Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Incoherent light emitter

Subclass of:

257 - Active solid-state devices (e.g., transistors, solid-state diodes)

257009000 - THIN ACTIVE PHYSICAL LAYER WHICH IS (1) AN ACTIVE POTENTIAL WELL LAYER THIN ENOUGH TO ESTABLISH DISCRETE QUANTUM ENERGY LEVELS OR (2) AN ACTIVE BARRIER LAYER THIN ENOUGH TO PERMIT QUANTUM MECHANICAL TUNNELING OR (3) AN ACTIVE LAYER THIN ENOUGH TO PERMIT CARRIER TRANSMISSION WITH SUBSTANTIALLY NO SCATTERING (E.G., SUPERLATTICE QUANTUM WELL, OR BALLISTIC TRANSPORT DEVICE)

257012000 - Heterojunction

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20110175055SOLID STATE LIGHTING DEVICE ON A CONDUCTIVE SUBSTRATE - A light emitting device includes a conductive substrate having a first substrate surface and comprising a conductive material, a protrusion formed on the conductive substrate, wherein the protrusion is defined in part by a first protrusion surface that is not parallel to the first substrate surface, and light emission layers disposed over the first protrusion surface. The light emission layers can emit light when an electric field is applied across the light emission layers.07-21-2011
20130043457LIGHT EMITTING DEVICE - Provided are a light emitting device, a method of manufacturing the same, a light emitting device package, and a lighting system. The light emitting device includes: a first conductive semiconductor layer; a superlattice layer on the first conductive semiconductor layer; an active layer on the superlattice layer; and a second conductive semiconductor layer on the active layer. The superlattice layer comprises In02-21-2013
20110180782Light-Emitting Devices - Various embodiments of the present invention are directed to semiconductor light-emitting devices that provide energy efficient, high-speed modulation rates in excess of 10 Gbits/sec. These devices include a light-emitting layer embedded between two relatively thicker semiconductor layers. The energy efficient, high-speed modulation rates result from the layers adjacent to the light-emitting layer being composed of semiconductor materials with electronic states that facilitate injection of carriers into the light-emitting layer for light emission when an appropriate light-emitting voltage is applied and facilitate the removal of carriers when an appropriate light-quenching voltage is applied.07-28-2011
20120161103ELECTRICALLY PUMPED OPTOELECTRONIC SEMICONDUCTOR CHIP - An electrically pumped optoelectronic semiconductor chip includes at least two radiation-active quantum wells comprising InGaN or consisting thereof. The optoelectronic semiconductor chip includes at least two cover layers which include AlGaN or consist thereof. Each of the cover layers is assigned to precisely one of the radiation-active quantum wells. The cover layers are each located on a p-side of the associated radiation-active quantum well. The distance between the radiation-active quantum well and the associated cover layer is at most 1.5 nm.06-28-2012
20100019224LIGHT EMITTING DEVICE AND DISPLAY - A light emitting diode comprising a lead, an LED chip mounted on said lead, said LED chip having a substrate and semiconductor layers formed on said substrate, a transparent material covering said LED chip, and a phosphor contained in said transparent material and absorbing a part of light emitted by said LED chip and emitting light of wavelength different from that of the absorbed light, wherein the main emission peak of said LED chip is within the range from 400 nm to 530 nm, and said LED chip is mounted on said lead with substrate-side up and is electrically connected with said lead by a metallic bump.01-28-2010
20090194761ENHANCEMENT OF OPTICAL POLARIZATION OF NITRIDE LIGHT-EMITTING DIODES BY INCREASED INDIUM INCORPORATION - An increase in the Indium (In) content in light-emitting layers of light-emitting diode (LED) structures prepared on nonpolar III-nitride substrates result in higher polarization ratios for light emission than LED structures containing lesser In content. Polarization ratios should be higher than 0.7 at wavelengths longer than 470 nm.08-06-2009
20110186812SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - Provided are a semiconductor light emitting device and a method of manufacturing the same. The semiconductor light emitting layer comprises a first conductive type semiconductor layer, an active layer on the first conductive type semiconductor layer, and a second conductive type semiconductor layer on the active layer. The active layer comprises a quantum well layer, a quantum barrier layer, and a dual barrier layer.08-04-2011
20100025654LIGHT-EMITTING DIODE IN SEMICONDUCTOR MATERIAL AND ITS FABRICATION METHOD - The subject of the invention is a light-emitting diode comprising a structure (02-04-2010
20100084629QUANTUM DOT-METAL OXIDE COMPLEX, METHOD OF PREPARING THE SAME, AND LIGHT-EMITTING DEVICE COMPRISING THE SAME - Provided is a quantum dot-metal oxide complex including a quantum dot and a metal oxide forming a 3-dimensional network with the quantum dot. In the quantum dot-metal oxide complex, the quantum dot is optically stable without a change in emission wavelength band and its light-emitting performance is enhanced.04-08-2010
20130134387SEMICONDUCTOR LIGHT EMITTING ELEMENT, METHOD OF MANUFACTURE THEREOF, AND MANUFACTURING SYSTEM OF SEMICONDUCTOR LIGHT EMITTING ELEMENT - Manufacturing variation (production fluctuation) of designed doping concentration and the concentration distribution in the direction of depth can be inhibited and light emitting output can be improved and stabilized. A capacitance measuring step, wherein, after the formation of a p-type electrode 05-30-2013
20130075697ULTRAVIOLET IRRADIATION APPARATUS - Provided is a compact ultraviolet irradiation apparatus which is capable of emitting ultraviolet radiation with high efficiency.03-28-2013
20130075696LIGHT-EMITTING ELEMENT WITH MULTIPLE LIGHT-EMTTING STACKED LAYERS - A light-emitting device includes a first light-emitting element emitting a first light with a first dominant wavelength including a first MQW structure including a first number of MQW pairs; a second MQW structure on the first MQW structure, including a second number of MQW pairs; and a tunneling layer between the first MQW structure and the second MQW structure; and a second light-emitting element emitting a third light with a third dominant wavelength, wherein the first number is different from the second number.03-28-2013
20100148145NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE - A nitride semiconductor light-emitting device according to the present invention includes a nitride based semiconductor substrate 06-17-2010
20080258130Beveled LED Chip with Transparent Substrate - A light emitting diode is disclosed that includes a transparent (and potentially low conductivity) silicon carbide substrate, an active structure formed from the Group III nitride material system on the silicon carbide substrate, and respective ohmic contacts on the top side of the diode. The silicon carbide substrate is beveled with respect to the interface between the silicon carbide and the Group III nitride.10-23-2008
20110193060NITRIDE-BASED SEMICONDUCTOR LIGHT EMITTING DIODE - A nitride-based semiconductor LED includes a substrate; an n-type nitride semiconductor layer formed on the substrate; an active layer and a p-type nitride semiconductor layer that are sequentially formed on a predetermined region of the n-type nitride semiconductor layer; a transparent electrode formed on the p-type nitride semiconductor layer; a p-electrode pad formed on the transparent electrode, the p-electrode pad being spaced from the outer edge line of the p-type nitride semiconductor layer by 50 to 200 μm; and an n-electrode pad formed on the n-type nitride semiconductor layer.08-11-2011
20110193061Light Emitting Diode Device Having Uniform Current Distribution and Method for Forming the Same - Embodiments of the present disclosure relate to a novel semiconductor. In one aspect, the semiconductor may include a transparent layer having a first surface, a first doped layer, a second doped layer, and an active layer. The first doped layer may be formed over the first surface of the transparent layer and have a plurality of first-type electrodes formed thereon. The second doped layer may be formed over the first surface of the transparent layer and have a plurality of second-type electrodes formed thereon. The active layer may be formed between the first doped layer and the second doped layer. A distance between at least one of the first-type electrodes and a nearest other one of the first-type electrodes may be greater than each of respective distances between the at least one of the first-type electrodes and more than two of the second-type electrodes.08-11-2011
20110193059III-Nitride Light Emitting Device Including Porous Semiconductor - A semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region is grown over a porous III-nitride region. A III-nitride layer comprising InN is disposed between the light emitting layer and the porous III-nitride region. Since the III-nitride layer comprising InN is grown on the porous region, the III-nitride layer comprising InN may be at least partially relaxed, i.e. the III-nitride layer comprising InN may have an in-plane lattice constant larger than an in-plane lattice constant of a conventional GaN layer grown on sapphire.08-11-2011
20110193058LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE PACKAGE HAVING THE SAME - Disclosed are a light emitting device and a light emitting device package having the same. The light emitting device includes a light emitting structure including a first conductive type semiconductor layer, a second conductive type semiconductor layer, and an active layer between the first conductive type semiconductor layer and the second conductive type semiconductor layer, wherein the first conductive type semiconductor layer includes a stepped structure having a second top surface stepped lower than the first top surface thereof; an insulating layer disposed on a lateral surface of the light emitting structure and the second top surface of the first conductive type semiconductor layer; an electrode electrically connected with the first conductive type semiconductor layer; an electrode layer under the second conductive type semiconductor layer; and a protective layer disposed on a periphery portion of a lower surface of the second conductive type semiconductor layer.08-11-2011
20110193057LED Having Current Spreading Layer - An LED having a radiation-emitting active layer (08-11-2011
20110193056Vertical LED Chip Package on TSV Carrier - A method of forming a light-emitting device (LED) package component includes providing a substrate; forming an LED on the substrate; and lifting the LED off the substrate. A carrier wafer is provided, which includes a through-substrate via (TSV) configured to electrically connecting features on opposite sides of the carrier wafer. The LED is bonded onto the carrier wafer, with the LED electrically connected to the TSV.08-11-2011
20130037779NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR PRODUCING THE SAME - A nitride semiconductor light-emitting device includes an n-type nitride semiconductor layer, a V pit generation layer, an intermediate layer, a multiple quantum well light-emitting layer, and a p-type nitride semiconductor layer provided in this order. The multiple quantum well light-emitting layer is a layer formed by alternately stacking a barrier layer and a well layer having a bandgap energy smaller than that of the barrier layer. A V pit is partly formed in the multiple quantum well light-emitting layer, and an average position of starting point of the V pit is located in the intermediate layer.02-14-2013
20120175591LIGHT EMITTING DEVICE - A light emitting device including a substrate, a first conductive semiconductor layer on the substrate, an active layer on the first conductive semiconductor layer, a second conductive semiconductor layer on the active layer, and a reflective layer under the substrate and including a light reflection pattern configured to reflect light emitted by the active layer in directions away from the reflective layer.07-12-2012
20120175586SILICON-GERMANIUM, QUANTUM-WELL, LIGHT-EMITTING DIODE - A silicon-germanium, quantum-well, light-emitting diode (07-12-2012
20100072456OPTO-ELECTRONIC READ HEAD - A read head for a scale reading apparatus, the head including a light source and an array of photodetector elements, wherein said light source and array of photodetector elements are fabricated in a lattice matched semiconductor compound.03-25-2010
20130207077METHODS FOR MAKING WATER SOLUBLE QUANTUM DOTS - A novel quantum dot containing two different metals at non-toxic levels which is capable of narrow bandwidth near infrared emissions at wavelengths of 600-1100 nm. The quantum dot is fabricated via an aqueous method which forms a structure having an inner region of one composition and an outer region of a different composition, wherein the inner region contains at least a first metal and the outer region contains at least a second metal. The quantum dots may be enabled for bioconjugation and may be used in a method for tissue imaging and analyte detection.08-15-2013
20130207073Quantum Dot White and Colored Light Emitting Devices - A light-emitting device comprising a population of quantum dots (QDs) embedded in a host matrix and a primary light source which causes the QDs to emit secondary light and a method of making such a device. The size distribution of the QDs is chosen to allow light of a particular color to be emitted therefrom. The light emitted from the device may be of either a pure (monochromatic) color, or a mixed (polychromatic) color, and may consist solely of light emitted from the QDs themselves, or of a mixture of light emitted from the QDs and light emitted from the primary source. The QDs desirably are composed of an undoped semiconductor such as CdSe, and may optionally be overcoated to increase photoluminescence.08-15-2013
20130075694STRAIN-CONTROLLED ATOMIC LAYER EPITAXY, QUANTUM WELLS AND SUPERLATTICES PREPARED THEREBY AND USES THEREOF - Processes for forming quantum well structures which are characterized by controllable nitride content are provided, as well as superlattice structures, optical devices and optical communication systems based thereon.03-28-2013
20130075695LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE PACKAGE - A light emitting device, a method of manufacturing the same, a light emitting device package, and a lighting system are disclosed. The light emitting device may include a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer interposed between the first and second conductive semiconductor layers. The first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer may include Al. The second conductive semiconductor layer may have Al content higher than Al content of the first conductive semiconductor layer. The first conductive semiconductor layer may have Al content higher than Al content of the active layer.03-28-2013
20130075693COALESCED NANOWIRE STRUCTURES WITH INTERSTITIAL VOIDS AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device, such as an LED, includes a plurality of first conductivity type semiconductor nanowire cores located over a support, a continuous second conductivity type semiconductor layer extending over and around the cores, a plurality of interstitial voids located in the second conductivity type semiconductor layer and extending between the cores, and first electrode layer that contacts the second conductivity type semiconductor layer.03-28-2013
20130075692SEMICONDUCTOR NANOPARTICLE-BASED LIGHT EMITTING MATERIALS - A light emitting layer including a plurality of light emitting particles embedded within a host matrix material. Each of said light emitting particles includes a population of semiconductor nanoparticles embedded within a polymeric encapsulation medium. A method of fabricating a light emitting layer comprising a plurality of light emitting particles embedded within a host matrix material, each of said light emitting particles comprising a population of semiconductor nanoparticles embedded within a polymeric encapsulation medium. The method comprises providing a dispersion containing said light emitting particles, depositing said dispersion to form a film, and processing said film to produce said light emitting layer.03-28-2013
20130075691Deep Ultraviolet Light Emitting Diode - A carbon doped short period superlattice is provided. A heterostructure includes a short period superlattice comprising a plurality of quantum wells alternating with a plurality of barriers. One or more of the quantum wells and/or the barriers includes a percolated carbon atomic plane.03-28-2013
20130032779LIGHT EMITTING DIODE AND MANUFACTURING METHOD THEREOF - A light emitting diode (LED) comprises a substrate, an epitaxial layer and an aluminum nitride (AlN) layer sequentially disposed on the substrate. The AlN layer comprises a plurality of stacks separated from each other, wherein the epitaxial layer entirely covers the plurality of stacks of the AlN layer. The AlN layer with a plurality of stacks reflects upwardly light generated by the epitaxial layer and downwardly toward the substrate to an outside of LED through a top plan of the LED. A method for forming the LED is also disclosed.02-07-2013
20100032644Nitride Semiconductor Light-Emitting Device and Nitride Semiconductor Light-Emitting Device Fabrication Method - An active layer (02-11-2010
20130082239LIGHT EMITTING DIODE FABRICATED BY EPITAXIAL LIFT-OFF - A method of fabricating a light emitting diode using an epitaxial lift-off process includes forming a sacrificial layer on a substrate, forming a light emitting diode structure on the sacrificial layer with an epitaxial material, forming a light reflecting layer on the light emitting diode structure, and removing the sacrificial layer using an etching process to separate the substrate from the light emitting diode structure.04-04-2013
20090121213SEMICONDUCTOR DEVICE WITH TUNABLE ENERGY BAND GAP - The present invention relates to a semiconductor device in which energy band gap can be electrically varied. An idea of the present invention is to provide a device, which is based on nanowires (05-14-2009
20100044674LIGHT EMITTING DIODE HAVING MODULATION DOPED LAYER - A light emitting diode (LED) having a modulation doped layer. The LED comprises an n-type contact layer, a p-type contact layer and an active region of a multiple quantum well structure having an InGaN well layer. The n-type contact layer comprises a first modulation doped layer and a second modulation doped layer, each having InGaN layers doped with a high concentration of n-type impurity and low concentration of n-type impurity InGaN layers alternately laminated. The InGaN layers of the first modulation doped layer have the same composition, and the InGaN layers of the second modulation doped layer have the same composition. The second modulation doped layer is interposed between the first modulation doped layer and the active region, and an n-electrode is in contact with the first modulation doped layer. Accordingly, an increase in process time is prevented and strains induced in a multiple quantum well structure are reduced.02-25-2010
20100044673LABELING FLUORESCENT COMPOUND - A labeling fluorescent compound which enables highly stable detection in vital labeling and has high sensitivity. The labeling fluorescent compound is characterized by being composed of inorganic fluorescent nanoparticles which have a surface modification compound disposed on the surface thereof and have an average particle diameter of 1.0-20 nm. It is further characterized in that the proportion of the length of the surface modification compound as measured from the surface of the inorganic fluorescent nanoparticles to the particle diameter of the inorganic fluorescent nanoparticles is from 0.10 to 0.50, and that the proportion of the specific gravity of the inorganic fluorescent nanoparticles having the surface modification compound fixed thereto to the specific gravity of the inorganic fluorescent nanoparticles not having the surface modification compound is from 0.80 to 0.40.02-25-2010
20080283821Method of growing gan crystal on silicon substrate, and light emitting device and method of manufacturing thereof - Example embodiments are directed to a method of growing GaN single crystals on a silicon substrate, a method of manufacturing a GaN-based light emitting device using the silicon substrate, and a GaN-based light emitting device. The method of growing the GaN single crystals may include forming a buffer layer including a TiN group material or other like material on a silicon substrate, forming a nano-pattern including silicon oxide on the buffer layer, and growing GaN single crystals on the buffer layer and the nano-pattern.11-20-2008
20100102296SEMICONDUCTOR DEVICE - A semiconductor device has an active layer, a first semiconductor layer of first conductive type, an overflow prevention layer disposed between the active layer and the first semiconductor layer, which is doped with impurities of first conductive type and which prevents overflow of electrons or holes, a second semiconductor layer of first conductive type disposed at least one of between the active layer and the overflow prevention layer and between the overflow prevention layer and the first semiconductor layer, and an impurity diffusion prevention layer disposed between the first semiconductor layer and the active layer, which has a band gap smaller than those of the overflow prevention layer, the first semiconductor layer and the second semiconductor layer and which prevents diffusion of impurities of first conductive type.04-29-2010
20100102295LIGHT EMITTING DEVICE - This invention discloses a light-emitting device comprising a semiconductor stack layer having an active layer of a multiple quantum well (MQW) structure comprising alternate stack layers of quantum well layers and barrier layers, wherein the barrier layers comprise at least one doped barrier layer and one undoped barrier layer. The doped barrier layer can improve the carrier mobility of the electron holes and increase the light-emitting area and the internal quantum efficiency of the active layer.04-29-2010
20100102294ORGANIC LIGHT EMITTING DIODE WITH NANO-DOTS AND FABRICATION METHOD THEREOF - An organic light emitting diode (OLED) with nano-dots and a fabrication method thereof are disclosed. The OLED apparatus comprises a substrate, a first electrically conductive layer, a first emission-auxiliary layer, an emissive layer, a second emission-auxiliary layer and a second electrically conductive layer. Its fabrication method is described below. Nano-dots with functional groups on the surface are incorporated into the emissive layer, the first emission-auxiliary layer or the second emission-auxiliary layer to form a layered electro-luminescent structure. By using the fabrication method, the resultant efficiency of the OLEDs can be markedly enhanced.04-29-2010
20100102293III/V-SEMICONDUCTOR - The invention relates to a monolithic integrated semiconductor structure comprising a carrier layer on the basis of doped Si or doped GaP and a III/V semiconductor disposed thereupon and having the composition Ga04-29-2010
20090159871LIGHT EMITTING DIODE STRUCTURE AND METHOD FOR FABRICATING THE SAME - The present invention discloses a light emitting diode structure and a method for fabricating the same. In the present invention, a substrate is placed in a solution to form a chemical reaction layer. Next, the substrate is etched to form a plurality of concave zones and a plurality of convex zones with the chemical reaction layer overhead. Next, the chemical reaction layer is removed to form an irregular geometry of the concave zones and convex zones on the surface of the substrate. Then, a semiconductor light emitting structure is epitaxially formed on the surface of the substrate. Thereby, the present invention can achieve a light emitting diode structure having improved internal and external quantum efficiencies.06-25-2009
20090159870LIGHT EMITTING DIODE ELEMENT AND METHOD FOR FABRICATING THE SAME - The present invention discloses a light emitting diode (LED) element and a method for fabricating the same, which can promote light extraction efficiency of LED, wherein a substrate is etched to obtain basins with inclined natural crystal planes, and an LED epitaxial structure is selectively formed inside the basin. Thereby, an LED element having several inclines is obtained. Via the inclines, the probability of total internal reflection is reduced, and the light extraction efficiency of LED is promoted.06-25-2009
20090159869Solid State Light Emitting Device - A semiconductor structure (06-25-2009
20100108984QUANTUM DOT ELECTROLUMINESCENT DEVICE AND METHOD FOR FABRICATING THE SAME - A quantum dot electroluminescent device that includes a substrate, a quantum dot light-emitting layer disposed on the substrate, a first electrode which injects charge carriers into the quantum dot light-emitting layer, a second electrode which injects charge carriers, which have an opposite charge than the charge carriers injected by the first electrode, into the quantum dot light-emitting layer, a hole transport layer disposed between the first electrode and the quantum dot light-emitting layer, and an electron transport layer disposed between the second electrode and the quantum dot light-emitting layer, wherein the quantum dot light-emitting layer has a first surface in contact with the hole transport layer and a second surface in contact with an electron transport layer, and wherein the first surface has an organic ligand distribution that is different from an organic ligand distribution of the second surface.05-06-2010
20100108985OPTOELECTRONIC DEVICE BASED ON NON-POLAR AND SEMI-POLAR ALUMINUM INDIUM NITRIDE AND ALUMINUM INDIUM GALLIUM NITRIDE ALLOYS - A high-power and high-efficiency light emitting device with emission wavelength (λ05-06-2010
20130134389LIGHT-EMITTING DEVICE HAVING A GAIN REGION AND A REFLECTOR - A light-emitting device has a first cladding layer, an active layer formed above the first cladding layer, a second cladding layer formed above the active layer, a gain region, and a reflecting part. The active layer has first and second side surfaces parallel to each other. The gain region has a first end surface disposed on the first side surface. The gain region also has a second end surface disposed inside from the second side surface and angled relative to the second side surface. The second end surface, the gain region and the first end surface are provided in a first normal direction relative to the second end surface. The reflecting part is disposed next to the second end surface.05-30-2013
20130026448LIGHT EMITTING DIODE (LED) DIE HAVING PERIPHERAL ELECTRODE FRAME AND METHOD OF FABRICATION - A light emitting diode (LED) die includes a first-type semiconductor layer, a multiple quantum well (MQW) layer and a second-type semiconductor layer. The light emitting diode (LED) die also includes a peripheral electrode on the first-type semiconductor layer located proximate to an outer periphery of the first-type semiconductor layer configured to spread current across the first-type semiconductor layer. A method for fabricating the light emitting diode (LED) die includes the step of forming an electrode on the outer periphery of the first-type semiconductor layer at least partially enclosing and spaced from the multiple quantum well (MQW) layer configured to spread current across the first-type semiconductor layer.01-31-2013
20130026447Surface-Emitting Semiconductor Light-Emitting Diode - The invention is directed to a surface emitting semiconductor light-emitting diode (LED) in which a reflector layer (01-31-2013
20130026445QUANTUM DOT OPTOELECTRONIC DEVICE AND METHODS THEREFOR - An optoelectronic device and method for fabricating optoelectronic device, comprising: forming a quantum dot layer on a substrate including at least one electronically conductive layer, including a plurality of quantum dots which have organic capping layers; and removing organic capping layers from the quantum dots of the quantum dot layer by physically treating the quantum dot layer, the physical treatment including both thermal treatment and plasma processing.01-31-2013
20130026446SEMICONDUCTOR LIGHT EMITTING DEVICE AND FABRICATION METHOD THEREOF - A semiconductor light emitting device and a fabrication method thereof are provided. The semiconductor light emitting device includes: first and second conductivity-type semiconductor layers; and an active layer disposed between the first and second conductivity-type semiconductor layers and having a structure in which a quantum barrier layer and a quantum well layer are alternately disposed, and the quantum barrier layer includes first and second regions disposed in order of proximity to the first conductivity-type semiconductor layer.01-31-2013
20100025656WHITE LIGHT DEVICES USING NON-POLAR OR SEMIPOLAR GALLIUM CONTAINING MATERIALS AND PHOSPHORS - A packaged light emitting device. The device includes a substrate member comprising a surface region and one or more light emitting diode devices overlying the surface region. In a specific embodiment, at least one of the light emitting diode device is fabricated on a semipolar or nonpolar GaN containing substrate. The one or more light emitting diode devices are fabricated on the semipolar or nonpolar GaN containing substrate emits substantially polarized emission of one or more first wavelengths. At least at least one of the light emitting diode devices comprise a quantum well region, which is characterized by an electron wave function and a hole wave function. In a specific embodiment, the electron wave function and the hole wave function are substantially overlapped within a predetermined spatial region of the quantum well region. In a specific embodiment, the device has a thickness of one or more entities formed overlying the one or more light emitting diode devices. The one or more entities are excited by the substantially polarized emission and emitting electromagnetic radiation of one or more second wavelengths.02-04-2010
20130082238LIGHT-EMITTING DEVICE - Disclosed is a light-emitting device, comprising: a first multi-quantum well structure comprising a plurality of first well layers and a first barrier layer stacked alternately, wherein the energy gap of the first barrier layer is larger than that of any one of the first well layers; a second multi-quantum well structure comprising a plurality of second well layers and a second barrier layer stacked alternately, wherein the energy gap of the second barrier layer is larger than that of any one of the second well layers; and a third barrier layer disposed between the first multi-quantum well structure and the second multi-quantum well structure, and the third barrier layer connected with the first well layer and the second well layer, wherein the energy gap of the third barrier layer is larger than that of any one of the first well layers and the second well layers, and the thickness of the third barrier layer is larger than that of any one of the first barrier layer and the second barrier layer.04-04-2013
20130082237ULTRAVIOLET LIGHT EMITTING DEVICES HAVING ENHANCED LIGHT EXTRACTION - Light emitting devices having an enhanced degree of polarization, P04-04-2013
20130082236LIGHT EMITTING REGIONS FOR USE WITH LIGHT EMITTING DEVICES - A light emitting device comprises a first layer having an n-type Group III-V semiconductor, a second layer adjacent to the first layer, the second layer comprising an active material that generates light upon the recombination of electrons and holes. The active material in some cases has one or more V-pits at a density between about 1 V-pit/μm04-04-2013
20100148147MONOLITHIC WHITE AND FULL-COLOR LIGHT EMITTING DIODES USING SELECTIVE AREA GROWTH - An embodiment is a method and apparatus for a white or full-color light-emitting diode. A first mask having a first pattern is applied over surface of an n-type layer. A first active region is grown selectively and including single or multiple quantum wells (QWs) of a first active color to cause a first wavelength shift in a first vicinity area around the first pattern. The first wavelength shift results in an emission of a first desired color according to the first pattern.06-17-2010
20100065814HYBRID ORGANIC/NANOPARTICLE DEVICES - Example embodiments disclosed herein may relate to organic electronic and/or organic optoelectronic devices, which may further relate to hybrid organic/nanoparticle devices with dual functions of resonant tunneling and light emission behaviors.03-18-2010
20100065816LIGHT EMITTING DIODE AND FABRICATION METHOD THEREOF - A light emitting diode (LED) and a method for fabricating the same, capable of improving brightness by forming a InGaN layer having a low concentration of indium, and whose lattice constant is similar to that of an active layer of the LED, is provided. The LED includes: a buffer layer disposed on a sapphire substrate; a GaN layer disposed on the buffer layer; a doped GaN layer disposed on the GaN layer; a GaN layer having indium disposed on the GaN layer; an active layer disposed on the GaN layer having indium; and a P-type GaN disposed on the active layer. Here, an empirical formula of the GaN layer having indium is given by In(x)Ga(1-x)N and a range of x is given by 003-18-2010
20100065815SEMICONDUCTOR STRUCTURE INCLUDING MIXED RARE EARTH OXIDE FORMED ON SILICON - A method (and resultant structure) of forming a semiconductor structure, includes forming a mixed rare earth oxide on silicon. The mixed rare earth oxide is lattice-matched to silicon.03-18-2010
20130087764GAN BASED GROUP III-V NITRIDE SEMICONDUCTOR LIGHT-EMITTING DIODE AND METHOD FOR FABRICATING THE SAME - A GaN based III-V nitride semiconductor light-emitting device and a method for fabricating the same are provided. In the GaN based III-V nitride semiconductor light-emitting device including first and second electrodes arranged facing opposite directions or the same direction with a high-resistant substrate therebetween and material layers for light emission or lasing, the second electrode directly contacts a region of the outmost material layer exposed through an etched region of the high-resistant substrate. A thermal conductive layer may be formed on the bottom of the high-resistant substrate to cover the exposed region of the outmost material layer.04-11-2013
20130087765SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor light emitting device includes a first semiconductor layer; a second semiconductor layer on the first semiconductor layer; an active layer on the second semiconductor layer; a third semiconductor layer on the active layer; and a fourth semiconductor layer on the third semiconductor layer, wherein the first semiconductor layer has a composition equation of Al04-11-2013
20130087762NITRIDE SEMICONDUCTOR WAFER, NITRIDE SEMICONDUCTOR DEVICE, AND METHOD FOR GROWING NITRIDE SEMICONDUCTOR CRYSTAL - According to one embodiment, a nitride semiconductor wafer includes a silicon substrate, a lower strain relaxation layer provided on the silicon substrate, an intermediate layer provided on the lower strain relaxation layer, an upper strain relaxation layer provided on the intermediate layer, and a functional layer provided on the upper strain relaxation layer. The intermediate layer includes a first lower layer, a first doped layer provided on the first lower layer, and a first upper layer provided on the first doped layer. The first doped layer has a lattice constant larger than or equal to that of the first lower layer and contains an impurity of 1×1004-11-2013
20130087763LIGHT EMITTING DIODE AND METHOD OF MANUFACTURING THE SAME - The inventive concept provides light emitting diodes and methods of manufacturing the same. The light emitting diode may include a first electrode layer, a light emitting layer on the first electrode layer, a second electrode layer on the light emitting layer, and a buffer layer formed on the second electrode layer, the buffer layer having concave-convex patterns increasing extraction efficiency of light generated from the light emitting layer.04-11-2013
20130087761SEMICONDUCTOR LIGHT EMITTING DEVICE - According to one embodiment, a semiconductor light emitting device includes n-type and p-type semiconductor layers containing a nitride semiconductor and a light emitting layer. The emitting layer includes a barrier layer containing04-11-2013
20130087760SEMICONDUCTOR LIGHT EMITTING DEVICE AND SEMICONDUCTOR WAFER - According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer and configured to emit a light having a peak wavelength of 440 nanometers or more. Tensile strain is applied to the first semiconductor layer. An edge dislocation density of the first semiconductor layer is 5×1004-11-2013
20130087759Light Emitting Diode (LED) Using Carbon Materials - Carbon-based light emitting diodes (LEDs) and techniques for the fabrication thereof are provided. In one aspect, a LED is provided. The LED includes a substrate; an insulator layer on the substrate; a first bottom gate and a second bottom gate embedded in the insulator layer; a gate dielectric on the first bottom gate and the second bottom gate; a carbon material on the gate dielectric over the first bottom gate and the second bottom gate, wherein the carbon material serves as a channel region of the LED; and metal source and drain contacts to the carbon material.04-11-2013
20120181504SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME - According to an embodiment, a semiconductor light emitting device is configured to emit light by energy relaxation of an electron between subbands of a plurality of quantum wells. The device includes an active layer and at least a pair of cladding layers. The active layer is provided in a stripe shape extending in a direction parallel to an emission direction of the light, and includes the plurality of quantum wells; and the active layer emits the light with a wavelength of 10 μm or more. Each of the cladding layers is provided both on and under the active layer respectively and have a lower refractive index than the active layer. At least one portion of the cladding layers contains a material having a different lattice constant from the active layer and has a lower optical absorption at a wavelength of the light than the other portion.07-19-2012
20120181503Method of Fabricating Silicon Quantum Dot Layer and Device Manufactured Using the Same - Disclosed are a method of fabricating a silicon quantum dot layer and a device manufactured using the same. A first capping layer is formed on a substrate, and a silicon-containing precursor layer is formed on the first capping layer. A second capping layer is formed on the silicon-containing precursor layer. The first capping layer, the silicon-containing precursor layer, and the second capping layer are irradiated to convert the silicon-containing precursor layer into a stack including a first poly-crystalline silicon layer, a silicon quantum dot layer on the first poly-crystalline silicon layer, and a second poly-crystalline silicon layer on the silicon quantum dot layer.07-19-2012
20090045394SEMICONDUCTOR DEVICE AND A METHOD OF MANUFACTURE THEREOF - A method of manufacturing a semiconductor device comprises depositing a semiconductor layer over a semiconductor surface having at least one first region with a first (average surface lattice) parameter value and at least one second region having a second parameter value different from the first. The semiconductor layer is deposited to a thickness so self-organised islands form over both the first and second regions. The difference in the parameter value means the islands over the first region have a first average parameter value and the islands over the second region have a second average parameter value different from the first. A capping layer is deposited over islands and has a greater forbidden bandgap than the islands whereby the islands form quantum dots, which have different properties over the first and second regions due to difference(s) between the first and second region islands.02-19-2009
20090045393Nitride semiconductor device and method for manufacturing the same - There are provided a nitride semiconductor device having a structure capable of improving crystallinity of grown nitride semiconductor, carrying out easily removing a substrate, and dividing into chips very easily, by using zinc oxide based compound having excellent processability as a substrate, and a method for manufacturing the same. In case that a nitride semiconductor device is formed by laminating nitride semiconductor layers on a substrate (02-19-2009
20090045392Nitride semiconductor device - There is provided a nitride semiconductor device including an active layer of a superlattice structure. The nitride semiconductor device including: a p-type nitride semiconductor layer; an n-type nitride semiconductor layer; and an active layer disposed between the p-type and n-type nitride layers, the active layer comprising a plurality of quantum barrier layers and quantum well layers deposited alternately on each other, wherein the active layer has a superlattice structure where the quantum barrier layer has a thickness for enabling a carrier injected from the p-type and n-type nitride semiconductor layers to be tunneled therethrough, and at least one of the quantum barrier layers has an energy band gap greater than another quantum barrier layer adjacent to the n-type nitride semiconductor layer.02-19-2009
20100006819LIGHT EMITTING DEVICE AND DISPLAY - A light emitting device containing a semiconductor light emitting component and a phosphor, the phosphor is capable of absorbing a part of light emitted by the light emitting component and emitting light of a wavelength different from that of the absorbed light, is provided. A straight line connecting a point of chromaticity corresponding to a spectrum generated by the light emitting component and a point of chromaticity corresponding to a spectrum generated by the phosphor is substantially along a black body radiation locus in a chromaticity diagram.01-14-2010
20100006817OPTOELECTRONIC SEMICONDUCTOR DEVICE - The present invention provides an optoelectronic semiconductor device comprising at least one semiconductor nanowire, wherein the nanowire comprises a nanowire core and at least one shell layer arranged around at least a portion of the nanowire core. The nanowire core and the shell layer form a pn or pin junction that in operation provides an active region for carrier generation or carrier recombination. Quantum dots adapted to act as carrier recombination centres or carrier generation centres are arranged in the active region. By using the nanowire core as template for formation of the quantum dots and the shell layer, quantum dots of homogeneous size and uniform distribution can be obtained. Basically, the optoelectronic semiconductor device can be used for light generation or light absorption. In the former case the optoelectronic semiconductor device is a light emitting diode or a laser diode and in the latter case the optoelectronic semiconductor device is a photoelectric device, such as a photo diode, a photo detector or a solar cell.01-14-2010
20130048944LIGHT EMITTING DEVICE - Disclosed are a light emitting device, a method of manufacturing the light emitting device, a light emitting device package and a lighting system. The light emitting device includes a first conductive semiconductor layer; an active layer including a quantum well and a quantum barrier and disposed on the first conductive semiconductor layer; and a second conductive semiconductor layer on the active layer. The active layer includes a first quantum well adjacent to the second conductive semiconductor layer, a second quantum well adjacent to the first quantum well, and a first quantum barrier between the first quantum well and the second quantum well. A recombination rate of electron-hole in the second quantum well is higher than the recombination rate of the electron-hole in the first quantum well, and the first quantum well has an energy level higher than the energy level of the second quantum well.02-28-2013
20130048943ORGANIC LIGHT EMITTING DIODE AND FABRICATION METHOD THEREOF - There are provided an organic light emitting diode and a fabrication method thereof. The organic light emitting diode includes: an anode formed on a substrate; a thin film layer formed on the anode and including graphene; a light emitting polymer layer formed on the thin film layer; and a cathode formed on the light emitting polymer layer. Heat generated from the device can be effectively dissipated, stability of the device can be enhanced, and a life span of the device can be extended.02-28-2013
20130048940SOLID STATE RADIATION TRANSDUCERS AND METHODS OF MANUFACTURING - Solid state radiation transducer (SSRT) assemblies and method for making SSRT assemblies. In one embodiment, a SSRT assembly comprises a first substrate having an epitaxial growth material and a radiation transducer on the first substrate. The radiation transducer can have a first semiconductor material grown on the first substrate, a second semiconductor material, and an active region between the first and second semiconductor materials. The SSRT can also have a first contact electrically coupled to the first semiconductor material and a second contact electrically coupled to the second semiconductor material. The first substrate has an opening through which radiation can pass to and/or from the first semiconductor material.02-28-2013
20130048939LIGHT EMITTING DEVICE HAVING GROUP III-NITRIDE CURRENT SPREADING LAYER DOPED WITH TRANSITION METAL OR COMPRISING TRANSITION METAL NITRIDE - A light-emitting device, such as a light-emitting diode (LED), has a group III-nitride current spreading layer which is either doped with transition metal, or comprises alternating transition metal nitride layer and group III-nitride layer. Also provided is a light-emitting device, such as a light-emitting diode (LED), having a quantum well doped with transition metal. Also provided is a method of forming transition-metal containing AlInGaN electrical conductive material.02-28-2013
20130048941SOLID STATE LIGHT EMITTING SEMICONDUCTOR STRUCTURE AND EPITAXY GROWTH METHOD THEREOF - A solid state light emitting semiconductor structure and an epitaxy growth method thereof are provided. The method includes the following steps: A substrate is provided. A plurality of protrusions separated from each other are formed on the substrate. A buffer layer is formed on the protrusions, and fills or partially fills the gaps between the protrusions. A semiconductor epitaxy stacking layer is formed on the buffer layer, wherein the semiconductor epitaxy stacking layer is constituted by a first type semiconductor layer, an active layer and a second type semiconductor layer in sequence.02-28-2013
20130048942NITRIDE SEMICONDUCTOR TEMPLATE AND LIGHT-EMITTING DIODE - A nitride semiconductor template includes a substrate, and a group III nitride semiconductor layer having an oxygen-doped layer formed on the substrate, and a silicon-doped layer formed on the oxygen-doped layer. A total thickness of the group III nitride semiconductor layer is not smaller than 4 μm and not greater than 10 μm, and an average silicon carrier concentration in the silicon-doped layer is not lower than 1×1002-28-2013
20100133508GROUP III NITRIDE BASED QUANTUM WELL LIGHT EMITTING DEVICE STRUCTURES WITH AN INDIUM CONTAINING CAPPING STRUCTURE - Group III nitride based light emitting devices and methods of fabricating Group III nitride based light emitting devices are provided. The emitting devices include an n-type Group III nitride layer, a Group III nitride based active region on the n-type Group III nitride layer and comprising at least one quantum well structure, a Group III nitride layer including indium on the active region, a p-type Group III nitride layer including aluminum on the Group III nitride layer including indium, a first contact on the n-type Group III nitride layer and a second contact on the p-type Group III nitride layer. The Group III nitride layer including indium may also include aluminum.06-03-2010
20100133506NITRIDE SEMICONDUCTOR LIGHT EMITTING ELEMENT AND METHOD FOR MANUFACTURING NITRIDE SEMICONDUCTOR - Provided are a nitride semiconductor light emitting element having a nitride semiconductor layered on an AlN buffer layer with improved qualities such as crystal quality and with improved light emission output, and a method of manufacturing a nitride semiconductor. An AlN buffer layer (06-03-2010
20090302308GROUP III NITRIDE WHITE LIGHT EMITTING DIODE - A white-light emitting diode comprises an n-type semiconductor layer, one or more quantum well structures formed over the n-type semiconductor layer, a p-type semiconductor layer formed on the quantum well structure, a first electrode formed on the p-type semiconductor, and a second electrode formed on at least a portion of the n-type semiconductor layer. Each quantum well structure includes an In12-10-2009
20090302307LED Semiconductor Body - An LED semiconductor body includes a semiconductor layer sequence which comprises a quantum structure which is intended to produce radiation and comprises at least one quantum layer and at least one barrier layer, wherein the quantum layer and the barrier layer are strained with mutually opposite mathematical signs.12-10-2009
20120217474PHOTONIC DEVICE AND METHOD OF MAKING THE SAME - The present invention relates to a photonic device comprising a plurality of nanostructures that extend from a substrate, each nanostructure comprising a generally longitudinal nanostructure body formed of a semiconductor material. Each nanostructure has a proximal end portion of a first crystal lattice structure and a distal end portion of a second crystal lattice structure that is expanded relative to the proximal end portion. Each nanostructure further comprises an optically active material optically associated with the distal end portion to form a heterojunction therebetween. The present invention further relates to a method of making the disclosed nanostructures.08-30-2012
20120217472BROADBAND LIGHT EMITTING DIODES AND METHOD FOR PRODUCING SAME - A III-Nitride semiconductor LED provides broadband light emission, across all or most of the visible light wavelength spectrum, and a method for producing same. The LED includes a polarization field management template that has a three-dimensional patterned surface. The surface may be patterned with an array of hemispherical cavities, which may be formed by growing the template around a temporary template layer of spherical or other crystals. The method involves growing a quantum well layer on the patterned surface. The topographical variations in the patterned surface of the template cause corresponding topographical variations in the quantum well layer. These variations in spatial orientation of portions of the quantum well layer cause the polarization field of the quantum well layer to vary across the surface of the LED, which leads to energy transition shifting that provides “white” light emission across a broad wavelength spectrum.08-30-2012
20120217470NITRIDE BASED LIGHT EMITTING DEVICE WITH EXCELLENT CRYSTALLINITY AND BRIGHTNESS AND METHOD OF MANUFACTURING THE SAME - Disclosed is a nitride-based light emitting device having an inverse p-n structure in which a p-type nitride layer is first formed on a growth substrate. The light emitting device includes a growth substrate, a powder type seed layer for nitride growth formed on the growth substrate, a p-type nitride layer formed on the seed layer for nitride growth, a light emitting active layer formed on the p-type nitride layer, and an n-type ZnO layer formed on the light emitting active layer. The p-type nitride layer is first formed on the growth layer and the n-type ZnO layer having a relatively low growth temperature is then formed thereon instead of an n-type nitride layer, thereby providing excellent crystallinity and high brightness. A method of manufacturing the same is also disclosed.08-30-2012
20120217471SEMICONDUCTOR LIGHT EMITTING DEVICE - According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, and a light emitting part. The n-type semiconductor layer includes a nitride semiconductor. The p-type semiconductor layer includes a nitride semiconductor. The light emitting part is provided between the n-type and the p-type semiconductor layers and includes an n-side barrier layer and a first light emitting layer. The first light emitting layer includes a first barrier layer, a first well layer, and a first AlGaN layer. The first barrier layer is provided between the n-side barrier layer and the p-type semiconductor layer. The first well layer contacts the n-side barrier layer between the n-side and the first barrier layer. The first AlGaN layer is provided between the first well layer and the first barrier layer. A peak wavelength λp of light emitted from the light emitting part is longer than 515 nanometers.08-30-2012
20120217469Light emitting semiconductor device - A semiconductor light emitting device is disclosed, which comprises: a substrate having a first surface and a second surface; a first semiconductor conductive layer is disposed on the first surface of the substrate; an insert layer is disposed on the first semiconductor conductive layer; an active layer is disposed on the insert layer; a second semiconductor conductive layer is disposed on the active layer; a first electrode is disposed on the second semiconductor conductive layer; and a second electrode is disposed on the second surface of the substrate, in which the electric of the second electrode is opposite to that of the first electrode.08-30-2012
20100025653TUNABLE WAVELENGTH LIGHT EMITTING DIODE - A light emitting diode and a method of fabricating a light emitting diode, the diode has a first set of multiple quantum wells (MQWs), each of the MQWs of the first set comprising a wetting layer providing nucleation sites for quantum dots (QDs) or QD-like structures in a well layer of said each MQW; and a second set of MQWs, each of the MQWs of the second set formed so as to exhibit a photoluminescence (PL) peak wavelength shifted compared to the MQWs of the first set.02-04-2010
20110057167NITRIDE BASED SEMICONDUCTOR OPTICAL DEVICE, EPITAXIAL WAFER FOR NITRIDE BASED SEMICONDUCTOR OPTICAL DEVICE, AND METHOD OF FABRICATING SEMICONDUCTOR LIGHT-EMITTING DEVICE - In the nitride based semiconductor optical device LE03-10-2011
20130056706QUANTUM DOT LED LIGHT SYSTEM AND METHOD - The present disclosure provides methods of using quantum dots or Q dots or a similar nanocrystal to transfer, for example, excess LED light energy in the blue band to the red band where such LEDs tend to be deficient. This approach would balance the overall spectrum of the LED without a corresponding loss in brightness as would be the case where the light from the LED was passed through a conventional filter. The Q dots could be applied to the lens portion of the LED after the high temperature processes are completed or coated to a clear filter to be placed in the LED light path.03-07-2013
20130056705METHOD OF MANUFACTURING QUANTUM DOT LAYER AND QUANTUM DOT OPTOELECTRONIC DEVICE INCLUDING THE QUANTUM DOT LAYER - A method of manufacturing a quantum dot layer, and a quantum dot optoelectronic device including the quantum dot layer. The method includes sequentially stacking a self-assembled monolayer, a sacrificial layer, and a quantum dot layer on a source substrate; disposing a stamp on the quantum dot layer; picking up the sacrificial layer, the quantum dot layer and the stamp; and removing the sacrificial layer from the quantum dot layer using a solution that dissolves the sacrificial layer.03-07-2013
20130056704SINGLE-PHOTON GENERATOR AND METHOD OF ENHANCEMENT OF BROADBAND SINGLE-PHOTON EMISSION - A single-photon generator contains nitrogen-vacancies or other color centers in diamond as emitters of single photons which are excited by the laser beam or another optical source and can work stably under normal conditions, the metamaterial with hyperbolic dispersion as enhancing environment, and photonic guiding structure to collect and transmit single photons further. Single photons generators are fundamental elements for quantum information technologies such as quantum cryptography, quantum information storage and optical quantum computing03-07-2013
20120112163LIGHT-EMITTING DIODE DEVICE STRUCTURE WITH SixNy LAYER - A light-emitting diode (LED) structure fabricated with a Si05-10-2012
20120112162NITRIDE BASED LIGHT EMITTING DEVICE - A nitride based light emitting device is disclosed. More particularly, a nitride based light emitting device capable of improving light emitting efficiency and reliability thereof is disclosed. The nitride based light emitting device includes a first conductive semiconductor layer connected to a first electrode, a second conductive semiconductor layer connected to a second electrode, an active layer located between the first conductive semiconductor layer and the second conductive semiconductor layer and having a quantum well structure, a first insertion layer located in at least one of a boundary between the first conductive semiconductor layer and the active layer and a boundary between the second conductive semiconductor layer and the active layer, and a second insertion layer located adjacent to the first insertion.05-10-2012
20120112161LIGHT EMITTING DEVICE WITH TRENCHES AND A TOP CONTACT - A device includes a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region. A bottom contact disposed on a bottom surface of the semiconductor structure is electrically connected to one of the n-type region and the p-type region. A top contact disposed on a top surface of the semiconductor structure is electrically connected to the other of the n-type region and the p-type region. A mirror is aligned with the top contact. The mirror includes a trench formed in the semiconductor structure and a reflective material disposed in the trench, wherein the trench extends through the light emitting layer.05-10-2012
20120112160SOLID STATE LIGHT EMITTING DEVICE AND METHOD FOR MAKING THE SAME - A method for making a solid state light emitting device includes: (a) forming a first cladding layer on a substrate; (b) forming a matrix layer above the first cladding layer, the matrix layer having a top surface and being formed with a plurality of isolated spaces; (c) epitaxially forming a quantum cluster in each of the spaces such that the top surface of the matrix layer and top surfaces of the quantum clusters cooperatively define a coplanar surface, the quantum clusters cooperating with the matrix layer to form a light emitting layer; (d) forming a second cladding layer on the light emitting layer; and (e) forming an electrode unit electrically connected to the first and second cladding layers.05-10-2012
20120112159NITRIDE SEMICONDUCTOR LIGHT EMITTING ELEMENT - A nitride semiconductor light emitting element includes: an n type nitride semiconductor layer formed on a substrate; a light emitting layer formed on the n type nitride semiconductor layer; and a p type nitride semiconductor layer formed on the light emitting layer. The n type nitride semiconductor layer is constituted by one layer or two or more stacked layers. At least one layer constituting the n type nitride semiconductor layer contains Si and Sn as n type dopants and contains In as an isoelectronic dopant.05-10-2012
