a thin-film light-emitting diode chip, wherein the semiconductor layer sequence is grown on a substrate, a mirror layer is formed or applied on the semiconductor layer sequence, which reflects back into the semiconductor layer sequence at least part of a radiation that is generated in the semiconductor layer sequence during the operation thereof and is directed toward the mirror layer, the semiconductor layer sequence is separated from the substrate, and a separation surface of the semiconductor layer sequence, from which the substrate is separated, is etched by an etchant which predominantly etches at crystal defects and selectively etches different crystal facets at the separation surface.06-16-2011
20090101926SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - Provided are a semiconductor light emitting device and a method of manufacturing the same. The semiconductor light emitting device comprises a first conductive type semiconductor layer, an active layer divided in plurality on the first conductive type semiconductor layer, and a second conductive type semiconductor layer divided in plurality on the active layer.04-23-2009
20090101924Gallium nitride semiconductor device on SOI and process for making same - Methods and apparatus for producing a gallium nitride semiconductor on insulator structure include: bonding a single crystal silicon layer to a transparent substrate; and growing a single crystal gallium nitride layer on the single crystal silicon layer.04-23-2009
20120104433GROUP III NITRIDE SEMICONDUCTOR ELEMENT AND EPITAXIAL WAFER - A primary surface 05-03-2012
20120104431LIGHT EMITTING ELEMENT - According to one embodiment, a light emitting element includes a light emitting layer, a cladding layer, a current spreading layer, a second layer, and an electrode. The light emitting layer is capable of emitting emission light. The current spreading layer includes a surface processed layer and a first layer. The surface processed layer has a surface including convex portions and bottom portions provided adjacent to the convex portions. The first layer is provided between the surface processed layer and the cladding layer. The second layer is provided between the surface processed layer and the cladding layer and includes a region having an impurity concentration higher than an impurity concentration of the current spreading layer. The electrode is provided in a region of the surface of the surface processed layer where the convex portions and the bottom portions are not provided.05-03-2012
20090020771III-Nitride Semiconductor Light Emitting Device And Method For Manufacturing The Same - The present disclosure relates to an III-nitride compound semiconductor light emitting device and a method of manufacturing the same. The III-nitride compound semiconductor light emitting device includes a substrate with a groove formed therein, a plurality of nitride compound semiconductor layers being grown on the substrate, and including an active layer for generating light by recombination of electron and hole, and an opening formed on the groove along the plurality of nitride compound semiconductor layers.01-22-2009
20080315223LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - Provided is a light emitting device comprising a first conductive type semiconductor layer, an active layer, a semiconductor layer comprising Al, a high-concentration semiconductor layer, a low-mole In12-25-2008
20090095964Nitride Semiconductor Laser Device and Nitride Semiconductor Laser Apparatus - In one embodiment of the present invention, a long-life nitride semiconductor laser element is disclosed wherein voltage characteristics do not deteriorate even when the element is driven at high current density. Specifically disclosed is a nitride semiconductor laser element which includes a p-type nitride semiconductor and a p-side electrode formed on the p-type nitride semiconductor. In at least one embodiment, the p-side electrode has a first layer which is in direct contact with the p-type nitride semiconductor and a conductive second layer formed on the first layer, and the second layer contains a metal element selected from the group consisting of Ti, Zr, Hf, W, Mo and Nb, and an oxygen element.04-16-2009
20100148195METHOD FOR IMPROVED GROWTH OF SEMIPOLAR (AL,IN,GA,B)N - A method for improved growth of a semipolar (Al,In,Ga,B)N semiconductor thin film using an intentionally miscut substrate. Specifically, the method comprises intentionally miscutting a substrate, loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an In06-17-2010
20100155752SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device that includes a first conductive type semiconductor layer, a first electrode, a insulating layer, and an electrode layer. The first electrode has at least one branch on the first conductive type semiconductor layer. The insulating layer is disposed on the first electrode. The electrode layer is disposed on the insulating layer.06-24-2010
20100258826LIGHT EMITTING DIODE AND METHOD FOR MANUFACTURING THE SAME - A light emitting diode (10-14-2010
20100213477Light Emitting Apparatus - A light emitting apparatus may include a gate metal positioned between a p-type contact and an n-type contact, a gate oxide or other dielectric stack positioned below and attached to the gate metal, a Ge or Si08-26-2010
20100213476GROUP-III NITRIDE COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE, METHOD OF MANUFACTURING GROUP-III NITRIDE COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE, AND LAMP - The present invention provides a group-III nitride compound semiconductor light-emitting device having high productivity and good emission characteristics, a method of manufacturing a group-III nitride compound semiconductor light-emitting device, and a lamp. The method of manufacturing a group-III nitride compound semiconductor light-emitting device includes: a pre-process of performing plasma processing on a substrate (08-26-2010
20100276709METHOD FOR MANUFACTURING COMPOUND SEMICONDUCTOR SUBSTRATE, COMPOUND SEMICONDUCTOR SUBSTRATE AND LIGHT EMITTING DEVICE - A method for manufacturing a compound semiconductor substrate includes at least the processes of epitaxially growing a quaternary light emitting layer composed of AlGaInP on a GaAs substrate; vapor-phase growing a p-type GaP window layer on a first main surface of the quaternary light emitting layer, the first main surface being opposite to the GaAs substrate; removing the GaAs substrate; and epitaxially growing an n-type GaP window layer on a second main surface of the light emitting layer, the second main surface being located at a side where the GaAs substrate is removed. The method includes the process of performing a heat treatment under a hydrogen atmosphere containing ammonia after the process of removing the GaAs substrate and before the process of epitaxially growing the n-type GaP window layer.11-04-2010
20100213478SEMICONDUCTOR LIGHT-EMITTING DEVICE - A semiconductor light-emitting device is provided. The semiconductor light-emitting device comprises a plurality of compound semiconductor layers, an electrode layer, and a conductive support member. The compound semiconductor layers comprise a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer. The electrode layer is disposed under the compound semiconductor layers. The conductive support member is disposed under the electrode layer. Herein, the conductive support member has a thermal expansion coefficient difference within about 50% with respect to the compound semiconductor layer.08-26-2010
20100237366METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE - A method for manufacturing a light emitting device, includes: preparing a first substrate by slicing a single crystal ingot pulled in a pulling direction tilted with respect to a first plane orientation, the slicing being in a direction substantially perpendicular to the pulling direction; preparing a second substrate including a major surface having a plane orientation substantially parallel to a plane orientation of a major surface of the first substrate; growing a stacked unit as a crystal on the major surface of the second substrate, the stacked unit including a light emitting layer; and removing the second substrate after bonding the stacked unit and the major surface of the first substrate by heating them in a joined state. A plane orientation of the major surface of the first substrate and a plane orientation of the major surface of the second substrate are one or another selected from a plane tilted from a (100) plane toward a [011] direction and a plane tilted from a (−100) plane toward a [0-1-1] direction, respectively.09-23-2010
20110006320LIGHT EMITTING DEVICE USING COMPOUND SEMICONDUCTOR - There is provided a light emitting device using a compound semiconductor, which can improve electrical characteristics and internal quantum efficiency by maximizing the recombination rate of electrons and holes in an active layer. The light emitting device using a compound semiconductor includes a substrate; a compound semiconductor layer formed on the substrate, the compound semiconductor layer comprising an active layer; and a current spreading layer formed on at least one of the top and bottom surfaces of the active layer, the current spreading layer allowing electrons or holes to be uniformly spread into the active layer.01-13-2011
20110006319GALLIUM NITRIDE LIGHT-EMITTING DEVICE WITH ULTRA-HIGH REVERSE BREAKDOWN VOLTAGE - One embodiment of the present invention provides a gallium nitride (GaN)-based semiconductor light-emitting device (LED) which includes an n-type GaN-based semiconductor layer (n-type layer); an active layer; and a p-type GaN-based semiconductor layer (p-type layer). The n-type layer is epitaxially grown by using ammonia gas (NH01-13-2011
200902613624H-POLYTYPE GALLIUM NITRIDE-BASED SEMICONDUCTOR DEVICE ON A 4H-POLYTYPE SUBSTRATE - 4H—InGaAlN alloy based optoelectronic and electronic devices on non-polar face are formed on 4H—AlN or 4H—AlGaN on (11-20) a-face 4H—SiC substrates. Typically, non polar 4H—AlN is grown on 4H—SiC (11-20) by molecular beam epitaxy (MBE). Subsequently, III-V nitride device layers are grown by metal organic chemical vapor deposition (MOCVD) with 4H-polytype for all of the layers. The non-polar device does not contain any built-in electric field due to the spontaneous and piezoelectric polarization. The optoelectronic devices on the non-polar face exhibits higher emission efficiency with shorter emission wavelength because the electrons and holes are not spatially separated in the quantum well. Vertical device configuration for lasers and light emitting diodes (LEDs) using conductive 4H—AlGaN interlayer on conductive 4H—SiC substrates makes the chip size and series resistance smaller. The elimination of such electric field also improves the performance of high speed and high power transistors. The details of the epitaxial growth s and the processing procedures for the non-polar III-V nitride devices on the non-polar SiC substrates are also disclosed.10-22-2009
