Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


INCOHERENT LIGHT EMITTER STRUCTURE

Subclass of:

257 - Active solid-state devices (e.g., transistors, solid-state diodes)

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
257098000 With reflector, opaque mask, or optical element (e.g., lens, optical fiber, index of refraction matching layer, luminescent material layer, filter) integral with device or device enclosure or package 2662
257088000 Plural light emitting devices (e.g., matrix, 7-segment array) 1776
257099000 With housing or contact structure 1125
257094000 With heterojunction 297
257103000 With particular semiconductor material 233
257080000 In combination with or also constituting light responsive device 217
257100000 Encapsulated 175
257101000 With particular dopant concentration or concentration profile (e.g., graded junction) 26
257086000 Active layer of indirect band gap semiconductor 18
257102000 With particular dopant material (e.g., zinc as dopant in GaAs) 13
Entries
DocumentTitleDate
20100155744SEMICONDUCTOR NANOCRYSTAL COMPOSITE - A nanocrystal composite that includes a matrix including semiconductor nanocrystals, and a barrier layer disposed on at least a portion of the surface of the matrix and including a polymer with low oxygen permeability, low moisture permeability, or both.06-24-2010
20100001294LED module having a heat sink - The invention relates to an LED module (01-07-2010
20080258154SEMICONDUCTOR DEVICE MANUFACTURING METHOD AND DISPLAY DEVICE - Disclosed herein is a semiconductor device manufacturing method for performing an annealing process of irradiating a semiconductor film on which element forming areas including thin film transistor forming areas are arranged in a two-dimensional pattern with energy beams using a plurality of irradiating optical systems, wherein in the annealing process, an area irradiated with the energy beams is divided into a single beam irradiated area irradiated by each of the plurality of irradiating optical systems with an energy beam singly and a boundary area situated between single beam irradiated areas adjacent to each other and irradiated by both of two irradiating optical systems performing beam irradiation of the single beam irradiated areas with energy beams.10-23-2008
20110193102ORGANIC LIGHT EMITTING DIODE DEVICE AND METHOD FOR MANUFACTURING THE SAME - An organic light emitting diode device and a manufacturing method thereof. The organic light emitting diode device includes a substrate main body, a transparent electrode formed on the substrate main body, an organic emission layer formed on the transparent electrode, a cover electrode formed on the organic emission layer and made of a metal, and a sealant formed on the substrate main body to overlap an edge of the cover electrode and cover a side surface of the organic emission layer.08-11-2011
20130037825SEMICONDUCTOR LIGHT EMITTING CHIP AND METHOD FOR PROCESSING SUBSTRATE - Disclosed is a semiconductor light emitting chip (02-14-2013
20090184329Positive electrode for semiconductor light-emitting device - An object of the present invention is to provide a transparent positive electrode for use in a face-up-type chip which can emit intense light even using a low drive voltage.07-23-2009
20120205671SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A high reliability semiconductor display device is provided. A semiconductor layer in the semiconductor display device has a channel forming region, an LDD region, a source region, and a drain region, and the LDD region overlaps a first gate electrode, sandwiching a gate insulating film.08-16-2012
20100102333ORGANIC LIGHT EMITTING DISPLAY AND FABRICATING METHOD THEREOF - An organic light emitting display includes an insulating substrate having a first area, a second area, and a third area, an organic layer located in the second area, a pixel electrode located on the organic layer in the first area and the second area, and a partition wall including an opening exposing a portion of the pixel electrode. The organic light emitting display further includes an organic light emitting member located in the opening and a common electrode located on the organic light emitting member. The opening is disposed in the first area, and the third area includes a trench separating the second area from an adjacent second area.04-29-2010
20090159899LIGHT- EMITTING DEVICE - A light-emitting device includes a substrate having an epitaxial-forming surface and a back surface opposite to the epitaxial-forming surface, the substrate being formed with a recess indented from the back surface, the back surface having a recessed portion that defines the recess, and a planar portion extending outwardly from the recessed portion; an epitaxy layer; a continuous heat-dissipating layer formed on the planar portion and the recessed portion of the back surface of the substrate; and first and second electrodes coupled electrically to the epitaxy layer.06-25-2009
20130026498SUBSTRATE ASSEMBLY FOR CRYSTAL GROWTH AND FABRICATING METHOD FOR LIGHT EMITTING DEVICE USING THE SAME - A substrate assembly on which a first conduction-type semiconductor layer, an active layer and a second conduction-type semiconductor layer are formed is disclosed, the substrate assembly comprising a first substrate, a second substrate and a bonding layer interposed there between. In the substrate assembly, the thermal expansion coefficient of the bonding layer is smaller than or equal to that of at least one of the first and second substrates.01-31-2013
20130049015LEDS AND METHODS FOR MANUFACTURING THE SAME - A light emitting diode (LED) is disclosed. The LED includes a substrate, a first semiconductor layer, an active layer, a second semiconductor layer, and a patterned structure. The first semiconductor layer having first and second regions is positioned on the substrate, wherein the first region is thicker than the second region. The active layer is positioned on the first region of the first semiconductor layer. The second semiconductor layer is positioned on the active layer, wherein the first and second semiconductor layers have opposite conductivities. The patterned structure is formed on a sidewall of the first region of the first semiconductor layer or on a sidewall of the second semiconductor layer.02-28-2013
20120112211SILICONE RESIN, SEALING MATERIAL, AND OPTICAL SEMICONDUCTOR DEVICE - A silicone resin is obtained by allowing a cage octasilsesquioxane having a group represented by formula (1) below, to react with 05-10-2012
20120112210LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - A light emitting device includes a substrate and a plurality of pixel rows. The pixel rows are arranged on the substrate. Each of the pixel rows includes a first sub-pixel row having a plurality of first sub-pixels, a second sub-pixel row having a plurality of second sub-pixels, and a third sub-pixel row having a plurality of third sub-pixels. In the m05-10-2012
20130161652LIGHT EMITTING DIODE AND MANUFACTURING METHOD THEREOF - A light emitting diode (LED) includes a substrate, a buffer layer and an epitaxial structure. The substrate has a first surface with a patterning structure formed thereon. The patterning structure includes a plurality of projections. The buffer layer is arranged on the first surface of the substrate. The epitaxial structure is arranged on the buffer layer. The epitaxial structure includes a first semiconductor layer, an active layer and a second semiconductor layer arranged on the buffer layer in sequence. The first semiconductor layer has a second surface attached to the active layer. A distance between a peak of each the projections and the second surface of the first semiconductor layer is ranged from 0.5 μm to 2.5 μm.06-27-2013
20120187422SEMICONDUCTOR SUBSTRATE, METHOD FOR PRODUCING SEMICONDUCTOR SUBSTRATE, SUBSTRATE FOR SEMICONDUCTOR GROWTH, METHOD FOR PRODUCING SUBSTRATE FOR SEMICONDUCTOR GROWTH, SEMICONDUCTOR ELEMENT, LIGHT-EMITTING ELEMENT, DISPLAY PANEL, ELECTRONIC ELEMENT, SOLAR CELL ELEMENT, AND ELECTRONIC DEVICE - A semiconductor substrate that includes a semiconductor layer that exhibits high crystallinity includes a graphite layer formed of a heterocyclic polymer obtained by condensing an aromatic tetracarboxylic acid and an aromatic tetramine, and a semiconductor layer that is grown on the surface of the graphite layer, or includes a substrate that includes a graphite layer formed of a heterocyclic polymer obtained by condensing an aromatic tetracarboxylic acid and an aromatic tetramine on its surface, a buffer layer that is grown on the surface of the graphite layer, and a semiconductor layer that is grown on the surface of the buffer layer.07-26-2012
20090072247Light emitting display device and method of fabricating the same - A light emitting display device includes a light emitting diode and a thin film transistor on a substrate, the light emitting diode and thin film transistor being electrically coupled to each other, and a photo diode on the substrate, the photo diode including an intrinsic region and a P-type doping region coupled to each other.03-19-2009
20090008652Free-Standing Substrate, Method for Producing the Same and Semiconductor Light-Emitting Device - The present invention provides a free-standing substrate, a method for producing the same and a semiconductor light-emitting device. The free-standing substrate comprises a semiconductor layer and inorganic particles, wherein the inorganic particles are included in the semiconductor layer. The method for producing a free-standing substrate comprises the steps of: (a) placing inorganic particles on a substrate, (b) growing a semiconductor layer thereon, and (c) separating the semiconductor layer from the substrate, in that order. The semiconductor light-emitting device comprises the free-standing substrate, a conductive layer, a light-emitting device, and electrodes.01-08-2009
20080315213Process for Producing an Electroluminescent P-N Junction Made of a Semiconductor Material by Molecular Bonding - A method for making an electroluminescent PN junction includes molecular bonding a face in a crystalline semiconducting material doped with a first type of a first element with a face in a crystalline semiconducting material doped with a second type opposite to the first type, of a second element, at a bonding interface. The semiconducting material has an indirect forbidden band. The crystalline lattices shown by the faces are shifted in rotation by a predetermined angle so as to at least cause formation of a network of screw type dislocations at the bonding interface.12-25-2008
20110163327DEVICE COMPRISING POSITIVE HOLE INJECTION TRANSPORT LAYER, METHOD FOR PRODUCING THE SAME AND INK FOR FORMING POSITIVE HOLE INJECTION TRANSPORT LAYER - A device capable of having an easy production process and achieving a long lifetime. The device has a substrate, two or more electrodes facing each other disposed on the substrate and a positive hole injection transport layer disposed between two electrodes among the two or more electrodes. The positive hole injection transport layer has a transition metal-containing nanoparticle containing at least a transition metal compound including a transition metal oxide, a transition metal and a protecting agent, or at least the transition metal compound including the transition metal oxide, and the protecting agent.07-07-2011
20090294778LIGHT-EMITTING DEVICE, DISPLAY APPARATUS, AND ELECTRONIC SYSTEM - A light-emitting device includes a cathode, an anode, a first light-emitting layer that is disposed between the cathode and the anode and that emits light of a first color, a second light-emitting layer that is disposed between the first light-emitting layer and the cathode and that emits light of a second color different from the first color, and an intermediate layer that is disposed between and in contact with the first light-emitting layer and the second light-emitting layer and that contains a first material and a second material different from the first material. The light-emitting device satisfies inequality (1):12-03-2009
20120097981LED CHIP - An LED (light emitting diode) chip includes a substrate, a first conduction layer formed on a top surface of the substrate, and a second conduction layer formed on the first conduction layer. The first conduction layer extends from a bottom surface of the second conduction layer to a circumferential surface of the second conduction layer, thereby surrounding the bottom surface and the circumferential surface of the second conduction layer. An active layer is sandwiched between the first and second conduction layers, to increase a contact area between the active later and the first conduction layer and the second conduction layer.04-26-2012
20100032688LIGHT-EMITTING DEVICE AND METHOD FOR FABRICATING THE SAME - A transparent conductive semiconductor substrate 02-11-2010