20120112158EPITAXIAL SUBSTRATE, SEMICONDUCTOR LIGHT-EMITTING DEVICE USING SUCH EPITAXIAL SUBSTRATE AND FABRICATION THEREOF - The invention provides an epitaxial substrate, a semiconductor light-emitting device using such epitaxial substrate and fabrication thereof. The epitaxial substrate according to the invention includes a crystalline substrate. In particular, a crystal surface of the crystalline substrate thereon has a plurality of randomly arranged nanorods. The plurality of nanorods is formed of oxide of a material different from that forms the crystalline substrate.05-10-2012
20120305889LIGHT EMITTING DEVICE - Disclosed is a light emitting device including a light emitting structure including a first conductive-type semiconductor layer, a second conductive-type semiconductor layer and an active layer interposed between the first conductive-type semiconductor layer and the second conductive-type semiconductor layer, a first electrode layer electrically connected to the first conductive-type semiconductor layer, and a second electrode layer disposed on the second conductive-type semiconductor layer, wherein the second electrode layer includes a plurality of adhesive seeds spaced from one another on the light emitting structure, a reflective layer disposed on the plurality of adhesive seeds, and a protective layer disposed on the reflective layer, wherein the reflective layer contains silver (Ag) or an Ag alloy. As a result, it is possible to improve light reflectance and electrical properties of the electrode layer of the light emitting device and reliability of the electrode layer.12-06-2012
20130062592LIGHT EMITTING DIODE (LED) DICE HAVING WAVELENGTH CONVERSION LAYERS AND METHODS OF FABRICATION - A light emitting diode (LED) die includes a wavelength conversion layer having a base material, and a plurality of particles embedded in the base material including wavelength conversion particles, and reflective particles. A method for fabricating light emitting diode (LED) dice includes the steps of mixing the wavelength conversion particles in the base material to a first weight percentage, mixing the reflective particles in the base material to a second weight percentage, curing the base material to form a wavelength conversion layer having a selected thickness, and attaching the wavelength conversion layer to a die.03-14-2013
20110012089LOW RESISTANCE ULTRAVIOLET LIGHT EMITTING DEVICE AND METHOD OF FABRICATING THE SAME - A low resistance light emitting device with an ultraviolet light-emitting structure having a first layer with a first conductivity, a second layer with a second conductivity; and a light emitting quantum well region between the first layer and second layer. A first electrical contact is in electrical connection with the first layer and a second electrical contact is in electrical connection with the second layer. A template serves as a platform for the light-emitting structure. The ultraviolet light-emitting structure has a first layer having a first portion and a second portion of AlXInYGa(1-X-Y)N with an amount of elemental indium, the first portion surface being treated with silicon and indium containing precursor sources, and a second layer. When an electrical potential is applied to the first layer and the second layer the device emits ultraviolet light.01-20-2011
20110012088OPTOELECTRONIC SEMICONDUCTOR BODY WITH A TUNNEL JUNCTION AND METHOD FOR PRODUCING SUCH A SEMICONDUCTOR BODY - An optoelectronic semiconductor body includes an epitaxial semiconductor layer sequence including a tunnel junction including an intermediate layer between an n-type tunnel junction layer and a p-type tunnel junction layer, wherein the intermediate layer has an n-barrier layer facing the n-type tunnel junction layer, a p-barrier layer facing the p-type tunnel junction layer, and a middle layer with a material composition differing from material compositions of the n-barrier layer and the p-barrier layer; and an active layer that emits electromagnetic radiation.01-20-2011
20110012087SEMICONDUCTOR NANOCRYSTALS - A semiconductor nanocrystal include a first I-III-VI semiconductor material and have a luminescence quantum yield of at least 10%, at least 20%, or at least 30%. The nanocrystal can be substantially free of toxic elements. Populations of the nanocrystals can have an emission FWHM of no greater than 0.35 eV.01-20-2011
20110037051OPTIMIZATION OF POLISHING STOP DESIGN - The present invention provides a method of fabricating vertical LED structures in which the substrate used for epitaxial layer growth is removed through polishing. The polishing technique used in an exemplary embodiment is chemical mechanical polishing using polish stops to provide a sufficiently level plane. Polish stops are provided in the multilayer structure before polishing the surface, the hardness of the polish stop material being greater than the hardness of the material that needs to be removed. Consequently, vertical LEDs can be produced at a lower cost and higher yield compared to either laser lift-off or conventional polishing. Exemplary vertical LEDs are GaN LEDs. The polish stops may be removed by saw dicing, laser dicing or plasma etching.02-17-2011
20110037050LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE PACKAGE - A light emitting device (LED) includes a light emitting structure and a reflective layer. The light emitting structure includes a semiconductor layer of a first conductivity type, a light emitting layer, and a semiconductor layer of a second conductivity type, and the reflective layer is provided adjacent to the semiconductor layer of the second conductivity-type. The light emitting layer includes multiple quantum wells, and a distance between adjacent quantum wells is about λ/2n±Δ, where λ represents a wavelength of emitted light, n represents an average refractive index of a medium disposed between the reflective layer and the light emitting layer, and Δ≦λ/8n.02-17-2011
20110037049NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE - Disclosed is a nitride semiconductor light-emitting device including a substrate, a pair of p-type and n-type clad layers formed on the substrate, and an active layer having a single quantum well structure or a multiple quantum well structure, which is sandwiched between the p-type clad layer and the n-type clad layer, and includes a quantum well layer and a pair of barrier layers each having a larger bandgap than that of the quantum well layer, the quantum well layer being sandwiched between the pair of barrier layers. Each of the pair of barrier layers has a multi-layer structure including, starting from the quantum well layer side, a first subbarrier layer having a composition of In02-17-2011
20130161585LIGHT EMITTING DEVICE - A light emitting device is disclosed. The light emitting device includes a light emitting structure including a first conductive-type semiconductor layer, an active layer, and a second conductive-type semiconductor layer, a light-transmissive conductive layer disposed on the second conductive-type semiconductor layer and having a plurality of open regions through which the second conductive-type semiconductor layer is exposed, and a second electrode disposed on the light-transmissive conductive layer so as to extend beyond at least one of the open regions, wherein the second electrode contacts the second conductive-type semiconductor layer in the open regions and contacts the light-transmissive conductive layer in regions excluding the open regions.06-27-2013
20130161586GROUP III NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE AND PRODUCTION METHOD THEREFOR - The present invention provides a Group III nitride semiconductor light-emitting device which is intended to relax stress applied to a light-emitting layer. The light-emitting device includes an MQW layer, and an n-side superlattice layer formed below the MQW layer. The n-side superlattice layer is formed by repeatedly depositing layer units, each unit including an InGaN layer, a GaN layer, and an n-GaN layer which are sequentially deposited from the side of the sapphire substrate. In the n-side superlattice layer, an InGaN layer more proximal to the MQW layer has a higher In compositional proportion. The In compositional proportion of the InGaN layer (which is most proximal to the MQW layer) of the n-side superlattice layer is 70% to 100% of the In compositional proportion of the InGaN layer (which is most proximal to the n-side superlattice layer) of the MQW layer.06-27-2013
20130214250NITRIDE BASED SEMICONDUCTOR LIGHT-EMITTING DEVICE - Disclosed herein is a nitride-based semiconductor light-emitting device. The nitride-based semiconductor light-emitting device comprises an n-type clad layer made of n-type Al08-22-2013
20130214251SOLID STATE LIGHT EMITTING DEVICES BASED ON CRYSTALLOGRAPHICALLY RELAXED STRUCTURES - The present invention discloses a method for manufacturing a solid state light emitting device having a plurality of light-sources, the method comprising the steps of: providing a substrate having a growth surface; providing a mask layer on the growth surface, the mask layer having a plurality of openings through which the growth surface is exposed, wherein a largest lateral dimension of each of said openings is less than 08-22-2013
20130214245LIGHT EMITTING DIODE AND FABRICATION METHOD THEREOF - The present invention discloses an LED and its fabrication method. The LED comprises: a substrate; an epitaxial layer, an active layer and a capping layer arranged on the substrate in sequence; wherein a plurality of microlens structures arc formed on the surface of the substrate away from the epitaxial layer, and a plurality of cams are formed on the surfaces of the microlens structures. When the light emitted from the active layer passes through the surfaces of the microlens structures or the surfaces of the cams, the incident angle is always smaller than the critical angle of total reflection, thus preventing total reflection and making sure that most of the light pass through the surfaces of the microlens structures and the cams, in this way improving external quantum efficiency of the LED, avoiding the rise of the internal temperature of the LED and improving the performance of the LED.08-22-2013
20130214246LIGHT EMITTING DIODE AND FABRICATION METHOD THEREOF - An LED and its fabrication method are disclosed. The LED includes: a sapphire substrate (08-22-2013
20130214247AC LED DEVICE AND ITS MANUFACTURING PROCESS FOR GENERAL LIGHTING APPLICATIONS - The present invention relates to a plurality of light emitting diodes connected in series to elevate the working voltage and to enable the devices to be connected directly to the AC voltage sources. The LED device has five pluralities of series-connected diodes. Four pluralities of series-connected diodes are arranged to at as a rectifier bridge so the fifth plurality of diodes is always forward biased and energized. The light emitting diodes in the device are arranged to accommodate various AC line voltages, diode operating voltages, and diode reverse breakdown voltages. The plurality of diodes was manufactured by first etching epitaxial layer to the insulating substrate to isolate individual diodes, and then use metal lines to interconnect them according to the layout design. The number of die-attach and wire-bonding steps used in the subsequent chip array and lamp manufacturing process is therefore greatly reduced or eliminated. This invention simplifies LED array and lamp process flow, lowers the manufacturing cost, improves product reliability and LED device efficacy.08-22-2013
20090236584LIGHT-EMITTING DEVICE WITH ENHANCED LUMINOUS EFFICIENCY AND METHOD OF PRODUCING THE SAME - A light-emitting device comprises first and second dot members. The first dot member is formed so that it makes contact with the second dot member. The first dot member comprises a plurality of first quantum dot layers. Each of the plurality of first quantum dot layers comprises a plurality of first quantum dots and a silicon dioxide film. The first quantum dot comprises an n-type silicon dot. The second dot member comprises a plurality of second quantum dot layers. Each of the plurality of second quantum dot layers comprises a plurality of second quantum dots and a silicon dioxide film. The second quantum dot comprises a p-type silicon dot.09-24-2009
20130069038LIGHT CONVERTING AND EMITTING DEVICE WITH SUPPRESSED DARK-LINE DEFECTS - Light emitting systems are described. Particularly, light emitting systems and light converting components utilized within these systems are described. The light emitting system and components are formed such that dark-line defects do not interfere with the light emitting system efficiency.03-21-2013
20130069033SEMICONDUCTOR DEVICE, WAFER, METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURING WAFER - According to one embodiment, a semiconductor device includes a first layer of n-type including a nitride semiconductor, a second layer of p-type including a nitride semiconductor, a light emitting unit, and a first stacked body. The light emitting unit is provided between the first and second layers. The first stacked body is provided between the first layer and the light emitting unit. The first stacked body includes a plurality of third layers including AlGaInN, and a plurality of fourth layers alternately stacked with the third layers and including GaInN. The first stacked body has a first surface facing the light emitting unit. The first stacked body has a depression provided in the first surface. A part of the light emitting unit is embedded in a part of the depression. A part of the second layer is disposed on the part of the light emitting unit.03-21-2013
20130069037Light-Emitting Element, Light-Emitting Device and Electronic Device - The light-emitting element of the present invention includes a light-emitting layer and a layer for controlling movement of carriers between a pair of electrodes. The layer for controlling movement of carriers includes a first organic compound having a carrier transporting property and a second organic compound for reducing the carrier transporting property of the first organic compound, and the second organic compound is dispersed in the first organic compound. The layer for controlling movement of carriers is provided in such a manner, whereby change in carrier balance with time can be suppressed. Therefore, a light-emitting element having a long lifetime can be obtained.03-21-2013
20130069036LIGHT-EMITTING ELEMENT, METHOD OF PRODUCING LIGHT-EMITTING ELEMENT, AND DISPLAY DEVICE - A light-emitting element where a positive electrode is formed on the surface of a transparent substrate; a hole transport layer is formed on the surface of the positive electrode; and a light-emitting layer made of quantum dots is formed on the surface of the hole transport layer. The light-emitting layer has a light-emitting region that emits light of a first predetermined wavelength in which a surfactant is present on the surface of the quantum dots and a non-light-emitting region that does not emit light in which a surfactant is absent on the surface of the quantum dots. A second light-emitting layer that emits light of a second predetermined wavelength is formed on the surface of the light-emitting layer, and a negative electrode is formed on the surface of the second light-emitting layer.03-21-2013
20130069034LIGHT-EMITTING ELEMENT HAVING NITRIDE SEMICONDUCTOR MULTIQUANTUM BARRIER, AND PROCESS FOR PRODUCTION THEREOF03-21-2013
20130069035SEMICONDUCTOR LIGHT EMITTING DEVICE - According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, a light emitting layer, and an electron blocking layer. The light emitting layer is provided between the n-type semiconductor layer and the p-type semiconductor layer and includes a nitride semiconductor. The electron blocking layer is provided between the light emitting layer and the p-type semiconductor layer and has an aluminum composition ratio increasing from the light emitting layer toward the p-type semiconductor layer.03-21-2013
20130069032SEMICONDUCTOR LIGHT EMITTING DEVICE, WAFER, METHOD FOR MANUFACTURING SEMICONDUCTOR LIGHT EMITTING DEVICE, AND METHOD FOR MANUFACTURING WAFER - According to one embodiment, a semiconductor light emitting device includes a first layer of n-type and a second layer of p-type including a nitride semiconductor, a light emitting unit provided between the first and second layers, a first stacked structure provided between the first layer and the light emitting unit, and a second stacked structure provided between the first layer and the first stacked structure. The light emitting unit includes barrier layers and a well layer provided between the barrier layers. The first stacked structure includes third layers including a nitride semiconductor, and fourth layers stacked with the third layers and including GaInN. The fourth layers have a thinner thickness than the well layer. The second stacked structure includes fifth layers including a nitride semiconductor, and sixth layers stacked with the fifth layers and including GaInN. The sixth layers have a thinner thickness than the well layer.03-21-2013
20090008628LIGHT-EMITTING DEVICE AND LIGHT-RECEIVING DEVICE USING TRANSISTOR STRUCTURE - Disclosed is a light-emitting device using a transistor structure, including a substrate, a first gate electrode, a first insulating layer, a source electrode, a drain electrode, and a light-emitting layer formed between the source electrode and the drain electrode in a direction parallel to these electrodes. In the light-emitting device using the transistor structure, it is possible to adjust the mobility of electrons or holes and to selectively set a light-emitting region through the control of the magnitude of voltage applied to the gate electrode, thus increasing the lifespan of the light-emitting device, facilitating the manufacturing process thereof, and realizing light-emitting or light-receiving properties having high efficiency and high purity.01-08-2009
20090008626Optoelectronic device - The present invention provides an optoelectronic device which includes a first electrode, a substrate on the first electrode; a buffer layer on the substrate, in which the buffer layer includes a first gallium nitride based compound layer on the substrate, a second gallium nitride based compound layer, and a II-V group compound layer between the first gallium nitride based compound layer and the second gallium nitride based compound layer; a first semiconductor conductive layer on the buffer layer; an active layer on the first semiconductor conductive layer, in which the active layer is an uneven Multi-Quantum Well; a semiconductor conductive layer on the active layer; a transparent layer on the second semiconductor conductive layer; and a second electrode on the transparent layer.01-08-2009
20090008625Optoelectronic device - The present invention provides an optoelectronic device, which includes a substrate having a first surface and a second surface, and an atomization layer located therebetween; a multi-layer semiconductor layer is formed on the first surface of the substrate, which further includes a first semiconductor structure that is formed on the substrate, a second semiconductor structure, and an active layer is located between the first semiconductor structure and the second semiconductor structure.01-08-2009
20090008624Optoelectronic device - The present invention provides an optoelectronic device, which includes a first electrode, a substrate on the first electrode, and a buffer layer on the substrate. The buffer layer further includes a first gallium nitride based compound layer on the substrate, a II-V group compound layer on the first gallium nitride based compound layer, a second gallium nitride based compound layer on the II-V group compound layer, and a third gallium nitride based compound layer on the second gallium nitride based compound layer. Then, a first semiconductor conductive layer is formed on the buffer layer; an active layer is formed on the first semiconductor conductive layer, in which the active layer is an uneven Multi-Quantum Well; a second semiconductor conductive layer on the active layer; a transparent conductive layer on the second semiconductor conductive layer; and a second electrode on the transparent conductive layer.01-08-2009
20120235117LIGHT EMITTING ELEMENT AND METHOD FOR MANUFACTURING SAME - Disclosed is a light emitting element, which emits light with small power consumption and high luminance. The light emitting element has: a IV semiconductor substrate; two or more core multi-shell nanowires disposed on the IV semiconductor substrate; a first electrode connected to the IV semiconductor substrate; and a second electrode, which covers the side surfaces of the core multi-shell nanowires, and which is connected to the side surfaces of the core multi-shell nanowires. Each of the core multi-shell nanowires has: a center nanowire composed of a first conductivity type III-V compound semiconductor; a first barrier layer composed of the first conductivity type III-V compound semiconductor; a quantum well layer composed of a III-V compound semiconductor; a second barrier layer composed of a second conductivity type III-V compound semiconductor; and a capping layer composed of a second conductivity type III-V compound semiconductor.09-20-2012
20120235114LIGHT EMITTING CHIP - A light emitting chip includes a substrate, a first reflective layer formed on the substrate, a lighting structure formed on the first reflective layer, and a first electrode formed between the first reflective layer and the substrate. The lighting structure includes a first semiconductor layer, an active layer and a second semiconductor layer. A receiving groove is defined in the lighting structure and extends from the first reflective layer to the first semiconductor layer. The receiving groove has a second reflective layer formed on an interior sidewall thereof. The first electrode includes a base and a connecting section extending upwardly from the base. The connecting section is surrounded by the second reflective layer and electrically connects with the first semiconductor layer. The first and second reflective layers each are electrically insulating.09-20-2012
20120104355THICK PSEUDOMORPHIC NITRIDE EPITAXIAL LAYERS - In various embodiments, a semiconductor device includes an aluminum nitride single-crystal substrate, a pseudomorphic strained layer disposed thereover that comprises at least one of AlN, GaN, InN, or an alloy thereof, and, disposed over the strained layer, a semiconductor layer that is lattice-mismatched to the substrate and substantially relaxed.05-03-2012
20130207076METHOD FOR FABRICATING GROUP III NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE, AND GROUP III NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE - A group III nitride semiconductor light emitting device with a satisfactory ohmic contact is provided. The group III nitride semiconductor light emitting device includes a junction JC which tilts with respect to the reference plane that is orthogonal to a c-axis of a gallium nitride based semiconductor layer. An electrode forms the junction with the semipolar surface of the gallium nitride based semiconductor layer. The oxygen concentration of the grown gallium nitride based semiconductor layer that will form the junction JC is reduced. Since the electrode is in contact with the semipolar surface of the gallium nitride based semiconductor layer so as to form the junction, the metal-semiconductor junction has satisfactory ohmic characteristics.08-15-2013
20130207075NANOSCALE EMITTERS WITH POLARIZATION GRADING - A nanowire comprises a polar semiconductor material that is compositionally graded along the nanowire from a first end to a second end to define a polarization doping profile along the nanowire from the first end to the second end. The polar semiconductor material may comprise a group IH-nitride semiconductor, such as an alloy of GaN and AlN, or an alloy of GaN and InN. Such nanowires may be formed by nucleating the first ends on a substrate, growing the nanowires by depositing polar semiconductor material on the nucleated first ends on a selected growth face, and compositionally grading the nanowires during growth to impart the polarization doping. The direction of the compositional grading may be reversed during the growing of the nanowires to reverse the type of the imparted polarization doping. In some embodiments, the reversing forms n/p or p/n junctions in the nanowires.08-15-2013
20130207074LIGHT EMITTING DEVICE HAVING MGO PYRAMID STRUCTURE AND METHOD FOR FABRICATING THE SAME - A gallium nitride-based group III-V compound semiconductor light emitting device and a method for fabricating the same are provided. The gallium nitride-based group III-V compound semiconductor light emitting device includes: a substrate; a p-type ohmic electrode layer formed on the substrate; a p-type gallium nitride-based group III-V compound semiconductor layer formed on the p-type ohmic electrode layer; an n-type gallium nitride-based group III-V compound semiconductor layer formed on the p-type gallium nitride-based group III-V compound semiconductor layer; an n-type ohmic electrode layer formed on the n-type gallium nitride-based group III-V compound semiconductor layer; and first and second refractive index adjustment layers having refractive index smaller than those of the n-type gallium nitride-based group III-V compound semiconductor layer and the n-type ohmic electrode layer, wherein a pyramid structure is formed on the surface of the second refractive index adjustment layer.08-15-2013
20130207072OPTICAL STRUCTURE AND LIGHT EMITTING DEVICE - A light emitting device includes a substrate, a light emitting unit, and a first optical structure. The light emitting unit is disposed on a top surface of the substrate. The first optical structure is disposed on the light emitting unit. The first optical structure includes a plurality of first nanostructures and a plurality of first quantum dot units. Each of the first quantum dot units is disposed in the first nanostructure. The light emitting unit is used to generate a first color light. Each of the first quantum dot units is used to be excited by the first color light to generate a second color light different from the first color light.08-15-2013
20120228582HYBRID VERTICAL CAVITY LIGHT EMITTING SOURCES - Vertical cavity light emitting sources that utilize patterned membranes as reflectors are provided. The vertical cavity light emitting sources have a stacked structure that includes an active region disposed between an upper reflector and a lower reflector. The active region, upper reflector and lower reflector can be fabricated from single or multi-layered thin films of solid states materials (“membranes”) that can be separately processed and then stacked to form a vertical cavity light emitting source.09-13-2012
20120199810GROWTH SUBSTRATE AND LIGHT EMITTING DEVICE - Disclosed are a growth substrate and a light emitting device. The light emitting device includes a silicon substrate, a first buffer layer disposed on the silicon substrate and having an exposing portions of the silicon substrate, a second buffer layer covering the first buffer layer and the exposed portions of the silicon substrate, wherein the second buffer layer is formed of a material causing a eutectic reaction with the silicon substrate, a third buffer layer disposed on the second buffer layer, and a light emitting structure disposed on the third buffer layer, and the second buffer layer includes voids.08-09-2012
20110163292Nanowire Array-Based Light Emitting Diodes and Lasers - Semiconductor nanowire arrays are used to replace the conventional planar layered construction for fabrication of LEDs and laser diodes. The nanowire arrays are formed from III-V or II-VI compound semiconductors on a conducting substrate. For fabrication of the device, an electrode layer is deposited on the substrate, a core material of one of a p-type and n-type compound semiconductor material is formed on top of the electrode as a planar base with a plurality of nanowires extending substantially vertically therefrom. A shell material of the other of the p-type and n-type compound semiconductor material is formed over an outer surface of the core material so that a p-n junction is formed across the planar base and over each of the plurality of nanowires. An electrode coating is formed an outer surface of the shell material for providing electrical contact to a current source. Heterostructures and superlattices grown along the lengths of the nanowires allow the confinement of photons in the quantum well to enhance the efficiency and as well as color tuning.07-07-2011
20110147699Auger Rate Suppression in Confined Structures - The present invention is generally directed to a method of suppressing the Auger rate in confined structures, comprising replacing an abrupt confinement potential with either a smooth confinement potential or a confinement potential of a certain size found by increasing the confinement potential width until the Auger recombination rate undergoes strong oscillations and establishes a periodic minima. In addition, the present invention provides for the design of structures with high quantum efficiency.06-23-2011
20120037885NON-RADIATIVELY PUMPED WAVELENGTH CONVERTER - A light source has an active layer (02-16-2012
20120256164OPTOELECTRONIC DEVICE AND THE MANUFACTURING METHOD THEREOF - An optoelectronic device has a substrate and a first window layer on the substrate with a first sheet resistance, a first thickness, and a first impurity concentration. A second window layer has a second sheet resistance, a second thickness, and a second impurity concentration. A semiconductor system is between the first window layer and the second window layer. The second window layer has a semiconductor material different from the semiconductor system, and the second sheet resistance is greater than the first sheet resistance. A method for manufacturing is provided, having the steps of providing a substrate, forming a semiconductor system on the substrate, and forming a window layer on the semiconductor system. The window layer has a semiconductor material different from the semiconductor system. Selectively removing the window layer forms a width difference greater than 1 micron between the window layer and semiconductor system.10-11-2012
20110121259NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE - There is provided a nitride semiconductor light emitting device including an active layer having enhanced external quantum efficiency at both low and high current density. The nitride semiconductor light emitting device includes a first conductivity type nitride semiconductor layer; an active layer disposed on the first conductivity type nitride semiconductor layer and having a plurality of quantum well layers and at least one quantum barrier layer alternately arranged; and a second conductivity type nitride semiconductor layer disposed on the active layer. The plurality of quantum well layers disposed adjacent to each other include first and second quantum well layers having different thicknesses.05-26-2011
20110278536LIGHT EMITTING MATERIAL - A film can include a plurality of semiconductor nanocrystals and a J-aggregating material in solution. The film can exhibit 90% energy transfer efficiency from the J-aggregating material to the plurality of semiconductor nanocrystals. The film can exhibit photoluminescence that is enhanced at least 2.5 times over an equivalent film including the plurality of semiconductor nanocrystals alone when excited at 465 nm. The film can be contacted onto a substrate by spin casting.11-17-2011
20110278538SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR FABRICATING THE SAME - Provided are a semiconductor light emitting device and a method for fabricating the same. The semiconductor light emitting device includes a light emitting structure and a pattern. The light emitting structure includes a first-conductivity-type semiconductor layer, an active layer, and a second-conductivity-type semiconductor layer. The pattern is formed on at least one light emitting surface among the surfaces of the light emitting structure. The pattern has a plurality of convex or concave parts that are similar in shape. The light emitting surface with the pattern formed thereon has a plurality of virtual reference regions that are equal in size and are arranged in a regular manner. The convex or concave part is disposed in the reference regions such that a part of the edge thereof is in contact with the outline of one of the plurality of virtual reference regions.11-17-2011
20110278537SEMICONDUCTOR EPITAXIAL STRUCTURES AND SEMICONDUCTOR OPTOELECTRONIC DEVICES COMPRISING THE SAME - A semiconductor epitaxial structure includes a substrate; a semiconductor epitaxial stack layers formed on the substrate; and a plurality of semiconductor buffer layers deposited between the substrate and the semiconductor epitaxial layer with a gradually varied composition along one direction; wherein more than one of the semiconductor buffer layers have a patterned surface.11-17-2011
20110121260QUANTUM DOT PHOSPHOR FOR LIGHT EMITTING DIODE AND METHOD OF PREPARING THE SAME - Disclosed herein is a quantum dot phosphor for light emitting diodes, which includes quantum dots and a solid substrate on which the quantum dots are supported. Also, a method of preparing the quantum dot phosphor is provided. Since the quantum dot phosphor of the current invention is composed of the quantum dots supported on the solid substrate, the quantum dots do not aggregate when dispensing a paste obtained by mixing the quantum dots with a paste resin for use in packaging of a light emitting diode. Thereby, a light emitting diode able to maintain excellent light emitting efficiency can be manufactured.05-26-2011
20110068322Semiconductor Nanoparticle-Based Materials - In various embodiments, the present invention relates to a plurality of coated primary particles, each primary particle including a primary matrix material and containing a population of semiconductor nanoparticles, wherein each primary particle is provided with a separate layer of a surface coating material. Various methods of preparing such particles are described. Composite materials and light-emitting devices incorporating such primary particles are also described.03-24-2011
20120286239LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE PACKAGE INCLUDING THE SAME - Provided are a light emitting device and a light emitting device package including the same. The light emitting device comprises a first conductive type semiconductor layer, an active layer comprising a plurality of quantum well layers and a plurality of barrier layers, which are alternately laminated on the first conductive type semiconductor layer, and a second conductive type semiconductor layer on the active layer. The plurality of barrier layers comprise a plurality of first barrier layers comprising an n-type dopant, and the conductive type dopant doped into the plurality of first barrier layers have different doping concentrations for each layer.11-15-2012
20110017973Nanodevice, Transistor Comprising the Nanodevice, Method for Manufacturing the Nanodevice, and Method for Manufacturing the Transistor - A nanodevice, a transistor including the nanodevice, a method of manufacturing the nanodevice, and a method of manufacturing the transistor including the nanodevice are provided. The nanodevice includes a substrate, a mask layer located on the substrate and having at least one opening, and a nanotube formed on the substrate through the opening along an edge of the opening. The nanotube extends through the opening in a direction substantially perpendicular to a surface of the substrate.01-27-2011
20110127491LIGHT EMITTING DEVICE, METHOD OF MANUFACTURING THE SAME, LIGHT EMITTING DEVICE PACKAGE, AND LIGHTING SYSTEM - Disclosed is a light emitting device, a method of manufacturing the same, a light emitting device package, and a lighting system. The light emitting device may include a first conductive semiconductor layer including first conductive impurities, a second conductive semiconductor layer including second conductive impurities different from the first conductive impurities, an active layer between the first conductive semiconductor layer and the second conductive semiconductor layer, and an AlInN-based semiconductor layer interposed between the active layer and the second conductive semiconductor layer while making contact with both of the active layer and the second conductive semiconductor and including the second conductive impurities.06-02-2011
20110127490Method of Growing Uniform Semiconductor Nanowires without Foreign Metal Catalyst and Devices Thereof - Amongst the candidates for very high efficiency solid state lights sources and full solar spectrum solar cells are devices based upon InGaN nanowires. Additionally these nanowires typically require heterostructures, quantum dots, etc which all place requirements for these structures to be grown with relatively few defects. Further manufacturing requirements demand reproducible nanowire diameter, length etc to allow these nanowires to be embedded within device structures. Additionally flexibility according to the device design requires that the nanowire at the substrate may be either InN or GaN. According to the invention a method of growing relatively defect free nanowires and associated structures for group III—nitrides is presented without the requirement for foreign metal catalysts and overcoming the non-uniform growth of prior art non-catalyst growth techniques. The technique also allows for unique dot-within-a-dot nanowire structures.06-02-2011
20110127489Light emitting device and method of manufacturing the same - Example embodiments relate to a light emitting device and a method of fabricating the light emitting device. The light emitting device may include an n-type clad layer including a plurality of nitride semiconductor layers, at least one interlayer disposed between the plurality of nitride semiconductor layers, a via hole in which a first electrode is formed, a p-type clad layer, and an active layer between the n-type clad layer and the p-type clad layer.06-02-2011
20090057646OPTICAL SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - Because of a large lattice mismatch between a sapphire substrate and a group III-V compound semiconductor, a good crystal is difficult to grow. A high-quality AlN buffer growth structure A on a sapphire substrate includes a sapphire (0001) substrate 03-05-2009
20110140081METHOD FOR FABRICATING SEMICONDUCTOR LIGHT-EMITTING DEVICE WITH DOUBLE-SIDED PASSIVATION - A method for fabricating a semiconductor light-emitting device includes fabricating a multilayer semiconductor structure on a first substrate, wherein the multilayer semiconductor structure comprises a first doped semiconductor layer, an MQW active layer, a second doped semiconductor layer, and a first passivation layer. The method further involves patterning and etching part of the first passivation layer to expose the first doped semiconductor layer. A first electrode is then formed, which is coupled to the first doped semiconductor layer. Next, the multilayer structure is bonded to a second substrate; and the first substrate is removed. A second electrode is formed, which is coupled to the second doped semiconductor layer. Further, a second passivation layer is formed, which substantially covers the sidewalls of multilayer structure and part of the surface of the second doped semiconductor layer which is not covered by the second electrode.06-16-2011
20110140080METHOD FOR FABRICATING InGaAIN LIGHT-EMITTING DIODES WITH A METAL SUBSTRATE - One embodiment of the present invention provides a method for fabricating light-emitting diodes. The method includes etching grooves on a growth substrate, thereby creating mesas on the growth substrate. The method further includes fabricating on each of the mesas an indium gallium aluminum nitride (InGaAlN) multilayer structure which contains a p-type layer, a multi-quantum-well layer, and an n-type layer. In addition, the method includes depositing one or more metal substrate layers on top of the InGaAlN multilayer structure. Moreover, the method includes removing the growth substrate. Furthermore, the method includes creating electrodes on both sides of the InGaAlN multilayer structure, thereby resulting in a vertical-electrode configuration.06-16-2011
20110140079Semiconductor Light Emitting Device - The present disclosure relates to a semiconductor light-emitting device which includes: a light-emitting layer composed of an active layer and of barrier layers formed as superlattice layers and disposed on and under the active layer to relieve stresses applied to the active layer and reduce the sum of electric fields generated in the active layer by the spontaneous polarization and the piezo; an N-type contact layer injecting electrons into the light-emitting layer; and a P-type contact layer disposed opposite to the N-type contact layer with respect to the light-emitting layer and injecting holes into the light-emitting layer, wherein the active layer contains InGaN, and the barrier layers are formed by alternately stacking of an AlGaN thin film and an InGaN thin film.06-16-2011
20110140078LIGHT-EMITTING DEVICE AND METHOD OF MAKING THE SAME - This disclosure discloses a light-emitting device. The light-emitting device comprises a light-emitting diode chip comprising a plurality of light-emitting diode units and at least one electrical connecting layer. The light-emitting diode units are electrically connected with each other through the electrical connecting layer. Each of the light-emitting diode units comprises a first semiconductor layer, a second semiconductor layer, and an active layer. The light-emitting device further comprises a bonding layer; and a carrier bonded to the light-emitting diode chip by the bonding layer. The electrical connecting layer is formed between the light-emitting diode units and the bonding layer.06-16-2011
20110140077LIGHT EMITTING DEVICE - Disclosed is a light emitting device. The light emitting device includes a first conductive semiconductor layer, an active layer over the first conductive semiconductor layer, a second conductive semiconductor layer over the active layer, a superlattice structure layer over the second conductive semiconductor layer, and a first current spreading layer including a transmissive conductive thin film over the superlattice structure layer.06-16-2011
20110140076LIGHT EMITTING ELEMENT AND A PRODUCTION METHOD THEREFOR - A light emitting device according to the embodiment includes a support substrate; a reflective layer over the support substrate; an ohmic contact layer over the reflective layer; a light emitting semiconductor layer including a second conductive semiconductor layer, an active layer and a first conductive semiconductor layer over the ohmic contact layer; a first passivation layer surrounding a lateral side of the light emitting semiconductor layer; and a second passivation layer surrounding lateral sides of the first passivation layer and the reflective layer.06-16-2011
20110140075LIGHT-EMITTING DEVICE INCLUDING QUANTUM DOTS - A light emitting device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a cathode, a layer comprising a material capable of transporting and injection electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a layer comprising a hole injection material, and an anode. In certain embodiments, the hole injection material can be a p-type doped hole transport material. In certain preferred embodiments, quantum dots comprise semiconductor nanocrystals. In another aspect of the invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/λ, wherein λ represents the wavelength (nm) of light emitted by the emissive layer. Other light emitting devices and a method are disclosed.06-16-2011
20090206322BROADBAND LIGHT EMITTING DEVICE LAMPS FOR PROVIDING WHITE LIGHT OUTPUT - A multi-chip light emitting device (LED) lamp for providing white light includes first and second broadband LED chips. The first LED chip includes a multi-quantum well active region having a first plurality of alternating active and barrier layers. The first plurality of active layers respectively include different relative concentrations of at least two elements of a first semiconductor compound, and are respectively configured to emit light of a plurality of different emission wavelengths over a first wavelength range. The second LED chip includes a multi-quantum well active region having a second plurality of alternating active and barrier layers. The second plurality of active layers respectively include different relative concentrations of at least two elements of a second semiconductor compound, and are respectively configured to emit light of a plurality of different emission wavelengths over a second wavelength range including wavelengths greater than those of the first wavelength range. The light emitted by the first and second LED chips combines to provide white light. Related devices are also discussed.08-20-2009
20120187369LIGHT EMITTING DEVICE - Provided are a light emitting device, a method of fabricating the light emitting device, a light emitting device package, and a lighting system. The light emitting device comprises a substrate, a first semiconductor layer containing indium (In) over the substrate, and a light emitting structure over the first semiconductor layer. A dislocation mode is disposed on a top surface of the first semiconductor layer.07-26-2012
20120187366GROWTH METHOD OF NITRIDE SEMICONDUCTOR LAYER AND LIGHT EMITTING DEVICE USING THE GROWTH METHOD - Growing a first nitride semiconductor layer on an Al07-26-2012
20120286240Methods of Fabricating Light Emitting Diode Packages - An LED array comprises a growth substrate and at least two separated LED dies grown over the growth substrate. Each of LED dies sequentially comprise a first conductive type doped layer, a multiple quantum well layer and a second conductive type doped layer. The LED array is bonded to a carrier substrate. Each of separated LED dies on the LED array is simultaneously bonded to the carrier substrate. The second conductive type doped layer of each of separated LED dies is proximate to the carrier substrate. The first conductive type doped layer of each of LED dies is exposed. A patterned isolation layer is formed over each of LED dies and the carrier substrate. Conductive interconnects are formed over the patterned isolation layer to electrically connect the at least separated LED dies and each of LED dies to the carrier substrate.11-15-2012
20100171094LIGHT-EMITTING SEMICONDUCTOR APPARATUS - A light-emitting semiconductor apparatus includes a light-emitting structure, a reflective structure, and a carrier. The light-emitting structure includes a first type semiconductor layer, a second type semiconductor layer, and a light-emitting layer positioned between the first type semiconductor layer and the second type semiconductor layer. The reflective structure has a first transparent conductive layer, a first patterned reflective layer, a second transparent conductive layer, and a second patterned reflective layer. The first patterned reflective layer is disposed between the first transparent conductive layer and the second transparent conductive layer, and has an opening for physically connecting the first transparent conductive layer and the second transparent conductive layer. The second transparent conductive layer is disposed between the first patterned reflective layer and the second patterned reflective layer. The second patterned reflective layer is positioned on an area corresponding to the opening. The light-emitting structure and the carrier are respectively on two sides of the reflective structure.07-08-2010
20110284823SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device, including a reflective electrode layer; a second conductive semiconductor layer formed on a portion of a top surface of the reflective electrode layer; an active layer formed on the second conductive semiconductor layer; a first conductive semiconductor layer formed on the active layer; a first electrode formed under one portion of the first conductive semiconductor layer; and an insulating layer having a lower portion, a first upwardly directed side wall portion at a first side of the first electrode and a second upwardly directed side wall portion at a second side of the first electrode that is opposite to the first side. At least one portion of the lower portion is between the second conductive semiconductor layer and the reflective electrode layer.11-24-2011
20110001122COMPOUND SEMICONDUCTORS - Compound semiconductors capable of emitting light in the green spectrum are provided. The compound semiconductors may display improved quantum efficiencies when applied to various optical devices. Also, light emitting diodes and light emitting diode modules comprising the compound semiconductors are provided.01-06-2011
20110284824LIGHT EMITTING DIODE STRUCTURE AND A METHOD OF FORMING A LIGHT EMITTING DIODE STRUCTURE - A light emitting diode structure and a method of forming a light emitting diode structure are provided. The structure comprises a superlattice comprising, a first barrier layer; a first quantum well layer comprising a first metal-nitride based material formed on the first barrier layer; a second barrier layer formed on the first quantum well layer; and a second quantum well layer comprising the first metal-nitride based material formed on the second barrier layer; and wherein a difference between conduction band energy of the first quantum well layer and conduction band energy of the second quantum well layer is matched to a single or multiple longitudinal optical phonon energy for reducing electron kinetic energy in the superlattice.11-24-2011
20110284821LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE PACKAGE - The embodiment relates to a light emitting device and a light emitting device package, wherein the light emitting device includes a first conduction type semiconductor layer, an active layer formed on the first conduction type semiconductor layer, and a second conduction type semiconductor layer formed on the active layer, wherein the active layer includes a quantum well layer and a quantum barrier layer, and a face direction lattice constant of the first conduction type semiconductor layer or the second conduction type semiconductor layer is greater than the face direction lattice constant of the quantum barrier layer and smaller than the face direction lattice constant of the quantum well layer.11-24-2011
20100264401MICRO-PIXEL ULTRAVIOLET LIGHT EMITTING DIODE - An ultra-violet light-emitting diode (LED) array, 10-21-2010
20100019222LOW-TEMPERATURE LED CHIP METAL BONDING LAYER - The present invention discloses a low-temperature light-emitting-diode chip metal bonding layer, which comprises: a first metal layer formed on the joint surface of an LED epitaxial layer and containing an ITO layer, a silver layer, a titanium layer, a platinum layer and a gold layer sequentially arranged from the LED epitaxial layer; and a second metal layer formed on the joint surface of the substrate and containing a titanium layer, a gold layer and an indium layer sequentially arranged from the substrate. Because of the low melting point of the indium layer, the bonding process of the substrate and the LED chip epitaxial layer can be undertaken at a relatively low temperature. Therefore, the present invention can prevent the film structures from being damaged by high temperature and can raise the yield of metal bonding LED chips.01-28-2010
20110297914GALLIUM NITRIDE-BASED FLIP-CHIP LIGHT-EMITTING DIODE WITH DOUBLE REFLECTIVE LAYERS ON ITS SIDE AND FABRICATION METHOD THEREOF - The present invention discloses a double-reflective-layer gallium nitride-based flip-chip light-emitting diode with both a distributed Bragg reflector and a metal reflective layer on its side and a fabrication method thereof. The light-emitting diode includes: a sapphire substrate; a buffer layer, an N-GaN layer, a multiple-quantum-well layer and a P-GaN layer stacked on the sapphire substrate in that order; a transparent conductive layer formed on the P-GaN layer; a distributed Bragg reflector formed over a side of the epitaxial layer and the transparent conductive layer; a metal reflective layer formed on the DBR; a P-type ohmic contact electrode formed on the transparent conductive layer; and an N-type ohmic contact electrode formed on the exposed N-GaN layer, wherein the P-type ohmic contact electrode and the N-type ohmic contact electrode are bonded to a heat dissipation substrate through a metal conductive layer and a ball bonder. By arranging a double reflection structure including a DBR and a metal reflective layer on the sloping side of the LED chip, the good reflectivity of the reflective layers can be fully utilized, thereby improving the light-emission efficiency of the LED.12-08-2011
20100090195QUANTUM DOT OPTOELECTRONIC DEVICES WITH ENHANCED PERFORMANCE - An optoelectronic device is disclosed which includes a quantum dot layer including plurality of quantum dots which do not have capping layers. This optoelectronic device may be a quantum dot light-emitting device, which includes (1) a substrate which is transparent or translucent, (2) an anode electrical conducting layer which is transparent or translucent, and is located adjacent to the substrate, (3) a planarizing/hole injection layer which is located adjacent to the anode electrical conducting layer, (4) a quantum dot layer including the plurality of quantum dots which do not have capping layers, and (5) a cathode electrical conducting layer which is located adjacent to the quantum dot layer.04-15-2010
20110291073QUANTUM DOT PHOSPHOR FOR LIGHT EMITTING DIODE AND METHOD OF PREPARING THE SAME - Disclosed herein is a quantum dot phosphor for light emitting diodes, which includes quantum dots and a solid substrate on which the quantum dots are supported. Also, a method of preparing the quantum dot phosphor is provided. Since the quantum dot phosphor of the current invention is composed of the quantum dots supported on the solid substrate, the quantum dots do not aggregate when dispensing a paste obtained by mixing the quantum dots with a paste resin for use in packaging of a light emitting diode. Thereby, a light emitting diode able to maintain excellent light emitting efficiency can be manufactured.12-01-2011
20110291072SEMICONDUCTOR DIES, LIGHT-EMITTING DEVICES, METHODS OF MANUFACTURING AND METHODS OF GENERATING MULTI-WAVELENGTH LIGHT - A semiconductor die includes at least one first region and at least one second region. The at least one first region is configured to emit light having at least a first wavelength. The at least one second region is configured to emit light having at least a second wavelength, which is different from the first wavelength.12-01-2011
20110291071QUANTUM DOT LIGHT EMITTING DIODE DEVICE AND DISPLAY DEVICE THEREWITH - The present invention relates to a quantum dot light emitting diode device in which a hole transportation layer is formed after forming a quantum dot light emitting layer by a solution process by applying an inverted type quantum dot light emitting diode device for making free selection of a hole transportation layer material that enables easy injection of a hole to the quantum dot light emitting layer; and display device and method therewith.12-01-2011
20110291070LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE, AND LIGHTING SYSTEM - Provided are a light emitting device, a light emitting device package, and a lighting system. The light emitting device includes a substrate, a light emitting structure comprising a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer, the light emitting structure being disposed on the substrate, a nonmetal pattern disposed between the substrate and the active layer, the nonmetal pattern being spaced from the substrate, and an air gap disposed on a side surface of the nonmetal pattern.12-01-2011
20110291069Light-emitting devices and methods of manufacturing the same - Light-emitting devices (LED) and methods of manufacturing the same. A LED includes a first type semiconductor layer, a nano array layer that includes a plurality of nano structures each including a first type semiconductor nano core selectively grown from the first type semiconductor layer, and an active layer and a second type semiconductor layer sequentially grown from a side surface of the first type semiconductor nano core, and that is formed in a selective growth region formed in a surface of the first type semiconductor layer, a first electrode layer that is formed to be used when a voltage is applied to the first type semiconductor layer and formed in a predetermined pattern connecting regions that do not correspond to the selective growth region in the first type semiconductor layer, a second electrode layer formed to be used when a voltage is applied to the second type semiconductor layer on the plurality of nano structures, and an insulating layer formed between the first electrode layer and the second electrode layer so that the first electrode layer is insulated from the second electrode layer.12-01-2011
20110168977SEMICONDUCTOR LAYER STRUCTURE WITH SUPERLATTICE - An optoelectronic component including a semiconductor layer structure, the semiconductor layer structure including a superlattice composed of stacked layers of III-V compound semiconductors of a first and at least one second type. Adjacent layers of different types in the superlattice differ in composition with respect to at least one element, at least two layers of the same type having a different content of the at least one element, the content of the at least one element is graded within a layer of the superlattice, and the layers of the superlattice contain dopants in predefined concentrations, with the superlattice comprising layers that are doped with different dopants. In this way, the electrical, optical and epitaxial properties of the superlattice can be adapted in the best possible manner to given requirements, particularly epitaxial constraints.07-14-2011
20090008627Luminous device and method of manufacturing the same - A luminous device and a method of manufacturing the luminous device are provided. The luminous device includes a light emitting layer and first and second electrodes connected to the light emitting layer. The light emitting layer is a strained nanowire.01-08-2009
20090166608Light emitting semiconductor device and fabrication method for the light emitting semiconductor device - A semiconductor light emitting device and a fabrication method for the semiconductor light emitting device whose outward luminous efficiency improved are provided and the semiconductor light emitting device includes a substrate; a protective film placed on the substrate; an n-type semiconductor layer which is placed on the substrate pinched by a protective film and on the protective film, and is doped with an n-type impurity; an active layer placed on the n-type semiconductor layer, and a p-type semiconductor layer placed on the active layer and is doped with a p-type impurity.07-02-2009