20130126919SEMICONDUCTOR LIGHT EMITTING DEVICE - According to an embodiment, a semiconductor light emitting device includes a first semiconductor layer, a second semiconductor layer, a dielectric film and an electrode. The first semiconductor layer is capable of emitting light. The second semiconductor layer has a first major surface in contact with the first semiconductor layer and a second major surface opposite to the first major surface, the second major surface including a first region having convex structures and a second region not having the convex structures. The dielectric film is provided at least at a tip portion of the convex structures, and the electrode is provided above the second region.05-23-2013
20130126920Light-Emitting Diode Chip with Current Spreading Layer - A light-emitting diode chip includes a semiconductor layer sequence having a phosphide compound semiconductor material. The semiconductor layer sequence contains a p-type semiconductor region, an n-type semiconductor region, and an active layer arranged between the p-type semiconductor region and the n-type semiconductor region. The active region serves to emit electromagnetic radiation. The n-type semiconductor region faces a radiation exit area of the light-emitting diode chip, and the p-type semiconductor region faces a carrier of the light-emitting diode chip. A current spreading layer having a thickness of less than 500 nm is arranged between the carrier and the p-type semiconductor region. The current spreading layer has one or a plurality of p-doped Al05-23-2013
20110057213III-NITRIDE LIGHT EMITTING DEVICE WITH CURVAT1JRE CONTROL LAYER - A semiconductor structure comprises a III-nitride light emitting layer disposed between an n-type region and a p-type region. The semiconductor structure further comprises a curvature control layer grown on a first layer. The curvature control layer is disposed between the n-type region and the first layer. The curvature control layer has a theoretical a-lattice constant less than the theoretical a-lattice constant of GaN. The first layer is a substantially single crystal layer.03-10-2011
20080230793Patterned Substrate For Light Emitting Diode and Light Emitting Diode Employing the Same - Disclosed herein are a patterned substrate for a light emitting diode and a light emitting diode employing the patterned substrate. The substrate has top and bottom surfaces. Protrusion patterns are arranged on the top surface of the substrate. Furthermore, recessed regions surround the protrusion patterns. The recessed regions have irregular bottoms. Thus, the protrusion patterns and the recessed regions can prevent light emitted from a light emitting diode from being lost due to the total reflection to thereby improve light extraction efficiency.09-25-2008
20090250711Substrate for forming light-emitting layer, light emitter and light-emitting substance - To also intend the improvement of light-emitting efficiency by microcrystallizing light-emitting layer while utilizing vapor-phase growth method that is advantageous for improving crystal quality, and the like.10-08-2009
20090039361LATTICE-MISMATCHED SEMICONDUCTOR STRUCTURES WITH REDUCED DISLOCATION DEFECT DENSITIES AND RELATED METHODS FOR DEVICE FABRICATION - A method of forming a semiconductor structure includes forming an opening in a dielectric layer, forming a recess in an exposed part of a substrate, and forming a lattice-mismatched crystalline semiconductor material in the recess and opening.02-12-2009
20090039363SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - Provided are a semiconductor light emitting device and a method of manufacturing the same. The semiconductor light emitting device comprises a first conductive type semiconductor layer, an active layer, a first thin insulating layer, and a second conductive type semiconductor layer. The active layer is formed on the first conductive type semiconductor layer. The first thin insulating layer is formed on the active layer. The second conductive type semiconductor layer is formed on the thin insulating layer.02-12-2009
20090072252Nitride Semiconductor Light Emitting Device and Fabrication Method Therefor - Disclosed is a nitride semiconductor light emitting device including: one or more AllnN layers; an In-doped nitride semiconductor layer formed above the AllN layers; a first electrode contact layer formed above the In-doped nitride semiconductor layer; an active layer formed above the first electrode contact layer; and a p-type nitride semiconductor layer formed above the active layer. According to the nitride semiconductor light emitting device, a crystal defect of the active layer is suppressed, so that the reliability of the nitride semiconductor light emitting device is increased and the light output is enhanced.03-19-2009
20090108276High Efficiency Dilute Nitride Light Emitting Diodes - A light-emitting diode comprising Al04-30-2009
20110248298LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - A light emitting device comprises a second electrode layer; a second conductivity-type semiconductor layer on the second electrode layer; a current blocking layer comprising an oxide of the second conductivity-type semiconductor layer; an active layer on the second conductivity-type semiconductor layer; a first conductivity-type semiconductor layer on the active layer; and a first electrode layer on the first conductivity-type semiconductor layer.10-13-2011
20110241042NANOCRYSTAL-BASED OPTOELECTRONIC DEVICE AND METHOD OF FABRICATING THE SAME - The invention discloses a nanocrystal-based optoelectronic device and method of fabricating the same, such as light-emitting diode, photodetector, solar cell, etc. The optoelectronic device according to the invention includes a substrate of a first conductive type, N active layers formed on the substrate and a transparent conductive layer formed on the most-top active layer. Each active layer is constituted by a plurality of nanocrystals. Each nanocrystal is wrapped by a passivation layer.10-06-2011
20110024776LIGHT EMITTING DEVICE - A light emitting device according to the embodiment includes a first conductive semiconductor layer; an active layer under the first conductive semiconductor layer; a second conductive semiconductor layer under the active layer; a current blocking region under the second conductive semiconductor layer; a second electrode layer under the second conductive semiconductor layer and the current blocking region; and a first electrode layer including a protrusion protruding toward the first conductive semiconductor layer arranged, on the first conductive semiconductor layer.02-03-2011
20110024775Methods for and devices made using multiple stage growths - Surface modification of individual nitride semiconductor layers occurs between growth stages to enhance the performance of the resulting multiple layer semiconductor structure device formed from multiple growth stages. Surface modifications may include, but are not limited, to laser patterning, lithographic patterning (with the scale ranging from 10 microns to a few angstroms), actinic radiation modifications, implantation, diffusional doping and combinations of these methods. The semiconductor structure device has enhanced crystal quality, reduced phonon reflections, improved light extraction, and an increased emission area. The ability to create these modifications is enabled by the thickness of the HVPE growth of the GaN semiconductor layer.02-03-2011
20110024777NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - There are provided a nitride semiconductor light-emitting device and a method for manufacturing the same. The nitride semiconductor light-emitting device includes a buffer layer on a sapphire substrate, wherein the buffer layer includes a plurality of layers having different lattice constants, a first n-type nitride semiconductor layer on the buffer layer, an active layer on the first n-type nitride semiconductor layer, and a p-type nitride semiconductor layer on the active layer.02-03-2011
20090032828III-Nitride Device Grown on Edge-Dislocation Template - A semiconductor light emitting device includes a wurtzite III-nitride semiconductor structure including a light emitting layer disposed between an n-type region and a p-type region. A template layer and a dislocation bending layer are grown before the light emitting layer. The template layer is grown such that at least 70% of the dislocations in the template layer are edge dislocations. At least some of the edge dislocations in the template layer continue into the dislocation bending layer. The dislocation bending layer is grown to have a different magnitude of strain than the template layer. The change in strain at the interface between the template layer and the dislocation bending layer causes at least some of the edge dislocations in the template layer to bend to a different orientation in the dislocation bending layer. Semiconductor material grown above the bent edge dislocations may exhibit reduced strain.02-05-2009
20110241041LIGHT EMITTING DIODE THERMALLY ENHANCED CAVITY PACKAGE AND METHOD OF MANUFACTURE - Several embodiments of light emitting diode packaging configurations including a substrate with a cavity are disclosed herein. In one embodiment, a cavity is formed on a substrate to contain an LED and phosphor layer. The substrate has a channel separating the substrate into a first portion containing the cavity and a second portion. A filler of encapsulant material or other electrically insulating material is molded in the channel. The first portion can serve as a cathode for the LED and the second portion can serve as the anode.10-06-2011
20110210353LIGHT EMITTING DIODES WITH N-POLARITY AND ASSOCIATED METHODS OF MANUFACTURING - Light emitting diodes (“LEDs”) with N-polarity and associated methods of manufacturing are disclosed herein. In one embodiment, a method for forming a light emitting diode on a substrate having a substrate material includes forming a nitrogen-rich environment at least proximate a surface of the substrate without forming a nitrodizing product of the substrate material on the surface of the substrate. The method also includes forming an LED structure with a nitrogen polarity on the surface of the substrate with a nitrogen-rich environment.09-01-2011
20090039362SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device and a method of manufacturing the semiconductor light emitting device are provided. The semiconductor light emitting device comprises a substrate having a top surface that is curved to protrude, and a light emitting structure that is curved to protrude on the substrate and comprises an active layer.02-12-2009
20100012956Diode having high brightness and method thereof - A light emitting diode includes a transparent substrate and a GaN buffer layer on the transparent substrate. An n-GaN layer is formed on the buffer layer. An active layer is formed on the n-GaN layer. A p-GaN layer is formed on the active layer. A p-electrode is formed on the p-GaN layer and an n-electrode is formed on the n-GaN layer. A reflective layer is formed on a second side of the transparent substrate. Also, a cladding layer of AlGaN is between the p-GaN layer and the active layer.01-21-2010
