Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Field effect device in amorphous semiconductor material

Subclass of:

257 - Active solid-state devices (e.g., transistors, solid-state diodes)

257049000 - NON-SINGLE CRYSTAL, OR RECRYSTALLIZED, SEMICONDUCTOR MATERIAL FORMS PART OF ACTIVE JUNCTION (INCLUDING FIELD-INDUCED ACTIVE JUNCTION)

257052000 - Amorphous semiconductor material

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
257059000 In array having structure for use as imager or display, or with transparent electrode 1147
257060000 With field electrode under or on a side edge of amorphous semiconductor material (e.g., vertical current path) 44
257058000 With impurity other than hydrogen to passivate dangling bonds (e.g., halide) 2
20110012114Bottom-Gate Thin Film Transistor and Method of Fabricating the Same - A bottom-gate thin film transistor includes a gate electrode, a gate insulating layer and a microcrystalline silicon layer. The gate electrode is disposed on a substrate. The gate insulating layer is made up of silicon nitride and disposed on the gate electrode and the substrate. The microcrystalline silicon layer is disposed on the gate insulating layer and corresponds to the gate electrode, in which a contact interface between the gate insulating layer and the microcrystalline silicon layer has a plurality of oxygen atoms, and concentration of the oxygen atoms ranges between 1001-20-2011
20090001372Efficient cooling of lasers, LEDs and photonics devices - The present invention provides an optoelectronic device comprising a heat source and a heat transfer fluid. The present invention also provides a method of preparing an optoelectronic device, which comprises (i) providing a heat source, and (ii) filling a space in the vicinity of the heat source with a heat transfer liquid. The optoelectronic device has gained technical merits such as improved heat removing efficiency, lower chip/junction temperature, increased lumen output, longer operational lifetime, and better reliability, among others.01-01-2009
257061000 With heavily doped regions contacting amorphous semiconductor material (e.g., heavily doped source and drain) 1
20080308808Thin film transistor array substrate and method for fabricating same - An exemplary TFT array substrate includes an insulating substrate, a gate electrode provided on the insulating substrate, a gate insulating layer covering the gate electrode and the insulating layer, an amorphous silicon (a-Si) pattern formed on the gate insulating layer, a heavily doped a-Si pattern formed on the a-Si pattern, a source electrode formed on the gate insulating layer and the heavily doped a-Si pattern and a drain electrode formed on the gate insulating layer and the heavily doped a-Si pattern. The source electrode and the drain electrode are isolated by a slit formed between the source electrode and the drain electrode, and the a-Si pattern includes a high resistivity portion corresponding to the slit whose resistance is higher than a resistance of the a-Si material.12-18-2008
Entries
DocumentTitleDate
20110175089Dielectric Materials and Methods of Preparation and Use Thereof - Disclosed are dendritic macromolecule-based dielectric compositions (e.g., formulations) and materials (e.g. films) and associated devices. The dendritic macromolecules have branched ends that are functionalized with an organic group that includes at least one 3-40 membered cyclic group.07-21-2011
20100051949SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A thin film transistor structure in which a source electrode and a drain electrode formed from a metal material are in direct contact with an oxide semiconductor film may lead to high contact resistance. One cause of high contact resistance is that a Schottky junction is formed at a contact plane between the source and drain electrodes and the oxide semiconductor film. An oxygen-deficient oxide semiconductor layer which includes crystal grains with a size of 1 nm to 10 nm and has a higher carrier concentration than the oxide semiconductor film serving as a channel formation region is provided between the oxide semiconductor film and the source and drain electrodes.03-04-2010
20130134422TRANSISTOR AND SEMICONDUCTOR DEVICE - To improve switching characteristics of a transistor in which a channel is formed in an oxide semiconductor layer. A parasitic channel is formed at an end portion of the oxide semiconductor layer because a source and a drain of the transistor are electrically connected to the end portion. That is, when at least one of the source and the drain of the transistor is not electrically connected to the end portion, the parasitic channel is not formed at the end portion. In view of this, a transistor having a structure in which at least one of a source and a drain of the transistor is not or less likely to be electrically connected to an end portion of an oxide semiconductor layer is provided.05-30-2013
20130075732SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A miniaturized transistor having high electric characteristics is provided with high yield. In a semiconductor device including the transistor, high performance, high reliability, and high productivity are achieved. In a semiconductor device including a transistor in which an oxide semiconductor film, a gate insulating film, and a gate electrode layer on side surfaces of which sidewall insulating layers are provided are stacked in this order, source and drain electrode layers are provided in contact with the oxide semiconductor film and the sidewall insulating layers. In a process for manufacturing the semiconductor device, a conductive film and an interlayer insulating film are stacked to cover the oxide semiconductor film, the sidewall insulating layers, and the gate electrode layer, and the interlayer insulating film and the conductive film over the gate electrode layer are removed by a chemical mechanical polishing method, so that the source and drain electrode layers are formed.03-28-2013
20130075733METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE - A minute transistor and the method of manufacturing the minute transistor. A source electrode layer and a drain electrode layer are each formed in a corresponding opening formed in an insulating layer covering a semiconductor layer. The opening of the source electrode layer and the opening of the drain electrode layer are formed separately in two distinct steps. The source electrode layer and the drain electrode layer are formed by depositing a conductive layer over the insulating layer and in the openings, and subsequently removing the part located over the insulating layer by polishing. This manufacturing method allows for the source electrode later and the drain electrode layer to be formed close to each other and close to a channel forming region of the semiconductor layer. Such a structure leads to a transistor having high electrical characteristics and a high manufacturing yield even in the case of a minute structure.03-28-2013
20130075731MANUFACTURING METHOD FOR THIN FILM TRANSISTOR AND THIN FILM TRANSISTOR MANUFACTURED BY THEM - Provided are a manufacturing method for a thin film transistor, and a thin film transistor manufactured by the manufacturing method. In the manufacturing method, a semiconductor layer and an insulating layer for stopping etching, which are sequentially stacked, are etched by dry etching and wet etching using a single photoresist pattern, and patterning the semiconductor layer and the insulating layer into a channel layer and an etch stop layer, respectively, thereby simplifying the manufacturing process of the thin film transistor.03-28-2013
20130075734THIN FILM TRANSISTOR DEVICE WITH ACCURATELY ALIGNED ELECTRODE PATTERNS - An electronic device comprising an optically transparent substrate, a first electrode structure incorporating a channel, said channel being optically transparent and said electrode structure being optically opaque, at least one intermediate layer, and a photosensitive dielectric layer disposed above the at least one intermediate layer, the photosensitive dielectric layer incorporating a trench in a region essentially over said channel, the electronic device further comprising a further electrode, wherein the further electrode is located partially in the trench and partially beyond the trench such that portions of the further electrode that extend beyond the trench are separated from the at least one intermediate layer by the photosensitive dielectric layer.03-28-2013
20110193088THIN-FILM TRANSISTOR HAVING HIGH ADHESIVE STRENGTH BETWEEN BARRIER FILM AND DRAIN ELECTRODE AND SOURCE ELECTRODE FILMS - This thin-film transistor includes adhesive strength enhancing films between a barrier film and electrode films. Each of the adhesive strength enhancing film is composed of two zones including (a) a pure copper zone that is formed on the electrode film side, and (b) a component concentrated zone that is formed in an interface portion contact with the barrier film, and that includes Cu, Ca, oxygen, and Si as constituents. In concentration distributions of Ca and oxygen in a thickness direction of the component concentrated zone, a maximum content of Ca of a Ca-containing peak is in a range of 5 to 20 at %, and a maximum content of oxygen of an oxygen-containing peak is in a range of 30 to 50 at %, respectively.08-11-2011
20100148175THIN FILM TRANSISTOR AND DISPLAY DEVICE - Off current of a bottom gate thin film transistor in which a semiconductor layer is shielded from light by a gate electrode is reduced. A thin film transistor includes a gate electrode layer; a first semiconductor layer; a second semiconductor layer, provided on and in contact with the first semiconductor layer; a gate insulating layer between and in contact with the gate electrode layer and the first semiconductor layer; impurity semiconductor layers in contact with the second semiconductor layer; and source and drain electrode layers partially in contact with the impurity semiconductor layers and the first and second semiconductor layers. The entire surface of the first semiconductor layer on the gate electrode layer side is covered by the gate electrode layer; and a potential barrier at a portion where the first semiconductor layer is in contact with the source or drain electrode layer is 0.5 eV or more.06-17-2010
20130037810THIN FILM TRANSISTOR SUBSTRATE AND METHOD FOR FABRICATING THE SAME - The present invention relates to a thin film transistor substrate and method for fabricating the same which can secure an alignment margin and reduce the number of mask steps. A thin transistor substrate according to the present invention includes a gate line and a data line crossing each other to define a pixel, a gate metal pattern under the data line, a thin film transistor having a gate electrode, a source electrode and a drain electrode in the pixel, and a pixel electrode connected to the drain electrode of the thin film transistor by a connection electrode, wherein the data line has a plurality of first slits to disconnect the gate metal pattern from the gate line.02-14-2013
20130037808THIN-FILM TRANSISTOR DEVICE AND METHOD FOR MANUFACTURING THIN-FILM TRANSISTOR DEVICE - A thin-film transistor device which is a bottom-gate thin-film transistor device, includes: a gate electrode formed above a substrate; a gate insulating film formed above the gate electrode; a crystalline silicon thin film formed above the gate insulating film and having a channel region; an amorphous silicon thin film formed above the crystalline silicon thin film including the channel region; and a source electrode and a drain electrode formed above the amorphous silicon thin film, in which an optical bandgap of the amorphous silicon thin film and an off-state current of the thin-film transistor device have a positive correlation.02-14-2013
20130037806THIN-FILM SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A thin-film semiconductor device according to the present disclosure includes: a substrate; a gate electrode formed above the substrate; a gate insulating film formed on the gate electrode; a channel layer that is formed of a polycrystalline semiconductor layer on the gate insulating film; an amorphous semiconductor layer formed on the channel layer and having a projecting shape in a surface; and a source electrode and a drain electrode that are formed above the amorphous semiconductor layer, and a first portion included in the amorphous semiconductor layer and located closer to the channel layer has a resistivity lower than a resistivity of a second portion included in the amorphous semiconductor layer and located closer to the source and drain electrodes.02-14-2013
20130037809ORGANIC THIN-FILM TRANSISTOR - An organic thin film transistor including at least a gate electrode, a source electrode, a drain electrode, an insulator layer and an organic semiconductor layer, at least one of the source electrode and the drain electrode including a conductive polyaniline composition containing (a) a substituted or unsubstituted polyaniline composite which is protonated by an organic protonic acid or its salts represented by M(XCR02-14-2013
20130037807SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device (02-14-2013
20120175614TRANSISTOR INCLUDING MULTI-LAYER REENTRANT PROFILE - A transistor includes a substrate. A first electrically conductive material layer is positioned on the substrate. A second electrically conductive material layer is in contact with and positioned on the first electrically conductive material layer. A third electrically conductive material layer is in contact with and positioned on the second electrically conductive material layer. The third electrically conductive material layer overhangs the second electrically conductive material layer.07-12-2012
20100163874DRIVER CIRCUIT AND SEMICONDUCTOR DEVICE - The silicon nitride layer 07-01-2010
20130082263SEMICONDUCTOR DEVICE - A decrease in on-state current in a semiconductor device including an oxide semiconductor film is suppressed. A transistor including an oxide semiconductor film, an insulating film which includes oxygen and silicon, a gate electrode adjacent to the oxide semiconductor film, the oxide semiconductor film provided to be in contact with the insulating film and overlap with at least the gate electrode, and a source electrode and a drain electrode electrically connected to the oxide semiconductor film. In the oxide semiconductor film, a first region which is provided to be in contact with the interface with the insulating film and have a thickness less than or equal to 5 nm has a silicon concentration lower than or equal to 1.0 at. %, and a region in the oxide semiconductor film other than the first region has lower silicon concentration than the first region.04-04-2013
20100072475SELF-ALIGNED MASKS USING MULTI-TEMPERATURE PHASE-CHANGE MATERIALS - A method of forming a pattern includes forming a first layer on a substrate, forming a second layer on the first layer, depositing a multi-temperature phase-change material on the second layer, patterning the second layer using the multi-temperature phase-change material as a mask, reflowing the multi-temperature phase-change material, and patterning the first layer using the reflowed multi-temperature phase-change material as a mask.03-25-2010
20100072474Semiconductor Device - A semiconductor device including a memory cell is provided. The memory cell comprises a transistor, a memory element and a capacitor. One of first and second electrodes of the memory element and one of first and second electrodes of the capacitor are formed by a same metal film. The metal film functioning as the one of first and second electrodes of the memory element and the one of first and second electrodes of the capacitor is overlapped with a film functioning as the other of first and second electrodes of the capacitor.03-25-2010
20130075735SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A metal oxide layer is in contact with an interlayer insulating layer covering a transistor, and has a stacked-layer structure including a first metal oxide layer having an amorphous structure and a second metal oxide layer having a polycrystalline structure. In the first metal oxide layer, there are no crystal grain boundaries, and grid intervals are wide as compared to those in a metal oxide layer in a crystalline state; thus, the first metal oxide layer easily traps moisture between the lattices. In the second metal oxide layer having a polycrystalline structure, crystal parts other than crystal grain boundary portions have dense structures and extremely low moisture permeability. Thus, the structure in which the metal oxide layer including the first metal oxide layer and the second metal oxide layer is in contact with the interlayer insulating layer can effectively prevent moisture permeation into the transistor.03-28-2013
20100044707THIN FILM TRANSISTOR ARRAY SUBSTRATE, METHOD FOR MANUFACTURING THE SAME AND SYSTEM FOR INSPECTING THE SUBSTRATE - Disclosed is a thin film transistor substrate and a system for inspecting the same. The thin film transistor substrate comprises gate wiring formed on an insulation substrate and including gate lines, and gate electrodes and gate pads connected to the gate lines; a gate insulation layer covering the gate wiring; a semiconductor layer formed over the gate insulation layer; data wiring formed over the gate insulation layer and including data pads; a protection layer covering the data wiring; auxiliary pads connected to the data pads through contact holes formed in the protection layer; and a pad auxiliary layer formed protruding a predetermined height under the data pads. The inspection system for determining whether a thin film transistor substrate is defective, in which the thin film transistor substrate comprises gate wiring including gate lines, gate electrodes and gate pads, and data wiring including source electrodes and drain electrodes, includes a probe pin for contacting the gate pads or data pads and transmitting a corresponding signal, wherein a contact tip at a distal end of the probe pin for contacting the gate pads or the data pads is rounded, and a radius of the rounded contact tip is 2 μm or less, or the rounded contact tip is coated with gold (Au).02-25-2010
20090159885DIODE AND DISPLAY DEVICE INCLUDING DIODE - A thin film transistor which includes a microcrystalline semiconductor film over a gate electrode with a gate insulating film interposed therebetween to be in an inner region in which end portions of microcrystalline semiconductor film are in an inside of end portions of the gate electrode, an amorphous semiconductor film which covers top and side surfaces of the microcrystalline semiconductor film, and an impurity semiconductor film to which an impurity element imparting one conductivity is added, and which forms a source region and a drain region, wherein the microcrystalline semiconductor film includes an impurity element serving as a donor is provided to reduce off current of a thin film transistor, to reduce reverse bias current of a diode, and to improve an image quality of a display device using a thin film transistor.06-25-2009
20090159884THIN-FILM TRANSISTOR, METHOD OF MANUFACTURING THE SAME, AND DISPLAY DEVICE - A method of manufacturing a thin-film transistor according to an embodiment of the present invention includes the step of forming a gate insulator on a gate electrode. The gate insulator includes at least a first region being in contact with a hydrogenated amorphous silicon film, and a second region positioned below the first region. The first and second regions are deposited using a source gas including NH06-25-2009
20130026473Pixel Structure and Method for Fabricating the Same - A pixel structure includes a first patterned metal layer, a gate insulating layer, a semiconductor channel layer, a second patterned metal layer, a passivation layer, and a conducting layer. A gate line of the second patterned metal layer is electrically connected by the conducting layer to a gate extension electrode of the first patterned metal layer. A source electrode of the second patterned metal layer is electrically connected by the conducting layer to a second data line segment of the first patterned metal layer. A method for fabricating a pixel structure is also disclosed herein.01-31-2013
20130026472TFT STRUCTURE AND PIXEL STRUCTURE - A pixel structure including a substrate, a gate, an insulation layer, a metal oxide semiconductor (MOS) layer, a source and a drain, at least one film layer, and a first electrode layer is provided. The gate is disposed on the substrate. The insulation layer covers the gate. The MOS layer is disposed on the insulation layer above the gate. The source and the drain are disposed on the MOS layer. The film layer covers the MOS layer and includes a transparent photocatalytic material, wherein the transparent photocatalytic material blocks ultraviolet light from reaching the MOS layer. The first electrode layer is electrically connected to the source or the drain.01-31-2013
20130026471Circuit Structures, Memory Circuitry, And Methods - A circuit structure includes a substrate having an array region and a peripheral region. The substrate in the array and peripheral regions includes insulator material over first semiconductor material, conductive material over the insulator material, and second semiconductor material over the conductive material. The array region includes vertical circuit devices which include the second semiconductor material. The peripheral region includes horizontal circuit devices which include the second semiconductor material. The horizontal circuit devices in the peripheral region individually have a floating body which includes the second semiconductor material. The conductive material in the peripheral region is under and electrically coupled to the second semiconductor material of the floating bodies. Conductive straps in the array region are under the vertical circuit devices. The conductive straps include the conductive material and individually are electrically coupled to a plurality of the vertical circuit devices in the array region. Other implementations are disclosed.01-31-2013
20130082262SEMICONDUCTOR DEVICE - A semiconductor device includes a gate electrode, a gate insulating film which includes oxidized material containing silicon and covers the gate electrode, an oxide semiconductor film provided to be in contact with the gate insulating film and overlap with at least the gate electrode, and a source electrode and a drain electrode electrically connected to the oxide semiconductor film. In the oxide semiconductor film, a first region which is provided to be in contact with the gate insulating film and have a thickness less than or equal to 5 nm has a silicon concentration lower than or equal to 1.0 at. %, and a region in the oxide semiconductor film other than the first region has lower silicon concentration than the first region. At least the first region includes a crystal portion.04-04-2013
20100025686SEMICONDUCTOR DEVICE WITH AMORPHOUS SILICON MONOS MEMORY CELL STRUCTURE AND METHOD FOR MANUFACTURING THEREOF - A semiconductor device with an amorphous silicon (a-Si) metal-oxide-nitride-oxide-semiconductor (MONOS) memory cell structure. The device includes a substrate, a dielectric layer overlying the substrate, and one or more source or drain regions embedded in the dielectric layer with a co-planar surface of n-type a-Si and the dielectric layer. Additionally, the device includes a p-i-n a-Si diode junction. The device further includes an oxide-nitride-oxide (ONO) charge trapping layer overlying the a-Si p-i-n diode junction and a metal control gate overlying the ONO layer. A method for making the a-Si MONOS memory cell structure is provided and can be repeated to expand the structure three-dimensionally.02-04-2010
20120261665LIGHT EMITTING DEVICE AND METHOD OF DRIVING THE LIGHT EMITTING DEVICE - A light emitting device that achieves long life, and which is capable of performing high duty drive, by suppressing initial light emitting element deterioration is provided. Reverse bias application to an EL element (10-18-2012
20130087790SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A miniaturized transistor having favorable electric characteristics is provided. The transistor includes an oxide semiconductor layer which is in contact with a source electrode layer on one of side surfaces in a channel length direction and in contact with a drain electrode layer on the other of the side surfaces in the channel length direction. With this structure, an electric field between the source electrode layer and the drain electrode layer is relaxed and a short-channel effect is suppressed. Further, a sidewall layer having conductivity is provided on a side surface of a gate electrode layer in the channel length direction, so that the sidewall layer having conductivity overlaps with the source electrode layer or the drain electrode layer with a gate insulating layer provided therebetween, which enables the transistor to substantially have an L04-11-2013
20120181538SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A semiconductor device (07-19-2012
20090321737THIN FILM TRANSISTOR - A thin film transistor includes, as a buffer layer, a semiconductor layer which contains nitrogen and includes crystal regions in an amorphous structure between a gate insulating layer and source and drain regions, at least on the source and drain regions side. As compared to a thin film transistor in which an amorphous semiconductor is included in a channel formation region, on-current of a thin film transistor can be increased. In addition, as compared to a thin film transistor in which a microcrystalline semiconductor is included in a channel formation region, off-current of a thin film transistor can be reduced.12-31-2009
20120217499SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A method for forming a U-shaped vertically long groove in a region where a channel portion of a transistor is formed to make a channel length longer than an apparent channel length additionally requires a photolithography process for forming a groove; therefore, it has a problem in terms of costs and yield. By forming a three-dimensional channel region with the use of a gate electrode or a structure having an insulating surface, a channel length is made three times or more, preferably five times or more, further preferably ten times or more as long as a channel length when seen from the above.08-30-2012
20120112192POWER STORAGE DEVICE - A semiconductor device comprises a thin film transistor provided over a substrate having an insulating surface, and an electrode penetrating the substrate. The thin film transistor is provided between a first structural body and a second structural body, which has a higher rigidity than the first structural body, which serve as protectors because the structural bodies have resistance to a pressing force such as a tip of a pen or bending stress applied from outside so malfunction due to the pressing force and the bending stress can be prevented.05-10-2012
20120112191SEMICONDUCTOR DEVICE - A data retention period in a semiconductor device or a semiconductor memory device is lengthened. The semiconductor device or the semiconductor memory includes a memory circuit including a first transistor including a first semiconductor layer and a first gate and a second transistor including a second semiconductor layer, a second gate, and a third gate The first semiconductor layer is formed at the same time as a layer including the second gate.05-10-2012
20090267069SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device includes a p-type TFT having a first semiconductor layer, and an n-type TFT having a second semiconductor layer. A tilted portion, which is widened toward the insulating substrate side, is formed in at least a part of an outer edge portion of the first semiconductor layer. A tilt angle of a surface of the tilted portion to a surface of an insulating substrate, which is an angle formed inside the first semiconductor layer, is smaller than an angle of a side surface of an outer edge portion of the second semiconductor layer to the surface of the insulating substrate, which is an angle formed inside the second semiconductor layer.10-29-2009
20090267067THIN FILM TRANSISTOR - A thin film transistor has a gate electrode; a gate insulating layer provided so as to cover the gate electrode layer; a pair of impurity semiconductor layers forming source and drain regions which is provided so that at least part of each of them overlaps the gate electrode layer and which are provided with a space therebetween; a microcrystalline semiconductor layer provided over the gate insulating layer in part of a channel length; a semiconductor layer provided over the gate insulating layer so as to cover at least the microcrystalline semiconductor layer; and an amorphous semiconductor layer provided between the semiconductor layer and the pair of impurity semiconductor layers. An impurity element which reduces the coordination number of silicon and generates dangling bonds is made to exist in the semiconductor layer.10-29-2009
20090267068THIN FILM TRANSISTOR - The thin film transistor includes a gate insulating layer covering a gate electrode, over a substrate having an insulating surface; a semiconductor layer forming a channel formation region, in which a plurality of crystal regions is included in an amorphous structure; an impurity semiconductor layer imparting one conductivity type which forms a source region and a drain region; and a buffer layer formed from an amorphous semiconductor, which is located between the semiconductor layer and the impurity semiconductor layer. The thin film transistor includes the crystal region which includes minute crystal grains and inverted conical or inverted pyramidal grain each of which grows approximately radially from a position away from an interface between the gate insulating layer and the semiconductor layer toward a direction in which the semiconductor layer is deposited in a region which does not reach the impurity semiconductor layer.10-29-2009
20130062606THIN FILM TRANSISTOR AND METHOD OF MANUFACTURING THE SAME - A thin film transistor includes a substrate with a recess formed therein, a channel region received in the recess, a gate insulating layer formed on the channel region, a gate electrode formed on the gate insulating layer, and a source region and a drain region connecting the channel region, respectively. The gate insulating layer and the gate electrode are positioned between the source region and the drain region. The channel region is made of a nitride compound semiconductor. A method of manufacturing the thin film transistor is also provided.03-14-2013
20130161622THIN FILM TRANSISTOR SUBSTRATE MANUFACTURING METHOD THEREOF, DISPLAY - An embodiment of the invention provides a manufacturing method of a thin film transistor substrate including: sequentially forming a gate electrode, a gate insulating layer covering the gate electrode, an active material layer, and a photo-sensitive material layer on a first substrate; performing a photolithography process by using a half tone mask to form a photo-sensitive protective layer which is above the gate electrode and has a first recess and a second recess; etching the active material layer by using the photo-sensitive protective layer as a mask to form an active layer; removing a portion of the photo-sensitive protective layer at bottoms of the first recess and the second recess to expose a first portion and a second portion of the active layer respectively; forming a first electrode connecting to the first portion; and forming a second electrode connecting to the second portion.06-27-2013
20120223311SEMICONDUCTOR DEVICE - A semiconductor device of the present invention includes a gate electrode which includes a pair of first protrusions and a second protrusion provided between the pair of first protrusions; a gate insulating film covering the gate electrode; a semiconductor film which is in contact with the gate insulating film and overlaps with the pair of first protrusions and the second protrusion; and a pair of electrodes which is in contact with the semiconductor film and overlaps with the pair of first protrusions. The side edges of the semiconductor film are on the outer sides than the top surfaces of the pair of first protrusions in the direction of the channel width of the semiconductor film. The side edges of the pair of electrodes are on the outer sides than the top surfaces of the pair of first protrusions in the direction of the channel width of the semiconductor film.09-06-2012
20120223310SEMICONDUCTOR MEMORY DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor memory device includes a transistor and a capacitor. The transistor includes: an insulating film in which a groove portion is provided; a pair of electrodes separated so that the groove portion is sandwiched therebetween; an oxide semiconductor film which is in contact with the pair of electrodes and side surfaces and a bottom surface of the groove portion and has a thickness value smaller than a depth value of the groove portion; a gate insulating film covering the oxide semiconductor film; and a gate electrode provided to overlap with the oxide semiconductor film with the gate insulating film positioned therebetween.09-06-2012