20090267083TRENCHED SUBSTRATE FOR CRYSTAL GROWTH AND WAFER BONDING - A substrate for a light emitting diode (LED) can have one or more trenches formed therein so as to mitigate stress build up within the substrate due to mismatched thermal coefficients of expansion between the substrate and layers of material, e.g., semiconductor material, formed thereon. In this manner, the likelihood of damage to the substrate, such as cracking thereof, is substantially mitigated.10-29-2009
20110062453COMPOUND SEMICONDUCTOR LIGHT EMITTING ELEMENT, ILLUMINATING APPARATUS USING COMPOUND SEMICONDUCTOR LIGHT EMITTING ELEMENT, AND METHOD FOR MANUFACTURING COMPOUND SEMICONDUCTOR LIGHT EMITTING ELEMENT - A compound semiconductor light emitting element is provided with a substrate which is provided on a side of one electrode; a plurality of columnar crystal structures of nanometer scale extending in a vertical direction on the substrate; and another electrode which interconnects top portions of the plurality of columnar crystal structures. On the substrate are provided a first region, and a second region having a step between the first region and the second region and having a substrate thickness greater than that in the first region; a porous first mask layer is formed on the surface of the first region on the substrate; and the plurality of columnar crystal structures are formed by sequentially layering an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer, in the first and second regions on the substrate.03-17-2011
20110062452METHOD FOR PRODUCING ZINC OXIDE-BASED SEMICONDUCTOR LIGHT-EMITTING DEVICE AND ZINC OXIDE-BASED SEMICONDUCTOR LIGHT-EMITTING DEVICE - The ohmic contact between a growth substrate and an electrode formed thereon is improved in a zinc oxide-based semiconductor light-emitting device, thereby improving the light-emission efficiency and reliability A step for forming an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer in sequence on a first principal face of a substrate having a composition of Mg03-17-2011
20110062451LIGHT-EMITTING ELEMENT - According to an aspect of the invention, a light-emitting element includes a shift thyristor, a light emitting thyristor, and a vertical type gate load resistor. The shift thyristor includes a first anode layer, a first gate layer, and a first cathode layer. The light-emitting thyristor includes a second anode layer, a second gate layer, and a second cathode layer. The vertical type gate load resistor is arranged on the first gate layer under a power line and limits a current flowing from the first gate layer and the second gate layer to the power line.03-17-2011
20110198618LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE, AND LIGHTING SYSTEM - Disclosed is a light emitting device. The light emitting device includes a light emitting structure layer including a first semiconductor layer, an active layer, and a second semiconductor layer, an electrode electrically connected to the first semiconductor layer, an electrode layer under the light emitting structure layer, and a conductive support member under the electrode layer. The conductive support member includes a protrusion projecting from at least one edge.08-18-2011
20080210951Method For Fabricating High-Quality Semiconductor Light-Emitting Devices On Silicon Substrates - One embodiment of the present invention provides a semiconductor light-emitting device which includes: (1) a silicon (Si) substrate; (2) a silver (Ag) transition layer which is formed on a surface of the Si substrate, wherein the Ag transition layer covers the Si substrate surface; and (3) an InGaAlN, ZnMgCdO, or ZnBeCdO-based semiconductor light-emitting structure which is fabricated on the Ag-coated Si substrate. Note that the Ag transition layer prevents the Si substrate surface from forming an amorphous overcoat with reactant gases used for growing the semiconductor light-emitting structure.09-04-2008
20090278138LAMINATED STRUCTURE AND IMAGE DISPLAY DEVICE - A laminated structure includes a wettability variable layer formed on a substrate, including a material whose critical surface tension varies by receiving energy so that high and low surface energy regions are formed; a conductive layer formed in one of the high surface energy regions; and an insulating layer formed in such a manner as to cover the conductive layer, wherein another one of the high surface energy regions is formed in such a manner as to surround a periphery of a circuit formation region in which a plurality of the conductive layers are formed; and the insulating layer is formed in such a manner as to also cover the another one of the high surface energy regions so that an adhesive guard ring region is formed between the wettability variable layer and the insulating layer.11-12-2009
20110204385Vapor Deposition of a Layer - A method of depositing a layer onto a substrate, comprising heating an evaporator to a temperature capable of completely evaporating the evaporant to be deposited, dispensing into the evaporator one or more quantized units of the evaporant where the evaporant is completely vaporized, providing an area vapor dispenser having a plurality of apertures, and directing the vaporized evaporant from the evaporator to the area vapor dispenser so that the evaporant is dispensed through the apertures to deposit the layer on the substrate.08-25-2011
20130214292SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD THEREOF - A manufacturing method of a semiconductor element which can improve productivity and reliability, comprises a step of forming a device structure layer including a semiconductor layer on a first substrate; a step of forming a first metal layer on the device structure layer; a step of forming a second metal layer made of the same material as the first metal layer on a second substrate; a first treatment step of heating and compressing together the first metal layer and the second metal layer placed opposite to each other, thereby bonding them with maintaining a junction interface between the first and second metal layers; and a second treatment step of heating the first and second metal layers to make the junction interface disappear. Either one of the first and second metal layers has a coarse surface having multiple pyramid-shaped protrusions formed at its surface.08-22-2013
20080277671Semiconductor device, method of manufacturing the same, electro-optic device and electronic apparatus - The invention provides a semiconductor device, a method of manufacturing the same, an electro-optic device and an electronic apparatus which are capable of addressing or solving a problem of mechanical mounting of a semiconductor element chip on a substrate. A semiconductor device includes a tile-shaped microelement bonded to a substrate, and an insulating functional film provided to cover at least a portion of the tile-shaped microelement.11-13-2008
20080283846METHOD FOR GROWING SEMICONDUCTOR LAYER, METHOD FOR PRODUCING SEMICONDUCTOR LIGHT-EMITTING ELEMENT, SEMICONDUCTOR LIGHT-EMITTING ELEMENT, AND ELECTRONIC DEVICE - Disclosed herein is a method for growing a semiconductor layer which includes the step of growing a semiconductor layer of hexagonal crystal structure having the (11-22) or (10-13) plane direction on the (1-100) plane of a substrate of hexagonal crystal structure.11-20-2008
20080290349Compound semiconductor wafer, light emitting diode and manufacturing method thereof - A light emitting diode includes a compound semiconductor crystal layer (11-27-2008
20130119408Display Device and Method for Fabricating the Same - An inexpensive display device, as well as an electrical apparatus employing the same, can be provided. In the display device in which a pixel section and a driver circuit are included on one and the same insulating surface, the driver circuit includes a decoder 05-16-2013
20090072246Diode and memory device comprising the same - Provided are a diode and a memory device comprising the diode. The diode includes a p-type semiconductor layer and an n-type semiconductor layer, wherein at least one of the p-type semiconductor layer and the n-type semiconductor layer comprises a resistance changing material whose resistance is changed according to a voltage applied to the resistance changing material.03-19-2009
20090127568SEMICONDUCTOR LIGHT EMITTING ELEMENT AND METHOD FOR FABRICATING THE SAME - A semiconductor light emitting element includes a substrate 05-21-2009
20090127567LED CHIP THERMAL MANAGEMENT AND FABRICATION METHODS - The present invention relates to a method of fabricating a high power light-emitting device using an electrolessly or electrolytically plated metal composite heat dissipation substrate having a high thermal conductivity and a thermal expansion coefficient matching with the device.05-21-2009
20100200867VERTICAL STRUCTURE LED DEVICE AND METHOD OF MANUFACTURING THE SAME - A method of manufacturing a vertical structure light emitting diode device, the method including: sequentially forming a first conductivity type III-V group compound semiconductor layer, an active layer, and a second conductivity type III-V group compound semiconductor layer on a substrate for growth; bonding a conductive substrate to the second conductivity type III-V group compound semiconductor layer; removing the substrate for growth from the first conductivity type III-V group compound semiconductor layer; and forming an electrode on an exposed portion of the first conductive III-V group compound semiconductor layer due to the removing the substrate for growth, wherein the bonding a conductive substrate comprises partially heating a metal bonding layer by applying microwaves to a bonding interface while bringing the metal bonding layer into contact with the bonding interface.08-12-2010
20090014731LED Chip Design for White Conversion - A light emitting diode is disclosed, together with associated wafer structures, and fabrication and mapping techniques. The diode includes an active portion, a raised border on the top surface of the active portion and around the perimeter of the top surface of the active portion, a resin in the space defined by the border and the top surface of the active portion, and phosphor particles in the resin that convert the frequencies emitted by the active portion.01-15-2009
20120068197LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, AND ELECTRONIC DEVICE - A light-emitting element is provided, including a first electrode and a second electrode, a first layer including first and second organic compounds, the first layer being formed between the first electrode and the second electrode wherein the first organic compound is capable of emitting a first light and the second organic compound has an electron transporting property, and a second layer including third and fourth organic compounds, the second layer being formed between the first layer and the second electrode wherein the third organic compound is capable of emitting a second light and has an electron trap property and the fourth organic compound has an electron transporting property.03-22-2012
20120068196SEMICONDUCTOR LIGHT-EMITTING DEVICE AND A METHOD OF MANUFACTURE THEREOF - A semiconductor light-emitting device comprises a semiconductor layer structure disposed over a substrate. The layer structure includes an active region disposed between a first layer and a second layer. One or more cavities are present in the layer structure, each cavity being coincident with a threading dislocation and extending from an upper surface of the layer structure through at least the second layer and the active region. Removing material where a threading dislocation is present provides effective suppression of the tendency of the threading dislocations to act as non-radiative centres, thereby improving the light output efficiency of the device. The device may be manufactured by a first step of selectively etching the layer structure at the locations of one or more threading dislocation to form a pilot cavity at the or each location. A second etching step is applied to increase the depth of each pilot cavity.03-22-2012
20090321749Light Emitting Device and Method of Manufacturing a Light Emitting Device - A light emitting device comprising a heat sink, a dielectric layer arranged on the heat sink, a heat conductive layer arranged on the dielectric layer, an undercoating arranged on at least a part of the heat conductive layer, and a light emitting chip attached to the heat conductive layer by means of the undercoating.12-31-2009
20090321748LIGHT EMITTING DIODE AND METHOD FOR MANUFACTURING THE SAME - Provided are a light emitting diode and a method for manufacturing the same. In the method, a semiconductor layer is formed, and a mask layer is formed on the semiconductor layer. Laser is irradiated onto a scribing region of the mask layer to divide the semiconductor layer into a plurality of light emitting diodes. The scribing region is etched, and then the mask layer is removed. The plurality of light emitting diodes are then separated from each other.12-31-2009