20090267050METHOD OF PREPARING CADMIUM SULFIDE NANOCRYSTALS EMITTING LIGHT AT MULTIPLE WAVELENGTHS, AND CADMIUM SULFIDE NANOCRYSTALS PREPARED BY THE METHOD - A cadmium sulfide nanocrystal, wherein the cadmium sulfide nanocrystal shows maximum luminescence peaks at two or more wavelengths and most of the atoms constituting the nanocrystal are present at the surface of the nanocrystal to form defects.10-29-2009
20090267048SEMICONDUCTOR LIGHT EMITTING ELEMENT - Light extraction efficiency of a semiconductor light-emitting element is improved. A buffer layer, an n-type GaN layer, an InGaN emission layer, and a p-type GaN layer are laminated on a sapphire substrate in a semiconductor light-emitting element. A ZnO layer functioning as a transparent electrode is provided on the p-type GaN layer and concave portions are formed on a surface of the ZnO layer at two-dimensional periodic intervals. If a wavelength of light from the InGaN emission layer in the air is λ, an index of refraction of the ZnO layer at the wavelength λ is n10-29-2009
20120097922LIGHT EMITTING ELEMENT, METHOD OF PRODUCING SAME, LAMP, ELECTRONIC EQUIPMENT, AND MECHINICAL APPARATUS - There is provided a light-emitting element in which the driving voltage is reduced and light extraction efficiency is improved, a method of manufacturing the light-emitting element, a lamp, electronic equipment, and a mechanical apparatus. This is achieved by using a light-emitting element (04-26-2012
20120097921Cadmium-free Re-Emitting Semiconductor Construction - Disclosed re-emitting semiconductor constructions (RSCs) may provide full-color RGB or white-light emitting devices that are free of cadmium. Some embodiments may include a potential well that comprises a III-V semiconductor and that converts light of a first photon energy to light of a smaller photon energy, and a window that comprises a II-VI semiconductor having a band gap energy greater than the first photon energy. Some embodiments may include a potential well that converts light having a first photon energy to light having a smaller photon energy and that comprises a II-VI semiconductor that is substantially Cd-free. Some embodiments may include a potential well that comprises a first III-V semiconductor and that converts light having a first photon energy to light having a smaller photon energy, and a window that comprises a second III-V semiconductor and that has a band gap energy greater than the first photon energy.04-26-2012
20120097920III-NITRIDE LIGHT-EMITTING DIODE AND METHOD OF PRODUCING THE SAME - This invention relates to structures and fabricating methods of light-emitting diodes capable of emitting white or a color within full-visible-spectrum with better efficiency and flexibility. An embodiment provides a light-emitting diode array consisted of one or more light-emitting diodes on a substrate. Each light-emitting diode comprises a first doped nanorod, an active light-emitting region consisted of one or more nanodisks on the first doped nanorod, and a second doped nanorod on the active light-emitting region. Another embodiment provides a fabricating method of the light-emitting diode array.04-26-2012
20120097919LIMITING STRAIN RELAXATION IN III-NITRIDE HETERO-STRUCTURES BY SUBSTRATE AND EPITAXIAL LAYER PATTERNING - A method of fabricating a substrate for a semipolar III-nitride device, comprising patterning and forming one or more mesas on a surface of a semipolar III-nitride substrate or epilayer, thereby forming a patterned surface of the semipolar III-nitride substrate or epilayer including each of the mesas with a dimension/along a direction of a threading dislocation glide, wherein the threading dislocation glide results from a III-nitride layer deposited heteroepitaxially and coherently on a non-patterned surface of the substrate or epilayer.04-26-2012
20120097918IMPLANTED CURRENT CONFINEMENT STRUCTURE TO IMPROVE CURRENT SPREADING - Ion implantation is used to form a current confinement structure, such as that in a light emitting diode. This current confinement structure defines multiple cells in one embodiment, each of which may surround an undoped region. The ion implantation may be performed between formation of the various layers. In one embodiment, the formation of one layer is interrupted and then resumed after ion implantation is performed.04-26-2012
20100032650LIGHT EMITTING DIODE HAVING ALGAN BUFFER LAYER AND METHOD OF FABRICATING THE SAME - The present invention relates to a light emitting diode having an Al02-11-2010
20100032645AC-DRIVEN LIGHT EMITTING DEVICE HAVING SINGLE ACTIVE LAYER STRUCTURE AND MANUFACTURING METHOD THEREOF - The present invention relates to an AC voltage-driven light emitting device having a single active layer of a core-shell structure (p-i-n structure) in which intrinsic semiconductor nanocrystals, exciton combination centers, are uniformly and isotropically distributed around p-type polymer particles, and n-type small molecular particles surround the semiconductor nanocrystals and p-type polymer, and a manufacturing method thereof. An active layer of a core-shell structure using a polymer-semiconductor nano hybrid in the light-emitting device has an inversion symmetry characteristic showing the same current-voltage characteristic during application of a voltage in a forward direction and a reverse direction. Therefore, due to this inversion symmetry characteristic, the light emitting can be driven by even an AC voltage. Also, since the device can be driven by an AC voltage, limitations of an existing DC voltage-driven organic light emitting diode, that is, destruction or a defect of the device by an overcurrent and generation of a dark spot by degradation of local constituent organic materials are solved.02-11-2010
20100032646LIGHT EMITTING DEVICE - A light emitting device includes: a first layer made of a semiconductor of a first conductivity type; a second layer made of a semiconductor of a second conductivity type; an active layer including a multiple quantum well provided between the first layer and the second layer, impurity concentration of the first conductivity type in each barrier layer of the multiple quantum well having a generally flat distribution or increasing toward the second layer, average of the impurity concentration in the barrier layer on the second layer side as viewed from each well layer of the multiple quantum well being equal to or greater than average of the impurity concentration in the barrier layer on the first layer side, and average of the impurity concentration in the barrier layer nearest to the second layer being higher than average of the impurity concentration in the barrier layer nearest to the first layer.02-11-2010
20120187368High Sensitivity Stress Sensor Based on Hybrid Materials - A sensing device is used to detect the spatial distributions of stresses applied by physical contact with the surface of the sensor or induced by pressure, temperature gradients, and surface absorption. The sensor comprises a hybrid active layer that includes luminophores doped in a polymeric or organic host, altogether embedded in a matrix. Under an electrical bias, the sensor simultaneously converts stresses into electrical and optical signals. Among many applications, the device may be used for tactile sensing and biometric imaging.07-26-2012
20120187367OPTICAL MATERIALS, OPTICAL COMPONENTS, AND METHODS - An optical component including an optical material comprising quantum confined semiconductor nanoparticles, wherein at least a portion of the nanoparticles are in a charge neutral state. Further disclosed is an optical component including an optical material comprising quantum confined semiconductor nanoparticles, wherein at least a portion of the nanoparticles are in a charge neutral state, and wherein the optical material is at least partially encapsulated. Methods, optical materials, and devices are also disclosed.07-26-2012
20110168976MICRO- AND NANO-STRUCTURED LED AND OLED DEVICES - Structured LED devices and component structures with improved efficiency and reduced defects are enabled by the use of micro- or nano-structured features that reduce lattice strain and improve p-doping in inorganic LEDs, and facilitate carrier injection and recombination of OLEDs. The nanostructures can also confine current flow and provide internal light guiding to enhance efficiency and thereby improve device performance.07-14-2011
20100006818LIGHT EMITTING DIODE - A light emitting diode which includes a laminate including an n-type cladding layer, an emission layer which has a quantum well structure having a well layer and a barrier layer, an intermediate layer and a p-type cladding layer in this order, wherein the composition of each of the layers is represented by the composition formula: (Al01-14-2010
20120187372CONTACT FOR A SEMICONDUCTOR LIGHT EMITTING DEVICE - An AlGaInP light emitting device is formed as a thin, flip chip device. The device includes a semiconductor structure comprising an AlGaInP light emitting layer disposed between an n-type region and a p-type region. N- and p-contacts electrically connected to the n- and p-type regions are both formed on the same side of the semiconductor structure. The semiconductor structure is connected to the mount via the contacts. The growth substrate is removed from the semiconductor structure and the thick transparent substrate is omitted, such that the total thickness of semiconductor layers in the device is less than 15 μm in some embodiments, less than 10 μm in some embodiments. The top side of the semiconductor structure may be textured.07-26-2012
20120187370LIGHT EMITTING DEVICE - Disclosed is a light emitting device including a substrate, a first conductive semiconductor layer disposed on the substrate, an active layer disposed on the first conductive semiconductor layer, and a second conductive semiconductor layer disposed on the active layer, wherein the first conductive semiconductor layer comprises a first layer provided at the upper surface thereof with a notch, a second layer disposed on the first layer and a third layer disposed on the second layer, wherein the first conductive semiconductor layer further comprises a blocking layer between the first layer and the second layer and the blocking layer is disposed along the notch. The light emitting device can reduce leakage current by dislocation and improve resistance to static electricity.07-26-2012
20120187371White Light Devices Using Non-polar or Semipolar Gallium Containing Materials and Phosphors - A packaged optical device includes a substrate having a surface region with light emitting diode devices fabricated on a semipolar or nonpolar GaN substrate. The LEDs emit polarized light and are characterized by an overlapped electron wave function and a hole wave function. Phosphors within the package are excited by the polarized light and, in response, emit electromagnetic radiation of a second wavelength.07-26-2012
20100001257Stress-Alleviation Layer for LED Structures - A light emitting diodes (LEDs) is presented. The LED includes a stress-alleviation layer on a substrate. Open regions and stress-alleviation layer regions are formed on the substrate. Epitaxial layers are disposed on the substrate, at least in the open regions therein, thereby forming an LED structure. The substrate is diced through at least a first portion of the stress-alleviation regions, thereby forming the plurality of LEDs.01-07-2010
20090121214III-NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor light-emitting device comprises a substrate, a buffer layer, an n-type semiconductor layer, a conformational active layer and a p-type semiconductor layer. The n-type semiconductor layer includes a first surface and a second surface, and the first surface directly contacts the buffer layer. The second surface has a plurality of recesses, and a conformational active layer formed on the second surface and within the plurality of recesses. Therefore, the stress between the n-type semiconductor layer and the conformational active layer can be released with the recesses.05-14-2009
20110266520Superlattice Structure - A superlattice layer including a plurality of periods, each of which is formed from a plurality of sub-layers is provided. Each sub-layer comprises a different composition than the adjacent sub-layer(s) and comprises a polarization that is opposite a polarization of the adjacent sub-layer(s). In this manner, the polarizations of the respective adjacent sub-layers compensate for one another. Furthermore, the superlattice layer can be configured to be at least partially transparent to radiation, such as ultraviolet radiation.11-03-2011
20080237571Semiconductor light emitting device and nitride semiconductor light emitting device - The present invention is a semiconductor light emitting device including an n-type semiconductor layer, an active layer, a first p-type semiconductor layer between the n-type semiconductor layer and the active layer, and a second p-type semiconductor layer on the opposite side of the first p-type semiconductor layer from the active layer. Further, the present invention is a nitride semiconductor light emitting device including an n-type nitride semiconductor layer, a nitride semiconductor active layer, a first p-type nitride semiconductor layer between the n-type nitride semiconductor layer and the nitride semiconductor active layer, and a second p-type nitride semiconductor layer on the opposite side of the first p-type nitride semiconductor layer from the nitride semiconductor active layer.10-02-2008
20080237570LIGHT EMITTING DIODE HAVING WELL AND/OR BARRIER LAYERS WITH SUPERLATTICE STRUCTURE - A light emitting diode (LED) having well and/or barrier layers with a superlattice structure is disclosed. An LED has an active region between an N-type GaN-based semiconductor compound layer and a P-type GaN-based semiconductor compound layer, wherein the active region comprises well and/or barrier layers with a superlattice structure. As the well and/or barrier layers with a superlattice structure are employed, it is possible to reduce occurrence of defects caused by lattice mismatch between the well layer and the barrier layer.10-02-2008
20100224854LIGHT EMITTING DEVICE - A light emitting device (LED) is provided. The LED comprises a light emitting structure and a mixed-period photonic crystal structure. The light emitting structure comprises a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer. The mixed-period photonic crystal structure is on the light emitting structure.09-09-2010
20100096617TRANSPARENT POLARIZED LIGHT-EMITTING DEVICE - A transparent directional polarized light-emitting device includes a transparent anode and a transparent cathode, a radiation-emitting layer between the anode and the cathode, an optically active reflective layer with a reflection band that matches a chirality and at least partially encompasses a wavelength band of radiation emitted from the radiation-emitting layer, the optically active light blocking layer located on a side of the radiation-emitting layer, and a transparent substrate adjacent to the optically active reflective layer.04-22-2010
20110017974COMPOUND SEMICONDUCTOR LIGHT EMITTING DEVICE - There is provided a compound semiconductor light emitting device capable of optimizing strain applied to an active layer and a clad layer to minimize a piezoelectric field and spontaneous polarization in an active layer and to maximize light emission efficiency. In a compound semiconductor light emitting device having a structure in which a buffer layer, a first clad layer, an active layer, and a second clad layer are sequentially deposited, a strain induction layer and a strain control layer intersect at least once and are deposited between the buffer layer and the first clad layer, the strain induction layer performs induction so that compressive strain to be applied to the active layer is dispersed to the strain control layer, and the compressive strain applied to the active layer is reduced as the compressive strain is applied to the strain control layer.01-27-2011
20100078623SEMICONDUCTOR METHOD AND DEVICE - A method for enhancing operation of a bipolar light-emitting transistor includes the following steps: providing a bipolar light-emitting transistor having emitter, base, and collector regions; providing electrodes for coupling electrical signals with the emitter, base, and collector regions; and adapting the base region to promote carrier transport from the emitter region toward the collector region by providing, in the base region, several spaced apart quantum size regions of different thicknesses, with the thicknesses of the quantum size regions being graded from thickest near the collector to thinnest near the emitter.04-01-2010
20100127236Laser Diode With High Indium Active Layer And Lattice Matched Cladding Layer - A semiconductor laser diode with a high indium content is provided with a lattice matched cladding layer or layers. One or both of the cladding layers may comprise bulk aluminum gallium indium nitride in the ratio of Al05-27-2010
20100078625OPTO-ELECTRONIC DEVICE - The present application relates to an opto-electronic device. The opto-electronic device includes a first light-emitting structure and a second light-emitting structure. The first light-emitting structure is capable of generating a first light having a first wavelength. The second light-emitting structure is capable of generating a second light having a second wavelength. The first light-emitting structure includes a nanorod structure having a first active layer, and the first active layer can absorb the second light to generate the first light.04-01-2010
20080308787LIGHT EMITTING DIODE HAVING ACTIVE REGION OF MULTI QUANTUM WELL STRUCTURE - Disclosed is a light emitting diode (LED) having an active region of a multiple quantum well structure in which well layers and barrier layers are alternately laminated between a GaN-based N-type compound semiconductor layer and a GaN-based P-type compound semiconductor layer. The LED includes a middle barrier layer having a bandgap relatively wider than the first barrier layer adjacent to the N-type compound semiconductor layer and the n-th barrier layer adjacent to the P-type compound semiconductor layer. The middle barrier layer is positioned between the first and n-th barrier layers. Accordingly, positions at which electrons and holes are combined in the multiple quantum well structure to emit light can be controlled, and luminous efficiency can be enhanced. Furthermore, an LED is provided with enhanced luminous efficiency using a bandgap engineering or impurity doping technique.12-18-2008
20100078624NANOWIRE LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - The invention provides a nanowire light emitting device and a manufacturing method thereof. In the light emitting device, first and second conductivity type clad layers are formed and an active layer is interposed therebetween. At least one of the first and second conductivity type clad layers and the active layer is a semiconductor nanowire layer obtained by preparing a layer of a mixture composed of a semiconductor nanowire and an organic binder and removing the organic binder therefrom.04-01-2010
20110062412LIGHT-EMITTING ELEMENT AND A PRODUCTION METHOD THEREFOR - A light emitting element according to an exemplary embodiment includes: a support substrate; a second electrode layer formed on the support substrate; a current spreading layer formed on the support substrate; a second conductive semiconductor layer formed on the second electrode layer and the current spreading layer; an active layer formed on the second conductive semiconductor layer; a first conductive semiconductor layer formed on the active layer; and a first electrode layer formed on the first conductive semiconductor layer.03-17-2011
20110062414LIGHT EMITTING DEVICES - A new light emitting device is disclosed, including a polarizing surface layer, a light emitting layer which emits light at a wavelength, and a light transformation layer disposed between the light emitting layer and the reflective layer, wherein the light emitting layer is disposed between the reflective layer and the polarizing surface layer, and an optical thickness between the light emitting layer and the reflective layer is less than a value of five times of a quarter of the wavelength.03-17-2011
20110062413LIGHT-EMITTING DIODE AND METHOD FOR FABRICATION THEREOF - A light-emitting diode includes a substrate, a compound semiconductor layer including a p-n junction-type light-emitting part formed on the substrate, an electric conductor disposed on the compound semiconductor layer and formed of an electrically conductive material optically transparent to the light emitted from the light-emitting part and a high resistance layer possessing higher resistance than the electric conductor and provided in the middle between the compound semiconductor layer and the electric conductor. In the configuration of a light-emitting diode lamp, the electric conductor and the electrode disposed on the semiconductor layer on the side opposite to the electric conductor across the light-emitting layer are made to assume an equal electric potential by means of wire bonding. The light-emitting diode abounds in luminance and excels in electrostatic breakdown voltage.03-17-2011
20090206323LIGHT-EMITTING ELEMENT AND METHOD FOR MANUFACTURING THE SAME - A light-emitting element includes a n-type silicon oxide film and a p-type silicon nitride film. The n-type silicon oxide film and the p-type silicon nitride film formed on the n-type silicon oxide film form a p-n junction. The n-type silicon oxide film includes a plurality of quantum dots composed of n-type Si while the p-type silicon nitride film includes a plurality of quantum dots composed of p-type Si. Light emission occurs from the boundary between the n-type silicon oxide film and the p-type silicon nitride film by injecting electrons from the n-type silicon oxide film side and holes from the p-type silicon nitride film side.08-20-2009
20090206320GROUP III NITRIDE WHITE LIGHT EMITTING DIODE - A white light-emitting diode is fabricated by metal organic chemical vapor deposition (MOCVD), which can produce a broad band emission covering all the visible range in the spectrum by capping the Indium nitride (InN) and Indium-rich Indium Gallium Nitride (InGaN) quantum dots (QDs) in single or multiple In08-20-2009
20110168975CAGED QUANTUM DOTS - Semiconductor nanocrystals known as quantum dots (QD) are caged by being associated with a molecule such as an orth-Nitrobenzyl (ONB) group. The luminescence of the QD is suppressed until activated by violet or ultra violet light.07-14-2011
20110168970OPTOELECTRONIC LIGHT EMITTING STRUCTURE - A light emitting structure comprising a hot electron source and a layer of ptoelectronic material disposed thereon and optionally p-type material disposed on the optoelectronic material. For example, a light emitting structure that comprises, in order, a polycrystalline silicon layer, a silicon dioxide layer, a zinc oxide layer and an indium tin oxide (ITO) layer. When a sufficient voltage is applied across the layers, light is generated.07-14-2011
20100123118LED Epitaxial Wafer with Patterned GaN based Substrate and Manufacturing Method For the Same - A LED epitaxial-Chip with patterned GaN based substrate is provided. The LED epitaxial-Chip includes a substrate, a butter layer formed on the substrate, unintentional doped intrinsic GaN layer formed on the substrate, n-GaN layer formed on the substrate, InGaN active layer formed on the substrate, multiple quantum well formed on the substrate; and p-GaN layer formed on the sapphire substrate. The substrate has DBR reflection layer formed thereon. The DBR reflection layer is layered structure grown by two materials having different refractive index periodically alternate. The reflection layer forms at least two spaced patterned structures on the substrate. A manufacturing method of LED epitaxial-Chip with patterned GaN based substrate is also provided.05-20-2010
20110198563LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE AND LIGHTING SYSTEM HAVING THE SAME - A light emitting device includes a light emitting structure including a first conductive type semiconductor layer, an active layer on the first conductive type semiconductor layer, and a second conductive type semiconductor layer on the active layer; and a transparent electrode layer formed at least one of on and under the light emitting structure, wherein the transparent electrode layer has a thickness in a range of 30 nm to 70 nm to obtain a transmittance equal to or greater than 70% with respect to a wavelength range of light of 420 nm to 510 nm.08-18-2011
20110198564LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE PACKAGE - Provided is a light emitting device. In one embodiment, the light emitting device includes: a first conductive type semiconductor layer including a plurality of grooves; an active layer formed on a upper surface of the first conductive type semiconductor layer and along the grooves; an anti-current leakage layer having a flat upper surface on the active layer; and a second conductive type semiconductor layer on the anti-current leakage layer.08-18-2011
20110198560SUBSTRATE FOR EPITAXIAL GROWTH, PROCESS FOR MANUFACTURING GaN-BASED SEMICONDUCTOR FILM, GaN-BASED SEMICONDUCTOR FILM, PROCESS FOR MANUFACTURING GaN-BASED SEMICONDUCTOR LIGHT EMITTING ELEMENT AND GaN-BASED SEMICONDUCTOR LIGHT EMITTING ELEMENT - A substrate for epitaxial growth of the present invention comprises: a single crystal part comprising a material different from a GaN-based semiconductor at least in a surface layer part; and an uneven surface, as a surface for epitaxial growth, comprising a plurality of convex portions arranged so that each of the convex portions has three other closest convex portions in directions different from each other by 120 degrees and a plurality of growth spaces, each of which is surrounded by six of the convex portions, wherein the single crystal part is exposed at least on the growth space, which enables a c-axis-oriented GaN-based semiconductor crystal to grow from the growth space.08-18-2011
20110198567SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND SEMICONDUCTOR LIGHT-EMITTING ELEMENT MANUFACTURING METHOD - The semiconductor light-emitting device (08-18-2011
20110198568NITRIDE SEMICONDUCTOR ELEMENT AND METHOD FOR PRODUCTION THEREOF - A light-emitting apparatus of the present invention includes: a mounting base 08-18-2011
20090090901SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - Disclosed is a semiconductor light emitting device. The semiconductor light emitting device comprises a first conductive semiconductor layer, a lower super lattice layer under the first conductive semiconductor layer, an active layer on the first conductive semiconductor layer, a second conductive super lattice layer on the active layer, and a second conductive semiconductor layer on the second conductive super lattice layer.04-09-2009
20090090900Optoelectronic Semiconductor Chip - An optoelectronic semiconductor chip comprises the following sequence of regions in a growth direction (c) of the semiconductor chip (04-09-2009
20110168974GROUP III NITRIDE-BASED COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE AND PRODUCTION METHOD THEREFOR - The object of the present invention is to improve extraction efficiency of light of a Group III nitride-based compound semiconductor light-emitting device of a multiple quantum well structure. The device comprises a multiple quantum well structure comprising a well layer comprising a semiconductor including at least In for composition, a protective layer which comprises a semiconductor including at least Al and Ga for composition and has a band gap larger than a band gap of the well layer and is formed on and in contact with the well layer in a positive electrode side. And also the device comprises a barrier layer comprising a band gap which is larger than a band gap of the well layer and is smaller than a band gap of the protective layer, and formed on and in contact with the protective layer in a positive electrode side and a periodical structure of the well layer, the protective layer and the barrier layer.07-14-2011
20110168971LIGHT EMITTING DEVICE AND MANUFACTURING METHOD FOR SAME - Disclosed are a light emitting device and a method of manufacturing the same. The light emitting device includes a support substrate, a reflective ohmic contact layer on the support substrate, a functional complex layer including a process assisting region and ohmic contact regions divided by the process assisting region on the reflective ohmic contact layer, and a light emitting semiconductor layer including a second conductive semiconductor layer, an active layer, and a first conductive semiconductor layer on each ohmic contact region.07-14-2011
20120091433LIGHT EMITTING DIODE AND METHOD FOR MAKING SAME - A light emitting diode includes a substrate, a number of light emitting units formed on the substrate, and an insulating layer. Each light emitting unit includes a first electrode layer, a number of light emitting nanowires and a second electrode layer. Each light emitting nanowire includes a zinc-oxide-nanowire buffering segment extending from the first electrode layer, an N-type gallium nitride nanowire segment and a P-type gallium nitride nanowire segment. The N-type gallium nitride nanowire segment is interconnected between the zinc-oxide-nanowire buffering segment and the P-type gallium nitride nanowire segment. The P-type gallium nitride nanowire segment has a distal portion embedded in the second electrode layer. The insulating layer is formed on the substrate and the first electrode layer. The light emitting nanowires is embedded in the insulating layer and insulated from each other.04-19-2012
20110198561SEMICONDUCTOR LIGHT EMITTING DEVICE - According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, a light emitting portion, a first layer, a second layer, and an intermediate layer. The semiconductor layers include nitride semiconductor. The light emitting portion is provided between the n-type semiconductor layer and the p-type semiconductor layer and includes a quantum well layer. The first layer is provided between the light emitting portion and the p-type semiconductor layer and includes Al08-18-2011
20090272963Surface Light Emitting Element - Provided is a surface light emitting element having a high productivity, a high light emission output and good response characteristics, as well as capable of suppressing an increase of a forward voltage necessary for light emission. A surface light emitting element according to the present invention is a vertical cavity surface light emitting element including: an active layer 11-05-2009
20090272964Light-emitting device and method for manufacturing the same - A light-emitting device and the method for making the same is disclosed. The light-emitting device is a semiconductor device, comprising a growth substrate, an n-type semiconductor layer, a quantum well active layer and a p-type semiconductor layer. It combines the holographic and the quantum well interdiffusion (QWI) to form a photonic crystal light-emitting device having a dielectric constant of two-dimensional periodic variation or a material composition of two-dimensional periodic variation in the quantum well active layer. The photonic crystal light-emitting devices can enhance the internal efficiency and light extraction efficiency.11-05-2009
20090278113NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE - There is provided a nitride semiconductor light emitting device. A nitride semiconductor light emitting device according to an aspect of the invention may include: an n-type nitride semiconductor layer provided on a substrate; an active layer provided on the n-type nitride semiconductor layer, and including quantum barrier layers and quantum well layers; and a p-type nitride semiconductor layer provided on the active layer, wherein each of the quantum barrier layers includes a plurality of In11-12-2009
20110198566METHOD FOR MANUFACTURING LIGHT EMITTING ELEMENT AND LIGHT EMITTING ELEMENT - A method for manufacturing a light emitting element is directed to a method for manufacturing a light emitting element of a III-V group compound semiconductor having a quantum well structure including In and N, including the steps of: forming a well layer including In and N; forming a barrier layer having a bandgap wider than a bandgap of the well layer; and supplying a gas including N and interrupting epitaxial growth after the step of forming the well layer and before the step of forming the barrier layer. In the step of interrupting epitaxial growth, the gas having decomposition efficiency higher than decomposition efficiency of decomposition from N08-18-2011
20110198562LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - Provided is a light emitting device. In one embodiment, a light emitting device includes: a substrate including β-Ga203; a light emitting structure on the substrate, the light emitting structure including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer; an electrode on the light emitting structure; and a porous layer at a lateral surface region of the substrate.08-18-2011
20090283746LIGHT-EMITTING DEVICES WITH MODULATION DOPED ACTIVE LAYERS - A semiconductor light emitting device has an n-type layer, a p-type layer, and a light-emitting active layer arranged between the p-type layer and the n-type layer, the active layer having alternating regions of doped and undoped materials. A double heterojunction light emitting device has a bulk active layer having doped portions alternating with undoped portions. A method of manufacturing a light emitting device includes forming a first layer arranged on a substrate, growing an active layer, selectively adding impurities at predetermined times during the growing of the active layer, and forming a second layer arranged on the active layer.11-19-2009
20110168972LED WITH UNIFORM CURRENT SPREADING AND METHOD OF FABRICATION - A lateral light emitting diode comprises a layer stack disposed on one side of a substrate, the layer stack including a p-type layer, n-type layer, and a p/n junction formed therebetween. The LED may further include a p-electrode disposed on a first side of the substrate and being in contact with the p-type layer on an exposed surface and an n-electrode disposed on the first side of the substrate and being in contact with an exposed surface of an n07-14-2011
20120138896SEMICONDUCTOR DEVICE - A semiconductor device has an active layer, a first semiconductor layer of first conductive type, an overflow prevention layer disposed between the active layer and the first semiconductor layer, which is doped with impurities of first conductive type and which prevents overflow of electrons or holes, a second semiconductor layer of first conductive type disposed at least one of between the active layer and the overflow prevention layer and between the overflow prevention layer and the first semiconductor layer, and an impurity diffusion prevention layer disposed between the first semiconductor layer and the active layer, which has a band gap smaller than those of the overflow prevention layer, the first semiconductor layer and the second semiconductor layer and which prevents diffusion of impurities of first conductive type.06-07-2012
20110168973LIGHT GENERATING DEVICE INCLUDING COMPOUND SEMICONDUCTOR AND METHOD OF DETERMINING COMPOUND RATIO OF COMPOUND SEMICONDUCTOR FOR LIGHT GENERATING DEVICE - A method of manufacturing a light generating device with required wavelength is disclosed. According to the method, a) a required wavelength is determined. b) A polar angle and an azimuthal angle corresponding to the required wavelength in a nitride semiconductor are determined. Then, c) a nitride semiconductor crystal is grown according to the polar angle and the azimuthal angle. Therefore, a light generating device with required wavelength may be manufactured without adjusting amounts of elements of compound semiconductor.07-14-2011
20110204327SEMICONDUCTOR LIGHT-EMITTING ELEMENT ARRAY AND MANUFACTURING METHOD THEREOF - Semiconductor surface emitting elements having a plurality of wavelengths being manufactured on a signal substrate through MOVPE selective growth. More specifically, provided is a semiconductor light emitting element array which comprises; a semiconductor crystal substrate; an insulating film disposed on a surface of the substrate, the insulating film being divided into two or more regions, each of which having two or more openings exposing the surface of the substrate; semiconductor rods extending from the surface of the substrate upward through the openings, the semiconductor rods each having an n-type semiconductor layer and a p-type semiconductor layer being laminated in its extending direction, thereby providing a p-n junction; a first electrode connected to the semiconductor crystal substrate; and a second electrode connected to upper portions of the semiconductor rods; wherein the heights of the semiconductor rods as measured from the substrate surface vary by each of the two or more regions.08-25-2011
20110204326LIGHT EMITTING DIODE HAVING MODULATION DOPED LAYER - A light emitting diode (LED) having a modulation doped layer. The LED comprises an n-type contact layer, a p-type contact layer and an active region of a multiple quantum well structure having an InGaN well layer. The n-type contact layer comprises a first modulation doped layer and a second modulation doped layer, each having InGaN layers doped with a high concentration of n-type impurity and low concentration of n-type impurity InGaN layers alternately laminated. The InGaN layers of the first modulation doped layer have the same composition, and the InGaN layers of the second modulation doped layer have the same composition. The second modulation doped layer is interposed between the first modulation doped layer and the active region, and an n-electrode is in contact with the first modulation doped layer. Accordingly, an increase in process time is prevented and strains induced in a multiple quantum well structure are reduced.08-25-2011
20110204323SOURCE OF PHOTONS RESULTING FROM A RECOMBINATION OF LOCALIZED EXCITONS - A source of photons resulting from a recombination of localized excitons, including a semiconductor layer having a central portion surrounded with heavily-doped regions; above said central portion, a layer portion containing elements capable of being activated by excitons, coated with a first metallization; and under the semiconductor layer, a second metallization of greater extension than the first metallization. The distance between the first and second metallizations is on the order of from 10 to 60 nm; and the lateral extension of the first metallization is on the order of from λ0/10*n08-25-2011
20110204322Optoelectronic Semiconductor Body and Method for Producing an Optoelectronic Semiconductor Body - An optoelectronic semiconductor body is provided which has an epitaxial semiconductor layer sequence based on nitride compound semiconductors. The semiconductor layer sequence comprises a buffer layer, which is nominally undoped or at least partially n-conductively doped, an active zone, which is suitable for emitting or receiving electromagnetic radiation, and a contact layer, which is n-conductively doped, arranged between the buffer layer and the active zone. The n-dopant concentration is greater in the contact layer than in the buffer layer. The semiconductor layer sequence contains a recess, which extends through the buffer layer and in which an electrical contact material is arranged and adjoins the contact layer. A method is additionally indicated which is suitable for producing such a semiconductor body.08-25-2011
20100117056SEMICONDUCTOR LIGHT EMITTING DEVICE, METHOD OF MANUFACTURING THE SAME, AND LIGHTING APPARATUS AND DISPLAY APPARATUS USING THE SAME - The present invention aims to provide a semiconductor light emitting device that may be firmly attached to a substrate with maintaining excellent light emitting efficiency, and a manufacturing method of the same, and a lighting apparatus and a display apparatus using the same.05-13-2010
20110204324LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE, AND LIGHTING SYSTEM - The light emitting device includes a substrate, a first conductive type semiconductor layer, an active layer, a second conductive type semiconductor layer, and a light-transmitting electrode layer. The second conductive type semiconductor layer has a thickness satisfying Equation: 2·Φ1+Φ2=N·2π±Δ, (0≦Δ≦π/2), where Φ1 is a phase change that is generated when light of a vertical direction passes through the second conductive type semiconductor layer, Φ2 is a phase change that is generated when the light is reflected by the light-transmitting electrode layer, and N is a natural number.08-25-2011
20090261318SEMICONDUCTOR LIGHT EMITTING DEVICE - Embodiments provide a semiconductor light emitting device which comprises a first conductive semiconductor layer, an active layer on the first conductive semiconductor layer, a second conductive semiconductor layer on the active layer, and a semiconductor layer on the second conductive semiconductor layer, and comprising a plurality of a semiconductor structures apart from each other and microfacets.10-22-2009
20090261317Enhancement of Light Emission Efficiency by Tunable Surface Plasmons - An apparatus (10-22-2009
20120292593NITRIDE SEMICONDUCTOR DEVICE, NITRIDE SEMICONDUCTOR WAFER, AND METHOD FOR MANUFACTURING NITRIDE SEMICONDUCTOR LAYER - According to one embodiment, a nitride semiconductor device includes: a stacked foundation layer, and a functional layer. The stacked foundation layer is formed on an AlN buffer layer formed on a silicon substrate. The stacked foundation layer includes AlN foundation layers and GaN foundation layers being alternately stacked. The functional layer includes a low-concentration part, and a high-concentration part provided on the low-concentration part. A substrate-side GaN foundation layer closest to the silicon substrate among the plurality of GaN foundation layers includes first and second portions, and a third portion provided between the first and second portions. The third portion has a Si concentration not less than 5×1011-22-2012
20120292594DEVICE INCLUDING QUANTUM DOTS AND METHOD FOR MAKING SAME - A device comprises an anode; a cathode; a layer therebetween comprising quantum dots; and a first layer comprising a material capable of transporting and injecting electrons in, or forming, contact with the cathode, the material comprising nanoparticles of an inorganic semiconductor material. In one embodiment of the device, quantum dots comprise a core comprising a first semiconductor material that confines holes better than electrons in the core and an outer shell comprising a second semiconductor material that is permeable to electrons. In another embodiment of the device, the nanoparticles comprise n-doped inorganic semiconductor material, and a second layer comprising a material capable of transporting electrons is disposed between the layer including quantum dots and the first layer, wherein the second layer has a lower electron conductivity than the first. In a further embodiment of the device, the first layer is UV treated. A method and other embodiments are also disclosed.11-22-2012
20120292595LIGHT EMITTING DEVICE INCLUDING SEMICONDUCTOR NANOCRYSTALS - A light emitting device includes a semiconductor nanocrystal and a charge transporting layer that includes an inorganic material. The charge transporting layer can be a hole or electron transporting layer. The inorganic material can be an inorganic semiconductor.11-22-2012
20100032647UTLRAVIOLET LIGHT EMITTING DEVICES AND METHODS OF FABRICATION - An ultraviolet light emitting semiconductor chip, its use in a LED, and methods of its fabrication are disclosed. The semiconductor chip can include a buffer layer of Al02-11-2010
20100288999GROUP III NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE - In a Group III nitride semiconductor light-emitting device which comprises a substrate (11-18-2010
20100314605VERTICAL DEEP ULTRAVIOLET LIGHT EMITTING DIODES - The invention is a vertical geometry light emitting diode capable of emitting light in the electromagnetic spectrum having a substrate, a lift-off layer, a strain relieved superlattice layer, a first doped layer, a multilayer quantum wells comprising alternating layers quantum wells and barrier layers, a second doped layer, a third doped layer and a metallic contact that is in a vertical geometry orientation. The different layers consist of a compound with the formula AlxlnyGa(1-x-y)N, wherein x is more than 0 and less than or equal to 1, y is from 0 to 1 and x+y is greater than 0 and less than or equal to 1. The barrier layer on each surface of the quantum well has a band gap larger than a quantum well bandgap. The first and second doped layers have different conductivities. The contact layer has a different conductivity than the third doped layer12-16-2010
20110204325LIGHT-EMITTING DEVICE, LIGHT-EMITTING ELEMENT AND METHOD OF MANUFACTURING SAME - Provided are a light-emitting element and a light-emitting device, and methods of fabricating the same. The method of fabricating a light-emitting element includes forming a buffer layer on a substrate and forming photonic crystal patterns and a pad pattern on the buffer layer. Each of the pad pattern and the photonic crystal patterns are made of a metal material, and the pad pattern is physically connected to the photonic crystal patterns. Forming a light-emitting structure includes sequentially stacking a first conductive pattern of a first conductivity type, a light-emitting pattern, and a second conductive pattern of a second conductivity type on the buffer layer. And the method also includes forming a first electrode that is electrically connected to the first conductive pattern and forming a second electrode that is electrically connected to the second conductive pattern.08-25-2011
20080251781Nitride semiconductor light emitting device - There is provided a nitride semiconductor light emitting device including: an n-type semiconductor region; an active layer formed on the n-type semiconductor region; a p-type semiconductor region formed on the active layer; an n-electrode disposed in contact with the n-type semiconductor region; a p-electrode formed on the p-type semiconductor region; and at least one intermediate layer formed in at least one of the n-type semiconductor region and the p-type semiconductor region, the intermediate layer disposed above the n-electrode, wherein the intermediate layer is formed of a multi-layer structure where at least three layers with different band gaps from one another are deposited, wherein the multi-layer structure includes one of an AlGaN layer/GaN layer/InGaN layer stack and an InGaN layer/GaN layer/AlGaN layer stack.10-16-2008
20110198565LIGHT-EMITTING ELEMENT WITH IMPROVED LIGHT EXTRACTION EFFICIENCY, LIGHT-EMITTING DEVICE INCLUDING THE SAME, AND METHODS OF FABRICATING LIGHT-EMITTING ELEMENT AND LIGHT-EMITTING DEVICE - Provided are a light-emitting element, a light-emitting device including the same, and methods of fabricating the light-emitting element and the light-emitting device. The light-emitting element includes a substrate on which a dome pattern is formed and a light-emitting structure conformally formed on the dome pattern. The light-emitting structure includes a first conductive layer of a first conductivity type, a light-emitting layer, and a second conductive layer of a second conductivity type sequentially stacked on the substrate. The light-emitting element also includes a first electrode formed on the first conductive layer and a second electrode formed on the second conductive layer.08-18-2011
20090166606Nitride Semiconductor Light Emitting Device and Fabrication Method Thereof - Provided is a nitride semiconductor light emitting device including: a first nitride semiconductor layer; an active layer formed above the first nitride semiconductor layer; and a delta doped second nitride semiconductor layer formed above the active layer. According to the present invention, the optical power of the nitride semiconductor light emitting device is enhanced, optical power down phenomenon is improved and reliability against ESD (electro static discharge) is enhanced.07-02-2009
20090283747METALLIZED SILICON SUBSTRATE FOR INDIUM GALLIUM NITRIDE LIGHT EMITTING DIODE - A light emitting diode having a metallized silicon substrate including a silicon base, a buffer layer disposed on the silicon base, a metal layer disposed on the buffer layer, and light emitting layers disposed on the metal layer. The buffer layer can be AlN, and the metal layer ZrN. The light emitting layers can include GaN and InGaN. The metallized silicon substrate can also include an oxidation prevention layer disposed on the metal layer. The oxidation prevention layer can be AlN. The light emitting diode can be formed using an organometallic vapor phase epitaxy process. The intermediate ZrN/AlN layers enable epitaxial growth of GaN on silicon substrates using conventional organometallic vapor phase epitaxy. The ZrN layer provides an integral back reflector, ohmic contact to n-GaN. The AlN layer provides a reaction barrier, thermally conductive interface layer, and electrical isolation layer.11-19-2009
20080283818Semiconductor Heterostructure - A strained semiconductor heterostructure (11-20-2008
20080303018Silicon-Based Light Emitting Diode for Enhancing Light Extraction Efficiency and Method of Fabricating the Same - Due to the indirect transition characteristic of silicon semiconductors, the light extraction efficiency of a silicon-based light emitting diode is lower than that of a compound semiconductor-based light emitting diode. For this reason, there are difficulties in practically using and commercializing silicon-based light emitting diodes developed so far. Provided is a silicon-based light emitting including: a substrate with a lower electrode layer on a lower surface thereof; a lower doped layer that is formed on an upper surface of the substrate and supplies carriers to an emitting layer; the emitting layer that is a silicon semiconductor layer including silicon quantum dots or nanodots formed on the lower doped layer and has a light-emitting characteristic; an upper doped layer that is formed on the emitting layer and supplies carriers to the emitting layer; an upper electrode layer formed on the upper doped layer; and a surface structure including a surface pattern formed on the upper electrode layer, a surface structure including an upper electrode pattern and an upper doped pattern formed by patterning the upper electrode layer and the upper doped layer, or a surface structure including the surface pattern, the upper electrode pattern, and upper doped pattern, wherein the surface structure enhances the light extraction efficiency of light emitted from the emitting layer according to geometric optics.12-11-2008
20100127239III-Nitride Semiconductor Light Emitting Device - The present disclosure relates to a III-nitride semiconductor light-emitting device including an n-type nitride semiconductor layer, a p-type nitride semiconductor layer doped with a p-type dopant, an active layer disposed between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer and including a quantum well layer to generate light by recombination of electrons and holes, and a diffusion barrier layer disposed between the quantum well layer and the p-type nitride semiconductor layer to be in contact with both layers, having a surface formed to make the interface with the p-type nitride semiconductor layer smooth, and to prevent diffusion of the p-type dopant into the quantum well layer.05-27-2010
20080246018Light-emitting device - A light-emitting device includes a substrate, an n-type semiconductor layer, an active layer, and a p-type semiconductor layer; wherein the active layer is a multi-quantum-well (MQW) active layer with a predetermined n-type doping profile. More specifically, the MQW active layer is doped with n-type dopants in the region near the p-type semiconductor layer and the n-type semiconductor layer, and the central region is not doped with the n-type dopants.10-09-2008
20090014713NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE AND FABRICATION METHOD THEREOF - The present invention relates to a GaN based nitride based light emitting device improved in Electrostatic Discharge (ESD) tolerance (withstanding property) and a method for fabricating the same including a substrate and a V-shaped distortion structure made of an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer on the substrate and formed with reference to the n-type nitride semiconductor layer.01-15-2009
20080283819SEMICONDUCTOR LIGHT EMITTING DEVICE - A Si substrate 11-20-2008
20080283822SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device includes a substrate and a quantum well active layer. The quantum well active layer has a plurality of barrier layers made of GaN-based semiconductor and a well layer made of GaN-based semiconductor sandwiched between the barrier layers and has polarized charge between the barrier layer and the well layer caused by piezo polarization. The well layer has a composition modulation so that a band gap is minimum at an interface between the well layer and one of the barrier layers more far from the substrate than the other.11-20-2008
20110006283SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device is provided. The semiconductor light emitting device includes a first conductive semiconductor layer; an active layer on the first conductive semiconductor layer; a first quantum dot layer on the active layer; and a second conductive semiconductor layer on the first quantum dot layer.01-13-2011
20110006281SEMICONDUCTOR NANOCRYSTAL AND PREPARATION METHOD THEREOF - A semiconductor nanocrystal and a preparation method thereof, where the semiconductor nanocrystal include a bare semiconductor nanocrystal and a water molecule directly bound to the bare semiconductor nanocrystal.01-13-2011
20080258131Light Emitting Diode - The present invention relates to a light emitting diode. More specifically, the present invention relates to a light emitting diode comprising an N-type semiconductor layer formed on a substrate, an active layer formed on the N-type semiconductor layer and a P-type semiconductor layer formed on the active layer, wherein the active layer is formed to have either a quantum well structure in which an Al10-23-2008
20100140585QUANTUM DOT WHITE AND COLORED LIGHT-EMITTING DEVICES - A light-emitting device comprising a population of quantum dots (QDs) embedded in a host matrix and a primary light source which causes the QDs to emit secondary light and a method of making such a device. The size distribution of the QDs is chosen to allow light of a particular color to be emitted therefrom. The light emitted from the device may be of either a pure (monochromatic) color, or a mixed (polychromatic) color, and may consist solely of light emitted from the QDs themselves, or of a mixture of light emitted from the QDs and light emitted from the primary source. The QDs desirably are composed of an undoped semiconductor such as CdSe, and may optionally be overcoated to increase photoluminescence.06-10-2010
20130214249QUANTUM DOTS AND HOSTS - An electronic device comprising a quantum dot and an organic host, a mixture comprising a quantum dot and an organic host, a quantum dot, a method for preparing a quantum dot (QD), and a formulation including the mixture or the quantum dot are provided.08-22-2013
20110266519LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE AND LIGHTING SYSTEM - Provided are a light emitting device, a method of manufacturing the light emitting device, a light emitting device package, and a lighting system. The light emitting device includes a substrate, a light emitting structure including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer on the substrate, the light emitting structure exposing a portion of the first conductive type semiconductor layer upward, a light transmissive electrode having a stepped portion on the second conductive type semiconductor layer, a second electrode on the light transmissive electrode, and a first electrode on the exposed first conductive type semiconductor layer.11-03-2011
20090127539Nitride semiconductor light emitting device - As an example of a nitride semiconductor light emitting device, on a sapphire substrate, a GaN buffer layer, an n-type GaN contact layer, an MQW active layer, and a p-type GaN contact layer are sequentially stacked, and a partial region from the p-type GaN contact layer to the middle of the n-type GaN contact layer is mesa-etched so as to form an n electrode. Meanwhile, a p electrode is provided on the p-type GaN contact layer, and, in addition to the p electrode, multiple ridge parts are formed by crystal growth so as to be scattered. By providing the multiple ridge parts, device characteristics can be improved without causing damage on the GaN-based semiconductor layer.05-21-2009
20120138894STABLE AND ALL SOLUTION PROCESSABLE QUANTUM DOT LIGHT-EMITTING DIODES - Embodiments of the invention are directed to quantum dot light emitting diodes (QD-LEDs) where the electron injection and transport layer comprises inorganic nanoparticles (I-NPs). The use of I-NPs results in an improved QD-LED over those having a conventional organic based electron injection and transport layer and does not require chemical reaction to form the inorganic layer. In one embodiment of the invention the hole injection and transport layer can be metal oxide nanoparticles (MO-NPs) which allows the entire device to have the stability of an all inorganic system and permit formation of the QD-LED by a series of relatively inexpensive steps involving deposition of suspensions of nanoparticles and removing the suspending vehicle.06-07-2012
20100200837Dual sided processing and devices based on freestanding nitride and zinc oxide films - Thin freestanding nitride films are used as a growth substrate to enhance the optical, electrical, mechanical and mobility of nitride based devices and to enable the use of thick transparent conductive oxides. Optoelectronic devices such as LEDs, laser diodes, solar cells, biomedical devices, thermoelectrics, and other optoelectronic devices may be fabricated on the freestanding nitride films. The refractive index of the freestanding nitride films can be controlled via alloy composition. Light guiding or light extraction optical elements may be formed based on freestanding nitride films with or without layers. Dual sided processing is enabled by use of these freestanding nitride films. This enables more efficient output for light emitting devices and more efficient energy conversion for solar cells.08-12-2010
20110220867SUPERLATTICE FREE ULTRAVIOLET EMITTER - A light emitting device with an ultraviolet light-emitting structure having a first layer with a first conductivity, a second layer with a second conductivity; and a light emitting quantum well region between the first layer and second layer. A first electrical contact is in electrical connection with the first layer and a second electrical contact is in electrical connection with the second layer. A template serves as a platform for the light-emitting structure. The template has a micro-undulated buffer layer with Al09-15-2011