20110012113SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD OF THE SAME - To provide a manufacturing method in which LDD regions with different widths are formed in a self-aligned manner, and the respective widths are precisely controlled in accordance with each circuit. By using a photomask or a reticle provided with an auxiliary pattern having a light intensity reduction function formed of a diffraction grating pattern or a semi-transparent film, the width of a region with a small thickness of a gate electrode can be freely set, and the widths of two LDD regions capable of being formed in a self-aligned manner with the gate electrode as a mask can be different in accordance with each circuit. In one TFT, both of two LDD regions with different widths overlap a gate electrode.01-20-2011
20110012112SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An aperture ratio of a semiconductor device is improved. A driver circuit and a pixel are provided over one substrate, and a first thin film transistor in the driver circuit and a second thin film transistor in the pixel each include a gate electrode layer, a gate insulating layer over the gate electrode layer, an oxide semiconductor layer over the gate insulating layer, source and drain electrode layers over the oxide semiconductor layer, and an oxide insulating layer in contact with part of the oxide semiconductor layer over the gate insulating layer, the oxide semiconductor layer, and the source and drain electrode layers. The gate electrode layer, the gate insulating layer, the oxide semiconductor layer, the source and drain electrode layers, and the oxide insulating layer of the second thin film transistor each have a light-transmitting property.01-20-2011
20090261329DISPLAY DEVICE - Provided is a display device using a TFT serving as a switching element, in which image deterioration of the display device is prevented by suppressing a photo leakage current to be small, and in particular, in which a density of defects which become positive fixed charges by light present in a protective insulating film of the TFT is defined to suppress the photo leakage current. In the display device using the TFT, the TFT includes an insulating film, an amorphous silicon film, a drain electrode and a source electrode, and a protective insulating film laminated on a gate electrode covering a part of a surface of an insulating substrate in the stated order, in which the protective insulating film includes a defect which becomes a positive fixed charge under light irradiation. A surface density of the defects is preferably 2.5×1010-22-2009
20130161621SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A first conductive film overlapping with an oxide semiconductor film is formed over a gate insulating film, a gate electrode is formed by selectively etching the first conductive film using a resist subjected to electron beam exposure, a first insulating film is formed over the gate insulating film and the gate electrode, removing a part of the first insulating film while the gate electrode is not exposed, an anti-reflective film is formed over the first insulating film, the anti-reflective film, the first insulating film and the gate insulating film are selectively etched using a resist subjected to electron beam exposure, and a source electrode in contact with one end of the oxide semiconductor film and one end of the first insulating film and a drain electrode in contact with the other end of the oxide semiconductor film and the other end of the first insulating film are formed.06-27-2013
20130069066THIN FILM TRANSISTOR AND MANUFACTURE METHOD THEREOF - Disclosed is a thin film transistor, comprising a first conductive layer, a first insulation layer, an amorphous silicon layer, an ohmic contact layer, a second insulation layer, a second conductive layer, a protective layer and a transparent electrode layer. The present invention also relates to a manufacture method of the thin film transistor. The thin film transistor and the manufacture method of the present invention implements merely three stages of photolithography processes to complete the manufacture of the thin film transistor, and therefore to save the manufacture cost and the process time of the thin film transistor.03-21-2013
20130161623SEMICONDUCTOR DEVICE - The present invention intends to realize a narrow flame of a system on panel. In addition to this, a system mounted on a panel is intended to make higher and more versatile in the functionality. In the invention, on a panel on which a pixel portion (including a liquid crystal element, a light-emitting element) and a driving circuit are formed, integrated circuits that have so far constituted an external circuit are laminated and formed. Specifically, of the pixel portion and the driving circuit on the panel, on a position that overlaps with the driving circuit, any one kind or a plurality of kinds of the integrated circuits is formed by laminating according to a transcription technique.06-27-2013
20120235145Printed Material Constrained By Well Structures And Devices Including Same - A first patterned contact layer, for example a gate electrode, is formed over an insulative substrate. Insulating and functional layers are formed at least over the first patterned contact layer. A second patterned contact layer, for example source/drain electrodes, is formed over the functional layer. Insulative material is then selectively deposited over at least a portion of the second patterned contact layer to form first and second wall structures such that at least a portion of the second patterned contact layer is exposed, the first and second wall structures defining a well therebetween. Electrically conductive or semiconductive material is deposited within the well, for example by jet-printing, such that the first and second wall structures confine the conductive or semiconductive material and prevent spreading and electrical shorting to adjacent devices. The conductive or semiconductive material is in electrical contact with the exposed portion of the second patterned contact layer to form, e.g., an operative transistor.09-20-2012
20120235144ORGANIC LIGHT EMITTING DIODE DEVICE AND METHOD OF MANUFACTURING THE SAME - An organic light emitting diode device includes a substrate, a thin film transistor on the substrate, a first pixel electrode electrically connected to the thin film transistor, a pixel defining layer on the first pixel electrode and partitioning a light emitting region, a second pixel electrode contacting the first pixel electrode at the light emitting region, a light emitting layer contacting the second pixel electrode at the light emitting region, and a common electrode on the light emitting layer; and a method of manufacturing the same is provided.09-20-2012
20130161620COMPOSITION FOR AN OXIDE THIN FILM, A PREPARATION METHOD OF THE COMPOSITION, A METHOD FOR FORMING AN OXIDE THIN FILM USING THE COMPOSITION, AN ELECTRONIC DEVICE INCLUDING THE OXIDE THIN FILM, AND A SEMICONDUCTOR DEVICE INCLUDING THE OXIDE THIN FILM - Provided are a composition for an oxide thin film, a preparation method of the composition, a method for forming an oxide thin film using the composition, an electronic device including the oxide thin film, and a semiconductor device including the oxide thin film. The composition for the oxide thin film includes a metal precursor and nitric acid-based stabilizer. The metal precursor includes at least one of a metal nitrate, a metal nitride, and hydrates thereof.06-27-2013
20130207111SEMICONDUCTOR DEVICE, DISPLAY DEVICE INCLUDING SEMICONDUCTOR DEVICE, ELECTRONIC DEVICE INCLUDING SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A method for manufacturing a transistor with stable electric characteristics and little signal delay due to wiring resistance, used in a semiconductor device including an oxide semiconductor film. A semiconductor device including the transistor is provided. A high-performance display device including the transistor is provided.08-15-2013
20110278573SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A separation layer is formed over a substrate, an insulating film 11-17-2011
20110278572Electro-Optical Device - An electro-optical device for performing time division gray scale display and which is capable of arbitrarily setting the amount of time during which light is emitted by EL elements is provided. From among n sustain periods Ts11-17-2011
20110278571SEMICONDUCTOR DEVICE - A semiconductor device including a first transistor and a second transistor and a capacitor which are over the first transistor is provided. A semiconductor layer of the second transistor includes an offset region. In the second transistor provided with an offset region, the off-state current of the second transistor can be reduced. Thus, a semiconductor device which can hold data for a long time can be provided.11-17-2011
20120097950SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE AND A METHOD OF FABRICATING THE SAME - A method of fabricating a semiconductor integrated circuit includes forming a first dielectric layer on a semiconductor substrate, patterning the first dielectric layer to form a first patterned dielectric layer, forming a non-single crystal seed layer on the first patterned dielectric layer, removing a portion of the seed layer to form a patterned seed layer, forming a second dielectric layer on the first patterned dielectric layer and the patterned seed layer, removing portions of the second dielectric layer to form a second patterned dielectric layer, irradiating the patterned seed layer to single-crystallize the patterned seed layer, removing portions of the first patterned dielectric layer and the second patterned dielectric layer such that the single-crystallized seed layer protrudes in the vertical direction with respect to the first and/or the second patterned dielectric layer, and forming a gate electrode in contact with the single-crystal active pattern.04-26-2012
20110133189NMOS ARCHITECTURE INVOLVING EPITAXIALLY-GROWN IN-SITU N-TYPE-DOPED EMBEDDED eSiGe:C SOURCE/DRAIN TARGETING - An NMOS transistor is formed with improved manufacturability. An embodiment includes forming N-type doped embedded silicon germanium containing carbon (eSiGe:C) in source/drain regions of a substrate, and amorphizing the eSiGe:C. The use of eSiGe:C provides a reduction in extension silicon and dopant loss, improved morphology, increased wafer throughput, improved short channel control, and reduced silicide to source/drain contact resistance.06-09-2011
20110127530SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE - A method of fabricating a semiconductor integrated circuit includes forming a first dielectric layer on a semiconductor substrate, patterning the first dielectric layer to form a first patterned dielectric layer, forming a non-single crystal seed layer on the first patterned dielectric layer, removing a portion of the seed layer to form a patterned seed layer, forming a second dielectric layer on the first patterned dielectric layer and the patterned seed layer, removing portions of the second dielectric layer to form a second patterned dielectric layer, irradiating the patterned seed layer to single-crystallize the patterned seed layer, removing portions of the first patterned dielectric layer and the second patterned dielectric layer such that the single-crystallized seed layer protrudes in the vertical direction with respect to the first and/or the second patterned dielectric layer, and forming a gate electrode in contact with the single-crystal active pattern.06-02-2011
20110140110MOTHERBOARD, PRODUCTION METHOD OF MOTHERBOARD, AND DEVICE SUBSTRATE (amended - The present invention provides a motherboard having panel substrates efficiently arranged thereon and a reduced wasted substrate region, a method for producing the motherboard, and a device substrate comprising the panel substrates formed on the motherboard. The motherboard of the present invention comprises a plurality of panel substrates, wherein the motherboard has a silicon thin film formed on a principal surface thereof, each of the panel substrates has a transistor forming region and a marginal region, the transistor forming region is formed by polycrystallizing the silicon thin film, the marginal region is provided on an outer edge of each of the panel substrates, and at least one of the panel substrates has the marginal region including a region with a silicon thin film which has a crystal profile different from a crystal profile of a silicon thin film in the transistor forming region.06-16-2011
20110140108SEMICONDUCTOR DEVICE AND ELECTRONIC DEVICE - An object is to improve the drive capability of a semiconductor device. The semiconductor device includes a first transistor and a second transistor. A first terminal of the first transistor is electrically connected to a first wiring. A second terminal of the first transistor is electrically connected to a second wiring. A gate of the second transistor is electrically connected to a third wiring. A first terminal of the second transistor is electrically connected to the third wiring. A second terminal of the second transistor is electrically connected to a gate of the first transistor. A channel region is formed using an oxide semiconductor layer in each of the first transistor and the second transistor. The off-state current of each of the first transistor and the second transistor per channel width of 1 μm is 1 aA or less.06-16-2011
20110140107Flat panel display device and method of manufacturing the same - A flat panel display device including a substrate including first and second regions; an active layer on the first region of the substrate including a semiconductor material; a lower electrode on the second region of the substrate including the semiconductor material; a first insulating layer on the substrate including the active layer and the lower electrode thereon; a gate electrode on the first insulating layer overlying the active layer and including a first conductive layer pattern and a second conductive layer pattern; an upper electrode on the first insulating layer overlying the lower electrode and including the first conductive layer pattern and the second conductive layer pattern; a second insulating layer on the gate electrode and the upper electrode exposing portions of the active layer and portions of the upper electrode; and a source electrode and a drain electrode connected to the exposed portions of the active layer.06-16-2011
20110297939SEMICONDUCTOR DEVICE - An object is to provide a semiconductor device having a novel structure with a high degree of integration. A semiconductor device includes a semiconductor layer having a channel formation region, a source electrode and a drain electrode electrically connected to the channel formation region, a gate electrode overlapping with the channel formation region, and a gate insulating layer between the channel formation region and the gate electrode. A portion of a side surface of the gate insulating layer and a portion of a side surface of the source electrode or the drain electrode are substantially aligned with each other when seen from a planar direction.12-08-2011
20110284850AMORPHOUS-SILICON THIN FILM TRANSISTOR AND SHIFT REGISTER HAVING THE SAME - An amorphous-silicon thin film transistor and a shift resister shift resister having the amorphous-silicon TFT include a first conductive region, a second conductive region and a third conductive region. The first conductive region is formed on a first plane spaced apart from a substrate by a first distance. The second conductive region is formed on a second plane spaced apart from the substrate by a second distance. The second conductive region includes a body conductive region and two hand conductive regions elongated from both ends of the body conductive region to form an U-shape. The third conductive region is formed on the second plane. The third conductive region includes an elongated portion. The elongated portion is disposed between the two hand conductive regions of the second conductive region. The amorphous-silicon TFT and the shift resister having the amorphous TFT reduce a parasitic capacitance between the gate electrode and drain electrode.11-24-2011
20110284849Crosslinked Hybrid Gate Dielectric Materials and Electronic Devices Incorporating Same - Disclosed are thin film transistor devices incorporating a crosslinked inorganic-organic hybrid blend material as the gate dielectric. The blend material, obtained by thermally curing a mixture of an inorganic oxide precursor sol and an organosilane crosslinker at relatively low temperatures, can afford a high gate capacitance, a low leakage current density, and a smooth surface, and can be used to enable satisfactory transistor device performance at low operating voltages.11-24-2011
20110284848SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - Disclosed is a semiconductor device including an oxide semiconductor film. A first oxide semiconductor film with a thickness of greater than or equal to 2 nm and less than or equal to 15 nm is formed over a gate insulating layer. First heat treatment is performed so that crystal growth from a surface of the first oxide semiconductor film to the inside thereof is caused, whereby a first crystal layer is formed. A second oxide semiconductor film with a thickness greater than that of the first oxide semiconductor film is formed over the first crystal layer. Second heat treatment is performed so that crystal growth from the first crystal layer to a surface of the second oxide semiconductor film is caused, whereby a second crystal layer is formed. Further, oxygen doping treatment is performed on the second crystal layer.11-24-2011
20120286270SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - It is an object to provide a semiconductor device in which a short-channel effect is suppressed and miniaturization is achieved, and a manufacturing method thereof. A trench is formed in an insulating layer and impurities are added to an oxide semiconductor film in contact with an upper end corner portion of the trench, whereby a source region and a drain region are formed. With the above structure, miniaturization can be achieved. Further, with the trench, a short-channel effect can be suppressed setting the depth of the trench as appropriate even when a distance between a source electrode layer and a drain electrode layer is shortened.11-15-2012
20120286272THIN FILM TRANSISTOR AND METHOD OF MANUFACTURING THE SAME - A thin film transistor includes a gate electrode on a substrate, a main active layer in electrical connection with the gate electrode and including an exposed channel portion, a source electrode in electrical connection with the main active layer, a drain electrode which is spaced apart from the source electrode and in electrical connection with the main active layer, and a sub active layer in electrical connection to the main active layer.11-15-2012
20120286271OXIDE THIN FILM TRANSISTOR RESISTANT TO LIGHT AND BIAS STRESS, AND A METHOD OF MANUFACTURING THE SAME - Disclosed are an oxide thin film transistor resistant to light and bias stress, and a method of manufacturing the same. The method includes forming a gate electrode on a substrate; forming a gate insulating layer on an upper part including the gate electrode; forming a source electrode and a drain electrode on the insulating layer; forming an active layer insulated from the gate electrode by the gate insulating layer and formed of an oxide semiconductor and a diffusion barrier film; and forming a protective layer on a portion of the source electrode and drain electrode and the upper part including the active layer, wherein the diffusion barrier film reduces movement of holes and prevents ionized oxygen vacancies from being diffused.11-15-2012
20090166629REDUCING GATE CD BIAS IN CMOS PROCESSING - A method of forming an integrated circuit having an NMOS transistor and a PMOS transistor is disclosed. The method includes performing pre-gate processing in a NMOS region and a PMOS region over and/or in a semiconductor body, and depositing a polysilicon layer over the semiconductor body in both the NMOS and PMOS regions. The method further includes performing a first type implant into the polysilicon layer in one of the NMOS region and PMOS region, and performing an amorphizing implant into the polysilicon layer in both the NMOS and PMOS regions, thereby converting the polysilicon layer into an amorphous silicon layer. The method further includes patterning the amorphous silicon layer to form gate electrodes, wherein a gate electrode resides in both the NMOS and PMOS regions.07-02-2009
20110284847SEMICONDUCTOR DEVICE - Disclosed is a semiconductor device with a transistor in which an oxide semiconductor is used. An insulating layer on a back channel side of the oxide semiconductor layer has capacitance of lower than or equal to 1.5×1011-24-2011
20110284844SEMICONDUCTOR DEVICE - An object of the present invention is to manufacture a semiconductor device where fluctuation in electrical characteristics is small and reliability is high in a transistor in which an oxide semiconductor is used. An insulating layer from which oxygen is released by heating is used as a base insulating layer of an oxide semiconductor layer which forms a channel. Oxygen is released from the base insulating layer, whereby oxygen deficiency in the oxide semiconductor layer and an interface state between the base insulating layer and the oxide semiconductor layer can be reduced. Thus, a semiconductor device where fluctuation in electrical characteristics is small and reliability is high can be manufactured.11-24-2011
20090278126METAL LINE SUBSTRATE, THIN FILM TRANSISTOR SUBSTRATE AND METHOD OF FORMING THE SAME - A metal line substrate and a method of fabricating thereof, the metal line substrate including an insulating layer and a capping layer disposed on an insulating substrate, a trench defined by the insulating layer and the capping layer disposed on the insulating substrate, a seed layer pattern disposed on the insulating substrate, and a low-resistive conductive layer pattern disposed in the trench and contacting the seed layer pattern. The capping layer pattern includes a protrusion region which is in contact with the low-resistive conductive layer pattern.11-12-2009
20110297940MICROMACHINE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor element of the electric circuit includes a semiconductor layer over a gate electrode. The semiconductor layer of the semiconductor element is formed of a layer including polycrystalline silicon which is obtained by crystallizing amorphous silicon by heat treatment or laser irradiation, over a substrate. The obtained layer including polycrystalline silicon is also used for a structure layer such as a movable electrode of a structure body. Therefore, the structure body and the electric circuit for controlling the structure body can be formed over one substrate. As a result, a micromachine can be miniaturized. Further, assembly and packaging are unnecessary, so that manufacturing cost can be reduced.12-08-2011
20110297938THIN FILM TRANSISTOR, METHOD OF MANUFACTURING THE SAME, AND ELECTRONIC DEVICE - A method of manufacturing a thin film transistor includes: forming a gate electrode on a substrate; forming a gate insulating layer on the gate electrode; forming an organic semiconductor layer on the gate insulating layer; forming an organic semiconductor pattern by selectively removing part of the organic semiconductor layer by means of a laser ablation method; and forming source and drain electrodes on the organic semiconductor pattern.12-08-2011
20110297937THIN FILM TRANSISTOR WITH OFFSET STRUCTURE - A thin film transistor (TFT) having an offset structure is disclosed. The TFT maintains a sufficiently low “off” current and a sufficiently high “on” current. The TFT includes an active region. The active region includes a gate electrode; an active layer that overlaps with the gate electrode; a gate insulating layer between the gate electrode and the active layer; and a source/drain electrode layer including source/drain electrodes that are electrically connected to the active region. Some of the source/drain electrodes overlap partially with the gate electrode. Other of the source/drain electrodes are offset from the gate electrode. The source/drain electrodes and the gate electrode are in a symmetrical arrangement.12-08-2011
20110291091Organic Light Emitting Display - In an organic light emitting display, a conductive layer is formed on the bottom surface of a substrate, and the conductive layer is used as a wiring line for supplying a power source, and as the electrode of a capacitor. Therefore, it is possible to easily secure the aperture ratio of a pixel, to easily solve the problem of IR drops by controlling the area or thickness of the conductive layer, and to easily secure the electrostatic capacity of the capacitor. In particular, in the case of a front surface light emitting structure, since a capacitor of a metal/insulating layer/metal (MIM) structure may be formed in a light emitting region, enough aperture ratio and electrostatic capacity may be secured. Therefore, a high resolution organic light emitting display may be easily realized, and enough aperture ratio and electrostatic capacity are secured so as to realize high picture quality.12-01-2011
20120012846SEMICONDUCTOR DEVICE, ELECTRONIC DEVICE, AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - To provide a semiconductor device and a display device which can be manufactured through a simplified process and the manufacturing technique. Another object is to provide a technique by which a pattern of wirings or the like which is partially constitutes a semiconductor device or a display device can be formed with a desired shape with controllability.01-19-2012
20110291093SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - The present invention relates to a semiconductor device including a thin film transistor comprising a microcrystalline semiconductor which forms a channel formation region and includes an acceptor impurity element, and to a manufacturing method thereof. A gate electrode, a gate insulating film formed over the gate electrode, a first semiconductor layer which is formed over the gate insulating film and is formed of a microcrystalline semiconductor, a second semiconductor layer which is formed over the first semiconductor layer and includes an amorphous semiconductor, and a source region and a drain region which are formed over the second semiconductor layer are provided in the thin film transistor. A channel is formed in the first semiconductor layer when the thin film transistor is placed in an on state.12-01-2011
20110291092FIELD EFFECT TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME - Provided is a novel structure of a field effect transistor using a metal-semiconductor junction. The field effect transistor includes a wiring which is provided over a substrate and also functions as a gate electrode; an insulating film which is provided over the wiring, has substantially the same shape as the wiring, and also functions as a gate insulating film; a semiconductor layer which is provided over the insulating film and includes an oxide semiconductor and the like; an oxide insulating layer which is provided over the semiconductor layer and whose thickness is 5 times or more as large as the sum of the thickness of the insulating film and the thickness of the semiconductor layer or 100 nm or more; and wirings which are connected to the semiconductor layer through openings provided in the oxide insulating layer.12-01-2011
20090294768SELF-ALIGNED THIN-FILM TRANSISTOR AND METHOD OF FORMING SAME - A method of manufacturing a thin-film transistor or like structure provides conductive “tails” below an overhang region formed by a top gate structure. The tails increase in thickness as they extend outward from a point under the overhang to the source and drain contacts. The tails provide a low resistance conduction path between the source and drain regions and the channel, with low parasitic capacitance. The thickness profile of the tails is controlled by the deposition of material over and on the lateral side surfaces of the gate structure.12-03-2009
20120097949VERTICAL ORGANIC FIELD EFFECT TRANSISTOR AND METHOD OF ITS MANUFACTURE - An electronic device (100) is presented, being configured for example as a vertical field effect transistor. The device comprises an electrically-conductive perforated patterned structure (102) which is enclosed between a dielectric layer (105) and an active element (106) of the electronic device (100). The electrically-conductive perforated patterned structure (102) comprises a geometrical pattern defining an array of spaced-apart perforation regions (108) surrounded by continuous electrically conductive regions (110). The pattern is such as to allow the active element (106) of the electronic device (100) to be in direct contact with said dielectric layer (105) aligned with the perforation regions (108). A material composition of the device (100) and features of said geometrical pattern are selected to provide a desired electrical conductance of the electrically-conductive perforated patterned structure (102) and a desired profile of a charge carriers' injection barrier along said structure (102).04-26-2012
20120097948THIN FILM TRANSISTOR - A thin film transistor includes a substrate, a gate electrode on the substrate, a gate insulating layer covering the gate electrode, a first semiconductor layer and a second semiconductor layer overlapping the gate electrode on the gate insulating layer and separated from each other, a first source electrode and a first drain electrode on the first semiconductor layer and on opposite sides of the gate electrode, and a second source electrode and a second drain electrode on the second semiconductor layer and on opposite sides of the gate electrode, wherein the first source electrode is coupled to the second source electrode through a source connection overlapping the gate electrode, and the first drain electrode is coupled to the second drain electrode, such that the on current and off current characteristics of the thin film transistor may be constantly maintained regardless of alignment error.04-26-2012
20120025191Semiconductor Device and Manufacturing Method Thereof - A method for manufacturing a semiconductor device, which enables miniaturization and reduction of defect, is provided. It includes forming an oxide semiconductor layer, and source and drain electrodes in contact with the oxide semiconductor layer, over an insulating surface; forming insulating layers over the source electrode and the drain electrode; forming a gate insulating layer over the oxide semiconductor layer, the source and drain electrodes, and the insulating layer; forming a conductive layer over the gate insulating layer; forming an insulating film covering the conductive layer; processing the insulating film so that at least part of a region of the conductive layer, which overlaps with the source electrode or the drain electrode, is exposed; and etching the exposed region of the conductive layer to form a gate electrode overlapping with at least part of the region sandwiched between the source electrode and the drain electrode, in a self-aligned manner.02-02-2012
20090140251THIN FILM TRANSISTOR, DISPLAY DEVICE INCLUDING THIN FILM TRANSISTOR, AND METHOD FOR MANUFACTURING THE SAME - A thin film transistor having excellent electric characteristics, a display device including the thin film transistor, and a manufacturing method thereof are provided. In a thin film transistor in which a microcrystalline germanium film, a gate insulating film in contact with one surface of the microcrystalline germanium film, and a gate electrode overlap with one another and a display device including the thin film transistor, a buffer layer is formed over the other surface of the microcrystalline germanium film. By using a microcrystalline germanium film for a channel formation region, a thin film transistor with high field-effect mobility and high on-current can be manufactured, and by providing a buffer layer between the microcrystalline germanium film functioning as a channel formation region and a source and drain regions, a thin film transistor with low off-current can be manufactured, that is, a thin film transistor with excellent electric characteristics can be manufactured.06-04-2009
20100012935CU ALLOY WIRING FILM, TFT ELEMENT FOR FLAT-PANEL DISPLAY USING THE CU ALLOY WIRING FILM, AND CU ALLOY SPUTTERING TARGET FOR DEPOSITING THE CU ALLOY WIRING FILM - An object of the present invention is to provide: a Cu alloy wiring film that makes it possible to use Cu having a low electrical resistivity as a wiring material, exhibit a high adhesiveness to a glass substrate, and avoid the danger of peel off from the glass substrate; a TFT element for a flat-panel display produced with the Cu alloy wiring film; and a Cu alloy sputtering target used for the deposition of the Cu alloy wiring film.01-21-2010
20100078639THIN FILM SEMICONDUCTOR DEVICE FABRICATION METHOD AND THIN FILM SEMICONDUCTOR DEVICE - The present invention provides a method for making a thin film semiconductor device having a bottom-gate, bottom-contact-type thin film transistor structure finer in size with satisfactory characteristics, in which the interface between a gate insulating film and a thin film semiconductor layer can be maintained at satisfactory conditions without being affected by formation of source/drain electrodes. A first gate insulating film (04-01-2010