20090050904LIGHT EMITTING DIODE CIRCUIT - A light emitting diode circuit includes a chip and a light emitting diode. The chip includes a current control unit that is used for controlling a driving current flowing through a path. The light emitting diode is positioned outside of the chip and is coupled to the path. The light emitting diode generates a light source according to the driving current. The light emitting diode circuit can directly control the current value of a driving current flowing through the light emitting diode. In this way, the circuit design is simplified and the production cost of the electronic product is reduced.02-26-2009
20090050903Selective wet etching of gold-tin based solder - The present invention is directed to post-deposition, wet etch processes for patterning AuSn solder material and devices fabricated using such processes. The processes can be applied to uniform AuSn layers to generate submicron patterning of thin AuSn layers having a wide variety of features. The use of multiple etching steps that alternate between different mixes of chemicals enables the etch to proceed effectively, and the same or similar processes can be used to etch under bump metallization. The processes are simple, cost-effective, do not contaminate equipment or tools, and are compatible with standard cleanroom fabrication processes.02-26-2009
20110140130Method for Forming a Thin-film Structure of a Light-Emitting Device via Nanoimprint - A method is disclosed for making a thin-film structure of a light-emitting device via nanoimprint. The method includes the steps of providing a light-emitting element, providing a film on the light-emitting element via spin coating precursor on the light-emitting element, forming a pattern on the film by nanoimprint; and curing the film. Thus, the precursor is transformed to the thin-film structure.06-16-2011
20080296588Semiconductor substrate with electromagnetic-wave-scribed nicks, semiconductor light-emitting device with such semiconductor substrate and manufacture thereof - The invention discloses a substrate and a fabricating method thereof for epitaxy of a semiconductor light-emitting device. An upper surface of the substrate according to the invention, where the epitaxy of the semiconductor light-emitting device is to be performed, has a plurality of electromagnetic-wave-scribed nicks.12-04-2008
20090200560Light emitting device and method of forming the same - An embodiment of present invention discloses a light-emitting device comprising a first multi-layer structure comprising a first lower layer; a first upper layer; and a first active layer able to emit light under a bias voltage and positioned between the first lower layer and the first upper layer; a second thick layer neighboring the first multi-layer structure; a second connection layer associated with the second thick layer; a connective line electrically connected to the second connection layer and the first multi-layer structure; a substrate; and two or more ohmic contact electrodes between the first multi-layer structure and the substrate.08-13-2009
20090230407LED DEVICE AND METHOD FOR FABRICATING THE SAME - An LED device has a substrate, an N-type semiconductor layer formed on the substrate, a light-emitting layer on the N-type semiconductor layer, a P-type semiconductor layer on the light-emitting layer and a transparent electrode layer formed on the P-type semiconductor layer. A top surface of the transparent electrode layer is formed to have multiple micro concave-convex structures to mitigate the light-emitting loss resulted from total reflection, and increase the light-emitting efficiency of the LED device.09-17-2009
20090212302Substrate of liquid crystal device and method for manufacturing the same - A method for manufacturing a substrate of a liquid crystal display device is disclosed. The method includes forming a conductive line structure with low resistance to improve the difficulty of the resistance matching. The method can effectively reduce the resistance of the conductive line of the LCD panel to increase the transmission rate of the driving signal. Hence, the increasing yield of products can reduce the cost of manufacturing, and can meet the requirement of the large-size and high-definition thin film transistor liquid crystal display device.08-27-2009
20090095960HEAT DISSIPATION MEMBER, SEMICONDUCTOR APPARATUS AND SEMICONDUCTOR LIGHT EMITTING APPARATUS - A heat dissipation member includes a first plate-shaped member and a second plate-shaped member. The first plate-shaped member has a first surface thermally connectable with a heat generating element and a second surface. The second plate-shaped member is thermally connected with the second surface of the first plate-shaped member. The first plate-shaped member and the second plate-shaped member form a laminated-plate-shaped member. The laminated-plate-shaped member defines an inlet for admission of a fluid and an outlet communicating with the inlet for ejection of the fluid. The second surface of the first plate-shaped member forms asperities thereon.04-16-2009
20090242902LIGHT EMITTING DEVICES WITH CONSTANT FORWARD VOLTAGE - A light emitting device and method for producing the same is disclosed. The light emitting device includes a semiconductor material, an electrode positioned on the semiconductor material, a wire bonding area, and a resistor connected between the wire bonding area and the electrode.10-01-2009
20120193646METHOD OF MANUFACTURING AN ORGANIC LIGHT EMITTING DIODE BY LIFT-OFF - A method of manufacturing an Organic Light Emitting Diode (OLED). The method comprises using a solution or a solvent for removing a photo-resist used for patterning, which photo-resist is at least partly covered with a material other than photo-resist. The method of manufacturing the OLED thus comprises a lift-off process. The new method provides the benefits of low cost manufacturing and high OLED performance.08-02-2012
20100148189LIGHT EMITTING DIODE - A LED chip including a substrate, a semiconductor device layer, a current blocking layer, a current spread layer, a first electrode and a second electrode is provided. The semiconductor device layer is disposed on the substrate. The current blocking layer is disposed on a part of the semiconductor device layer and includes a current blocking segment and a current distribution adjusting segment. The current spread layer is disposed on a part of the semiconductor device layer and covers the current blocking layer. The first electrode is disposed on the current spread layer, wherein a part of the current blocking segment is overlapped with the first electrode. Contours of the current blocking segment and the first electrode are similar figures. Contour of the first electrode and is within contour of the current blocking segment. The current distribution adjusting segment is not overlapped with the first electrode.06-17-2010
20100148188LASER-INDUCED FLAW FORMATION IN NITRIDE SEMICONDUCTORS - An embodiment is a method and apparatus to induce flaw formation in nitride semiconductors. Regions of a thin film structure are selectively decomposed within a thin film layer at an interface with a substrate to form flaws in a pre-determined pattern within the thin film structure. The flaws locally concentrate stress in the pre-determined pattern during a stress-inducing operation. The stress-inducing operation is performed. The stress-inducing operation causes the thin film layer to fracture at the pre-determined pattern.06-17-2010
20100187545SELECTIVELY DOPED SEMI-CONDUCTORS AND METHODS OF MAKING THE SAME - The present invention is generally directed to methods of selectively doping a substrate and the resulting selectively doped substrates. The methods include doping an epilayer of a substrate with the selected doping material to adjust the conductivity of either the epilayers grown over a substrate or the substrate itself. The methods utilize lithography to control the location of the doped regions on the substrate. The process steps can be repeated to form a cyclic method of selectively doping different areas of the substrate with the same or different doping materials to further adjust the properties of the resulting substrate.07-29-2010
20100193802SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A method for manufacturing a semiconductor device is provided. The method includes steps of forming a semiconductor element layer on a first substrate; bonding a second substrate to the semiconductor element layer; and replacing the first substrate with a combining substrate, wherein the combining substrate has a thermal conductivity larger than that of the first substrate.08-05-2010
20100224887SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device includes: a semiconductor multilayer structure including a first semiconductor layer, a second semiconductor layer, and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer; a first electrode connected to the first semiconductor layer of the semiconductor multilayer structure; a second electrode provided on the second semiconductor layer of the semiconductor multilayer structure; and a third electrode connected to the second electrode. The second electrode is provided between the first electrode and the third electrode as viewed in a direction perpendicular to a major surface of the semiconductor multilayer structure, and includes: a first region having at least one notch extending toward a route connecting between the first electrode and the third electrode; a second region provided around the first electrode and having no notch; and a third region provided around the third electrode and having no notch.09-09-2010
20100276704ORGANIC LIGHT EMITTING DEVICE AND METHOD OF FABRICATING THE SAME - An organic light emitting device and a method for fabricating the same are discussed. According to an embodiment, the method includes forming a mother substrate structure including organic light emitting devices including TFTs and first electrodes, each first electrode electrically connected to the corresponding TFT and being a part of an OLED to be formed; forming first and second conductive layers to form a power line in each organic light emitting device; forming a dummy layer on the first electrodes and the second conductive layer; performing at least one of scribing and grinding processes on the mother substrate structure to divide the mother substrate structure into sub-substrate structures; removing the dummy layer from the first electrodes and the second conductive layer after the performing step; and forming a light emitting layer and a second electrode on the first electrode in one of the sub-substrate structures to form the OLED.11-04-2010
20100237357Light Emitting Device Having Pillar Structure with Roughness Surface and the Forming Method Thereof - A light emitting device is provided which includes a substrate, a first semiconductor layer having a first region and a second region on the substrate; ac active layer is formed on the first region of the first semiconductor layer; a second semiconductor layer is formed on the active surface layer and the portion surface of the second semiconductor layer is a rough surface; a plurality of pillar structures with a hollow structure, and both of the outer surface and inner surface of the pillar structures are rough surface; a transparent conductive layer is formed to cover the plurality of pillar structures; a first electrode is formed on the transparent conductive layer; and a second electrode is formed on the second region of the first semiconductor layer.09-23-2010
20120193645Radiation Emitting Device - A radiation-emitting device having an organic radiation-emitting functional layer and a radiation decoupling layer. The organic radiation-emitting functional layer emits a primary radiation; the radiation decoupling layer is disposed in the beam path of the primary radiation. On the side remote from the radiation-emitting functional layer the radiation decoupling layer comprises a microstructure having regularly disposed geometric structural elements; at least partial regions of the radiation decoupling layer contain regions which effect scattering of the primary radiation.08-02-2012
20110101379Method for Manufacturing Light-Emitting Element, Light-Emitting Element, Light-Emitting Device, Lighting Device, and Electronic Appliance - One object is to provide a light-emitting element which overcomes the problems of electrical characteristics and a light reflectivity have been solved. The light-emitting element is manufactured by forming a first electrode including aluminum and nickel over a substrate; by forming a layer including a composite material in which a metal oxide is contained in an organic compound so as to be in contact with the first electrode after heat treatment is performed with respect to the first electrode; by forming a light-emitting layer over the layer including a composite material; and by forming a second electrode which has a light-transmitting property over the light-emitting layer. Further, the first electrode is preferably formed to include the nickel equal to or greater than 0.1 atomic % and equal to or less than 4.0 atomic %.05-05-2011