20090014712TUNNEL JUNCTION LIGHT EMITTING DEVICE - A tunnel junction light emitting device according to the present invention is provided with an active layer and an electron tunneling region supplying the active layer with carriers. The electron tunneling region has a first p-type semiconductor layer, a second p-type semiconductor layer and an n-type semiconductor layer. The second p-type semiconductor layer is sandwiched between the first p-type semiconductor layer and the n-type semiconductor layer, and the first p-type semiconductor layer, the second p-type semiconductor layer and the n-type semiconductor layer form a tunnel junction to which a reverse bias is applied. An energy level at a valence band edge of the second p-type semiconductor layer is equal to or lower than an energy level at a valence band edge of the first p-type semiconductor layer.01-15-2009
20120068155III NITRIDE SEMICONDUCTOR SUBSTRATE, EPITAXIAL SUBSTRATE, AND SEMICONDUCTOR DEVICE - In a semiconductor device 03-22-2012
20120068154GRAPHENE QUANTUM DOT LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - A graphene quantum dot light emitting device includes: a first graphene; a graphene quantum dot layer disposed on the first graphene and including a plurality of graphene quantum dots; and a second graphene disposed on the graphene quantum dot layer. A method of manufacturing a graphene quantum dot light emitting device includes: forming a first graphene doped with a first dopant; forming a graphene quantum dot layer including a plurality of graphene quantum dots on the first graphene; and forming a second graphene doped with a second dopant on the graphene quantum dot layer.03-22-2012
20120068153GROUP III NITRIDE NANOROD LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THEREOF - A group III nitride nanorod light emitting device and a method of manufacturing thereof. The method includes preparing a substrate, forming an insulating film including one or more openings exposing parts of the substrate on the substrate, growing first conductive group III nitride nanorod seed layers on the substrate exposed through the openings by supplying a group III source gas and a nitrogen (N) source gas thereto, growing first conductive group III nitride nanorods on the first conductive group III nitride nanorod seed layers by supplying the group III source gas and an impurity source gas in a pulse mode and continuously supplying the N source gas, forming an active layer on a surface of each of the first conductive group III nitride nanorods, and forming a second conductive nitride semiconductor layer on the active layer.03-22-2012
20090206321THIN FILM TRANSISTOR COMPRISING NANOWIRES AND FABRICATION METHOD THEREOF - A thin film transistor includes nanowires. More specifically, the thin film transistor includes nanowires aligned between and extending to opposite facing lateral surfaces of source/drain electrodes on a substrate. The nanowires extend in a direction parallel to a major surface defining the substrate to form a semiconductor channel layer. Also disclosed herein is a method for fabricating the thin film transistor.08-20-2009
20080315177LIGHT EMISSION USING QUANTUM DOT EMITTERS IN A PHOTONIC CRYSTAL - Devices and methods of manufacturing; for emitting substantially white light using a photonic crystal are described. The photonic crystal has a lattice of air holes and is made from a substrate containing quantum dots. The substrate is etched with three defects that are optically coupled together so that each emits only certain frequencies of light. In combination, the defects can produce substantially white light. The parameters of the photonic crystal are dimensioned so as to cause the coupling between the defects to produce substantially white light.12-25-2008
20090315014LIGHT EMITTING DEVICE AND DISPLAY - A light emitting device containing a semiconductor light emitting component and a phosphor, the phosphor is capable of absorbing a part of light emitted by the light emitting component and emitting light of a wavelength different from that of the absorbed light, is provided. A straight line connecting a point of chromaticity corresponding to a spectrum generated by the light emitting component and a point of chromaticity corresponding to a spectrum generated by the phosphor is substantially along a black body radiation locus in a chromaticity diagram.12-24-2009
20110220872COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - A compound semiconductor light-emitting device which includes an n-type semiconductor layer, a light-emitting layer and a p-type semiconductor layer, that are made of a compound semiconductor, formed on a substrate, the n-type semiconductor layer and the p-type semiconductor layer are stacked so as to interpose the light-emitting layer therebetween, a first conductive transparent electrode and a second conductive electrode. The first conductive transparent electrode is made of an IZO film containing an In09-15-2011
20110220870MANUFACTURE OF QUANTUM DOT-ENABLED SOLID-STATE LIGHT EMITTERS - Light emitting devices comprise excitation sources arranged to excite quantum dots which fluoresce to emit light. In an embodiment, a device is manufactured by a process which involves applying an acoustic field is applied to a fluid containing quantum dots, to cause the quantum dots to accumulate at locations which are adjacent to excitation sources, and then initiating a phase transition of the fluid to trap the quantum dots in the locations adjacent to the excitation sources. The quantum dots are illuminated during the process and the resulting fluorescence is optically monitored to provide indicators of quantum dot distribution in the fluid. These indicators are used as feedback for controlling aspects of the process, such as initiating the phase transition.09-15-2011
20080303017Group III Nitride Compound Semiconductor Light-Emitting Device - A group III nitride compound semiconductor light-emitting device according to the present invention includes: an active layer (12-11-2008
20090050875NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE - A nitride semiconductor light emitting device includes n-type and p-type nitride semiconductor layers, and an active layer disposed between the n-type and p-type nitride semiconductor layers and having a stack structure in which a plurality of quantum barrier layers and one or more quantum well layers are alternately stacked. A net polarization of the quantum barrier layer is smaller than or equal to a net polarization of the quantum well layer. A nitride semiconductor light emitting device can be provided, which can realize high efficiency even at high currents by minimizing the net polarization mismatch between the quantum barrier layer and the quantum well layer. Also, a high-efficiency nitride semiconductor light emitting device can be achieved by reducing the degree of energy-level bending of the quantum well layer.02-26-2009
20090050874NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE - A nitride semiconductor light emitting device includes n-type and p-type nitride semiconductor layers, an active layer disposed between the n-type and p-type nitride semiconductor layers and having a structure in which a plurality of quantum barrier layers and one or more quantum well layers are alternately stacked, and an electron blocking layer disposed between the active layer and the p-type nitride semiconductor layer. The electron blocking layer has greater bandgap energy than a quantum barrier layer adjacent to the electron blocking layer among the plurality of quantum barrier layers, and has a net polarization equal to or smaller than that of the quantum barrier layer adjacent thereto. The nitride semiconductor light emitting device can achieve high efficiency in every current region by minimizing a net polarization mismatch between a quantum barrier layer and an electron blocking layer.02-26-2009
20090072220Nitride Semiconductor LED and Fabrication Method Thereof - A nitride semiconductor light emitting diode according to the present invention, includes: a substrate; a buffer layer formed on the substrate; an In-doped GaN layer formed on the buffer layer; a first electrode layer formed on the In-doped GaN layer; an In03-19-2009
20090101886SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD OF FABRICATING THE SAME - The invention discloses a semiconductor light-emitting device. The semiconductor light-emitting device includes a substrate, a first semiconductor material layer, a light-emitting layer, a second semiconductor material layer, a first transparent insulating layer, a metal layer and at least one electrode. The first semiconductor material layer, the light-emitting layer, and the second semiconductor material layer are formed in sequence on the substrate. An opening is formed on the upper surface of the second semiconductor material layer and extends to the interior of the first semiconductor material layer. The first transparent insulating layer overlays the sidewalls of the opening and substantially overlays the upper surface of the second semiconductor material layer such that a region of the upper surface is exposed. The metal layer fills the opening, overlays the exposed region, and partially overlays the first transparent insulating layer. The at least one electrode is formed on the metal layer.04-23-2009
20110220873LIGHT EMITTING DIODE HAVING A TRANSPARENT SUBSTRATE - A light emitting diode having a transparent substrate and a method for manufacturing the same. The light emitting diode is formed by creating two semiconductor multilayers and bonding them. The first semiconductor multilayer is formed on a non-transparent substrate. The second semiconductor multilayer is created by forming an amorphous interface layer on a transparent substrate. The two semiconductor multilayers are bonded and the non-transparent substrate is removed, leaving a semiconductor multilayer with a transparent substrate.09-15-2011
20110220869QUANTUM DOT ORGANIC LIGHT EMITTING DEVICE AND METHOD OF FABRICATING THE SAME - A quantum dot organic light emitting device and a method of manufacturing the same are disclosed. A first electrode layer is formed on a substrate. A block copolymer film which can cause phase separation on the first electrode layer is formed. The block copolymer film is phase-separated into a plurality of first domains, each having a nano size column shape, and a second domain which surrounds the first domains. A quantum dot template film of the second domain, which comprises a plurality of nano size through holes, is formed by selectively removing the first domains. Quantum dot structures, each of which comprises an organic light emitting layer in the through hole of the quantum dot template film, is formed.09-15-2011
20110227035NITRIDE-BASED SEMICONDUCTOR LIGHT-EMITTING DEVICE - Provided is a nitride-based semiconductor light-emitting element having improved carrier injection efficiency into the well layer. The element comprises a substrate (09-22-2011
20110227038SEMICONDUCTOR LIGHT EMITTING DEVICE AND A PRODUCTION METHOD THEREOF - A semiconductor light emitting device comprising a semiconductor layer of (Al09-22-2011
20110227037ENHANCEMENT OF LED LIGHT EXTRACTION WITH IN-SITU SURFACE ROUGHENING - The embodiments of the present invention generally relates to methods for enhancing the light extraction by surface roughening of the bottom n-GaN layer and/or top p-GaN layer so that the internal light from the active region is scattered outwardly to result in a higher external quantum efficiency. In one embodiment, a surface roughening process is performed on the n-GaN layer to form etching pits in a top surface of the n-GaN layer. Once the etching pits are formed, growth of the n-GaN material may be resumed on the roughened n-GaN layer to partially fill the etching pits, thereby forming air voids at the interface of the n-GaN layer and the subsequent, re-growth n-GaN layer. These air voids provide one or more localized regions with indices of reflection different from that of the n-GaN layer, such that the internal light generated by the active layers (e.g., the InGaN MQW layer), when passing through the n-GaN layer, is scattered by voids or bubbles. The surface roughening process may be further performed on a top surface of a p-GaN layer to scatter the light emitted from the active layers outwardly rather than being reflected back to the active layers.09-22-2011
20120193607LIGHT SOURCE - Wherein the light source comprising: a monolithic emissive semiconductor device; and an array of lenslets, the lenslets being optically and mechanically coupled to the monolithic emissive semiconductor device; wherein the monolithic emissive semiconductor device comprises an array of localized light emission regions, each region corresponding to a given lenslet; wherein the lenslets have an apparent center of curvature (C08-02-2012
20090230381AlInGaP LED HAVING REDUCED TEMPERATURE DEPENDENCE - To increase the lattice constant of AlInGaP LED layers to greater than the lattice constant of GaAs for reduced temperature sensitivity, an engineered growth layer is formed over a substrate, where the growth layer has a lattice constant equal to or approximately equal to that of the desired AlInGaP layers. In one embodiment, a graded InGaAs or InGaP layer is grown over a GaAs substrate. The amount of indium is increased during growth of the layer such that the final lattice constant is equal to that of the desired AlInGaP active layer. In another embodiment, a very thin InGaP, InGaAs, or AlInGaP layer is grown on a GaAs substrate, where the InGaP, InGaAs, or AlInGaP layer is strained (compressed). The InGaP, InGaAs, or AlInGaP thin layer is then delaminated from the GaAs and relaxed, causing the lattice constant of the thin layer to increase to the lattice constant of the desired overlying AlInGaP LED layers. The LED layers are then grown over the thin InGaP, InGaAs, or AlInGaP layer.09-17-2009
20130214248SOLID STATE LIGHTING DEVICES WITH SEMI-POLAR FACETS AND ASSOCIATED METHODS OF MANUFACTURING - Solid state lighting devices with semi-polar or non-polar surfaces and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting device includes a substrate material having a substrate surface and an epitaxial silicon structure in direct contact with the substrate surface. The epitaxial silicon structure has a sidewall extending away from the substrate surface. The solid state lighting device also includes a semiconductor material on at least a portion of the sidewall of the epitaxial silicon structure. The semiconductor material has a semiconductor surface that is spaced apart from the substrate surface and is located on a semi-polar or non-polar crystal plane of the semiconductor material.08-22-2013
20120104357LIGHT EMITTING DEVICE - A light emitting device includes a stacked body including at least a light emitting layer made of In05-03-2012
20120104356LIGHT EMITTING DEVICE - Disclosed is a semiconductor light emitting device. The semiconductor light emitting device includes a light emitting structure having a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer between the first and second conductive semiconductor layers. The active layer includes a plurality of well layers and barrier layers. An outermost barrier layer of the barrier layers includes a plurality of first layers; and a plurality of second layers.05-03-2012
20090212278CURRENT-INJECTING/TUNNELING LIGHT-EMITTING DEVICE AND METHOD - An apparatus and method for making it. Some embodiments include a light-emitting device having a light-emitting active region; a tunneling-barrier (TB) structure facing adjacent the active region; a TB grown-epitaxial-metal-mirror (TB-GEMM) structure facing adjacent the TB structure, wherein the TB-GEMM structure includes at least one metal is substantially lattice matched to the active region; and a conductivity-type III-nitride crystal structure adjacent facing the active region opposite the TB structure. In some embodiments, the active region includes an MQW structure. In some embodiments, the TB-GEMM includes an alloy composition such that metal current injectors have a Fermi energy potential substantially equal to the sub-band minimum energy potential of the MQW. Some embodiments further include a second mirror (optionally a GEMM) to form an optical cavity between the second mirror and the TB-GEMM structure. In some embodiments, at least one of the GEMM is deposited on, and lattice matched to, a substrate.08-27-2009
20090212276LIGHT-EMITTING DIODE DEVICE AND A FABRICATION METHOD THEREOF - The present invention provides a light-emitting diode (LED) device and a fabrication method thereof. The LED device has a double-layered contact layer structure with a surface of one contact layer being patterned to increase ohmic contact area of the double-layered contact layer structure to lower an operation voltage of the LED device, and hence reducing power consumption.08-27-2009
20080315180SEMICONDUCTOR LIGHT EMITTING DEVICE - Provided is a semiconductor light emitting device. The semiconductor light emitting device comprises a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer. The active layer comprises a quantum barrier layer and a quantum well layer on the first conductive type semiconductor layer. An indium (In) composition ratio of the quantum well layer is changed in a graded manner. The second conductive type semiconductor layer is disposed on the active layer.12-25-2008
20110227036High Efficiency Hybrid Light-Emitting Diode - A hybrid LED comprising an anode, an organic hole-transport layer for transporting holes injected into the diode from said anode, a light-emitting quantum dot layer, an electron-transport layer, and a cathode for injecting electrons into said transport layer, wherein the LED also comprises, between said hole- and electron-transport layers, at least one assembly formed by a phosphorescent light-emitting layer presenting an emission spectrum that covers at least part of an absorption spectrum of said quantum dots, and by a buffer layer separating said phosphorescent layer from said quantum dot layer, the material of said or each buffer layer presenting a forbidden band greater than that of a phosphorescent element of said phosphorescent layer so as to prevent excitons diffusing towards said quantum dot layer.09-22-2011
20090242871Quantum Dot Inorganic Electroluminescent Device - An inorganic EL device is provided with a substrate, a first electrode, a first insulating layer, a light emitting layer, a second insulating layer and a second electrode. The inorganic EL light emitting device is characterized in that the light emitting layer contains a quantum dot and is arranged between the first insulating layer and the second insulating layer by being brought into contact with each of the insulating layers.10-01-2009
20090242870LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - Disclosed herein is a light emitting device. The light emitting device includes an n-type nitride semiconductor layer; an active layer on the n-type semiconductor layer, an AlN/GaN layer of a super lattice structure formed by alternately growing an AlN layer and a GaN layer on the active layer, and a p-type nitride semiconductor layer on the AlN/GaN layer of the super lattice structure. At least one of the AlN layer and the GaN layer is doped with a p-type dopant. A method for manufacturing the light emitting device is also provided.10-01-2009
20090250683Nitride-based semiconductor light emitting element - The purpose of the present invention is to obtain a nitride-based semiconductor light emitting element capable of improving light emission efficiency by reducing sheet resistance and a forward voltage of a translucent electrode including indium cerium oxide. The nitride-based semiconductor light emitting element of the present invention is has a translucent electrode including indium cerium oxide; and cerium oxide is contained in a ratio of 10 to 20 wt % with respect to a whole of the indium cerium oxide.10-08-2009
20100148150GROUP III NITRIDE COMPOUND SEMICONDUCTOR LIGHT EMITTING DEVICE AND MANUFACTURING METHOD THEREOF - A Group III nitride compound semiconductor light emitting device is provided which has: an n-type semiconductor layer (06-17-2010
20100148148FABRICATION METHOD OF A LIGHT-EMITTING ELEMENT AND THE LIGHT-EMITTING ELEMENT - A fabrication method of the light emitting element and its light emitting element are disclosed herein. It utilizes the membrane forming technology to form optic films arranged in array on a substrate and then upward forming the epitaxial layer by the epitaxial lateral overgrowth (ELOG) technology so as to form light-emitting elements in array. The optic films contribute to the high reflection property and can sustain high temperature in the ELOG process.06-17-2010
20090250684LIGHT EMITTING SEMICONDUCTOR - A semiconductor element is disclosed having a layered body of a first conductivity type, a light emitting layer, a layered body of a second conductivity type, a constriction layer having a constriction hole, and a first electrode having a lighting hole, a second electrode positioned such that charge traveling between the first and second electrodes passes through the light emitting layer. The constriction hole area is larger than the lighting hole area, and the lighting hole and the constriction hole expose a part of the layered body of the second conductivity type. A mirror is positioned such that the mirror receives light emitted from the light emitting layer that passes through the layered body of the first conductivity type, and the mirror is constructed to have a high reflection ratio for light having peak wavelengths between 200 nm to 350 nm.10-08-2009
20120193605POWDERED QUANTUM DOTS - Powdered quantum dots that can be dispersed into a silicone layer are provided. The powdered quantum dots are a plurality of quantum dot particles, preferably on the micron or nanometer scale. The powdered quantum dots can include quantum dot-dielectric particle complexes or quantum dot-crosslinked silane complexes. The powdered quantum dots can included quantum dot particles coated with a dielectric layer.08-02-2012
20120193606Nanocrystals Including III-V Semiconductors - Semiconductor nanocrystals including III-V semiconductors can include a core including III-V alloy. The nanocrystal can include an overcoating including a II-VI semiconductor.08-02-2012
20090250685LIGHT EMITTING DEVICE - Disclosed are a light emitting device. The light emitting device includes a first conductive semiconductor layer, a light emitting layer, a protective layer, a nano-layer and a second conductive semiconductor layer. The light emitting layer is formed on the first conductive semiconductor layer. The protective layer is formed on the light emitting layer. The nano-layer is formed on the protective layer. The second conductive semiconductor layer is formed on the nano-layer.10-08-2009
20100264400White light emitting device - A light emitting device (LED) may include a first semiconductor layer; an active layer formed on the first semiconductor layer and configured to generate first light having a first wavelength; a second semiconductor layer, formed on the active layer; and a plurality of semiconductor nano-structures arranged apart from each other and formed on the second semiconductor layer. The nano-structures may be configured to at least partially absorb the first light and emit second light having a second wavelength different from the first wavelength.10-21-2010
20100155694ADAPTING SHORT-WAVELENGTH LED'S FOR POLYCHROMATIC, BROADBAND, OR "WHITE" EMISSION - An adapted LED is provided comprising a short-wavelength LED and a re-emitting semiconductor construction, wherein the re-emitting semiconductor construction comprises at least one potential well not located within a pn junction. The potential well(s) are typically quantum well(s). The adapted LED may be a white or near-white light LED. The re-emitting semiconductor construction may additionally comprise absorbing layers surrounding or closely or immediately adjacent to the potential well(s). In addition, graphic display devices and illumination devices comprising the adapted LED according to the present invention are provided.06-24-2010
20100148151LIGHT EMITTING DEVICES WITH IMPROVED LIGHT EXTRACTION EFFICIENCY - A device includes a light emitting structure and a wavelength conversion member comprising a semiconductor. The light emitting structure is bonded to the wavelength conversion member. In some embodiments, the light emitting structure is bonded to the wavelength conversion member with an inorganic bonding material. In some embodiments, the light emitting structure is bonded to the wavelength conversion member with a bonding material having an index of refraction greater than 1.5.06-17-2010
20100155695LIGHT EMITTING DEVICE USING NANO SIZE NEEDLE - A light-emitting device that improves the injection efficiency of electrons or holes by providing electrons or holes to an emitting layer using nano size needles, including a first electrode with a first polarity a second electrode with a second polarity opposite to the first polarity an emitting layer interposed between the first electrode and the second electrode to emit light and a plurality of conductive needles inserted in the first electrode and extending toward the emitting layer.06-24-2010
20120032142NON-RADIATIVELY PUMPED WAVELENGTH CONVERTER - A light source comprises an electroluminescent device that generates pump light and a wavelength converter that includes an absorbing element for absorbing at least some of the pump light. A first layer of light emitting elements is positioned proximate the absorbing element for non-radiative transfer of energy from the absorbing element to the light emitting elements. At least some of the light emitting elements are capable of emitting light having a wavelength longer than the wavelength of the pump light. In some embodiments the electroluminescent device is a light emitting diode (LED) that has a doped semiconductor layer positioned between the LED's active layer and the light emitting elements. The first doped semiconductor layer may have a thickness in excess of 20 nm. A second layer of light emitting elements may be positioned for non-radiative energy transfer from the first layer of light emitting elements.02-09-2012
20120032143EMITTING DEVICE AND MANUFACTURING METHOD THEREFOR - Provided is an emitting device which is capable of improving the luminous efficiency of an emitting layer formed using a group IV semiconductor material and obtaining an emission spectrum having a narrow band, and a manufacturing method therefor. The emitting device comprises: an emitting layer having a potential confinement structure, comprising: a well region comprising a group IV semiconductor material; and a barrier region being adjacent to the well region and comprising a group IV semiconductor material which is different from the group IV semiconductor material in the well region, wherein: a continuous region from the well region over an interface between the well region and the barrier region to a part of the barrier region comprises fine crystals; and a region in the barrier region, which is other than the continuous region comprising the fine crystals, is amorphous or polycrystalline region.02-09-2012
20090315015LIGHT EMITTING DEVICE AND DISPLAY - A light emitting device containing a semiconductor light emitting component and a phosphor, the phosphor is capable of absorbing a part of light emitted by the light emitting component and emitting light of a wavelength different from that of the absorbed light, is provided. A straight line connecting a point of chromaticity corresponding to a spectrum generated by the light emitting component and a point of chromaticity corresponding to a spectrum generated by the phosphor is substantially along a black body radiation locus in a chromaticity diagram.12-24-2009
20090315013EFFICIENT LIGHT EXTRACTION METHOD AND DEVICE - A tight emitting device comprises at least one p-type layer and at least one n-type layer and a microlens array surface. A method for improving light efficiency of a light emitting device, comprises depositing polystyrene microspheres by rapid convection deposition on surface of light emitting device; depositing a monolayer of close-packed SIO12-24-2009
20090315012LIGHT EMITTING DEVICE STRUCTURE HAVING NITRIDE BULK SINGLE CRYSTAL LAYER - The object of this invention is to provide a high-output type nitride light emitting device.12-24-2009
20100187497SEMICONDUCTOR DEVICE - A semiconductor device includes an underlying layer, and a light emitting layer which is formed on the underlying layer and in which a barrier layer made of InAlGaN and a quantum well layer made of InGaN are alternately stacked.07-29-2010
20100176373FABRICATION METHOD OF NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE AND NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE THEREBY - A method for fabricating a nitride semiconductor light emitting device, and a nitride semiconductor light emitting device fabricated thereby are provided. The method includes: forming a first conductive nitride semiconductor layer on a substrate; forming an active layer on the first conductive nitride semiconductor layer; forming a second conductive nitride semiconductor layer on the active layer; and lowering a temperature while adding oxygen to the result by performing a thermal process.07-15-2010
20100176371Semiconductor Diodes Fabricated by Aspect Ratio Trapping with Coalesced Films - A photonic device comprises a substrate and a dielectric material including two or more openings that expose a portion of the substrate, the two or more openings each having an aspect ratio of at least 1. A bottom diode material comprising a compound semiconductor material that is lattice mismatched to the substrate occupies the two or more openings and is coalesced above the two or more openings to form the bottom diode region. The device further includes a top diode material and an active diode region between the top and bottom diode materials.07-15-2010
20090078928LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, AND INFORMATION DISPLAY DEVICE - A light-emitting device has a structure in which a semiconductor or a conductive substrate having a bottom electrode, a layer for generating hot electrons, quasi-ballistic electrons or ballistic electrons, a luminous layer, and a semitransparent surface electrode are deposited, or a structure in which a holes supply layer is provided between the luminous layer and the semitransparent surface electrode having the same structure. The light-emitting device realizes highly efficient light emission in a range from infrared rays to ultraviolet ray with smaller driving current than that of conventional injection-type or intrinsic EL devices.03-26-2009
20100187498NANOWIRE LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - The invention provides a nanowire light emitting device and a manufacturing method thereof. In the light emitting device, first and second conductivity type clad layers are formed and an active layer is interposed therebetween. At least one of the first and second conductivity type clad layers and the active layer is a semiconductor nanowire layer obtained by preparing a layer of a mixture composed of a semiconductor nanowire and an organic binder and removing the organic binder therefrom.07-29-2010
20100187495SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor light emitting device and a method of manufacturing the same are provided. The semiconductor light emitting device comprises a first semiconductor layer emitting electrons, a second semiconductor layer emitting holes, and an active layer emitting light by combination of the electrons and holes. At least one of the layers comprises an photo enhanced minority carriers.07-29-2010
20100193769LIGHT SOURCE, AND DEVICE - In accordance with the invention, a light source for display and/or illumination is provided, the light source comprising a heterostructure including semiconductor layers, the heterostructure forming a waveguide between a first end and a second end, the heterostructure comprising a plurality of layers and comprising an optically active zone formed by the plurality of layers, the optically active zone capable of emitting light guided by said waveguide, at least two different radiative transitions being excitable in the optically active an electrical current between a p-side electrode and an n-side electrode, transition energies of said at least two different radiative transitions corresponding to wavelengths in the visible part of the optical spectrum, the light source further comprising means for preventing reflections of light from the waveguide by at least one of said first and second end back into the waveguide, thereby causing the light source to comprise a superluminescent light emitting diode.08-05-2010
20100019225Nitride semiconductor led and fabrication method thereof - Disclosed a nitride semiconductor LED including: a substrate; a GaN-based buffer layer formed on the substrate; Al01-28-2010
20100213439NITRIDE BASED SEMICONDUCTOR OPTICAL DEVICE, EPITAXIAL WAFER FOR NITRIDE BASED SEMICONDUCTOR OPTICAL DEVICE, AND METHOD OF FABRICATING SEMICONDUCTOR LIGHT-EMITTING DEVICE - In the nitride based semiconductor optical device LE08-26-2010
20100213436NON-POLAR ULTRAVIOLET LIGHT EMITTING DEVICE AND METHOD FOR FABRICATING SAME - An ultra-violet light-emitting device and method for fabricating an ultraviolet light emitting device, 08-26-2010
20100176372NITRIDE SEMICONDUCTOR LIGHT EMITTING DIODE - A nitride semiconductor light emitting diode (LED) is disclosed. The nitride semiconductor LED can include an active layer formed between an n-type nitride layer and a p-type nitride layer, where the active layer includes two or more quantum well layers and quantum barrier layers formed in alternation, and the quantum barrier layer formed adjacent to the p-type nitride layer is thinner than the remaining quantum barrier layers. An embodiment of the invention can be used to improve optical efficiency while providing crystallinity in the active layer.07-15-2010
20100176370LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - A light-emitting device includes an n-type silicon thin film (07-15-2010
20100224853SEMICONDUCTOR NANOCRYSTAL PROBES FOR BIOLOGICAL APPLICATIONS AND PROCESS FOR MAKING AND USING SUCH PROBES - A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.09-09-2010
20100213437LIGHT EMITTING DEVICE - The present invention provides a light emitting device that comprises a luminescent layer formed of a monomolecular film of quantum dots and has enhanced brightness and luminescence efficiency. A light emitting device 08-26-2010
20100224856ELECTROLUMINESCENT DEVICE - Provided is an electroluminescent device which has a luminescent layer including quantum dots and which are excellent in life characteristics. An electroluminescent device (09-09-2010
20100213438QUANTUM DOT LIGHT EMITTING DEVICE HAVING QUANTUM DOT MULTILAYER - A quantum dot light emitting device includes; a substrate, a first electrode disposed on the substrate, a second electrode disposed substantially opposite to the first electrode, a first charge transport layer disposed between the first electrode and the second electrode, a quantum dot light emitting layer disposed between the first charge transport layer and one of the first electrode and the second electrode, and at least one quantum dot including layer disposed between the quantum dot light emitting layer and the first charge transport layer, wherein the at least one quantum dot including layer has an energy band level different from an energy band level of the quantum dot light emitting layer.08-26-2010
20100224858LATERAL THERMAL DISSIPATION LED AND FABRICATION METHOD THEREOF - A lateral thermal dissipation LED and a fabrication method thereof are provided. The lateral thermal dissipation LED utilizes a patterned metal layer and a lateral heat spreading layer to transfer heat out of the LED. The thermal dissipation efficiency of the LED is increased, and the lighting emitting efficiency is accordingly improved.09-09-2010
20100224857FABRICATION OF PHOSPHOR FREE RED AND WHITE NITRIDE-BASED LEDs - A multiple quantum well (MQW) structure for a light emitting diode and a method for fabricating a MQW structure for a light emitting diode are provided. The MQW structure comprises a plurality of quantum well structures, each quantum well structure comprising: a barrier layer; and a well layer having quantum dot nanostructures embedded therein formed on the barrier layer, the barrier and the well layer comprising a first metal-nitride based material; wherein at least one of the quantum well structures further comprises a capping layer formed on the well layer, the capping layer comprising a second metal-nitride based material having a different metal element compared to the first metal-nitride based material.09-09-2010
20100224855Light-emitting device epitaxial wafer and light-emitting device - A light-emitting device epitaxial wafer includes an n-type substrate, an n-type cladding layer stacked on the n-type substrate, a light-emitting layer including a quantum well structure stacked on the n-type cladding layer, and a p-type cladding layer stacked on the light-emitting layer. The n-type cladding layer includes an epitaxial layer doped with a mixture of 2 or more n-type dopants including Si, and is not less than 250 nm and not more than 750 nm in thickness. Alternatively, a light-emitting device epitaxial wafer includes an n-type substrate, an n-type cladding layer stacked on the n-type substrate, a light-emitting layer stacked on the n-type cladding layer, and a p-type cladding layer stacked on the light-emitting layer. The n-type cladding layer includes 2 or more n-type impurities including Si.09-09-2010
20100237322LIGHT EMITTING DEVICE - A QD protecting material having high compatibility with a binder component in a luminescent layer. The luminescent layer contains, as a part of its chemical structure, a compound containing a moiety A having a sum atomic weight MA of 100 or more and quantum dots protected by a protecting material, the protecting material contains, as a part of its chemical structure, a linking group connected to a quantum dot surface and a moiety B that has a sum atomic weight MB of 100 or more, satisfies a relationship between MB and MA represented by |MA−MB|/MB (2, and satisfies the requirement that the sum atomic weight MB is larger than one-third of the molecular weight of the protecting material, and a solubility parameter SA of the moiety A and a solubility parameter SB of the moiety B satisfy a relationship represented by |SA (SB| (2.09-23-2010
20100237323ELECTROLUMINESCENT DEVICE - An electroluminescent device comprising a pair of electrodes, and an electroluminescent layer containing at least a luminescent layer, situated between the electrodes. The luminescent layer has a matrix material containing at least one organic compound, and quantum dots whose surfaces are protected by a protective material and that are dispersed in the matrix material. The protective material contains a first protective material. The absolute value of the ionization potential Ip(h), the absolute value of the electron affinity Ea(h), and the band gap Eg(h) of the first protective material, the absolute value of the ionization potential Ip(m), the absolute value of the electron affinity Ea(m), and the band gap Eg(m) of the organic compound, and the band gap Eg(q) of the quantum dots fulfill all of the conditions (A) to (C): (A) Ip(h)Ea(m)−0.1 eV, and (C) Eg(q)09-23-2010
20100219395Optical Semiconductor Device and Method of Manufacturing the Same - Devices and techniques related to UV light-emitting devices that can be implemented in ways that improve the light-emitting efficiency of an UV light-emitting device using a group III nitride semiconductor.09-02-2010
20100243986HYBRID VERTICAL CAVITY LIGHT EMITTING SOURCES AND PROCESSES FOR FORMING THE SAME - Vertical cavity light emitting sources that utilize patterned membranes as reflectors are provided. The vertical cavity light emitting sources have a stacked structure that includes an active region disposed between an upper reflector and a lower reflector. The active region, upper reflector and lower reflector can be fabricated from single or multi-layered thin films of solid states materials (“membranes”) that can be separately processed and then stacked to form a vertical cavity light emitting source.09-30-2010
20100243988Nitride semiconductor light-emitting chip, method of manufacture thereof, and semiconductor optical device - A nitride semiconductor light-emitting chip offers enhanced luminous efficacy as a result of an improved EL emission pattern. The nitride semiconductor laser chip (nitride semiconductor light-emitting chip) has a nitride semiconductor substrate having a principal growth plane, and nitride semiconductor layers grown on the principal growth plane of the nitride semiconductor substrate. The principal growth plane of the GaN substrate is a plane having off-angles in both the a- and c-axis directions relative to an m plane, and the off-angle in the a-axis direction is larger than the off-angle in the c-axis direction.09-30-2010
20100252806CARBON NANO-TUBE (CNT) LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - Disclosed are a carbon nano-tube (CNT) light emitting device and a method of manufacturing the same. Specifically, the CNT light emitting device comprises: a CNT thin film formed using a CNT dispersed solution; a n-doping polymer formed on one end of the CNT thin film; a p-doping polymer formed on the other end of the CNT thin film; and a light emitting part between the n-doping polymer and the p-doping polymer. In addition, the method of manufacturing a CNT light emitting device comprises steps of: mixing CNTs with a dispersing agent or dispersing solvent to prepare a CNT dispersed solution; forming a CNT thin film using the CNT dispersed solution; coating a n-doping polymer on one end of the CNT thin film; and coating a p-doping polymer on the other end of the CNT thin film. According to the invention, the n-doping polymer and the p-doping polymer are respectively coated on the CNT having a CNT random network structure to implement a p-n junction, thereby implementing a light emitting device in a simple and low-priced process.10-07-2010
20100001258LIGHT EMITTING DEVICE AND DISPLAY - A light emitting device containing a semiconductor light emitting component and a phosphor, the phosphor is capable of absorbing a part of light emitted by the light emitting component and emitting light of a wavelength different from that of the absorbed light, is provided. A straight line connecting a point of chromaticity corresponding to a spectrum generated by the light emitting component and a point of chromaticity corresponding to a spectrum generated by the phosphor is substantially along a black body radiation locus in a chromaticity diagram.01-07-2010
20100001256White light emitting devices - A white light emitting semiconductor nanocrystal includes a plurality of semiconductor nanocrystals.01-07-2010
20110006282SEMICONDUCTOR LIGHT-EMITTING DEVICE, OPTICAL MODULE, TRANSMITTER, AND OPTICAL COMMUNICATION SYSTEM - A semiconductor light-emitting device includes a GaAs substrate; and an active layer provided over the GaAs substrate, the active layer including: a lower barrier layer lattice-matched to the GaAs substrate; a quantum dot provided on the lower barrier layer; a strain relaxation layer covering a side of the quantum dot; and an upper barrier layer contacting the top of the quantum dot, at least a portion of the upper barrier layer contacting the top of the quantum dot being lattice-matched to the GaAs substrate, and having a band gap larger than a band gap of the quantum dot and smaller than a band gap of GaAs.01-13-2011
20100127237HIGH BRIGHTNESS LIGHT EMITTING DIODE STRUCTURE AND A METHOD FOR FABRICATING THE SAME - The preset invention discloses a high-brightness LED structure and a method for fabricating the same. The LED structure of the present invention comprises a silicon substrate, a metal adhesion layer, a metal reflection layer, an N-type semiconductor layer, an active layer, and a P-type semiconductor layer, which are sequentially stacked. In the method of the present invention, the P-type semiconductor layer, active layer, N-type semiconductor layer and metal reflection layer are sequentially deposited on an N-type substrate; next, the metal reflection layer is bonded to the metal adhesion layer having been formed on the silicon substrate; then, the N-type substrate is removed. The present invention uses the silicon substrate to replace the light-absorptive GaAs substrate. Therefore, the present invention can promote light efficiency and enhance brightness.05-27-2010
20100243985HIGH LIGHT-EXTRACTION EFFICIENCY LIGHT-EMITTING DIODE STRUCTURE - The present invention discloses a high light-extraction efficiency LED structure, wherein metallic pads and metallic mesh wires made of an aluminum-silver alloy are formed on an LED, whereby the high-reflectivity aluminum-silver alloy makes the light incident on the metallic pads and metallic mesh wires reflected once more or repeatedly and then emitted from the surface or lateral side of the LED, wherefore the present invention can decrease the light loss and increase the light-extraction efficiency.09-30-2010
20100243987DEVICE OF LIGHT-EMITTING DIODE AND METHOD FOR FABRICATING THE SAME - A device of a light-emitting diode and a method for fabricating the same are provided. The LED device is made by forming a patterned epitaxial layer, a light-emitting structure, etc., on a substrate. In a subsequent process, the patterned epitaxial layer serves as a weakened structure, and can be automatically broken and a rough surface is thus formed. The weakened structure is formed with a specified height, and has pillar structures. The light-emitting structure is formed on the weakened structure. During a cooling process at room temperature, the weakened structure is automatically broken and a rough surface is thus formed.09-30-2010
20100207096METHOD FOR FABRICATING HIGHLY REFLECTIVE OHMIC CONTACT IN LIGHT-EMITTING DEVICES - One embodiment of the present invention provides a method for fabricating a highly reflective electrode in a light-emitting device. During the fabrication process, a multilayer semiconductor structure is fabricated on a growth substrate, wherein the multilayer semiconductor structure includes a first doped semiconductor layer, a second doped semiconductor layer, and/or a multi-quantum-wells (MQW) active layer. The method further includes the followings operations: forming a contact-assist metal layer on the first doped semiconductor layer, annealing the multilayer structure to activate the first doped semiconductor layer, removing the contact-assist metal layer, forming a reflective ohmic-contact metal layer on the first doped semiconductor layer, forming a bonding layer coupled to the reflective ohmic-contact metal layer, bonding the multilayer structure to a conductive substrate, removing the growth substrate, forming a first electrode coupled to the conductive substrate, and forming a second electrode on the second doped semiconductor layer.08-19-2010
20100252807Metal ion sensor and fabricating method thereof - A metal ion sensor is provided. The metal ion sensor includes a nanoparticle core doped with a first luminescent material and a shell enclosing the nanoparticle core. The shell includes a second luminescent material and binding sites of outer metal ions. The first luminescent material and the second luminescent material emit light with mutually different colors when excited by an excitation source. The luminescence intensity of the light emitted from the second luminescent material varies in accordance with the binding amount of the outer metal ions, such that the emission color of the combined luminescence of the first luminescent material and the second luminescent material is changed.10-07-2010
20100252808NANOWIRE GROWTH ON DISSIMILAR MATERIAL - The present invention relates to growth of III-V semiconductor nanowires (10-07-2010
20120138890SEMICONDUCTOR LIGHT EMITTING DEVICE - According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer and a light emitting part. The light emitting part is provided between the n-type semiconductor layer and the p-type semiconductor layer and includes a first light emitting layer. The first light emitting layer includes a first barrier layer, a first well layer, a first n-side intermediate layer and a first p-side intermediate layer. The barrier layer, the well layer, the n-side layer and the p-side intermediate layer include a nitride semiconductor. An In composition ratio in the n-side layer decreases along a first direction from the n-type layer toward the p-type layer. An In composition ratio in the p-side layer decreases along the first direction. An average change rate of the In ratio in the p-side layer is lower than an average change rate of the In ratio in the n-side layer.06-07-2012
20100127238Light emitting diode - Example embodiments provide a light emitting diode (LED) having improved polarization characteristics. The LED may include wire grid polarizers on and below a light emitting unit. The wire grid polarizers may be arranged at an angle to each other. Thus, because the LED may emit a light beam in a given polarization direction, an expensive component, e.g., a dual brightness enhanced film (DBEF), is not required. Thus, manufacturing costs of a backlight unit including the LED and a display apparatus including the backlight unit may be reduced.05-27-2010
20080315178SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device is provided. The semiconductor light emitting device comprises: a first conductive semiconductor layer; an active layer on the first conductive semiconductor layer; a first quantum dot layer on the active layer; and a second conductive semiconductor layer on the first quantum dot layer.12-25-2008
20080315179SEMICONDUCTOR LIGHT EMITTING DEVICE - Provided is a semiconductor light emitting device. The semiconductor light emitting device comprises a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer. The active layer comprises a first active layer, a second active layer, an electron barrier layer on the first conductive type semiconductor layer. The first active layer and the second active layer comprise a quantum well layer and a quantum barrier layer. The electron barrier layer is formed between the first active layer and the second active layer. The second conductive type semiconductor layer is formed on the active layer.12-25-2008
20090242869SUPER LATTICE/QUANTUM WELL NANOWIRES - Segmented semiconductor nanowires are manufactured by removal of material from a layered structure of two or more semiconductor materials in the absence of a template. The removal takes place at some locations on the surface of the layered structure and continues preferentially along the direction of a crystallographic axis, such that nanowires with a segmented structure remain at locations where little or no removal occurs. The interface between different segments can be perpendicular to or at angle with the longitudinal direction of the nanowire.10-01-2009
20090166607Nitride Semiconductor Light Emitting Element - Provided is a nitride semiconductor light emitting element having an improved carrier injection efficiency from a p-type nitride semiconductor layer to an active layer by simple means from a viewpoint utterly different from the prior art. A buffer layer 07-02-2009
20080272362ADAPTING SHORT-WAVELENGTH LED'S FOR POLYCHROMATIC, BROADBAND, OR WHITE EMISSION - An adapted LED is provided comprising a short-wavelength LED and a re-emitting semiconductor construction, wherein the re-emitting semiconductor construction comprises at least one potential well not located within a pn junction. The potential well(s) are typically quantum well(s). The adapted LED may be a white or near-white light LED. The re-emitting semiconductor construction may additionally comprise absorbing layers surrounding or closely or immediately adjacent to the potential well(s). In addition, graphic display devices and illumination devices comprising the adapted LED according to the present invention are provided.11-06-2008
20090146132NITRIDE SEMICONDUCTOR DEVICE - There is provided a nitride semiconductor device including: an n-type nitride semiconductor layer; a p-type nitride semiconductor layer; and an active layer formed between the n-type and p-type nitride semiconductor layers, the active layer including a plurality of quantum well layers and at least one quantum barrier layer deposited alternately with each other, wherein the active layer includes a first quantum well layer, a second quantum well layer formed adjacent to the first quantum well layer toward the p-type nitride semiconductor layer and having a quantum level higher than a quantum level of the first quantum well layer, and a tunneling quantum barrier layer formed between the first and second quantum well layers and having a thickness enabling a carrier to be tunneled therethrough.06-11-2009
20080283820LED packaged structure and applications of LED as light source - LED packaged structures and applications thereof are disclosed, characterized in that: an active layer in the LED or the LED packaged structure is formed on a first semiconductor conductive layer with multi-quantum wells; and a second semiconductor conductive layer is formed on the active layer; wherein a plurality of particles formed by at least one hetero-material are scattered between the first semiconductor conductive layer and the active layer in order to form an uneven multi-quantum well.11-20-2008
20090108250LIGHT EMITTING DIODE - A light emitting diode (LED) has an n-type semiconductor layer, an active layer, a p-type semiconductor layer, and a transparent electrode layer. The LED includes a tunnel layer interposed between the p-type semiconductor layer and the transparent electrode layer, an opening arranged in the transparent electrode layer so that the tunnel layer is exposed, a distributed Bragg reflector (DBR) arranged in the opening, and an electrode pad arranged on the transparent electrode layer to cover the DBR in the opening.04-30-2009
20100295015LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE PACKAGE HAVING THE SAME - A light emitting device includes a plurality of clusters spread on a surface of a substrate and a first semiconductor layer provided over the plurality of clusters. The first semiconductor layer may includes air gaps above the plurality of clusters. In addition, light emitting structure may include a first conductive semiconductor layer adjacent to the first semiconductor layer, an active layer on the first conductive semiconductor layer, and a second conductive semiconductor layer on the active layer.11-25-2010
20100295017LIGHT EMITTING DIODE ELEMENT AND METHOD FOR FABRICATING THE SAME - The present invention discloses a light emitting diode (LED) element and a method for fabricating the same, which can promote light extraction efficiency of LED, wherein a substrate is etched to obtain basins with inclined natural crystal planes, and an LED epitaxial structure is selectively formed inside the basin. Thereby, an LED element having several inclines is obtained. Via the inclines, the probability of total internal reflection is reduced, and the light extraction efficiency of LED is promoted.11-25-2010
20100295014IMPROVEMENTS IN EXTERNAL LIGHT EFFICIENCY OF LIGHT EMITTING DIODES - A method to improve the external light efficiency of light emitting diodes, the method comprising etching an external surface of an n-type layer of the light emitting diode to form surface texturing, the surface texturing reducing internal light reflection to increase light output. A corresponding light emitting diode is also disclosed.11-25-2010
20100295016FLUORESCENT FIBER CONTAINING SEMICONDUCTOR NANOPARTICLES - The present invention provides a luminescent fiber, which retains a certain shape with assembled nanoparticles, and a method for producing the luminescent fiber. Specifically, the present invention provides a luminescent fiber comprising silicon and semiconductor nanoparticles having a mean particle size of 2 to 12 nm, the luminescent fiber having a diameter of 20 nm to 2 μm, a length of 40 nm to 500 μm, an aspect ratio of 2 to 1,000, and photoluminescence efficiency of not less than 5%.11-25-2010
20100308301Semiconductor light-emitting device - A light-emitting diode has: a substrate; a light-emitting layer having a first conductivity type cladding layer, an active layer, and a second conductivity type cladding layer stacked sequentially on a front side of the substrate; a first current-blocking portion partially formed in the middle on the light-emitting layer; a current-conducting portion formed on the second conductivity type cladding layer and the first current-blocking portion; a lower electrode formed on the back side of the substrate, a light-reflecting layer formed between the substrate and the light-emitting layer; a partial electrode formed on the surface of the light-reflecting layer and in a portion positioned below the first current-blocking portion; and a second current-blocking portion formed over the surface of the light-reflecting layer excluding the portion in which is formed the partial electrode.12-09-2010
20110248240GALLIUM NITRIDE BASED SEMICONDUCTOR LIGHT EMITTING DIODE - The present invention provides a gallium nitride based semiconductor light emitting diode having high transparency, and at the same time, capable of improving contact resistance between a p-type GaN layer and electrode. These objects can be accomplished by forming, on an upper part of a upper clad layer made of p-GaN, an ohmic contact forming layer using MIO, ZIO and CIO (In10-13-2011
20110248238LIGHT EMITTING DEVICE, AND LIGHTING APPARATUS - Disclosed herein is a light emitting device. The light emitting device includes a support member and a light emitting structure on the support member and including a first conductive semiconductor layer, a second conductive semiconductor layer and an active layer interposed between the first and second conductive semiconductor layers, and the active layer includes at least one quantum well layer and at least one barrier layer, at least one potential barrier layer located between the first conductive semiconductor layer and a first quantum well layer, closest to the first conductive semiconductor layer, out of the at least one quantum well layer, and an undoped barrier layer formed between the at least one potential barrier layer and the first quantum well layer and having a thickness different from that of the at least one barrier layer. Thereby, brightness of the light emitting device is improved through effective diffusion of current.10-13-2011
20100301306STRAIN-CONTROLLED ATOMIC LAYER EPITAXY, QUANTUM WELLS AND SUPERLATTICES PREPARED THEREBY AND USES THEREOF - Processes for forming quantum well structures which are characterized by controllable nitride content are provided, as well as superlattice structures, optical devices and optical communication systems based thereon.12-02-2010