20110062443THIN BODY SEMICONDUCTOR DEVICES HAVING IMPROVED CONTACT RESISTANCE AND METHODS FOR THE FABRICATION THEREOF - Embodiments of a method for fabricating a semiconductor device are provided. In one embodiment, the method includes the step of producing a partially-completed semiconductor device including a substrate, source/drain (S/D) regions, a channel region between the S/D regions, a gate stack over the channel region, and sidewall spacers laterally adjacent the gate stack. The method further includes the steps of amorphizing the S/D regions, depositing a silicide-forming material over the amorphized S/D regions, and heating the partially-completed semiconductor device to a predetermined temperature at which the silicide-forming material reacts with the amorphized S/D regions.03-17-2011
20100090220THIN FILM TRANSISTOR AND SEMICONDUCTOR DEVICE USING THE SAME - The present invention aims at providing a high-performance semiconductor device such as display, IC tag, sensor or the like at a low cost by using an organic thin film transistor most members of which can be formed by printing, as a switching element. The present invention relates to a thin film transistor composed of members on a dielectric substrate, which are a gate electrode, a dielectric film, source/drain electrodes, and a semiconductor layer, wherein on said semiconductor layer there are formed at least two passivation films of a first passivation film capping said semiconductor layer to protect it and a second passivation film covering larger area than that of said first passivation film to protect all of said members.04-15-2010
20110198592THIN FILM TRANSISTOR AND METHOD FOR FABRICATING THIN FILM TRANSISTOR - Disclosed are a thin film transistor having high reliability and providing a simplified fabricating process, and a method of fabricating the thin film transistor. In the method, a dielectric substrate is prepared, a semiconductor layer is formed on the dielectric substrate, a gate dielectric film is formed on the semiconductor layer, a first gate electrode is formed on the gate dielectric film, a second gate electrode contacting a side wall of the first gate electrode is formed, and impurities are implanted into the semiconductor layer using the first gate electrode as a mask.08-18-2011
20090045401Semiconductor device and manufacturing method thereof - The present invention relates to a semiconductor device including a thin film transistor comprising a microcrystalline semiconductor which forms a channel formation region and includes an acceptor impurity element, and to a manufacturing method thereof. A gate electrode, a gate insulating film formed over the gate electrode, a first semiconductor layer which is formed over the gate insulating film and is formed of a microcrystalline semiconductor, a second semiconductor layer which is formed over the first semiconductor layer and includes an amorphous semiconductor, and a source region and a drain region which are formed over the second semiconductor layer are provided in the thin film transistor. A channel is formed in the first semiconductor layer when the thin film transistor is placed in an on state.02-19-2009
20090090909SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - To improve field effect mobility of an inverted-staggered TFT using amorphous silicon. In an inverted-staggered TFT, a thin amorphous semiconductor layer which is made to have n-type conductivity is formed between a gate insulating film and an amorphous semiconductor layer. By depositing an amorphous semiconductor layer after a substrate over which up to a gate insulating film is formed is exposed to an atmosphere which contains a phosphine gas in a small amount, an amorphous semiconductor layer which contains phosphorus is formed during the early stage of deposition of the amorphous semiconductor layer. The thus obtained amorphous semiconductor layer has the concentration peak of phosphorus around the surface of the gate insulating film.04-09-2009
20110168998DUAL-GATE TRANSISTOR AND PIXEL STRUCTURE USING THE SAME - A dual-gate transistor includes a first gate formed on a substrate, a first dielectric layer covering the first gate and the substrate, a semiconductor layer formed on the first dielectric layer, first and second electrodes formed on the semiconductor layer and spaced with an interval in order to separate each other, a second dielectric layer covering the first and second electrodes, and a second gate formed on the second dielectric layer, in which at least one of the first and second gates is non-overlapped with the second electrode.07-14-2011
20110168997THIN FILM TRANSISTOR ARRAY SUBSTRATE AND MANUFACTURING METHOD THEREOF - A thin film transistor (TFT) array substrate and a manufacturing method thereof are provided. The TFT array substrate may include a gate line disposed on a substrate and including a gate line and a gate electrode, an oxide semiconductor layer pattern disposed on the gate electrode, a data line disposed on the oxide semiconductor layer pattern and including a source electrode and a drain electrode of a thin film transistor (TFT) together with the gate electrode, and a data line extending in a direction intersecting the gate line, and etch stop patterns disposed at an area where the TFT is formed between the source/drain electrodes and the oxide semiconductor layer pattern and at an area where the gate line and the data line overlap each other between the gate line and the data line.07-14-2011
20090272976METHOD FOR PRODUCING NMOS AND PMOS DEVICES IN CMOS PROCESSING - A method for producing one or more nMOSFET devices and one or more pMOSFET devices on the same semiconductor substrate is disclosed. In one aspect, the method relates to the use of a single activation anneal that serves for both Si NMOS and Ge pMOS. By use of a solid phase epitaxial regrowth (SPER) process for the Si nMOS, the thermal budget for the Si NMOS can be lowered to be compatible with Ge pMOS.11-05-2009
20110198594Semiconductor Device and Manufacturing Method Thereof - It is an object to provide a semiconductor device having excellent electric characteristics or high reliability, or a manufacturing method thereof. A semiconductor device including a gate electrode, an oxide semiconductor layer overlapping with the gate electrode, a source electrode and a drain electrode in contact with the oxide semiconductor layer, and a gate insulating layer provided between the gate electrode and the oxide semiconductor layer is provided. The oxide semiconductor layer is formed by a facing target sputtering method. The carrier concentration of the oxide semiconductor is less than 1×1008-18-2011
20090289254SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A TFT formed on an insulating substrate source, drain and channel regions, a gate insulating film formed on at least the channel region and a gate electrode formed on the gate insulating film. Between the channel region and the drain region, a region having a higher resistivity is provided in order to reduce an Ioff current. A method for forming this structure comprises the steps of anodizing the gate electrode to form a porous anodic oxide film on the side of the gate electrode; removing a portion of the gate insulating using the porous anodic oxide film as a mask so that the gate insulating film extends beyond the gate electrode but does not completely cover the source and drain regions. Thereafter, an ion doping of one conductivity element is performed. The high resistivity region is defined under the gate insulating film.11-26-2009
20090294770SEMICONDUCTOR DEVICE - A semiconductor device includes a substrate, first, second, and third gate lines disposed over the substrate, the first and second gate lines defining a first trench with a first aspect ratio, the second and third gate lines defining a second trench with a second aspect ratio, a first insulating layer formed to decrease the first and second aspect ratios, and a second insulating layer disposed over the first insulating layer to fill the first and second trenches.12-03-2009
20090294769SEMICONDUCTOR DEVICE AND A METHOD OF MANUFACTURING THE SAME - According to a method of manufacturing a semiconductor device of the present invention, a gate electrode is formed above a substrate, and a insulating film is formed above the gate electrode. Then, an amorphous semiconductor film is formed above the insulating film, laser annealing is performed on the amorphous semiconductor film, and the amorphous semiconductor film is changed to a crystalline semiconductor film. After that, hydrofluoric acid processing is performed on the crystalline semiconductor film, and an amorphous semiconductor film is formed above the crystalline semiconductor film where the hydrofluoric acid processing is performed so that pattern ends of the amorphous semiconductor film are arranged outside pattern ends of the crystalline semiconductor film and the amorphous semiconductor film contacts with the insulating film near the pattern ends.12-03-2009
20090294767Isolated Sensor Structures Such As For Flexible Substrates - A photosensor structure includes a pixel metal layer disposed in physical and electrical contact with a pixel thin film transistor and a lower sensor layer of a p-i-n photosensor. The pixel metal layer extends laterally to an extent less that the lower sensor layer such that an overhang region is defined below the lower sensor layer and the adjacent the lateral edge of the pixel metal layer. When the relatively thick intrinsic sensor layer is formed over the lower sensor layer, it attaches to the upper surface and, due to the presence of the overhang region, the lateral edge of the lower sensor layer, forming a discrete intrinsic sensor layer structure over the pixel which is physically isolated from adjacent corresponding structures. This isolation allows for thermal expansion and contraction during formation of the intrinsic sensor layer without cracking the intrinsic sensor layer structure.12-03-2009
20100140620FLAT-PANEL DISPLAY SEMICONDUCTOR PROCESS FOR EFFICIENT MANUFACTURING - An embodiment is a method and apparatus to fabricate a flat panel display. A poly-last structure is formed for a display panel using an amorphous silicon or amorphous silicon compatible process. The poly-last structure has a channel silicon precursor. The display panel is formed from the poly-last structure using a polysilicon specific or polysilicon compatible process.06-10-2010
20110204363AMORPHOUS SILICON MONOS OR MAS MEMORY CELL STRUCTURE WITH OTP FUNCTION - A semiconductor device with an amorphous silicon (a-Si) metal-oxide-nitride-oxide-silicon (MONOS) or metal-aluminum oxide-silicon (MAS) memory cell structure with one-time programmable (OTP) function. The device includes a substrate, a first dielectric layer overlying the substrate, and one or more source or drain regions embedded in the first dielectric layer with a co-planar surface of n-type a-Si and the first dielectric layer. Additionally, the device includes a p-i-n a-Si diode junction. The device further includes a second dielectric layer on the a-Si p-i-n diode junction and a metal control gate overlying the second dielectric layer. Optionally the device with OTP function includes a conductive path formed between n-type a-Si layer and the metal control gate. A method of making the same memory cell structure is provided and can be repeated to integrate the structure three-dimensionally.08-25-2011
20090261330THIN FILM TRANSISTOR AND MANUFACTURING METHOD THEREOF - It is an object to control quality of a microcrystalline semiconductor film or a semiconductor film including crystal grains so that operation characteristics of a semiconductor element typified by a TFT can be improved. It is another object to improve characteristics of a semiconductor element typified by a TFT by controlling a deposition process of a microcrystalline semiconductor film or a semiconductor film including crystal grains. In addition, it is another object to increase on-state current of a thin film transistor and to reduce off-state current of the thin film transistor. In a semiconductor layer including a plurality of crystalline regions in an amorphous structure, generation positions and generation density of crystal nuclei from which the crystalline regions start to grow are controlled, whereby quality of the semiconductor layer is controlled. In addition, after generation of crystal nuclei from which the crystalline regions start to grow in the semiconductor layer, an impurity element serving as a donor is added to the semiconductor layer, whereby crystallinity of the semiconductor layer is increased and the resistivity of the semiconductor layer is reduced.10-22-2009
20090261328THIN FILM TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME - Disclosed is a thin film transistor which includes, over a substrate having an insulating surface, a gate insulating layer covering a gate electrode; a semiconductor layer which functions as a channel formation region; and a semiconductor layer including an impurity element imparting one conductivity type. The semiconductor layer exists in a state that a plurality of crystalline particles is dispersed in an amorphous silicon and that the crystalline particles have an inverted conical or inverted pyramidal shape. The crystalline particles grow approximately radially in a direction in which the semiconductor layer is deposited. Vertexes of the inverted conical or inverted pyramidal crystal particles are located apart from an interface between the gate insulating layer and the semiconductor layer.10-22-2009
20090166630Array substrate of liquid crystal display and method for fabricating the same - A thin film transistor (TFT) for a liquid crystal display device includes a gate electrode, a source electrode, a drain electrode, an active region including a first semiconductor layer and a second semiconductor layer interposed within the first semiconductor layer, and an ohmic contact layer formed on the active region, wherein the source and drain electrodes are formed on the ohmic contact layer.07-02-2009
20120292620PIXEL STRUCTURE AND MANUFACTURING METHOD THEREOF - A manufacturing method of pixel structure includes: sequentially forming a gate, a gate insulation layer, a semiconductor layer and a conductive layer on a substrate; forming a first patterned photoresist layer including multiple first photoresist blocks and multiple second photoresist blocks on the conductive layer; reducing the thickness of the first patterned photoresist layer until the second photoresist blocks are completely removed; forming a pixel electrode layer and a second photoresist layer on a partial pixel electrode layer; removing a part of the pixel electrode layer exposed by the second photoresist layer, a partial conductive layer and a partial semiconductor layer both under the removed pixel electrode layer to define a first electrode block, a second electrode block and a channel region; removing the remained first patterned photoresist layer and second photoresist layer and forming a protective layer and a common electrode layer on a part of the protective layer.11-22-2012
20110266542SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - Provided are a semiconductor device including a dual gate transistor and a method of fabricating the same. The semiconductor device includes a lower gate electrode, an upper gate electrode on the lower gate electrode, a contact plug interposed between the lower gate electrode and the upper gate electrode, and connecting the lower gate electrode to the upper gate electrode, and a functional electrode spaced apart from the upper gate electrode and formed at the same height as the upper gate electrode. The dual gate transistor exhibiting high field effect mobility is applied to the semiconductor device, so that characteristics of the semiconductor device can be improved. In particular, since no additional mask or deposition process is necessary, a large-area high-definition semiconductor device can be mass-produced with neither an increase in process cost nor a decrease in yield.11-03-2011
20110204364THIN FILM TRANSISTOR AND MANUFACTURING METHOD THEREOF - A method for manufacturing a thin film transistor having high electric characteristics with high productivity. In the method for forming a channel region of a dual-gate thin film transistor including a first gate electrode and a second gate electrode which faces the first gate electrode with the channel region provided therebetween, a first microcrystalline semiconductor film is formed under a first condition for forming a microcrystalline semiconductor film in which a space between crystal grains is filled with an amorphous semiconductor, and a second microcrystalline semiconductor film is formed over the first microcrystalline semiconductor film under a second condition for promoting crystal growth.08-25-2011
20100096631THIN FILM TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME - A thin film transistor includes, over a substrate having an insulating surface, a gate insulating layer covering a gate electrode; a semiconductor layer which includes a plurality of crystalline regions in an amorphous structure and which forms a channel formation region, in contact with the gate insulating layer; a semiconductor layer including an impurity element imparting one conductivity type, which forms source and drain regions; and a buffer layer including an amorphous semiconductor between the semiconductor layer and the semiconductor layer including an impurity element imparting one conductivity type. The crystalline regions have an inverted conical or inverted pyramidal crystal particle which grows approximately radially in a direction in which the semiconductor layer is deposited, from a position away from an interface between the gate insulating layer and the semiconductor layer.04-22-2010
20110198595LIQUID CRYSTAL DISPLAY DEVICE - It is an object to provide a liquid crystal display device including a thin film transistor with high electric characteristics and high reliability. As for a liquid crystal display device including an inverted staggered thin film transistor of a channel stop type, the inverted staggered thin film transistor includes a gate electrode, a gate insulating film over the gate electrode, a microcrystalline semiconductor film including a channel formation region over the gate insulating film, a buffer layer over the microcrystalline semiconductor film, and a channel protective layer which is formed over the buffer layer so as to overlap with the channel formation region of the microcrystalline semiconductor film.08-18-2011
20110198593SEMICONDUCTOR DEVICE - A semiconductor device with a novel structure in which stored data can be held even when power is not supplied and there is no limitation on the number of times of writing. In the semiconductor device, a plurality of memory cells each including a first transistor, a second transistor, and a capacitor is provided in matrix and a wiring (also called a bit line) for connecting one memory cell to another memory cell and a source or drain electrode of the first transistor are electrically connected to each other through a source or drain electrode of the second transistor. Accordingly, the number of wirings can be smaller than that in the case where the source or drain electrode of the first transistor and the source or drain electrode of the second transistor are connected to different wirings. Thus, the degree of integration of the semiconductor device can be increased.08-18-2011
20100127261THIN FILM TRANSISTOR - The thin film transistor includes, over a substrate having an insulating surface, a gate insulating layer covering a gate electrode, an amorphous semiconductor layer over the gate insulating layer, a semiconductor layer including an impurity element imparting one conductivity type over the amorphous semiconductor layer. The amorphous semiconductor layer comprises an NH radical. Defects of the amorphous semiconductor layer are reduced by cross-linking dangling bonds with the NH radical in the amorphous semiconductor layer.05-27-2010
20090166631THIN FILM TRANSISTOR AND DISPLAY DEVICE INCLUDING THE SAME - One object of the present invention is reduction of off current of a thin film transistor. Another object of the present invention is improvement of electric characteristics of the thin film transistor. Further, another object of the present invention is improvement of image quality of the display device including the thin film transistor. The thin film transistor includes a semiconductor film containing germanium at a concentration greater than or equal to 5 at. % and less than or equal to 100 at. % or a conductive film which is provided over a gate electrode with the gate insulating film interposed therebetween and which is provided in an inner region of the gate electrode so as not to overlap with an end portion of the gate electrode, a film covering at least a side surface of the semiconductor film containing germanium at a concentration greater than or equal to 5 at. % and less than or equal to 100 at. % or the conductive film, a pair of wirings formed over the film covering the side surface of the semiconductor film containing germanium at a concentration greater than or equal to 5 at. % and less than or equal to 100 at. % or the conductive film.07-02-2009
20120037906THIN FILM TRANSISTOR ARRAY SUBSTRATE AND METHOD OF FABRICATING THE SAME - A thin film transistor array substrate capable of reducing degradation of a device due to degradation of an oxide semiconductor pattern and a method of fabricating the same are provided. The thin film transistor array substrate may include an insulating substrate on which a gate electrode is formed, a gate insulating film formed on the insulating substrate, an oxide semiconductor pattern disposed on the gate insulating film, an anti-etching pattern formed on the oxide semiconductor pattern, and a source electrode and a drain electrode formed on the anti-etching pattern. The oxide semiconductor pattern may include an edge portion positioned between the source electrode and the drain electrode, and the edge portion may include at least one conductive region and at least one non-conductive region.02-16-2012
20080277663Thin film transistor and method of manufacturing the same - Provided is a thin film transistor that includes a substrate on which an insulating layer is formed, a gate formed on a region of the insulating layer, a gate insulating layer formed on the insulating layer and the gate, a channel region formed on the gate insulating layer on a region corresponding to the location of the gate, a source and a drain respectively formed by contacting either side of the channel region; and a passivation layer formed of a compound made of a group II element and a halogen element on the channel region.11-13-2008
20130119385PIXEL STRUCTURE AND METHOD OF FABRICATING THE SAME - A pixel structure includes a substrate; a scan line; a gate electrode; an insulating layer disposed on the scan line, the gate electrode and the substrate; a channel and a data line disposed on the insulating layer; a source electrode and a drain electrode disposed on the channel; a passivation layer; a pixel electrode and a connecting electrode. The data line does not overlap the scan line. The passivation layer disposed on the source electrode and the drain electrode includes a first contact hole partially exposing the drain electrode, and a plurality of second contact holes partially exposing the data line or the scan line. The pixel electrode disposed on the passivation layer is electrically connected to the drain electrode through the first contact hole. Furthermore, the connecting electrode disposed on the passivation layer is electrically connected to the data line or the scan line through the second contact holes.05-16-2013
20110204365SEMICONDUCTOR DEVICE - At least one of a plurality of transistors which are highly integrated in an element is provided with a back gate without increasing the number of manufacturing steps. In an element including a plurality of transistors which are longitudinally stacked, at least a transistor in an upper portion includes a metal oxide having semiconductor characteristics, a same layer as a gate electrode of a transistor in a lower portion is provided to overlap with a channel formation region of the transistor in an upper portion, and part of the same layer as the gate electrode functions as a back gate of the transistor in an upper portion. The transistor in a lower portion which is covered with an insulating layer is subjected to planarization treatment, whereby the gate electrode is exposed and connected to a layer functioning as source and drain electrodes of the transistor in an upper portion.08-25-2011
20080258146THIN-FILM TRANSISTOR AND FABRICATION METHOD THEREOF - A fabrication method of a TFT includes successively forming four thin films containing a first conductive layer, an insulation layer, a semiconductor layer, and a second conductive layer on a substrate, performing a first PEP process to pattern the four thin films for forming a semiconductor island and a gate electrode with the semiconductor layer and the first conductive layer respectively. Then, a laser ablation process is performed to define a channel pattern in the four thin films and remove a portion of the second conductive layer so that unconnected source electrode and drain electrode are formed with the second conductive layer.10-23-2008
20090152550SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - An object is to provide a semiconductor device including a microcrystalline semiconductor film with favorable quality and a method for manufacturing the semiconductor device. In a thin film transistor formed using a microcrystalline semiconductor film, yttria-stabilized zirconia having a fluorite structure is formed in the uppermost layer of a gate insulating film in order to improve quality of a microcrystalline semiconductor film to be formed in the initial stage of deposition. The microcrystalline semiconductor film is deposited on the yttria-stabilized zirconia, so that the microcrystalline semiconductor film around an interface with a base particularly has favorable crystallinity while by crystallinity of the base.06-18-2009
20100200855SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - The present invention has an object to provide an active-matrix liquid crystal display device that realizes the improvement in productivity as well as in yield. In the present invention, a laminate film comprising the conductive film comprising metallic material and the second amorphous semiconductor film containing an impurity element of one conductivity type and the amorphous semiconductor film is selectively etched with the same etching gas to form a side edge of the first amorphous semiconductor film 08-12-2010
20100051947AMORPHOUS INSULATOR FILM AND THIN-FILM TRANSISTOR - An amorphous insulator film is provided which is composed of silicon (Si) oxide, in which the amorphous insulator film includes Ar and an amount of Ar included therein is equal to or larger than 3 at. % in terms of atomic ratio with respect to Si.03-04-2010
20120138930ORGANIC THIN FILM TRANSISTOR AND PROCESSING METHOD THEREOF - An organic thin field transistor is disclosed. The organic thin field transistor includes a first and a second insulting layers, a metal structure and an organic layer serving as an active layer. Materials of the first and the second insulting layers are different, and by performing an etching process, a surface of the metal structure and a surface of the second insulting layer are effectively aligned. Because of the high flatness of the surface of the metal structure and the second insulting layer, a continuous film-forming property and crystallinity of the active layer of the organic thin field transistor are improved, so as to achieve a better the electrical characteristic.06-07-2012
20090140250SEMICONDUCTOR DEVICE - An object is to reduce off-current of a thin film transistor. Another object is to improve electric characteristics of a thin film transistor. Further, it is still another object to improve image quality of a display device using the thin film transistor. An aspect of the present invention is a thin film transistor including a semiconductor film formed over a gate electrode and in an inner region of the gate electrode which does not reach an end portion of the gate electrode, with a gate insulating film interposed therebetween, a film covering at least a side surface of the semiconductor film, and a pair of wirings over the film covering the side surface of the semiconductor film; in which an impurity element serving as a donor is added to the semiconductor film.06-04-2009
20120068179SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - According to embodiments, there is provided a semiconductor device, including: a logic circuit; an interlayer insulating film formed above the logic circuit; an amorphous silicon layer including: a non-silicide layer formed on the interlayer insulating film; and a silicide layer formed on the non-silicide layer; a TFT formed on the amorphous silicon layer; and a contact plug formed to plug a through hole penetrating the interlayer insulating film, the contact plug being electrically connected to the logic circuit, an upper part of the contact plug being connected to the silicide layer.03-22-2012
20090212287THIN FILM TRANSISTOR AND METHOD FOR FORMING THE SAME - A thin film transistor (TFT) and the method of forming the same is provided. The method of forming the TFT on a surface of a substrate, includes the steps of: forming a gate electrode; deposing a gate dielectric on the gate electrode; forming a nanocrystalline silicon (nc-Si) layer and an amorphous silicon (a-Si:H) layer above the gate dielectric, so that the thickness of the nc-Si layer is less than 30 nm thereby reducing off-current; and forming a source/drain electrode. The TFT includes: a gate electrode on a substrate, a gate dielectric on the gate electrode; a nc-Si layer having a thickness less than 30 nm, thereby reducing off-current; an a-Si:H layer; and a source/drain electrode.08-27-2009
20110220895THIN FILM TRANSISTOR AND METHOD OF MANUFACTURING THIN FILM TRANSISTOR - The present invention makes it possible to prepare a thin film transistor fitted with a resin substrate by lowering a process temperature during formation of an oxide semiconductor, and further makes it possible to improve manufacturing efficiency and reduce variations in thin film transistor performance. Disclosed is a thin film transistor of the present invention possessing a semiconductor containing metal oxide, the semiconductor comprising a coating film made from a solution or a dispersion of a precursor, wherein the metal oxide contains indium as a first metal element, gallium or aluminum as a second metal element, and zinc or tin as a third metal element, and a ratio of the third metal element to total metal elements in the metal oxide is 25 at % or less, or 0 at %.09-15-2011
20110220892SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device has a substrate, a gate electrode, a insulating layer containing silicon nitride, a silicon layer containing crystalline silicon and amorphous silicon, a contact layer, and source and drain electrodes layered in this order. The volume content ratio of crystalline silicon in the silicon layer has a gradient increasing toward the source and drain electrodes and decreasing toward the substrate. The gate insulating layer and the silicon layer sandwich a silicon-oxide-containing layer therebetween.09-15-2011
20110220891SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device includes a wiring embedded in an insulating layer, an oxide semiconductor layer over the insulating layer, a source electrode and a drain electrode electrically connected to the oxide semiconductor layer, a gate electrode provided to overlap with the oxide semiconductor layer, and a gate insulating layer provided between the oxide semiconductor layer and the gate electrode. The insulating layer is formed so that part of a top surface of the wiring is exposed. The part of the top surface of the wiring is positioned higher than part of a surface of the insulating layer. The wiring in a region exposed from the insulating layer is electrically connected to the source electrode or the drain electrode. The root-mean-square roughness of a region which is part of the surface of the insulating layer and in contact with the oxide semiconductor layer is 1 nm or less.09-15-2011
20110140109SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device includes an oxide semiconductor layer including a channel formation region which includes an oxide semiconductor having a wide band gap and a carrier concentration which is as low as possible, and a source electrode and a drain electrode which include an oxide conductor containing hydrogen and oxygen vacancy, and a barrier layer which prevents diffusion of hydrogen and oxygen between an oxide conductive layer and the oxide semiconductor layer. The oxide conductive layer and the oxide semiconductor layer are electrically connected to each other through the barrier layer.06-16-2011