20100140630Method And Apparatus For Manufacturing LED Devices Using Laser Scribing - A method of manufacturing a light-emitting device using laser scribing to improve overall light output is disclosed. Upon placing a semiconductor wafer having light emitting diode (“LED”) devices separated by streets on a wafer chuck, the process arranges a first surface of semiconductor wafer containing front sides of the LED devices facing up and a second surface of semiconductor wafer containing back sides of the LED devices facing toward the wafer chuck. After aligning a laser device over the first surface of the semiconductor wafer above a street, the process is configured to focus a high intensity portion of a laser beam generated by the laser device at a location in a substrate closer to the back sides of the LED devices.06-10-2010
20100140629LIGHT-EMITTING DIODE AND METHOD FOR FABRICATING THE SAME - The invention discloses a method for fabricating a light-emitting diode. In an embodiment of the invention, the method comprises the following steps of (a) preparing a substrate; (b) forming an epitaxial layer on the substrate, wherein the epitaxial layer has an upper surface; (c) forming a mask layer on a first region of the upper surface of the epitaxial layer; (d) forming a semiconductor multi-layer structure on a second region of the upper surface of the epitaxial layer, wherein the second region is distinct from the first region; (e) removing the mask layer formed on the first region of the upper surface of the epitaxial layer; and (f) forming an electrode on the first region of the upper surface of the epitaxial layer.06-10-2010
20090114926Light-emitting device - A light-emitting device includes a pixel having a transistor provided over a substrate, and a light-emitting element. The transistor includes a single-crystal semiconductor layer which forms a channel formation region, a silicon oxide layer is provided between the substrate and the single-crystal semiconductor layer, a source or a drain of the transistor is electrically connected to an electrode of the light-emitting element, and the transistor is operated in a saturation region when the light-emitting element emits light. Further, in the light-emitting device, a gray scale of the light-emitting element is displayed by changing a potential applied to the gate of the transistor.05-07-2009
20100219419SEMICONDUCTOR ELEMENT AND METHOD FOR MANUFACTURING THE SAME - Provided is a semiconductor element which can suppress deterioration of element characteristics even when a semiconductor element section includes a plurality of directions having different thermal expansion coefficients within an in-plane direction. A semiconductor laser element (the semiconductor element) is provided with the semiconductor element section, which includes a direction of [1-100] and a direction of [0001] having different thermal expansion coefficients within the in-plane direction of a main surface, and a sub-mount, which includes an arrow (E) direction and an arrow (F) direction having different thermal expansion coefficients within the in-plane direction of the main surface. The semiconductor element section is bonded on the sub-mount so that the direction [1-100] of the semiconductor element section is close to the side of the arrow (E) direction than the arrow (F) direction of the sub-mount.09-02-2010
20090072245Method of producing a light-emitting diode comprising a nanostructured PN junction and diode thus obtained - A nanostructured pn junction light-emitting diode is fabricated from a semi-conducting substrate doped by a first dopant and covered by a dielectric thin layer. An amorphous thin film formed by a semi-conducting material doped by a second dopant of opposite type to that of the first dopant is then deposited on the surface of the dielectric thin layer. The assembly then undergoes a thermal treatment designed to form, in the dielectric thin layer and from the amorphous thin film, a plurality of dots of nanometric size and made of semi-conducting material doped by the second dopant. The dots are designed to be in epitaxial relationship with the substrate to form a plurality of pn junctions of nanometric size. An additional thin layer is then formed by epitaxial growth from the dots.03-19-2009
20110001147SEMICONDUCTOR LIGHT-EMITTING DEVICE - A semiconductor light-emitting device comprises a substrate, a first conductive type semiconductor layer positioned on the substrate, a light-emitting structure positioned on the first conductive type semiconductor layer, and a second conductive type semiconductor layer positioned on the light-emitting structure. The substrate includes an upper surface and a plurality of protrusions positioned on the upper surface. Each of the protrusions includes a top surface, a plurality of wall surfaces, and a plurality of inclined surfaces sandwiched between the top surface and the wall surfaces.01-06-2011
20110001145SEMICONDUCTOR LIGHT EMITTING DEVICE - Embodiments provide a semiconductor light emitting device which comprises a light emitting structure comprising a plurality of compound semiconductor layers, an insulation layer on an outer surface of the light emitting structure, an ohmic layer under the light emitting structure and on an outer surface of the insulation layer, a first electrode layer on the light emitting structure, and a tunnel barrier layer between the first electrode layer and the ohmic layer.01-06-2011
20110001146Light-Emitting Device, Lighting Device, and Electronic Device - It is an object to provide a flexible light-emitting device with high reliability in a simple way. Further, it is an object to provide an electronic device or a lighting device each mounted with the light-emitting device. A light-emitting device with high reliability can be obtained with the use of a light-emitting device having the following structure: an element portion including a light-emitting element is interposed between a substrate having flexibility and a light-transmitting property with respect to visible light and a metal substrate; and insulating layers provided over and under the element portion are in contact with each other in the outer periphery of the element portion to seal the element portion. Further, by mounting an electronic device or a lighting device with a light-emitting device having such a structure, an electronic device or a lighting device with high reliability can be obtained.01-06-2011
20110084286DONOR SUBSTRATE AND METHOD OF FABRICATING ORGANIC LIGHT EMITTING DIODE USING THE SAME - A donor substrate for laser induced thermal imaging and a method of fabricating an organic light emitting diode (OLED) using the donor substrate are disclosed. In one embodiment, the donor substrate includes a base film, a light-to-heat conversion layer formed on the base film, a buffer layer formed on the light-to-heat conversion layer, and a transfer layer formed on the buffer layer. The buffer layer is formed of magnesium (Mg), an Mg alloy, or magnesium oxide. In the donor substrate for laser induced thermal imaging, the buffer layer is formed between the interlayer and the transfer layer or between the light-to-heat conversion layer and the transfer layer, so that surface characteristics between the donor substrate and the transfer layer can be improved.04-14-2011
20090032822 HIGH POWER LIGHT EMITTING DIODE - A high power light emitting diode, The high power light emitting diode comprises a light emitting diode chip, a main module, two first electrode pins, two second electrode pins, and at least one heat dissipation board. The main module has a concave and the light emitting diode chip is positioned in the concave. The first electrode pins are connected to a first side of the main module and also electrically connected to the light emitting diode chip. The second electrode pins are arranged on a second side of the main module that is relative to the first electrode pins wherein the second electrode pins and the first electrode pins are electrically opposite. The second electrode pins are electrically connected to the light emitting diode chip. The heat dissipation board is connected to a part of the main module between the first electrode pin and the second electrode pin.02-05-2009
20100244053Light emitting device having pillar structure with hollow structure and the forming method thereof - A light emitting device, includes a substrate; a first semiconductor layer on the substrate; an active layer on the first semiconductor layer; a second semiconductor layer on the active layer; a transparent conductive layer on the second semiconductor layer; and a plurality of pillar structures with a hollow structure in the portion surface of the first semiconductor layer, thereby, the light extraction efficiency of the light emitting device can be improved due to the pillar structures with a hollow structure.09-30-2010
20110101380LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE USING THE SAME - An object of the present invention is to provide a light emitting element having slight increase in driving voltage with accumulation of light emitting time. Another object of the invention is to provide a light emitting element having slight increase in resistance value with increase in film thickness. A light emitting element of the invention includes a first layer for generating holes, a second layer for generating electrons and a third layer comprising a light emitting substance between first and second electrodes. The first and third layers are in contact with the first and second electrodes, respectively. The second and third layers are connected to each other so as to inject electrons generated in the second layer into the third layer when applying the voltage to the light emitting element such that a potential of the second electrode is higher than that of the first electrode.05-05-2011
20110031508Method and Apparatus for Manufacturing LED Devices using Laser Scribing - A method of manufacturing a light-emitting device using laser scribing to improve overall light output is disclosed. Upon placing a semiconductor wafer having light emitting diode (“LED”) devices separated by streets on a wafer chuck, the process arranges a first surface of semiconductor wafer containing front sides of the LED devices facing up and a second surface of semiconductor wafer containing back sides of the LED devices facing toward the wafer chuck. After aligning a laser device over the first surface of the semiconductor wafer above a street, the process is configured to focus a high intensity portion of a laser beam generated by the laser device at a location in a substrate closer to the back sides of the LED devices.02-10-2011
20100258818LIGHT EMITTING DIODE CHIP AND MANUFACTURING METHOD THEREOF - The present invention provides a manufacturing method of an LED chip. First, a device layer is formed on a growth substrate, wherein the device layer has a first surface connected to the growth substrate and a second surface. Next, a plurality of first trenches are formed on the second surface of the device layer. Then, a protection layer is formed on the side walls of the first trenches. After that, the second surface is bonded with a supporting substrate and the device layer is then separated from the growth substrate. Further, a plurality of second trenches corresponding to the first trenches are formed in the device layer to form a plurality of LEDs, wherein the second trenches extend from the first surface to the bottom portions of the first trenches. Furthermore, a plurality of electrodes are formed on the first surface of the device layer.10-14-2010
20100032687ENGINEERED STRUCTURE FOR HIGH BRIGHTNESS SOLID-STATE LIGHT EMITTERS - Electroluminescent (EL) light emitting structures comprises one or more active layers comprising rare earth luminescent centres in a host matrix for emitting light of a particular colour or wavelength and electrodes for application of an electric field and current injection for excitation of light emission. The host matrix is preferably a dielectric containing the rare earth luminescent centres, e.g. rare earth doped silicon dioxide, silicon nitride, silicon oxynitrides, alumina, dielectrics of the general formula Si02-11-2010
20090001385APPARATUS AND METHOD FOR MODULATING PHOTON OUTPUT OF A QUANTUM DOT LIGHT EMITTING DEVICE - An apparatus is provided for modulating the photon output of a plurality of free standing quantum dots. The apparatus comprises a first electron injection layer (01-01-2009
20090001387METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - To provide a method for manufacturing a large semiconductor device which easily operates normally and has excellent current characteristics. A first single-crystal semiconductor layer is provided over an insulating substrate. Then, the first single-crystal semiconductor layer is processed into an island shape. After that, a second single-crystal semiconductor layer is provided over the insulating substrate so as to overlap with part of a region where the first single-crystal semiconductor layer is provided. After that, the second single-crystal semiconductor layer is processed into an island shape. Thus, defects at joint portions in the case of providing the single-crystal semiconductor layers can be reduced.01-01-2009