20100301307PLASMON ENHANCED LIGHT-EMITTING DIODES - Embodiments of the present invention are directed to light-emitting diodes. In one embodiment of the present invention, a light-emitting diode comprises at least one quantum well sandwiched between a first intrinsic semiconductor layer and a second semiconductor layer. An n-type heterostructure is disposed on a surface of the first intrinsic semiconductor layer, and a p-type heterostructure is disposed on a surface of the second intrinsic semiconductor layer opposite the n-type semiconductor heterostructure. The diode also includes a metal structure disposed on a surface of the light-emitting diode. Surface plasmon polaritons formed along the interface between the metal-structure and the light-emitting diode surface extend into the at least one quantum well increasing the spontaneous emission rate of the transverse magnetic field component of electromagnetic radiation emitted from the at least one quantum well. In certain embodiments, the electromagnetic radiation can be modulated at a rate of about 10 Gb/s or faster.12-02-2010
20100320441NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE AND FABRICATION METHOD THEREOF - A nitride semiconductor light emitting device comprises a first nitride semiconductor layer, an active layer of a single or multiple quantum well structure formed on the first nitride semiconductor layer and including an InGaN well layer and a multilayer barrier layer, and a second nitride semiconductor layer formed on the active layer. A fabrication method of a nitride semiconductor light emitting device comprises: forming a buffer layer on a substrate, forming a GaN layer on the buffer layer, forming a first electrode layer on the GaN layer, forming an InxGa1−xN layer on the first electrode layer, forming on the first InxGa1−xN layer an active layer including an InGaN well layer and a multilayer barrier layer for emitting light, forming a p-GaN layer on the active layer, and forming a second electrode layer on the p-GaN layer.12-23-2010
20130193407NANOCRYSTALS INCLUDING A GROUP IIIA ELEMENT AND A GROUP VA ELEMENT, METHOD, COMPOSITION, DEVICE AND OTHER PRODUCTS - A population of nanocrystals including a core comprising a first semiconductor material comprising one or more elements of Group IIIA of the Periodic Table of Elements and one or more elements of Group VA of the Periodic Table of Elements, and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the nanocrystal is capable of emitting light having a photoluminescence quantum efficiency of at least about 30% upon excitation. Also disclosed is a nanocrystal comprising a nanocrystal core and a shell comprising a semiconductor material comprising at least three chemical elements and obtainable by a process comprising adding a precursor for at least one of the chemical elements of the semiconductor material from a separate source to a nanocrystal core while simultaneously adding amounts of precursors for the other chemical elements of the semiconductor material. Devices including nanocrystals are disclosed.08-01-2013
20110001123Nitride semiconductor light emitting device - A nitride semiconductor light emitting device includes n-type and p-type nitride semiconductor layers, and an active layer disposed between the n-type and p-type nitride semiconductor layers and having a stack structure in which a plurality of quantum barrier layers and one or more quantum well layers are alternately stacked. A net polarization of the quantum barrier layer is smaller than or equal to a net polarization of the quantum well layer. A nitride semiconductor light emitting device can be provided, which can realize high efficiency even at high currents by minimizing the net polarization mismatch between the quantum barrier layer and the quantum well layer. Also, a high-efficiency nitride semiconductor light emitting device can be achieved by reducing the degree of energy-level bending of the quantum well layer.01-06-2011
20090250686METHOD FOR FABRICATION OF SEMIPOLAR (Al, In, Ga, B)N BASED LIGHT EMITTING DIODES - A yellow Light Emitting Diode (LED) with a peak emission wavelength in the range 560-580 nm is disclosed. The LED is grown on one or more III-nitride-based semipolar planes and an active layer of the LED is composed of indium (In) containing single or multi-quantum well structures. The LED quantum wells have a thickness in the range 2-7 nm. A multi-color LED or white LED comprised of at least one semipolar yellow LED is also disclosed.10-08-2009
20110108798LIGHT-EMITTING ELEMENT AND A PRODUCTION METHOD THEREFOR - Disclosed is a light emitting device. The light emitting device includes a support substrate; a planar layer over the support substrate; a wafer bonding layer over the planar layer; a current spreading layer over the wafer bonding layer; a second conductive semiconductor layer over the current spreading layer; an active layer over the second conductive semiconductor layer; a first conductive semiconductor layer over the active layer; a first electrode layer over the first conductive semiconductor layer; and a second electrode layer over the current spreading layer.05-12-2011
20110024722OPTICAL DEVICES FEATURING NONPOLAR TEXTURED SEMICONDUCTOR LAYERS - A semiconductor emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.02-03-2011
20100133507SEMICONDUCTOR LIGHT EMITTING DEVICE AND FABRICATION METHOD FOR THE SAME - A high luminance semiconductor light emitting device and a fabrication method for the same are provided by forming a metallic reflecting layer using a non-transparent semiconductor substrate.06-03-2010
20100133505SEMICONDUCTOR LIGHT EMITTING DEVICE AND FABRICATION METHOD FOR THE SAME - A high luminance semiconductor light emitting device and a fabrication method for such semiconductor light emitting device are provided by forming a metallic reflecting layer using a non-transparent semiconductor substrate.06-03-2010
20100133504LIGHT EMITTING DEVICES - A new light emitting device is disclosed. The device includes a reflector, a surface layer, and a light emitting layer located there-between. The light emitting layer emits light at a wavelength λ. An optical thickness from the light emitting layer to the reflector is approximately m*λ/4, where m is a positive integer. Furthermore, the said device may, in addition, include an optical transform layer adjoining to the light emitting layer. Thus, the light emitted by the device can be not only collimated but also polarized.06-03-2010
20110024721SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device including a semiconductor substrate and an active layer which is formed on the substrate and has a cascade structure formed by multistage-laminating unit laminate structures 02-03-2011
20110024720High-efficiency LED - A high-efficiency LED includes: a substrate, an epitaxial layer structure, a cathode, an anode, a transparent sealing compound and a polyimide layer. The polyimide layer covers surfaces of the epitaxial layer structure and the substrate. The transparent sealing compound covers the polyimide layer, the substrate, the epitaxial layer structure, the cathode and the anode. The polyimide layer of the present invention has a refractive index higher than that of packaging materials in prior art, so as to reduce total internal reflection and optical consumption caused by light scattered from the epitaxial layer structure and the transparent sealing compound.02-03-2011
20110017976ULTRAVIOLET LIGHT EMITTING DIODE/LASER DIODE WITH NESTED SUPERLATTICE - A light emitting device with a template comprising a substrate and a nested superlattice. The superlattice has Al01-27-2011
20110017972LIGHT EMITTING STRUCTURE WITH INTEGRAL REVERSE VOLTAGE PROTECTION - A light emitting structure having reverse voltage protection (RVP) is provided along with disclosure of a method for fabricating the light emitting structure. The light emitting structure includes a substrate having a first face, a second face, and a p-n junction formed within the substrate between a p-type layer and an n-type layer, wherein the p-type layer and the n-type layer are adapted as a RVP diode. A buffer layer is provided on the substrate, and a light emitting diode (LED) is fabricated on the buffer layer. The LED is then electrically coupled to the RVP diode in an anti-parallel diode pair (APDP) configuration.01-27-2011
20110114917LIGHT EMITTING DEVICE - A light emitting device includes a substrate having a first surface and a second surface not parallel to the first surface, and a light emission layer disposed over the second surface to emit light. The light emission layer has a light emission surface which is not parallel to the first surface.05-19-2011
20110108796Laser spike annealing for GaN LEDs - Methods of performing laser spike annealing (LSA) in forming gallium nitride (GaN) light-emitting diodes (LEDs) as well as GaN LEDs formed using LSA are disclosed. An exemplary method includes forming atop a substrate a GaN multilayer structure having a n-GaN layer and a p-GaN layer that sandwich an active layer. The method also includes performing LSA by scanning a laser beam over the p-GaN layer. The method further includes forming a transparent conducting layer atop the GaN multilayer structure, and adding a p-contact to the transparent conducting layer and a n-contact to the n-GaN layer. The resultant GaN LEDs have enhanced output power, lower turn-on voltage and reduced series resistance.05-12-2011
20110108797SINGLE CHIP TYPE WHITE LED DEVICE - A single chip type white light LED device includes a first semiconductor layer of a first doping type, a ZnMnSeTe (Zinc Manganese Selenium Tellurium) red light quantum well, a first barrier layer disposed on the ZnMnSeTe red light quantum well, a green light emitting layer including green light quantum dots disposed on the first barrier layer, a second barrier layer disposed on the green light emitting layer, a blue light emitting layer including blue light quantum dots disposed on the second barrier layer, a third barrier layer disposed on the blue light emitting layer, and a second semiconductor layer disposed on the third barrier layer.05-12-2011
20090065763LIGHT-EMITTING SEMICONDUCTOR DEVICE - The present invention discloses a light-emitting semiconductor device, includes: a first electrode that is made of a high reflective metal; a second electrode; a tunnel junction layer coupling to the first electrode through a first ohmic contact and generating a tunnel current by applying a reverse bias voltage between the first electrode and the second electrode; a light-emitting layer provided between the tunnel junction layer and the second electrode.03-12-2009
20090065762LIGHT EMITTING DIODE WITH IMPROVED STRUCTURE - A light emitting diode (LED) for minimizing crystal defects in an active region and enhancing recombination efficiency of electrons and holes in the active region includes non-polar GaN-based semiconductor layers grown on a non-polar substrate. The semiconductor layers include a non-polar N-type semiconductor layer, a non-polar P-type semiconductor layer, and non-polar active region layers positioned between the N-type semiconductor layer and the P-type semiconductor layer. The non-polar active region layers include a well layer and a barrier layer with a superlattice structure.03-12-2009
20110031472SEMICONDUCTOR LIGHT-EMITTING DEVICE WITH A HIGHLY REFLECTIVE OHMIC-ELECTRODE - A semiconductor light-emitting device includes a multilayer semiconductor structure on a conductive substrate. The multilayer semiconductor structure includes a first doped semiconductor layer situated above the conductive substrate, a second doped semiconductor layer situated above the first doped semiconductor layer, and/or an MQW active layer situated between the first and second doped semiconductor layers. The device also includes a reflective ohmic-contact metal layer between the first doped semiconductor layer and the conductive substrate, which includes Ag, and at least one of: Ni, Ru, Rh, Pd, Au, Os, Ir, and Pt; plus at least one of: Zn, Mg Be, and Cd; and a number of: W, Cu, Fe, Ti, Ta, and Cr. The device further includes a bonding layer between the reflective ohmic-contact metal layer and the conductive substrate, a first electrode coupled to the conductive substrate, and a second electrode coupled to the second doped semiconductor layer.02-10-2011
20110114916III-NITRIDE SEMICONDUCTOR OPTICAL DEVICE AND EPITAXIAL SUBSTRATE - A III-nitride semiconductor optical device has a support base comprised of a III-nitride semiconductor, an n-type gallium nitride based semiconductor layer, a p-type gallium nitride based semiconductor layer, and an active layer. The support base has a primary surface at an angle with respect to a reference plane perpendicular to a reference axis extending in a c-axis direction of the III-nitride semiconductor. The n-type gallium nitride based semiconductor layer is provided over the primary surface of the support base. The p-type gallium nitride based semiconductor layer is doped with magnesium and is provided over the primary surface of the support base. The active layer is provided between the n-type gallium nitride based semiconductor layer and the p-type gallium nitride based semiconductor layer over the primary surface of the support base. The angle is in the range of not less than 40° and not more than 140°. The primary surface demonstrates either one of semipolar nature and nonpolar nature. The p-type gallium nitride based semiconductor layer contains carbon as a p-type dopant. A carbon concentration of the p-type gallium nitride based semiconductor layer is not less than 2×1005-19-2011
20110114915Light emitting device and method of fabricating the same - A light emitting device may include a plurality of nano-structures having a strip shape, each including a first nano-structure and a second nano-structure, the first nano-structures being the same height on the buffer layer.05-19-2011
20100148149ELEVATED LED AND METHOD OF PRODUCING SUCH - The present invention relates to light emitting diodes comprising at least one nanowire. The LED according to the invention is an upstanding nanostructure with the nanowire protruding from a substrate. A bulb with a larger diameter than the nanowire is arranged in connection to the nanowire and at an elevated position with regards to the substrate. A pn-junction is formed by the combination of the bulb and the nanowire resulting in an active region to produce light.06-17-2010
20110210310Semiconductor light-emitting element - A semiconductor light-emitting element includes a semiconductor laminated body including a first conductivity type layer, a light-emitting layer and a second conductivity type layer in this order, a transparent electrode formed on the first conductivity type layer and comprising an oxide, and an auxiliary electrode formed between the first conductivity type layer and the transparent electrode, the auxiliary electrode having a higher reflectivity to light emitted from the light-emitting layer, a larger contact resistance with the first conductivity type layer and a smaller sheet resistance than the transparent electrode.09-01-2011
20090032800PHOTONIC CRYSTAL LIGHT EMITTING DEVICE - There is provided a photonic crystal light emitting device including: a substrate; a plurality of nano rod light emitting structures formed on the substrate to be spaced apart from one another, each of the nano rod light emitting structures including a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer; and first and second electrodes electrically connected to the first and second conductivity type semiconductor layers, respectively, wherein the nano rod light emitting structures are arranged with a predetermined size and period so as to form a photonic band gap for light emitted from the active layer, whereby the nano rod light emitting structures define a photonic crystal structure. In the photonic crystal light emitting device, the nano rod light emitting structures are arranged to define a photonic crystal to enhance light extraction efficiency.02-05-2009
20090032799LIGHT EMITTING DEVICE - A light emitting device includes a substrate having a first surface and a second surface not parallel to the first surface, and a light emission layer disposed over the second surface to emit light. The light emission layer has a light emission surface which is not parallel to the first surface.02-05-2009
20100163840Nitride nanowires and method of producing such - The present invention relates to the growing of nitride semiconductors, applicable for a multitude of semiconductor devices such as diodes, LEDs and transistors. According to the method of the invention nitride semiconductor nanowires are grown utilizing a CVD based selective area growth technique. A nitrogen source and a metal-organic source are present during the nanowire growth step and at least the nitrogen source flow rate is continuous during the nanowire growth step. The V/III-ratio utilized in the inventive method is significantly lower than the V/III-ratios commonly associated with the growth of nitride based semiconductor.07-01-2010
20110079767NITRIDE SEMICONDUCTOR DEVICE - A nitride semiconductor device comprises: a layer structure including an active region (04-07-2011
20100252809LIGHT EMITTING ELEMENT ARRAY AND IMAGE FORMING APPARATUS - A light emitting element array including an active layer commonly used for light emitting element regions, carrier injection layers which are electrically isolated from each other and which are provided in the respective light emitting element regions, and a resistive layer which has a resistance higher than that of the carrier injection layers and which is provided between the active layer and the carrier injection layers.10-07-2010
20100224860HIGH EFFICIENCY LEDS WITH TUNNEL JUNCTIONS - An LED made from a wide band gap semiconductor material and having a low resistance p-type confinement layer with a tunnel junction in a wide band gap semiconductor device is disclosed. A dissimilar material is placed at the tunnel junction where the material generates a natural dipole. This natural dipole is used to form a junction having a tunnel width that is smaller than such a width would be without the dissimilar material. A low resistance p-type confinement layer having a tunnel junction in a wide band gap semiconductor device may be fabricated by generating a polarization charge in the junction of the confinement layer, and forming a tunnel width in the junction that is smaller than the width would be without the polarization charge. Tunneling through the tunnel junction in the confinement layer may be enhanced by the addition of impurities within the junction. These impurities may form band gap states in the junction.09-09-2010
20100224852III-NITRIDE LIGHT EMITTING DEVICE INCORPORATING BORON - Embodiments of the invention include a III-nitride semiconductor structure comprising a light emitting region disposed between an n-type region and a p-type region. At least one layer in the light emitting region is B09-09-2010
20100219394METHOD FOR FABRICATING A LOW-RESISTIVITY OHMIC CONTACT TO A P-TYPE III-V NITRIDE SEMICONDUCTOR MATERIAL AT LOW TEMPERATURE - One embodiment of the present invention provides a method for fabricating a group III-V nitride structure with an ohmic-contact layer. The method involves fabricating a group III-V nitride structure with a p-type layer. The method further involves depositing an ohmic-contact layer on the p-type layer without first annealing the p-type layer. The method also involves subsequently annealing the p-type layer and the ohmic-contact layer in an annealing chamber at a predetermined temperature for a predetermined period of time, thereby reducing the resistivity of the p-type layer and the ohmic contact in a single annealing process.09-02-2010
20110240961LIGHT-EMITTING DEVICES FOR LIQUID CRYSTAL DISPLAYS - Light emitting devices, and related components, processes, systems and methods are disclosed.10-06-2011
20110240958LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE, AND LIGHTING SYSTEM - A light emitting device according to the embodiment includes a conductive support substrate; a second conductive semiconductor layer on the conductive support substrate; an active layer on the second conductive semiconductor layer; a first conductive semiconductor layer on the active layer, the first conductive semiconductor layer including a GaN layer, an InGaN layer, and a roughness formed with selectively removed the GaN and InGaN layers; and an electrode layer on the first conductive semiconductor layer.10-06-2011
20110240957Group lll nitride semiconductor light-emitting device - The present invention provides a Group III nitride semiconductor light-emitting device exhibiting improved emission performance without increasing driving voltage. The Group III nitride semiconductor light-emitting device includes at least an n-type-layer-side cladding layer, a light-emitting layer, and a p-type-layer-side cladding layer, each of the layers being formed of a Group III nitride semiconductor. The n-type-layer-side cladding layer is a superlattice layer having a periodic structure including an In10-06-2011
20110240956Group III nitride semiconductor light-emitting device - The present invention provides a Group III nitride semiconductor light-emitting device whose main surface is a plane which provides an internal electric field of zero, and which exhibits improved emission performance. The light-emitting device includes a sapphire substrate which has, in a surface thereof, a plurality of dents which are arranged in a stripe pattern as viewed from above; an n-contact layer formed on the dented surface of the sapphire substrate; a light-emitting layer formed on the n-contact layer; an electron blocking layer formed on the light-emitting layer; a p-contact layer formed on the electron blocking layer; a p-electrode; and an n-electrode. The electron blocking layer has a thickness of 2 to 8 nm and is formed of Mg-doped AlGaN having an Al compositional proportion of 20 to 30%.10-06-2011
20110240955LED Semiconductor Body and Use of an LED Semiconductor Body - An LED semiconductor body includes a number of at least two radiation-generating active layers. Each active layer has a forward voltage, wherein the number of active layers is adapted to an operating voltage in such a way that the voltage dropped across a series resistor connected in series with the active layers is at most of the same magnitude as a voltage dropped across the LED semiconductor body. The invention furthermore describes various uses of the LED semiconductor body.10-06-2011
20110084249LIGHT-EMITTING DEVICE USING CLAD LAYER CONSISTING OF ASYMMETRICAL UNITS - The present invention relates to a light-emitting device using a clad layer consisting of asymmetric units, wherein the clad layer is provided by repeatedly stacking a unit having an asymmetric energy bandgap on upper and lower portions of an active layer, and the inflow of both electrons and holes into the active layer is arbitrarily controlled through the clad layer, so that the internal quantum efficiency can be improved. The light-emitting device using the clad layer consisting of the asymmetric units according to the present invention is characterized in that the clad layer is provided on at least one of the upper and lower portions of the active layer and consists of one or plural units, wherein the unit has a structure in which the first to n04-14-2011
20110210312III-NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor light-emitting device includes a substrate, a buffer layer, an n-type semiconductor layer, a conformational active layer and a p-type semiconductor layer. The n-type semiconductor layer includes a first surface and a second surface, and the first surface directly contacts the buffer layer. The second surface includes a plurality of recesses, and a conformational active layer formed on the second surface and within the plurality of recesses. Widths of upper portions of the recesses are larger than widths of lower portions of the recesses. Therefore, the stress between the n-type semiconductor layer and the conformational active layer can be released with the recesses.09-01-2011
20100187496STRAIN BALANCED LIGHT EMITTING DEVICES - A strain balanced active-region design is disclosed for optoelectronic devices such as light-emitting diodes (LEDs) and laser diodes (LDs) for better device performance. Lying below the active-region, a lattice-constant tailored strain-balancing layer provides lattice template for the active-region, enabling balanced strain within the active-region for the purposes of 1) growing thick, multiple-layer active-region with reduced defects, or 2) engineering polarization fields within the active-region for enhanced performance. The strain-balancing layer in general enlarges active-region design and growth windows. In some embodiments of the present invention, the strain-balancing layer is made of quaternary In07-29-2010
20110240959NANOSTRUCTURED DEVICE - A nanostructured device according to the invention comprises a first group of nanowires protruding from a substrate where each nanowire of the first group of nanowires comprises at least one pn- or p-i-n-junction. A first contact, at least partially encloses and is electrically connected to a first side of the pn- or p-i-n-junction of each nanowire in the first group of nanowires. A second contacting means comprises a second group of nanowires that protrudes from the substrate, and is arranged to provide an electrical connection to a second side of the pn- or p-i-n-junction.10-06-2011
20100038626SEMICONDUCTOR NANOPARTICLE AGGREGATE, METHOD FOR PRODUCING THE SAME, AND BIOLOGICAL SUBSTANCE LABELING AGENT UTILIZING THE SAME - This invention provides a semiconductor nanoparticle aggregate comprising three or more types of semiconductor nanoparticles, which are different from each other in diameter, have a narrow particle size distribution, and are different from each other in maximum luminous wavelength of an emission spectrum in a wavelength region of 380 nm to 650 nm, a process for producing the semiconductor nanoparticle aggregate, and a biological substance labeling agent utilizing the semiconductor nanoparticle aggregate. The semiconductor nanoparticle aggregate comprises three or more types of semiconductor nanoparticles which have an identical chemical composition, are different from each other in particle diameter and fall within a particle diameter range of 1.8 to 4 nm and are different from each other in maximum luminous wavelength of an emission spectrum in a wavelength range of 380 to 650 nm. The semiconductor nanoparticle aggregate is characterized in that the difference in maximum luminous wavelength among three or more types of semiconductor nanoparticles constituting the semiconductor nanoparticle aggregate is in the range of 20 to 100 nm.02-18-2010
20110240960QUANTUM DOT-WAVELENGTH CONVERTER, MANUFACTURING METHOD OF THE SAME AND LIGHT EMITTING DEVICE INCLUDING THE SAME - There is provided a quantum dot wavelength converter including a quantum dot, which is optically stable without any change in an emission wavelength and improved in emission capability. The quantum dot wavelength converter includes: a wavelength converting part including a quantum dot wavelength-converting excitation light and generating a wavelength-converted light and a dispersive medium dispersing the quantum dot; and a sealer sealing the wavelength converting part.10-06-2011
20090218562High brightness light emitting diode with a bidrectionally angled substrate - A light emitting diode includes a substrate tilted toward first and second directions simultaneously, a first cladding layer formed with a semiconductor material of a first conductive type on the substrate, an active layer formed on the first cladding layer, and a second cladding layer formed with a semiconductor material of a second conductive type on the active layer, wherein concavo-convexes are formed on the interfaces of the first cladding layer, the second cladding layer, and the active layer, and the (09-03-2009
20090218561Organic electroluminescence element - An organic electroluminescence element including at least two light-emitting layers disposed between an anode and a cathode, wherein the at least two light-emitting layers include a light-emitting layer A that contains an electron transporting light-emitting material and a hole transporting host material, wherein a concentration of the electron transporting light-emitting material gradually increases from an anode side toward a cathode side of the light-emitting layer A, and a light-emitting layer B that contains a hole transporting light-emitting material and an electron transporting host material, wherein a concentration of the hole transporting light-emitting material gradually decreases from an anode side toward a cathode side of the light-emitting layer B. An organic EL element with high light-emission efficiency and excellent durability is provided.09-03-2009
20090321714SEMICONDUCTOR LIGHT-EMITTING DEVICE - A semiconductor light-emitting device including a substrate, an n-type semiconductor layer formed on the substrate, an active layer laminated on the n-type semiconductor layer and capable of emitting a light, a p-type semiconductor layer laminated on the active layer, an n-electrode which is disposed on a lower surface of the semiconductor substrate or on the n-type semiconductor layer and spaced away from the active layer and p-type semiconductor layer, and a p-electrode which is disposed on the p-type semiconductor layer and includes a reflective ohmic metal layer formed on the dot-like metallic layer, wherein the light emitted from the active layer is extracted externally from the substrate side.12-31-2009
20100012921NANOWIRE, DEVICE COMPRISING NANOWIRE, AND THEIR PRODUCTION METHODS - A nanowire according to the present invention includes: a nanowire body made of a first material; and a plurality of semiconductor particle made of a second material and being contained in at least a portion of the interior of the nanowire body.01-21-2010
20100012920III-Nitride Semiconductor Light Emitting Device - The present invention discloses a III-nitride compound semiconductor light emitting device including an active layer for generating light by recombination of an electron and a hole between an n-type nitride compound semiconductor layer and a p-type nitride compound semiconductor layer. The active layer is disposed over the n-type nitride compound semiconductor layer. The III-nitride compound semiconductor light emitting device includes a masking film made of MgN and grown on the p-type nitride compound semiconductor layer, and at least one nitride compound semiconductor layer grown after the growth of the masking film made of MgN.01-21-2010
20100032649LIGHT EMITTING DEVICE AND REDUCED POLARIZATION INTERLAYER THEREOF - A light emitting device (LED), in which a reduced polarization interlayer is formed between an electron blocking layer (EBL) and an active layer of the LED, is disclosed. The reduced polarization interlayer is made of Al02-11-2010
20100032648LIGHT-EMITTING DEVICE - A light-emitting device with a tunneling structure and a current spreading layer is disclosed. It includes an electrically conductive permanent substrate, an adhesive layer, an epitaxial structure, a tunneling structure and a current spreading layer. The adhesive layer is on the electrically conductive permanent substrate. The epitaxial structure on the adhesive layer at least comprises an upper cladding layer, an active layer, and a lower cladding layer. The tunneling structure on the epitaxial structure comprises a first conductivity type semiconductor layer with a first doping concentration and a second conductivity type semiconductor layer with a second doping concentration. The current spreading layer is on the tunneling structure.02-11-2010
20110175057SEMICONDUCTOR LIGHT-EMITTING DEVICE - The device including an active layer composed of AlGaInP, and an n-type clad layer and a p-type clad layer disposed so as to sandwich the active layer, the n-type clad layer and the p-type clad layer each having a bandgap greater than the bandgap of the active layer. The n-type clad layer includes a first n-type clad layer composed of AlGaInP and a second n-type clad layer composed of AlInP; and the second n-type clad layer has a thickness in the range from 40 nm to 200 nm.07-21-2011
20090032798LIGHT EMITTING DIODE (LED) - A light-emitting diode (LED) includes a p-type layer, an n-type layer, and an active layer arranged between the p-type layer and the n-type layer. The active layer includes at least one quantum well adjacent to at least one modulation-doped layer. Alternatively, or in addition thereto, at least one surface of the n-type layer or the p-type layer is texturized to form a textured surface facing the active layer.02-05-2009
20100059733LED Structure - An LED structure includes a first substrate; an adhering layer formed on the first substrate; first ohmic contact layers formed on the adhering layer; epi-layers formed on the first ohmic contact layers; a first isolation layer covering the first ohmic contact layers and the epi-layers at exposed surfaces thereof; and first electrically conducting plates and second electrically conducting plates, both formed in the first isolation layer and electrically connected to the first ohmic contact layers and the epi-layers, respectively. The first trenches or the second trenches allow the LED structure to facilitate complex serial/parallel connection so as to achieve easy and various applications of the LED structure in the form of single structures under a high-voltage environment.03-11-2010
20120241719Light Emitting Diode and Method for Manufacturing the Same - A light emitting diode (LED) is provided. The LED includes a carrying substrate, a semiconductor composite layer and an electrode. The semiconductor composite layer is disposed on the carrying substrate, and an upper surface of the semiconductor composite layer includes a patterned surface and a flat surface. The electrode is disposed on the flat surface. A method for manufacturing the light emitting diode is provided as well.09-27-2012
20100059735LIGHT EMITTING DIODE HAVING BARRIER LAYER OF SUPERLATTICE STRUCTURE - A light emitting diode (LED) having a barrier layer with a superlattice structure is disclosed. In an LED having an active region between an GaN-based N-type compound semiconductor layer and a GaN-based P-type compound semiconductor layer, the active region comprises a well layer and a barrier layer with a superlattice structure. As the barrier layer with the superlattice structure is employed, it is possible to reduce occurrence of defects caused by lattice mismatch between the well layer and the barrier layer.03-11-2010
20100059734SEMICONDUCTOR LIGHT EMITTING DEVICE AND WAFER - A semiconductor light emitting device includes a first layer made of at least one of n-type GaN and n-type AlGaN; a second layer made of Mg-containing p-type AlGaN; and a light emitting section provided between the first layer and the second layer. The light emitting section included a plurality of barrier layers made of Si-containing Al03-11-2010
20110079766PROCESS FOR FABRICATING III-NITRIDE BASED NANOPYRAMID LEDS DIRECTLY ON A METALIZED SILICON SUBSTRATE - A nanopyramid LED and method for forming. The nanopyramid LED includes a silicon substrate, a III-nitride layer deposited thereon, a metal layer deposited thereon; and a nanopyramid LED grown in ohmic contact with the metal layer. The nanopyramid LED can be seeded on the III-nitride layer or metal layer. The metal layer can be a reflecting surface for the nanopyramid LED. The method for forming nanopyramid LEDs includes obtaining a silicon substrate, depositing a III-nitride layer thereon, depositing a metal layer thereon, depositing a dielectric growth layer thereon, etching a dielectric growth template in the growth layer, and growing III-nitride nanopyramid LEDs through the dielectric growth template in ohmic contact with the metal layer. The etching can be performed by focused ion beam etching. The etching can stop in the metal layer or III-nitride layer, so that the nanopyramid LEDs can seed off the metal layer or III-nitride layer, respectively.04-07-2011
20100065812Nitride semiconductor light emitting element - Provided is a nitride semiconductor light emitting element having an improved carrier injection efficiency from a p-type nitride semiconductor layer to an active layer by simple means from a viewpoint utterly different from the prior art. A buffer layer 03-18-2010
20100065811SINGLE PHOTON SOURCE WITH AllnN CURRENT INJECTION LAYER - A photon source includes a substrate, an active region formed above the substrate, and a pair of electrodes configured to provide an injection current which passes through the active region. The active region includes a quantum dot layer including one or more Al03-18-2010
20110095265NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE - A nitride semiconductor light emitting device is provided with a substrate, an n-type nitride semiconductor layer, a p-type nitride semiconductor layer, an n-side pad electrode, a translucent electrode and a p-side pad electrode, wherein the translucent electrode is formed from an electrically conductive oxide, the n-side pad electrode adjoins the periphery of the translucent electrode and the p-side pad electrode is disposed so as to satisfy the following relationships:04-28-2011
20110175054DEVICE CONTAINING LARGE-SIZED EMITTING COLLOIDAL NANOCRYSTALS - A device using a layer containing emitting semiconductor nanocrystals wherein each emitting nanocrystal includes a core structure wherein the cores have an aspect ratio less than 2:1 and a diameter greater than 10 nanometers and a protective shell surrounding the core07-21-2011
20080230765LIGHT EMITTING DIODE - AC LED according to the present invention comprises a substrate, and at least one serial array having a plurality of light emitting cells connected in series on the substrate. Each of the light emitting cells comprises a lower semiconductor layer consisting of a first conductive compound semiconductor layer formed on top of the substrate, an upper semiconductor layer consisting of a second conductive compound semiconductor layer formed on top of the lower semiconductor layer, an active layer interposed between the lower and upper semiconductor layers, a lower electrode formed on the lower semiconductor layer exposed at a first corner of the substrate, an upper electrode layer formed on the upper semiconductor layer, and an upper electrode pad formed on the upper electrode layer exposed at a second corner of the substrate. The upper electrode pad and the lower electrode are respectively disposed at the corners diagonally opposite to each other, and the respective light emitting cells are arranged so that the upper electrode pad and the lower electrode of one of the light emitting cells are symmetric with respect to those of adjacent another of the light emitting cells.09-25-2008
20120119188SEMICONDUCTOR APPARATUS MANUFACTURING METHOD AND SEMICONDUCTOR APPARATUS - A semiconductor apparatus manufacturing method is a method of manufacturing a semiconductor apparatus having a peak wavelength of PL emission of greater than or equal to 1.2 μm at a temperature of 300K. The manufacturing method is provided with: a first forming process of forming a buffer layer (05-17-2012
20120145994STABLE HIGH POWER ULTRAVIOLET LIGHT EMITTING DIODE - An improved process for forming a UV emitting diode is described. The process includes providing a substrate. A super-lattice is formed directly on the substrate at a temperature of at least 800 to no more than 1,300° C. wherein the super-lattice comprises Al06-14-2012
20110068321Semiconductor nanoparticle-based materials - In various embodiment, a primary particle includes a primary matrix material containing a population of semiconductor nanoparticles, with each primary particle further comprising an additive to enhance the physical, chemical and/or photo-stability of the semiconductor nanoparticles. A method of preparing such particles is described. Composite materials and light-emitting devices incorporating such primary particles are also described.03-24-2011
20120119184Vertical Light Emitting Diode (VLED) Die Having N-Type Confinement Structure With Etch Stop Layer And Method Of Fabrication - A vertical light emitting diode (VLED) die includes a p-type confinement layer, an active layer on the p-type confinement layer configured to emit light, and an n-type confinement structure having at least one etch stop layer configured to protect the active layer. A method for fabricating a vertical light emitting diode (VLED) die includes the steps of: providing a carrier substrate; forming an n-type confinement structure on the carrier substrate having at least one etch stop layer; forming an active layer on the n-type confinement structure; forming a p-type confinement layer on the active layer; and removing the carrier substrate.05-17-2012
20090026440Nitride semiconductor light-emitting element - A nitride semiconductor light-emitting element 01-29-2009
20110042643Optoelectronic Semiconductor Chip Having a Multiple Quantum Well Structure - An optoelectronic semiconductor chip is specified, which has an active zone (02-24-2011
20110042645NITRIDE SEMICONDUCTOR LED AND FABRICATION METHOD THEREOF - A nitride semiconductor light emitting diode according to the present invention, includes: a substrate; a buffer layer formed on the substrate; an In-doped GaN layer formed on the buffer layer; a first electrode layer formed on the In-doped GaN layer; an In02-24-2011
20110147704SEMICONDUCTOR LIGHT-EMITTING DEVICE WITH PASSIVATION LAYER - A light-emitting device and method for the fabrication thereof. The device includes a substrate, a first doped semiconductor layer situated above the substrate, a second doped semiconductor layer situated above the first doped semiconductor layer, and a multi-quantum-well (MQW) situated between the first and the second doped semiconductor layer. The device also includes a first electrode coupled to the first doped semiconductor layer and a second electrode coupled to the second doped semiconductor layer. The device further includes a first passivation layer which substantially covers the sidewalls of the first and second doped semiconductor layers, the MQW active layer, and the part of the horizontal surface of the second doped semiconductor layer which is not covered by the second electrode. The first passivation layer is formed through an oxidation technique. The device further includes a second passivation layer overlaying the first passivation layer.06-23-2011
20110017975ORGANIC OPTOELECTRONIC DEVICE ELECTRODES WITH NANOTUBES - An electrode for use in an organic optoelectronic device is provided. The electrode includes a thin film of single-wall carbon nanotubes. The film may be deposited on a substrate of the device by using an elastomeric stamp. The film may be enhanced by spin-coating a smoothing layer on the film and/or doping the film to enhance conductivity. Electrodes according to the present invention may have conductivities, transparencies, and other features comparable to other materials typically used as electrodes in optoelectronic devices.01-27-2011
20110253974NITRIDE SEMICONDUCTOR - To provide a high-quality nitride semiconductor ensuring high emission efficiency of a light-emitting element fabricated. In the present invention, when obtaining a nitride semiconductor by sequentially stacking a one conductivity type nitride semiconductor part, a quantum well active layer structure part, and a another conductivity type nitride semiconductor part opposite the one conductivity type, the crystal is grown on a base having a nonpolar principal nitride surface, the one conductivity type nitride semiconductor part is formed by sequentially stacking a first nitride semiconductor layer and a second nitride semiconductor layer, and the second nitride semiconductor layer has a thickness of 400 nm to 20 mm and has a nonpolar outermost surface. By virtue of selecting the above-described base for crystal growth, an electron and a hole, which are contributing to light emission, can be prevented from spatial separation based on the QCSE effect and efficient radiation is realized. Also, by setting the thickness of the second nitride semiconductor layer to an appropriate range, the nitride semiconductor surface can avoid having extremely severe unevenness.10-20-2011
20110248239LIGHT EMITTING DEVICE - A light emitting device includes a substrate, and an LED chip mounted on the substrate. The chip includes: a body comprising a transparent conductor which comprises a base and sticks out of the base to taper off from the base; a light source comprising light emitting parts separately formed on the base; a first terminal formed on the base; and second terminals formed on the light emitting parts, respectively. A conductive pattern of the substrate includes: a first conductor electrically connected with the first terminal; and second conductors electrically connected with the second terminals, respectively.10-13-2011
20100065813LIGHT EMITTING DEVICE - A light emitting device includes a stacked body including at least a light emitting layer made of In03-18-2010
20110155997Vertical Light emitting diode and manufacturing method of the same - The vertical light emitting diode includes a substrate having a plurality of penetrating via-holes, a plurality of nitride semiconductor layers formed on the substrate, a first electrode formed on the plurality of nitride semiconductor layers, and a second electrode formed to fill the plurality of via-holes thereby contacting part of the plurality of nitride semiconductor layers.06-30-2011
20110253976NITRIDE-BASED SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A nitride-based semiconductor light-emitting device 10-20-2011
20110147703ABBREVIATED EPITAXIAL GROWTH MODE (AGM) METHOD FOR REDUCING COST AND IMPROVING QUALITY OF LEDs AND LASERS - The use of an abbreviated GaN growth mode on nano-patterned AGOG sapphire substrates, which utilizes a process of using 15 nm low temperature GaN buffer and bypassing etch-back and recovery processes during epitaxy, enables the growth of high-quality GaN template on nano-patterned AGOG sapphire. The GaN template grown on nano-patterned AGOG sapphire by employing abbreviated growth mode has two orders of magnitude lower threading dislocation density than that of conventional GaN template grown on planar sapphire. The use of abbreviated growth mode also leads to significant reduction in cost of the epitaxy. The growths and characteristics of InGaN quantum wells (QWs) light emitting diodes (LEDs) on both templates were compared. The InGaN QWs LEDs grown on the nano-patterned AGOG sapphire demonstrated at least a 24% enhancement of output power enhancement over that of LEDs grown on conventional GaN templates.06-23-2011
20120199812STRAIN TUNABLE SILICON AND GERMANIUM NANOWIRE OPTOELECTRONIC DEVICES - Silicon, silicon-germanium alloy, and germanium nanowire optoelectronic devices and methods for fabricating the same are provided. According to one embodiment, a P-I-N device is provided that includes a parallel array of intrinsic silicon, silicon-germanium or germanium nanowires located between a p+ contact and an n+ contact. In certain embodiments, the intrinsic silicon and germanium nanowires can be fabricated with diameters of less than 4.9 nm and 19 nm, respectively. In a further embodiment, vertically stacked silicon, silicon-germanium and germanium nanowires can be formed.08-09-2012
20090212277GROUP-III NITRIDE LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING GROUP-III NITRIDE BASED SEMICONDUCTOR LIGHT-EMITTING DEVICE - A group-III nitride light-emitting device is provided. An active layer having a quantum well structure is grown on a basal plane of a gallium nitride based semiconductor region. The quantum well structure is formed in such a way as to have an emission peak wavelength of 410 nm or more. The thickness of a well layer is 4 nm or more, and 10 nm or less. The well layer is composed of In08-27-2009
20110037053HIGH QUANTUM EFFICIENCY LIGHTING DEVICE WITH LIGHT INFLUENCING ELEMENT - The present invention relates to a high quantum efficiency lighting device comprising a solid state light source (02-17-2011
20110037052METALORGANIC CHEMICAL VAPOR DEPOSITION (MOCVD) GROWTH OF HIGH PERFORMANCE NON-POLAR III-NITRIDE OPTICAL DEVICES - A method of device growth and p-contact processing that produces improved performance for non-polar III-nitride light emitting diodes and laser diodes. Key components using a low defect density substrate or template, thick quantum wells, a low temperature p-type III-nitride growth technique, and a transparent conducting oxide for the electrodes.02-17-2011
20080315176Light-Emitting Diode and Method For Fabrication Thereof - A light-emitting diode includes a substrate, a compound semiconductor layer including a p-n junction-type light-emitting part formed on the substrate, an electric conductor disposed on the compound semiconductor layer and formed of an electrically conductive material optically transparent to the light emitted from the light-emitting part and a high resistance layer possessing higher resistance than the electric conductor and provided in the middle between the compound semiconductor layer and the electric conductor. In the configuration of a light-emitting diode lamp, the electric conductor and the electrode disposed on the semiconductor layer on the side opposite to the electric conductor across the light-emitting layer are made to assume an equal electric potential by means of wire bonding. The light-emitting diode abounds in luminance and excels in electrostatic breakdown voltage.12-25-2008
20090114900SEMICONDUCTOR LIGHT-EMITTING DIODE - A semiconductor light-emitting diode 05-07-2009
20110175058LIGHT-EMITTING-DIODE CHIP COMPRISING A SEQUENCE OF GaN-BASED EPITAXIAL LAYERS WHICH EMIT RADIATION AND A METHOD FOR PRODUCING THE SAME - A light-emitting diode chip comprises a GaN-based, radiation-emitting epitaxial layer sequence, an active region, an n-doped layer and a p-doped layer. The p-doped layer is provided, on its main surface facing away from the active region, with a reflective contact metallization comprising a radioparent contact layer and a reflective layer. Methods for fabricating LED chips of this type by thin-film technology are provided, as are LED components containing such LED chips.07-21-2011
20110175056LIGHT EMITTING DEVICE, METHOD OF MANUFACTURING THE SAME, LIGHT EMITTING DEVICE PACKAGE AND LIGHTING SYSTEM - A light emitting device according to the embodiment includes a conductive support substrate including plural pairs of first and second conductive layers; alight emitting structure layer including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer between the first and second conductive semiconductor layers on the conductive support substrate; and an electrode on the light emitting structure layer. The first and second conductive layers are formed by using the same material.07-21-2011
20080290336POLARIZED LIGHT EMITTING DIODE - Disclosed is a polarized light emitting diode (LED) capable of emitting polarized light in the front direction thereof by forming a first grating layer on a quantum well layer and forming a second grating layer on a substrate. The polarized LED includes a nitride thin film formed on a substrate, a quantum well layer formed on the nitride thin film, a first grating layer formed on the quantum well layer to allow a part of light generated from the quantum well layer to pass through the first grating layer and to reflect remaining light, and a second grating layer formed on the substrate to rotate the light reflected from the first grating layer such that the reflected light passes through the first grating layer.11-27-2008
20100276663GAN SEMICONDUCTOR OPTICAL ELEMENT, METHOD FOR MANUFACTURING GAN SEMICONDUCTOR OPTICAL ELEMENT, EPITAXIAL WAFER AND METHOD FOR GROWING GAN SEMICONDUCTOR FILM - In a GaN based semiconductor optical device 11-04-2010
20110253979LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - A light-emitting device and the method for making the same is disclosed. The light-emitting device is a semiconductor device, comprising a growth substrate, an n-type semiconductor layer, a quantum well active layer and a p-type semiconductor layer. It combines the holographic and the quantum well interdiffusion (QWI) to form a photonic crystal light-emitting device having a dielectric constant of two-dimensional periodic variation or a material composition of two-dimensional periodic variation in the quantum well active layer. The photonic crystal light-emitting devices can enhance the internal efficiency and light extraction efficiency.10-20-2011
20110253975Semiconductor Material Doping - A solution for designing and/or fabricating a structure including a quantum well and an adjacent barrier is provided. A target band discontinuity between the quantum well and the adjacent barrier is selected to coincide with an activation energy of a dopant for the quantum well and/or barrier. For example, a target valence band discontinuity can be selected such that a dopant energy level of a dopant in the adjacent barrier coincides with a valence energy band edge for the quantum well and/or a ground state energy for free carriers in a valence energy band for the quantum well. Additionally, a target doping level for the quantum well and/or adjacent barrier can be selected to facilitate a real space transfer of holes across the barrier. The quantum well and the adjacent barrier can be formed such that the actual band discontinuity and/or actual doping level(s) correspond to the relevant target(s).10-20-2011
20110253972LIGHT-EMITTING DEVICE BASED ON STRAIN-ADJUSTABLE InGaAIN FILM - A method for fabricating a semiconductor light-emitting device based on a strain adjustable multilayer semiconductor film is disclosed. The method includes epitaxially growing a multilayer semiconductor film on a growth substrate, wherein the multilayer semiconductor film comprises a first doped semiconductor layer, a second doped semiconductor layer, and a multi-quantum-wells (MQW) active layer; forming an ohmic-contact metal layer on the first doped semiconductor layer; depositing a metal substrate on top of the ohmic-contact metal layer, wherein the density and/or material composition of the metal substrate is adjustable along the vertical direction, thereby causing the strain in the multilayer semiconductor film to be adjustable; etching off the growth substrate; and forming an ohmic-electrode coupled to the second doped semiconductor layer.10-20-2011
20110001121COMPOUND SEMICONDUCTORS - Semiconductor emitting devices that offset stresses applied to a quantum well region and reduce internal fields due to spontaneous and piezoelectric polarizations are disclosed. In one embodiment, a semiconductor emitting device includes a quantum well region comprising an active layer that emits light and at least one barrier layer disposed adjacent the active layer, a means for impressing an electric field across the quantum well region to inject carriers into the quantum well region, and a means for impressing an offset electric field across the quantum well region to offset the polarization field formed in the quantum well region.01-06-2011
20120199811SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - Certain embodiments provide a semiconductor light emitting device including: a first metal layer; a stack film including a p-type nitride semiconductor layer, an active layer, and an n-type nitride semiconductor layer; an n-electrode; a second metal layer; and a protection film protecting an outer circumferential region of the upper face of the n-type nitride semiconductor layer, side faces of the stack film, a region of an upper face of the second metal layer other than a region in contact with the p-type nitride semiconductor layer, and a region of an upper face of the first metal layer other than a region in contact with the second metal layer. Concavities and convexities are formed in a region of the upper face of the n-type nitride semiconductor layer, the region being outside the region in which the n-electrode is provided and being outside the regions covered with the protection film.08-09-2012
20120032141Compositions Comprising QD Sol-Gel Composites and Methods for Producing and Using the Same - The present invention provides OLEDs comprising cross-linked quantum dots and methods for producing and using the same.02-09-2012
20120032137SOLID STATE LIGHTING DEVICES WITH DIELECTRIC INSULATION AND METHODS OF MANUFACTURING - Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting device includes a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The solid state lighting device also includes an indentation extending from the second semiconductor material toward the active region and the first semiconductor material and an insulating material in the indentation of the solid state lighting structure.02-09-2012
20110163294LIGHT EMITTING ELEMENT AND A PRODUCTION METHOD THEREFOR - Disclosed are a light emitting device and a method of manufacturing the same. The light emitting device includes a support substrate, a wafer bonding layer on the support substrate, a current spreading layer on the wafer bonding layer, a second conductive semiconductor layer on the current spreading layer, an active layer on the second conductive semiconductor layer, a first conductive semiconductor layer on the active layer, a surface modification layer on the first conductive semiconductor layer, and a first electrode layer on the surface modification layer.07-07-2011
20110163293Vertical Light-Emitting Diode and Manufacture Method Thereof - The present application describes a vertical light-emitting diode (VLED) and its manufacture method that use the combination of a reflective layer, a transparent conducting layer and transparent dielectric layer as structural layers for promoting uniform current distribution and increasing light extraction. In the VLED, a transparent conducting layer is formed on a first outer surface of a stack of multiple group III nitride semiconductor layers. A transparent dielectric layer is then formed on a side of the transparent conducting layer opposite the side of the multi-layer structure. A first electrode structure is then formed on the transparent dielectric layer in electrical contact with the transparent conducting layer via a plurality of contact windows patterned through the transparent dielectric layer. The transparent conducting layer and the transparent dielectric layer are used as structural layers for improving light extraction.07-07-2011
20100320442NANOSTRUCTURED ELECTROLUMINESCENT DEVICE AND DISPLAY - An electroluminescent device contains (1) first and second electrodes, at least one of which is transparent to radiation; (2) a hole conducting layer containing first nanoparticles wherein the hole conducting layer is in contact with said first electrode; (3) an electron conducting layer containing second nanoparticles where the electron conducting layer is in contact with the hole conducting layer and the second electrode; and optionally (4) a voltage source capable of providing positive and negative voltage, where the positive pole of the voltage source is connected to the first electrode and the negative pole is connected to the second electrode. In some embodiments, the electroluminescent device also includes an electron-hole combination layer between the hole and electron conducting layers.12-23-2010