20100065865METHOD OF FORMING NITRIDE SEMICONDUCTOR AND ELECTRONIC DEVICE COMPRISING THE SAME - A method of forming a nitride semiconductor through ion implantation and an electronic device including the same are disclosed. In the method, an ion implantation region composed of a line/space pattern is formed on a substrate at an ion implantation dose of more than 1E17 ions/cm03-18-2010
20110101391GROUP III NITRIDE SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME, GROUP III NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME, AND LAMP - A Group III nitride semiconductor device of the present invention is obtained by laminating at least a buffer layer (05-05-2011
20110068355LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE PACKAGE - A light emitting device and a light emitting device package including the same are provided. The light emitting device may include a light emitting structure including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer, a first electrode on the light emitting structure, the first electrode including a pattern, and a pad electrode on the first electrode.03-24-2011
20120119240NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE - A nitride semiconductor light emitting device is provided. A core semiconductor region, a first cladding region, and a second cladding region are mounted on a nonpolar primary surface of a support substrate of GaN which is not the polar plane. The core semiconductor region includes an active layer and a carrier block layer. The first cladding region includes an n-type AlGaN cladding layer and an n-type InAlGaN cladding layer. The n-type InAlGaN cladding layer is provided between the n-type AlGaN cladding layer and the active layer. A misfit dislocation density at an interface is larger than that at an interface. The AlGaN cladding layer is lattice-relaxed with respect to the GaN support substrate and the InAlGaN cladding layer is lattice-relaxed with respect to the AlGaN cladding layer.05-17-2012
20100252844NITRIDE SEMICONDUCTOR LIGHT EMITTING DIODE - A nitride semiconductor light emitting diode includes at least an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer. The active layer is formed of one first nitride semiconductor layer having a highest In ratio in the light emitting diode. The light emitting diode further includes at least one of a second nitride semiconductor layer located between the active layer and the n-type nitride semiconductor layer and including an InGaN layer, and a third nitride semiconductor layer located between the active layer and the p-type nitride semiconductor layer and including an InGaN layer. Respective In (Indium) ratios of the InGaN layers included in the second nitride semiconductor layer and the InGaN layers included in the third nitride semiconductor layer are lower than the In ratio of the first nitride semiconductor layer forming the active layer. The LED with high luminous efficiency can thus be provided.10-07-2010
20110037089NITRIDE-BASED SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A nitride-based semiconductor light-emitting device 02-17-2011
20110037088NITRIDE-BASED SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A nitride-based semiconductor light-emitting device 02-17-2011
20110037087COMPOUND SEMICONDUCTOR LIGHT-EMITTING DIODE AND METHOD FOR FABRICATION THEREOF - A compound semiconductor light-emitting diode includes a light-emitting layer (02-17-2011
20110037086NITRIDE BASED SEMICONDUCTOR LIGHT-EMITTING DEVICE - Disclosed herein is a nitride-based semiconductor light-emitting device. The nitride-based semiconductor light-emitting device comprises an n-type clad layer made of n-type Al02-17-2011
20080315220High Light Efficiency Solid-State Light Emitting Structure And Methods To Manufacturing The Same - In one embodiment of an epitaxial LED device, a buffer layer (e.g. dielectric layer) between the current spreading layer and the substitute substrate comprises a plurality of vias and has a refractive index that is below that of the current spreading layer. A reflective metal layer between the buffer layer and the substitute substrate is connected to the current spreading layer through the vias in the buffer layer. The buffer layer separates the current spreading layer from the reflective metal layer. In yet another embodiment, stress management is provided by causing or preserving stress, such as compressive stress, in the LED so that stress in the LED is reduced when it experiences thermal cycles. In one implementation of this embodiment, a layer is attached to the LED and reflective metal layer, and causes or preserves stress in the LED along one or more directions parallel to an interface between the LED epitaxial layers so that stress in the LED is reduced in said one or more directions when temperature of the structure is increased.12-25-2008
20080315221NITRIDE-BASED SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - A method of fabricating a nitride-based semiconductor device capable of reducing contact resistance between a nitrogen face of a nitride-based semiconductor substrate or the like and an electrode is provided. This method of fabricating a nitride-based semiconductor device comprises steps of etching the back surface of a first semiconductor layer consisting of either an n-type nitride-based semiconductor layer or a nitride-based semiconductor substrate having a wurtzite structure and thereafter forming an n-side electrode on the etched back surface of the first semiconductor layer.12-25-2008
20080315224LIGHT EMITTING DEVICE AND METHOD OF FABRICATING THE SAME - Provided are a light emitting device and a method of fabricating the same, The light emitting device comprises: a first conductive semiconductor layer; an active layer comprising an InGaN well layer and a GaN barrier layer on the first conductive semiconductor layer; and a second conductive semiconductor layer on the active layer. The GaN barrier layer comprises an AlGaN layer.12-25-2008
20090140273Epitaxial Wafer for Semiconductor Light Emitting Diode and Semiconductor Light Emitting Diode Using Same - An epitaxial wafer for a semiconductor light emitting device according to the present invention in which at least an n-type cladding layer formed with a mixed crystal made of an AlGaInP material, an active layer, a p-type Mg-doped cladding layer, and a p-type contact layer are stacked successively in that order on an n-type GaAs substrate, and the p-type contact layer is formed as at least two layers that are an Mg-doped contact layer and a Zn-doped contact layer stacked thereon when viewed from the n-type GaAs substrate, comprises a Zn-doped layer which is inserted between the p-type Mg-doped cladding layer and the p-type contact layer.06-04-2009
20120168792HETEROJUNCTION STRUCTURES OF DIFFERENT SUBSTRATES JOINED AND METHODS OF FABRICATING THE SAME - In one embodiment, a heterojunction structure includes a first substrate; a second substrate comprising an electrode pad, the second substrate joined to the first substrate by an adhesive layer interposed between the first and second substrates, the first substrate and the adhesive layer having a via hole penetrating therethrough to expose a region of the electrode pad; a connection electrode disposed in the via hole and contacting the electrode pad; and an insulation layer electrically insulating the connection electrode from the first substrate. One of the first and second substrates has a thermal expansion coefficient different than a thermal expansion coefficient of the other of the first and second substrates, and at least one of the adhesive layer or the insulation layer comprises an organic material.07-05-2012
20080203406Layer Assembly for a Light-Emitting Component - The invention relates to a layer assembly for a light-emitting component, in particular a phosphorescent organic light-emitting diode, having a hole-injecting contact and an electron-injecting contact which are each connected to a light-emitting region, wherein, in the light-emitting region, one light-emitting layer is made up of a material (M08-28-2008
20080203409PROCESS FOR PRODUCING (Al, Ga)N CRYSTALS - The present invention relates to a novel process for producing (Al, Ga)N and AlGaN single crystals by means of a modified HVPE process, and also to (Al, Ga)N and AlGaN single crystals of high quality.08-28-2008
20130168711LIGHT EMITTING DEVICE - Disclosed are a light emitting device, a method of manufacturing the same, a light emitting device package, and a lighting system. The light emitting device includes: a substrate; a first conductive semiconductor layer on the substrate; an active layer on the first conductive semiconductor layer; a second conductive semiconductor layer; and a nitride semiconductor layer having a refractive index less than a refractive index of the second conductive semiconductor layer on the second conductive semiconductor layer.07-04-2013
20100181583RADIATION-EMITTING SEMICONDUCTOR CHIP - A radiation-emitting semiconductor chip is specified, comprising a semiconductor body (07-22-2010
20100117105LIGHT-EMITTING DEVICE AND METHOD FOR FABRICATING THE SAME - Disclosed are a light-emitting diode and a method for fabricating the same. The ternary or quaternary Group III-V nitride semiconductor light-emitting diode comprises a buffer layer doped with conductive impurities and developed with an orientation inclined toward the axis [1122] at an angle of 40° to 70° with respect to the axis [0001] on a [0001]-oriented substrate, a light-emitting layer arranged on the buffer layer, a first electrode arranged under the buffer layer, and a second electrode arranged on the light-emitting layer, wherein the light-emitting layer includes a first clad layer arranged on the buffer layer, an activation layer arranged on the first clad layer and a second clad layer arranged on the activation layer. According to the semiconductor light-emitting diode, the light-emitting layer is formed on the substrate with an orientation inclined toward the axis [1122] at an angle of 40° to 70° with respect to the axis [0001], and compositions of Group III-V and Group II-VI compounds constituting the first and second clad layers are controlled. As a result, it is possible to offset the stresses applied to the activation layer and prevent spontaneous polarization. As a result, the light-emitting diode can exhibit improved light efficiency.05-13-2010
20090200565GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE - There is provided a GaN-based semiconductor light emitting device including: a substrate; and an n-type GaN-based semiconductor layer, an active layer and a p-type GaN-based semiconductor layer sequentially deposited on the substrate, wherein the active layer includes: a first barrier layer including Al08-13-2009
20120146068Semiconductor Light Source and Method of Fabrication Thereof - Embodiments of the present invention provided a method of fabricating a semiconductor light source structure. The method comprises providing a GaAs substrate; forming a lower cladding layer above the substrate, the lower cladding layer comprising an AI06-14-2012