20110220893Array Substrate for Liquid Crystal Display Device and Method of Fabricating the Same - An array substrate for a liquid crystal display device includes: a gate line and a gate electrode on a substrate, the gate electrode connected to the gate line; a gate insulating layer on the gate line and the gate electrode, the gate insulating layer including an organic insulating material such that a radical of carbon chain has a composition ratio of about 8% to about 11% by weight; a semiconductor layer on the gate insulating layer over the gate electrode; a data line crossing the gate line to define a pixel region; source and drain electrodes on the semiconductor layer, the source electrode connected to the data line and the drain electrode spaced apart from the source electrode; a passivation layer on the data line, the source electrode and the drain electrode, the passivation layer having a drain contact hole exposing the drain electrode; and a pixel electrode on the passivation layer, the pixel electrode connected to the drain electrode through the drain contact hole09-15-2011
20110227075BACKPLANE STRUCTURES FOR SOLUTION PROCESSED ELECTRONIC DEVICES - There is provided a backplane for an organic electronic device. The backplane has a TFT substrate having a multiplicity of electrode structures thereon. There are spaces around the electrode structures and a layer of organic filler in the spaces. The thickness of the layer of organic filler is the same as the thickness of the electrode structures.09-22-2011
20090200553HIGH TEMPERATURE THIN FILM TRANSISTOR ON SODA LIME GLASS - The present invention generally comprises a low cost TFT and a method of manufacturing a TFT. For TFTs, soda lime glass would be an attractive alternative to non-alkali glass, but a soda lime glass substrate will permit sodium to diffuse into the active layer and degrade the performance of the TFT. Substrates comprising a polyimide, because they are flexible, would also be attractive to utilize instead of non-alkali glass substrates, but the plastic substrates permit carbon to diffuse into the active layer. By depositing a silicon oxynitride adhesion layer over the soda lime glass substrate and a silicon rich barrier layer over the adhesion layer, diffusion may be reduced and deposition may occur at high temperatures. Thus, a lower cost TFT may be produced with a soda lime glass substrate or a substrate comprising a polyimide as compared to a non-alkali glass substrate.08-13-2009
20090200552MICROCRYSTALLINE SILICON THIN FILM TRANSISTOR - Methods for forming a microcrystalline silicon layer in a thin film transistor structure are provided. In one embodiment, a method for forming a microcrystalline silicon layer includes providing a substrate in a processing chamber, supplying a gas mixture having a hydrogen-based gas, a silicon-based gas and an argon gas into the processing chamber, the gas mixture having a volumetric flow ratio of the hydrogen-based gas to the silicon-based gas greater than about 100:1, wherein a volumetric flow ratio of the argon gas to the total combined flow of hydrogen-based gas and the silicon-based gas is between about 5 percent and about 40 percent, and maintaining a process pressure of the gas mixture within the processing chamber at greater than about 3 Torr while depositing a microcrystalline silicon layer on the substrate.08-13-2009
20090200551MICROCRYSTALLINE SILICON THIN FILM TRANSISTOR - Methods for forming a microcrystalline silicon layer in a thin film transistor structure are provided. In one embodiment, a method for forming a microcrystalline silicon layer includes providing a substrate in a processing chamber, supplying a first gas mixture having a hydrogen containing gas to a silicon containing gas flow rate ratio greater than about 200:1 into the processing chamber, maintaining a first process pressure greater than about 6 Torr in the processing chamber to deposit a first microcrystalline silicon containing layer in presence of a plasma formed from the first gas mixture, supplying a second gas mixture into the processing chamber, and maintaining a second process pressure less than about 5 Torr in the processing chamber to deposit a second microcrystalline silicon containing layer in presence of a plasma formed from the second gas mixture.08-13-2009
20130214276LIGHT-EMITTING DEVICE AND ELECTRONIC APPARATUS - A light-emitting device includes a drive transistor for controlling the quantity of current supplied to a light-emitting element, a capacitor element electrically connected to a gate electrode of the drive transistor, and an electrical continuity portion for electrically connecting the drive transistor and the light-emitting element, these elements being disposed on a substrate. The electrical continuity portion is disposed on the side opposite to the capacitor element with the drive transistor disposed therebetween.08-22-2013
20090212289THIN FILM TRANSISTOR AND METHOD FOR FABRICATING SAME - A method for forming a thin film transistor on a substrate is disclosed. A gate electrode and a gate insulation layer are disposed on a surface of the substrate. A deposition process is performed by utilizing hydrogen diluted silane to form a silicon-contained thin film on the gate insulation layer first. A hydrogen plasma etching process is thereafter performed. The deposition process and the etching process are repeated for at least one time to form an interface layer. Finally, an amorphous silicon layer, n+ doped Si layers, a source electrode, and a drain electrode are formed on the interface layer.08-27-2009
20090256150THIN FILM TRANSISTOR ARRAY PANEL AND METHOD FOR MANUFACTURING THE SAME - A thin film transistor array panel according to an exemplary embodiment of the present invention comprises a substrate; a first signal line and a second signal line disposed on the substrate; a switching thin film transistor connected to the first signal line and the second signal line, and comprising a first insulating layer; a driving thin film transistor connected to the switching thin film transistor and comprising a second insulating layer; and a discharge thin film transistor connected to one of the first signal line and the second signal line, and comprising the first insulating layer and the second insulating layer.10-15-2009
20120193625METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE - An object is to provide a semiconductor device in which defects are reduced and miniaturization is achieved while favorable characteristics are maintained. A semiconductor layer is formed; a first conductive layer is formed over the semiconductor layer; the first conductive layer is etched with use of a first resist mask to form a second conductive layer having a recessed portion; the first resist mask is reduced in size to form a second resist mask; the second conductive layer is etched with use of the second resist mask to form source and drain electrodes each having a projecting portion with a tapered shape at the peripheries; a gate insulating layer is formed over the source and drain electrodes to be in contact with part of the semiconductor layer; and a gate electrode is formed in a portion over the gate insulating layer and overlapping with the semiconductor layer.08-02-2012
20120193624Thin-Film Transistor Array Substrate and Method of Fabricating the Same - A thin-film transistor (TFT) array substrate comprises: a substrate; an active layer and a capacitor first electrode formed on the substrate; a gate insulating film formed on the substrate, the active layer and the capacitor first electrode; a gate electrode formed on the gate insulating film corresponding to the active layer and a capacitor second electrode formed on the gate insulating film corresponding to the capacitor first electrode; an interlayer insulating film formed on the gate insulating film, the gate electrode, and the capacitor second electrode; and a pixel electrode, a source electrode, and a drain electrode formed on the interlayer insulating film; wherein at least one of the source electrode and the drain electrode is formed on the pixel electrode. A method of fabricating the TFT array substrate is also disclosed.08-02-2012
20100264416SEMICONDUCTOR DEVICE AND PRODUCTION METHOD THEREOF - Provided is a crystalline silicon thin film semiconductor device which is capable of reducing off-state leakage current and has excellent current rising characteristics. The thin film transistor includes a semiconductor layer formed of an amorphous silicon layer and a crystalline silicon layer. A drain electrode is provided in direct contact with the crystalline silicon layer of the semiconductor layer, to thereby improve the current rising characteristics.10-21-2010
20100187531PIXEL STRUCTURE - A pixel structure including a gate, a gate dielectric layer, a patterned semiconductor layer having a channel area disposed above the gate, a patterned dielectric layer having an etching-stop layer disposed above the gate and a number of bumps, a patterned metal layer having a reflective pixel electrode, a source and a drain, an overcoat dielectric layer, and a transparent pixel electrode sequentially disposed on a substrate is provided. The source and the drain respectively cover portions of the channel area. The reflective pixel electrode connects the drain and covers the bumps to form an uneven surface. The overcoat dielectric layer disposed on a transistor constituted by the gate, the gate dielectric layer, the patterned semiconductor layer, the source and the drain has a contact opening exposing a portion of the reflective pixel electrode. The transparent pixel electrode is electrically connected to the reflective pixel electrode through the contact opening.07-29-2010
20100258802Semiconductor Device and Method for Manufacturing the Same - An object is to provide an n-channel transistor and a p-channel transistor having a preferred structure using an oxide semiconductor. A first source or drain electrode which is electrically connected to a first oxide semiconductor layer and is formed using a stacked-layer structure including a first conductive layer containing a first material and a second conductive layer containing a second material, and a second source or drain electrode which is electrically connected to a second oxide semiconductor layer and is formed using a stacked-layer structure including a third conductive layer containing the first material and a fourth conductive layer containing the second material are included. The first oxide semiconductor layer is in contact with the first conductive layer of the first source or drain electrode, and the second oxide semiconductor layer is in contact with the third and the fourth conductive layers of the second source or drain electrode.10-14-2010
20120241743THIN FILM TRANSISTOR - A thin film transistor (TFT) and a fabricating method thereof are provided. The TFT includes a channel layer, an ohmic contact layer, a dielectric layer, a source, a drain, a gate, and a gate insulating layer. The channel layer has an upper surface and a sidewall. The ohmic contact layer is disposed on a portion of the upper surface of the channel layer. The dielectric layer is disposed on the sidewall of the channel layer, and does not overlap with the ohmic contact layer. The source and the drain are disposed on portions of the ohmic contact layer and the dielectric layer. A portion of dielectric layer is not covered by the source or the drain. The gate is above or below the channel layer. The gate insulating layer is disposed between the gate and the channel layer.09-27-2012
20100258801SEMICONDUCTOR COMPONENT INCLUDING A LATERAL TRANSISTOR COMPONENT - A semiconductor component including a lateral transistor component is disclosed. One embodiment provides an electrically insulating carrier layer. On the carrier layer a first and a second semiconductor layer are arranged on above another and are separated from another by a dielectric layer and from which at least the first semiconductor layer includes a polycrystalline semiconductor material, an amorphous semiconductor material or an organic semiconductor material. In the first semiconductor layer: a source zone, a body zone, a drift zone and a drain zone are provided. In the second semiconductor layer; a drift control zone is arranged adjacent to the drift zone, including a control terminal at a first lateral end for applying a control potential, and is coupled to the drain zone via a rectifying element at a second lateral end. A gate electrode is arranged adjacent to the body zone and is dielectrically insulated from the body zone by a gate dielectric layer.10-14-2010
20100193789SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - An object is to provide a semiconductor device mounted with memory which can be driven in the ranges of a current value and a voltage value which can be generated from a wireless signal. Another object is to provide write-once read-many memory to which data can be written anytime after manufacture of a semiconductor device. An antenna, antifuse-type ROM, and a driver circuit are formed over an insulating substrate. Of a pair of electrodes included in the antifuse-type ROM, the other of the pair of the electrodes is also formed through the same step and of the same material as a source electrode and a drain electrode of a transistor included in the driver circuit.08-05-2010
20100230677THIN FILM TRANSISTOR AND MANUFACTURING METHOD THEREOF - A thin film transistor in which deterioration at initial operation is not likely to be caused and a manufacturing method thereof. A transistor which includes a gate insulating layer at least whose uppermost surface is a silicon nitride layer, a semiconductor layer over the gate insulating layer, and a buffer layer over the semiconductor layer and in which the concentration of nitrogen in the vicinity of an interface between the semiconductor layer and the gate insulating layer, which is in the semiconductor layer is lower than that of the buffer layer and other parts of the semiconductor layer. Such a thin film transistor can be manufactured by exposing the gate insulating layer to an air atmosphere and performing plasma treatment on the gate insulating layer before the semiconductor layer is formed.09-16-2010
20100224879THIN FILM TRANSISTOR - A thin film transistor includes a gate insulating layer covering a gate electrode, a semiconductor layer in contact with the gate insulating layer, and impurity semiconductor layers which are in contact with part of the semiconductor layer and which form a source region and a drain region. The semiconductor layer includes a microcrystalline semiconductor layer formed on the gate insulating layer and a microcrystalline semiconductor region containing nitrogen in contact with the microcrystalline semiconductor layer. The thin film transistor in which off-current is small and on-current is large can be manufactured with high productivity.09-09-2010
20100276691METHOD FOR FABRICATING FLEXIBLE SEMICONDUCTOR DEVICE AND LAYERED FILM USED THEREFORE - A method for fabricating a flexible semiconductor device includes: preparing a layered film 11-04-2010
20100001271SEMICONDUCTOR DEVICE WITH AMORPHOUS SILICON MAS MEMORY CELL STRUCTURE AND MANUFACTURING METHOD THEREOF - A semiconductor device with an amorphous silicon (a-Si) metal-aluminum oxide-semiconductor (MAS) memory cell structure. The device includes a substrate, a dielectric layer overlying the substrate, and one or more source or drain regions embedded in the dielectric layer with a co-planar surface of n-type a-Si and the dielectric layer. Additionally, the device includes a p-i-n a-Si diode junction. The device further includes an aluminum oxide charge trapping layer on the a-Si p-i-n diode junction and a metal control gate overlying the aluminum oxide layer. A method is provided for making the a-Si MAS memory cell structure and can be repeated to integrate the structure three-dimensionally.01-07-2010
20100295047SEMICONDUCTOR ELEMENT AND METHOD FOR MANUFACTURING THE SAME - To provide a semiconductor device which achieves a high ON current and a low OFF current at the same time, and a fabrication method thereof.11-25-2010
20100230678SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A space is provided under part of a semiconductor layer. Specifically, a structure in which an eaves portion (a projecting portion, an overhang portion) is formed in the semiconductor layer. The eaves portion is formed as follows: a stacked-layer structure in which a conductive layer, an insulating layer, and a semiconductor layer are stacked in this order is etched collectively to determine a pattern of a gate electrode; and a pattern of the semiconductor layer is formed while side-etching is performed.09-16-2010
20100001275THIN-FILM TRANSISTOR SUBSTRATE AND METHOD OF FABRICATING THE SAME - A thin-film transistor (“TFT”) substrate and a method of fabricating the same include: an insulating substrate; gate wiring which is disposed on the insulating substrate and includes a gate line and a gate electrode; a semiconductor pattern which is disposed on the gate electrode; data wiring which is disposed on the semiconductor pattern and includes a data line, a source electrode, and a drain electrode; a passivation layer which includes a first sub-passivation layer and a second sub-passivation layer deposited on the data wiring; and a pixel electrode which is electrically connected to the drain electrode through a contact hole disposed in the passivation layer, wherein the second sub-passivation layer has a lower density than the first sub-passivation layer.01-07-2010
20100001274Capping Layers for Metal Oxynitride TFTS - A capping layer may be deposited over the active channel of a thin film transistor (TFT) in order to protect the active channel from contamination. The capping layer may affect the performance of the TFT. If the capping layer contains too much hydrogen, nitrogen, or oxygen, the threshold voltage, sub threshold slope, and mobility of the TFT may be negatively impacted. By controlling the ratio of the flow rates of the nitrogen, oxygen, and hydrogen containing gases, the performance of the TFT may be optimized. Additionally, the power density, capping layer deposition pressure, and the temperature may also be controlled to optimize the TFT performance.01-07-2010
20100001273SEMICONDUCTOR DEVICE, PRODUCTION METHOD THEREOF, AND ELECTRONIC DEVICE - The present invention provides a semiconductor device which includes a thin film transistor as a resistance element, wherein a variation in resistance of the thin film transistor is suppressed without increasing an area of the resistance element and the resistance element can be produced through simplified production steps. The semiconductor device of the present invention is a semiconductor device including a first thin film transistor and a second thin film transistor on a substrate, the first thin film transistor being used as a resistance element, the second thin film transistor including a semiconductor layer having a low concentration drain region and a high concentration drain region, the low concentration drain region and the high concentration drain region being different in impurity concentration, wherein an impurity concentration of a channel region of a semiconductor layer in the first thin film transistor is the same as an impurity concentration of the low concentration drain region of the semiconductor layer in the second thin film transistor.01-07-2010
20100001272THIN FILM TRANSISTORS USING MULTIPLE ACTIVE CHANNEL LAYERS - Embodiments disclosed herein generally relate to TFTs and methods of fabricating the TFTs. In TFTs, the active channel carries the current between the source and drain electrodes. By tailoring the composition of the active channel, the current can be controlled. The active channel may be divided into three layers, a gate control layer, a bulk layer, and an interface control layer. The separate layers may have different compositions. Each of the gate control, bulk and interface control layers may additionally comprise multiple layers that may have different compositions. The composition of the various layers of the active channel comprise oxygen, nitrogen, and one or more elements selected from the group consisting of zinc, indium, cadmium, tin, gallium and combinations thereof. By varying the composition among the layers, the mobility, carrier concentration and conductivity of the various layers may be controlled to produce a TFT having desired properties.01-07-2010
20100001270AMORPHOUS SILICON MONOS OR MAS MEMORY CELL STRUCTURE WITH OTP FUNCTION - A semiconductor device with an amorphous silicon (a-Si) metal-oxide-nitride-oxide-silicon (MONOS) or metal-aluminum oxide-silicon (MAS) memory cell structure with one-time programmable (OTP) function. The device includes a substrate, a first dielectric layer overlying the substrate, and one or more source or drain regions embedded in the first dielectric layer with a co-planar surface of n-type a-Si and the first dielectric layer. Additionally, the device includes a p-i-n a-Si diode junction. The device further includes a second dielectric layer on the a-Si p-i-n diode junction and a metal control gate overlying the second dielectric layer. Optionally the device with OTP function includes a conductive path formed between n-type a-Si layer and the metal control gate. A method of making the same memory cell structure is provided and can be repeated to integrate the structure three-dimensionally.01-07-2010
20100252832SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - An object is to provide a thin film transistor using an oxide semiconductor layer, in which contact resistance between the oxide semiconductor layer and source and drain electrode layers is reduced and electric characteristics are stabilized. The thin film transistor is formed in such a manner that a buffer layer including a high-resistance region and low-resistance regions is formed over an oxide semiconductor layer, and the oxide semiconductor layer and source and drain electrode layers are in contact with each other with the low-resistance region of the buffer layer interposed therebetween.10-07-2010
20120138931THIN FILM TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME - The present invention aims at reducing an OFF current in a thin film transistor while maintaining an ON-state current.06-07-2012
20100127262Semiconductor Element - A semiconductor element including a substrate and at least one shallow junction formed in the substrate wherein doping atoms are disposed in the shallow junction. A plurality of carbide precipitates and micro-cavities is disposed in the substrate below the at least one shallow junction.05-27-2010
20090212286METHOD FOR MAKING AMORPHOUS POLYCRYSTALLINE SILICON THIN-FILM CIRCUITS - The invention relates to the fabrication of thin-film transistors made of amorphous silicon and of polycrystalline silicon on one and the same substrate. A polycrystalline silicon island (08-27-2009
20100295046SEMICONDUCTOR THIN FILM AND SEMICONDUCTOR DEVICE - After an amorphous semiconductor thin film is crystallized by utilizing a catalyst element, the catalyst element is removed by performing a heat treatment in an atmosphere containing a halogen element. A resulting crystalline semiconductor thin film exhibits {11-25-2010
20100301338THIN FILM DEVICE, FLEXIBLE CIRCUIT BOARD INCLUDING THIN FILM DEVICE, AND METHOD FOR MANUFACTURING THIN FILM DEVICE - A thin film device includes: a substrate; an electric field shielding plate formed above the substrate, the electric filed shielding plate having a conductive material; and a thin film element formed on the electric field shielding plate, the, the electric field shielding plate being connected to a potential of any electrode of the thin film element or a ground potential.12-02-2010
20100301336Method to Improve Nucleation of Materials on Graphene and Carbon Nanotubes - Techniques for forming a thin coating of a material on a carbon-based material are provided. In one aspect, a method for forming a thin coating on a surface of a carbon-based material is provided. The method includes the following steps. An ultra thin silicon nucleation layer is deposited to a thickness of from about two angstroms to about 10 angstroms on at least a portion of the surface of the carbon-based material to facilitate nucleation of the coating on the surface of the carbon-based material. The thin coating is deposited to a thickness of from about two angstroms to about 100 angstroms over the ultra thin silicon layer to form the thin coating on the surface of the carbon-based material.12-02-2010
20100301339METHOD OF PRODUCING THIN FILM TRANSISTOR AND THIN FILM TRANSISTOR - [Object] To provide a method of producing a thin film transistor superior in productivity and capable of preventing variation in transistor characteristics among devices from occurring to improve carrier mobility, and a thin film transistor.12-02-2010
20110024751SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - In a bottom-gate thin film transistor using the stack of the first oxide semiconductor layer and the second oxide semiconductor layer, an oxide insulating layer serving as a channel protective layer is formed over and in contact with part of the oxide semiconductor layer overlapping with a gate electrode layer. In the same step as formation of the insulating layer, an oxide insulating layer covering a peripheral portion (including a side surface) of the stack of the oxide semiconductor layers is formed.02-03-2011
20110017993TFT SUBSTRATE AND METHOD OF MANUFACTURING THE SAME - There is provided a TFT substrate including a gate electrode having a thick film part and a thin film part with a smaller film thickness than the thick film part, a semiconductor active film formed above the thick film part and the thin film part of the gate electrode, an ohmic contact film formed on an inside of the semiconductor active film and on the semiconductor active film corresponding to the thin film part on an outside of the thick film part, and an electrode film constituting a source electrode and a drain electrode, having a planar shape identical to or on an inside of the ohmic contact film, and formed on the ohmic contact film.01-27-2011
20110024750SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - An object is to provide a semiconductor device having a structure with which parasitic capacitance between wirings can be sufficiently reduced. An oxide insulating layer serving as a channel protective layer is formed over part of an oxide semiconductor layer overlapping with a gate electrode layer. In the same step as formation of the oxide insulating layer, an oxide insulating layer covering a peripheral portion of the oxide semiconductor layer is formed. The oxide insulating layer which covers the peripheral portion of the oxide semiconductor layer is provided to increase the distance between the gate electrode layer and a wiring layer formed above or in the periphery of the gate electrode layer, whereby parasitic capacitance is reduced.02-03-2011
20110114953TRANSISTOR USING DERIVATIVE POLYMETHYL-METHACRYLATE THIN FILM AS GATE INSULATOR AND PASSIVATION LAYER, AND FABRICATION METHOD THEREOF - Disclosed are a transistor including a gate insulation layer and an organic passivation layer of a polymer thin film, and a fabrication method thereof. The transistor comprises a substrate, a gate electrode formed on the substrate, a gate insulation layer including a polymethacrylic acid thin film, formed on the gate electrode and the substrate, a channel layer formed on the gate insulation layer, source electrode and drain electrode formed on the channel layer so as to expose at least a part of the channel layer, and an organic passivation layer including a polymethacrylic acid thin film, formed on the source electrode, drain electrode and the partially exposed channel layer. The method for fabricating a transistor comprises steps of forming a gate electrode on a substrate, forming a gate insulation layer of a polymethacrylic acid thin film on the gate electrode and the substrate, forming a channel layer on the gate insulation layer, forming source electrode and drain electrode on the channel layer so as to expose at least a part of the channel layer, and forming an organic passivation layer of a polymethacrylic acid thin film on the source electrode, drain electrode and the partially exposed channel layer.05-19-2011
20110079780METHOD OF CRYSTALLIZING AMORPHOUS SEMICONDUCTOR FILM, THIN-FILM TRANSISTOR, SEMICONDUCTOR DEVICE, DISPLAY DEVICE, AND METHOD OF MANUFACTURING THE SAME - A method of crystallizing an amorphous semiconductor film, the method comprising the steps of: forming a gate electrode on a transparent insulating substrate; forming a gate insulating film on the transparent insulating substrate and on an upper part of the gate electrode; forming an amorphous semiconductor film on the gate insulating film; forming a light-transmissive insulating film on the amorphous semiconductor film; forming a metal film having an opening on the light-transmissive insulating film; irradiating laser light onto both a region of the light-transmissive insulating film exposed by the opening and the metal film, which is used as a mask for shielding the laser light; and performing laser annealing to make the laser light to be absorbed through the light-transmissive insulating film into a region of the amorphous semiconductor film exposed by the opening, so that the amorphous semiconductor film is heated and converted to a crystalline semiconductor film.04-07-2011
20090261331LOW TEMPERATURE THIN FILM TRANSISTOR PROCESS, DEVICE PROPERTY, AND DEVICE STABILITY IMPROVEMENT - A method and apparatus for forming a thin film transistor is provided. A gate dielectric layer is formed, which may be a bilayer, the first layer deposited at a low rate and the second deposited at a high rate. In some embodiments, the first dielectric layer is a silicon rich silicon nitride layer. An active layer is formed, which may also be a bilayer, the first active layer deposited at a low rate and the second at a high rate. The thin film transistors described herein have superior mobility and stability under stress.10-22-2009
20100224878SEMICONDUCTOR DEVICE - A semiconductor device includes a semiconductor layer over a substrate; a gate insulating film covering the semiconductor layer; a gate wiring including a gate electrode, which is provided over the gate insulating film and is formed by stacking a first conductive layer and a second conductive layer; an insulating film covering the semiconductor layer and the gate wiring including the gate electrode; and a source wiring including a source electrode, which is provided over the insulating film, is electrically connected to the semiconductor layer, and is formed by stacking a third conductive layer and a fourth conductive layer. The gate electrode is formed using the first conductive layer. The gate wiring is formed using the first conductive layer and the second conductive layer. The source electrode is formed using the third conductive layer. The source wiring is formed using the third conductive layer and the fourth conductive layer.09-09-2010
20110240998THIN-FILM TRANSISTOR, METHOD OF MANUFACTURING THE SAME, AND DISPLAY DEVICE - A thin film transistor is provided. The thin film transistor includes an oxide semiconductor layer including a source region, a drain region, and a channel region wherein a portion of the source and drain regions has an oxygen concentration less than the channel region. Further provided is a thin film transistor that includes an oxide semiconductor layer including a source region, a drain region, and a channel region, wherein a portion of the source and drain regions includes a dopant selected from the group consisting of aluminum, boron, gallium, indium, titanium, silicon, germanium, tin, lead, and combinations thereof.10-06-2011
20110084276THIN FILM TRANSISTOR AND METHOD OF FABRICATING THE SAME - A thin film transistor (TFT) and a method of fabricating the same are disclosed. The TFT includes a substrate, a gate electrode disposed over the substrate, a gate insulating layer disposed over the gate electrode, a semiconductor layer disposed over the gate insulating layer and including a polycrystalline silicon (poly-Si) layer, an ohmic contact layer disposed over a predetermined region of the semiconductor layer, an insulating interlayer disposed over substantially an entire surface of the substrate including the ohmic contact layer, and source and drain electrodes electrically connected to the ohmic contact layer through contact holes formed in the interlayer insulating layer. A barrier layer is interposed between the semiconductor layer and the ohmic contact layer. Thus, when an off-current of a bottom-gate-type TFT is controlled, degradation of characteristics due to a leakage current may be prevented using a simple process.04-14-2011
20110084277SEMICONDUCTOR MEMORY DEVICE AND ITS MANUFACTURING METHOD - A semiconductor memory device has a plurality of word line provided on a semiconductor region, extending in a row direction, a plurality of bit lines provided in the semiconductor region, extending in a column direction, and a plurality of memory elements provided at intersections between the plurality of word lines and the plurality of bit lines. Each word line provides a first gate electrode in the corresponding memory element. A lower portion of a side surface of each word line in a direction parallel to an extending direction of the word line is perpendicular to a main surface of the semiconductor region. An upper portion of the side surface is inclined so that a width thereof becomes smaller toward a top thereof.04-14-2011
20100012936MANUFACTURING METHOD OF FLEXIBLE SEMICONDUCTOR DEVICE AND FLEXIBLE SEMICONDUCTOR DEVICE - A layered film of a three-layer clad foil formed with a first metal layer 01-21-2010