20100320440DEEP ULTRAVIOLET LIGHT EMITTING DEVICE AND METHOD FOR FABRICATING SAME - An ultra-violet emitting light-emitting device and method for fabricating an ultraviolet light emitting device (LED) with an AlInGaN multiple-quantum-well active region exhibiting stable cw-powers. The LED includes a template with an ultraviolet light-emitting structure on it. The template includes a first buffer layer on a substrate, then a second buffer layer on the first preferably with a strain-relieving layer in both buffer layers. Next there is a semiconductor layer having a first type of conductivity followed by a layer providing a quantum-well region with an emission spectrum ranging from 190 nm to 369 nm. Another semiconductor layer having a second type of conductivity is applied next. Two metal contacts are applied to this construction, one to the semiconductor layer having the first type of conductivity and the other to the semiconductor layer having the second type of conductivity, to complete the LED.12-23-2010
20100283035LIGHT EMITTING DEVICE - A light emitting device includes: an active layer including a multi-quantum well having a well layer and a barrier layer, the active layer including a non-emitting region and an emitting region formed around the non-emitting region; a first cladding layer provided on a first major surface of the active layer; a pad electrode provided above the first cladding layer so that its center is located near a center of the non-emitting region as viewed in a direction perpendicular to the first major surface; and a second cladding layer provided below a second major surface of the active layer opposite to the first major surface. A bandgap of the well layer in the non-emitting region is wider than a bandgap of the well layer in the emitting region and narrower than a bandgap of the first cladding layer.11-11-2010
20100283036Quantum dot light enhancement substrate and lighting device including same - A component including a substrate, at least one layer including a color conversion material comprising quantum dots disposed over the substrate, and a layer comprising a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material comprising quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein. In certain embodiments, a lighting device includes a component described herein.11-11-2010
20110133154LIGHT-EMITTING DEVICE - A light emitting device includes: a laminated body including a first conductivity type layer, a light emitting layer provided on the first conductivity type layer, and a second conductivity type layer provided on the light emitting layer, the laminated body being made of In06-09-2011
20110133157SURFACE PLASMON DISPERSION ENGINEERING VIA DOUBLE-METALLIC AU/AG LAYERS FOR NITRIDE LIGHT-EMITTING DIODES - A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.06-09-2011
20110133155LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE AND LIGHTING SYSTEM - Disclosed are a light emitting device and a light emitting device package having the same. The light emitting device includes a first conductive type semiconductor layer; an active layer including a barrier layer and a well layer alternately disposed on the first conductive type semiconductor layer; and a second conductive type semiconductor layer on the active layer. At least one well layer includes an indium cluster having a density of 1E11/cm06-09-2011
20110133159SEMICONDUCTOR LIGHT-EMITTING DEVICE WITH PASSIVATION IN P-TYPE LAYER - A semiconductor light-emitting device includes a substrate, a first doped semiconductor layer, a second doped semiconductor layer situated above the first doped semiconductor layer, and a multi-quantum-well (MQW) active layer situated between the first and the second doped layers. The device also includes a first electrode coupled to the first doped semiconductor layer, wherein part of the first doped semiconductor layer is passivated, and wherein the passivated portion of the first doped semiconductor layer substantially insulates the first electrode from the edges of the first doped semiconductor layer, thereby reducing surface recombination. The device further includes a second electrode coupled to the second doped semiconductor layer and a passivation layer which substantially covers the sidewalls of the first and second doped semiconductor layers, the MQW active layer, and part of the horizontal surface of the second doped semiconductor layer which is not covered by the second electrode.06-09-2011
20110079765INFRARED DETECTOR, INFRARED DETECTING APPARATUS, AND METHOD OF MANUFACTURING INFRARED DETECTOR - An infrared detector comprises: a reflection portion which transmits far- and middle-infrared rays and which reflects near-infrared and visible rays; a photo-current generating portion having a plurality of layered quantum dot structures in each of which electrons are excited by the far- and middle-infrared rays having passed through the reflection portion so as to generate photo-current; a light emitting portion having a plurality of layered quantum well structures into each of which electrons of the photo-current generated by the photo-current generating portion are injected and in each of which the electrons thus injected thereinto are recombined with holes so as to emit near-infrared and visible rays; and a photo-detecting portion which detects the near-infrared and visible rays emitted from the light emitting portion and which detects the near-infrared and visible rays emitted from the light emitting portion and then reflected by the reflection portion. The reflection portion, the photo-current generating portion, and the light emitting portion are made of group III-V compound semiconductors that are layered on top of a semiconductor substrate.04-07-2011
20100181550Manufacture method for ZnO based semiconductor crystal and light emitting device using same - A manufacture method for zinc oxide (ZnO) based semiconductor crystal includes providing a substrate having a Zn polarity plane; and reacting at least zinc (Zn) and oxygen (O) on the Zn polarity plane of said substrate to grow ZnO based semiconductor crystal on the Zn polarity plane of said substrate in a Zn rich condition. (a) An n-type ZnO buffer layer is formed on a Zn polarity plane of a substrate. (b) An n-type ZnO layer is formed on the surface of the n-type ZnO buffer layer. (c) An n-type ZnMgO layer is formed on the surface of the n-type ZnO layer. (d) A ZnO/ZnMgO quantum well layer is formed on the surface of the n-type ZnMgO layer, by alternately laminating a ZnO layer and a ZnMgO layer.07-22-2010
20110253977NITRIDE-BASED SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A nitride-based semiconductor light-emitting device 10-20-2011
20110253978LIGHT EMITTING DIODE AND FABRICATION METHOD THEREOF - A light emitting diode (LED) and a method for fabricating the same, capable of improving brightness by forming a InGaN layer having a low concentration of indium, and whose lattice constant is similar to that of an active layer of the LED, is provided. The LED includes: a buffer layer disposed on a sapphire substrate; a GaN layer disposed on the buffer layer; a doped GaN layer disposed on the GaN layer; a GaN layer having indium disposed on the GaN layer; an active layer disposed on the GaN layer having indium; and a P-type GaN disposed on the active layer. Here, an empirical formula of the GaN layer having indium is given by In(x)Ga(1−x)N and a range of x is given by 010-20-2011
20100155693LIGHT EMITTING DEVICE HAVING PLURALITY OF LIGHT EMITTING CELLS AND METHOD OF FABRICATING THE SAME - Disclosed are a light emitting device having a plurality of light emitting cells and a method of fabricating the same. The light emitting device comprises a plurality of light emitting cells positioned on a substrate to be spaced apart from one another. Each of the light emitting cells comprises a first conductive-type upper semiconductor layer, an active layer and a second conductive-type lower semiconductor layer. Electrodes are positioned between the substrate and the light emitting cells, and each of the electrodes has an extension extending toward adjacent one of the light emitting cells. An etching prevention layer is positioned in regions between the light emitting cells and between the electrodes. Each wire has one end connected to the upper semiconductor layer and the other end connected to the electrode through the etching prevention layer.06-24-2010
20110133156LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE PACKAGE INCLUDING THE SAME - Provided are a light emitting device and a light emitting device package including the same. The light emitting device comprises a first conductive type semiconductor layer, an active layer comprising a plurality of quantum well layers and a plurality of barrier layers, which are alternately laminated on the first conductive type semiconductor layer, and a second conductive type semiconductor layer on the active layer. The plurality of barrier layers comprise a plurality of first barrier layers comprising a conductive type dopant, and the conductive type dopant doped into the plurality of first barrier layers have different doping concentrations for each layer.06-09-2011
20110163295SEMICONDUCTOR WITH LOW DISLOCATION - A semiconductor includes a semiconductor layer, a plurality of recesses and a blocking layer. The recesses are formed on a surface of the semiconductor layer by etching fragile locations of the semiconductor layer where dislocation occurs. The blocking layer is filled in each recess. The semiconductor further includes a re-epitaxial semiconductor layer grown from a surface of the semiconductor layer without the covering of blocking layer, and the re-epitaxial semiconductor layer laterally overgrows toward areas of the recesses for overlaying the blocking layer.07-07-2011
20100117057NITRIDE SEMICONDUCTOR LED USING A HYBRID BUFFER LAYER AND A FABRICATION METHOD THEREFOR - The invention relates to a nitride semiconductor LED using a hybrid buffer layer with a minimum lattice mismatch between the buffer layer and the nitride semiconductor and a fabrication method therefor. The fabrication method of a nitride semiconductor LED using a hybrid buffer layer comprises: a first step, in which an Al05-13-2010
20100117055SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR LIGHT-EMITTING DEVICE - To provide a semiconductor light-emitting device capable of sufficiently emitting lights of different colors.05-13-2010
20120145992LIGHT-EMITTING DIODE HAVING AN INTERLAYER WITH HIGH VOLTAGE DENSITY AND METHOD FOR MANUFACTURING THE SAME - Disclosed herein are gallium nitride based light emitting diodes having interlayers with high dislocation density and a method of fabricating the same. The light emitting diode includes: a substrate; a buffer layer disposed on the substrate; an n-type contact layer disposed on the buffer; a p-type contact layer disposed on the n-type contact layer; an active layer interposed between the n-type contact layer and the p-type contact layer; a first lower semiconductor layer interposed between the buffer layer and the n-type contact layer; and a first interlayer interposed between the first lower semiconductor layer and the n-type contact layer, wherein the first interlayer has lower dislocation density than the buffer layer and higher dislocation density than the first lower semiconductor layer. This way, the interlayers with higher dislocation density prevent dislocations formed within the first lower semiconductor layer from being transferred to the n-type contact layer.06-14-2012
20120145991HIGH-QUALITY NON-POLAR/SEMI-POLAR SEMICONDUCTOR ELEMENT ON TILT SUBSTRATE AND FABRICATION METHOD THEREOF - Provided are a high-quality non-polar/semi-polar semiconductor device and a manufacturing method thereof. A template layer is formed on a corresponding off-axis of the sapphire crystal plane tilted in a predetermined direction to reduce the defect density of the semiconductor device and improve the internal quantum efficiency and light extraction efficiency thereof. In the method for manufacturing the semiconductor device, a template layer and a semiconductor device structure are formed on a sapphire substrate having a crystal plane for growing a non-polar or semi-polar nitride semiconductor layer. The crystal plane of the sapphire substrate is tilted in a predetermined direction, and the template layer includes a nitride semiconductor layer and a GaN layer on the tilted sapphire substrate.06-14-2012
20120145990NANOWIRE GROWTH ON DISSIMILAR MATERIAL - The present invention relates to growth of III-V semiconductor nanowires (06-14-2012
20120145993LIGHT EMITTING DEVICE - A light emitting device is disclosed. In the light emitting device, the structure of a barrier layer of an active layer is changed, and a band gap energy of an intermediate layer is varied, thereby improving hole injection efficiency of the active layer and thus light emission efficiency.06-14-2012
20110073838ULTRAVIOLET LIGHT EMITTING DIODE WITH AC VOLTAGE OPERATION - Ultraviolet light emitting illuminator, and method for fabricating same, comprises an array of ultraviolet light emitting diodes and a first and a second terminal. When an alternating current is applied across the first and second terminals and thus to each of the diodes, the illuminator emits ultraviolet light at a frequency corresponding to that of the alternating current. The illuminator includes a template with ultraviolet light emitting quantum wells, a first buffer layer with a first type of conductivity and a second buffer layer with a second type of conductivity, all deposited preferably over a strain-relieving layer. A first and second metal contact are applied to the semiconductor layers having the first and second type of conductivity, respectively, to complete the LED. The emission spectrum ranges from 190 nm to 369 nm. The illuminator may be configured in various materials, geometries, sizes and designs.03-31-2011
20110073837HIGH-PERFORMANCE SINGLE-CRYSTALLINE N-TYPE DOPANT-DOPED METAL OXIDE NANOWIRES FOR TRANSPARENT THIN FILM TRANSISTORS AND ACTIVE MATRIX ORGANIC LIGHT-EMITTING DIODE DISPLAYS - Methods, materials, apparatus and systems are described for implementing high-performance arsenic (As)-doped indium oxide (In03-31-2011
20110095264SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - Disclosed is a semiconductor light emitting device. The semiconductor light emitting device comprises a first conductive semiconductor layer, a lower super lattice layer under the first conductive semiconductor layer, an active layer on the first conductive semiconductor layer, a second conductive super lattice layer on the active layer, and a second conductive semiconductor layer on the second conductive super lattice layer.04-28-2011
20110095263LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE PACKAGE - A light emitting device, a method of manufacturing the same, a light emitting device package, and a lighting system are disclosed. The light emitting device may include a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer interposed between the first and second conductive semiconductor layers. The first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer may include Al. The second conductive semiconductor layer may have Al content higher than Al content of the first conductive semiconductor layer. The first conductive semiconductor layer may have Al content higher than Al content of the active layer.04-28-2011
20110095262SEMICONDUCTOR LIGHT EMISSION DEVICE AND MANUFACTURING METHOD THE SAME - A semiconductor light emission device is disclosed. The semiconductor light emission device includes: a substrate; a current concentration preventing pattern formed in a mesh net shape on the substrate; an n-type clad layer formed on the substrate loaded with the current concentration preventing pattern; an active layer and a p-type clad layer sequentially formed on the n-type clad layer; an n-type electrode formed on a part of the n-type clad layer which is exposed by partially etching the p-type clad layer and active layer; and a p-type electrode formed on the p-type clad layer. The current concentration preventing pattern is formed in a double layer structure which includes a first layer formed from one material of SiO and SiN and on the substrate, and a second layer formed from a metal material and on the first layer.04-28-2011
20110095261FLEXIBLE DEVICES INCLUDING SEMICONDUCTOR NANOCRYSTALS, ARRAYS, AND METHODS - The present invention relates to flexible devices including semiconductor nanocrystals, arrays including such devices, systems including the foregoing, and related methods. In one embodiment, a flexible light-emitting device includes a flexible substrate including a first electrode, an emissive layer comprising semiconductor nanocrystals disposed over the substrate, and second electrode disposed over the emissive layer comprising semiconductor nanocrystals, wherein, when the device is curved, the emissive layer comprising semiconductor nanocrystals lies substantially in the neutral plane of the device. In another embodiment, a light-emitting device includes an emissive layer comprising semiconductor nanocrystals disposed between two flexible substrates, a first electrode disposed over the emissive layer comprising semiconductor nanocrystals, and a second electrode disposed under the emissive layer comprising semiconductor nanocrystals. In certain preferred embodiments, at least one charge transport layer is disposed between one of the electrodes and the layer comprising semiconductor nanocrystals.04-28-2011
20110095260Light emitting device - A light emitting device may include a semiconductor light emitting diode which may include a first nitride semiconductor layer doped as an n-type, a second nitride semiconductor layer doped as a p-type, and a first active layer provided between the first and second nitride semiconductor layers, and a nano light emitting diode array in which a plurality of nano light emitting diodes may be arranged on the semiconductor light emitting diode so as to be separated from each other.04-28-2011
20130009131DEVICE INCLUDING QUANTUM DOTS - A device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a first electrode and a second electrode, a layer comprising quantum dots disposed between the first electrode and the second electrodes, and a first interfacial layer disposed at the interface between a surface of the layer comprising quantum dots and a first layer in the device. In certain embodiments, a second interfacial layer is optionally further disposed on the surface of the layer comprising quantum dots opposite to the first interfacial layer. In certain embodiments, a device comprises a light-emitting device. Other light emitting devices and methods are disclosed.01-10-2013
20130009130LATERALLY CONTACTED BLUE LED WITH SUPERLATTICE CURRENT SPREADING LAYER - A laterally contacted blue LED device involves a PAN structure disposed over an insulating substrate. The substrate may be a sapphire substrate that has a template layer of GaN grown on it. The PAN structure includes an n-type GaN layer, a light-emitting active layer involving indium, and a p-type GaN layer. The n-type GaN layer has a thickness of at least 500 nm. A Low Resistance Layer (LRL) is disposed between the substrate and the PAN structure such that the LRL is in contact with the bottom of the n-layer. In one example, the LRL is an AlGaN/GaN superlattice structure whose sheet resistance is lower than the sheet resistance of the n-type GnA layer. The LRL reduces current crowding by conducting current laterally under the n-type GaN layer. The LRL reduces defect density by preventing dislocation threads in the underlying GaN template from extending up into the PAN structure.01-10-2013
20080217602QUANTUM DOT LIGHT EMITTING DEVICE - An inorganic light emitting device including a transparent substrate; a first electrode; a second electrode opposed to the first electrode; a polycrystalline inorganic light emitting layer including core/shell quantum dots within an inorganic semiconductor matrix and, wherein the first electrode is transparent and formed on the transparent substrate, the polycrystalline inorganic light emitting layer is formed over the first electrode, and the second electrode is formed over the light emitting layer.09-11-2008
20110186810OPTOELECTRONIC COMPONENT WITH THREE-DIMENSION QUANTUM WELL STRUCTURE AND METHOD FOR PRODUCING THE SAME - An optoelectronic component with three-dimension quantum well structure and a method for producing the same are provided, wherein the optoelectronic component comprises a substrate, a first semiconductor layer, a transition layer, and a quantum well structure. The first semiconductor layer is disposed on the substrate. The transition layer is grown on the first semiconductor layer, contains a first nitride compound semiconductor material, and has at least a texture, wherein the texture has at least a first protrusion with at least an inclined facet, at least a first trench with at least an inclined facet and at least a shoulder facet connected between the inclined facets. The quantum well structure is grown on the texture and shaped by the protrusion, the trench and the shoulder facet.08-04-2011
20110133158METHOD FOR FABRICATING INGAN-BASED MULTI-QUANTUM WELL LAYERS - A method for fabricating quantum wells by using indium gallium nitride (InGaN) semiconductor material includes fabricating a potential well on a layered group III-V nitride structure at a first predetermined temperature in a reactor chamber by injecting into the reactor chamber an In precursor gas and a Ga precursor gas. The method further includes, subsequent to the fabrication of the potential well, terminating the Ga precursor gas, maintaining a flow of the In precursor gas, and increasing the temperature in the reactor chamber to a second predetermined temperature while adjusting the In precursor gas flow rate from a first to a second flow rate. In addition, the method includes annealing and stabilizing the potential well at the second predetermined temperature while maintaining the second flow rate. The method also includes fabricating a potential barrier above the potential well at the second predetermined temperature while resuming the Ga precursor gas.06-09-2011
20110186814Light Emitting Device, Light Emitting Device Package - Provided are a light emitting device, a light emitting device package, and a lighting system. The light emitting device includes a light emitting structure including a first conductive type semiconductor layer, a second conductive type semiconductor layer, and an active layer between the first conductive type semiconductor layer and the second conductive type semiconductor layer and a light extraction pattern in which a period (a) exceeds λ/n (where, λ is a wavelength of light emitted from the active layer, and n is a refractive index of the light emitting structure) on the light emitting structure. The period (a) may be in the range of 5×(λ/n) (a (15×(λ/n). An etching depth (h) of the light extraction pattern may be equal to or greater than λ/n.08-04-2011
20110186813Light Emitting Device - Provided are a light emitting device, a light emitting device package, and a lighting system. The light emitting device includes a light emitting structure comprising a first conductive type semiconductor layer, a second conductive type semiconductor layer, and an active layer between the first conductive type semiconductor layer and the second conductive type semiconductor layer, and a passivation layer protecting a surface of the light emitting structure. The passivation layer includes a first passivation layer on a top surface of the light emitting structure and a second passivation layer having a refractive index different from that of the first passivation layer, the second passivation layer being disposed on a side surface of the light emitting structure. The second passivation layer has a refractive index greater than that of the first passivation layer.08-04-2011
20110186811OPTICAL COMPONENTS, SYSTEMS INCLUDING AN OPTICAL COMPONENT, AND DEVICES - A lighting system including a light source capable of generating light, and an optical component optically coupled to receive at least a portion of the light generated by the light source and convert at least a portion of the light so received to a predetermined wavelength such that the light emitted by the lighting system includes light emission from the light source supplemented with light emission at the predetermined wavelength, wherein the optical component including an optical material comprises quantum confined semiconductor nanoparticles. Also disclosed is an optical component comprising a light guide plate and an optical material disposed over at least a portion of a surface of the light guide plate, the optical material comprising quantum confined semiconductor nanoparticles capable of emitting light in a predetermined spectral region. Devices are also disclosed.08-04-2011
20110147701IMAGE DISPLAY DEVICE - An image display device includes a display surface constituted of a plurality of pixels, each of the pixels having a light-emitting layer, a front panel arranged at the ambient light entering side relative to the light-emitting layer, and a structure layer arranged between the light-emitting layer and the front panel. The structure layer has a structure containing particles arranged in a surrounding region and showing a refractive index distribution in a plane parallel to the display surface, each of the particles being constituted of a core and a shell forming an outer peripheral region relative to the core. The core, the shell, and the front panel and/or the surrounding region have different respective refractive indexes satisfying the requirement of N06-23-2011
20110147702NITRIDE BASED QUANTUM WELL LIGHT-EMITTING DEVICES HAVING IMPROVED CURRENT INJECTION EFFICIENCY - A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 Å and 24 Å thick, respectively.06-23-2011
20110147700LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE, METHOD OF MANUFACTURING LIGHT EMITTING DEVICE AND LIGHTING SYSTEM - A light emitting device may include a first conductive semiconductor layer, an active layer adjacent to the first conductive semiconductor layer and a second conductive semiconductor layer adjacent to the active layer. The active layer may include a first quantum well layer, a second quantum well layer and a barrier layer between the first quantum well layer and the second quantum well layer. The first quantum well layer may include a first plurality of sub-barrier layers and a first plurality of sub-quantum well layers, and the second quantum well layer may include a second plurality of sub-barrier layers and a second plurality of sub-quantum well layers. A bandgap of the first quantum well layer may be different than a bandgap of the second quantum well layer.06-23-2011
20100025652Multiple Quantum-Well Structure, Radiation-Emitting Semiconductor Base and Radiation-Emitting Component - A multiple quantum well structure (02-04-2010
20100025657NITRIDE SEMICONDUCTOR DEVICE - A nitride semiconductor device including a light emitting device comprises a n-type region of one or more nitride semiconductor layers having n-type conductivity, a p-type region of one or more nitride semiconductor layers having p-type conductivity and an active layer between the n-type region and the p-type region. In such devices, there is provided with a super lattice layer comprising first layers and second layers which are nitride semiconductors having a different composition respectively. The super lattice structure makes working current and voltage of the device lowered, resulting in realization of more efficient devices.02-04-2010
20100025655PHOTON TUNNELING LIGHT EMITTING DIODES AND METHODS - Embodiments described herein include LEDs that promote photon tunneling. One embodiment of an LED device can have a quantum well layer adapted to generate light having a wavelength, a p-doped alloy layer on a first side of the quantum well layer and an n-doped alloy layer on the other side of the quantum well layer. The device can also include an electrode electrically connected to the p-doped alloy layer and an electrode electrically connected to the n-doped alloy layer. According to one embodiment the thickness of the n-doped alloy layer is less than the wavelength of light generated by the quantum well layer to allow light generated by the quantum well layer to tunnel to the medium (e.g., air). In another embodiment, the entire layer structure can have a thickness that is less than the wavelength.02-04-2010
20110215296SEMICONDUCTOR LIGHT-EMITTING ELEMENT, METHOD OF MANUFACTURING SAME, AND LIGHT-EMITTING DEVICE - A semiconductor light-emitting element, a method of manufacturing same, and a light-emitting device enabling an increase in light emission efficiency is provided. The semiconductor light-emitting element 09-08-2011
20110215295METHOD OF PRODUCING A RADIATION-EMITTING THIN FILM COMPONENT AND RADIATION-EMITTING THIN FILM COMPONENT - A method of producing a radiation-emitting thin film component includes providing a substrate, growing nanorods on the substrate, growing a semiconductor layer sequence with at least one active layer epitaxially on the nanorods, applying a carrier to the semiconductor layer sequence, and detaching the semiconductor layer sequence and the carrier from the substrate by at least partial destruction of the nanorods.09-08-2011
20110215294SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD OF FABRICATING THE SAME - According to one embodiment, a semiconductor light emitting device, including a light emission portion including a first semiconductor layer with a first conductive type, a light emission layer on the first semiconductor layer, a second semiconductor layer with a second conductive type on the light emission layer and a transparent electrode on the second semiconductor layer, and a plurality of light outlet holes inside the light emission portion, the plurality of light outlet holes communicating with the first semiconductor layer from a surface side of the transparent electrode, at least a part of light emitted from the light emission layer being extracted from the plurality of the outlet holes to outside.09-08-2011
20110215293SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - Certain embodiments provide a semiconductor light emitting device including: a first metal layer; a stack film including a p-type nitride semiconductor layer, an active layer, and an n-type nitride semiconductor layer; an n-electrode; a second metal layer; and a protection film protecting an outer circumferential region of the upper face of the n-type nitride semiconductor layer, side faces of the stack film, a region of an upper face of the second metal layer other than a region in contact with the p-type nitride semiconductor layer, and a region of an upper face of the first metal layer other than a region in contact with the second metal layer. Concavities and convexities are formed in a region of the upper face of the n-type nitride semiconductor layer, the region being outside the region in which the n-electrode is provided and being outside the regions covered with the protection film.09-08-2011
20110215292SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - Certain embodiments provide a method for manufacturing a semiconductor light emitting device, including: providing a first stack film on a first substrate, the first stack film being formed by stacking a p-type nitride semiconductor layer, an active layer having a multiquantum well structure of a nitride semiconductor, and an n-type nitride semiconductor layer in this order; forming an n-electrode on an upper face of the n-type nitride semiconductor layer; and forming a concave-convex region on the upper face of the n-type nitride semiconductor layer by performing wet etching on the upper face of the n-type nitride semiconductor layer with the use of an alkaline solution, except for a region in which the n-electrode is formed.09-08-2011
20110215291SEMICONDUCTOR LIGHT-EMITTING DEVICE - According to one embodiment, a semiconductor light-emitting device using an ITON layer for a transparent conductor and realizing low drive voltage, high luminance efficiency, and uniformed light emission intensity distribution is provided. The semiconductor light-emitting device includes: a substrate; an n-type semiconductor layer formed on the substrate; an active layer formed on the n-type semiconductor layer; a p-type semiconductor layer formed on the active layer and whose uppermost part is a p-type GaN layer; an ITON (Indium Tin Oxynitride) layer formed on the p-type GaN layer; an ITO (Indium Tin Oxide) layer formed on the ITON layer; a first metal electrode formed on a part on the ITO layer; and a second metal electrode formed in contact with the n-type semiconductor layer.09-08-2011
20100019223NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE - There is provided a nitride semiconductor light emitting device including an active layer of a multi quantum well structure, the nitride semiconductor light emitting device including: a substrate; and a buffer layer, an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer sequentially stacked on the substrate, wherein the active layer is formed of a multi quantum well structure where a plurality of barrier layers and a plurality of well layers are arranged alternately with each other, and at least one of the plurality of barrier layers includes a first barrier layer including a p-doped barrier layer doped with a p-dopant and an undoped barrier layer.01-28-2010
20100187494NITRIDE SEMICONDUCTOR-BASED LIGHT EMITTING DEVICES - A nitride semiconductor-based light emitting device is provided. The nitride semiconductor-based light emitting device is formed of a nitride semiconductor having a wurtzite lattice structure with the Ga face. The device has a substrate, a buffer layer, a first p-type contact layer, a second p-type contact layer, a first hole diffusion layer, a second hole diffusion layer, a light emitting active region, a second electron diffusion layer, a first electron a first n-type contact layer, which are sequentially stacked. Such a structure may effectively employ quasi-two-dimensional free electron and free hole gases formed at heterojunction interfaces due to the spontaneous polarization and the piezoelectric polarization in the wurtzite lattice structure with the Ga face, and thus enhances the emission uniformity and emission efficiency of the light emitting device.07-29-2010
20120032144Nitride semiconductor light-emitting device and method of manufacturing the same - A nitride semiconductor light-emitting device including a reflecting layer made of a dielectric material, a transparent conductive layer, a p-type nitride semiconductor layer, a light emitting layer and an n-type nitride semiconductor layer in this order and a method of manufacturing the same are provided. The transparent conductive layer is preferably made of a conductive metal oxide or an n-type nitride semiconductor, and the reflecting layer made of a dielectric material preferably has a multilayer structure obtained by alternately stacking a layer made of a dielectric material having a high refractive index and a layer made of a dielectric material having a low refractive index.02-09-2012
20120032139SEMICONDUCTOR LIGHT EMITTING DEVICE - According to one embodiment, a semiconductor light emitting device includes: a stacked structural body, a first electrode; and a second electrode. The stacked structural body includes a first semiconductor layer of n-type, a second semiconductor layer of p-type, and a light emitting portion provided therebetween. The first electrode includes a first contact electrode portion. The second electrode includes a second contact electrode portion and a p-side pad electrode. A sheet resistance of the second contact electrode portion is lower than a sheet resistance of the first semiconductor layer. The p-side pad electrode is provided farther inward than a circumscribed rectangle of the first contact electrode portion, and the first contact electrode portion is provided farther outward than a circumscribed rectangle of the p-side pad electrode.02-09-2012
20120032138LIGHT-EMITTING DEVICE HAVING ENHANCED LUMINESCENCE BY USING SURFACE PLASMON RESONANCE AND METHOD OF FABRICATING THE SAME - A quantum dot light-emitting device includes a substrate, a first electrode, a hole injection layer (“HIL”), a hole transport layer (“HTL”), an emitting layer, an electron transport layer (“ETL”), a plurality of nanoplasmonic particles buried in the ETL, and a second electrode.02-09-2012
20100123119LIGHT EMITTING DIODE HAVING INDIUM NITRIDE - The present invention relates to a light emitting diode (LED) including an n-type nitride semiconductor layer, a p-type nitride semiconductor layer, and an active region interposed between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer. The active region may include an InGaN quantum well layer. The LED may further include a super lattice layer interposed between the n-type nitride semiconductor layer and the active region. The super lattice layer may be a structure wherein InN layers and In05-20-2010
20110001120SEMICONDUCTOR LIGHT-EMITTING DEVICE WITH DOUBLE-SIDED PASSIVATION - A light-emitting device includes a substrate, a first doped semiconductor layer situated above the substrate, a second doped semiconductor layer situated above the first doped layer, and a multi-quantum-well (MQW) active layer situated between the first and the second doped layers. The device also includes a first electrode coupled to the first doped layer and a first passivation layer situated between the first electrode and the first doped layer in areas other than an ohmic-contact area. The first passivation layer substantially insulates the first electrode from edges of the first doped layer, thereby reducing surface recombination. The device further includes a second electrode coupled to the second doped layer and a second passivation layer which substantially covers the sidewalls of the first and second doped layers, the MQW active layer, and the horizontal surface of the second doped layer.01-06-2011
20100224859Organic Light-Emitting Diodes with Electrophosphorescent-Coated Emissive Quantum Dots - The present invention provides a composition comprising quantum dots and a coating material that comprises an electro-phosphorescent moiety, and methods for producing and using the same. In particular, compositions of the invention are used in organic light emitting diodes (OLEDs), and electronic devices that utilize OLEDs.09-09-2010
20120305890LIGHT-EMITTING DIODE, LIGHT-EMITTING DIODE LAMP AND LIGHTING DEVICE - A light-emitting diode, including a light emitting section including an active layer having a quantum well structure in which well layers having the composition: (In12-06-2012
20120305888LIGHT-EMITTING DIODE WITH STRAIN-RELAXED LAYER - Disclosed is a light-emitting diode (LED) and the method to form the LED. The LED comprises: a first conductivity type semiconductor layer; a strain-relaxed layer over the first conductivity type semiconductor layer, the strain-relaxed layer comprising: a strain-absorbed layer over the first conductivity type semiconductor layer, the strain-absorbed layer containing a plurality of cavities in a substantial hexagonal-pyramid form; and a surface-smoothing layer on the strain-absorbed layer filling the cavities; an active layer over the strain-relaxed layer; and a second conductivity type semiconductor layer over the active layer.12-06-2012
20120305887WHITE LIGHT EMITTING DIODE HAVING PHOTOLUMINESCENT LAYER - A white LED having a photoluminescent layer is provided, which includes a sapphire substrate, a gallium nitride buffer layer, an n-type gallium nitride layer, an aluminium gallium nitride multiquantum well, a p-type gallium nitride layer, a transparent conductive layer, a terbium-doped indium oxide layer as photoluminescent layer, a negative electrode, and a positive electrode, wherein the gallium nitride buffer layer, the n-type gallium nitride layer, the aluminium gallium nitride multiquantum well, the p-type gallium nitride layer, the transparent conductive layer, the terbium-doped indium oxide layer are sequentially formed on the sapphire substrate, and the negative electrode is formed on the exposed portion of the n-type gallium nitride layer and is electrically connected to the negative terminal V− of the power source, and the positive electrode is formed on the terbium-doped indium oxide layer and is electrically connected to the positive terminal V+ of the power source.12-06-2012
20120037886LIGHT-EMITTING DIODE DEVICE - A light-emitting diode device is disclosed. The light-emitting diode device includes a carrier including a platform; a transparent substrate formed on the platform including a first surface; a multi-LED structure including a first light-emitting structure formed on the first surface, the first light-emitting structure including a first first-type semiconductor layer, a first second-type semiconductor layer, and a first active layer formed between the first first-type semiconductor layer and the first second-type semiconductor layer; a second light-emitting structure formed on the first surface, the second light-emitting structure including a second first-type semiconductor layer, a second second-type semiconductor layer, and a second active layer formed between the second first-type semiconductor layer and the second second-type semiconductor layer; and a connecting layer formed between the first light-emitting structure and the second light-emitting structure; wherein an angle between the first surface of the transparent substrate and the platform is not equal to zero.02-16-2012
20120037884THIN P-TYPE GALLIUM NITRIDE AND ALUMINUM GALLIUM NITRIDE ELECTRON-BLOCKING LAYER FREE GALLIUM NITRIDE-BASED LIGHT EMITTING DIODES - A light emitting diode (LED) having a p-type layer having a thickness of 100 nm or less, an n-type layer, and an active layer, positioned between the p-type layer and the n-type layer, for emitting light, wherein the LED does not include a separate electron blocking layer.02-16-2012
20120037883SEMICONDUCTOR LIGHT-EMITTING DEVICES FOR GENERATING ARBITRARY COLOR - A light-emitting device includes a conductive substrate (02-16-2012
20120037882PHOSPHOR, PHOSPHOR MANUFACTURING METHOD, AND WHITE LIGHT EMITTING DEVICE - Provided are a phosphor, a phosphor manufacturing method, and a white light emitting device. The phosphor is represented as a chemical formula of aMO-bAlN-cSi02-16-2012
20120037881LIGHT EMITTING DIODE AND METHOD OF FABRICATING THE SAME - Exemplary embodiments of the present invention disclose a light emitting diode including an n-type contact layer doped with silicon, a p-type contact layer, an active region disposed between the n-type contact layer and the p-type contact layer, a superlattice layer disposed between the n-type contact layer and the active region, the superlattice layer including a plurality of layers, an undoped intermediate layer disposed between the superlattice layer and the n-type contact layer, and an electron reinforcing layer disposed between the undoped intermediate layer and the superlattice layer. Only a final layer of the superlattice layer closest to the active region is doped with silicon, and the silicon doping concentration of the final layer is higher than that of the n-type contact layer.02-16-2012
20130200334APPLICATION OF SEMICONDUCTOR QUANTUM DOT PHOSPHORS IN NANOPILLAR LIGHT EMITTING DIODES - A quantum well-based p-i-n light emitting diode is provided that includes nanopillars with an average linear dimension of between 50 nanometers and 1 micron. The nanopillars include a laminar layer of quantum wells capable of non-radiative energy transfer to quantum dot nanocrystals. Quantum dot-Quantum well coupling through the side walls of the nanopillar-configured LED structure achieves a close proximity between quantum wells and quantum dots while retaining the overlying contact electrode structures. A white LED with attractive properties relative to conventional incandescent and fluorescence lighting devices is produced.08-08-2013
20090321713METHOD OF CONTROLLING ACTIVE LAYER OF III-NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE - The present invention is to provide a method for controlling an active layer of a Hi-nitride semiconductor light emitting device by doping a barrier layer(s) selected from the active layer to suppress light emission in a specific well layer(s).12-31-2009
20110315956Electronic Devices with Yielding Substrates - In accordance with certain embodiments, a semiconductor die is adhered directly to a yielding substrate with a pressure-activated adhesive notwithstanding any nonplanarity of the surface of the semiconductor die or non-coplanarity of the semiconductor die contacts.12-29-2011
20130146842SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device includes first conductivity type and second conductivity type semiconductor layers, an active layer disposed between the semiconductor layers and having a structure in which one or more quantum well layers and one or more quantum barrier layers are alternately disposed An electron blocking layer is disposed between the active layer and the second conductivity type semiconductor layer. A capping layer is disposed between the active layer and the electron blocking layer and blocking a dopant element from being injected into the active layer from the second conductivity type semiconductor layer.06-13-2013
20110315955LIGHT-EMITTING DIODE AND LIGHT-EMITTING DIODE LAMP - A light-emitting diode includes a transparent substrate and a compound semiconductor layer that includes a light-emitting unit and is bonded to the transparent substrate. The light-emitting unit includes a light-emitting layer represented by a composition formula (Al12-29-2011
20120175593Nanograin Material and Photoelectric Conversion Device - A quantum dot, which is an ultrafine grain, has a core-shell structure having a core portion and a shell portion protecting the core portion. The surface of the shell portion is covered with two kinds of surfactants, a hole-transporting surfactant and an electron-transporting surfactant, which are concurrently present. Moreover, the hole-transporting surfactant has a HOMO level which tunneling-resonates with the valence band of the quantum dot and the electron-transporting surfactant has a LUMO level which tunneling-resonates with the transfer band of the quantum dot. Thus, a nanograin material which has good carrier transport efficiency and is suitable for use in a photoelectric conversion device is achieved.07-12-2012
20120175592LIGHT-EMITTING DEVICE - A light-emitting device is disclosed. The light-emitting device comprises an epitaxial structure comprising a lower cladding layer of first conductivity type, an active layer comprising InGaN or AlGaInN on the lower cladding layer, and an upper cladding layer of second conductivity type on the active layer; a tunneling structure on the epitaxial structure comprising a first tunneling layer of second conductivity type with a doping concentration greater than 6×1007-12-2012
20120153253SEMICONDUCTOR LIGHT EMITTING DEVICE - According to one embodiment, a semiconductor light emitting device includes an n-type first semiconductor layer, a p-type second semiconductor layer and a light emitting layer. The light emitting layer is provided between the first and second semiconductor layers, and includes a plurality of barrier layers including a nitride semiconductor and a well layer provided between the barrier layers and including a nitride semiconductor containing In. The barrier layers and the well layer are stacked in a first direction from the second semiconductor layer toward the first semiconductor layer. The well layer has a p-side interface part and an n-side interface part. Each of the p-side and the n-side interface part include an interface with one of the barrier layers. A variation in a concentration of In in a surface perpendicular to the first direction of the p-side interface part is not more than that of the n-side interface part.06-21-2012
20110315957LIGHT EMITTING DEVICE - There is provided a light emitting device of a simpler structure, capable of ensuring a broad light emitting area and a high light emitting efficiency, while manufactured in a simplified and economically efficient process. The light emitting device including: a semiconductor layer; an active layer formed on the semiconductor layer, the active layer comprising at least one of a quantum well structure, a quantum dot and a quantum line; an insulating layer formed on the active layer; and a metal layer formed on the insulating layer.12-29-2011
20110315952LIGHT-EMITTING DEVICES WITH IMPROVED ACTIVE-REGION - A light-emitting device comprises an active-region sandwiched between an n-type layer and a p-type layer, that allows lateral carrier injection into the active-region so as to reduce heat generation in the active-region and to minimize additional forward voltage increase associated with bandgap discontinuity. In some embodiments, the active-region is a vertically displaced multiple-quantum-well (MQW) active-region. A method for fabricating the same is also provided.12-29-2011
20110315953METHOD OF FORMING COMPOUND SEMICONDUCTOR - A method of forming a semiconductor is provided and includes patterning a pad and a nanowire onto a wafer, the nanowire being substantially perpendicular with a pad sidewall and substantially parallel with a wafer surface and epitaxially growing on an outer surface of the nanowire a secondary layer of semiconductor material, which is lattice mismatched with respect to a material of the nanowire and substantially free of defects.12-29-2011
20110315954SEMICONDUCTOR NANOCRYSTAL, METHOD OF MANUFACTURE THEREOF AND ARTICLES INCLUDING THE SAME - A semiconductor nanocrystal including a core including ZnSe, ZnTe, ZnS, ZnO, or a combination comprising at least one of the foregoing, wherein the core has a diameter of about 2 nanometers to about 5 nanometers and an emitted light wavelength of about 405 nanometers to about 530 nanometers; and a first layer disposed on the core, the first layer including a Group III-V semiconductor, wherein the semiconductor nanocrystal has a full width at half maximum of an emitted light wavelength of less than or equal to about 60 nanometers.12-29-2011
20120043525LIGHT EMITTING DEVICE - A light emitting device includes a substrate having a first surface and a second surface not parallel to the first surface, and a light emission layer disposed over the second surface to emit light. The light emission layer has a light emission surface which is not parallel to the first surface.02-23-2012
20110101304LIGHT-EMITTING DEVICE AND FABRICATING METHOD THEREOF - Disclosed are a light emitting device and a method of manufacturing the same. The light emitting device includes a support substrate, a wafer bonding layer over the support substrate, a second electrode layer, which includes a current blocking layer and a reflective current spreading layer, over the wafer bonding layer, a current injection layer over the second electrode layer, a superlattice structure layer over the current injection layer, a second conductive semiconductor layer over the superlattice structure layer, an active layer over the second conductive semiconductor layer, a first conductive semiconductor layer over the active layer, and a first electrode layer over the first conductive semiconductor layer.05-05-2011
20110101303LIGHT-EMITTING DEVICE COMPRISING SEMICONDUCTOR NANOCRYSTAL LAYER FREE OF VOIDS AND METHOD FOR PRODUCING THE SAME - A light-emitting device including a semiconductor nanocrystal layer and a method for producing the light-emitting device are provided. The light-emitting device includes a semiconductor nanocrystal layer whose voids are filled with a filling material. According to the light-emitting device, since voids formed between nanocrystal particles of the semiconductor nanocrystal layer are filled with a filling material, the occurrence of a current leakage through the voids is minimized, which enables the device to have extended service life, high luminescence efficiency, and improved stability.05-05-2011
20110101302WAFER-SCALE FABRICATION OF SEPARATED CARBON NANOTUBE THIN-FILM TRANSISTORS - Methods, materials, systems and apparatus are described for depositing a separated nanotube networks, and fabricating, separated nanotube thin-film transistors and N-type separated nanotube thin-film transistors. In one aspect, a method of depositing a wafer-scale separated nanotube networks includes providing a substrate with a dielectric layer. The method includes cleaning a surface of the wafer substrate to cause the surface to become hydrophilic. The cleaned surface of the wafer substrate is functionalized by applying a solution that includes linker molecules terminated with amine groups. High density, uniform separated nanotubes are assembled over the functionalized surface by applying to the functionalized surface a separated nanotube solution that includes semiconducting nanotubes.05-05-2011
20110101301LIGHT EMITTING DEVICE WITH A COUPLED QUANTUM WELL STRUCTURE - A light emitting device with a coupled quantum well structure in an active region. The coupled quantum well structure may include two or more wells are separated by one or more mini-barriers, and the wells and mini-barriers together are sandwiched by barriers. The coupled quantum well structure provides almost the same effect as a wide quantum well, due to the coupling of the wavefunctions through the mini-barrier. The light emitting device may be a nonpolar, semipolar or polar (Al,Ga,In)N based light emitting device.05-05-2011
20110101300REFLECTING LIGHT EMITTING STRUCTURE AND METHOD OF MANUFACTURE THEREOF - A reflecting light emitting structure includes a substrate having a plurality of grooves formed in a first face of the substrate is disclosed. The first face is in a first crystallographic plane. Each of the plurality of grooves includes a first sidewall that is coplanar with a second crystallographic plane and a second sidewall that is coplanar with a third crystallographic plane. A buffer layer is provided on the substrate to reduce mechanical strain between the substrate and a light emitting diode (LED) fabricated on the buffer layer.05-05-2011
20120043524LIGHT-EMITTING DIODE - An light emitting diode includes an n-type nitride semiconductor layer, a multiple quantum well layer, a p-type nitride semiconductor layer, a window electrode layer, a p-side electrode, and an n-side electrode, which are stacked in this order. The n-side electrode is electrically connected to the n-type nitride semiconductor layer. The window electrode layer comprises an n-type single-crystalline ITO transparent film and an n-type single-crystalline ZnO transparent film. The p-type nitride semiconductor layer is in contact with the n-type single-crystalline ITO transparent film. The light-emitting diode further comprises a plurality of single-crystalline ZnO rods formed on the n-type single-crystalline ZnO transparent film. The respective lower portions of the single-crystalline ZnO rods have a shape of an inverted taper, which sharpens from the single-crystalline n-type ZnO transparent film toward the n-type nitride semiconductor layer.02-23-2012
20120043523LIGHT EMITTING DIODE AND MANUFACTURING METHOD THEREOF - A light emitting diode comprises a substrate, a buffer layer, a semiconductor layer and a semiconductor light emitting layer. The buffer layer is disposed on the substrate. The semiconductor layer is disposed on the buffer layer. The semiconductor light emitting layer is disposed on the semiconductor layer. A plurality of voids is defined within the semiconductor layer. Each void encloses air therein. A method for manufacturing the light emitting diode is also provided. Light generated by the semiconductor light emitting layer toward the substrate is reflected by the voids to emit out of the light emitting diode.02-23-2012
20120043522High-reflectivity and low-defect density LED structure - The present invention discloses a high-reflectivity and low-defect density LED structure. A patterned dielectric layer is embedded in a sapphire substrate via semiconductor processes, such as etching and deposition. The dielectric layer is formed of two materials which are alternately stacked and have different refractive indexes. An N-type semiconductor layer, an activation layer and a light emitting layer which is a P-type semiconductor layer are sequentially formed on the sapphire substrate. An N-type electrode and a P-type electrode are respectively coated on the N-type semiconductor layer and the P-type semiconductor layer. The dielectric layer can lower the defect density of the light emitting layer during the epitaxial growth process. Further, the dielectric layer can function as a high-reflectivity area to reflect light generated by the light emitting layer and the light is projected downward to be emitted from the top or the lateral. Thereby is greatly increased the light-extraction efficiency.02-23-2012
20120001152SEMICONDUCTOR LIGHT EMITTING DIODE AND MANUFACTURING METHOD THEREOF - A semiconductor light emitting diode (LED) and a manufacturing method thereof are disclosed. The method for manufacturing a semiconductor light emitting diode (LED) includes: forming a light emission structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer on a substrate with prominences and depressions; removing the substrate from the light emission structure to expose a first concavoconvex portion corresponding to the prominences and depressions; forming a protection layer on the first concavoconvex portion; removing a portion of the protection layer to expose a convex portion of the first concavoconvex portion; and forming a second concavoconvex portion on the convex portion of the first concavoconvex portion. The semiconductor light emitting diode (LED) includes: a light emission structure including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer; a first concavoconvex portion formed on the light emission structure and having a second concavoconvex portion at a convex portion thereof; and a protection layer filling up a concave portion of the first concavoconvex portion.01-05-2012
20120001151Semiconductor light emitting device and wafer - A semiconductor light emitting device includes a first layer made of at least one of n-type GaN and n-type AlGaN; a second layer made of Mg-containing p-type AlGaN; and a light emitting section provided between the first layer and the second layer. The light emitting section included a plurality of barrier layers made of Si-containing Al01-05-2012
20110156000METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE - A method of manufacturing a semiconductor device and the device resulted thereof is disclosed. In one aspect, the device has a heterogeneous layer stack of one or more III-V type materials, at least one transmission layer of the layer stack having a roughened or textured surface for enhancement of light transmission. The method includes (a) growing the transmission layer of a III-V type material, (b) providing a mask layer on the transmission layer, the mask layer leaving first portions of the transmission layer exposed, and (c) partially decomposing the first exposed portions of the transmission layer. Suitably redeposition occurs in a single step with decomposition, so as to obtain a textured surface based on crystal facets of a plurality of grown crystals. The resulting device has a light-emitting element. The transmission layer hereof is suitably present at the top side.06-30-2011