20110095313LIGHT EMITTING DIODE AND MANUFACTURING METHOD THEREOF - A method for manufacturing light-emitting diode (LED) first provides a substrate, then a protrusive patterned layer is formed on the substrate. The protrusive patterned layer exposes portions of the substrate, and the exposed portions are defined as a plurality of exposed regions. Next, a plurality of island semiconductor multi-layer is individually formed in each exposed region of the substrate.04-28-2011
20110175120LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE AND ILLUMINATION SYSTEM - A light emitting device is provided. The light emitting device includes a first semiconductor layer, an uneven part on the first semiconductor layer, a first nonconductive layer including a plurality of clusters on the uneven part, a first substrate layer on the nonconductive layer, and a light emitting structure layer. The light emitting structure layer includes a first conductive type semiconductor layer, an active layer and a second conductive type semiconductor layer on the first substrate layer.07-21-2011
20100059769LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - A method of manufacturing a light emitting device is provided. An epitaxial layer is first formed at a plurality of separated regions on a substrate and a second electrode layer is formed on the epitaxial layer. Subsequently, the substrate is removed from the epitaxial layer and a first electrode layer is formed under the epitaxial layer, after which the second electrode layer is divided into chip units.03-11-2010
20110147772GALLIUM NITRIDE WAFER SUBSTRATE FOR SOLID STATE LIGHTING DEVICES, AND ASSOCIATED SYSTEMS AND METHODS - Gallium nitride wafer substrate for solid state lighting devices, and associated systems and methods. A method for making an SSL device substrate in accordance with one embodiment of the disclosure includes forming multiple crystals carried by a support member, with the crystals having an orientation selected to facilitate formation of gallium nitride. The method can further include forming a volume of gallium nitride carried by the crystals, with the selected orientation of the crystals at least partially controlling a crystal orientation of the gallium nitride, and without bonding the gallium nitride, as a unit, to the support member. In other embodiments, the number of crystals can be increased by a process that includes annealing a region in which the crystals are present, etching the region to remove crystals having an orientation other than the selected orientation, and/or growing the crystals having the selected orientation.06-23-2011
20110186882LIGHT EMITTING DEVICE, METHOD OF FABRICATING THE LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE, AND LIGHTING SYSTEM - Provided are a light emitting device, a method of manufacturing the light emitting device, a light emitting device package, and a lighting system. The light emitting device includes a reflective layer including a first GaN-based semiconductor layer having a first refractive index, a second GaN-based semiconductor layer having a second refractive index less than the first refractive index, and a third GaN-based semiconductor layer having a third refractive index less than the second refractive index and a light emitting structure layer including a first conductive type semiconductor layer, a second conductive type semiconductor layer, and an active layer disposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer on the reflective layer.08-04-2011
20100025701Method Of Fabricating Nitride-Based Semiconductor Light-Emitting Device And Nitride-Based Semiconductor Light-Emitting Device - A nitride-based semiconductor light-emitting device capable of suppressing reduction of characteristics and a yield and method of fabricating the same is described. The method of fabricating includes the steps of forming a groove portion on a nitride-based semiconductor substrate by selectively removing a prescribed region of a second region of the nitride-based semiconductor substrate other than a first region corresponding to a light-emitting portion of a nitride-based semiconductor layer up to a prescribed depth and forming the nitride-based semiconductor layer having a different composition from the nitride-based semiconductor substrate on the first region and the groove portion of the nitride-based semiconductor substrate.02-04-2010
20110215352LIGHT EMITTING DEVICE, METHOD OF MANUFACTURING THE SAME, LIGHT EMITTING DEVICE PACKAGE - Disclosed is a method of manufacturing a light emitting device. The light emitting device includes a nitride semiconductor layer, an electrode on the nitride semiconductor layer, a light emitting structure including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer under the nitride semiconductor layer, and a conductive layer under the light emitting structure. The nitride semiconductor layer has band gap energy lower than band gap energy of the first conductive type semiconductor layer.09-08-2011
20110215351SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME - According to one embodiment, a semiconductor light-emitting device includes an n-type semiconductor layer including a nitride semiconductor, a p-type semiconductor layer including a nitride semiconductor, a light-emitting portion and a stacked body. The light-emitting portion is provided between the n-type and p-type semiconductor layers and includes a barrier layer and a well layer. The well layer is stacked with the barrier layer. The stacked body is provided between the light-emitting portion and the n-type semiconductor layer and includes a first layer and a second layer. The second layer is stacked with the first layer. Average In composition ratio of the stacked body is higher than 0.4 times average In composition ratio of the light-emitting portion. The layer thickness t09-08-2011
20100019256LIGHT EMITTING DEVICE WITH ELECTRON BLOCKING COMBINATION LAYER - A light emitting device with an electron blocking combination layer comprises an active layer, an n-type GaN layer, a p-type GaN layer, and an electron blocking combination layer which has two Group III-V semiconductor layers with different band gaps that can be deposited periodically and repeatedly on the active layer to block overflowing electrons from the active layers.01-28-2010
20100019255SEMICONDUCTOR LIGHT-EMITTING DEVICE - There is provided a semiconductor light-emitting device capable of an attempt to further decrease a leakage current in a current-blocking layer and including (A) a light-emitting portion (01-28-2010
20100176406NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - A nitride semiconductor light emitting device is provided. The nitride semiconductor light emitting device includes a first nitride layer comprising at least N-type nitride layer. An insulating member is formed on the first nitride layer having a predetermined pattern. An active layer is formed in both sides of the insulating member on the first nitride layer to emit light. A second nitride layer is formed in both sides of the insulating member on the active layer and the second nitride layer comprises at least a P-type nitride layer.07-15-2010
20090173956CONTACT FOR A SEMICONDUCTOR LIGHT EMITTING DEVICE - An AlGaInP light emitting device is formed as a thin, flip chip device. The device includes a semiconductor structure comprising an AlGaInP light emitting layer disposed between an n-type region and a p-type region. N- and p-contacts electrically connected to the n- and p-type regions are both formed on the same side of the semiconductor structure. The semiconductor structure is connected to the mount via the contacts. The growth substrate is removed from the semiconductor structure and the thick transparent substrate is omitted, such that the total thickness of semiconductor layers in the device is less than 15 μm in some embodiments, less than 10 μm in some embodiments. The top side of the semiconductor structure may be textured.07-09-2009
20110073887OPTOELECTRONIC DEVICES HAVING A DIRECT-BAND-GAP BASE AND AN INDIRECT-BAND-GAP EMITTER - Optoelectronic devices, junctions and methods of fabricating a device or junction where the emitter layer is of an indirect-band-gap material and the base layer is of a direct-band-gap material. The device or junction may have, among other structures and layers, a base layer of a first semiconductor material having a first conductivity type and further having a direct band gap and an emitter layer forming a junction with the base layer. In this embodiment, the emitter layer may be of a second semiconductor material having a second conductivity type and further having an indirect band gap. The optoelectronic device may have the semiconductor material of the emitter layer substantially lattice mismatched with the semiconductor material of the base layer in bulk form. Alternatively, the emitter layer may be substantially lattice matched with the base layer.03-31-2011
20110073888GROUP III NITRIDE SEMICONDUCTOR OPTICAL DEVICE, EPITAXIAL SUBSTRATE, AND METHOD OF MAKING GROUP III NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE - A group III nitride semiconductor optical device includes: a substrate comprising a group III nitride semiconductor; a first group-III nitride semiconductor region on a primary surface of the substrate; a second group-III nitride semiconductor region on the primary surface of the substrate; and an active layer between the first group-III nitride semiconductor region and the second group-III nitride semiconductor region. The primary surface of the substrate tilts at a tilt angle in the range of 63 degrees to smaller than 80 degrees toward the m-axis of the group III nitride semiconductor from a plane perpendicular to a reference axis extending along the c-axis of the group III nitride semiconductor. The first group-III nitride semiconductor region, the active layer, and the second group-III nitride semiconductor region are arranged in the direction of the normal axis to the primary surface of the substrate. The active layer is configured to produce light having a wavelength in the range of 580 nm to 800 nm. The active layer includes an epitaxial semiconductor layer comprising a gallium nitride based semiconductor containing indium as a group III element. The epitaxial semiconductor layer has an indium content ranging from 0.35 to 0.65. The c-axis of the gallium nitride based semiconductor tilts from the normal axis. The reference axis is oriented in the direction of either the axis [0001] or [000−1] of the group III nitride semiconductor.03-31-2011
20080283851GaN Substrate, and Epitaxial Substrate and Semiconductor Light-Emitting Device Employing the Substrate - GaN substrate (11-20-2008
20080265264Beta-Ga2O3 single crystal growing method, thin-film single crystal growing method, Ga2O3 light-emitting device, and its manufacturing method - A method for growing a β-Ga10-30-2008
20110037085THIN P-TYPE GALLIUM NITRIDE AND ALUMINUM GALLIUM NITRIDE ELECTRON-BLOCKING LAYER FREE GALLIUM NITRIDE-BASED LIGHT EMITTING DIODES - A light emitting diode (LED) having a p-type layer having a thickness of 100 nm or less, an n-type layer, and an active layer, positioned between the p-type layer and the n-type layer, for emitting light, wherein the LED does not include a separate electron blocking layer.02-17-2011