20090001386Semiconductor device and method of manufacturing the same - The present invention provides a semiconductor device realizing reduced occurrence of a defect such as a crack at the time of adhering elements to each other. The semiconductor device includes a first element and a second element adhered to each other. At least one of the first and second elements has a pressure relaxation layer on the side facing the other of the first and second elements, and the pressure relaxation layer includes a semiconductor part having a projection/recess part including a projection projected toward the other element, and a resin part filled in a recess in the projection/recess part.01-01-2009
20090184330LIGHT-EMITTING MODULE INCLUDING SUBSTRATE WITH SPACE FORMED AROUND RIM - A light-emitting module includes a light-emitting element, a substrate on which are mounted the light-emitting element and heat dissipater. The substrate and heat dissipater are connected together by one mounting member and a space is formed around the rim of the substrate.07-23-2009
20080315212METHOD FOR FABRICATING A P-TYPE SEMICONDUCTOR STRUCTURE - One embodiment of the present invention provides a method for fabricating a group III-V p-type nitride structure. The method comprises growing a first layer of p-type group III-V material with a first acceptor density in a first growing environment. The method further comprises growing a second layer of p-type group III-V material, which is thicker than the first layer and which has a second acceptor density, on top of the first layer in a second growing environment. In addition, the method comprises growing a third layer of p-type group III-V material, which is thinner than the second layer and which has a third acceptor density, on top of the second layer in a third growing environment.12-25-2008
20110175112III-V LIGHT EMITTING DEVICE INCLUDING A LIGHT EXTRACTING STRUCTURE - Embodiments of the invention include a substrate comprising a host and a seed layer bonded to the host, and a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region grown over the seed layer. A variation in index of refraction in a direction perpendicular to a growth direction of the semiconductor structure is disposed between the host and the light emitting layer.07-21-2011
20110175113SEMICONDUCTOR LIGHT EMITTING DEVICE - Provided is a semiconductor light emitting device having an improved electrode structure for uniform current density and high brightness. According to the present invention, an light emitting device can have an electrode structure configured to spread a current uniformly and efficiently throughout the entire area of the light emitting device. Therefore, current density distribution can be more uniform in the light emitting device. End parts of second conductive type auxiliary electrodes are gradually shortened in length in a direction away from a first conductive type electrode pad so that a current flowing around the first conductive type electrode can be uniform to increase optical conversion efficiency and lower a driving voltage.07-21-2011
20100320478LIGHT-EMITTING DIODE DEVICE INCLUDING A CURRENT BLOCKING REGION AND METHOD OF MAKING THE SAME - A light-emitting diode device includes: a substrate; a light-emitting layered structure disposed on the substrate and including a first cladding layer, an active layer, and a second cladding layer; a first electrode; a second electrode disposed on the light-emitting layered structure; and a current blocking region provided in the light-emitting layered structure below the second electrode, and having a main portion that is aligned below and is as large as the second electrode, and an extension portion extending from the main portion and protruding beyond the second electrode to a distance ranging from 3 μm to 20 μm.12-23-2010
20100283062OPTOELECTRONIC SYSTEM - An embodiment of the invention discloses an optoelectronics system and a method of making the same. The method includes steps of providing a temporary substrate; providing un-packaged optoelectronic elements on the temporary substrate; forming a trench between two of the un-packaged optoelectronic elements; providing an adhesive material to fill the trench and cover the optoelectronic elements; providing a permanent substrate on the adhesive material; and removing the temporary substrate.11-11-2010
20110210343SEMICONDUCTOR WAFER - A semiconductor wafer includes a substrate, a first separating structure and a semiconductor stacked layer structure. The substrate has a first surface. The first separating structure is formed on the first surface to divide the first surface into a plurality of independent regions. The minimum area of each of the regions is more than or equal to one square inch. The semiconductor stacked layer structure is disposed on the first surface and the first separating structure. The semiconductor wafer can prevent bowing of the semiconductor wafer during an epitaxial growth process so as to enhance quality of the semiconductor wafer.09-01-2011
20110133213GETTER COMPOSITION AND ORGANIC LIGHT EMITTING DIODE DEVICE INCLUDING THE SAME - A getter composition including a moisture absorbing material and a binder having a volatility of 400 ppm or less when heated to a temperature in the range of 60° C. to 120° C. for 2 hours and an organic light emitting diode device including the getter composition06-09-2011
20110254021LIGHT EMITTING DIODE - A light emitting diode includes a substrate, a first semiconductor layer, an active layer, a second semiconductor layer, a first electrode, a transparent conductive layer, a second electrode and a metal grating. The first semiconductor layer, the active layer, and the second semiconductor layer are orderly stacked on the substrate. The first electrode is electrically connected to the first semiconductor layer. The transparent conductive layer is located on a surface of the second semiconductor layer away from the substrate. The second electrode is electrically connected to the transparent conductive layer. The metal grating is located on a surface of the transparent conductive layer away from the substrate. The metal grating is a two-dimensional array of a plurality of metal micro-structures.10-20-2011
20110186863Light Emitting Diode Having Improved Light Emission Efficiency and Method for Fabricating the Same - Provided is a light emitting diode (LED) having improved light emission efficiency, which can effectively overcome a technical limit of the related art by implementing a surface plasma resonance effect as well as reducing a layer defect such as threading dislocations in an LED structure.08-04-2011
20110095307LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE AND LIGHTING SYSTEM - Disclosed are a light emitting device, a light emitting device package and a lighting system. The light emitting device of the embodiment includes a light emitting structure including a first conductive semiconductor layer, an active layer over the first conductive semiconductor layer, and a second conductive semiconductor layer over the active layer; a dielectric layer over a first region of the first conductive semiconductor layer; a second electrode over the dielectric layer; and a first electrode over a second region of the first conductive semiconductor layer.04-28-2011
20110095308PROCESS FOR FORMING AN ELECTROACTIVE LAYER - There is provided a process for forming a layer of electroactive material having a substantially flat profile. The process includes the steps of providing a workpiece having at least one active area; depositing a liquid composition including the electroactive material onto the workpiece in the active area, to form a wet layer; treating the wet layer on the workpiece at a controlled temperature in the range of −25 to 80° C. and under a vacuum in the range of 1004-28-2011
20110095306LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE AND LIGHTING SYSTEM - Disclosed are a light emitting device, a light emitting device package and a lighting system. The light emitting device of the embodiment includes a light emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer and an active layer between the first and second conductive semiconductor layers; a second electrode under the second conductive semiconductor layer; a first texture over a first region of the first conductive semiconductor layer; an A-electrode over the first region of the first conductive semiconductor layer; and a B-electrode over a second region of the first conductive semiconductor layer, wherein the B-electrode includes a pad electrode connected to a wire.04-28-2011
20110260177METHOD FOR MANUFACTURING SEMICONDUCTOR LIGHT EMITTING ELEMENT, AND SEMICONDUCTOR LIGHT EMITTING ELEMENT - Provided is a method for manufacturing a semiconductor light emitting element, which has a step wherein a substrate composed of a material different from that of a semiconductor layer is used and a III compound semiconductor layer is formed on the substrate, and can reduce the emission wavelength distribution (δ) of the obtained semiconductor light emitting layer. The method for manufacturing the semiconductor light emitting element having the III compound semiconductor layer is characterized in having: a compound semiconductor substrate forming step wherein at least one compound semiconductor layer is formed on the substrate and a compound semiconductor substrate having an amount of warpage (H) within the range of 50 μm≦H≦250 μm is formed; and a light emitting layer forming step wherein the light emitting layer composed of a plurality of III compound semiconductor layers is formed on the compound semiconductor substrate which has been formed.10-27-2011
20110260176LIGHT-EMITTING SENSOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A light-emitting sensor device is provided with: a substrate (10-27-2011
20100059766STORAGE OF AN IMAGE IN AN INTEGRATED CIRCUIT - An integrated circuit including a substrate of a semiconductor material and first metal portions of a first metallization level or of a first via level defining pixels of an image. The pixels are distributed in first pixels, for each of which the first metal portion is connected to the substrate, and in second pixels, for each of which the first metal portion is separated from the substrate by at least one insulating portion.03-11-2010
20100059765Light-Emitting Device With Improved Electrode Structures - A light-emitting device includes first and second semiconductor layers and a light-emitting layer between the first and second semiconductor layers. The light-emitting device also includes an improved electrode structures.03-11-2010
20100019251Semiconductor Light Emitting Device - A semiconductor light emitting device is provided. The semiconductor light emitting device comprises a substrate and a light emitting structure. The substrate comprises a plurality of discontinuous fusion spots on at least one side surface thereof. The light emitting structure comprises a plurality of compound semiconductor layers on the substrate.01-28-2010
20090173952SEMICONDUCTOR LIGHT-EMITTING DEVICE, ILLUMINATOR AND METHOD OF MANUFACTURING SEMICONDUCTOR LIGHT-EMITTING DEVICE - A semiconductor light-emitting device having high reliability is obtained while suppressing separation between a support substrate and a semiconductor element layer. This semiconductor light-emitting device includes a support substrate (07-09-2009
20120037925Engineered Substrate for Light Emitting Diodes - A diode substrate including a crystalline aluminum oxide window, a silicon oxide layer on the crystalline aluminum oxide window, and a silicon layer on the silicon oxide layer, the silicon layer being implanted with ions at a predetermined depth.02-16-2012
20110024770Inverted Bottom-Emitting OLED Device - A method of making an inverted bottom-emitting OLED device, comprising: providing a substrate; providing one or more first electrodes driven by n-type transistors on the substrate; providing an electron-transporting layer over the substrate and first electrode(s), wherein the electron-transporting layer comprises an n-type inorganic semiconductive material with a resistivity in the range of 1 to 1002-03-2011
20110156059Light-Emitting Component and Method for The Production Thereof - The invention relates to a light-emitting component, in particular an organic luminescent diode, having an electrode and a counter electrode and an organic region arranged between the electrode and the counter electrode and having an organic light-emitting region. Furthermore, the invention relates to methods for the production of such a component.06-30-2011