20110147744THIN FILM TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME - An object is to increase the on-state current of a thin film transistor. A solution is to provide a projection in a back-channel portion of the thin film transistor. The projection is provided so as to be off a tangent in the back-channel portion between a source or a drain and a channel formation region. With the projection, a portion where electric charge is trapped and a path of the on-state current can be apart from each other, so that the on-state current can be increased. The shape of a side surface of the back-channel portion may be curved, or may be represented as straight lines in a cross section. Further, a method for forming such a shape by performing one etching step is provided.06-23-2011
20090050888Semiconductor device and manufacturing method thereof - The present invention has an object to provide an active-matrix liquid crystal display device that realizes the improvement in productivity as well as in yield. In the present invention, a laminate film comprising the conductive film comprising metallic material and the second amorphous semiconductor film containing an impurity element of one conductivity type and the amorphous semiconductor film is selectively etched with the same etching gas to form a side edge of the first amorphous semiconductor film 02-26-2009
20090218568THIN FILM TRANSISOTR AND DISPLAY DEVICE - To improve problems with on-state current and off-state current of thin film transistors, a thin film transistor includes a pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added, provided with a space therebetween; a conductive layer which is overlapped, over the gate insulating layer, with the gate electrode and one of the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added; and an amorphous semiconductor layer which is provided successively between the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added in such a manner that the amorphous semiconductor layer extends over the gate insulating layer from the conductive layer and is in contact with both of the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added.09-03-2009
20100038641THIN FILM FIELD EFFECT TRANSISTOR - A thin film field effect transistor has at least a gate electrode 02-18-2010
20110175087SEMICONDUCTOR DEVICE - To provide a storage device in which advantages of both a nonvolatile storage device and a volatile storage device can be obtained, a semiconductor device includes a first transistor provided in or over a substrate and a second transistor provided above the first transistor, where at least part of the first transistor and the second transistor are overlapped with each other, and a gate electrode of the first transistor and a source or drain electrode of the second transistor are electrically connected to each other. It is preferable that the first transistor be provided using single crystal silicon and the second transistor be provided using an oxide semiconductor having extremely low off-state current.07-21-2011
20110248268THIN FILM TRANSISTOR AND DISPLAY DEVICE - To improve problems with on-state current and off-state current of thin film transistors, a thin film transistor includes a pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added, provided with a space therebetween; a conductive layer which is overlapped, over the gate insulating layer, with the gate electrode and one of the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added; and an amorphous semiconductor layer which is provided successively between the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added in such a manner that the amorphous semiconductor layer extends over the gate insulating layer from the conductive layer and is in contact with both of the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added.10-13-2011
20110175092ORGANIC SEMICONDUCTOR ELEMENT, METHOD OF MANUFACTURING ORGANIC SEMICONDUCTOR ELEMENT, ELECTRONIC DEVICE, ELECTRONIC EQUIPMENT AND INSULATING LAYER FORMING COMPOSITION - The present invention provides an organic semiconductor element which has a low hygroscopic property and whose property is hardly deteriorated with time and an electronic device and electronic equipment each provided with such an organic semiconductor element and having high reliability. The organic semiconductor element of the present invention includes: a source electrode 07-21-2011
20110175091DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF - To provide a display device having a thin film transistor with high electric characteristics and excellent reliability and a manufacturing method thereof. A gate electrode, a gate insulating film provided over the gate electrode, a first semiconductor layer provided over the gate insulating film and having a microcrystalline semiconductor, a second semiconductor layer provided over the first semiconductor layer and having an amorphous semiconductor, and a source region and a drain region provided over the second semiconductor layer are provided. The first semiconductor layer has high crystallinity than the second semiconductor layer. The second semiconductor layer includes an impurity region having a conductivity type different from a conductivity type of the source region and the drain region between the source region and the drain region.07-21-2011
20110101351SEMICONDUCTOR DEVICE - Disclosed is a semiconductor device capable of functioning as a memory device. The memory device comprises a plurality of memory cells, and each of the memory cells contains a first transistor and a second transistor. The first transistor is provided over a substrate containing a semiconductor material and has a channel formation region in the substrate. The second transistor has an oxide semiconductor layer. The gate electrode of the first transistor and one of the source and drain electrodes of the second transistor are electrically connected to each other. The extremely low off current of the second transistor allows the data stored in the memory cell to be retained for a significantly long time even in the absence of supply of electric power.05-05-2011
20110248267AIR-STABLE N-CHANNEL ORGANIC ELECTRONIC DEVICES - In connection with various example embodiments, an organic electronic device is provided with an organic material that is susceptible to decreased mobility due to the trapping of electron charge carriers in response to exposure to air. The organic material is doped with an n-type dopant that, when combined with the organic material, effects air stability for the doped organic material (e.g., exhibits a mobility that facilitates stable operation in air, such as may be similar to operation in inert environments). Other embodiments are directed to organic electronic devices n-doped and exhibiting such air stability.10-13-2011
20110101352AMORPHOUS OXIDE AND THIN FILM TRANSISTOR - The present invention relates to an amorphous oxide and a thin film transistor using the amorphous oxide. In particular, the present invention provides an amorphous oxide having an electron carrier concentration less than 1005-05-2011
20110068339SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A TFT formed on an insulating substrate source, drain and channel regions, a gate insulating film formed on at least the channel region and a gate electrode formed on the gate insulating film. Between the channel region and the drain region, a region having a higher resistivity is provided in order to reduce an Ioff current. A method for forming this structure comprises the steps of anodizing the gate electrode to form a porous anodic oxide film on the side of the gate electrode; removing a portion of the gate insulating using the porous anodic oxide film as a mask so that the gate insulating film extends beyond the gate electrode but does not completely cover the source and drain regions. Thereafter, an ion doping of one conductivity element is performed. The high resistivity region is defined under the gate insulating film.03-24-2011
20110068338METHOD FOR PRODUCING THIN FILM TRANSISTOR AND THIN FILM TRANSISTOR - A metallic wiring film, which is not exfoliated even when exposed to plasma of hydrogen, is provided. A metallic wiring film is constituted by an adhesion layer in which Al is added to copper and a metallic low-resistance layer which is disposed on the adhesion layer and made of pure copper. When a copper alloy including Al and oxygen are included in the adhesion layer and a source electrode and a drain electrode are formed from it, copper does not precipitate at an interface between the adhesion layer and the silicon layer even when being exposed to the hydrogen plasma, which prevents the occurrence of exfoliation between the adhesion layer and the silicon layer. If the amount of Al increases, since widths of the adhesion layer and the metallic low-resistance layer largely differ after etching, the maximum addition amount for permitting the etching to be performed is the upper limit.03-24-2011
20120119212SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device is manufactured using a transistor in which an oxide semiconductor is included in a channel region and variation in electric characteristics due to a short-channel effect is less likely to be caused. The semiconductor device includes an oxide semiconductor film having a pair of oxynitride semiconductor regions including nitrogen and an oxide semiconductor region sandwiched between the pair of oxynitride semiconductor regions, a gate insulating film, and a gate electrode provided over the oxide semiconductor region with the gate insulating film positioned therebetween. Here, the pair of oxynitride semiconductor regions serves as a source region and a drain region of the transistor, and the oxide semiconductor region serves as the channel region of the transistor.05-17-2012
20120119211THIN FILM TRANSISTORS AND METHODS FOR MANUFACTURING THE SAME - Disclosed is a thin film transistor including a gate electrode on a substrate. A gate dielectric layer is disposed on the gate electrode and the substrate, and source/drain electrodes are disposed on the gate dielectric layer overlying two edge parts of the gate electrode. A channel layer is disposed on the gate dielectric layer overlying a center part of the gate electrode, and the channel region contacts the source/drain electrodes. An insulating capping layer overlies the channel layer, wherein the channel layer includes an oxide semiconductor.05-17-2012
20120119210PIXEL STRUCTURE AND DUAL GATE PIXEL STRUCTURE - A pixel structure includes a substrate, a first metal layer, a gate insulator, a semiconductor layer, a second metal layer, a passivation layer, a hole, and a pixel electrode. The first metal layer is configured on the substrate and includes a scan line, a gate, and a common electrode. The common electrode has a predetermined opening. The gate insulator covers the first metal layer. The semiconductor layer is configured on the gate insulator. The semiconductor layer underlies the entire second metal layer. The passivation layer covers the second metal layer. The hole located in the predetermined opening goes through the passivation layer and exposes the second metal layer. The pixel electrode is configured on the passivation layer and fills the hole. The pixel electrode is electrically connected to the second metal layer via the hole. A dual gate pixel structure is also provided.05-17-2012
20110031495Liquid Crystal Display Device, Electronic Device Having the Same, and Manufacturing Method of the Same - A liquid crystal display device with improved productivity and a manufacturing method of the same. A liquid crystal display device according to the invention comprises in a region in which a scan line and a data line intersect with each other a first substrate comprising a first thin film transistor using either an amorphous semiconductor or an organic semiconductor for a channel portion, a second substrate, a liquid crystal layer interposed between the first substrate and the second substrate, and a third substrate comprising a second thin film transistor using a crystalline semiconductor for a channel portion. In the liquid crystal display device of the invention, a crystal grain boundary in the crystalline semiconductor extends along the flow of electrons or holes in the second thin film transistor, the first substrate is attached to the second substrate so that the first substrate is exposed, a first region for forming the second thin film transistor and a second region for forming an input terminal and an output terminal are formed on the third substrate, and the short side length of the third substrate is 1 to 6 mm and the short side length of the first region is 0.5 to 1 mm.02-10-2011
20110248266TRANSISTOR - An object is to provide a transistor having a novel electrode structure capable of substantially maintaining on-state current while parasitic capacitance generated in an overlap portion between a source electrode layer (a drain electrode layer) and a gate electrode layer is reduced. Parasitic capacitance is reduced by using a source electrode layer and a drain electrode in a comb shape in a transistor. Curved current flowing from side edges of electrode tooth portions can be generated by controlling the width of an end of a comb-shaped electrode layer or the interval between the electrode tooth portions. This curved current compensates for a decrease in linear current due to a comb electrode shape; thus, on-state current can be kept unchanged even when parasitic capacitance is reduced.10-13-2011
20100244031SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - The drain voltage of a transistor is determined depending on the driving voltage of an element connected to the transistor. With downsizing of a transistor, intensity of the electric field concentrated in the drain region is increased, and hot carriers are easily generated. An object is to provide a transistor in which the electric field hardly concentrates in the drain region. Another object is to provide a display device including such a transistor. End portions of first and second wiring layers having high electrical conductivity do not overlap with a gate electrode layer, whereby concentration of an electric field in the vicinity of a first electrode layer and a second electrode layer is reduced; thus, generation of hot carriers is suppressed. In addition, one of the first and second electrode layers having higher resistivity than the first and second wiring layers is used as a drain electrode layer.09-30-2010
20110175090SEMICONDUCTOR DEVICE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE - In a thin film transistor, a gate insulating layer is formed on a gate electrode formed on an insulating substrate. Formed on the gate insulating layer is a semiconductor layer. Formed on the semiconductor layer are a source electrode and a drain electrode. A protective layer covers them, so that the semiconductor layer is blocked from an atmosphere. The semiconductor layer (active layer) is made of, e.g., a semiconductor containing polycrystalline ZnO to which, e.g., a group V element is added. This allows practical use of a semiconductor device which has an active layer made of zinc oxide and which includes an protective layer for blocking the active layer from an atmosphere.07-21-2011
20080315200Oxide semiconductors and thin film transistors comprising the same - Oxide semiconductors and thin film transistors (TFTs) including the same are provided. An oxide semiconductor includes Zn atoms and at least one of Hf and Cr atoms added thereto. A thin film transistor (TFT) includes a channel including an oxide semiconductor including Zn atoms and at least one of Hf and Cr atoms added thereto.12-25-2008
20080315199THIN FILM TRANSISTOR MANUFACTURING METHOD, THIN FILM TRANSISTOR AND DISPLAY DEVICE USING THE SAME - A thin film transistor manufacturing method includes the steps of: forming a gate electrode, gate insulating film and amorphous silicon film in succession on an insulating substrate; forming a channel protective film only in the region which will serve as a channel region of the amorphous silicon film; and forming an n-plus silicon film and metal layer on top of the channel protective film and amorphous silicon film in succession. The method further includes the step of patterning the amorphous silicon film and n-plus silicon film to selectively leave the region associated with source and drain electrodes, using the channel protective film as an etching stopper to selectively remove the region of the n-plus silicon film and metal layer associated with the channel region so as to form source and drain regions from the n-plus silicon film and also form source and drain electrodes from the metal layer.12-25-2008
20080308802Capacitor-Less Memory - It is an object of the present invention to provide a capacitor-less memory which can prevent a change of a threshold voltage due to flowing out of carriers and improve the memory retention property without a complicated structure. In the capacitor-less memory which uses a transistor, the transistor includes a source region, a drain region, an active layer region which is provided between the source region and the drain region, and a gate electrode which is adjacent to the active layer region with an insulating film interposed therebetween. The source region is formed of a semiconductor having a larger band gap than a band gap of a semiconductor of the active layer region and a band gap of a semiconductor of the drain region, and a heterojunction is formed at the interface between the source region and the active layer region.12-18-2008
20110175088Thin-Film Transistor Substrate and Method of Fabricating the Same - A thin-film transistor (TFT) substrate having reduced defects is fabricated using a reduced number of masks. The TFT substrate includes gate wiring formed on a substrate. The gate wiring includes a gate electrode. A semiconductor pattern is formed on the gate wiring. An etch-stop pattern is formed on the semiconductor pattern. Data wiring includes a source electrode which is formed on the semiconductor pattern and the etch-stop pattern. Each of the gate wiring and the data wiring includes a copper-containing layer and a buffer layer formed on or under the copper-containing layer.07-21-2011
20100301337ELECTRONIC DEVICE WITH SELF-ALIGNED ELECTRODES FABRICATED USING ADDITIVE LIQUID DEPOSITION - The invention provides a multilayer electronic device having electrodes, formed on a laterally extending first layer, the lateral position of each of at least two adjacent electrodes being defined by a channel in the first layer. Each channel is adjacent a deposition region, the material which forms each electrode substantially covering the deposition region to form a continuous conductive structure.12-02-2010
20110163315DISPLAY DEVICE - The present invention provides an active matrix type display device having a high aperture ratio and a required auxiliary capacitor. A source line and a gate line are overlapped with part of a pixel electrode. This overlapped region functions to be a black matrix. Further, an electrode pattern made of the same material as the pixel electrode is disposed to form the auxiliary capacitor by utilizing the pixel electrode. It allows a required value of auxiliary capacitor to be obtained without dropping the aperture ratio. Also, it allows the electrode pattern to function as a electrically shielding film for suppressing the cross-talk between the source and gate lines and the pixel electrode.07-07-2011
20120032171SEMICONDUCTOR DEVICE - An object is to miniaturize a semiconductor device. Another object is to reduce the area of a driver circuit of a semiconductor device including a memory cell. The semiconductor device includes an element formation layer provided with at least a first semiconductor element, a first wiring provided over the element formation layer, an interlayer film provided over the first wiring, and a second wiring overlapping with the first wiring with the interlayer film provided therebetween. The first wiring, the interlayer film, and the second wiring are included in a second semiconductor element. The first wiring and the second wiring are wirings to which the same potentials are supplied.02-09-2012
20110163316THIN FILM TRANSISTOR AND SEMICONDUCTOR DEVICE - An impurity element imparting one conductivity type is included in a layer close to a gate insulating film of layers with high crystallinity, so that a channel formation region is formed not in a layer with low crystallinity which is formed at the beginning of film formation but in a layer with high crystallinity which is formed later in a microcrystalline semiconductor film. Further, the layer including an impurity element is used as a channel formation region. Furthermore, a layer which does not include an impurity element imparting one conductivity type or a layer which has an impurity element imparting one conductivity type at an extremely lower concentration than other layers, is provided between a pair of semiconductor films including an impurity element functioning as a source region and a drain region and the layer including an impurity element functioning as a channel formation region.07-07-2011
20110133192METHOD OF FORMING CONDUCTIVE PATTERN AND ORGANIC THIN FILM TRANSISTOR - In the present invention, provided is a method of forming a conductive pattern exhibiting excellent adhesion of the conductive pattern to a substrate and high fine line reproduction via a simple process, and an organic thin film transistor exhibiting excellent element properties. Disclosed is a method of forming a conductive pattern, possessing a step of treating a substrate surface employing a compound represented by the following Formula (1), a step of decomposing the compound represented by Formula (1) via a photocatalytic action, and a plating step: Formula (1) (R)06-09-2011
20110133191SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device includes an oxide semiconductor layer including a crystalline region over an insulating surface, a source electrode layer and a drain electrode layer in contact with the oxide semiconductor layer, a gate insulating layer covering the oxide semiconductor layer, the source electrode layer, and the drain electrode layer, and a gate electrode layer over the gate insulating layer in a region overlapping with the crystalline region. The crystalline region includes a crystal whose c-axis is aligned in a direction substantially perpendicular to a surface of the oxide semiconductor layer.06-09-2011
20110133190THIN-FILM TRANSISTOR AND INTERMEDIATE OF THIN-FILM TRANSISTOR - This thin-film transistor according to an aspect of the present invention includes a drain electrode film and a source electrode film, each of which includes a composite copper alloy film including a copper alloy underlayer containing an oxygen-calcium concentrated layer that is formed so as to come into contact with a barrier film and a Cu layer that is formed on the copper alloy underlayer containing an oxygen-calcium concentrated layer. The copper alloy underlayer containing an oxygen-calcium concentrated layer includes a concentrated layer, and the concentrated layer includes 2 mol % to 30 mol % of Ca, 20 mol % to 50 mol % of oxygen, and Cu and inevitable impurities as the balance.06-09-2011
20100320463Method of Fabricating a Semiconductor Device - A method of fabricating an electrode structure for a multilayer semiconductor device comprising a semiconductor layer having a first electrode layer in contact therewith and a second electrode layer separated there-from by a dielectric layer (12-23-2010
20100320464THIN FILM TRANSISTOR, PHOTO MASK FOR DEFINING THIN FILM TRANSISTOR, AND METHOD OF MAKING THIN FILM TRANSISTOR - A photo-mask includes a first opaque pattern, a second opaque pattern, a transparent single slit, and a translucent pattern. The transparent single slit is disposed between the first opaque pattern and the second opaque pattern, and the width of the transparent single slit is substantially between 1.5 micrometers and 2.5 micrometers. The translucent pattern is connected to the first opaque pattern and the second opaque pattern.12-23-2010
20100320465SEMICONDUCTOR DEVICE WITH MULTI-FUNCTIONAL DIELECTRIC LAYER - A composite dielectric layer including a tensile stressed nitride layer over an oxide layer serves the dual function of acting as an SMT (stress memorization technique) film while an annealing operation is carried out and then remains partially intact as it is patterned to further serve as an RPO film during a subsequent silicidation process. The composite dielectric layer covers part of a semiconductor substrate that includes a gate structure. The tensile stressed nitride layer protects the oxide layer and alleviates oxide damage during a pre-silicidation PAI (pre-amorphization implant) process. Portions of the gate structure and the semiconductor substrate not covered by the composite dielectric layer include amorphous portions that include the PAI implanted dopant impurities. A silicide material is disposed on the gate structure and portions of the semiconductor substrate not covered by the composite dielectric layer.12-23-2010
20110024752THIN FILM TRANSISTOR, METHOD OF FABRICATING THE SAME, AND DISPLAY APPARATUS HAVING THE SAME - A method of fabricating a thin film transistor includes forming a gate electrode on a substrate, forming a semiconductor layer on the gate electrode, forming a source electrode on the semiconductor layer, forming a drain electrode on the semiconductor layer spaced apart from the source electrode, forming a copper layer pattern on the source electrode and the drain electrode, exposing the copper layer pattern on the source electrode and the drain electrode to a fluorine-containing process gas to form a copper fluoride layer pattern thereon, and patterning the semiconductor layer.02-03-2011
20110254004Semiconductor Device and Manufacturing Method Thereof - A semiconductor device manufactured utilizing an SOI substrate, in which defects due to an end portion of an island-shaped silicon layer are prevented and the reliability is improved, and a manufacturing method thereof. The following are included: an SOI substrate in which an insulating layer and an island-shaped silicon layer are stacked in order over a support substrate; a gate insulating layer provided over one surface and a side surface of the island-shaped silicon layer; and a gate electrode which is provided over the island-shaped silicon layer with the gate insulating layer interposed therebetween. The gate insulating layer is formed such that the dielectric constant in the region which is in contact with the side surface of the island-shaped silicon layer is lower than that over the one surface of the island-shaped silicon layer.10-20-2011
20110254003ORGANIC THIN FILM TRANSISTOR MANUFACTURING METHOD AND ORGANIC THIN FILM TRANSISTOR - Provided are an organic TFT manufacturing method whereby flow of ink into an unnecessary area can be suppressed and excellent characteristics and high reliability can be obtained, and an organic TFT. The organic TFT manufacturing method comprises a step of providing a source electrode and a drain electrode on a base member; a step of providing a bank layer, which has an opening on a channel between the source electrode and the drain electrode, an opening on a predetermined area of the base member, and a groove or grooves around the opening on the predetermined area, which surround the opening on the predetermined area; and a step of supplying an organic semiconductor solution to the opening of the bank layer formed on the channel to form an organic semiconductor layer.10-20-2011
20100117086SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SEMICONDUCTOR DEVICE - An object is to suppress deterioration of element characteristics even when an oxide semiconductor is formed after a gate insulating layer, a source electrode layer, and a drain electrode layer are formed. A gate electrode layer is formed over a substrate. A gate insulating layer is formed over the gate electrode layer. A source electrode layer and a drain electrode layer are formed over the gate insulating layer. Surface treatment is performed on surfaces of the gate insulating layer, the source electrode layer, and the drain electrode layer which are formed over the substrate. After the surface treatment is performed, an oxide semiconductor layer is formed over the gate insulating layer, the source electrode layer, and the drain electrode layer.05-13-2010
20100117085THIN FILM TRANSISTOR AND METHOD FOR PREPARING THE SAME - The present invention relates to a thin film transistor and a method of manufacturing the same. More particularly, the present invention relates to a thin film transistor that includes a zinc oxide (ZnO series) electrode having one or more of Si, Mo, and W as a source electrode and a drain electrode, and a method of manufacturing the same.05-13-2010
20110260165Semiconductor Device and Method for Manufacturing Semiconductor Device - An object is to provide a semiconductor device which is not easily broken even if stressed externally and a method for manufacturing such a semiconductor device. A semiconductor device includes an element layer including a transistor in which a channel is formed in a semiconductor layer and insulating layers which are formed as an upper layer and a lower layer of the transistor respectively, and a plurality of projecting members provided at intervals of from 2 to 200 μm on a surface of the element layer. The longitudinal elastic modulus of the material for forming the plurality of projecting members is lower than that of the materials of the insulating layers.10-27-2011
20110095292SILICON NITRIDE FILM, AND SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - An object of the present invention is to apply an insulating film of cure and high quality that is suitably applicable as gate insulating film and protective film to a technique that the insulating film is formed on the glass substrate under a temperature of strain point or lower, and to a semiconductor device realizing high efficiency and high reliability by using it. In a semiconductor device of the present invention, a gate insulating film of a field effect type transistor with channel length of from 0.35 to 2.5 μm in which a silicon nitride film is formed over a crystalline semiconductor film through a silicon oxide film, wherein the silicon nitride film contains hydrogen with the concentration of 04-28-2011
20100059750BOTTOM GATE THIN FILM TRANSISTOR AND METHOD OF MANUFACTURING THE SAME - A method of manufacturing a bottom gate thin film transistor (“TFT”) in which a polycrystalline channel region having a large grain size is formed relatively simply and easily. The method of manufacturing a bottom gate thin film transistor includes forming a bottom gate electrode on a substrate, forming a gate insulating layer on the substrate to cover the bottom gate electrode, forming an amorphous semiconductor layer, an N-type semiconductor layer and an electrode layer on the gate insulating layer sequentially, etching an electrode region and an N-type semiconductor layer region formed on the bottom gate electrode sequentially to expose an amorphous semiconductor layer region, melting the amorphous semiconductor layer region using a laser annealing method, and crystallizing the melted amorphous semiconductor layer region to form a laterally grown polycrystalline channel region.03-11-2010
20100059751THIN-FILM TRANSISTOR AND PROCESS FOR ITS FABRICATION - A bottom gate type thin-film transistor constituted of at least a substrate, a gate electrode, a gate insulating layer, a semiconductor layer, a source electrode and a drain electrode. At an interface between the gate electrode and the gate insulating layer, the interface has a difference between hill tops and dale bottoms of unevenness in the vertical direction, of 30 nm or less.03-11-2010
20100059749THIN FILM TRANSISTOR - A thin film transistor is provided, which includes a gate electrode layer over a substrate, a gate insulating layer over the gate electrode layer, a layer including an amorphous semiconductor over the gate insulating layer, a pair of crystal regions over the layer including the amorphous semiconductor, and source and drain regions over and in contact with the pair of crystal regions. The source and drain regions include a microcrystalline semiconductor layer to which an impurity imparting one conductivity type is added.03-11-2010
20090212288THIN FILM TRANSISTOR, DISPLAY DEVICE INCLUDING THE SAME, AND METHOD OF MANUFACTURING THE DISPLAY DEVICE - A display device including the thin film transistor, and a method of manufacturing the display device are provided. The thin film transistor comprising a first gate electrode, a second gate electrode formed on the first gate electrode, a first semiconductor formed on the first gate electrode and including a polycrystalline semiconductor, a second semiconductor formed on the second gate electrode and including an amorphous semiconductor.08-27-2009
20110186842Thin film transistor and method of manufacturing the same - A method of manufacturing a thin film transistor and a thin film transistor, the method including sequentially forming a gate insulating layer, an amorphous silicon layer and an insulating layer on an entire top surface of a substrate having a gate electrode; patterning the insulating layer to form an etch stopper; and patterning the amorphous silicon layer to form a semiconductor layer.08-04-2011