20120305954LIGHT EMITTING DEVICE, LIGHT EMITTING SYSTEM HAVING THE SAME, AND FABRICATING METHOD OF THE LIGHT EMITTING DEVICE AND THE LIGHT EMITTING SYSTEM - A semiconductor device includes a first light emitting chip, the first light emitting chip having a first semiconductor layer, a second semiconductor layer, and a first active layer disposed therebetween, a second light emitting chip disposed on the first light emitting chip, the second light emitting chip having a third semiconductor layer, a fourth semiconductor layer, and a second active layer disposed therebetween, and a conductive layer disposed between the first semiconductor layer and the fourth semiconductor layer, the first semiconductor layer and the fourth semiconductor layer having different conductivity types.12-06-2012
20120104432SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device includes: a semiconductor light emission stacked body including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer positioned between the first and second conductive semiconductor layers; and a highly conductive transparent electrode formed on at least one of the first and second conductive semiconductor layers and including a transparent electrode layer formed of at least one of a transparent conductive oxide layer and a transparent conductive nitride and a graphene layer allowing light within the visible spectrum to be transmitted therethrough, the transparent electrode layer and the graphene layer being stacked.05-03-2012
20110316019Nanoelectronic Structure and Method of Producing Such - The present invention relates to semiconductor devices comprising semiconductor nanoelements. In particular the invention relates to devices having a volume element having a larger diameter than the nanoelement arranged in epitaxial connection to the nanoelement. The volume element is being doped in order to provide a high charge carrier injection into the nanoelement and a low access resistance in an electrical connection. The nanoelement may be upstanding from a semiconductor substrate. A concentric layer of low resistivity material forms on the volume element forms a contact.12-29-2011
20110316020EPITAXIAL WAFER FOR LIGHT EMITTING DIODE - An epitaxial wafer for a light emitting diode, including a GaAs substrate, a light emitting unit provided on the GaAs substrate, and a strain adjustment layer provided on the light emitting unit, wherein the light emitting unit has a strained light emitting layer having a composition formula of (Al12-29-2011
20110316018ENGINEERING EMISSION WAVELENGTHS IN LASER AND LIGHT EMITTING DEVICES - A light emitting device is provided that includes at least one first semiconductor material layers and at least one second semiconductor material layers. At least one near-direct band gap material layers are positioned between the at least one first semiconductor layers and the at least one second semiconductor material layers. The at least one first semiconductor layers and the at least one second material layers have a larger band gap than the at least one near-direct band gap material layers. The at least one near-direct band gap material layers have an energy difference between the direct and indirect band gaps of less than 0.5 eV.12-29-2011
20120043566AlGaInP Light-Emitting Diode Having Vertical Structure and Method for Manufacturing the Same - A method for manufacturing the AlGaInP LED having a vertical structure is provided, including: growing, epitaxially, a buffer layer, an n-type contact layer, an n-type textured layer, a confined layer, an active layer, a p-type confined layer and a p-type window layer in that order on a temporary substrate, to form a texturable epitaxial layer; forming a transparent conducting film with periodicity on the p-type window layer of the epitaxial layer, forming a regulated through-hole on the transparent conducting film, and filling the through-hole with a conducting material; forming a total-reflection metal layer on the transparent conducting film; bonding a permanent substrate with the texturable epitaxial layer via a bonding layer, and bring the total-reflection metal layer into contact with the bonding layer; removing the temporary substrate and the buffer layer; forming an n-type extension electrode on the exposed n-type contact layer; removing the n-type contact layer, and forming a pad on the n-type textured layer; and forming a p-type electrode on a back of the permanent substrate. The transparent multilayered film with periodicity provides a greater reflectivity difference and hence brings better results than the conventional reflector consisting of single-layered, or, non-periodic, transparent films; and light-emitting efficiency is enhanced.02-23-2012
20110156069Optoelectronic Semiconductor Chip and Method for the Production Thereof - A method for producing an optoelectronic semiconductor chip based on a nitride semiconductor system is specified. The method comprises the steps of: forming a semiconductor section with at least one p-doped region; and forming a covering layer disposed downstream of the semiconductor section in a growth direction of the semiconductor chip, said covering layer having at least one n-doped semiconductor layer. An activation step suitable for electrically activating the p-doped region is effected before or during the formation of the covering layer. An optoelectronic semiconductor chip which can be produced by the method is additionally specified.06-30-2011
20110156068LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE AND ILLUMINATION SYSTEM - A light emitting device is provided. The light emitting device includes a first conductive type semiconductor layer, an active layer including a plurality of well layers and a plurality of barrier layers on the first conductive type semiconductor layer, and a second conductive type semiconductor layer on the active layer. An upper surface of at least first barrier layer among the barrier layers includes an uneven surface. The first barrier layer is disposed more closely to the second conductive type semiconductor layer than to the first conductive type semiconductor layer.06-30-2011
20120056220SEMICONDUCTOR LIGHT EMMITING DEVICE - According to one embodiment, in a light emitting device, a substrate is transparent to a wavelength of emitted light. A first dielectric layer is formed in a first region on the substrate, and has a refractive index smaller than a refractive index of the substrate. A second dielectric layer is formed in a second region on the substrate surrounding the first region, and has a refractive index larger than the refractive index of the substrate. A first semiconductor layer is formed on the first dielectric layer, the second dielectric layer and the substrate. A second semiconductor layer is formed on the first semiconductor layer, and includes an active layer having a PN junction.03-08-2012
20120007114LIGHT EMITTING DIODE, LIGHT EMITTING DIODE LAMP AND ILLUMINATING DEVICE - A light emitting diode including a compound semiconductor layer having at least a pn junction-type light emitting unit and a strain adjustment layer stacked on the light emitting unit, wherein the light emitting unit has a stacked structure containing a strained light emitting layer having a composition formula of (Al01-12-2012
20120007113SEMICONDUCTOR LIGHT EMITTING DEVICE - According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, a well layer, a barrier layer, an Al-containing layer, and an intermediate layer. The p-type semiconductor layer is provided on a side of [0001] direction of the n-type semiconductor layer. The well layer, the barrier layer, the Al-containing layer and the intermediate layer are disposed between the n-type semiconductor layer and the p-type semiconductor layer subsequently. The Al-containing layer has a larger band gap energy than the barrier layer, a smaller lattice constant than the n-type semiconductor layer, and a composition of Al01-12-2012
20120205690GROUP III-NITRIDE BASED SEMICONDUCTOR LED - A group III-nitride based semiconductor LED includes a sapphire substrate, an n-type semiconductor layer, an active layer, and a p-type semiconductor layer grown sequentially on the sapphire substrate. An n-type strain lattice structure is arranged between the n-type semiconductor layer and the active layer. A lattice constant of the n-type strain lattice structure exceeds that of the active layer, and is less than that of the n-type semiconductor layer.08-16-2012
20100207136SAPPHIRE SUBSTRATE, NITRIDE SEMICONDUCTOR LUMINESCENT ELEMENT USING THE SAPPHIRE SUBSTRATE, AND METHOD FOR MANUFACTURING THE NITRIDE SEMICONDUCTOR LUMINESCENT ELEMENT - The present invention provides an inexpensive substrate which can realize m-plane growth of a crystal by vapor phase growth. In a sapphire substrate, an off-angle plane slanted from an m-plane by a predetermined very small angle is prepared as a growth surface, which is a template of the crystal, at the time of growing a crystal of GaN or the like, by a polishing process to prepare a stepwise substrate comprising steps and terraces. According to the above-described configuration, even if an inexpensive sapphire substrate, which normally does not form an m-plane (nonpolar plane) GaN film, is used as a substrate for crystal growth, the following advantages can be attained. Specifically, c-axis growth can be carried out from the plane of each step as an a-plane on the terrace by vapor phase growth, which is advantageous in the fabrication of a device, in order to grow an excellent GaN single crystal which has been epitaxially grown so that the m-plane is opposite to the surplane of the terrace, and, in the mean time, the steps become integrated (fused), whereby a device can be fabricated from a substrate of a GaN single crystal having no significant threading dislocation. Further, the use of the m-plane can advantageously eliminate the influence of piezo electric fields.08-19-2010
20110049542AlxGa(1-x)As Substrate, Epitaxial Wafer for Infrared LEDs, Infrared LED, Method of Manufacturing AlxGa(1-x)As Substrate, Method of Manufacturing Epitaxial Wafer for Infrared LEDs, and Method of Manufacturing Infrared LEDs - The present invention makes available Al03-03-2011
20110049541SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME - A semiconductor light emitting device, includes: a stacked structural unit including a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and a light emitting layer provided therebetween; and an electrode including a first and second metal layers, the first metal layer including silver or silver alloy and being provided on a side of the second semiconductor layer opposite to the light emitting layer, the second metal layer including at least one element selected from gold, platinum, palladium, rhodium, iridium, ruthenium, and osmium and being provided on a side of the first metal layer opposite to the second semiconductor layer. A concentration of the element in a region including an interface between the first and second semiconductor layers is higher than that of the element in a region of the first metal layer distal to the interface.03-03-2011