20120056204LIGHT EMITTING DEVICE AND MANUFACTURING METHOD THEREOF - A light emitting device which includes a first TFT, a second TFT, a first pixel electrode, a second pixel electrode, an organic compound layer, a first opposing electrode and a second opposing electrode. The organic compound layer is formed on the first pixel electrode and the second pixel electrode. The first opposing electrode and a second opposing electrode are formed on the organic compound layer. When the first pixel electrode and the second opposing electrode are anodes, the second pixel electrode and the first opposing electrode are cathodes. When the first pixel electrode and the second opposing electrode are cathodes, the second pixel electrode and the first opposing electrode are anodes.03-08-2012
20120235166LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, LIGHTING DEVICE, AND ELECTRONIC DEVICE - An object is to provide a light-emitting element which exhibits light emission with high luminance and can be driven at low voltage. Another object is to provide a light-emitting device or an electronic device with reduced power consumption. Between an anode and a cathode, n (n is a natural number of two or more) EL layers are provided, where between a first EL layer and a second EL layer, a first layer containing any of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth metal compound, and a rare earth metal compound, a second layer containing a material having a high electron-transporting property in contact with the first layer, and a region containing a material having a high hole-transporting property and an acceptor material in contact with the second layer are provided in this order from the anode side.09-20-2012
20120153305Radiation Emitting Device - A radiation emitting device comprising a first electrode, which emits first charge carriers having a first charge during operation, a first charge carrier transporting layer, which comprises a fluorescent substance, a second charge carrier transporting layer, which contains a phosphorescent substance, and a second electrode, which emits second charge carriers having a second charge during operation, wherein during operation the second charge carrier transporting layer is largely free of first charge carriers.06-21-2012
20110042688BUFFER BILAYERS FOR ELECTRONIC DEVICES - The present invention relates to buffer bilayers, and their use in electronic devices. The bilayer has a first layer including (i) at least one electrically conductive polymer doped with at least one non-fluorinated polymeric acid and (ii) at least one highly-fluorinated acid polymer. The bilayer has a second layer including a metal which can be one or more transition metals, Group 13 metals, Group 14 metals, or lanthanide metals.02-24-2011
20120153304SOLID STATE LIGHTING DEVICES WITH ACCESSIBLE ELECTRODES AND METHODS OF MANUFACTURING - Various embodiments of light emitting dies and solid state lighting (“SSL”) devices with light emitting dies, assemblies, and methods of manufacturing are described herein. In one embodiment, a light emitting die includes an SSL structure configured to emit light in response to an applied electrical voltage, a first electrode carried by the SSL structure, and a second electrode spaced apart from the first electrode of the SSL structure. The first and second electrode are configured to receive the applied electrical voltage. Both the first and second electrodes are accessible from the same side of the SSL structure via wirebonding.06-21-2012
20090134406LIGHT EMITTING DIODE OF HIGH QUANTUM EFFICIENCY AND SYSTEM THEREOF - A light emitting diode (LED) includes a transparent substrate, a first type cladding layer, an active layer, a second type cladding layer, and first and second electrodes. The first type cladding layer is disposed on the transparent substrate. The active layer and the second electrode are juxtaposed on the first type cladding layer. The second type cladding layer is disposed on the active layer. The second electrode is disposed on the second type cladding layer. The first and second type cladding layers are doped with nanoparticles.05-28-2009
20110089437CROSS FLOW CVD REACTOR - A cross flow chemical vapor deposition chamber can comprise an inlet duct having a generally rectangular cross-section and an outlet duct having a generally rectangular cross-section. The rectangular inlet duct and the rectangular outlet duct can facilitate laminar flow of reactant gases over a susceptor. Movable partitions can be configured to define a plurality of zones within the chamber. Each zone can contain a different reactant gas, concentration of reactant gas, and/or flow rate of reactant gas. Enhanced laminar flow can be provided, undesirable depletion of reactant gas can be mitigated, and enhanced control of reactant gases can be facilitated.04-21-2011
20110089436LIGHT EMITTING DEVICE, METHOD OF MANUFACTURING THE SAME, LIGHT EMITTING DEVICE PACKAGE AND LIGHTING SYSTEM - A method of manufacturing a light emitting device according to the embodiment includes the steps of partially forming a first buffer layer on a growth substrate, in which the first buffer layer has a Young's modulus smaller than that of the growth substrate; and forming a light emitting structure layer on the growth substrate and the first buffer layer, in which the light emitting structure layer includes a first conductive semiconductor layer, a second conductive semiconductor layer and an active layer interposed between the first and second conductive semiconductor layers.04-21-2011
20110089435LIGHT EMITTING DEVICE, METHOD OF MANUFACTURING THE SAME, LIGHT EMITTING DEVICE PACKAGE, AND LIGHTING SYSTEM - A light emitting device includes a light emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer between the first and second conductive semiconductor layers; a passivation layer at least partially on the light emitting structure; a first electrode on the first conductive semiconductor layer; and a second electrode on the first electrode and the passivation layer.04-21-2011
20110089434DISPLAY PANEL AND REWORK METHOD OF GATE INSULATING LAYER OF THIN FILM TRANSISTOR - A rework method of a gate insulating layer of a thin film transistor includes the following steps. First, a substrate including a silicon nitride layer, which serves as a gate insulating layer, disposed thereon. Subsequently, a first film removal process is performed to remove the silicon nitride layer. The first film removal process includes an inductively coupled plasma (ICP) etching process. The ICP etching process is carried out by introducing gases including sulfur hexafluoride and oxygen. The ICP etching process has an etching selectivity ratio of the silicon nitride layer to the substrate, which is substantially between 18 and 30.04-21-2011
20120119227METHOD FOR MANUFACTURING GALLIUM OXIDE BASED SUBSTRATE, LIGHT EMITTING DEVICE, AND METHOD FOR MANUFACTURING THE LIGHT EMITTING DEVICE - A light emitting device comprises a gallium oxide based substrate, a gallium oxynitride based layer on the gallium oxide based substrate, a first conductivity-type semiconductor layer on the gallium oxynitride based layer, an active layer on the first conductivity-type semiconductor layer, and a second conductivity-type semiconductor layer on the active layer.05-17-2012
20120211771LED EPITAXIAL STRUCTURE AND MANUFACTURING METHOD - An LED epitaxial structure includes a substrate, a buffer layer and an epitaxial layer. The buffer layer is grown on a top surface of the substrate, and the epitaxial layer is formed on a surface of the buffer layer. The epitaxial layer has a first n-type epitaxial layer and a second n-type epitaxial layer. The first n-type epitaxial layer is formed between the buffer layer and the second n-type epitaxial layer. The first n-type epitaxial layer has a plurality of irregular holes therein.08-23-2012
20120126253PHOSPHOR BLEND FOR AN LED LIGHT SOURCE AND LED LIGHT SOURCE INCORPORATING SAME - There is provided a phosphor blend for an LED light source comprising from about 25 to about 35 weight percent of a cerium-activated yttrium aluminum garnet phosphor, from about 5 to about 10 weight percent of a europium-activated strontium calcium silicon nitride phosphor, and from about 50 to about 75 weight percent of a europium-activated calcium magnesium chlorosilicate phosphor. An LED light source in accordance with this invention has a B:G:R ratio for a 5500 K daylight balanced color film of X:Y:Z when directly exposed through a nominal photographic lens, wherein X, Y and Z each have a value from 0.90 to 1.10.05-24-2012
20120161160Self Light-Emitting Device - To provide a method of improving an efficiency for extracting light in a self light-emitting device using an organic EL material. In the self light-emitting device having a structure in which an EL layer (06-28-2012
20100207128SEMICONDUCTOR LIGHT EMITTING DEVICE - Disclosed is a semiconductor light emitting device. The semiconductor light emitting device includes a light emitting structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer, a plurality of isolation layers formed along an outer peripheral portion of the light emitting structure below the light emitting structure, a metal layer interposed between the isolation layers, and a second electrode layer formed below the light emitting structure.08-19-2010
20100207127LIGHT EMITTING DIODE WITH A TEMPERATURE DETECTING PATTERN AND MANUFACTURING METHOD THEREOF - A light emitting diode (LED) includes a substrate, a temperature detecting pattern, and a semiconductor structure. The temperature detecting pattern is formed on the substrate. Then the semiconductor structure is formed on the temperature detecting pattern and the substrate. The semiconductor structure includes an n-type semiconductor layer, a p-type semiconductor layer, and an active layer. Per above-mentioned structural design, the temperature detecting pattern directly integrated into the LED can measure the actual temperature of PN junction with high precision.08-19-2010
20120132929PHOSPHOR BLEND FOR AN LED LIGHT SOURCE AND LED LIGHT SOURCE INCORPORATING SAME - A phosphor blend for an LED light source is provided wherein the phosphor blend comprises from about 7 to about 12 weight percent of a cerium-activated yttrium aluminum garnet phosphor, from about 3 to about 6 weight percent of a europium-activated strontium calcium silicon nitride phosphor, from about 15 to about 20 weight percent of a europium-activated calcium silicon nitride phosphor, and from about 55 to about 80 weight percent of a europium-activated calcium magnesium chlorosilicate phosphor. An LED light source in accordance with this invention has a B:G:R ratio for a 3200 K tungsten balanced color film of X:Y:Z when directly exposed through a nominal photographic lens, wherein X, Y and Z each have a value from 0.90 to 1.10.05-31-2012
20100051966Methods of Making Semiconductor-Based Electronic Devices on a Wire and Articles That Can Be Made Using Such Devices - Strands of active electronic devices (AEDs), such as FETs, are made by first completely or partially forming a plurality of the AEDs on a precursor substrate. Then, one or more elongate conductors (e.g., wires) are secured to ones of the AEDs so as to electrically connected the AEDs together. After securing the conductor(s) to corresponding respective ones of the AEDs, the connected ones of the AEDs and their respective conductor(s) is/are liberated as one or more composite members from the precursor substrate by removing material from the substrate. Each of the composite substrates is further processed as needed to complete an AED strand.03-04-2010
20100051965Carbon-Containing Semiconductor Substrate - A light-emitting diode (LED) device is provided. The LED device is formed on a substrate having a carbon-containing layer. Carbon atoms are introduced into the substrate to prevent or reduce atoms from an overlying metal/metal alloy transition layer from inter-mixing with atoms of the substrate. In this manner, a crystalline structure is maintained upon which the LED structure may be formed.03-04-2010
20090114925PHOTON PAIR GENERATING DEVICE - A photon pair generating device capable of further increasing generation efficiency of a correlation photon pair is provided, the photon pair generating device generating the correlation photon pair by a hyper-parametric scattering. A quantum well (05-07-2009
20090095959HEAT DISSIPATION DEVICE FOR LED CHIPS - A heat dissipation device for removing heat from LED chips includes a heat sink and a plurality of substrates. The heat sink comprises a base plate. A plurality of fins extends upwardly from the base plate. The substrates each have a unidirectional heat transfer and are attached to a bottom face of the heat sink. Each of the substrates defines a first wall on which The LED chips are mounted and a second wall coupled to the heat sink. The substrates only transfer heat from the first wall to the second wall and restrict the heat transfer in a reverse direction. When the LED chips generate heat, the heat is transferred to the fins of the heat sink via the unidirectional substrates to lower temperature of the LED chips.04-16-2009