20110156002LIGHT SOURCE HAVING LIGHT BLOCKING COMPONENTS - Light emitting systems are disclosed. The light emitting system includes an electroluminescent device that emits light at a first wavelength from a top surface of the electroluminescent device. The light emitting system further includes a construction proximate a side of the electroluminescent device for blocking light at the first wavelength that would otherwise exit the side. The light emitting system further includes a re-emitting semiconductor construction that includes a II-VI potential well. The re-emitting semiconductor construction receives the first wavelength light that exits the electroluminescent device and converts at least a portion of the received light to light of a second wavelength. The integrated emission intensity of all light at the second wavelength that exit the light emitting system is at least 4 times the integrated emission intensity of all light at the first wavelength that exit the light emitting system.06-30-2011
20110155998OSCILLATION DEVICE - An oscillation device for oscillating a terahertz wave includes a substrate, an active layer which is provided on an upper portion of the substrate and which generates a terahertz wave by intersubband transition of carrier, and a luminous layer which is provided on an upper portion of the substrate and which generates light by interband transition of carrier. In addition, the luminous layer is arranged at a position at which the light generated in the luminous layer can radiate on the active layer.06-30-2011
20110155999SEMICONDUCTOR LIGHT-EMITTING DEVICES HAVING CONCAVE MICROSTRUCTURES PROVIDING IMPROVED LIGHT EXTRACTION EFFICIENCY AND METHOD FOR PRODUCING SAME - A conventional semiconductor LED is modified to include a microlenslayer over its light-emitting surface. The LED may have an active layer including at least one quantum well layer of InGaN and GaN. The microlens layer includes a plurality of concave microstructures that cause light rays emanating from the LED to diffuse outwardly, leading to an increase in the light extraction efficiency of the LED. The concave microstructures may be arranged in a substantially uniform array, such as a close-packed hexagonal array. The microlens layer is preferably constructed of curable material, such as polydimethylsiloxane (PDMS), and is formed by soft-lithography imprinting by contacting fluid material of the microlens layer with a template bearing a monolayer of homogeneous microsphere crystals, to cause concave impressions, and then curing the material to fix the concave microstructures in the microlens layer and provide relatively uniform surface roughness.06-30-2011
20110156001NITRIDE-BASED LIGHT-EMITTING DEVICE - A nitride-based light-emitting device includes a substrate and a plurality of layers formed over the substrate in the following sequence: a nitride-based buffer layer formed by nitrogen, a first group III element, and optionally, a second group III element, a first nitride-based semiconductor layer, a light-emitting layer, and a second nitride-based semiconductor layer.06-30-2011
20120043526LIGHT EMITTING DEVICE AND LIGHTING SYSTEM HAVING THE SAME - Disclosed are a light emitting device and a lighting system having the same. The light emitting device includes a first conductivity-type semiconductor layer, an interfacial layer including at least two superlattice structures adjacent to the first conductivity-type semiconductor layer, an active layer adjacent to the interfacial layer, and a second conductivity-type semiconductor layer adjacent to the active layer. The first conductivity-type semiconductor layer, interfacial layer, active layer, and second conductivity-type semiconductor layer are stacked in a same direction, the first and second semiconductor layer are of different conductivity types, an energy band gap of the superlattice structure adjacent to the active layer is smaller than an energy band gap of the superlattice structure adjacent to the first conductivity-type semiconductor layer.02-23-2012
20120056158LIGHT EMITTING DIODES WITH A P-TYPE SURFACE BONDED TO A TRANSPARENT SUBMOUNT TO INCREASE LIGHT EXTRACTION EFFICIENCY - An (Al,Ga,In)N-based light emitting diode (LED), comprising a p-type surface of the LED bonded with a transparent submount material to increase light extraction at the p-type surface, wherein the LED is a substrateless membrane.03-08-2012
20120056156SEMICONDUCTOR LIGHT EMITTING DEVICE - According to one embodiment, a semiconductor light emitting device includes a first conductivity type semiconductor layer, a light emitting layer and a second conductivity type semiconductor layer. The first conductivity type layer has a superlattice structure. First semiconductor layers and second semiconductor layers are alternately provided in the superlattice structure. The first semiconductor layers include a first nitride semiconductor and the second semiconductor layers include a second nitride semiconductor having a larger lattice constant than the first nitride semiconductor. The light emitting layer has a multi-quantum well structure. Quantum well layers and barrier layers are alternately provided in the multi-quantum well structure. The quantum well layers include a third nitride semiconductor having a smaller lattice constant than the second nitride semiconductor and the barrier layers include a fourth nitride semiconductor having a smaller lattice constant than the third nitride semiconductor. At least one of the quantum well layers has lattice spacing equal to the lattice constant of the third nitride semiconductor.03-08-2012
20120056157SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME - According to one embodiment, a semiconductor light emitting device includes an n-type layer, a p-type layer, and a light emitting unit provided between the n-type layer and the p-type layer and including barrier layers and well layers. At least one of the barrier layers includes first and second portion layers. The first portion layer is disposed on a side of the n-type layer. The second portion layer is disposed on a side of the p-type layer, and contains n-type impurity with a concentration higher than that in the first portion layer. At least one of the well layers includes third and fourth portion layers. The third portion layer is disposed on a side of the n-type layer. The fourth portion layer is disposed on a side of the p-type layer, and contains n-type impurity with a concentration higher than that in the third portion layer.03-08-2012
20120056153SEMICONDUCTOR DEVICE - A semiconductor device of an embodiment includes: a semiconductor layer made of p-type nitride semiconductor; an oxide layer formed on the semiconductor layer, the oxide layer being made of a polycrystalline nickel oxide, and the oxide layer having a thickness of 3 nm or less; and a metal layer formed on the oxide layer.03-08-2012
20120056155SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor light emitting device includes a structural body, a first electrode layer, and a second electrode layer. The structural body includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and a light emitting layer between the first semiconductor layer and the second semiconductor layer. The first electrode layer includes a metal portion, a plurality of first opening portions, and at least one second opening portion. The metal portion has a thickness of not less than 10 nanometers and not more than 200 nanometers along a direction from the first semiconductor layer toward the second semiconductor layer. The plurality of first opening portions each have a circle equivalent diameter of not less than 10 nanometers and not more than 1 micrometer. The at least one second opening portion has a circle equivalent diameter of more than 1 micrometer and not more than 30 micrometers.03-08-2012
20120056154METHOD OF FABRICATING SEMICONDUCTOR LIGHT EMITTING DEVICE AND SEMICONDUCTOR LIGHT EMITTING DEVICE - A method of fabricating semiconductor light emitting device forms a laminated film by laminating an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer in order on a uneven main surface of a first substrate, forms a plurality of first electrodes, on an upper surface of the p-type nitride semiconductor layer, forms a first metal layer to cover surfaces of the plurality of first electrodes and the p-type nitride semiconductor layer, forms a second metal layer on an upper surface of the second substrate, joins the first and second metal layers by facing the first and second substrates, cuts the first substrate or forming a groove on the first substrate along a border of the light emitting element from a surface side opposite to the first metal layer on the first substrate, and irradiates a laser toward areas of the light emitting devices from a surface side opposite to the first metal layer on the first substrate to peel off the first substrate.03-08-2012
20120205618GROUP III NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE AND PRODUCTION METHOD THEREFOR - The present invention provides a Group III nitride semiconductor light-emitting device exhibiting improved emission performance and high electrostatic breakdown voltage. The Group III nitride semiconductor light-emitting device has a layered structure in which an n-type contact layer, an ESD layer, an n-type cladding layer, a light-emitting layer, a p-type cladding layer, and a p-type contact layer are deposited on a sapphire substrate. The ESD layer has a pit. The n-type cladding layer and the light-emitting layer are formed without burying the pit. The pit has a diameter of 110 nm to 150 nm at an interface between the n-type cladding layer and the light-emitting layer. The barrier layer of the light-emitting layer is formed of AlGaN having an Al composition ratio of 3% to 7%.08-16-2012
20120205619Light Emitting Device with Dislocation Bending Structure - A solution for reducing a number of dislocations in an active region of an emitting device is provided. A dislocation bending structure can be included in the emitting device between the substrate and the active region. The dislocation bending structure can be configured to cause dislocations to bend and/or annihilate prior to reaching the active region, e.g., due to the presence of a sufficient amount of strain. The dislocation bending structure can include a plurality of layers with adjacent layers being composed of a material, but with molar fractions of an element in the respective material differing between the two layers. The dislocation bending structure can include at least forty pairs of adjacent layers having molar fractions of an element differing by at least five percent between the adjacent layers.08-16-2012
20120205616DEFECT-CONTROLLING STRUCTURE FOR EPITAXIAL GROWTH, LIGHT EMITTING DEVICE CONTAINING DEFECT-CONTROLLING STRUCTURE, AND METHOD OF FORMING THE SAME - A method for reducing dislocations or other defects in a light emitting device, such as light emitting diode (LED), by in-situ introducing nanoparticles into at least one of a defect-controlling layer, an n-type layer, a p-type layer, and a quantum well of the light emitting device. A light emitting device is provided, and nanoparticles are dispensed in-situ in at least one of a defect-controlling layer, an n-type layer, a p-type layer, and a quantum well of the light emitting device.08-16-2012
20120205622SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor light emitting device includes a plurality of first conductive type semiconductor layers; a plurality of second conductive type semiconductor layers; an active layer between the first and second conductive type semiconductor layers, wherein the active layer includes a plurality of quantum barrier layers and a plurality of quantum well layers; a first electrode connected to the first conductive type semiconductor layers; and a second electrode connected to the second conductive type semiconductor layers, wherein the first conductive type semiconductor layers includes a first and second AlGaN based layers, and the plurality of quantum well layers of the active layer include an InAlGaN layer.08-16-2012
20120205621LIGHT EMITTING DIODE COMPRISING SEMICONDUCTOR NANOCRYSTAL COMPLEXES - A light emitting diode (LED) formed by depositing an LED chip and coupling a stability layer to the LED chip. Semiconductor nanocrystals are placed in a first matrix material to form a nanocrystal complex layer. The nanocrystal complex layer is deposited on top of the stability layer. A thickness of the stability layer is chosen to maximizes a power of a light output by the nanocrystal complex layer. The matrix material and the stability layer can be of the same type of material. Additional layers of matrix material can be deposited on top of the nanocrystal complex layer. These additional layers can comprise matrix material only or can comprise matrix material and semiconductor nanocrystals to form another nanocrystal complex layer.08-16-2012
20120007040LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE, AND LIGHTING SYSTEM INCLUDING THE SAME - A light emitting device, a light emitting device package, and a lighting system are provided. The light emitting device includes a first conductive type semiconductor layer, a second conductive type semiconductor layer, and an active layer between the first and second conductive type semiconductor layers. The active layer includes a first active layer adjacent to the second conductive type semiconductor layer, a second active layer adjacent to the first conductive type semiconductor layer, and a gate quantum barrier between the first and second active layers.01-12-2012
20120007044LIGHT EMITTING DEVICE AND METHOD OF FABRICATING THE SAME - Disclosed are a light emitting device and a method of fabricating the same. The light emitting device includes a substrate; first and second light emitting cells, each including a first semiconductor layer, an active layer, and a second semiconductor layer; and a connector located between the first and second light emitting cells and the substrate, to electrically connect the first and second light emitting cells to each other. The connector extends from the second semiconductor layer of the first light emitting cell, across the substrate, and through central regions of the second semiconductor layer and active layer of the second light emitting cells, to contact the first semiconductor layer of the second light emitting cell.01-12-2012
20120007043LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - A light-emitting device includes an n-type silicon thin film (01-12-2012
20120007042LIGHT EMITTING DEVICE WITH A SINGLE QUANTUM WELL ROD - A light emitting device comprising a first semiconductor layer, a second semiconductor layer and a quantum well layer, wherein the first semiconductor layer and the second semiconductor layer are disposed on the opposite sides of the quantum well layer, the quantum well layer comprising a plurality of quantum well rods which are separated from each other, and each of the quantum well rods has only one quantum well.01-12-2012
20120007041LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE AND LIGHTING SYSTEM - A light emitting device, a light emitting device package, and a lighting system are provided. The light emitting device includes: a second conductive semiconductor layer; an active layer over the second conductive semiconductor layer; a first conductive semiconductor layer over the active layer; and a second electrode layer including a reflective layer under the second conductive semiconductor layer. The active layer includes a second active layer that actually emits light on the reflective layer and a first active layer that does not emit light on the second active layer. A distance between the reflective layer and the second active layer satisfies a constructive interference condition.01-12-2012
20120007039CRYSTAL GROWTH METHOD AND SEMICONDUCTOR DEVICE - A method of crystal growth is provided which can suppress development of dislocations and cracks and a warp in a substrate. The method of crystal growth of a group III nitride semiconductor has: a step of heating a silicon substrate; and a step of forming a depressed structure on the substrate surface by advance-feeding onto the heated silicon substrate a gas containing at least TMA (trimethylaluminum).01-12-2012
20120205620METHOD FOR FABRICATION OF SEMIPOLAR (Al, In, Ga, B)N BASED LIGHT EMITTING DIODES - A yellow Light Emitting Diode (LED) with a peak emission wavelength in the range 560-580 nm is disclosed. The LED is grown on one or more III-nitride-based semipolar planes and an active layer of the LED is composed of indium (In) containing single or multi-quantum well structures. The LED quantum wells have a thickness in the range 2-7 nm. A multi-color LED or white LED comprised of at least one semipolar yellow LED is also disclosed.08-16-2012
20090039339NONPOLAR III-NITRIDE LIGHT EMITTING DIODES WITH LONG WAVELENGTH EMISSION - A III-nitride film, grown on an m-plane substrate, includes multiple quantum wells (MQWs) with a barrier thickness of 27.5 nm or greater and a well thickness of 8 nm or greater. An emission wavelength can be controlled by selecting the barrier thickness of the MQWs. Device fabricated using the III-nitride film include nonpolar III-nitride light emitting diodes (LEDs) with a long wavelength emission.02-12-2009
20120012813OPTICAL DEVICE TO EMIT POLARIZED LIGHT - An optical device capable of emitting polarized light includes a light emitting means, two multi-layer optical films disposed above and below the light emitting means and two metal layers. The two metal layers cover the two multi-layer optical layers from the upper and lower sides respectively. Each of the two multi-layer optical films includes at least two films made from materials of different refractive indexes that are stacked in a staggered manner. The optical film formed by the multi-layer optical films and metal layers provides greater reflectance to S-polarized light (TE) and higher absorption to P-polarized light. Light generated by the light emitting means emits diagonally to the optical films and is reflected several times thereof to form S-polarized light (TE) to emit sideward.01-19-2012
20120012814SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME - According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, and a light emitting part provided therebetween. The light emitting part includes a plurality of light emitting layers. Each of the light emitting layers includes a well layer region and a non-well layer region which is juxtaposed with the well layer region in a plane perpendicular to a first direction from the n-type semiconductor layer towards the p-type semiconductor layer. Each of the well layer regions has a common An In composition ratio. Each of the well layer regions includes a portion having a width in a direction perpendicular to the first direction of 50 nanometers or more.01-19-2012
20120012815LIGHT EMITTING DEVICE - Disclosed herein is a light emitting device including a light emitting structure including a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and an active layer including at least one combination of a well layer of a first composition formed of a nitride-semiconductor material having first electronic energy and a barrier layer of a second composition formed of a nitride-semiconductor material having higher electronic energy than the first electronic energy, and an interface layer disposed between the second conductivity-type semiconductor layer and the active layer or between the first conductivity-type semiconductor layer and the active layer. The interface layer includes first, second and third layers having different energy bandgaps, the energy bandgaps of the first and second layers are greater than the energy bandgap of the barrier layer, and the energy bandgap of the third layer is less than the energy bandgap of the barrier layer.01-19-2012
20120012812SOLID STATE LIGHTING DEVICES WITH REDUCED CRYSTAL LATTICE DISLOCATIONS AND ASSOCIATED METHODS OF MANUFACTURING - Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting device includes a substrate material having a substrate surface and a plurality of hemispherical grained silicon (“HSG”) structures on the substrate surface of the substrate material. The solid state lighting device also includes a semiconductor material on the substrate material, at least a portion of which is between the plurality of HSG structures.01-19-2012
20120153259LIGHT EMITTING DIODE WITH IMPROVED STRUCTURE - A light emitting diode (LED) for minimizing crystal defects in an active region and enhancing recombination efficiency of electrons and holes in the active region includes non-polar GaN-based semiconductor layers grown on a non-polar substrate. The semiconductor layers include a non-polar N-type semiconductor layer, a non-polar P-type semiconductor layer, and non-polar active region layers positioned between the N-type semiconductor layer and the P-type semiconductor layer. The non-polar active region layers include a well layer and a barrier layer with a superlattice structure.06-21-2012
20110049472LIGHT EMITTING DIODE - A light emitting diode (LED) has an n-type semiconductor layer, an active layer, a p-type semiconductor layer, and a transparent electrode layer. The LED includes a tunnel layer interposed between the p-type semiconductor layer and the transparent electrode layer, an opening arranged in the transparent electrode layer so that the tunnel layer is exposed, a distributed Bragg reflector (DBR) arranged in the opening, and an electrode pad arranged on the transparent electrode layer to cover the DBR in the opening.03-03-2011
20110049471EFFICIENT CARRIER INJECTION IN A SEMICONDUCTOR DEVICE - Semiconductor devices such as VCSELs, SELs, LEDs, and HBTs are manufactured to have a wide bandgap material near a narrow bandgap material. Electron injection is improved by an intermediate structure positioned between the wide bandgap material and the narrow bandgap material. The intermediate structure is an inflection, such as a plateau, in the ramping of the composition between the wide bandgap material and the narrow bandgap material. The intermediate structure is highly doped and has a composition with a desired low electron affinity. The injection structure can be used on the p-side of a device with a p-doped intermediate structure at high hole affinity.03-03-2011
20110049470DIODE HAVING VERTICAL STRUCTURE AND METHOD OF MANUFACTURING THE SAME - A light emitting diode includes a conductive layer, an n-GaN layer on the conductive layer, an active layer on the n-GaN layer, a p-GaN layer on the active layer, and a p-electrode on the p-GaN layer. The conductive layer is an n-electrode.03-03-2011
20110049469Enhanced P-Contacts For Light Emitting Devices - An optoelectronic light emitting semiconductor device is provided comprising an active region, a p-type Group III nitride layer, an n-type Group III nitride layer, a p-side metal contact layer, an n-side metal contact layer, and an undoped tunneling enhancement layer. The p-side metal contact layer is characterized by a work function W satisfying the following relation:03-03-2011
20110049468LED AND LED DISPLAY AND ILLUMINATION DEVICES - Light emitting chips, light emitting unit cells and methods of forming light emitting chips are provided. A light emitting chip includes a light emission structure having a p-type semiconductor layer, an n-type semiconductor layer, and an active layer therebetween. At least one light emitting unit is formed from the light emission structure including a light emitting diode (LED) and a plurality of light receiving diode (LRD) portions. The LRD portions are serially connected and configured to surround the LED portion. The LRD portions are optically coupled to the LED portion to receive total internal reflection (TIR) light from the LED portion and convert the TIR light to a photocurrent.03-03-2011
20120061646LIGHT EMISSION DEVICE AND MANUFACTURING METHOD THEREOF - The present invention provides a light emission device and a manufacturing method thereof. The light emission device includes: i) a substrate; ii) a mask layer disposed on the substrate and having at least one opening; iii) a light emission structure formed on the mask layer surrounding the opening and extended substantially perpendicular to a surface of the substrate; iv) a first electrode formed on the mask layer while surface-contacting the external surface of the light emission structure; and v) a second electrode disposed in the light emission structure and surface-contacting the internal surface of the light emission structure.03-15-2012
20120061645OPTOELECTRONIC DEVICE BASED ON NON-POLAR AND SEMI-POLAR ALUMINUM INDIUM NITRIDE AND ALUMINUM INDIUM GALLIUM NITRIDE ALLOYS - A high-power and high-efficiency light emitting device with emission wavelength (λ03-15-2012
20120061644Blue Light Emitting Semiconductor Nanocrystal Materials - A semiconductor nanocrystal includes a core including a first semiconductor material and an overcoating including a second semiconductor material. A monodisperse population of the nanocrystals emits blue light over a narrow range of wavelengths with a high quantum efficiency.03-15-2012
20120061643GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE AND THE METHOD FOR MAKING THE SAME - A GaN-based semiconductor light emitting device 03-15-2012
20120061642SEMICONDUCTOR LIGHT EMITTING DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor light emitting device which includes an n-type semiconductor layer, a p-type semiconductor layer, and an active layer provided between the n-type semiconductor layer and the p-type semiconductor layer. The semiconductor light emitting device comprises a first transparent electrode made of metal oxide transparent conductor provided on a surface of the p-type semiconductor layer; a second transparent electrode made of a metal oxide transparent conductor provided on the surface of the p-type semiconductor layer and electrically connected to the first transparent electrode; and a p-side electrode pad made of metal provided on a surface of the second transparent electrode. The second transparent electrode is higher in contact resistance with the p-type semiconductor layer than the first transparent electrode.03-15-2012
20120061641GROUP III NITRIDE NANOROD LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THEREOF - There are disclosed a group III nitride nanorod light emitting device and a method of manufacturing thereof. The group III nitride nanorod light emitting device includes a substrate, an insulating film formed on the substrate, and including a plurality of openings exposing parts of the substrate and having different diameters, and first conductive group III nitride nanorods having different diameters, respectively formed in the plurality of openings, wherein each of the first conductive group III nitride nanorods has an active layer and a second conductive semiconductor layer sequentially formed on a surface thereof.03-15-2012
20120061640SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a first electrode layer, a second semiconductor layer of a second conductivity type, a light emitting layer and a second electrode layer. The first electrode layer includes a metal portion having a plurality of opening portions. The opening portions have an equivalent circle diameter being not less than 10 nanometers and not more than 50 micrometers. The second semiconductor layer is provided between the first semiconductor layer and the first electrode layer and includes a first portion in contact with the first electrode layer. The first portion has an impurity concentration of not less than 1×1003-15-2012
20120235116LIGHT EMITTING DIODE WITH ENHANCED QUANTUM EFFICIENCY AND METHOD OF FABRICATION - One embodiment of a quantum well structure comprises an active region including active layers that comprise quantum wells and barrier layers wherein some or all of the active layers are p type doped. P type doping some or all of the active layers improves the quantum efficiency of III-V compound semiconductor light emitting diodes by locating the position of the P-N junction in the active region of the device thereby enabling the dominant radiative recombination to occur within the active region. In one embodiment, the quantum well structure is fabricated in a cluster tool having a hydride vapor phase epitaxial (HVPE) deposition chamber with a eutectic source alloy. In one embodiment, the indium gallium nitride (InGaN) layer and the magnesium doped gallium nitride (Mg—GaN) or magnesium doped aluminum gallium nitride (Mg—AlGaN) layer are grown in separate chambers by a cluster tool to avoid indium and magnesium cross contamination. Doping of group III-nitrides by hydride vapor phase epitaxy using group III-metal eutectics is also described. In one embodiment, a source is provided for HVPE deposition of a p-type or an n-type group III-nitride epitaxial film, the source including a liquid phase mechanical (eutectic) mixture with a group III species. In one embodiment, a method is provided for performing HVPE deposition of a p-type or an n-type group III-nitride epitaxial film, the method including using a liquid phase mechanical (eutectic) mixture with a group III species.09-20-2012
20120235115GROWTH OF III-V LED STACKS USING NANO MASKS - Methods, semiconductor material stacks and equipment for manufacture of light emitting diodes (LEDs) with improve crystal quality. A growth stopper is deposited between nuclei for a group III-V material, such as GaN, to form a nano mask. The group III-V material is laterally overgrown from a region of the nuclei not covered by the nano mask to form a continuous material layer with reduced dislocation density in preparation for subsequent growth of n-type and p-type layers of the LED. The lateral overgrowth from the nuclei may further recover the surface morphology of the buffer layer despite the presence of the nano mask. Presence of the growth stopper may further result in void formation on a substrate side of an LED stack to improve light extraction efficiency.09-20-2012
20120153252Nano-Structured Light-Emitting Devices - A nano-structured light-emitting device (LED) includes: a plurality of nanostructures on a first type semiconductor layer. Each of the plurality of nanostructures includes: a first type semiconductor nanocore on a portion of the first type semiconductor layer; a current spreading layer formed to cover a surface of the first type semiconductor nanocore and formed of an Al06-21-2012
20120205623NON-POLAR (Al,B,In,Ga)N QUANTUM WELL AND HETEROSTRUCTURE MATERIALS AND DEVICES - A method for forming non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices. Non-polar (11 08-16-2012
20120205617NON-POLAR SEMICONDUCTOR LIGHT EMISSION DEVICES - A light emitting device includes a silicon substrate having a (100) upper surface. The (100) upper surface has a recess, the recess being defined in part by (111) surfaces of the silicon substrate. The light emitting device includes a GaN crystal structure over one of the (111) surfaces which has a non-polar plane and a first surface along the non-polar plane. Light emission layers over the first surface have at least one quantum well comprising GaN.08-16-2012
20120153258GALLIUM NITRIDE-BASED COMPOUND SEMICONDUCTOR LIGHT-EMITTING ELEMENT - A nitride-based semiconductor light-emitting element includes an n-GaN layer 06-21-2012
20120153257HIGH-QUALITY NON-POLAR/SEMI-POLAR SEMICONDUCTOR ELEMENT ON AN UNEVENLY PATTERNED SUBSTRATE AND A PRODUCTION METHOD THEREFOR - Provided are a high-quality non-polar/semi-polar semiconductor device with reduced defect density and improved internal quantum efficiency and light extraction efficiency, and a manufacturing method thereof. The manufacturing method is a method for manufacturing a semiconductor device, in which a template layer and a semiconductor device structure are formed on a sapphire substrate having a crystal plane for growing a non-polar or semi-polar nitride semiconductor layer. The sapphire substrate is etched to form uneven patterns, and the template layer including a nitride semiconductor layer and a GaN layer is formed on the sapphire substrate in which the uneven patterns are formed.06-21-2012
20120153256LIGHT EMITTING DEVICE, METHOD FOR FABRICATING THE SAME, AND LIGHT EMITTING DEVICE PACKAGE - A light emitting device is provided. The light emitting device comprises an active layer comprising a plurality of well layers and a plurality of barrier layers. The bather layers comprise a first barrier layer having a first band gap which is the nearest to the second conductive type semiconductor layer, a second barrier layer adjacent to the first barrier, and a third barrier layer between the second bather layer and the first conductive type semiconductor layer. The well layers comprise a first well layer having a third band gap different from the first band gap between the first and second bather layers, and a second well layer between the second barrier layer and the third barrier layer, the second well layer having a second band gap. The first well layer has a thickness thinner than that of the second well layer.06-21-2012
20120153255LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE AND LIGHTING SYSTEM - Disclosed is a light emitting device, including: a substrate, a light emitting structure provided on the substrate, which includes a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer laminated in sequential order, a transmissive electrode layer arranged on the light emitting structure, an electrode provided on the light emitting structure. Here, the electrode includes a pad electrode and a finger electrode, and an insertion element is placed between the finger electrode and the second conductive semiconductor layer, wherein the insertion element is formed such that at least one region thereof overlaps with the finger electrode in a vertical direction. Since the insertion element is formed under the finger electrode, it is possible to prevent light emitted by the active layer from being absorbed by the finger electrode. Accordingly, luminous efficacy of the light emitting device may be further enhanced.06-21-2012
20110057166NONPOLAR III-NITRIDE LIGHT EMITTING DIODES WITH LONG WAVELENGTH EMISSION - A III-nitride film, grown on an m-plane substrate, includes multiple quantum wells (MQWs) with a barrier thickness of 27.5 nm or greater and a well thickness of 8 nm or greater. An emission wavelength can be controlled by selecting the barrier thickness of the MQWs. Device fabricated using the III-nitride film include nonpolar III-nitride light emitting diodes (LEDs) with a long wavelength emission.03-10-2011
20110057165EPITAXIAL FORMATION STRUCTURES AND ASSOCIATED METHODS OF MANUFACTURING SOLID STATE LIGHTING DEVICES - Epitaxial formation structures and associated methods of manufacturing solid state lighting (“SSL”) devices with target thermal expansion characteristics are disclosed herein. In one embodiment, an SSL device includes a composite structure having a composite CTE temperature dependency, a formation structure on the composite structure, and an SSL structure on the formation structure. The SSL structure has an SSL temperature dependency, and a difference between the composite CTE and SSL temperature dependencies is below 3 ppm/° C. over the temperature range.03-10-2011
20100096616LIGHT-EMITTING AND LIGHT-DETECTING OPTOELECTRONIC DEVICE - An exemplary optoelectronic device includes a substrate and an epitaxial structure formed on the optoelectronic device. The epitaxial structure includes an N-type semiconductor layer, a P-type semiconductor layer, a multi-quantum-well layer and an undoped semiconductor layer. The multi-quantum-well layer is arranged between the N-type semiconductor layer and the P-type semiconductor layer. The undoped semiconductor layer is sandwiched between the N-type semiconductor layer and the multi-quantum-well layer. The undoped semiconductor layer is represented by a general formula Al04-22-2010
20100096615LIGHT-EMITTING DEVICE - A light-emitting device includes a group III nitride semiconductor layer of a multilayer structure consisting of a group III nitride semiconductor having a major surface defined by a nonpolar plane or a semipolar plane and having at least an n-type layer and a p-type layer. A surface of the group III nitride semiconductor layer on a light extraction side is a mirror surface. The light-emitting device may further include a transparent electrode in contact with the surface of the group III nitride semiconductor layer on the light extraction side. In this case, a surface of the transparent electrode on the light extraction side is preferably a mirror surface.04-22-2010
20100096614Light-emitting diode and method of manufacturing the same - A light-emitting diode and a method of manufacturing the light-emitting diode are provide, the light-emitting diode including a lower electrode on a substrate, a template layer on the lower electrode. The template layer may have a plurality of open regions. A plurality of nano-dashes may be formed in the plurality of open regions of the template layer. A transparent insulating layer may be formed between the nano-dashes. A transparent upper electrode may be formed on the nano-dashes and the transparent insulating layer.04-22-2010
20120153254Inverted Light Emitting Diode Having Plasmonically Enhanced Emission - An LED device having plasmonically enhanced emission is provided. The device includes an inverted LED structure with a coating of metal nanoparticles on the surface chosen to match the plasmonic response to the peak emission from the active quantum well (QW) emission region of the LED. The active QW emission region is separated from the metal nanoparticles on the surface by a thin n-type contact layer disposed on a top side of the active QW emission. A p-type layer is disposed immediately beneath the active QW emission region and injects holes into the active QW emission region. The n-type contact layer is sufficiently thin to permit a coupling of the surface plasmons (SPs) from the metal nanoparticles and the excitons in the active QW emission region. The SP-exciton coupling provides an alternative decay route for the excitons and thus enhances the photon emission from the LED device.06-21-2012
20090152528HIGH-POWER, BROAD-BAND, SUPERLUMINESCENT DIODE AND METHOD OF FABRICATING THE SAME - Provided are a superluminescent diode with a high optical power and a broad wavelength band, and a method of fabricating the same. The superluminescent diode includes: at least one high optical confinement factor (HOCF) region; and at least one low optical confinement factor (LOCF) region having a lower optical confinement factor than the HOCF region. The method includes obtaining a difference of optical confinement factors in the HOCF region and the LOCF region through a selective area growth method, the selective area growth method using a deposition thicknesses difference of thin layers according to a width difference of openings that expose a substrate.06-18-2009
20090134380SOLID-STATE LIGHTING ELEMENT - A solid-state lighting element includes a transparent electrically conductive substrate, a first type confinement layer disposed on the transparent electrically conductive substrate, an active layer disposed on the first type confinement layer, a second type confinement layer disposed on the active layer, an electrode contacting and disposed on the second type confinement layer. The transparent electrically conductive substrate is made of Hydrogenated Silicon Carbides. A heat generated by the LED can be efficiently dissipated through the transparent electrically conductive substrate in time as the SiC:H is a material of high conductivity and high thermo-conductivity. Therefore, a quantum efficiency of the LED 05-28-2009
20110089401SEMICONDUCTOR LIGHT-EMITTING ELEMENT, ELECTRODE AND MANUFACTURING METHOD FOR THE ELEMENT, AND LAMP - A semiconductor light-emitting element including a substrate, a laminated semiconductor layer including a light-emitting layer formed over the substrate, one electrode (04-21-2011
20110089400NANOWIRE WRAP GATE DEVICES - The present invention provides a semiconductor device comprising at least a first semiconductor nanowire (04-21-2011
20110089399LIGHT EMITTING DEVICE WITH A STAIR QUANTUM WELL STRUCTURE - A light emitting device with a stair quantum well structure in an active region. The stair quantum well structure may include a primary well and a single step or multiple steps. The light emitting device may be a nonpolar, semipolar or polar (Al,Ga,In)N based light emitting device. The stair quantum structure improves the radiative efficiency of the light emitting device.04-21-2011
20110089398Method for improving internal quantum efficiency of Group-III nitride-based light emitting device - A method for improving internal quantum efficiency of a group-III nitride-based light emitting device is disclosed. The method includes the steps of: providing a group-III nitride-based substrate having a single crystalline structure; forming on the group-III nitride-based substrate an oxide layer, having a plurality of particles, without absorption of visible light, size, shape, and density of the particles are controlled by reaction concentration ratio of nitrogen/hydrogen, reaction time and reaction temperature; and growing a group-III nitride-based layer over the oxide layer; wherein the oxide layer prevents threading dislocation of the group-III nitride-based substrate from propagating into the group-III nitride-based layer, thereby improving internal quantum efficiency of the group-III nitride-based light emitting device.04-21-2011
20120119186LIGHT EMITTING DEVICE - A light emitting device may include a light emitting structure that includes a first semiconductor layer, a second semiconductor layer and an active layer between the first semiconductor layer and the second semiconductor layer, wherein the active layer includes a light emitting layer adjacent to the second semiconductor layer and that includes a well layer and a barrier layer and a super-lattice layer between the light emitting layer and the first semiconductor layer, the super-lattice layer including at least six pairs of a first layer and a second layer, wherein a composition of the first layer includes indium (In) and the second layer includes indium (In), and the composition of the first layer is different from the composition of the second layer.05-17-2012
20120119185ACTIVE LAYER FOR SILICON LIGHT-EMITTING DEVICES AND METHOD FOR MANUFACTURING THE SAME - An active layer for silicon light-emitting devices has a layered film structure of first and second layers alternately stacked on a substrate. The first layer contains a silicon compound, and the second layer contains another silicon compound and has a larger band gap than the first layer. The layered film structure contains silicon nanoparticles. The first layer contains more silicon atoms than the second layer, and at least one of the silicon nanoparticles exists across at least one of the interfacial boundaries between the first layer and the second layer.05-17-2012
20120119187NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE AND FABRICATION METHOD THEREOF - The present invention relates to a GaN based nitride based light emitting device improved in Electrostatic Discharge (ESD) tolerance (withstanding property) and a method for fabricating the same including a substrate and a V-shaped distortion structure made of an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer on the substrate and formed with reference to the n-type nitride semiconductor layer.05-17-2012
20120161100LIGHT EMITTING DIODE AND MAKING METHOD THEREOF - An LED includes a substrate, an N-type GaN layer, an insulation layer, an N-type GaN nano-wire layer, a quantum well layer and a P-type GaN nano-wire layer. The N-type GaN layer and the insulation layer are arranged on the substrate in turn. At least one groove is formed on a top surface of the insulation layer, therefore, part of the N-type GaN layer is exposed. The N-type GaN nano-wire layer is formed on the groove of the insulation layer, and part of the N-type GaN nano-wire layer is protruded from the insulation layer. The quantum well layer and the P-type GaN nano-wire layer are coated on the part of the N-type GaN nano-wire layer which is protruded from the insulation layer. The present invention also relates to a method for making an LED.06-28-2012
20120161101WATER STABLE III-V SEMICONDUCTOR NANOCRYSTAL COMPLEXES AND METHODS OF MAKING SAME - A water-stable semiconductor nanocrystal complex that is stable and has high luminescent quantum yield. The water-stable semiconductor nanocrystal complex has a semiconductor nanocrystal core of a III-V semiconductor nanocrystal material and a water-stabilizing layer. A method of making a water-stable semiconductor nanocrystal complex is also provided.06-28-2012
20100289000LIGHT-EMITTING DIODE AND MANUFACTURING METHOD OF THE SAME - A manufacturing method of a light-emitting diode, includes the steps of: successively growing a first clad layer, an active layer and a second clad layer on a substrate; and patterning the first clad layer, the active layer and the second clad layer into a specified plane shape, and causing at least a part of an outer peripheral part of the active layer to protrude to an outside from at least one of the first clad layer and the second clad layer.11-18-2010
20100288998GROUP III NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE - A Group III nitride semiconductor light-emitting device comprises a substrate (11-18-2010
20100289002Nitride Semiconductor Light Emitting Device and Fabrication Method Thereof - Provided is a nitride semiconductor light emitting device including: a first nitride semiconductor layer; an active layer formed above the first nitride semiconductor layer; and a delta doped second nitride semiconductor layer formed above the active layer. According to the present invention, the optical power of the nitride semiconductor light emitting device is enhanced, optical power down phenomenon is improved and reliability against ESD (electro static discharge) is enhanced.11-18-2010
20100289001DEVICE CONTAINING NON-BLINKING QUANTUM DOTS - An optoelectronic device including two spaced apart electrodes; and at least one layer containing ternary core/shell nanocrystals disposed between the spaced electrodes and having ternary semiconductor cores containing a gradient in alloy composition and wherein the ternary core/shell nanocrystals exhibit single molecule non-blinking behavior characterized by on times greater than one minute or radiative lifetimes less than 10 ns.11-18-2010
20100288997SEMICONDUCTOR ELECTROLUMINESCENT DEVICE - Provided is a semiconductor electroluminescent device with an InGaAlAs-based well layer having tensile strain, or a semiconductor electroluminescent device with an InGaAsP-based well layer having tensile strain and with an InGaAlAs-based barrier layer which is high-performance and highly reliable in a wide temperature range. In a multiple-quantum well layer of the semiconductor electroluminescent device, a magnitude of interface strain at an interface between the well layer and the barrier layer is smaller than a magnitude of critical interface strain determined by a layer thickness value which is larger one of a thickness of the well layer and a thickness of the barrier layer.11-18-2010
20120126202LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE PACKAGE - Provided is a light emitting device, a method for manufacturing the light emitting device, a light emitting device package, and a lighting system. The light emitting device of the embodiment includes a first conductive semiconductor layer; a second conductive semiconductor layer; and a active layer including a quantum well and a quantum bather between the first conductive semiconductor layer and the second conductive semiconductor layer, wherein the energy band gap of the quantum well is gradually changed into parabolic toward a center of the quantum well.05-24-2012
20120126201GALLIUM NITRIDE LED DEVICES WITH PITTED LAYERS AND METHODS FOR MAKING THEREOF - Light-emitting diode device and method for making thereof. The device includes an n-type layer including a first surface and associated with a first thickness, and a pitted layer on the first surface. The pitted layer includes a second surface and associated with a second thickness ranging from 500 Å to 3000 Å. Additionally, the device includes an active layer on the second surface, the active layer being associated with a third thickness ranging from 10 Å to 20 Å, and a p-type layer on the active layer. The n-type layer is associated with a defect density at the first surface, and the defect density ranges from 1×1005-24-2012
20120126203High Power LED Device Architecture Employing Dielectric Coatings and Method of Manufacture - An improved LED device is disclosed and includes at least one active layer in communication with an energy source and configured to emit a first electromagnetic signal within a first wavelength range and at least a second electromagnetic signal within at least a second wavelength range, a substrate configured to support the active layer, at least one coating layer applied to a surface of the substrate, the coating layer, configured for 0-90 degree incidence, to reflect at least 95% of the first electromagnetic signal at the first wavelength range and transmit at least 95% of the second electromagnetic signal at the second wavelength range, at least one metal layer applied to the coating layer and configured to transmit the second electromagnetic signal at the second wavelength range therethrough, and an encapsulation device positioned to encapsulate the active layer.05-24-2012
20120248410Thin Film Forming Method and Quantum Dot Device - An electron transporting surfactant is added to a raw material solution such that the electron transporting surfactant is coordinated on the surfaces of quantum dots, and after the dispersion solvent is evaporated by vacuum drying, the immersion in a solvent containing a hole transporting surfactant prepares a quantum dot dispersed solution with a portion of the electron transporting surfactant replaced with the hole transporting surfactant. The quantum dot dispersed solution is applied onto a substrate to prepare a hole transport layer and a quantum dot layer at the same time, and thereby to achieve a thin film which has a two-layer structure.10-04-2012
20100207097NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - A nitride semiconductor light emitting device includes a substrate, a first conductivity type nitride semiconductor layer disposed on the substrate and including a plurality of V-pits placed in a top surface thereof, a silicon compound formed in the vertex region of each of the V-pits, an active layer disposed on the first conductivity type nitride semiconductor layer and including depressions conforming to the shape of the plurality of V-pits, and a second conductivity type nitride semiconductor layer disposed on the active layer. The nitride semiconductor light emitting device, when receiving static electricity achieves high resistance to electrostatic discharge (ESD) since current is concentrated in the V-pits and the silicon compound placed on dislocations caused by lattice defects.08-19-2010
20100207098Light-Emitting Structure - A light-emitting structure includes a p-doped region for injecting holes and an n-doped region for injecting electrons. At least one InGaN quantum well of a first type and at least one InGaN quantum well of a second type, are arranged between the n-doped region and the p-doped region. The InGaN quantum well of the second type has a higher indium content than the InGaN quantum well of the first type.08-19-2010
20100207099NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE AND FABRICATING METHOD THEREOF - A nitride semiconductor light emitting device including: a first nitride semiconductor layer; an active layer formed on the first nitride semiconductor layer and including at least one barrier layer grown under hydrogen atmosphere of a high temperature; and a second nitride semi conductor layer formed on the active layer, and a method of fabricating the same are provided. According to the light emitting device and method of fabricating the same, the light power of the light emitting device is increased and the operation reliability is enhanced.08-19-2010
20120161104ULTRAVIOLET IRRADIATION DEVICE - An ultraviolet irradiation device having a simple structure without using a pn junction, which can efficiently utilize a surface plasmon polariton and can emit ultraviolet light of a specific wavelength at a high efficiency. The device has at least one semiconductor multilayer film element and an electron beam irradiation source which are provided in a container having an ultraviolet-ray transmitting window and is vacuum-sealed, wherein the film element has an active layer formed of In06-28-2012
20120161102LIGHT EMITTING DEVICE, METHOD FOR FABRICATING THE SAME, AND LIGHT EMITTING DEVICE PACKAGE - A light emitting device is provided. The light emitting device comprises an active layer comprising a plurality of well layers and barrier layers. The barrier layers comprise a first barrier layer which is the nearest to a second conductive type semiconductor layer and has a first band gap, a second barrier layer having a third band gap, and a third barrier layer having the first band gap between the second barrier layer and a first conductive type semiconductor layer. The well layers comprise a first well layer having a second band gap between the first and the second barrier layers, and a second well layer between the second barrier layer and the third barrier layer. The second barrier layer is disposed between the first and the second well layers, and the third band gap is narrower than the first band gap and wider than the second band gap.06-28-2012
20120161099NITIRDE SEMICONDUCTOR LIGHT EMITTING DIODE - A nitride semiconductor LED device including an N-type doped layer, an active layer and a P-type doped layer is provided. The active layer is disposed on the N-type doped layer and includes at least one quantum well structure. The quantum well structure includes two quantum barrier layers and a quantum well sandwiched between the quantum barrier layers. The quantum barrier layer is a super-lattice structure including a quaternary nitride semiconductor. The P-type doped layer is disposed on the active layer.06-28-2012
20120132888LIGHT EMITTING DEVICE AND METHOD OF FABRICATING THE SAME - A light emitting device includes a metal backing layer, a reflective electrode layer disposed on the metal backing layer, and a plurality of nanorods disposed on the reflective electrode layer. Each nanorod includes a p-semiconductor layer, an active layer, and an n-semiconductor layer, which are sequentially stacked on the reflective electrode layer. The light emitting device further includes an anti-reflection electrode layer disposed on the nanorods, and quantum dots disposed between the nanorods. The method includes sequentially growing the n-semiconductor layer, the active layer, and the p-semiconductor layer on a substrate; forming the nanorods by etching the p-semiconductor layer using a mask pattern; sequentially forming the reflective electrode layer and the metal backing layer on the p-semiconductor layer and then removing the substrate; disposing quantum dots between the nanorods; and forming the anti-reflection electrode layer on the nanorods.05-31-2012
20120132890LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE AND LIGHTING SYSTEM INCLUDING THE SAME - A light emitting device includes an active layer including a quantum barrier and a quantum well, a first conductive type semiconductor layer disposed at one side of the active layer, and a second conductive type semiconductor layer disposed at the other side of the active layer, wherein the first conductive type semiconductor layer or the second conductive type semiconductor layer includes a main barrier layer, and the main barrier layer includes a plurality of sub barrier layers and a basal layer disposed between the plurality of sub barrier layers. The plurality of sub barrier layers includes a first section in which energy band gaps of the plurality of sub barrier layers are increased and a second section in which energy band gaps of the plurality of sub barrier layers are decreased.05-31-2012
20120132889SEMICONDUCTOR LIGHT EMITTING DEVICE AND FABRICATION METHOD FOR THE SAME - A high luminance semiconductor light emitting device and fabrication method thereof, wherein a metallic reflecting layer is formed using a non-transparent semiconductor substrate. The device includes a light emitting diode structure on a GaAs substrate structure bonded together using a first and a third metal layers. The substrate includes a GaAs layer, a first metal buffer layer on a surface of the GaAs layer, the first metal layer on the first metal buffer layer, and a second metal buffer layer and a second metal layer at a back side of the GaAs layer. The diode structure includes the third metal layer, a metal contact layer on the third metal layer, a p-type cladding layer on the metal contact layer, a multi-quantum well layer on the p-type cladding layer, an n-type cladding layer on the multi-quantum well layer, and a window layer on the n-type cladding layer.05-31-2012
20120132887Nitride semiconductor light emitting device - A nitride semiconductor light emitting device includes n-type and p-type nitride semiconductor layers; an active layer disposed between the n-type and p-type nitride semiconductor layers and having a structure in which a plurality of quantum barrier layers and one or more quantum well layers are alternately stacked; and an electron blocking layer disposed between the active layer and the p-type nitride semiconductor layer. The electron blocking layer has a superlattice structure in which two or more layers having different compositions are alternately stacked. An absolute value of a net polarization mismatch between a material, the material having a composition corresponding to an average composition of the superlattice structure, and a quantum barrier layer adjacent to the electron blocking layer among the plurality of quantum barrier layers is less than ⅔ of an absolute value of a net polarization mismatch between Al05-31-2012
20120168718SEMICONDUCTOR LIGHT EMITTING DEVICE - Disclosed is a semiconductor light emitting device including: a substrate; an n-type semiconductor layer giving an electron when receiving voltage; a p-type semiconductor layer giving a hole when receiving voltage; an active layer provided between the n-type semiconductor layer and the p-type semiconductor layer and including a quantum well structure to facilitate coupling between an electron and a hole; an n-type electrode including conductivity for applying voltage to the n-type semiconductor layer; a p-type electrode including conductivity for applying voltage to the p-type semiconductor layer; and am electric-current diffusion and hole injection layer provided between the p-type semiconductor layer and the p-type electrode and doped with n-type impurities and p-type impurities for diffusing an electric current and injecting a hole between the p-type electrode and the p-type semiconductor layer. With this, ohmic contact is decreased, flow of an electric current is improved, diffusion of the electric current is more uniformized, and injection of a hole is improved between the electrode and the semiconductor layer of the semiconductor light emitting device, thereby maximizing efficiency of a device.07-05-2012