20110147745THIN FILM TRANSISTOR AND MANUFACTURING METHOD THEREOF - An embodiment is a thin film transistor which includes a gate electrode layer, a gate insulating layer provided so as to cover the gate electrode layer; a first semiconductor layer entirely overlapped with the gate electrode layer; a second semiconductor layer provided over and in contact with the first semiconductor layer and having a lower carrier mobility than the first semiconductor layer; an impurity semiconductor layer provided in contact with the second semiconductor layer; a sidewall insulating layer provided so as to cover at least a sidewall of the first semiconductor layer; and a source and drain electrode layers provided in contact with at least the impurity semiconductor layer. The second semiconductor layer may consist of parts which are apart from each other over the first semiconductor layer.06-23-2011
20110147743THIN FILM TRANSISTOR SUBSTRATE AND METHOD FOR FABRICATING THE SAME - The present invention relates to a thin film transistor substrate and a method for fabricating the same, which can shorten a process time, prevent a scratch from taking place at an alignment film, and increase black luminance. The thin film transistor substrate includes a thin film transistor formed on a substrate, a protective film formed to flatten a step of the thin film transistor and have an uneven surface with repetitive projected patterns and recessed patterns, a pixel electrode formed on the protective film to maintain an uneven shape of the protective film, and an alignment film formed both on the protective film and the pixel electrode to maintain the uneven shapes of the protective film and the pixel electrode.06-23-2011
20110147742Thin Film Field Effect Transistor with Dual Semiconductor Layers - A thin film field effect transistor is disclosed which provides improved time-based channel stability. The field effect transistor includes first and second disordered semiconductor layers separated by an insulator. In an embodiment a carrier injection terminal is provided in a thin semiconductor layer closest to the gate terminal. An electric field is established in the thin semiconductor layer. At sufficient field strength, the electric field extends into the second semiconductor layer, which is in contact with the source and drain terminals. At sufficient field strength a channel is established in the second semiconductor layer, permitting current to flow between source and drain terminals. Above a certain gate voltage, there is sufficient free charge is induced in the first semiconductor layer so that the field does not extend into the second semiconductor, effectively shutting off current between source and drain. Single-device transition detection (as well as other applications) may be obtained.06-23-2011
20110186843Manufacturing method of thin film and metal line for display using the same, thin film transistor array panel, and method for manufacturing the same - A method for forming a thin film according to an exemplary embodiment of the present invention includes forming the thin film at a power density in the range of approximately 1.5 to approximately 3 W/cm08-04-2011
20110215327ACTIVE MATRIX LIQUID CRYSTAL DISPLAY DEVICE - A first insulating thin film having a large dielectric constant such as a silicon nitride film is formed so as to cover a source line and a metal wiring that is in the same layer as the source line. A second insulating film that is high in flatness is formed on the first insulating film. An opening is formed in the second insulating film by etching the second insulating film, to selectively expose the first insulating film. A conductive film to serve as a light-interruptive film is formed on the second insulating film and in the opening, whereby an auxiliary capacitor of the pixel is formed between the conductive film and the metal wiring with first the insulating film serving as a dielectric. The effective aperture ratio can be increased by forming the auxiliary capacitor in a selected region where the influences of alignment disorder of liquid crystal molecules, i.e., disclination, are large.09-08-2011
20110215325METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A highly purified oxide semiconductor layer is formed in such a manner that a substance that firmly bonds during film formation to an impurity containing a hydrogen atom is introduced into a film formation chamber, the substance is reacted with the impurity containing a hydrogen atom remaining in the film formation chamber, and the substance is changed to a stable substance containing the hydrogen atom. The stable substance containing the hydrogen atom is exhausted without providing a metal atom of an oxide semiconductor layer with the hydrogen atom; therefore, a phenomenon in which a hydrogen atom or the like is taken into the oxide semiconductor layer can be prevented. As the substance that firmly bonds to the impurity containing a hydrogen atom, a substance containing a halogen element is preferable, for example.09-08-2011
20090173941METHOD FOR FABRICATING A SEMICONDUCTOR STRUCTURES AND STRUCTURES THEREOF - Methods of fabricating a semiconductor structure with a non-epitaxial thin film disposed on a surface of a substrate of the semiconductor structure; and semiconductor structures formed thereof are disclosed. The methods provide selective non-epitaxial growth (SNEG) or deposition of amorphous and/or polycrystalline materials to form a thin film on the surface thereof. The surface may be a non-crystalline dielectric material or a crystalline material. The SNEG on non-crystalline dielectric further provides selective growth of amorphous/polycrystalline materials on nitride over oxide through careful selection of precursors-carrier-etchant ratio. The non-epitaxial thin film forms resultant and/or intermediate semiconductor structures that may be incorporated into any front-end-of-the-line (FEOL) fabrication process. Such resultant/intermediate structures may be used, for example, but are not limited to: source-drain fabrication; hardmask strengthening; spacer widening; high-aspect-ratio (HAR) vias filling; micro-electro-mechanical-systems (MEMS) fabrication; FEOL resistor fabrication; lining of shallow trench isolations (STI) and deep trenches; critical dimension (CD) tailoring and claddings.07-09-2009
20090020757Flash Anneal for a PAI, NiSi Process - A structure and a method for mitigation of the damage arising in the source/drain region of a MOSFET is presented. A substrate is provided having a gate structure comprising a gate oxide layer and a gate electrode layer, and a source and drain region into which impurity ions have been implanted. A PAI process generates an amorphous layer within the source and drain region. A metal is deposited and is reacted to create a silicide within the amorphous layer, without exacerbating existing defects. Conductivity of the source and drain region is then recovered by flash annealing the substrate.01-22-2009
20110073861INTEGRATED CIRCUIT DEVICE AND METHOD FOR MANUFACTURING INTEGRATED CIRCUIT DEVICE - An object of the present invention is to provide a structure of a thin film circuit portion and a method for manufacturing a thin film circuit portion by which an electrode for connecting to an external portion can be easily formed under a thin film circuit. A stacked body including a first insulating film, a thin film circuit formed over one surface of the first insulating film, a second insulating film formed over the thin film circuit, an electrode formed over the second insulating film, and a resin film formed over the electrode, is formed. A conductive film is formed adjacent to the other surface of the first insulating film of the stacked body to be overlapped with the electrode. The conductive film is irradiated with a laser.03-31-2011
20110073860SEMICONDUCTOR DEVICE AND DISPLAY DEVICE - A thin film transistor comprising an insulating film, a gate electrode embedded in a superficial portion of the insulating film, a gate insulating film on the gate electrode and the insulating film, a semiconductor film on the gate insulating film, a channel protection film on a portion of the semiconductor film with end surfaces which have a forward tapered slope, a first electrode on the semiconductor film which mounts onto one tapered side of the channel protection film, and a second electrode on the semiconductor film which mounts onto the other tapered side of the channel protection film, where an edge of the gate electrode closest to the first electrode is offset towards the second electrode from the point where the first electrode abuts the semiconductor film.03-31-2011
20120205656Thin-Film Electronic Devices Including Pre-Deformed Compliant Substrate - A thin-film layered electronic device, or array of devices, is formed over a layer structure comprising a flexible substrate, a buffer layer, and a metal layer. The layer structure is annealed to permanently deform the layer structure beyond its plastic deformation limit. The thin-film electronic device is formed thereover by a process according to which all steps are performed at a temperature below that at which further plastic deformation of the buffer layer occurs. In-process strain and runout are reduced, improving device yield on flexible substrates. The metal layer forms a first layer of the thin-film layered device, or array of devices.08-16-2012
20120032172SEMICONDUCTOR DEVICE - A semiconductor device including the following components and a manufacturing method of the semiconductor device are provided. The semiconductor device includes a substrate; an oxide semiconductor layer over the substrate; a source electrode and a drain electrode whose end portion has a taper angle and whose upper end portion has a curved surface, the source electrode and the drain electrode being electrically connected to the oxide semiconductor layer; a gate insulating layer being in contact with a part of the oxide semiconductor layer and covering the oxide semiconductor layer, the source electrode, and the drain electrode; and a gate electrode overlapping with the oxide semiconductor layer and being over the gate insulating layer.02-09-2012
20130168678THIN-FILM SEMICONDUCTOR DEVICE FOR DISPLAY APPARATUS AND METHOD OF MANUFACTURING SAME - A thin-film semiconductor device includes: a substrate; a gate electrode above the substrate; a gate insulation film above the gate electrode; a channel layer above the gate insulation film, the channel layer having a raised part; a channel protection layer over the raised part of the channel layer, the channel protection layer comprising an organic material, and the organic material including silicon, oxygen, and carbon; an interface layer at an interface between a top surface of the raised part of the channel layer and the channel protection layer, and comprises at least carbon and silicon that derive from the organic material; and a source electrode and a drain electrode each provided over a top surface and a side surface the channel protection layer, a side surface of the interface layer, a side surface of the raised part of the channel layer, and a top surface of the channel layer.07-04-2013
20120305920SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF, DISPLAY APPARATUS AND ELECTRONIC APPARATUS - A semiconductor device including: a first electric conductor of a lower layer side and a second electric conductor of an upper layer side; a thick film insulating layer provided between the first electric conductor and the second electric conductor; and a contact portion formed so as to imitate an inner surface shape of a through hole with respect to the insulating layer and electrically connecting the first electric conductor and the second electric conductor, in which a tapered angle of the through hole is an acute angle.12-06-2012
20120305919FULLERENE DERIVATIVES AND OPTOELECTRONIC DEVICES UTILIZING THE SAME - Disclosed is a fullerene derivative having a formula of F-Cy, wherein F is an open-cage fullerene, and Cy is a chalcogenyl group. The fullerene derivative can be applied to hydrogen storage material and an optoelectronic device such as an organic light emitting diode (OLED), a solar cell, or an organic thin film transistor (TFT).12-06-2012
20100051948THIN FILM TRANSISTOR, ELECTRO-OPTIC DEVICE, AND ELECTRONIC APPARATUS - A thin film transistor includes a gate electrode and a semiconductor layer. The semiconductor layer includes a channel region, a source region, a drain region, a low-concentration impurity region provided between the channel region and the source or drain region and a high-concentration impurity region. The high-concentration impurity region overlaps with the gate electrode.03-04-2010
20120097947THIN FILM TRANSISTOR AND MANUFACTURING METHOD THEREOF - A thin film transistor includes a substrate; a gate electrode on the substrate; a gate insulating layer covering the gate electrode; a semiconductor layer corresponding to the gate electrode on the gate insulating layer; a protective layer covering the semiconductor layer and the gate insulating layer and having a source contact hole and a drain contact hole exposing a portion of the semiconductor layer; and a source electrode and a drain electrode on the protective layer and coupled to the semiconductor layer through the source contact hole and the drain contact hole, respectively, wherein the semiconductor layer has a source offset groove at a portion corresponding to the source contact hole of the protective layer.04-26-2012
20120043543SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREFOR - Disclosed is a semiconductor device provided with the following: an active layer 02-23-2012
20120001181LAYER HAVING FUNCTIONALITY, METHOD FOR FORMING FLEXIBLE SUBSTRATE HAVING THE SAME, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - It is an object of the present invention to provide a method for forming a layer having functionality including a conductive layer and a colored layer and a flexible substrate having a layer having functionality with a high yield. Further, it is an object of the present invention to provide a method for manufacturing a semiconductor device that is small-sized, thin, and lightweight. After coating a substrate having heat resistance with a silane coupling agent, a layer having functionality is formed. Then, after attaching an adhesive to the layer having functionality, the layer having functionality is peeled from the substrate. Further, after coating a substrate having heat resistance with a silane coupling agent, a layer having functionality is formed. Then, an adhesive is attached to the layer having functionality. Thereafter, the layer having functionality is peeled from the substrate, and a flexible substrate is attached to the layer having functionality.01-05-2012
20120001180Semiconductor Device and Method for Manufacturing the Same - Provided is a structure to obtain a reliable electrical contact through a narrow contact hole formed in an insulating layer, which is required in the miniaturization of a semiconductor device. An exemplified structure includes a thin film transistor comprising: a lower electrode over and in contact with a semiconductor layer, the lower electrode comprising a metal or a metal compound; an insulating layer over the lower electrode, the insulating layer having a contact hole reaching the lower electrode; a conductive silicon whisker grown from a surface of the lower electrode; and an upper electrode over the insulating layer and in contact with the conductive silicon whisker. The ability of the conductive silicon whisker grown from the lower electrode to ohmically contact with the lower and upper electrodes leads to a reliable electrical contact between the thin film transistor and a wiring.01-05-2012
20110156037THIN FILM TRANSISTOR SUBSTRATE - A thin film transistor substrate including a thin film transistor having a drain electrode with an electrode portion, which overlaps with a semiconductor layer, and an extended portion, which extends from the electrode portion and has a portion overlapping with a storage electrode or storage electrode line. A passivation layer is arranged on the drain electrode, and it has a contact hole that partially exposes the extended portion of the drain electrode without exposing a step in the extended portion caused by the storage electrode or storage electrode line. A pixel electrode is arranged on the passivation layer and is electrically connected with the extended portion of the drain electrode through the contact hole.06-30-2011
20120001179SEMICONDUCTOR DEVICE - It is an object to provide a semiconductor device including an oxide semiconductor, which has stable electric characteristics and high reliability. A semiconductor device having a stacked-layer structure of a gate insulating layer; a first gate electrode in contact with one surface of the gate insulating layer; an oxide semiconductor layer in contact with the other surface of the gate insulating layer and overlapping with the first gate electrode; and a source electrode, a drain electrode, and an oxide insulating layer which are in contact with the oxide semiconductor layer is provided, in which the nitrogen concentration of the oxide semiconductor layer is 2×1001-05-2012
20090101899STACKED STRUCTURE AND METHOD OF PATTERNING THE SAME AND ORGANIC THIN FILM TRANSISTOR AND ARRAY HAVING THE SAME - A stacked structure including a soluble organic semiconductor material and a water soluble photosensitive material is provided. The water soluble photosensitive material is disposed on the surface of the soluble organic semiconductor material.04-23-2009
20120056183GATE INSULATOR LAYER FOR ORGANIC ELECTRONIC DEVICES - Embodiments in accordance with the present invention provide for the use of polycycloolefins in electronic devices and more specifically to the use of such polycycloolefins as gate insulator layers used in the fabrication of electronic devices, the electronic devices that encompass such polycycloolefin gate insulator and processes for preparing such polycycloolefin gate insulator layers and electronic devices encompassing such layers.03-08-2012
20120056182Semiconductor Device and Manufacturing Method Thereof - A manufacturing method of a semiconductor device having a stacked structure in which a lower layer is exposed is provided without increasing the number of masks. A source electrode layer and a drain electrode layer are formed by forming a conductive film to have a two-layer structure, forming an etching mask thereover, etching the conductive film using the etching mask, and performing side-etching on an upper layer of the conductive film in a state where the etching mask is left so that part of a lower layer is exposed. The thus formed source and drain electrode layers and a pixel electrode layer are connected in a portion of the exposed lower layer. In the conductive film, the lower layer and the upper layer may be a Ti layer and an Al layer, respectively. The plurality of openings may be provided in the etching mask.03-08-2012
20120056181METHOD OF MANUFACTURING ELECTRONIC ELEMENT AND ELECTRONIC ELEMENT - There is provided a method of manufacturing an electronic element for forming the electronic element including one or more wiring layers and an organic insulating layer stacked on a substrate. The method includes a wiring layer formation step of forming the wiring layer on the substrate; an organic insulating layer formation step of forming an organic insulating layer on the wiring layer; and an irradiation step of irradiating a short-circuit portion of the wiring layer through the organic insulating layer with a laser beam having a wavelength transmissive through the organic insulating layer.03-08-2012
20120056180THIN FILM TRANSISTOR AND FABRICATING METHOD THEREOF - A thin film transistor including a substrate, a semiconductor layer, a patterned doped semiconductor layer, a source and a drain, a gate insulation layer, and a gate is provided. The semiconductor layer is disposed on the substrate. The patterned doped semiconductor layer is disposed on opposite sides of the semiconductor layer. The source and the drain are disposed on the patterned doped semiconductor layer and the opposite sides of the semiconductor layer, wherein a part of the semiconductor layer covered by the source and the drain has a first thickness, a part of the semiconductor layer disposed between the source and the drain and not covered by the source and the drain has a second thickness ranging from 200 Å to 800 Å. The gate insulation layer is disposed on the source, the drain and the semiconductor layer. The gate is disposed on the gate insulation layer.03-08-2012
20120007079Thin Film Field Effect Transistor with Dual Semiconductor Layers - A thin film field effect transistor is disclosed which provides improved time-based channel stability. The field effect transistor includes first and second disordered semiconductor layers separated by an insulator. In an embodiment a carrier injection terminal is provided in a thin semiconductor layer closest to the gate terminal. An electric field is established in the thin semiconductor layer. At sufficient field strength, the electric field extends into the second semiconductor layer, which is in contact with the source and drain terminals. At sufficient field strength a channel is established in the second semiconductor layer, permitting current to flow between source and drain terminals. Above a certain gate voltage, there is sufficient free charge is induced in the first semiconductor layer so that the field does not extend into the second semiconductor, effectively shutting off current between source and drain. Single-device transition detection (as well as other applications) may be obtained.01-12-2012
20120043542SEMICONDUCTOR DEVICE - The present invention is a semiconductor device including a first electrode over a substrate; a pair of oxide semiconductor films in contact with the first electrode; a second electrode in contact with the pair of oxide semiconductor films; a gate insulating film covering at least the first electrode and the pair of oxide semiconductor films; and a third electrode that is in contact with the gate insulating film and is formed at least between the pair of oxide semiconductor films. When the donor density of the oxide semiconductor films is 1.0×1002-23-2012
20120012845SEMICONDUCTOR DEVICE - A semiconductor device with a novel structure is provided, which can hold stored data even when no power is supplied and which has no limitations on the number of writing operations. A semiconductor device is formed using a material which enables off-state current of a transistor to be reduced significantly; e.g., an oxide semiconductor material which is a wide-gap semiconductor. With use of a semiconductor material which enables off-state current of a transistor to be reduced significantly, the semiconductor device can hold data for a long period. In a semiconductor device with a memory cell array, parasitic capacitances generated in the nodes of the first to the m-th memory cells connected in series are substantially equal, whereby the semiconductor device can operate stably.01-19-2012
20110049518SEMICONDUCTOR DEVICE INCLUDING A TRANSISTOR, AND MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE - An object is to prevent contamination of a semiconductor film in a transistor or a semiconductor device including the transistor. Another object is to suppress variation in electrical characteristics and deterioration. A transistor including: a gate electrode layer provided over a substrate; a gate insulating film provided over the gate electrode layer; a semiconductor layer which is provided over the gate insulating film and which overlaps the gate electrode layer; a carbide layer provided over and in contact with a surface of the semiconductor layer; and a source electrode layer and a drain electrode layer which are electrically connected to the semiconductor layer is provided.03-03-2011
20120153285SOLUTION PROCESSABLE PASSIVATION LAYERS FOR ORGANIC ELECTRONIC DEVICES - The present invention relates to solution processable passivation layers for organic electronic (OE) devices, and to OE devices, in particular organic field effect transistors (OFETs), comprising such passivation layers.06-21-2012
20120061672METHOD OF PROVIDING A FLEXIBLE SEMICONDUCTOR DEVICE AT HIGH TEMPERATURES AND FLEXIBLE SEMICONDUCTOR DEVICE THEREOF - Some embodiments include a method of providing a semiconductor device. The method can include: (a) providing a flexible substrate; (b) depositing at least one layer of material over the flexible substrate, wherein the deposition of the at least one layer of material over the flexible substrate occurs at a temperature of at least 180° C.; and (c) providing a diffusion barrier between a metal layer and an a-Si layer. Other embodiments are disclosed in this application.03-15-2012
20120061671SEMICONDUCTOR DEVICE AND LIGHT-EMITTING DEVICE - To provide a highly reliable semiconductor device including an oxide semiconductor. Further to provide a highly reliable light-emitting device including an oxide semiconductor. A second electrode sealed together with a semiconductor element including an oxide semiconductor hardly becomes inactive. A hydrogen ion and/or a hydrogen molecule produced by reaction of the active second electrode with moisture remaining in the semiconductor device and/or moisture entering from the outside of the device increase the carrier concentration in the oxide semiconductor, which causes a reduction in the reliability of the semiconductor device. An adsorption layer of a hydrogen ion and/or a hydrogen molecule may be provided on the other surface side of the second electrode having one surface in contact with the organic layer. Further, an opening which a hydrogen ion and/or a hydrogen molecule passes through may be provided for the second electrode.03-15-2012
20120061670METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - Described is a method for manufacturing a semiconductor device. A mask is formed over an insulating film and the mask is reduced in size. An insulating film having a projection is formed using the mask reduced in size, and a transistor whose channel length is reduced is formed using the insulating film having a projection. Further, in manufacturing the transistor, a planarization process is performed on a surface of a gate insulating film which overlaps with a top surface of a fine projection. Thus, the transistor can operate at high speed and the reliability can be improved. In addition, the insulating film is processed into a shape having a projection, whereby a source electrode and a drain electrode can be formed in a self-aligned manner.03-15-2012
20120153284LIGHT EMITTING DEVICE - A light emitting device is provided that includes a substrate, a light emitting unit formed on the substrate, and an encapsulation unit. The encapsulation unit may include a first region corresponding to the light emitting unit and a second region coalesced with the substrate. The encapsulation unit of the first region or a part of the encapsulation unit of the first region may have a positive curvature.06-21-2012
20110042674PRODUCTION METHODS OF PATTERN THIN FILM, SEMICONDUCTOR ELEMENT, AND CIRCUIT SUBSTRATE, AND RESIST MATERIAL, SEMICONDUCTOR ELEMENT, AND CIRCUIT SUBSTRATE - A production method of a semiconductor element having a channel includes forming a resist pattern film on a thin film formed on a substrate, and pattering the thin film by etching. The production method also includes forming a second resist pattern film by applying a fluid resist material inside a channel groove after channel etching or inside a resist groove formed above a channel region before channel etching. The production method may also include forming a gate electrode, a gate insulating film, a semiconductor film, and a conductive film on an insulating substrate. The method may include applying the fluid resist material inside the channel groove, thereby forming the second resist pattern film, and patterning the semiconductor film using at least the second resist pattern film.02-24-2011
20100096630Bottom-Gate Thin Film Transistor and Method of Fabricating the Same - A bottom-gate thin film transistor includes a gate electrode, a gate insulating layer and a microcrystalline silicon layer. The gate electrode is disposed on a substrate. The gate insulating layer is made up of silicon nitride and disposed on the gate electrode and the substrate. The microcrystalline silicon layer is disposed on the gate insulating layer and corresponds to the gate electrode, in which a contact interface between the gate insulating layer and the microcrystalline silicon layer has a plurality of oxygen atoms, and concentration of the oxygen atoms ranges between 1004-22-2010
20120161133SEMICONDUCTOR DEVICE - An object of one embodiment of the disclosed invention is to provide a semiconductor device having a novel structure in which stored data can be held even when power is not supplied and the number of times of writing is not limited. The semiconductor device is formed using an insulating layer formed over a supporting substrate and, over the insulating layer, a highly purified oxide semiconductor and single crystal silicon which is used as a sililcon on insulator (SOI). A transistor formed using a highly purified oxide semiconductor can hold data for a long time because leakage current thereof is extremely small. Further, by using an SOI substrate and utilizing features of thin single crystal silicon formed over an insulating layer, fully-depleted transistors can be formed; therefore, a semiconductor integrated circuit with high added values such as high integration, high-speed driving, and low power consumption can be obtained.06-28-2012
20120161132SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - An object is to provide a novel semiconductor device which can store data even when power is not supplied in a data storing time and which does not have a limitation on the number of writing operations. The semiconductor device includes a transistor and a capacitor. The transistor includes a first oxide semiconductor layer, a source electrode and a drain electrode which are in contact with the first oxide semiconductor layer, a gate electrode overlapping with the first oxide semiconductor layer, and a gate insulating layer between the first oxide semiconductor layer and the gate electrode. The capacitor includes the source electrode or the drain electrode, a second oxide semiconductor layer in contact with the source electrode or the drain electrode, and a capacitor electrode in contact with the second oxide semiconductor layer.06-28-2012
20120161131THIN-FILM TRANSISTOR SUBSTRATE AND METHOD OF MANUFACTURING THE SAME - A thin-film transistor (“TFT”) substrate includes a metal wiring including copper or a copper alloy on a substrate, an inorganic layer on an upper surface and side surfaces of the metal wiring to surround the metal wiring, the inorganic layer in direct contact with the metal wiring, and a planarization layer on the inorganic layer and in direct contact with the inorganic layer.06-28-2012
20120211750SEMICONDUCTOR DEVICE AND LIGHT-EMITTING DEVICE USING THE SAME - A semiconductor device includes a semiconductor layer, a first insulating layer, a gate electrode which is formed on the first insulating layer and has a portion overlapping a channel region of the semiconductor layer with the first insulating layer sandwiched in between, a second insulating layer which is formed on the first insulating layer and covers the gate electrode, and a capacitor electrode which is formed on the second insulating layer and has a portion facing the gate electrode with the second insulating layer sandwiched in between. The second insulating layer has a thin portion, whose thickness is thinner than that of the second insulating layer in surrounding regions, on the portion of the gate electrode overlapping the channel region. A part of the capacitor electrode faces the portion of the gate electrode overlapping the channel region with the thin portion of the second insulating layer sandwiched in between.08-23-2012
20120248443ACTIVE MATRIX SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME - An active matrix substrate includes a plurality of scanning lines (10-04-2012
20120126232DISPLAY DEVICE AND METHOD FOR MANUFACTURING THE SAME - An object is to provide a display device with excellent display characteristics, where a pixel circuit and a driver circuit provided over one substrate are formed using transistors which have different structures corresponding to characteristics of the respective circuits. The driver circuit portion includes a driver circuit transistor in which a gate electrode layer, a source electrode layer, and a drain electrode layer are formed using a metal film, and a channel layer is formed using an oxide semiconductor. The pixel portion includes a pixel transistor in which a gate electrode layer, a source electrode layer, and a drain electrode layer are formed using an oxide conductor, and a semiconductor layer is formed using an oxide semiconductor. The pixel transistor is formed using a light-transmitting material, and thus, a display device with higher aperture ratio can be manufactured.05-24-2012