20090085045METHOD FOR PRODUCING A MATRIX OF INDIVIDUAL ELECTRONIC COMPONENTS AND MATRIX PRODUCED THEREBY - The invention relates to a method for producing a matrix of electronic components, comprising a step of producing an active layer on a substrate, and a step of individualizing the components by forming trenches in the active layer at least until the substrate emerges. The method comprises steps of depositing a layer of functional material on the active layer, depositing a photosensitive resin on the layer of material in such a way as to fill said trenches and to form a thin film on the upper face of the components, at least partially exposing the resin to radiation while underexposing the portion of resin in the trenches, developing the resin in such a way as to remove the properly exposed portion thereof, removing the functional material layer portion that shows through after the development step, and removing the remaining portion of resin.04-02-2009
20120074431SAPPHIRE SUBSTRATE AND SEMICONDUCTOR - The sapphire substrate has a principal surface for growing a nitride semiconductor to form a nitride semiconductor light emitting device and comprising a plurality of projections of the principal surface, wherein an outer periphery of a bottom surface of each of the projections has at least one depression. This depression is in the horizontal direction. The plurality of projections are arranged so that a straight line passes through the inside of at least any one of projections when the straight line is drawn at any position in any direction in a plane including the bottom surfaces of the plurality of projections.03-29-2012
20100006862Substrate for fabricating light emitting device and light emitting device fabricated therefrom - The invention provides a substrate for fabricating a light emitting device and the light emitting device fabricated therefrom. The substrate includes at least one platform region having a first facet direction for epitaxial growth; and a plurality of continuous protruded portions surrounding the at least one platform region to isolate the at least one platform region from another platform region, wherein the first facet direction is substantially excluded from facet directions of the plurality of continuous protruded portions. Since facet directions of the plurality of continuous protruded portions substantially do not include the first facet direction, during formation of the light emitting device, epitaxial growth is mainly conducted on the at least one platform region, which may prevent epitaxial defects from generating and enhance external quantum efficiency of the light emitting device.01-14-2010
20100244054METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE AND SEMICONDUCTOR COMPOSITE DEVICE - A method for manufacturing a semiconductor device, includes: a step of etching a Si (111) substrate along a (111) plane of the Si (111) substrate to separate a Si (111) thin-film device having a separated surface along the (111) plane.09-30-2010
20120223341LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, DISPLAY, AND ELECTRONIC DEVICE - A light emitting element has an anode, a cathode, a light emitting layer which is provided between the anode and the cathode and emits light by energizing the anode and the cathode, and a functional layer (a hole injecting layer and a hole transporting layer) which is provided between the anode and the light emitting layer in contact therewith and has a function of transporting a hole, in which the hole injecting layer and the hole transporting layer each are constituted including an electron transporting material having electron transporting properties. The content of the electron transporting material contained in the hole injecting layer and the content thereof contained in the hole transporting layer are different from each other.09-06-2012
20120256197ORGANIC ELECTROLUMINESCENCE ELEMENT - The organic electroluminescence device includes an anode, a cathode, a first electron injection layer, an electron transport layer, and a light emitting layer. The first electron injection layer is made of alkali metal and is formed between the anode and the cathode. The electron transport layer is formed between the first electron injection layer and the anode. The light emitting layer is formed between the electron transport layer and the anode. The organic electroluminescence element further includes a second electron injection layer. The second electron injection layer is formed between the first electron injection layer and the electron transport layer. The second electron injection layer is made of amorphous inorganic material.10-11-2012
20120187423LIGHT EMITTING DIODE DEVICE - A manufacturing method of an LED device includes the following steps. First, a substrate and at least one LED disposed on the substrate are provided. Next, a porous material layer having a plurality of pores is formed on a surface of the LED. Finally, a plurality of nanocrystals are formed in the pores to construct a phosphor layer on the surface of the LED.07-26-2012
20120228643LIGHT EMITTING APPARATUS AND METHOD FOR MANUFACTURING THE SAME - The light-emitting apparatus comprising thin film transistors and light emitting elements, comprises; a second inorganic insulation layer on a gate electrode, a first organic insulation layer on the second inorganic insulation layer, a third inorganic insulation layer on the first organic insulation layer, an anode on the third inorganic insulation layer, a second organic insulation layer overlapping with the end of the anode and having an inclination angle of 35 to 45 degrees, a fourth inorganic insulation layer on the upper and side surfaces of the second organic insulation layer and having an opening over the anode, an organic compound layer in contact with the anode and the fourth inorganic insulation layer and containing light-emitting material, and a cathode in contact with the organic compound layer, wherein the third and the fourth inorganic insulation layers comprise silicon nitride or aluminum nitride.09-13-2012
20120228644Encapsulation of Organic Devices - Presented an organic light-emitting device (OLED) that includes at least one active region, at least one organic layer, a first glass plate on which the at least one active region is applied, and a second glass plate. The active region is disposed between the first and the second glass plates. The first and second glass plates are at least partially transparent in the near infrared spectral range. The OLED further includes a bonding material that includes a solder glass and is disposed between the first and second glass plates. The bonding material forms at least one frame that surrounds the active region and mechanically connects the first glass plate with the second glass plate and seals the active region. The bonding material absorbs near infrared radiation. The OLED further includes spacer particles that have a mean diameter that maintains a height between the first and second glass plates.09-13-2012
20120228641PROTECTIVE SUBSTRATE FOR A DEVICE THAT COLLECTS OR EMITS RADIATION - This substrate (09-13-2012
20120228642METHOD OF TREATING AN OXIDIZED LAYER OF METAL NITRIDE - The present arrangement provides a method of treating an oxidized layer of metal nitride, including oxidizing a layer (09-13-2012
20120261678METHOD FOR PRODUCING SEMICONDUCTOR LIGHT-EMITTING CHIP AND SEMICONDUCTOR LIGHT-EMITTING CHIP - In producing a semiconductor light-emitting chip whose substrate is composed of a sapphire single crystal, cracking in semiconductor light-emitting elements in the obtained semiconductor light-emitting chip is suppressed. A semiconductor light-emitting chip is obtained by forming, on an element-group formation substrate on a front surface of which semiconductor light-emitting elements are formed, the front surface being composed of a C-plane of a sapphire single crystal, dividing grooves extending toward a first direction along an M-plane of the sapphire single crystal and the front surface of the substrate from a substrate front surface side (step 10-18-2012
20120261679LIGHT-EMITTING DEVICE AND METHOD OF FABRICATING THE SAME - A light-emitting device and a method of fabricating the same, in which the light emission characteristics of the light-emitting device in the UV range are maximized such that a high-efficiency light-emitting device can be produced at low cost. For this, the method includes the step of forming a zinc oxide light-emitting layer on a base substrate, the zinc oxide light-emitting layer including zinc oxide doped with a dopant; and activating the dopant by rapidly heat-treating the zinc oxide light-emitting layer, so that light emission in an ultraviolet range is increased.10-18-2012
20110121321SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, METHOD FOR MANUFACTURING SUCH SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING SUCH SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER - A semiconductor light-emitting device member excellent in transparency, light resistance, and heat resistance and capable of sealing a semiconductor light-emitting device without causing cracks and peeling even after a long-time use is provided wherein the semiconductor light-emitting device member contains (A) in a solid state Si-nuclear magnetic resonance spectrum, at least one peak selected from (a) peaks whose peak top position is in an area of a chemical shift of −40 ppm to 0 ppm inclusive, and whose full width at half maximum is 0.3 ppm to 3.0 ppm inclusive, and (b) peaks whose peak top position is in an area of the chemical shift of −80 ppm or more and less than −40 ppm, and whose full width at half maximum is 0.3 ppm to 5.0 ppm inclusive, wherein (B) silicon content is 20 weight % or more and (C) silanol content is 0.1 weight % to 10 weight % inclusive.05-26-2011
20110121320WHITE ORGANIC LIGHT EMITTING DEVICE - A white organic light emitting device having a dual stack structure is disclosed, in which an electron transport layer adjacent to a blue light emitting layer includes an electron transport catalyst layer including metal to improve blue light emitting efficiency, and a greenish yellow dopant is used to improve white display efficiency, increase lifespan, and reduce power consumption.05-26-2011
20120299016ORGANIC LAYER DEPOSITION APPARATUS AND METHOD OF MANUFACTURING ORGANIC LIGHT EMITTING DISPLAY DEVICE USING THE ORGANIC LAYER DEPOSITION APPARATUS - An organic layer deposition apparatus capable of protecting or preventing a patterning slit sheet from sagging, and a method of manufacturing an organic light-emitting display device by using the organic layer deposition apparatus.11-29-2012
20120299015NITRIDE SEMICONDUCTOR DEVICE AND NITRIDE SEMICONDUCTOR LAYER GROWTH SUBSTRATE - According to one embodiment, a nitride semiconductor device includes a substrate and a semiconductor functional layer. The substrate is a single crystal. The semiconductor functional layer is provided on a major surface of the substrate and includes a nitride semiconductor. The substrate includes a plurality of structural bodies disposed in the major surface. Each of the plurality of structural bodies is a protrusion provided on the major surface or a recess provided on the major surface. An absolute value of an angle between a nearest direction of an arrangement of the plurality of structural bodies and a nearest direction of a crystal lattice of the substrate in a plane parallel to the major surface is not less than 1 degree and not more than 10 degrees.11-29-2012
20120319139ORGANIC ELECTROLUMINESCENT MEMBER AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT - Provided is an organic electroluminescent member comprising: a positive electrode and a negative electrode on a substrate; multiple organic layers which include at least a positive hole transport layer, a light-emitting layer and an electron transport layer, and which are arranged between the positive electrode and the negative electrode; and an electron injection layer arranged between the electron transport layer and the negative electrode. The electron injection layer is formed from at least one selected from the group consisting of alkali metals and compounds containing alkali metals having melting point of less than 90° C., and at least one selected from the group consisting of alkali metals, alkaline earth metals, compounds containing alkali metals, and compounds containing12-20-2012
20120319138SEMICONDUCTOR LIGHT EMITTING DEVICE - According to one embodiment, in a semiconductor light emitting device, a substrate includes a first surface and a second surface opposite to each other, lateral surfaces intersected with the first surface and the second surface, first regions each provided on the lateral surface, and second regions each provided on the lateral surface. Each of the first regions has a first width and a first roughness. Each of the second regions has a second width smaller than the first width and a second roughness smaller than the first roughness. The first region is provided from a position away from the first surface by a first distance. The first regions and the second regions are alternately arranged. A semiconductor laminated body is provided above the first surface of the substrate, and includes a first semiconductor layer, an active layer and a second semiconductor layer.12-20-2012