20110049540METHOD FOR FABRICATING ROBUST LIGHT-EMITTING DIODES - One embodiment of the present invention provides a method for fabricating light-emitting diodes (LEDs). The method includes fabricating an InGaAlN-based multilayer LED structure on a conductive substrate. The method further includes etching grooves of a predetermined pattern through the active region of the multilayer LED structure. The grooves separate a light-emitting region from non-light-emitting regions. In addition, the method includes depositing electrode material on the light-emitting and non-light-emitting regions, thereby creating an electrode. Furthermore, the method includes depositing a passivation layer covering the light-emitting and non-light-emitting regions. Moreover, the method includes removing the passivation layer on the electrode to allow the non-light-emitting regions which are covered with the electrode material and the passivation layer to be higher than the light-emitting region and the electrode, thereby protecting the light-emitting region from contact with test equipment.03-03-2011
20100096649Semiconductor Light Emitting Device and Manufacturing Method Therefor - A semiconductor light emitting device of double hetero junction includes an active layer and clad layers. The clad layers include an n-type layer and p-type layer. The clad layers sandwich the active layer. A band gap energy of the clad layers is larger than that of the active layer. The band gap energy of the n-type clad layer is smaller than of the p-type clad layer.04-22-2010
20100096651III-Nitride Semiconductor Light Emitting Device - The present disclosure relates to a III-nitride semiconductor light-emitting device including a substrate with a first groove and a second groove formed therein, the substrate including a first surface and a second surface opposite to the first surface, a plurality of III-nitride semiconductor layers including a first semiconductor layer formed over the first surface of the substrate, a second semiconductor layer formed over the first III-nitride semiconductor layer, and an active layer disposed between the first and second III-nitride semiconductor layers and generating light by recombination of electrons and holes, a first opening formed on the first groove, a second opening formed on the second groove, a first electrode electrically connected from the second surface to the first III-nitride semiconductor layer through the first groove, and a second electrode electrically connected from the second surface to the second III-nitride semiconductor layer through the second groove and the second opening.04-22-2010
20110089445METHOD FOR PREPARING A SEMICONDUCTOR - The invention concerns a method for preparing a NIII-V semiconductor. According to the invention, the method includes at least one step of doping a semiconductor of general formula Al04-21-2011
20120211784NITRIDE SEMICONDUCTOR STACKED STRUCTURE AND METHOD FOR MANUFACTURING SAME AND NITRIDE SEMICONDUCTOR DEVICE - According to one embodiment, a nitride semiconductor stacked structure having a first surface includes a substrate, a first buffer layer, a first crystal layer, a second buffer layer and a second crystal layer. A step portion is provided in the substrate and includes an upper surface, a lower surface, and a side surface between the upper surface and the lower surface. The first buffer layer includes In08-23-2012
20100289042SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor light emitting device includes a first cladding layer, a second cladding layer, and an active layer formed between the first and second cladding layers. A diffusion control layer includes an intermediate layer and a first transparent conductive layer provided on the second cladding layer in this order. The semiconductor light emitting device further includes a second transparent conductive layer having an impurity in a concentration lower than an impurity concentration of the diffusion control layer, and a third transparent conductive layer having an impurity in a concentration higher than the impurity concentration of the second transparent conductive layer. The boundary between the intermediate layer and the first transparent conductive layer is a lattice mismatch interface.11-18-2010
20100207137SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, HIGH CARRIER MOBILITY TRANSISTOR AND LIGHT EMITTING DEVICE - Provided are a semiconductor device, a semiconductor device manufacturing method, a high carrier mobility transistor and a light emitting device. The semiconductor device is provided with a semiconductor layer including N and Ga, a conductive layer ohmic-connected to the semiconductor layer, a metal-distributed region where metal exists by being distributed at an interface between the semiconductor layer and the conductive layer, and a metal intrusion region where the atoms of the metal exist by entering the semiconductor layer.08-19-2010
20090057695Nitride Semiconductor Device - A nitride semiconductor device according to the present invention sequentially includes at least an n-electrode, an n-type semiconductor layer, an active layer, and a p-type semiconductor layer. The n-type semiconductor layer includes: an n-type GaN contact layer including n-type impurity-doped GaN having an electron concentration ranging from 5×1003-05-2009
20090057694LIGHT OPTOELECTRONIC DEVICE AND FORMING METHOD THEREOF - The present invention provides an optoelectronic device with an epi-stacked structure, which includes a substrate, a buffer layer that is formed on the substrate, in which the buffer layer includes a first nitrogen-containing compound layer, an II/V group compound layer is provided on the first nitrogen-containing compound layer, a second nitrogen-containing compound layer is provided on the II/V group compound layer, and a third nitrogen-containing compound layer is provided on the second nitrogen-containing compound layer, an epi-stacked stricture with a multi-layer structure is formed on the buffer layer, which includes a first semiconductor conductive layer is formed on the buffer layer, an active layer is formed on the first semiconductor conductive layer, a multi-layer structure is formed between the first semiconductor conductive layer and the active layer, and a second semiconductor conductive layer is formed on the active layer.03-05-2009
20100051979Semiconductor device and optical print head - A semiconductor device includes a diamond-like carbon film formed on the substrate. A thin film is formed on the diamond-like carbon film. The thin film has a thickness thinner than the diamond-like carbon. A semiconductor thin film having a semiconductor element is bonded onto the thin film.03-04-2010
20100051980METHOD FOR MANUFACTURING GROUP III NITRIDE COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE, GROUP III NITRIDE COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE, AND LAMP - A method for manufacturing a Group III nitride semiconductor light-emitting device according to the present invention, comprising forming, on a substrate, a semiconductor layer comprised of a Group III nitride compound semiconductor containing Ga as a Group III element by a sputtering method, wherein during the formation of the semiconductor layer, sputtering is performed under the condition where at least the surface layer of a sputtering target comprised of Ga is liquefied.03-04-2010
20100051978SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME - A semiconductor light emitting device includes: a laminated structure body including an n-type semiconductor layer, a p-type semiconductor layer and a light emitting layer provided between the n-type semiconductor layer and the p-type semiconductor layer; a first electrode connected to the n-type semiconductor layer and containing at least one of silver and a silver alloy; and a second electrode connected to the p-type semiconductor layer.03-04-2010
20080203408PROCESS FOR PRODUCING (Al, Ga)lnN CRYSTALS - The present invention relates to a novel process for producing (Al, Ga)InN and AlGaInN single crystals by means of a modified HVPE process, and also to (Al, Ga)InN and AlGaInN bulk crystals of high quality, in particular homogeneity.08-28-2008
20080203407Method for producing an optoelectronic semiconductor chip, and optoelectronic semiconductor chip - A method for producing an optoelectronic semiconductor chip based on a nitride semiconductor system is specified. The method comprises the steps of: forming a semiconductor section with at least one p-doped region; and forming a covering layer disposed downstream of the semiconductor section in a growth direction of the semiconductor chip, said covering layer having at least one n-doped semiconductor layer. An activation step suitable for electrically activating the p-doped region is effected before or during the formation of the covering layer. An optoelectronic semiconductor chip which can be produced by the method is additionally specified.08-28-2008
20100006874PROCESS FOR PRODUCTION OF GALLIUM NITRIDE-BASED COMPOUND SEMICONDUCTOR LIGHT EMITTING DEVICE - In the process for production of a gallium nitride-based compound semiconductor light emitting device, when an n-type semiconductor layer, a light emitting layer obtained by alternately stacking an n-type dopant-containing barrier layer and a well layer, and a p-type semiconductor layer, composed of gallium nitride-based compound semiconductors, are grown in that order on a substrate, the ratio of the supply rates of n-type dopant and Group III element during growth of the barrier layer (M/III) is controlled to a range of 4.5×1001-14-2010
20110303933DIODE HAVING VERTICAL STRUCTURE AND METHOD OF MANUFACTURING THE SAME - A light emitting diode includes a conductive layer, an n-GaN layer on the conductive layer, an active layer on the n-GaN layer, a p-GaN layer on the active layer, and a p-electrode on the p-GaN layer. The conductive layer is an n-electrode.12-15-2011
20100244063NITRIDE-BASED SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR FABRICATING THE SAME - A nitride-based semiconductor light-emitting device according to the present invention has a nitride-based semiconductor multilayer structure 09-30-2010
20110303932Organic, Radiation-Emitting Component and Method for Producing the Same - A method for producing an organic, radiation-emitting component is specified, wherein at least one layer (12-15-2011
20110303931SEMICONDUCTOR LIGHT EMITTING DIODE AND METHOD FOR FABRICATING THE SAME - Disclosed are a semiconductor light emitting diode and a method for fabricating the same. The method comprises forming a crystalline nitride semiconductor layer on a substrate, forming an amorphous layer and a crystalline nitride semiconductor layer on the nitride semiconductor layer, forming an n-type nitride semiconductor layer on the crystalline nitride semiconductor layer, forming an active layer on the n-type nitride semiconductor layer, and forming a p-type nitride semiconductor layer on the active layer.12-15-2011
20120223347LIGHT EMITTING DEVICE AND LIGHTING APPARATUS - Provided are a light emitting device, a light emitting device package, and a lighting apparatus. The light emitting device includes: an n-type semiconductor layer including a first area and a second area in a plane; an active layer disposed on the n-type semiconductor layer in the first area; an electron barrier layer disposed on the active layer in the first area; and a p-type semiconductor layer disposed on the electron barrier layer in the first area.09-06-2012