20100244032ALUMINUM-NICKEL ALLOY WIRING MATERIAL, DEVICE FOR A THIN FILM TRANSISTOR AND A THIN FILM TRANSISTOR SUBSTRATE USING THE SAME, AND METHOD OF MANUFACTURING THE THIN FILM TRANSISTOR SUBSTRATE - An Aluminum-Nickel alloy wiring material includes Aluminum, Nickel, Cerium, and Boron. A thin film transistor includes the Aluminum-Nickel alloy wiring material. A sputtering target comprises Aluminum, Nickel, Cerium and Boron. A method of manufacturing a thin film transistor substrate comprises disposing a thin film transistor on a substrate, wherein the thin film transistor includes a wiring circuit layer comprising Aluminum, Nickel, Cerium, and Boron. The Nickel, Cerium and Boron satisfy the following inequalities; 0.5≦X≦5.0, 0.01≦Y≦1.0, and 0.01≦Z≦1.0, respectively, wherein X represents an atomic percentage of Nickel content, Y represents an atomic percentage of Cerium content, and Z represents an atomic percentage of Boron content.09-30-2010
20100207120PRODUCTION METHOD OF SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE - The present invention provides a production method of a semiconductor device and a semiconductor device that permits suppression of a leakage current. A production method of a semiconductor device includes a structure in which a semiconductor layer, an insulating film, and a gate electrode are stacked on a main surface of a substrate in this order, 08-19-2010
20120168754THIN FILM METAL-DIELECTRIC-METAL TRANSISTOR - A transistor is formed having a thin film metal channel region. The transistor may be formed at the surface of a semiconductor substrate, an insulating substrate, or between dielectric layers above a substrate. A plurality of transistors each having a thin film metal channel region may be formed. Multiple arrays of such transistors can be vertically stacked in a same device.07-05-2012
20110180797Semiconductor Apparatus and Fabrication Method of the Same - It is an object of the present invention to provide a semiconductor device capable of preventing deterioration due to penetration of moisture or oxygen, for example, a light-emitting apparatus having an organic light-emitting device that is formed over a plastic substrate, and a liquid crystal display apparatus using a plastic substrate. According to the present invention, devices formed on a glass substrate or a quartz substrate (a TFT, a light-emitting device having an organic compound, a liquid crystal device, a memory device, a thin-film diode, a pin-junction silicon photoelectric converter, a silicon resistance element, or the like) are separated from the substrate, and transferred to a plastic substrate having high thermal conductivity.07-28-2011
20110180796SEMICONDUCTOR DEVICE - An object is to provide a semiconductor device including an oxide semiconductor, which maintains favorable characteristics and achieves miniaturization. The semiconductor device includes an oxide semiconductor layer, a source electrode and a drain electrode in contact with the oxide semiconductor layer, a gate electrode overlapping with the oxide semiconductor layer, and a gate insulating layer provided between the oxide semiconductor layer and the gate electrode, in which the source electrode and the drain electrode each include a first conductive layer, and a second conductive layer having a region which extends in a channel length direction from an end portion of the first conductive layer.07-28-2011
20120132915THIN FILM TRANSISTOR ARRAY SUBSTRATE AND MANUFACTURING METHOD THEREOF - A thin film transistor array substrate includes a gate line disposed on a substrate, the gate line comprising a gate electrode including a lower film and an upper film thicker than the lower film, a gate insulating layer formed on the gate line, a semiconductor layer formed on the gate insulating layer, an ohmic contact layer formed on the semiconductor layer, a data line electrically connected to a source electrode and a drain electrode formed on the ohmic contact layer, the lower film of the gate line is in contact with the gate insulating layer at a crossing portion of the gate line and the data line and the heights of the source electrode and the drain electrode are substantially the same as or less than a height of the semiconductor layer.05-31-2012
20120132914OXIDE SEMICONDUCTOR THIN FILM TRANSISTOR STRUCTURE AND METHOD OF MAKING THE SAME - An oxide semiconductor thin film transistor structure includes a substrate, a gate electrode disposed on the substrate, a semiconductor insulating layer disposed on the substrate and the gate electrode, an oxide semiconductor layer disposed on the semiconductor insulating layer, a patterned semiconductor layer disposed on the oxide semiconductor layer, and a source electrode and a drain electrode respectively disposed on the patterned semiconductor layer. The source electrode and the drain electrode are made of a metal layer.05-31-2012
20120313096OXIDE SEMICONDUCTOR COMPOSITION AND PREPARATION METHOD THEREOF, METHOD OF FORMING OXIDE SEMICONDUCTOR THIN FILM, METHOD OF FABRICATING ELECTRONIC DEVICE AND ELECTRONIC DEVICE FABRICATED THEREBY - Provided are an oxide semiconductor composition, a preparation method thereof, an oxide semiconductor thin film using the composition, and a method of forming an electronic device. The oxide semiconductor composition includes a photosensitive material and an oxide semiconductor precursor.12-13-2012
20120313097FLASH MEMORY DEVICE HAVING A GRADED COMPOSITION, HIGH DIELECTRIC CONSTANT GATE INSULATOR - A graded composition, high dielectric constant gate insulator is formed between a substrate and floating gate in a flash memory cell transistor. The gate insulator comprises amorphous germanium or a graded composition of germanium carbide and silicon carbide. If the composition of the gate insulator is closer to silicon carbide near the substrate, the electron barrier for hot electron injection will be lower. If the gate insulator is closer to the silicon carbide near the floating gate, the tunnel barrier can be lower at the floating gate.12-13-2012
20120175616Thin Film Field Effect Transistor with Dual Semiconductor Layers - A thin film field effect transistor is disclosed which provides improved time-based channel stability. The field effect transistor includes first and second disordered semiconductor layers separated by an insulator. In an embodiment a carrier injection terminal is provided in a thin semiconductor layer closest to the gate terminal. An electric field is established in the thin semiconductor layer. At sufficient field strength, the electric field extends into the second semiconductor layer, which is in contact with the source and drain terminals. At sufficient field strength a channel is established in the second semiconductor layer, permitting current to flow between source and drain terminals. Above a certain gate voltage, there is sufficient free charge is induced in the first semiconductor layer so that the field does not extend into the second semiconductor, effectively shutting off current between source and drain. Single-device transition detection (as well as other applications) may be obtained.07-12-2012
20120256182METHOD OF MANUFACTURING THIN FILM TRANSISTOR, THIN FILM TRANSISTOR, AND DISPLAY UNIT - A thin film transistor having a crystalline silicon film that is formed by irradiating an amorphous silicon film with a light beam through a photothermal conversion layer and an insulating film to provide the amorphous silicon film with heat treatment.10-11-2012
20120256181POWER-GENERATING MODULE WITH SOLAR CELL AND METHOD FOR FABRICATING THE SAME - The invention discloses a power-generating module with solar cell and method for fabricating the same. The power-generating module includes a flexible substrate, a circuit and a solar cell. Both of the circuit and the solar cell are formed on the flexible substrate and are connected with each other, such that the solar cell is capable of providing the power needed by the circuit for operation.10-11-2012
20120175615Organic Light-Emitting Display and Method of Manufacturing the Same - In an organic light-emitting display having superior image quality and device reliability, and a related method of manufacturing the organic light-emitting display, the organic light-emitting display comprises: a gate electrode formed on a substrate; an interlayer insulating film formed on the substrate so as to cover the gate electrode; and a transparent electrode formed on the interlayer insulating film. The interlayer insulating film comprises multiple layers having different refractive indices.07-12-2012
20120074410FUSED BITHIOPHENE-VINYLENE POLYMERS - A polymer comprising repeating units A and optionally repeating units B wherein Z=S, Se, N—R and O; W is at each occurrence independently a monocyclic or polycylic moiety optionally substituted with 1-4 R03-29-2012
20120074409LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE - A light emitting device includes: a light emitting element including a first electrode, a second electrode opposed to the first electrode, and a light emitting layer provided between the first electrode and the second electrode; a capacitor having a third electrode formed in a position overlapping the light emitting element and an insulating layer provided between the first and third electrodes; a first drive transistor disposed on a first side of the first electrode and having a gate electrode; and a second drive transistor disposed on a second side of the first electrode and having a gate electrode connected to the gate electrode of the first drive transistor via the third electrode.03-29-2012
20120074408ORGANIC LIGHT EMITTING DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME - An organic light emitting display device includes: a thin-film transistor (TFT) including an active layer, a gate electrode including a gate bottom electrode and a gate top electrode, a source electrode, and a drain electrode; an organic electroluminescent (EL) device electrically connected to the TFT and including a stack of a pixel electrode at the same layer as and including the same material as the gate bottom electrode, an intermediate layer including an emissive layer, and a counter electrode; a first pad electrode at the same layer as and including the same material as the gate bottom electrode; and a second pad electrode including a second pad bottom electrode at the same layer as and including the same material as the gate bottom electrode, and a second pad top electrode at the same layer as and including the same material as the gate top electrode.03-29-2012
20120074407Semiconductor device and method for manufacturing the same - An object is to provide a semiconductor device having a novel structure in which a transistor including an oxide semiconductor and a transistor including a semiconductor material other than an oxide semiconductor are stacked. The semiconductor device includes a first transistor, an insulating layer over the first transistor, and a second transistor over the insulating layer. In the semiconductor device, the first transistor includes a first channel formation region, the second transistor includes a second channel formation region, the first channel formation region includes a semiconductor material different from a semiconductor material of the second channel formation region, and the insulating layer includes a surface whose root-mean-square surface roughness is less than or equal to 1 nm.03-29-2012
20120261664SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device including a bit line, a word line, a transistor, and a capacitor is provided. The transistor includes source and drain electrodes; an oxide semiconductor film in contact with at least both top surfaces of the source and drain electrodes; a gate insulating film in contact with at least a top surface of the oxide semiconductor film; a gate electrode which overlaps with the oxide semiconductor film with the gate insulating film provided therebetween; and an insulating film covering the source and drain electrodes, the gate insulating film, and the gate electrode. The transistor is provided in a mesh of a netlike conductive film when seen from the above. Here, the drain electrode and the netlike conductive film serve as one and the other of a pair of capacitor electrodes of the capacitor. A dielectric film of the capacitor includes at least the insulating film.10-18-2012
20120228615SEMICONDUCTOR DEVICE - A semiconductor device in which a semiconductor layer is formed over a gate electrode with a large aspect ratio, thereby obtaining a channel length of a transistor which hardly causes a short-channel effect even when the transistor is miniaturized. A lower electrode is provided under the gate electrode with an insulating layer provided therebetween so that the electrode overlaps with the semiconductor layer. A potential (electric field) of the lower electrode imparts a conductivity type to the semiconductor layer overlapping with the lower electrode, so that a source region and a drain region are formed in the semiconductor layer. The gate electrode serves as a shield, so that a region in the semiconductor layer, which faces the gate electrode with the gate insulating layer provided therebetween, is not influenced by the electric field from the lower electrode.09-13-2012
20120228616THIN FILM TRANSISTOR COMPOSITIONS, AND METHODS RELATING THERETO - The present disclosure is directed to a thin film transistor composition. The thin film transistor composition has a semiconductor material and a substrate. The substrate is composed of a polyimide and a sub-micron filler. The polyimide is derived from at least one aromatic dianhydride component selected from rigid rod dianhydride, non-rigid rod dianhydride and combinations thereof, and at least one aromatic diamine component selected from rigid rod diamine, non-rigid rod diamine and combinations thereof. The mole ratio of dianhydride to diamine is 48-52:52-48 and the ratio of X:Y is 20-80:80-20 where X is the mole percent of rigid rod dianhydride and rigid rod diamine, and Y is the mole percent of non-rigid rod dianhydride and non-rigid rod diamine. The sub-micron filler is less than 550 nanometers in at least one dimension; has an aspect ratio greater than 3:1; is less than the thickness of the film in all dimensions.09-13-2012
20110121298MANUFACTURING METHOD OF FLEXIBLE SEMICONDUCTOR DEVICE - A method includes the steps of preparing a multilayer film 05-26-2011
20100327283THIN FILM TRANSISTOR SUBSTRATE AND FABRICATING METHOD THEREOF - The present invention relates to a thin film transistor substrate. The thin film transistor according to one embodiment of the present invention comprises: a gate wire and a data wire formed to cross each other on an insulating substrate and define a pixel area; a thin film transistor formed on the intersection of the gate wire and the data wire; an inorganic insulating layer covering the thin film transistor and having a surface that a prominence and depression pattern formed on; and a reflective layer provided on the prominence and depression pattern. Thus, the present invention provides a thin film transistor substrate which reduces the time required in the process and enhance the productivity.12-30-2010
20100327282SEMICONDUCTOR DEVICE AND ELECTRONIC APPARATUS - A semiconductor device includes: a substrate; a p-type organic transistor including an organic semiconductor layer arranged on or above the substrate; and an n-type inorganic transistor including an inorganic semiconductor layer arranged on or above the organic transistor, wherein a channel region of the inorganic transistor overlaps a channel region of the organic transistor at least partially in a plan view.12-30-2010
20100327281THIN FILM TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME - An object is to provide a thin film transistor with small off current, large on current, and high field-effect mobility. A silicon nitride layer and a silicon oxide layer which is formed by oxidizing the silicon nitride layer are stacked as a gate insulating layer, and crystals grow from an interface of the silicon oxide layer of the gate insulating layer to form a microcrystalline semiconductor layer; thus, an inverted staggered thin film transistor is manufactured. Since crystals grow from the gate insulating layer, the thin film transistor can have a high crystallinity, large on current, and high field-effect mobility. In addition, a buffer layer is provided to reduce off current.12-30-2010
20120319112THIN FILM TRANSISTOR, THIN FILM TRANSISTOR PANEL AND METHODS FOR MANUFACTURING THE SAME - A thin film transistor includes a gate electrode, a gate insulating layer, an oxide semiconductor layer on the gate insulating layer, and a drain electrode and a source electrode on the oxide semiconductor layer and spaced apart from each other. The drain electrode includes a first drain sub-electrode on the oxide semiconductor layer, and a second drain sub-electrode on the first drain sub-electrode. The source electrode includes a first source sub-electrode on the oxide semiconductor layer, and a second source sub-electrode on the first source sub-electrode. The first drain sub-electrode and the first source sub-electrode include gallium zinc oxide (GaZnO), and the second source sub-electrode and the second drain sub-electrode include a metal atom.12-20-2012
20120319114SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A transistor including an oxide semiconductor layer and having electric characteristics required depending on an intended use, and a semiconductor device including the transistor are provided. In a transistor in which a semiconductor layer, a source electrode layer and a drain electrode layer, a gate insulating film, and a gate electrode layer are stacked in this order over an oxide insulating film, an oxide semiconductor stack composed of at least two oxide semiconductor layers having different energy gaps is used as the semiconductor layer. Oxygen and/or a dopant may be introduced into the oxide semiconductor stack.12-20-2012
20120319113SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - At least part of the oxide semiconductor layer which serves as the channel formation region is thinned by etching and the thickness of the channel formation region is adjusted by the etching. Further, a dopant containing phosphorus (P) or boron (B) is introduced into a thick region of the oxide semiconductor layer to form a source region and a drain region in the oxide semiconductor layer, so that the contact resistance between the source and drain regions and the channel formation region which are connected to each other is reduced.12-20-2012
20110037070THIN FILM TRANSISTOR ARRAY PANEL AND METHOD FOR MANUFACTURING THE SAME - A thin film transistor substrate includes a substrate including a display area and a peripheral area surrounding the display area, gate lines formed on the substrate including gate electrodes, an auxiliary insulating layer formed on the gate lines, a gate insulating layer formed on the auxiliary insulating layer and the gate lines, a semiconductor layer formed on the gate insulating layer, data lines formed on the semiconductor layer including source electrodes and drain electrodes, a passivation layer formed on the data lines, pixel electrodes formed on the passivation layer and electrically connected to the drain electrode, wherein the boundary line of the auxiliary insulating layer is located at or within the boundary of the gate line.02-17-2011
20120298999SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - An object is to reduce off-state leakage current between a source electrode and a drain electrode. One embodiment of the present invention is a semiconductor device including a gate electrode, gate insulating films and formed to cover the gate electrode, an active layer formed over the gate insulating films and located above the gate electrode, silicon layers and formed over side surfaces of the active layer and the gate insulating films, and a source electrode and a drain electrode formed over the silicon layers. The active layer is not in contact with each of the source electrode and the drain electrode.11-29-2012
20120298998METHOD FOR FORMING OXIDE SEMICONDUCTOR FILM, SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - The impurity concentration in the oxide semiconductor film is reduced, and a highly reliability can be obtained.11-29-2012
20120298997SEMICONDUCTOR DEVICE - One embodiment of the present invention is a semiconductor device which includes a gate electrode; a gate insulating film formed to cover the gate electrode; a semiconductor layer formed over the gate insulating film and placed above the gate electrode; a second insulating film formed over the semiconductor layer; a first insulating film formed over a top surface and a side surface of the second insulating film, a side surface of the semiconductor layer, and the gate insulating film; silicon layers and which are formed over the first insulating film and electrically connected to the semiconductor layer; and a source electrode and a drain electrode which are formed over the silicon layers. The source electrode and the drain electrode are electrically separated from each other over the first insulating film. The semiconductor layer is not in contact with each of the source electrode and the drain electrode.11-29-2012
20120298996Thin Film Transistor and Method for Manufacturing the Same - A thin film transistor and a method for manufacturing the same are provided. A photoresist layer is patterned to cover a part of an ohmic contact layer by shifting a photomask. Then, the exposed ohmic contact layer is removed to shorten the channel length of the thin film transistor for increasing on-state current.11-29-2012
20120267628Liquid Crystal Display Device - In a liquid crystal display (LCD) device having a thin film transistor (TFT), the TFT includes a source electrode, a drain electrode and a semiconductor layer. At least one of the source electrode and drain electrode includes a first layer including copper and a second layer forming an oxide layer and covering the first layer. The semiconductor layer has a substantially linear current-voltage relationship with said source electrode or drain electrode including said first and second layers, when a voltage is applied between the semiconductor layer and said source electrode or drain electrode.10-25-2012
20110215324THIN FILM TRANSISTOR AND FABRICATING METHOD THEREOF - A thin film transistor (TFT) and a fabricating method thereof are provided. The TFT includes a channel layer, an ohmic contact layer, a dielectric layer, a source, a drain, a gate, and a gate insulating layer. The channel layer has an upper surface and a sidewall. The ohmic contact layer is disposed on a portion of the upper surface of the channel layer. The dielectric layer is disposed on the sidewall of the channel layer, and does not overlap with the ohmic contact layer. The source and the drain are disposed on portions of the ohmic contact layer and the dielectric layer. A portion of dielectric layer is not covered by the source or the drain. The gate is above or below the channel layer. The gate insulating layer is disposed between the gate and the channel layer.09-08-2011
20110227074SEMICONDUCTOR DEVICE - A semiconductor device with a novel structure is provided in which stored data can be held even when power is not supplied and the number of writing is not limited. The semiconductor includes a second transistor and a capacitor over a first transistor. The capacitor includes a source or drain electrode and a gate insulating layer of the second transistor and a capacitor electrode over an insulating layer which covers the second transistor. The gate electrode of the second transistor and the capacitor electrode overlap at least partly with each other with the insulating layer interposed therebetween. By forming the gate electrode of the second transistor and the capacitor electrode using different layers, an integration degree of the semiconductor device can be improved.09-22-2011
20110227073TRANSISTOR SUBSTRATE AND MANUFACTURING METHOD OF THE SAME - A transistor substrate and a method of manufacturing the transistor substrate. The transistor substrate includes a semiconductor layer arranged on a base layer, a first layer arranged on the semiconductor layer and having a first light transmissivity, source and drain electrodes, the source electrode arranged on a first side of the semiconductor layer and extending onto a first portion of the first layer, the drain electrode arranged on a second and opposite side of the semiconductor layer and extending onto a second portion of the first layer and separated from the source electrode by a distance, a second layer arranged between the first layer and the source and drain electrodes and having a second light transmissivity that is lower than the first light transmissivity, a gate insulating layer arranged on the first layer and a gate electrode arranged on the gate insulating layer.09-22-2011
20110227072SEMICONDUCTOR DEVICE - A semiconductor device including a nonvolatile memory cell including a writing transistor which includes an oxide semiconductor, a reading transistor which includes a semiconductor material different from that of the writing transistor, and a capacitor is provided. Data is written to the memory cell by turning on the writing transistor and supplying a potential to a node where a source electrode (or a drain electrode) of the writing transistor, one electrode of the capacitor, and a gate electrode of the reading transistor are electrically connected to each other, and then turning off the writing transistor so that a predetermined amount of charge is held at the node. Further, when a p-channel transistor is used as the reading transistor, a reading potential is a positive potential.09-22-2011
20110227071Semiconductor Constructions, Semiconductor Processing Methods, And Methods Of Forming Isolation Structures - Some embodiments include methods of forming isolation structures. A semiconductor base may be provided to have a crystalline semiconductor material projection between a pair of openings. SOD material (such as, for example, polysilazane) may be flowed within said openings to fill the openings. After the openings are filled with the SOD material, one or more dopant species may be implanted into the projection to amorphize the crystalline semiconductor material within an upper portion of said projection. The SOD material may then be annealed at a temperature of at least about 400° C. to form isolation structures. Some embodiments include semiconductor constructions that include a semiconductor material base having a projection between a pair of openings. The projection may have an upper region over a lower region, with the upper region being at least 75% amorphous, and with the lower region being entirely crystalline.09-22-2011
20120080679ALKYLSILANE LAMINATE, PRODUCTION METHOD THEREOF AND THIN-FILM TRANSISTOR - Provided is an alkylsilane laminate with which it is possible to obtain an organic semiconductor film having excellent semiconductor properties. Such a laminate can be useful for an organic thin-film transistor. The alkylsilane laminate comprises an underlayer (Sub) having hydroxyl groups at the surface and an alkylsilane thin film (AS) formed on this underlayer. The alkylsilane laminate is a laminate wherein the critical surface energy Ec of the alkylsilane thin film and the number of carbons (X) of the alkylsilane satisfies the following formula (1): Ec≦29.00−0.6304-05-2012
20120080678COMPOSITIONS FOR SOLUTION PROCESS, ELECTRONIC DEVICES FABRICATED USING THE SAME, AND FABRICATION METHODS THEREOF - Exemplary embodiments provide compositions for a solution process, electronic devices fabricated using the same, and fabrication methods thereof An oxide nano-structure is formed using a sol-gel process. An oxide thin film transistor is formed using the oxide nano-structure.04-05-2012
20120080677THIN FILM TRANSISTOR AND MANUFACTURING METHOD THEREOF, THIN FILM TRANSISTOR ARRAY PANEL AND MANUFACTURING METHOD THEREOF - A manufacturing method of a thin film transistor array panel includes forming a gate line including a gate electrode on a substrate; forming a gate insulating layer on the gate line; forming a semiconductor layer on the gate insulating layer; forming a data line including a data conductive layer pattern on the semiconductor layer and crossing the gate line; forming a planarization layer on the data conductive layer pattern; dry-etching the planarization layer to expose a portion of the data conductive layer pattern overlapping the gate electrode; wet-etching the exposed data conductive layer pattern; and exposing a portion of the semiconductor layer overlapping the gate electrode.04-05-2012
20100230676TFT ARRAY SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME - A TFT array substrate includes a substrate, at least one gate line and gate electrode, a gate insulating layer, and at least one channel component, source electrode, drain electrode and data line. The gate line and gate electrode are disposed on the substrate, wherein both of the gate line and gate electrode have first and second conductive layers, the first conductive layer is formed on the substrate, the first conductive layer contains molybdenum nitride, the second conductive layer is formed on the first conductive layer, and the second conductive layer contains copper. The gate insulating layer is disposed on the gate line, gate electrode and the substrate. The channel component is disposed on the gate insulating layer. The source electrode and drain electrode are disposed on the channel component, and data line is disposed on the gate insulating layer.09-16-2010
20120326149Protecting Semiconducting Oxides - In transistor structures such as thin film transistors (TFTs) in an array of cells, a layer of semiconducting oxide material that includes a channel is protected by a protective layer that includes low-temperature encapsulant material. The semiconducting oxide material can be a transition metal oxide material such as zinc oxide, and can be in an active layered substructure that also includes channel end electrodes. The low-temperature encapsulant can, for example, be an organic polymer such as poly(methyl methacrylate) or parylene, deposited on an exposed region of the oxide layer such as by spinning, spincasting, evaporation, or vacuum deposition or an inorganic polymer deposited such as by spinning or liquid deposition. The protective layer can include a lower sublayer of low-temperature encapsulant on the exposed region and an upper sublayer of inorganic material on the lower sublayer. For roll-to-roll processing, a mechanically flexible, low-temperature substrate can be used.12-27-2012
20120280233NITRIDE-BASED HETEROSTRUCTURE FIELD EFFECT TRANSISTOR HAVING HIGH EFFICIENCY - A high efficiency heterostructure field effect transistor (HFET) capable of suppressing a leakage current and enhancing a current density by lowering a barrier between an electrode and a semiconductor layer is provided. The high efficiency HFET may include a substrate, a semi-insulating gallium nitride (GaN) layer formed on the substrate, an aluminum gallium nitride (AlGaN) layer formed on the GaN layer, and a silicon carbide (Si11-08-2012
20120280235THIN FILM FET DEVICE AND METHOD FOR FORMING THE SAME - A thin film FET device and a method of forming the same are disclosed. The method comprises: etching a single crystal silicon thin film layer on an insulating thin film layer of an SOI substrate, wherein the etched single crystal silicon thin film layer is used as a channel; forming a gate insulating layer on the SOI substrate that has the single crystal silicon channel formed thereon; and forming a gate electrode, a drain electrode, and a source electrode.11-08-2012
20120280234SEMICONDUCTOR DEVICE - A highly reliable semiconductor device which is formed using an oxide semiconductor and has stable electric characteristics is provided. A semiconductor device which includes an amorphous oxide semiconductor layer including a region containing oxygen in a proportion higher than that in the stoichiometric composition, and an aluminum oxide film provided over the amorphous oxide semiconductor layer is provided. The amorphous oxide semiconductor layer is formed as follows: oxygen implantation treatment is performed on a crystalline or amorphous oxide semiconductor layer which has been subjected to dehydration or dehydrogenation treatment, and then thermal treatment is performed on the oxide semiconductor layer provided with an aluminum oxide film at a temperature lower than or equal to 450° C.11-08-2012
20120091458SEMICONDUCTOR DEVICE WITH AMORPHOUS SILICON MAS MEMORY CELL STRUCTURE AND MANUFACTURING METHOD THEREOF - A semiconductor device with an amorphous silicon (a-Si) metal-aluminum oxide-semiconductor (MAS) memory cell structure. The device includes a substrate, a dielectric layer overlying the substrate, and one or more source or drain regions embedded in the dielectric layer with a co-planar surface of n-type a-Si and the dielectric layer. Additionally, the device includes a p-i-n a-Si diode junction. The device further includes an aluminum oxide charge trapping layer on the a-Si p-i-n diode junction and a metal control gate overlying the aluminum oxide layer. A method is provided for making the a-Si MAS memory cell structure and can be repeated to integrate the structure three-dimensionally.04-19-2012