20120126252PATTERNING THE EMISSION COLOUR IN TOP-EMISSIVE OLEDS - The invention relates to a top-emissive organic light-emitting diode (OLED) (05-24-2012
20120326169METHOD FOR MANUFACTURING SEMICONDUCTOR LIGHT EMITTING ELEMENT, SEMICONDUCTOR LIGHT EMITTING ELEMENT, LAMP, ELECTRONIC DEVICE AND MECHANICAL APPARATUS - Provided is a method for manufacturing a semiconductor light emitting element (12-27-2012
20130009172METHOD OF MANUFACTURE OF LIGHT-EMITTING ELEMENT AND LIGHT-EMITTING ELEMENT MANUFACTURED THEREBY - An object of the invention is to provide a method of manufacturing a light-emitting element, in which residue from a fixing resin layer is less likely to be left on a semiconductor layer and a supporting base in the case of manufacturing the light-emitting element by a laser lift-off technique. Furthermore, another object of the invention is to provide a highly reliable light-emitting element that is manufactured by the method of the present invention. The above-described objects are accomplished by applying a thermally decomposable resin composition as a fixing resin layer that fixes the semiconductor layer to a supporting base, and by thermally decomposing the fixing resin layer at the time of peeling off the semiconductor layer from the supporting base.01-10-2013
20130015470SEMICONDUCTOR LIGHT EMITTING ELEMENTAANM Tanaka; HidetoshiAACI Anan-shiAACO JPAAGP Tanaka; Hidetoshi Anan-shi JPAANM Takeda; MitsumasaAACI Anan-shiAACO JPAAGP Takeda; Mitsumasa Anan-shi JP - A semiconductor light emitting device in which adhesion between an insulating layer and a semiconductor layer is improved while maintaining the ability of the insulating layer to limit the direction of current flow.01-17-2013
20080237611ELECTROLUMINESCENT DEVICE HAVING IMPROVED CONTRAST - A method for increasing ambient light contrast ratio within an electroluminescent device, including: a reflective electrode and a transparent electrode having an EL unit formed there-between. The EL unit includes a light-emitting layer containing quantum dots. Additionally, the method includes locating a contrast enhancement element on a side of the transparent electrode opposite the EL unit. The contrast enhancement element includes a patterned reflective layer and a patterned light-absorbing layer whose patterns define one or more transparent openings, so that light emitted by the light-emitting layer passes through the one or more transparent openings. The patterned reflective layer is located between the patterned light absorbing layer and the transparent electrode.10-02-2008
20130168702Method For Preparing a GaAS Substrate For A Ferromagnetic Semiconductor, Method for Manufacturing One Such Semiconductor, Resulting Substrate and Semiconductor, And Uses Of Said Semiconductor - A method is provided for preparing a surface of a GaAs substrate (001) such that it can receive a ferromagnetic semiconductor deposited by epitaxy, as well as a substrate thus prepared, method for manufacturing one such semiconductor deposited on the substrate, the resulting semiconductor, and uses thereof. The preparation method renders the surface capable of receiving an epitaxially deposited ferromagnetic semiconductor which may include semiconductors from groups III-V, IV and II-VI of the periodic table, with the exception of GaAs, and which also includes at least one magnetic element of manganese, iron, cobalt, nickel and chromium. The method includes vacuum deoxidation of the surface under a reduced germanium-based flux such that, following desorption of the arsenic and gallium oxide from the said surface, the latter has a single-domain 2×1 reconstruction and is sufficiently planar and arsenic-depleted to prevent any diffusion of arsenic from the substrate to the subsequently deposited semiconductor.07-04-2013
20120248464SEMICONDUCTOR LIGHT EMITTING DEVICE AND HEAD MOUNT DISPLAY DEVICE - A semiconductor light emitting device includes a thin-film semiconductor light emitting element, a substrate, a first insulation layer having a surface to which the thin-film semiconductor light emitting element is bonded, a first metal layer composed of aluminum and disposed on a side of the first insulation layer facing the substrate, and a second insulation layer disposed between the first insulation layer and the first metal layer.10-04-2012
20130099255SEMICONDUCTOR LIGHT EMITTING DEVICE INCLUDING ZINC OXIDE-BASED TRANSPARENT CONDUCTIVE THIN FILM, AND FABRICATION METHOD THEREOF - There is provided a semiconductor light emitting device having a zinc oxide-based transparent conductive thin film in which a Group III element is doped to have waveforms having a plurality of periods in a thickness direction.04-25-2013
20130099254LIGHT EMITTING DIODE WITH CHAMFERED TOP PERIPHERAL EDGE - A light emitting diode includes a substrate and a light emitting structure. The light emitting structure includes a light outputting surface away from the substrate and a plurality of sidewalls adjoining the light outputting surface. A top peripheral edge interconnecting the light outputting surface and the sidewalls of the light emitting structure is a rounded top peripheral edge or a beveled top peripheral edge. A top surface of the substrate surrounding the light emitting structure is exposed to air and formed with micro-structures.04-25-2013
20130112998SOLID STATE LIGHT EMITTING SEMICONDUCTOR DEVICE - A solid state light emitting semiconductor device including a substrate, a mesa epitaxy stacking structure, an insulating layer, a first type electrode and a second type electrode is provided. The mesa epitaxy stacking structure includes a first type semiconductor layer, an active layer and a second type semiconductor layer arranged in order. A concave area is formed in the middle of the mesa epitaxy stacking structure to expose a portion of the first type semiconductor layer. The insulating layer covers the exposed surface of the first type semiconductor layer around the mesa epitaxy structure, sidewalls of the mesa epitaxy stacking structure and a portion of surface of the second type semiconductor layer. The first type electrode is located on the exposed first type semiconductor layer in the concave area, and is surrounded by the second type electrode located on the insulating layer around the mesa epitaxy stacking structure.05-09-2013
20130126912Light Emitting Device and Method of Driving the Light Emitting Device - A light emitting device that achieves long life, and which is capable of performing high duty ‘drive,’ by suppressing initial light emitting element deterioration is provided. Reverse bias application to an EL element (109) is performed one row at a time by forming a reverse bias electric power source line (112) and a reverse bias TFT (108). Reverse bias application can therefore be performed in synchronous with operations for write-in of an image signal, light emission, erasure, and the like. Reverse bias application therefore becomes possible while maintaining a duty equivalent to that of a conventional driving method.05-23-2013
20110272712Vertical light-emitting devices having patterned emitting unit and methods of manufacturing the same - Example embodiments are directed to a light-emitting device including a patterned emitting unit and a method of manufacturing the light-emitting device. The light-emitting device includes a first electrode on a top of a semiconductor layer, and a second electrode on a bottom of the semiconductor layer, wherein the semiconductor layer is a pattern array formed of a plurality of stacks. A space between the plurality of stacks is filled with an insulating layer, and the first electrode is on the insulating layer.11-10-2011
20120273805METHOD FOR PRODUCING SILICON LAYERS - The invention relates to a liquid-phase method for the thermal production of silicon layers on a substrate, wherein at least one higher silicon that can be produced from at least one hydridosilane of the generic formula Si11-01-2012
20120273804Light-Emitting Device and Manufacturing Method Thereof - When a hollow structure in which a light-emitting element is provided between a pair of substrates is used in order to prevent oxygen or moisture from reaching the light-emitting element, light leakage to an adjacent pixel easily occurs as compared to a structure in which a space between a pair of substrates is filled with a resin such as an adhesive. In order to reduce light leakage to an adjacent pixel in the hollow structure, a light-blocking spacer is formed over a partition to keep the distance between the pair of substrates uniform. The cross-sectional shape of the light-blocking spacer is a trapezoid having a lower side shorter than an upper side.11-01-2012
20110233564LIGHT EMITTING DIODE CHIP AND METHOD FOR MANUFACTURING THE SAME - An LED chip includes a transparent substrate and a number of lighting structure units each including a p-type semiconductor and an n-type semiconductor and a recess extending from the p-type semiconductor to the n-type semiconductor. The recess is filled with metal material which covers the surface of the lighting structure units. By filling the recess with metal material, the heat generated by the lighting structure units can rapidly transfer to the metal material. A method for manufacturing the light emitting diode chip is also provided.09-29-2011
20100314630LIGHT EMITTING DIODE SYSTEMS - Light emitting diode systems are disclosed. An optical display system that includes a light emitting diode (LED) and a cooling system is disclosed. The cooling system is configured so that, during use, the cooling system regulates a temperature of the light emitting diode.12-16-2010
20110297966LIGHT EMITTING DIODE - A light emitting diode includes a substrate, a first semiconductor layer, an active layer, a second semiconductor layer, a first electrode, and a second electrode. The first semiconductor layer, the active layer, and the second semiconductor layer are orderly stacked on the substrate. The first electrode is electrically connected to the first semiconductor layer. The second electrode is electrically connected to the second semiconductor layer. The second semiconductor layer has a plurality of three-dimensional nano-structures. Each of the plurality of three-dimensional nano-structures has a stepped structure.12-08-2011
20110297965LIGHT-EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - According to one embodiment, a light-emitting device includes a semiconductor layer, first and second electrode portions, a first insulating film, and a metal layer. The semiconductor layer includes a first main surface, a second main surface on an opposite side to the first main surface, a third main surface connecting the first and second main surfaces, and a light-emitting layer. The first and second electrode portions are provided on the second main surface of the semiconductor layer. The first insulating film covers the second main surface of the semiconductor layer and the third main surface of the semiconductor layer. The metal layer is stacked on at least the second electrode portion of the first and the second electrode portions, and the metal layer extends until reaching a part of the first insulating film. The part is continuously extended from the first insulating film covering the third main surface.12-08-2011
20110316004LIGHT EMITTING DEVICE - The embodiment relates to a light emitting device and a method for manufacturing the same. The light emitting device includes a substrate, a plurality of convex portions protruding from a flat top surface of the substrate, a first semiconductor layer on the substrate, an active layer on the first semiconductor layer, and a second conductive semiconductor layer on the active layer. A circumferential surface of each convex portion includes a continuous spherical surface, and a height of the convex portion is about 1.5 μm or less.12-29-2011
20130193450OPTOELECTRONIC SEMICONDUCTOR CHIP AND METHOD FOR PRODUCING SAME - An optoelectronic semiconductor chip includes a semiconductor layer stack and a radiation exit face or radiation entrance face, wherein the semiconductor layer stack includes an active layer that generates or receives electromagnetic radiation, and a plurality of nanostructures arranged in the semiconductor layer stack and/or on the radiation exit or entrance face, at least some of the nanostructures including at least one substructure.08-01-2013
20120074430Radiating substrate and method for manufacturing the radiating substrate, and luminous element package with the radiating substrate - Disclosed herein is a radiating substrate radiating heat generated from a predetermined heating element to the outside. The radiating substrate includes polymer resins and graphenes distributed in the polymer resins.03-29-2012

Patent applications in class INCOHERENT LIGHT EMITTER STRUCTURE

Patent applications in all subclasses INCOHERENT LIGHT EMITTER STRUCTURE