20120256210LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE PACKAGE HAVING THE SAME - Disclosed are a light emitting device. The light emitting device includes a light emitting structure including a first and second conductive semiconductors, and an active layer; an insulating layer on a lateral surface of the light emitting structure; an electrode on the first conductive semiconductor layer; an electrode layer under the second conductive semiconductor layer; and a protective layer including a first portion between the light emitting structure and the electrode layer and a second portion extending outward beyond a lower surface of the light emitting structure, wherein the first conductive semiconductor layer includes a first top surface including a roughness on a first region, and a second top surface lower than the first region and being closer the lateral surface of the light emitting structure than the first region, wherein the second top surface is disposed on an edge portion of the first conductive semiconductor layer.10-11-2012
20110121330Gallium nitride light emitting devices and methods of manufacturing the same - A gallium nitride (GaN) light emitting device and a method of manufacturing the same are provided, the method including sequentially forming a buffer layer and a first nitride layer on a silicon substrate, and forming a plurality of patterns by dry etching the first nitride layer. Each pattern includes a pair of sidewalls facing each other. A reflective layer is deposited on the first nitride layer so that one sidewall of the pair is exposed by the reflective layer. An n-type nitride layer that covers the first nitride layer is formed by horizontally growing an n-type nitride from the exposed sidewall, and a GaN-based light emitting structure layer is formed on the n-type nitride layer.05-26-2011
20100327298LIGHT-EMITTING ELEMENT AND METHOD OF MAKING THE SAME - A light-emitting element includes a semiconductor substrate, a light emitting portion including an active layer sandwiched between a first cladding layer of a first conductivity type and a second cladding layer of a second conductivity type different from the first conductivity type, a reflective portion provided between the semiconductor substrate and the light emitting portion for reflecting light emitted from the active layer, and a current spreading layer provided on the light emitting portion opposite to the reflective portion and including a concavo-convex portion on a surface thereof. The reflective portion includes a plurality of pair layers each including a first semiconductor layer and a second semiconductor layer different from the first semiconductor layer, and the first semiconductor layer has a thickness T12-30-2010
20080296594NITRIDE OPTOELECTRONIC DEVICES WITH BACKSIDE DEPOSITION - Nitride optoelectronic devices that have asymmetric double-sided structures and methods fabricating such structures are disclosed. Two n-type III-N layers are formed simultaneously over opposite sides of a substrate with substantially the same composition. Thereafter, a p-type III-N active layer is formed over one of the n-type III-N layers but not over the other.12-04-2008
20100224891VERTICALLY STRUCTURED LED BY INTEGRATING NITRIDE SEMICONDUCTORS WITH Zn(Mg,Cd,Be)O(S,Se) AND METHOD FOR MAKING SAME - A light emitting diode (LED) with a vertical structure, including electrical contacts on opposing sides, provides increased brightness. In some embodiments an LED includes a nitride semiconductor light emitting component grown on a sapphire substrate, a Zn(Mg,Cd,Be)O(S,Se) assembly formed on the nitride semiconductor component, and a further Zn(Mg Cd,Be)O(S,Se) assembly bonded on an opposing side of the light emitting component, which is exposed by removing the sapphire substrate. Electrical contacts may be connected to the Zn(Mg,Cd,Be)O(S,Se) assembly and the further Zn(Mg,Cd,Be)O(S,Se) assembly. Herein Zn(Mg,Cd,Be)O(S,Se) is a II-VI semiconductor satisfying a formula Zn09-09-2010
20100230690GROUP III NITRIDE SEMICONDUCTOR DEVICE, EPITAXIAL SUBSTRATE, AND METHOD OF FABRICATING GROUP III NITRIDE SEMICONDUCTOR DEVICE - A group III nitride semiconductor device having a gallium nitride based semiconductor film with an excellent surface morphology is provided. A group III nitride optical semiconductor device 09-16-2010
20120280260SEMICONDUCTOR LIGHT EMITTING DEVICE - Provided are a semiconductor light emitting device and a method for manufacturing the same. The semiconductor light emitting device comprises a first electrode on an region of top surface of a first conductive semiconductor layer; a second electrode layer under a second conductive semiconductor layer; and a conductive support member under the second electrode layer, wherein the second conductive semiconductor layer includes a plurality of recesses on a lower portion of the second conductive semiconductor layer, wherein the second electrode layer has an uneven structure corresponding to the plurality of recesses.11-08-2012
20100207138III Nitride Semiconductor Crystal, III Nitride Semiconductor Device, and Light Emitting Device - Group III nitride semiconductor crystals of a size appropriate for semiconductor devices and methods for manufacturing the same, Group III nitride semiconductor devices and methods for manufacturing the same, and light-emitting appliances. A method of manufacturing a Group III nitride semiconductor crystal includes a process of growing at least one Group III nitride semiconductor crystal substrate on a starting substrate, a process of growing at least one Group III nitride semiconductor crystal layer on the Group III nitride semiconductor crystal substrate, and a process of separating a Group III nitride semiconductor crystal, constituted by the Group III nitride semiconductor crystal substrate and the Group III nitride semiconductor crystal layer, from the starting substrate, and is characterized in that the Group III nitride semiconductor crystal is 10 μm or more but 600 μm or less in thickness, and is 0.2 mm or more but 50 mm or less in width.08-19-2010
20120138980OPTOELECTRONIC DEVICE AND METHOD FOR MANUFACTURING THE SAME - An optoelectronic device, comprising: a substrate; a plurality of the first semiconductor rods formed on the substrate, contacted with the substrate, and exposed partial of the first surface of the substrate; a first protection layer formed on the sidewall of the plurality of the first semiconductor rods and the exposed partial of the first surface of the substrate; a first buffer layer formed on the plurality of the first semiconductor rods wherein the first buffer layer having a first surface and a second surface opposite to the first surface, and the plurality of the first semiconductor rods directly contacted with the first surface; and at least one first hollow component formed among the first semiconductor rods, the first surface of the substrate, and the first surface of the first buffer layer and the ratio of the height and the width of the first hollow component is 1/5-3.06-07-2012
20130009182NON-POLAR SUBSTRATE HAVING HETERO-STRUCTURE AND METHOD FOR MANUFACTURING THE SAME, AND NITRIDE-BASED LIGHT EMITTING DEVICE USING THE SAME - Disclosed are a non-polar hetero substrate, a method for manufacturing the same, and a nitride-based light emitting device using the same. The non-polar hetero substrate includes a non-polar base substrate, a nitride base layer disposed on the substrate, a defect reduction layer disposed on the nitride base layer, the defect reduction layer including a plurality of air gaps, and a nitride semiconductor layer disposed on the defect reduction layer.01-10-2013
20130015477NANOSTRUCTURED LIGHT-EMITTING DEVICEAANM KIM; Joo-sungAACI Seongnam-siAACO KRAAGP KIM; Joo-sung Seongnam-si KRAANM KIM; TaekAACI Seongnam-siAACO KRAAGP KIM; Taek Seongnam-si KRAANM YANG; Moon-seungAACI Hwaseong-siAACO KRAAGP YANG; Moon-seung Hwaseong-si KR - A nanostructured light-emitting device including: a first type semiconductor layer; a plurality of nanostructures each including a first type semiconductor nano-core grown in a three-dimensional (3D) shape on the first type semiconductor layer, an active layer formed to surround a surface of the first type semiconductor nano-core, and a second type semiconductor layer formed to surround a surface of the active layer and including indium (In); and at least one flat structure layer including a flat-active layer and a flat-second type semiconductor layer that are sequentially formed on the first type semiconductor layer parallel to the first type semiconductor layer.01-17-2013
20080251803SEMICONDUCTOR LIGHT EMITTING DEVICE - Disclosed is a semiconductor light emitting device. The semiconductor light emitting device comprises a substrate comprising a reflective pattern with a valley, a first nitride semiconductor layer on the substrate, an air gap formed between the reflective pattern and the first nitride semiconductor layer, an active layer on the first nitride semiconductor layer, and a second nitride semiconductor layer on the active layer.10-16-2008
20080251802METHOD FOR DEPOSITION OF (Al,In,Ga,B)N - A method for growing an improved quality nitride thin film on a patterned substrate is disclosed, wherein the nitride film is grown at atmospheric pressure. A nitride template is disclosed, comprising a patterned substrate and a one or more nitride layer direct growth off of the patterned substrate, comprising no lateral epitaxial overgrowth regions and a substantially coalesced surface smooth enough for subsequent deposition of light emitting device quality nitride layers onto the surface. A light emitting diode comprising the nitride film is also disclosed.10-16-2008
20080230792Semiconductor Light-Emitting Device with Electrode for N-Polar Ingaain Surface - One embodiment of the present invention provides a semiconductor light-emitting device, which comprises: an upper cladding layer; a lower cladding layer; an active layer between the upper and lower cladding layers; an upper ohmic-contact layer forming a conductive path to the upper cladding layer; and a lower ohmic-contact layer forming a conductive path the lower cladding layer. The lower ohmic-contact layer has a shape substantially different from the shape of the upper ohmic-contact layer, thereby diverting a carrier flow away from a portion of the active layer which is substantially below the upper ohmic-contact layer when a voltage is applied to the upper and lower ohmic-contact layers.09-25-2008
20130181240COMPOSITE SUBSTRATE, MANUFACTURING METHOD THEREOF AND LIGHT EMITTING DEVICE HAVING THE SAME - The present invention relates to a manufacturing method of a composite substrate. The method includes the steps of: providing a substrate; providing a precursor of group III elements and a precursor of nitrogen (N) element alternately in an atomic layer deposition (ALD) process or a plasma-enhanced atomic layer deposition (PEALD) process so as to deposit a nitride buffer layer on the substrate; and annealing the nitride buffer layer on the substrate at a temperature in the range of 300° C. to 1600° C.07-18-2013