20120286273LIGHT EMITTING DEVICE, DRIVING METHOD OF LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE - By controlling the luminance of light emitting element not by means of a voltage to be impressed to the TFT but by means of controlling a current that flows to the TFT in a signal line drive circuit, the current that flows to the light emitting element is held to a desired value without depending on the characteristics of the TFT. Further, a voltage of inverted bias is impressed to the light emitting element every predetermined period. Since a multiplier effect is given by the two configurations described above, it is possible to prevent the luminance from deteriorating due to a deterioration of the organic luminescent layer, and further, it is possible to maintain the current that flows to the light emitting element to a desired value without depending on the characteristics of the TFT.11-15-2012
20100176399BACK-CHANNEL-ETCH TYPE THIN-FILM TRANSISTOR, SEMICONDUCTOR DEVICE AND MANUFACTURING METHODS THEREOF - A back-channel-etch type TFT includes a gate electrode, an SiN film that is formed on the gate electrode, and an SiO film that is formed and patterned on the SiN film. The TFT further includes an polycrystalline semiconductor film that is formed and patterned on the SiO film in contact with the SiO film in such a way that all pattern ends of the polycrystalline semiconductor film are located in close proximity to pattern ends of the SiO film.07-15-2010
20130015443SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOFAANM HE; YONGGENAACI BeijingAACO CNAAGP HE; YONGGEN Beijing CNAANM Wu; BingAACI BeijingAACO CNAAGP Wu; Bing Beijing CNAANM Liu; HuanxinAACI BeijingAACO CNAAGP Liu; Huanxin Beijing CN - A method for manufacturing a semiconductor device comprises: forming a recess in a substrate; implanting at the bottom of the recess to form an amorphous layer to a predetermined depth under the bottom of the recess; carrying out crystal orientation selective wet etching to form a Sigma shaped recess by use of the amorphous layer as a stopping layer. Through forming an amorphous layer by means of implantation which is used as a stopping layer in a subsequent wet etching, a Sigma shaped recess with a cuspate bottom is avoided, and a Sigma shaped recess having a planar bottom is obtained, which may further improve semiconductor device performance.01-17-2013
20130015444EVAPORATION MASK, METHOD OF MANUFACTURING EVAPORATION MASK, ELECTRONIC DEVICE, AND METHOD OF MANUFACTURING ELECTRONIC DEVICEAANM HIRAI; NobukazuAACI TokyoAACO JPAAGP HIRAI; Nobukazu Tokyo JP - There are provided an evaporation mask with which an evaporated film is allowed to be formed with a fine pattern, a method of manufacturing the same, and a method of manufacturing an electronic device using such an evaporation mask. Further, there is provided an electronic device having a film-formation pattern that is precisely formed with a fine pattern. The evaporation mask including: a substrate including one or a plurality of first opening sections; and a polymer film provided on a first main surface side of the substrate, the polymer film including one or a plurality of second opening sections communicated with the respective first opening sections.01-17-2013
20080237595THIN FILM TRANSISTOR INCLUDING TITANIUM OXIDES AS ACTIVE LAYER AND METHOD OF MANUFACTURING THE SAME - Disclosed herein is a method of manufacturing a thin film transistor including titanium oxides as an active layer and the structure of the thin film transistor film manufactured using the method. The thin film transistor includes: a substrate; an active layer formed on the substrate using polycrystalline or amorphous titanium oxides; and an insulating layer formed on the active layer. Further, the method of manufacturing the thin film transistor includes: forming a substrate; forming an active layer on the substrate using polycrystalline or amorphous titanium oxides; and forming an insulating layer on the active layer. The present invention is advantageous in that the performance of the thin film transistor can be improved, the thin film transistor can be manufactured at low cost, harmful environmental problems can be solved, and the thin film transistor can be widely applied to various electronic apparatuses including, but not limited to, integrated drivers in active-matrix displays and transparent electronic devices.10-02-2008
20080237594PIXEL STRUCTURE AND MANUFACTURING METHOD THEREOF - A method of manufacturing a pixel structure is provided. A first patterned conductive layer including a gate and a data line is formed on a substrate. A gate insulating layer is formed to cover the first patterned conductive layer and a semiconductor channel layer is formed on the gate insulating layer above the gate. A second patterned conductive layer including a scan line, a common line, a source and a drain is formed on the gate insulating layer and the semiconductor channel layer. The scan line is connected to the gate and the common line is located above the data line. The source and drain are located on the semiconductor channel layer, and the source is connected to the data line. A passivation layer is formed on the substrate to cover the second patterned conductive layer. A pixel electrode connected to the drain is formed on the passivation layer.10-02-2008
20130140569SEMICONDUCTOR DEVICE - A semiconductor device includes a first transistor which includes a first gate electrode below its oxide semiconductor layer and a second gate electrode above its oxide semiconductor layer, and a second transistor which includes a first gate electrode above its oxide semiconductor layer and a second gate electrode below its oxide semiconductor layer and is provided so as to at least partly overlap with the first transistor. In the semiconductor device, a conductive film serving as the second gate electrode of the first transistor and the second gate electrode of the second transistor is shared between the first transistor and the second transistor. Note that the second gate electrode not only controls the threshold voltages (Vth) of the first transistor and the second transistor but also has an effect of reducing interference of an electric field applied from respective first gate electrodes of the first transistor and the second transistor.06-06-2013
20080224140Semiconductor device and manufacturing method thereof - It is an object of the present invention to provide a semiconductor device mounted with a memory which can be driven in the ranges of a current value and a voltage value which can be generated from a wireless signal. It is another object to provide a write-once read-many memory into which data can be written anytime after manufacture of a semiconductor device. An antenna, an antifuse-type ROM, and a driver circuit are formed over a substrate having an insulating surface. A stacked layer of a silicon film and a germanium film is interposed between a pair of electrodes included in the antifuse-type ROM. The antifuse-type ROM having this stacked layer can reduce fluctuation in writing voltage.09-18-2008
20080224139THIN FILM TRANSISTOR - A thin film transistor including a substrate, a gate, a gate insulator layer, a semiconductor layer, an ohmic contact layer, a source and a drain is provided. The gate is disposed on the substrate while the gate insulator layer is disposed on the substrate and covers the gate. The semiconductor layer is disposed on the gate insulator layer above the gate. The semiconductor layer includes an undoped amorphous silicon layer and a first undoped microcrystalline silicon (μc-Si) layer, wherein the first undoped μc-Si layer is disposed on the undoped amorphous silicon layer. The ohmic contact layer is disposed on part of the semiconductor layer and the source and the drain are disposed on the ohmic contact layer. Therefore, the thin film transistor has better quality control and electrical characteristics.09-18-2008
20080217616Semiconductor integrated circuit device and a method of fabricating the same - A method of fabricating a semiconductor integrated circuit includes forming a first dielectric layer on a semiconductor substrate, patterning the first dielectric layer to form a first patterned dielectric layer, forming a non-single crystal seed layer on the first patterned dielectric layer, removing a portion of the seed layer to form a patterned seed layer, forming a second dielectric layer on the first patterned dielectric layer and the patterned seed layer, removing portions of the second dielectric layer to form a second patterned dielectric layer, irradiating the patterned seed layer to single-crystallize the patterned seed layer, removing portions of the first patterned dielectric layer and the second patterned dielectric layer such that the single-crystallized seed layer protrudes in the vertical direction with respect to the first and/or the second patterned dielectric layer, and forming a gate electrode in contact with the single-crystal active pattern.09-11-2008
20130168677FLEXIBLE SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SAME - A method for manufacturing a flexible semiconductor device includes (i) forming an insulating film on the upper surface of metal foil, (ii) forming an extraction electrode pattern on the upper surface of the metal foil, (iii) forming a semiconductor layer on the insulating film such that the semiconductor layer is in contact with the extraction electrode pattern, (iv) forming a sealing resin layer on the upper surface of the metal foil such that the sealing resin layer covers the semiconductor layer and the extraction electrode pattern, and (v) forming electrodes by etching the metal foil, the metal foil being used as a support for the insulating film, the extraction electrode pattern, the semiconductor layer, and the sealing resin layer formed in (i) to (iv) and used as a constituent material for the electrodes in (v). The metal foil need not be stripped, and a high-temperature process can be used.07-04-2013
20130092942THIN FILM TRANSISTOR ARRAY PANEL AND MANUFACTURING METHOD THEREOF - A thin film transistor array panel according to an exemplary embodiment of the present disclosure includes: an insulating substrate; a gate electrode disposed on the insulating substrate; a gate insulating layer disposed on the gate electrode; a semiconductor disposed on the gate insulating layer; a source electrode and a drain electrode disposed on the semiconductor; an ohmic contact layer disposed at an interface between at least one of the source and drain electrodes and the semiconductor. Surface heights of the source and drain electrodes different, while surface heights of the semiconductor and the ohmic contact layer are the same. The ohmic contact layer is made of a silicide of a metal used for the source and drain electrodes.04-18-2013
20130092945SEMICONDUCTOR DEVICE - The concentration of impurity elements included in an oxide semiconductor film in the vicinity of a gate insulating film is reduced. Further, crystallinity of the oxide semiconductor film in the vicinity of the gate insulating film is improved. A semiconductor device includes an oxide semiconductor film over a substrate, a source electrode and a drain electrode over the oxide semiconductor film, a gate insulating film which includes an oxide containing silicon and is formed over the oxide semiconductor film, and a gate electrode over the gate insulating film. The oxide semiconductor film includes a region in which the concentration of silicon is lower than or equal to 1.0 at. %, and at least the region includes a crystal portion.04-18-2013
20130092944SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - To suppress a decrease in on-state current in a semiconductor device including an oxide semiconductor. Provided is a semiconductor device including the following: an oxide semiconductor film which serves as a semiconductor layer; a gate insulating film including an oxide containing silicon, over the oxide semiconductor film; a gate electrode which overlaps with at least the oxide semiconductor film, over the gate insulating film; and a source electrode and a drain electrode which are electrically connected to the oxide semiconductor film. In the semiconductor device, the oxide semiconductor film overlapping with at least the gate electrode includes a region in which a concentration of silicon distributed from the interface with the gate insulating film toward the inside of the oxide semiconductor film is lower than or equal to 1.1 at. %.04-18-2013
20130099237SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - Hydrogen concentration and oxygen vacancies in an oxide semiconductor film are reduced. Reliability of a semiconductor device which includes a transistor using an oxide semiconductor film is improved. One embodiment of the present invention is a semiconductor device which includes a base insulating film; an oxide semiconductor film formed over the base insulating film; a gate insulating film formed over the oxide semiconductor film; and a gate electrode overlapping with the oxide semiconductor film with the gate insulating film provided therebetween. The base insulating film shows a signal at a g value of 2.01 by electron spin resonance. The oxide semiconductor film does not show a signal at a g value of 1.93 by electron spin resonance.04-25-2013
20130175530SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - Provided is a fin-type transistor having an oxide semiconductor in a channel formation region in which the channel formation region comprising an oxide semiconductor is three-dimensionally structured and a gate electrode is arranged to extend over the channel formation region. Specifically, the fin-type transistor comprises: an insulator protruding from a substrate plane; an oxide semiconductor film extending beyond the insulator; a gate insulating film over the oxide semiconductor film; and a gate electrode over and extending beyond the oxide semiconductor film. This structure allows the expansion of the width of the channel formation region, which enables the miniaturization and high integration of a semiconductor device having the transistor. Additionally, the extremely small off-state current of the transistor contributes to the formation of a semiconductor device with significantly reduced power consumption.07-11-2013
20110215326SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - Disclosed is a semiconductor device including: an insulating layer; a source electrode and a drain electrode embedded in the insulating layer; an oxide semiconductor layer in contact and over the insulating layer, the source electrode, and the drain electrode; a gate insulating layer over and covering the oxide semiconductor layer; and a gate electrode over the gate insulating layer, where the upper surfaces of the insulating layer, the source electrode, and the drain electrode exist coplanarly. The upper surface of the insulating layer, which is in contact with the oxide semiconductor layer, has a root-mean-square (RMS) roughness of 1 nm or less, and the difference in height between the upper surface of the insulating layer and the upper surface of the source electrode or the drain electrode is less than 5 nm. This structure contributes to the suppression of defects of the semiconductor device and enables their miniaturization.09-08-2011
20110220894SEMICONDUCTOR LAYER AND METHOD FOR FORMING SAME - A semiconductor layer (09-15-2011
20110227076THIN-FILM SEMICONDUCTOR DEVICE, LATERAL BIPOLAR THIN-FILM TRANSISTOR, HYBRID THIN-FILM TRANSISTOR, MOS THIN-FILM TRANSISTOR, AND METHOD OF FABRICATING THIN-FILM TRANSISTOR - In a lateral bipolar transistor including an emitter, a base and a collector which are formed in a semiconductor thin film formed on an insulating substrate, the semiconductor thin film is a semiconductor thin film which is crystallized in a predetermined direction. In addition, in a MOS-bipolar hybrid transistor formed in a semiconductor thin film formed on an insulating substrate, the semiconductor thin film is a semiconductor thin film which is crystallized in a predetermined direction.09-22-2011
20100283054FLEXIBLE SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SAME - There is provided a method for manufacturing a flexible semiconductor device characterized by comprising (i) a step of forming an insulating film on the upper surface of metal foil, (ii) a step of forming an extraction electrode pattern on the upper surface of the metal foil, (iii) a step of forming a semiconductor layer on the insulating film in such a manner that the semiconductor layer is in contact with the extraction electrode pattern, (iv) a step of forming a sealing resin layer on the upper surface of the metal foil in such a manner that the sealing resin layer covers the semiconductor layer and the extraction electrode pattern, and (v) a step of forming electrodes by etching the metal foil, wherein the metal foil is used as a support for the insulating film, the extraction electrode pattern, the semiconductor layer, and the sealing resin layer formed in (i) to (iv) and used as a constituent material for the electrodes in (v). A TFT element can be fabricated by a simple process because the metal foil serving as the support need not be finally stripped off. Further, a high-temperature process can be introduced to the fabrication of the insulating film and the semiconductor layer because the metal foil is used as the support, whereby the TFT characteristic is improved.11-11-2010
20120273786ORGANIC SURFACE PROTECTIVE LAYER COMPOSITION AND METHOD FOR PROTECTING ORGANIC SURFACE - The problem to be solved by the present invention is to provide such an organic surface protective layer composition that a thin and uniform protective layer can be formed on a surface of an organic layer, that the formed protective layer can easily be removed by etching, and that it can inhibit the alteration of the organic compound presenting in the surface of the organic layer exposed by the etching. Means for solving the problem is an organic surface protective layer composition containing (A) a metal alkoxide, (B) a stabilizer for the metal alkoxide and (C) an organic solvent capable of dissolving the metal alkoxide.11-01-2012
20130126869THIN-FILM TRANSISTOR DEVICE AND METHOD FOR MANUFACTURING THIN-FILM TRANSISTOR DEVICE - A thin-film transistor device includes: a gate electrode above a substrate; a gate insulating film on the gate electrode; a crystalline silicon thin film above the gate insulating film; a first semiconductor film above the crystalline silicon thin film; a pair of second semiconductor films above the first semiconductor film; a source electrode over one of the second semiconductor films; and a drain electrode over an other one of the second semiconductor films. The first semiconductor film is provided on the crystalline silicon thin film. A relationship E05-23-2013
20130126868SEMICONDUCTOR ELEMENT, METHOD FOR MANUFACTURING SEMICONDUCTOR ELEMENT, AND SEMICONDUCTOR DEVICE INCLUDING SEMICONDUCTOR ELEMENT - In a semiconductor element including an oxide semiconductor film as an active layer, stable electrical characteristics are achieved. A semiconductor element includes a base film which is an oxide film at least a surface of which has crystallinity; an oxide semiconductor film having crystallinity over the base film; a gate insulating film over the oxide semiconductor film; a gate electrode overlapping with at least the oxide semiconductor film, over the gate insulating film; and a source electrode and a drain electrode which are electrically connected to the oxide semiconductor film. The base film is a film containing indium and zinc. With the structure, a state of crystals in the oxide semiconductor film reflects that in the base film; thus, the oxide semiconductor film can have crystallinity in a large region in the thickness direction. Accordingly, the electrical characteristics of the semiconductor element including the film can be made stable.05-23-2013
20110233550Method for producing a thin film transistor, and a thin film transistor - Provided is a metallic wiring film which is not peeled away even when exposed to a hydrogen plasma. A metallic wiring film is constituted by an adhesion layer containing copper, Ca, and oxygen and a low-resistance metal layer (a layer of a copper alloy or pure copper) having a lower resistance than the adhesion layer. When the adhesion layer is composed of a copper alloy, which contains Ca and oxygen, and a source electrode film and a drain electrode film adhering to an ohmic contact layer are constituted by the adhesion layer, even if the adhesion layer is exposed to the hydrogen plasma, a Cu-containing oxide formed at an interface between the adhesion layer and the ohmic contact layer is not reduced, so that no peeling occurs between the adhesion layer and a silicon layer.09-29-2011
20100314621METHOD OF MANUFACTURING ELECTRONIC APPARATUS AND ELECTRONIC APPARATUS - An electronic apparatus having a substrate with a bottom gate p-channel type thin film transistor; a resist pattern over the substrate; and a light shielding film operative to block light having a wavelength shorter than 260 nm over at least a channel part of said thin film transistor.12-16-2010
20110272695PIXEL HAVING AN ORGANIC LIGHT EMITTING DIODE AND METHOD OF FABRICATING THE PIXEL - A pixel having an organic light emitting diode (OLED) and method for fabricating the pixel is provided. A planarization dielectric layer is provided between a thin-film transistor (TFT) based backplane and OLED layers. A through via between the TFT backplane and the OLED layers forms a sidewall angle of less than 90 degrees to the TFT backplane. The via area and edges of an OLED bottom electrode pattern may be covered with a dielectric cap.11-10-2011
20110272694INSULATING SUBSTRATE FOR SEMICONDUCTOR APPARATUS, SEMICONDUCTOR APPARATUS, AND METHOD FOR MANUFACTURING SEMICONDUCTOR APPARATUS - The present invention is intended to provide a glass substrate (11-10-2011
20130153903AMBIPOLAR TRANSISTOR DEVICE STRUCTURE AND METHOD OF FORMING THE SAME - An ambipolar transistor device structure suitable for use in an integrated circuit is disclosed. An electron blocking layer or a hole blocking layer is interposed between a source/drain and an ambipolar active layer. Therefore, a unipolar device electric property may be extracted from the ambipolar active layer, which may be suitably applied to the design of a logic circuit. The manufacturing method of the disclosure is simple, only needing one patterning step, so as to effectively improve the performance of the ambipolar device.06-20-2013
20130153904SEMICONDUCTOR DEVICE AND PROCESS FOR PRODUCTION THEREOF - A semiconductor device (06-20-2013
20130181221SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A circuit including an inverter is provided for a wiring layer.07-18-2013
20110284846SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - Oxygen is released from the insulating layer, whereby oxygen deficiency in the oxide semiconductor layer and an interface state between the insulating layer and the oxide semiconductor layer can be reduced. Accordingly, a semiconductor device where reliability is high and variation in electric characteristics is small can be manufactured.11-24-2011
20110284845SEMICONDUCTOR DEVICE - An insulating layer containing a silicon peroxide radical is used as an insulating layer in contact with an oxide semiconductor layer for forming a channel. Oxygen is released from the insulating layer, whereby oxygen deficiency in the oxide semiconductor layer and an interface state between the insulating layer and the oxide semiconductor layer can be reduced. Accordingly, a semiconductor device where reliability is high and variation in electric characteristics is small can be manufactured.11-24-2011
20110303916SEMICONDUCTOR DEVICE - A semiconductor device of the present invention includes: a lower electrode (12-15-2011
20130187161SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A photolithography process for forming an island-shaped semiconductor layer is omitted, and a transistor is formed by at least two photolithography processes: a photolithography process for forming a gate electrode (including a wiring or the like formed from the same layer as the gate electrode) and a photolithography process for forming a source electrode and a drain electrode (including a wiring or the like formed from the same layer as the source electrode and the drain electrode). By using electron beam exposure, a transistor in which a distance between the source electrode and the drain electrode (channel length) is short can be formed. For example, a transistor whose channel length is less than 50 nm can be obtained.07-25-2013
20130187162THIN FILM TRANSISTOR SUBSTRATE AND PROCESS FOR PRODUCTION THEREOF - A TFT substrate 07-25-2013
20130187160INTEGRATED FIELD EFFECT TRANSISTORS WITH HIGH VOLTAGE DRAIN SENSING - An integrated circuit includes a junction field effect transistor (JFET) and a power metal oxide semiconductor field effect transistor (MOSFET) on a same substrate. The integrated circuit includes a drain sense terminal for sensing the drain of the power MOSFET through the JFET. The JFET protects a controller or other electrical circuit coupled to the drain sense terminal from high voltage that may be present on the drain of the power MOSFET. The JFET and the power MOSFET share a same drift region, which includes an epitaxial layer formed on the substrate. The integrated circuit may be packaged in a four terminal small outline integrated circuit (SOIC) package. The integrated circuit may be employed in a variety of applications including as an ideal diode.07-25-2013
20120018727SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - An insulating layer which releases a large amount of oxygen is used as an insulating layer in contact with a channel region of an oxide semiconductor layer, and an insulating layer which releases a small amount of oxygen is used as an insulating layer in contact with a source region and a drain region of the oxide semiconductor layer. By releasing oxygen from the insulating layer which releases a large amount of oxygen, oxygen deficiency in the channel region and an interface state density between the insulating layer and the channel region can be reduced, so that a highly reliable semiconductor device having small variation in electrical characteristics can be manufactured. The source region and the drain region are provided in contact with the insulating layer which releases a small amount of oxygen, thereby suppressing the increase of the resistance of the source region and the drain region.01-26-2012
20120025190Radiation detector - The present invention provides a radiation detector that may set output characteristics of an electrical signal for output so as to match the detection range of an amplifier. Namely, a charge storage capacitor is provided to each sensor section so as to be electrically connected to a bias line in parallel to the respective sensor section.02-02-2012
20120037907Method of Forming Source and Drain Electrodes of Organic Thin Film Transistors by Electroless Plating - A method of manufacturing an organic thin film transistor, the method comprising: depositing a source and drain electrode over a substrate using a solution processing technique; forming a workfunction modifying layer over the source and drain electrodes using a solution processing technique; and depositing an organic semi-conductive material in a channel region between the source and drain electrode using a solution processing technique.02-16-2012
20120043544SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - The present invention has an object to provide an active-matrix liquid crystal display device that realizes the improvement in productivity as well as in yield. In the present invention, a laminate film comprising the conductive film comprising metallic material and the second amorphous semiconductor film containing an impurity element of one conductivity type and the amorphous semiconductor film is selectively etched with the same etching gas to form a side edge of the first amorphous semiconductor film 02-23-2012
20130200376TRANSISTOR AND SEMICONDUCTOR DEVICE - A transistor which is resistant to a short-channel effect is provided. A semiconductor which leads to the following is used in a junction portion between a source and a semiconductor layer and a junction portion between a drain and the semiconductor layer: a majority carrier density n08-08-2013
20130200374Thin Film Transistor, Thin Film Transistor Substrate and Method for Manufacturing the Same - A thin film transistor is provided. The thin film transistor disposed on a substrate includes a gate electrode, a gate dielectric layer, a patterned semiconductor layer, a source electrode, a drain electrode covered with an anticorrosive conductive layer, a patterned passivation layer and a transparent conductive layer. The anticorrosive conductive layer includes indium tin oxide or indium zinc oxide, and is used to prevent the drain electrode from being over etched during the process of etching the passivation layer. A method for manufacturing the thin film transistor is also provided herein.08-08-2013
20130200375SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - Provided is a highly reliable semiconductor device which includes a transistor including an oxide semiconductor. The semiconductor device includes an oxide semiconductor layer; a gate insulating layer provided over the oxide semiconductor layer; a gate electrode layer overlapping with the oxide semiconductor layer with the gate insulating layer provided therebetween; an insulating layer being in contact with part of an upper surface of the oxide semiconductor layer, covering a side surface of the gate insulating layer and a side surface and an upper surface of the gate electrode layer, and having a lower oxygen-transmitting property than the gate insulating layer; a sidewall insulating layer provided on the side surface of the gate electrode layer with the insulating layer provided therebetween; a source electrode layer and a drain electrode layer which are electrically connected to the oxide semiconductor layer.08-08-2013
20120068180METHODS OF FORMING LOW INTERFACE RESISTANCE CONTACTS AND STRUCTURES FORMED THEREBY - Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a tapered contact opening in an ILD disposed on a substrate, wherein a source/drain contact area is exposed, preamorphizing a portion of a source drain region of the substrate, implanting boron into the source/drain region through the tapered contact opening, forming a metal layer on the source/drain contact area, and then annealing the metal layer to form a metal silicide.03-22-2012
20130092943METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A semiconductor device which is miniaturized while favorable characteristics thereof are maintained is provided. In addition, the miniaturized semiconductor device is provided with a high yield. The semiconductor device has a structure including an oxide semiconductor film provided over a substrate having an insulating surface; a source electrode layer and a drain electrode layer which are provided in contact with side surfaces of the oxide semiconductor film and have a thickness larger than that of the oxide semiconductor film; a gate insulating film provided over the oxide semiconductor film, the source electrode layer, and the drain electrode layer; and a gate electrode layer provided in a depressed portion formed by a step between a top surface of the oxide semiconductor film and top surfaces of the source electrode layer and the drain electrode layer.04-18-2013
20120086008FIELD-EFFECT TRANSISTOR, PROCESSES FOR PRODUCING THE SAME, AND ELECTRONIC DEVICE USING THE SAME - Provided is a field-effect transistor which has a high mobility and a low variation of mobility.04-12-2012
20130207112SEMICONDUCTOR DEVICE - A semiconductor device having a novel structure is provided in which a transistor including an oxide semiconductor and a transistor including a semiconductor material which is not an oxide semiconductor are stacked. Further, a semiconductor device in which a semiconductor element and a capacitor are formed efficiently is provided. In a semiconductor device, a first semiconductor element layer including a transistor formed using a semiconductor material which is not an oxide semiconductor, such as silicon, and a second semiconductor element layer including a transistor formed using an oxide semiconductor are stacked. A capacitor is formed using a wiring layer, or a conductive film or an insulating film which is in the same layer as a conductive film or an insulating film of the second semiconductor element layer.08-15-2013
20130207110THIN FILM TRANSISTOR, THIN FILM TRANSISTOR ARRAY SUBSTRATE AND METHOD OF FABRICATING THE SAME - A method of fabricating a thin film transistor includes sequentially forming a first metal layer on a substrate and a second metal layer of copper on the first metal layer; performing a plasma process to form a copper nitride layer on the second metal layer; patterning the copper nitride layer, the second metal layer and the first metal layer to form a gate electrode; forming a first gate insulating layer of silicon nitride on the substrate including the gate electrode; forming a second gate insulating layer of silicon oxide on the first gate insulating layer; forming a semiconductor layer on the second gate insulating layer formed of an oxide semiconductor material; and forming a source electrode and a drain electrode on the semiconductor layer, the source electrode spaced apart from the drain electrode.08-15-2013

Patent applications in class Field effect device in amorphous semiconductor material

Patent applications in all subclasses Field effect device in amorphous semiconductor material