20080217631Semiconductor light emitting apparatus and the manufacturing method thereof - A semiconductor light emitting apparatus is provided. The semiconductor light emitting apparatus includes a light-emitting device, a transparent material and at least one transparent film. The light-emitting device is located in a package substrate. The transparent material covers the light-emitting device. The transparent film is located between the light-emitting device and the transparent material. The refractive index of the transparent film is between the refractive index of the light-emitting device and the transparent material. A method for manufacturing the semiconductor light emitting apparatus is also disclosed.09-11-2008
20130113004LIGHT-EMITTING DEVICE WITH HEAD-TO-TAIL P-TYPE AND N-TYPE TRANSISTORS - A light-emitting microelectronic device including a first N-type transistor (T05-09-2013
20110272719LED STRUCTURE - The present invention discloses an LED structure, wherein an N-type current spreading layer is interposed between N-type semiconductor layers to uniformly distribute current flowing through the N-type semiconductor layer. The N-type current spreading layer includes at least three sub-layers stacked in a sequence of from a lower band gap to a higher band gap, wherein the sub-layer having the lower band gap is near the substrate, and the sub-layer having the higher band gap is near the light emitting layer. Each sub-layer of the N-type current spreading layer is expressed by a general formula In11-10-2011
20130134458SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND METHOD FOR PRODUCING THE SAME - A semiconductor light-emitting element includes, a first semiconductor layer, a second semiconductor layer, a light-emitting layer provided between the first semiconductor layer and the second semiconductor layer, a first electrode connected to the first semiconductor layer, and a second electrode provided on the second semiconductor layer. A side of the second electrode facing to the second semiconductor layer is composed of at least any one of silver and silver alloy. The second electrode has a void having a width of emission wavelength or less of the light-emitting layer in a plane of the second electrode facing to the second semiconductor layer.05-30-2013
20100276710Ultraviolet Light Emitting AlGaN Composition And Ultraviolet Light Emitting Device Containing Same - An AlGaN composition is provided comprising a group III-Nitride active region layer, for use in an active region of a UV light emitting device, wherein light-generation occurs through radiative recombination of carriers in nanometer scale size, compositionally inhomogeneous regions having band-gap energy less than the surrounding material. Further, a semiconductor UV light emitting device having an active region layer comprised of the AlGaN composition above is provided, as well as a method of producing the AlGaN composition and semiconductor UV light emitting device, involving molecular beam epitaxy.11-04-2010
20080197367Method of super flat chemical mechanical polishing technology and semiconductor elements produced thereof - The present invention provides a method of super flat chemical mechanical polishing (SF-CMP) technology, which is a method characterized in replacing laser lift-off in a semiconductor fabricating process. SF-CMP has a main step of planting a plurality of polishing stop points before polishing the surface, which is characterized by hardness of the polishing stop points material being larger than hardness of the surface material. Therefore, the present method can achieve super flat polishing surface without removing polishing stop points.08-21-2008
20130146907Ultraviolet Reflective Contact - A contact including an ohmic layer and a reflective layer located on the ohmic layer is provided. The ohmic layer is transparent to radiation having a target wavelength, while the reflective layer is at least approximately eighty percent reflective of radiation having the target wavelength. The target wavelength can be ultraviolet light, e.g., having a wavelength within a range of wavelengths between approximately 260 and approximately 360 nanometers.06-13-2013
20130146906ULTRAVIOLET SEMICONDUCTOR LIGHT EMITTING DEVICE - An ultraviolet light emitting device includes a first conductive semiconductor layer; an active layer under the first conductive semiconductor layer; a first reflective layer under the active layer; and a second conductive semiconductor layer under the first reflective layer. The first reflective layer comprises a plurality of compound semiconductor layers. The compound semiconductor layer comprises at least two semiconductor materials. The contents of the at least two semiconductor materials are different from each other.06-13-2013
20120273816SEMICONDUCTOR OPTICAL DEVICE - A semiconductor optical device includes: a group III nitride semiconductor substrate having a primary surface of a first orientation; a first group III nitride semiconductor laminate including a first active layer disposed on a first region of the primary surface; a group III nitride semiconductor thin film having a surface, which has a second orientation different from the first orientation, disposed on a second region, the second region being different from the first region; a junction layer provided between the second region and the group III nitride semiconductor thin film; and a second group III nitride semiconductor laminate including a second active layer and disposed on the surface of the group III nitride semiconductor thin film. The first and second active layers include first and second well layers containing In, respectively, and the emission wavelengths of the first and second well layers are different from each other.11-01-2012
20120273815LIFT-OFF STRUCTURE FOR SUBSTRATE OF A PHOTOELECTRIC DEVICE AND THE METHOD THEREOF - The present invention related to a lift-off structure adapted to a substrate having a photoelectric device, the structure comprising: a buffer layer, forming on the substrate; an upper sacrificial layer, forming on the buffer layer; an etch stop layer, forming on the upper sacrificial layer, and the photoelectric device structure forming on the etch stop layer.11-01-2012
20100314640INDIUM GALLIUM NITRIDE-BASED OHMIC CONTACT LAYERS FOR GALLIUM NITRIDE-BASED DEVICES - Light emitting devices include a gallium nitride-based epitaxial structure that includes an active light emitting region and a gallium nitride-based outer layer, for example gallium nitride. A indium nitride-based layer, such as indium gallium nitride, is provided directly on the outer layer. A reflective metal layer or a transparent conductive oxide layer is provided directly on the indium gallium nitride layer opposite the outer layer. The indium gallium nitride layer forms a direct ohmic contact with the outer layer. An ohmic metal layer need not be used. Related fabrication methods are also disclosed.12-16-2010
20130193464LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE AND LIGHT EMITTING MODULE - Disclosed are a light emitting device, a light emitting device package and a light emitting module. The light emitting device includes a light emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer and an active layer between the first and second conductive semiconductor layers; a support member under the light emitting structure; a reflective electrode layer between the second conductive semiconductor layer and the support member; and first to third connection electrodes spaced apart from each other in the support member. The second connection electrode is disposed between the first and third connection electrodes, the first and third connection electrodes are electrically connected with each other, and the support member is disposed at a peripheral portion of the first to third connection electrodes.08-01-2013
20120018753ULTRAVIOLET LIGHT EMITTING DIODE DEVICES AND METHODS FOR FABRICATING THE SAME - A UV LED device and the method for fabricating the same are provided. The device has aluminum nitride nucleating layers, an intrinsic aluminum gallium nitride epitaxial layer, an n-type aluminum gallium nitride barrier layer, an active region, a first p-type aluminum gallium nitride barrier layer, a second p-type aluminum gallium nitride barrier layer, and a p-type gallium nitride cap layer arranged from bottom to top on a substrate. A window region is etched in the p-type gallium nitride cap layer for emitting the light generated.01-26-2012
20120018752SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - According to one embodiment, a semiconductor device includes a substrate and a stacked body on the substrate via a joining metal layer. The stacked body includes a device portion and a peripheral portion. The device portion includes from a bottommost layer to a topmost layer included in the stacked body. The peripheral portion surrounding and provided around the device portion; the peripheral portion is a portion of the bottommost layer to the topmost layer included in the stacked body and includes a portion of a semiconductor layer in contact with the joining metal layer.01-26-2012
20120025232III-NITRIDE LIGHT-EMITTING DIODE AND METHOD OF PRODUCING THE SAME - Embodiments of the present invention provides III-nitride light-emitting diodes, which primarily include a first electrode, a n-type gallium nitride (GaN) nanorod array consisted of one or more n-type GaN nanorods ohmic contacting with the first electrode, one or more indium gallium nitride (InGaN) nanodisks disposed on each of the n-type GaN nanorods, a p-type GaN nanorod array consisted of one or more p-type GaN nanorods, where one p-type GaN nanorod is disposed on top of the one ore more InGaN nanodisks disposed on each of the n-type GaN nanorods, and a second electrode ohmic contacts with the p-type GaN nanorod array.02-02-2012
20120086027GROUP-III NITRIDE COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE, METHOD OF MANUFACTURING GROUP-III NITRIDE COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE, AND LAMP - A group-III nitride compound semiconductor light-emitting device, a method of manufacturing the group-III nitride compound semiconductor light-emitting device, and a lamp. The method includes the steps of: forming an intermediate layer (04-12-2012
20130207140Semiconductor Optical Element Semiconductor Optical Module and Manufacturing Method Thereof - A semiconductor optical element comprises a substrate, an active layer lying in one direction over the substrate from which light exits using a side in the shorter direction among the four sides as an outgoing end, a buried layer provided over the substrate and covering two sides in the longitudinal direction among the four sides, a clad layer provided over the active layer and over the substrate existing on the extension line of the outgoing end of the active layer, a mirror which reflects light from the active layer provided on the extension line of the active layer, wherein the mirror is formed in the clad layer.08-15-2013

Patent applications in class With heterojunction

Patent applications in all subclasses With heterojunction