20120168717LIGHT EMITTING DIODE, LIGHT EMITTING DIODE LAMP, AND ILLUMINATING APPARATUS - Disclosed is a light-emitting diode, which has a red and infrared emitting wavelength, excellent monochromatism characteristics, and high output and high efficiency and excellent humidity resistance. The light-emitting diode is provided with: a light-emitting section, which includes an active layer having a quantum well structure and formed by laminating alternately a well layer which comprises a composition expressed by the composition formula of (Al07-05-2012
20120168716Light Emitting Diode (LED) Die Having Stepped Substrates And Method Of Fabrication - A light emitting diode (LED) die includes a first substrate having a first surface and an opposing second surface; a second substrate on the second surface of the first substrate; a p-type semiconductor layer on the first surface of the first substrate; a multiple quantum well (MQW) layer on the p-type semiconductor layer configured to emit light; and an n-type semiconductor layer on the multiple quantum well (MQW) layer.07-05-2012
20120168715SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - A method for manufacturing a semiconductor light emitting device includes: (a) providing a temporary substrate; (b) forming a multi-layered LED epitaxial structure, having at least one light emitting unit, on the temporary substrate, wherein a first surface of the light emitting unit contacts the temporary substrate, and the light emitting unit includes a n-type layer, an active region, and a p-type layer; (c) forming a n-electrode on the n-type layer; (d) forming a p-electrode on the p-type layer; (e) bonding a permanent substrate on the light emitting unit, the n-electrode and the p-electrode; (f) removing the temporary substrate to expose the light emitting unit; and (g) etching the exposed light emitting unit, to expose at least one of the n-electrode and the p-electrode.07-05-2012
20120168714VERTICAL LIGHT EMITTING DIODE (VLED) DIE AND METHOD OF FABRICATION - A vertical light emitting diode (VLED) die includes a first metal having a first surface and an opposing second surface; a second metal on the second surface of the first metal; a p-type semiconductor layer on the first surface of the first metal; a multiple quantum well (MQW) layer on the p-type semiconductor layer configured to emit light; and an n-type semiconductor layer on the multiple quantum well (MQW) layer.07-05-2012
20110180781Highly Polarized White Light Source By Combining Blue LED on Semipolar or Nonpolar GaN with Yellow LED on Semipolar or Nonpolar GaN - A packaged light emitting device. The device has a substrate member comprising a surface region. The device also has two or more light emitting diode devices overlying the surface region. Each of the light emitting diode device is fabricated on a semipolar or nonpolar GaN containing substrate. The two or more light emitting diode devices are fabricated on the semipolar or nonpolar GaN containing substrate emits substantially polarized emission.07-28-2011
20110180780PHOSPHOR, PHOSPHOR MANUFACTURING METHOD, AND WHITE LIGHT EMITTING DEVICE - Provided are a phosphor, a phosphor manufacturing method, and a white light emitting device. The phosphor is represented as a chemical formula of aMO-bAl07-28-2011
20110180779NANOSTRUCTURED THIN FILM, SURFACE LIGHT SOURCE AND DISPLAY APPARATUS EMPLOYING NANOSTRUCTURED THIN FILM - A nanostructured thin film used in a surface light source, including a dielectric layer, and nanostructures that are arranged periodically in the dielectric layer, wherein light emitted from the nanostructured thin film has directivity according to the nanostrucures.07-28-2011
20110180778GaN SERIES LIGHT-EMITTING DIODE STRUCTURE - The present invention relates to a GaN series light-emitting diode structure, which includes a substrate; at least one GaN series layer formed over the substrate; subsequently an interface blocking structure composed of an n-type GaN series superlattice structure and a GaN series light-emitting layer, and a GaN series light-emitting layer are formed over the GaN series layer; and a p-type GaN series layer formed over the GaN series light-emitting layer. In the present invention, the radiative recombination efficiency is improved by introducing an interface blocking structure before the light-emitting layer under the epitaxial conditions of low temperature and pure nitrogen atmosphere.07-28-2011
20120313075OPTICAL COMPONENT, PRODUCTS INCLUDING SAME, AND METHODS FOR MAKING SAME - An optical component is disclosed that comprises a first substrate, an optical material comprising quantum confined semiconductor nanoparticles disposed over a predetermined region of a first surface of the first substrate, a layer comprising an adhesive material disposed over the optical material and any portion of the first surface of the first substrate not covered by the optical material, and a second substrate disposed over the layer comprising an adhesive material, wherein the first and second substrates are sealed together. In certain embodiments, the optical component further includes a second optical material comprising quantum confined semiconductor nanoparticles disposed between the layer comprising the adhesive material and the second substrate. Method are also disclosed. Also disclosed are products including the optical component.12-13-2012
20120313074LONG WAVELENGTH LIGHT EMITTING DEVICES WITH HIGH QUANTUM EFFICIENCIES - Various embodiments of light emitting devices with high quantum efficiencies are described herein. In one embodiment, a light emitting device includes a first contact, a second contact spaced apart from the first contact, and a first active region between the first and second contacts. The first active region is configured to produce a first emission via electroluminescence when a voltage is applied between the first and second contacts, and the first emission having a first center wavelength. The light emitting device also includes a second active region spaced apart from the first active region. The second active region is configured to absorb at least a portion of the first emission and produce a second emission via photoluminescence, and the second emission having a second center wavelength longer than the first center wavelength.12-13-2012
20120211724SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME - According to an embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer and a light emitting layer provided between the n-type semiconductor layer and the p-type semiconductor layer. The light emitting layer includes at least one quantum well, and the quantum well adjacent to the p-type semiconductor layer includes a first barrier layer and a second barrier layer, the first barrier layer nearer to the p-type semiconductor layer being doped with p-type impurity.08-23-2012
20120211725NITRIDE SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD THEREFOR - A nitride-based semiconductor device of the present invention includes: a nitride-based semiconductor multilayer structure 08-23-2012
20090057647SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - Provided is a semiconductor light emitting device and a method for manufacturing the same. The semiconductor light emitting device comprises: a first conductive type semiconductor layer; an active layer on the first conductive type semiconductor layer; an undoped semiconductor layer on the active layer; a first delta-doped layer on the undoped semiconductor layer; and a second conductive type semiconductor layer on the first delta-doped layer.03-05-2009
20120248405SEMICONDUCTOR LIGHT-EMITTING STRUCTURE - A semiconductor light-emitting structure including a first conductive type semiconductor layer, a second conductive type semiconductor layer, a light-emitting layer, an electrode, an insulating layer, and an adhesive layer is provided. The light-emitting layer is disposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer. The electrode is disposed on the first conductive type semiconductor layer. The insulating layer covers a part of the first conductive type semiconductor layer and the electrode. The adhesive layer is disposed between the electrode and the insulating layer so as to bond the electrode and the insulating layer.10-04-2012
20120248409Simultaneous Modulation of Quantum Dot Photoluminescence using Orthogonal Fluorescence Resonance Energy Transfer (FRET) and Charge Transfer Quenching (CTQ) - Quantum dots are modified with varying amounts of (a) a redox-active moiety effective to perform charge transfer quenching, and (b) a fluorescent dye effective to perform fluorescence resonance energy transfer (FRET), so that the modified quantum dots have a plurality of photophysical properties. The FRET and charge transfer pathways operate independently, providing for two channels of control for varying luminescence of quantum dots having the same innate properties.10-04-2012
20120248411NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE AND FABRICATION METHOD THEREOF - The present invention relates to a nitride semiconductor light emitting device including: a substrate having a predetermined pattern formed on a surface thereof by an etch; a protruded portion disposed on a non-etched region of the substrate, and having a first buffer layer and a first nitride semiconductor layer stacked thereon; a second buffer layer formed on the etched region of the substrate; a second nitride semiconductor layer formed on the second buffer layer and the protruded portion; a third nitride semiconductor layer formed on the second nitride semiconductor layer; an active layer formed on the third nitride semiconductor layer to emit light; and a fourth nitride semiconductor layer formed on the active layer. According to the present invention, the optical extraction efficiency of the nitride semiconductor light emitting device can be enhanced.10-04-2012
20100051901Light emitting devices and displays with improved performance - Light emitting devices and devices with improved performance are disclosed. In one embodiment, a light emitting device includes an emissive material disposed between a first electrode, and a second electrode, wherein the emissive material comprises semiconductor nanocrystals capable of emitting light including a maximum peak emission in the blue region of the spectrum upon excitation, wherein the light emitting device can have a peak external quantum efficiency of at least about 1.0 percent. Also disclosed is a display including at least one light emitting device including an emissive material disposed between a first electrode, and a second electrode, wherein the at least one light emitting device can have a peak external quantum efficiency of at least about 1.0 percent. In another embodiment, a light emitting device includes an emissive material disposed between a first electrode and a second electrode. The emissive material comprises semiconductor nanocrystals capable of emitting light including a maximum peak emission in the blue region of the spectrum upon excitation. The device further includes a first spacer material disposed between the emissive material and the first electrode. In certain embodiments, the device further includes a first material capable of transporting charge disposed between the emissive material and the first electrode, wherein the first spacer material is disposed between the emissive material and the first electrode. In certain embodiments, for example, light emitting devices can have a maximum peak emission in a range from about 380 nm to about 500 nm. In certain embodiments, the light emitting device can have a maximum peak emission peak in the range from about 450 nm to about 490 nm. Displays including light emitting devices are also disclosed.03-04-2010
20100051902SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device has a structure in which a light-emitting layer of an organic material or the like is sandwiched between a work function controlled single-wall carbon nanotube cathode encapsulating a donor having a low ionization potential and a work function controlled single-wall carbon nanotube anode encapsulating an acceptor having a high electron affinity. A semiconductor device represented by an organic field-effect light-emitting element and a method of manufacturing the same are provided. The semiconductor device and the method of manufacturing the same make it possible to improve characteristics and performance, such as reduction in light-emission starting voltage and a high luminous efficiency, to improve reliability, such as an increase in life, and to improve productivity, such as reduction in manufacturing cost.03-04-2010
20120313076LOW DROOP LIGHT EMITTING DIODE STRUCTURE ON GALLIUM NITRIDE SEMIPOLAR SUBSTRATES - A light emitting diode structure of (Al,Ga,In)N thin films grown on a gallium nitride (GaN) semipolar substrate by metal organic chemical vapor deposition (MOCVD) that exhibits reduced droop. The device structure includes a quantum well (QW) active region of two or more periods, n-type superlattice layers (n-SLs) located below the QW active region, and p-type superlattice layers (p-SLs) above the QW active region. The present invention also encompasses a method of fabricating such a device.12-13-2012
20100176369Metalized Silicon Substrate for Indium Gallium Nitride Light-Emitting Diodes - A light emitting diode having a metallized silicon substrate including a silicon base, a buffer layer disposed on the silicon base, a metal layer disposed on the buffer layer, and light emitting layers disposed on the metal layer. The buffer layer can be AlN, and the metal layer ZrN. The light emitting layers can include GaN and InGaN. The metallized silicon substrate can also include an oxidation prevention layer disposed on the metal layer. The oxidation prevention layer can be AlN. The light emitting diode can be formed using an organometallic vapor phase epitaxy process. The intermediate ZrN/AlN layers enable epitaxial growth of GaN on silicon substrates using conventional organometallic vapor phase epitaxy. The ZrN layer provides an integral back reflector, ohmic contact to n-GaN. The AlN layer provides a reaction barrier, thermally conductive interface layer, and electrical isolation layer. 07-15-2010
20100270532NITRIDE SEMI-CONDUCTOR LIGHT EMITTING DEVICE - A nitride semi-conductor light emitting device has a p-type nitride semi-conductor layer 10-28-2010
20120175590LIGHT-EMITTING DEVICE AND METHOD FOR PRODUCING LIGHT EMITTING DEVICE - A method for producing a light-emitting device, includes: performing, on a first substrate made of III-V group compound semiconductor, crystal growth of a laminated body including an etching easy layer contiguous to the first substrate and a light-emitting layer made of nitride semiconductor; bonding a second substrate and the laminated body; and detaching the second substrate provided with the light-emitting layer from the first substrate by, one of removing the etching easy layer by using a solution etching method, and removing the first substrate and the etching easy layer by using mechanical polishing method.07-12-2012
20120175589NITRIDE SEMICONDUCTOR DEVICE AND METHOD OF PRODUCING THE SAME - A nitride semiconductor device is provided, in which a superlattice strain buffer layer using AlGaN layers having a low Al content or GaN layers is formed with good flatness, and a nitride semiconductor layer with good flatness and crystallinity is formed on the superlattice strain buffer layer. A nitride semiconductor device includes a substrate; an AlN strain buffer layer made of AlN formed on the substrate; a superlattice strain buffer layer formed on the AlN strain buffer layer; and a nitride semiconductor layer formed on the superlattice strain buffer layer, and is characterized in that the superlattice strain buffer layer has a superlattice structure formed by alternately stacking first layers made of Al07-12-2012
20120175588SEMICONDUCTOR NANOCRYSTALS USED WITH LED SOURCES - The present invention relates to the use of light-converting, colloidal, doped semiconductor nanocrystals to provide a new generation of high performance, low cost monochromatic and white light sources based on LEDs.07-12-2012
20120175587SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device is herein disclosed. The semiconductor light emitting device includes: a conductive substrate, a p-type semiconductor layer disposed on the conductive substrate, an active layer disposed on the p-type semiconductor layer, an n-type semiconductor layer disposed on the active layer, and an n-side electrode disposed on the n-type semiconductor layer and including a carbon nanotube layer doped with an n-type impurity.07-12-2012
20100270531GaN BASED LIGHT EMITTERS WITH BAND-EDGE ALIGNED CARRIER BLOCKING LAYERS - Band-edge aligned carrier blocking layers are introduced into wurtzite or zinc blende Gallium Nitride based diode laser and LEDs in order to prevent thermionic emission and the overflow of carriers at elevated operating temperatures. These blocking layers are located in the direct vicinity of the active zone of the light emitter, and are designed with material composition such that one of the band-edges of the layers is, either partially or fully, aligned with that of adjacent barrier or waveguide layer. This invention proposes GaN based QW structure with a AlGaN(AsPSb) electron-blocking layer on the p-side of quantum well and (InGa)AlN as hole-blocking layer.10-28-2010
20120217473Light Emitting Diode with Polarization Control - An improved light emitting heterostructure is provided. The heterostructure includes an active region having a set of barrier layers and a set of quantum wells, each of which is adjoined by a barrier layer. The quantum wells have a delta doped p-type sub-layer located therein, which results in a change of the band structure of the quantum well. The change can reduce the effects of polarization in the quantum wells, which can provide improved light emission from the active region.08-30-2012
20120074379LIGHT-EMITTING ELEMENT AND THE MANUFACTURING METHOD THEREOF - A light-emitting element includes: a substrate being a monocrystalline structure, comprising a plurality of recesses; and a plurality of first light-emitting stacks formed in the recesses respectively.03-29-2012
20120074384PROTECTION FOR THE EPITAXIAL STRUCTURE OF METAL DEVICES - Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non-(or low) thermally conductive and/or non-(or low) electrically conductive carrier substrate that has been removed.03-29-2012
20120074383DEVICE OF LIGHT-EMITTING DIODE - A LED device is provided. The LED device has a conductive carrier substrate, a light-emitting structure, a plurality of pillar structures, a dielectric layer, a first electrode and a second electrode. The light-emitting structure is located on the conductive carrier substrate. The pillar structures are located on the light-emitting structure. The dielectric layer is to cover a sidewall of the pillar structure. The first electrode is located over the pillar structure, and the second electrode is located on the conductive carrier substrate.03-29-2012
20120074382LIGHT EMITTING DIODE AND METHOD FOR MANUFACTURE OF THE SAME - Disclosed is a light emitting device. The light emitting device includes a substrate, a semiconductor layer on the substrate, and an electrode on the semiconductor layer, wherein the substrate has at least one side surface having a predetermined tilt angle with respect to a bottom surface of the substrate, wherein the predetermined tilt angle is an obtuse angle, and wherein a side surface of the semiconductor layer disposes vertically.03-29-2012
20120074381RE-EMITTING SEMICONDUCTOR CONSTRUCTION WITH ENHANCED EXTRACTION EFFICIENCY - A stack of semiconductor layers (03-29-2012
20120248408LIGHT-EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - A light-emitting device and a method of manufacturing the same are provided. The light-emitting device includes a compound semiconductor structure having a first N-type compound semiconductor layer, an active layer, and a P-type compound semiconductor layer, a P-type electrode layer that is disposed on the P-type compound semiconductor layer and electrically connects with the P-type compound semiconductor layer, a plurality of insulation walls disposed at two sides of the compound semiconductor structure and the P-type electrode layer, a plurality of N-type electrode layers penetrating the plurality of insulation walls, and a conductive substrate on which a plurality of N-type electrode connecting layers respectively corresponding to a plurality of N-type electrode layers are separated from a P-type electrode connecting layer corresponding to the P-type electrode layer.10-04-2012
20120248407GROUP III NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE - A Group III nitride semiconductor light-emitting device includes a light-emitting layer having a multiple quantum structure including an Al10-04-2012
20120248404GALLIUM-NITRIDE LIGHT EMITTING DIODE AND MANUFACTURING METHOD THEREOF - The present disclosure relates to a gallium-nitride light emitting diode and a manufacturing method thereof and the gallium-nitride light emitting diode includes an n-type nitride semiconductor layer formed on a substrate; an active layer formed on the n-type nitride semiconductor layer; a p-type doped intermediate layer formed on the active layer; and a p-type nitride semiconductor layer formed on the intermediate layer.10-04-2012
20120313077HIGH EMISSION POWER AND LOW EFFICIENCY DROOP SEMIPOLAR BLUE LIGHT EMITTING DIODES - High emission power and low efficiency droop semipolar blue light emitting diodes (LEDs).12-13-2012
20120223289LIGHT-EMITTING DIODE DISPLAY AND METHOD OF PRODUCING THE SAME - This invention relates light-emitting diode displays with silmple structure and fabricating method as well as excellent efficiency. In an embodiment, the display features a nanorod LED array arranged on a substrate and divided into a first, second, and third sub-pixels. Two electrodes are preferably arranged in a vertical configuration for driving the sub-pixels. In another embodiment, a method features the sub-pixels for emitting multi-primary colors being formed on a conductive substrate and thus simplifies the steps.09-06-2012
20120256163LIGHT EMITTING UNIT AND DISPLAY DEVICE INCLUDING THE SAME - A display device including a display panel and a light emitting unit providing light to the display panel is described herein. The light emitting unit includes a light emitting diode and a light emitting layer. The light emitting diode emits a first light. The light emitting layer includes quantum dots and fluorescent particles. The quantum dots are disposed on the light emitting diode and absorb the first light to emit a second light of a wavelength different from that of the first light. The fluorescent particles absorb the first light to emit a third light of a wave length different from those of the first and second light.10-11-2012
20120256162LIGHT EMITTING DIODE AND MANUFACTURING METHOD THEREOF - A light emitting diode includes a substrate, an N-type semiconductor layer arranged on the substrate, an active layer, and a P-type semiconductor layer. The active layer includes a first barrier layer, a second barrier layer, and a quantum well structure layer arranged between the first and second barrier layers. The quantum well structure layer includes an InN layer, a GaN layer and an InGaN layer arranged on the first barrier layer in sequence. The InN layer has an upper surface connected to the GaN layer. The upper surface is rough. The InGaN layer has a concentration of In atoms in some regions of the InGaN layer which is higher that that in other regions thereof. The P-type semiconductor layer is arranged on the second barrier layer.10-11-2012
20130020554SEMICONDUCTOR LIGHT EMITTING DEVICE AND LIGHT EMITTING APPARATUS - There is provided a semiconductor light emitting device and a light emitting apparatus. The semiconductor light emitting device includes a light emitting diode (LED) part disposed on one region of a light transmissive substrate and including a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer; and a Zener diode part disposed on the other region of the light transmissive substrate and including a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer.01-24-2013
20120261642OPTOELECTRONIC SEMICONDUCTOR COMPONENT AND PHOTONIC CRYSTAL - An optoelectronic semiconductor component includes a semiconductor layer sequence having at least one active layer, and a photonic crystal that couples radiation having a peak wavelength out of or into the semiconductor layer sequence, wherein the photonic crystal is at a distance from the active layer and formed by superimposition of at least two lattices having mutually different reciprocal lattice constants normalized to the peak wavelength.10-18-2012
20120261641SEMICONDUCTOR LIGHT EMITTING DEVICE - According to an embodiment, a semiconductor light emitting device includes a stacked body including a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type different from the first conductivity type, and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. A transparent electrode is provided on a first major surface of the stacked body on a side of the first semiconductor layer, the transparent electrode having a thin part, a first thick part thicker than the thin part, and a plurality of second thick parts thicker than the thin part and extending along the first major surface from the first thick part. A first electrode is provided on the first thick part; and a second electrode is electrically connected to the second semiconductor layer.10-18-2012
20120228581SEMICONDUCTOR LIGHT EMITTING DEVICE AND MANUFACTURING METHOD OF THE SAME - The semiconductor light emitting device according to an embodiment includes an N-type nitride semiconductor layer, a nitride semiconductor active layer disposed on the N-type nitride semiconductor layer, and a P-type nitride semiconductor layer disposed on the active layer. The P-type nitride semiconductor layer includes an aluminum gallium nitride layer. The indium concentration in the aluminum gallium nitride layer is between 1E18 atoms/cm09-13-2012
20120228580LIGHT-EMITTING DIODE DEVICE AND METHOD FOR MANUFACTURING THE SAME - A light-emitting diode device and a method for manufacturing the same. In one embodiment, the light-emitting diode device comprises a substrate, an undoped semiconductor layer and a current blocking structure disposed on the substrate in sequence, a plurality of light-emitting structures, separately disposed on the current blocking structure, a plurality of insulating spacers, respectively located between the adjacent light-emitting structures, and a plurality of conductive wires. Each of the light-emitting structures has a first conductivity type semiconductor layer, an active layer, a second conductivity type semiconductor layer, and a first electrode and a second electrode. The first conductivity type semiconductor layer and the second conductivity type semiconductor layer have different conductivity types. The plurality of conductive wires respectively connecting the first electrode of one of the adjacent light-emitting structures and the second electrode of the other light-emitting structure in sequence.09-13-2012
20110121262LED DEVICE WITH RE-EMITTING SEMICONDUCTOR CONSTRUCTION AND CONVERGING OPTICAL ELEMENT - A light source is provided comprising an LED component having an emitting surface, which may comprise: i) an LED capable of emitting light at a first wavelength; and ii) a re-emitting semiconductor construction which comprises a second potential well not located within a pn junction having an emitting surface; or which may alternately comprise a first potential well located within a pn junction and a second potential well not located within a pn junction; and which additionally comprises a converging optical element.05-26-2011
20110121261NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE AND FABRICATION METHOD THEREOF - The present invention relates to a nitride semiconductor light emitting device including: a first nitride semiconductor layer having a super lattice structure of AlGaN/n-GaN or AlGaN/GaN/n-GaN; an active layer formed on the first nitride semiconductor layer to emit light; a second nitride semiconductor layer formed on the active layer; and a third nitride semiconductor layer formed on the second nitride semiconductor layer. According to the present invention, the crystallinity of the active layer is enhanced, and optical power and reliability are also enhanced.05-26-2011
20100327257OPTICAL SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - An optical semiconductor device is disclosed including an active region including an active layer and a diffraction grating having a λ/4 phase shift; passive waveguide regions each including a passive waveguide and a diffraction grating, disposed on the side of an emission facet and on the side of a rear facet sandwiching the active region between the passive waveguide regions, respectively; and an anti-reflection coating applied on the emission facet, wherein the passive waveguide region on the side of the emission facet has a length shorter than a length of the passive waveguide region on the side of the rear facet side.12-30-2010
20100327256CONTROLLING PIT FORMATION IN A III-NITRIDE DEVICE - A device includes a semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region and a plurality of layer pairs disposed within one of the n-type region and the p-type region. Each layer pair includes an InGaN layer and pit-filling layer in direct contact with the InGaN layer. The pit-filling layer may fill in pits formed in the InGaN layer.12-30-2010
20120319079LIGHT EMITTING DEVICE - Disclosed is a light emitting device including a first conductive type semiconductor layer; a second conductive type semiconductor layer disposed on the first conductive type semiconductor layer; and an active layer disposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer, the active layer comprising quantum well layers and quantum barrier layers, wherein each of the quantum well barrier layers comprises first barrier layers and a second barrier layer disposed between the first barrier layers, and an energy bandgaps of the second barrier layer is larger than energy bandgaps of the quantum well layers and smaller than energy bandgaps of the first barrier layers.12-20-2012
20120319080NITRIDE SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND METHOD FOR PRODUCING SAME - Disclosed is a nitride semiconductor light-emitting element comprising a p-type nitride semiconductor layer 12-20-2012
20120267606GROUP III NITRIDE CRYSTAL SUBSTRATE, EPILAYER-CONTAINING GROUP III NITRIDE CRYSTAL SUBSTRATE, SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A group III nitride crystal substrate is provided, wherein, a uniform distortion at a surface layer of the crystal substrate is equal to or lower than 1.7×1010-25-2012
20120267607EPITAXIAY WAFER, METHOD FOR MANUFACTURING THE SAME AND METHOD FOR MANUFACTURING LED CHIP - A method for manufacturing an epitaxial wafer for a light emitting diode (LED) is provided. The method may comprise: forming a back coating layer on a back surface of a substrate; forming a buffer layer on a top surface of the substrate; forming an N-type semiconductor layer on the buffer layer; forming a multi-quantum well layer on the N-type semiconductor layer; and forming a P-type semiconductor layer on the multi-quantum well layer. An epitaxial wafer and a method for manufacturing an LED chip are also provided.10-25-2012
20120298956Method of Separating Light-Emitting Diode from a Growth Substrate - A method of forming a light-emitting diode (LED) device and separating the LED device from a growth substrate is provided. The LED device is formed by forming an LED structure over a growth substrate. The method includes forming and patterning a mask layer on the growth substrate. A first contact layer is formed over the patterned mask layer with an air bridge between the first contact layer and the patterned mask layer. The first contact layer may be a contact layer of the LED structure. After the formation of the LED structure, the growth substrate is detached from the LED structure along the air bridge.11-29-2012
20120298954SEMICONDUCTOR LIGHT EMITTING DEVICE AND MANUFACTURING METHOD OF THE SAME - There are provided a semiconductor light emitting device and a manufacturing method of the same. The semiconductor light emitting device includes a light emitting structure including first and second conductive semiconductor layers with an active layer interposed therebetween; first and second bonding electrodes connected to the first and second conductive semiconductor layers, respectively; a transparent electrode layer formed on the second conductive semiconductor layer; a plurality of nano structures formed on the transparent electrode layer; and a passivation layer formed to cover the plurality of nano-structures, wherein refractive indexes of the transparent electrode layer, the plurality of nano-structures, and the passivation layer may be sequentially reduced.11-29-2012
20120298953LIGHT EMITTING DEVICE - A light emitting device according to the embodiment includes a substrate having first and second surfaces opposite to each other and formed on the first surface thereof with a plurality of convex parts; and a light emitting structure formed on the first surface of the substrate and including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer between the first and second conductive semiconductor layers. The light emitting structure has holes corresponding to the convex parts of the substrate.11-29-2012
20120298951Optoelectronic Semiconductor Body with a Quantum Well Structure - An optoelectronic semiconductor body is provided, which contains a semiconductor material which is composed of a first component and a second component different from the first component. The semiconductor body comprises a quantum well structure, which is arranged between an n-conducting layer (11-29-2012
20120298950LIGHT EMITTING DEVICES WITH BUILT-IN CHROMATICITY CONVERSION AND METHODS OF MANUFACTURING - Various embodiments of light emitting devices with built-in chromaticity conversion and associated methods of manufacturing are described herein. In one embodiment, a method for manufacturing a light emitting device includes forming a first semiconductor material, an active region, and a second semiconductor material on a substrate material in sequence, the active region being configured to produce a first emission. A conversion material is then formed on the second semiconductor material. The conversion material has a crystalline structure and is configured to produce a second emission. The method further includes adjusting a characteristic of the conversion material such that a combination of the first and second emission has a chromaticity at least approximating a target chromaticity of the light emitting device.11-29-2012
20120319081MULTI-LUMINOUS ELEMENT AND METHOD FOR MANUFACTURING SAME - The present invention relates to a multi-luminous element and a method for manufacturing the same. The present invention provides the multi-luminous element comprising: a buffer layer disposed on a substrate; a first type semiconductor layer disposed on the buffer layer; a first active layer which is disposed on the first type semiconductor layer and is patterned to expose a part of the first type semiconductor layer; a second active layer disposed on the first type semiconductor layer which is exposed by the first active layer; and a second type semiconductor layer disposed on the first active layer and the second active layer, the first and second active layers being repeatedly disposed in the horizontal direction, and the method for manufacturing the same.12-20-2012
20110210311SEMICONDUCTOR LIGHT EMITTING DEVICE HAVING MULTI-CELL ARRAY AND METHOD FOR MANUFACTURING THE SAME - A semiconductor light emitting device includes: a substrate; a plurality of light emitting cells arranged on the substrate, each of the light emitting cells including a first-conductivity-type semiconductor layer, a second-conductivity-type semiconductor layer, and an active layer disposed therebetween to emit blue light; an interconnection structure electrically connecting at least one of the first-conductivity-type semiconductor layer and the second-conductivity-type semiconductor layer of the light emitting cell to at least one of the first-conductivity-type semiconductor layer and the second-conductivity-type semiconductor layer of another light emitting cell; and a light conversion part formed in at least a portion of a light emitting region defined by the plurality of light emitting cells, the light conversion part including at least one of a red light conversion part having a red light conversion material and a green light conversion part having a green light conversion material.09-01-2011
20110227039NITRIDE-BASED LIGHT EMITTING DEVICE - A nitride-based light emitting device capable of achieving an enhancement in light emission efficiency and an enhancement in reliability is disclosed. The nitride-based light emitting device includes a light emitting layer including a quantum well layer and a quantum barrier layer, and a stress accommodating layer arranged on at least one surface of the quantum well layer of the light emitting layer.09-22-2011
20110227034QUANTUM DOT-BLOCK COPOLYMER HYBRID, METHODS OF FABRICATING AND DISPERSING THE SAME, LIGHT EMITTING DEVICE INCLUDING THE SAME, AND FABRICATION METHOD THEREOF - Disclosed are a quantum dot-block copolymer hybrid, methods of fabricating and dispersing the same, a light emitting device including the same, and a fabrication method thereof. The quantum dot-block copolymer hybrid includes; a quantum dot, and a block copolymer surrounding the quantum dot, wherein the block copolymer has a functional group comprising sulfur (S) and forms a chemical bond with the quantum dot.09-22-2011
20110227033SEMICONDUCTOR LIGHT EMITTING DEVICE, WAFER, METHOD FOR MANUFACTURING SEMICONDUCTOR LIGHT EMITTING DEVICE, AND METHOD FOR MANUFACTURING WAFER - According to one embodiment, a semiconductor light emitting device includes a first layer, a second layer, and a light emitting portion. The first layer includes at least one of n-type GaN and n-type AlGaN. The second layer includes p-type AlGaN. The light emitting portion has a single quantum well structure. The single quantum well structure includes a first barrier layer, a second barrier layer, and a well layer. The first barrier layer is provided between the first layer and the second layer and includes Al09-22-2011
20120273751LIGHT EMITTING DEVICE AND A MANUFACTURING METHOD THEREOF - The present invention provides a light emitting device and a method for manufacturing the light emitting device. The light emitting device includes a susceptor and a light emitting diode set on the susceptor. The light emitting diode includes an electrode layer connected to the susceptor and an LED die set on the electrode layer. The electrode layer is provided with a pyramid array structure surface and the pyramid array surface works as a reflective surface of the light emitting diode. The LED die is provided with an alveolate surface which works as the light exiting surface of the LED. According to the light emitting device provided in the present invention, the emanative light generated by the LED is emitted or reflected to a desired emitting direction. Further, the light emitting device has an alveolate light exiting surface and an LED having a pyramid array reflective surface, which increases the light emitting and reflective area of the LED, thereby improving the luminous efficiency. Besides, the light emitting device adopts a surface mount technology, which is easy to implement.11-01-2012
20120080660LIGHT EMITTING DIODE AND LIGHT EMITTING DEVICE PACKAGE INCLUDING THE SAME - A light emitting diode is disclosed. The disclosed light emitting diode includes a light emitting structure including a first-conductivity-type semiconductor layer, an active layer, and a second-conductivity-type semiconductor layer. The first-conductivity-type semiconductor layer, active layer, and second-conductivity-type semiconductor layer are disposed to be adjacent to one another in a same direction. The active layer includes well and barrier layers alternately stacked at least one time. The well layer has a narrower energy bandgap than the barrier layer. The light emitting diode also includes a mask layer disposed in the first-conductivity-type semiconductor layer, a first electrode disposed on the first-conductivity-type semiconductor layer, and a second electrode disposed on the second-conductivity-type semiconductor layer. The first-conductivity-type semiconductor layer is formed with at least one recess portion.04-05-2012
20120080659NITRIDE BASED SEMICONDUCTOR OPTICAL DEVICE, EPITAXIAL WAFER FOR NITRIDE BASED SEMICONDUCTOR OPTICAL DEVICE, AND METHOD OF FABRICATING SEMICONDUCTOR LIGHT-EMITTING DEVICE - In the nitride based semiconductor optical device, the strained well layers extend along a reference plane tilting at a tilt angle α from the plane that is orthogonal to a reference axis extending in the direction of the c-axis. A gallium nitride based semiconductor layer is adjacent to a light-emitting layer with a negative piezoelectric field and has a band gap larger than that of a barrier layer. The direction of the piezoelectric field in the well layer is directed in a direction from the n-type layer to the p-type layer, and the piezoelectric field in the gallium nitride based semiconductor layer is directed in a direction from the p-type layer to the n-type layer. Consequently, the valence band, not the conduction band, has a dip at the interface between the light-emitting layer and the gallium nitride based semiconductor layer.04-05-2012
20110248237LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE, AND LIGHTING SYSTEM - Provided are a light emitting device, a light emitting device package, and a lighting system. The light emitting device includes a light emitting structure layer, a conductive layer, a bonding layer, a support member, first and second pads, and first and second electrodes. The light emitting structure layer includes a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer. The conductive layer is disposed under the light emitting structure layer. The bonding layer is disposed under the conductive layer. The support member is disposed under the bonding layer. The first pad is disposed under the support member. The second pad is disposed under the support member at a distance from the first pad. The first electrode is connected between the first conductive type semiconductor layer and the first pad. The second electrode is connected between the bonding layer and the second pad.10-13-2011
20110253973Semiconductor layer - A light-emitting element includes a β-Ga10-20-2011
20120326121VAPOR DEPOSITION SYSTEM, METHOD OF MANUFACTURING LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE - There are provided a vapor deposition system, a method of manufacturing a light emitting device, and a light emitting device. A vapor deposition system according to an aspect of the invention may include: a first chamber having a first susceptor and at least one gas distributor discharging a gas in a direction parallel to a substrate disposed on the first susceptor; and a second chamber having a second susceptor and at least one second gas distributor arranged above the second susceptor to discharge a gas downwards.12-27-2012
20100230657NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE - The invention provides a highly reliable nitride semiconductor light emitting device improved in electrostatic discharge withstand voltage. In the light emitting device, an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer are sequentially formed on a substrate. The active layer features a multiple quantum well structure including a plurality of multiple quantum barrier layers and quantum well layers. At least one of the quantum barrier layers has a band-gap modulated multilayer structure.09-16-2010
20100230656LIGHT EMITTING STRUCTURE AND METHOD OF MANUFACTURE THEREOF - A semiconductor structure having an electrically conducting silicon substrate and a GaN semiconductor device separated from the substrate by a buffer layer is provided. The buffer layer electrically connects the silicon substrate with the GaN semiconductor device. In addition, a GaN LED arranged in a flip chip orientation on the buffer layer on the substrate is provided.09-16-2010
20120085989LIGHT-EMITTING SEMICONDUCTOR DEVICE - A semiconductor light-emitting device includes a conductive substrate, a light-emitting structure layer, a metallic reflective layer, a transparent conductive layer, a first patterned dielectric layer, and a second patterned dielectric layer. The light-emitting structure layer, the transparent conductive layer, the metallic reflective layer, and the conductive substrate are sequentially arranged. The first patterned dielectric layer is between the light-emitting structure layer and the transparent conductive layer and includes first structure units separated from one another by a first space. The first portions are located in the first spaces respectively. The second patterned dielectric layer is between the transparent conductive layer and the metallic reflective layer and includes second structure units separated from one another by a second space. The second portions are located in the second spaces respectively. The first and the second portions are not overlapped.04-12-2012
20120326117SEMICONDUCTOR LIGHT EMMITING DEVICE - According to one embodiment, in a semiconductor light emitting device, a semiconductor laminated body is made by laminating a first semiconductor layer of a first conductivity type having a first sheet resistance, a light emitting layer, and a second semiconductor layer of a second conductivity type and includes a cutout unit formed at an end side and an indentation unit extending from the cutout unit in a first direction toward the other end side and branching or bending in a second direction substantially perpendicular to the first direction as well as bending or branching in a direction opposite to the second direction. A transparent conductive film is formed on the semiconductor laminated body and has a second sheet resistance less than the first sheet resistance. A first thin wire electrode is formed along the indentation unit. A second thin wire electrode is formed on the transparent conductive film.12-27-2012
20120091434VERTICAL LIGHT-EMITTING DEVICE - A vertical light-emitting device includes: a substrate; a first electrode disposed on a bottom surface of the substrate; a reflection layer disposed on a top surface of the substrate; a current spreading layer disposed on the reflection layer and comprising a groove having a width narrower toward a top portion thereof; a light generation layer disposed on the current spreading layer; and a second electrode disposed on the light generation layer.04-19-2012
20120326120TRANSPARENT LED WAFER MODULE AND METHOD FOR MANUFACTURING SAME - A transparent LED wafer module and a method for manufacturing the same are provided. In a conductor LED device epitaxial process, the conductor LED device is grown on a transparent material wafer, where both surfaces of the conductor LED device are entirely grown on the transparent material, and then a transparent glass substrate is restacked, thereby securing a high amount of light.12-27-2012
20120326119LIGHT EMITTING DISPLAY DEVICE HAVING NANOWIRE - The invention is a light emitting display device having a nanowire that emits light when an electric current is applied. The disclosed light emitting display device comprises: a nanowire light emitting element electrically connected to a first power line; a driving transistor electrically connected between the light emitting element and a second power line; a capacitor electrically connected between the driving transistor, the second power line, and a data line; and a switching transistor electrically connected between the driving transistor, the data line, and a scanning line. The invention discloses a light emitting display device comprising: a nanowire light emitting transistor electrically connected between a first power line and a second power line; a capacitor electrically connected between the nanowire light emitting transistor, second power line, and a data line; and a switching transistor electrically connected between the nanowire light emitting transistor, data line, capacitor, and a scanning line.12-27-2012
20120326118SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - In one embodiment, a semiconductor light emitting device includes a substrate, an electrically-conductive reflection film, an active region, a first electrode, a transparent conductive film and a second electrode. In the active region, a first transparent electrode, a first conductivity type contact layer, a light emitting layer, a second conductivity type contact layer and a second transparent electrode are formed and stacked on the electrically-conductive reflection film. The first electrode is provided away from the active region on the electrically-conductive reflection film. One end of the transparent conductive film is provided to cover the upper portion of the second transparent electrode, while the other end of the transparent conductive film is provided above the electrically-conductive reflection film through an insulating film. The transparent conductive film is in contact with a lateral surface of the active region through the insulating film.12-27-2012
20120286237SEMICONDUCTOR LIGHT EMITTING DEVICE AND WAFER - According to one embodiment, a semiconductor light emitting device includes: an n-type semiconductor layer, a p-type semiconductor layer, and a light emitting part. The light emitting part is provided between the n-type semiconductor layer and the p-type semiconductor layer. The light emitting part includes: a plurality of well layers including In11-15-2012
20120286238LIGHTING DEVICES, AN OPTICAL COMPONENT FOR A LIGHTING DEVICE, AND METHODS - A white-light emitting lighting device comprising one or more light emitting light sources (preferably solid state semiconductor light emitting diodes) that emit off-white light during operation, wherein the off-white light includes a spectral output including at least one spectral component in a first spectral region from about 360 nm to about 475 nm, at least one spectral component in a second spectral region from about 475 nm to about 575 nm, and at least one deficiency in at least one other spectral region, and an optical component comprising an optical material for converting at least a portion of the off-white light to one or more predetermined wavelengths, such that light emitted by the lighting device comprises white light, wherein the optical material comprises quantum confined semiconductor nanoparticles. Also disclosed is an optical component, lighting fixture, a cover plate for a lighting fixture, and methods.11-15-2012
20100051900MISFIT DISLOCATION FORMING INTERFACIAL SELF-ASSEMBLY FOR GROWTH OF HIGHLY-MISMATCHED III-SB ALLOYS - Exemplary embodiments provide high-quality layered semiconductor devices and methods for their fabrication. The high-quality layered semiconductor device can be formed in planar with low defect densities and with strain relieved through a plurality of arrays of misfit dislocations formed at the interface of highly lattice-mismatched layers of the device. The high-quality layered semiconductor device can be formed using various materials systems and can be incorporated into various opto-electronic and electronic devices. In an exemplary embodiment, an emitter device can include monolithic quantum well (QW) lasers directly disposed on a SOI or silicon substrate for waveguide coupled integration. In another exemplary embodiment, a superlattice (SL) photodetector and its focal plane array can include a III-Sb active region formed over a large GaAs substrate using SLS technologies.03-04-2010
20120138895SEMICONDUCTOR DEVICE - A semiconductor device has an active layer, a first semiconductor layer of first conductive type, an overflow prevention layer disposed between the active layer and the first semiconductor layer, which is doped with impurities of first conductive type and which prevents overflow of electrons or holes, a second semiconductor layer of first conductive type disposed at least one of between the active layer and the overflow prevention layer and between the overflow prevention layer and the first semiconductor layer, and an impurity diffusion prevention layer disposed between the first semiconductor layer and the active layer, which has a band gap smaller than those of the overflow prevention layer, the first semiconductor layer and the second semiconductor layer and which prevents diffusion of impurities of first conductive type.06-07-2012
20120138893LIGHT EMITTING DIODE, LIGHT EMITTING DEVICE PACKAGE INCLUDING THE SAME AND LIGHTING SYSTEM - A light emitting device includes a light emitting structure including a first conductive type semiconductor layer, an active layer and a second conductive type semiconductor layer; a multi-contact layer disposed on at least a predetermined region of the second conductive type semiconductor layer, the multi-contact layer including at least one pair-structure configured of a first layer including InGaN having a dopant doped thereon and a second layer including GaN having a different dopant doped thereon; and a first electrode and a second electrode to provide currents to the first conductive type semiconductor layer and the second conductive type semiconductor layer, respectively.06-07-2012
20120138892LIGHT-EMITTING DEVICE - A light-emitting device comprises a substrate, and a light-emitting structure formed on the substrate. The light-emitting structure comprises a first active layer emitting the light with a first wavelength, and a second active layer emitting the light with a second wavelength. The light-emitting structure is formed by the first active layer and the second active layer stacked alternately.06-07-2012
20120138891METHOD FOR REDUCTION OF EFFICIENCY DROOP USING AN (Al,In,Ga)N/Al(x)In(1-x)N SUPERLATTICE ELECTRON BLOCKING LAYER IN NITRIDE BASED LIGHT EMITTING DIODES - A method for reduction of efficiency droop using an (Al, In, Ga)N/Al06-07-2012
20120138889SEMICONDUCTOR LIGHT EMITTING DEVICE - According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, a light emitting part, and a p-side electrode. The light emitting part is provided between the n-type and the p-type semiconductor layers, and includes a plurality of barrier layers and a plurality of well layers. The p-side electrode contacts the p-type semiconductor layer. The p-type semiconductor layer includes first, second, third, and fourth p-type layers. The first p-type layer contacts the p-side electrode. The second p-type layer contacts the light emitting part. The third p-type layer is provided between the first p-type layer and the second p-type layer. The fourth p-type layer is provided between the second p-type layer and the third p-type layer. The second p-type layer contains Al and contains a p-type impurity in a lower concentration lower than that in the first concentration.06-07-2012
20100148146MONOLITHIC WHITE AND FULL-COLOR LIGHT EMITTING DIODES USING OPTICALLY PUMPED MULTIPLE QUANTUM WELLS - An embodiment is a method and apparatus for a white or full-color light-emitting diode. First single or multiple quantum wells (QWs) at a first wavelength are formed at an active region between a p-type layer and an n-type layer of a light-emitting diode. Multiple passive quantum wells (QWs) are formed within the p-type layer or the n-type layer. The multiple passive QWs are optically pumped by the first or single multiple QWs to generate a desired color.06-17-2010
20130015427NITRIDE-BASED SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A nitride-based semiconductor light-emitting device 01-17-2013
20130015426METHOD OF MANUFACTURING OF A SEMI-CONDUCTOR ELEMENT AND SEMI-CONDUCTOR ELEMENT - A method of manufacturing of a semi-conductor element, comprising the following steps: providing a substrate, the substrate having a surface, the surface being partially coated with a coating and having at least one uncoated area, and growing a truncated pyramid of gallium nitride on the uncoated area, wherein the method comprises the following step: growing at least one gallium nitride column on the truncated pyramid.01-17-2013
20130015425LIGHT-EMITTING ELEMENT WITH MULTIPLE LIGHT-EMTTING STACKED LAYERSAANM Lin; Yi-ChiehAACI TainanAACO TWAAGP Lin; Yi-Chieh Tainan TWAANM Lee; Rong-RenAACI TainanAACO TWAAGP Lee; Rong-Ren Tainan TW - A light-emitting element includes a substrate; a first light-emitting stacked layer formed on the substrate; a tunneling layer formed on the first light-emitting stacked layer; a second light-emitting stacked layer formed on the tunneling layer; and a contact layer formed on the second light-emitting stacked layer.01-17-2013
20110147705SEMICONDUCTOR LIGHT-EMITTING DEVICE WITH SILICONE PROTECTIVE LAYER - One embodiment of the present invention provides a semiconductor light-emitting device which includes: a substrate, a first doped semiconductor layer situated above the substrate, a second doped semiconductor layer situated above the first doped semiconductor layer, a multi-quantum-well (MQW) active layer situated between the first and the second doped semiconductor layers. The device further includes a first electrode coupled to the first doped semiconductor layer, a second electrode coupled to the second doped semiconductor layer, and a silicone protective layer which substantially covers the sidewalls of the first and second doped semiconductor layers, the MQW active layer, and part of the horizontal surface of the second doped semiconductor layer which is not covered by the second electrode.06-23-2011
20130020552SEMICONDUCTOR LIGHT-EMITTING ELEMENT - A semiconductor light-emitting element includes a support substrate, a semiconductor film including a light-emitting layer provided on the support substrate, a surface electrode provided on a light-extraction-surface-side surface of the semiconductor film, and a light-reflecting layer provided between the support substrate and the semiconductor film, forming a light-reflecting surface. The surface electrode includes a first electrode piece and a second electrode piece. The light-reflecting layer includes a reflection electrode including a third electrode piece and a fourth electrode piece. The first electrode piece and the third electrode piece are arranged so as to not overlap when projected onto a projection surface parallel to a principal surface of the semiconductor film, and the shortest distance between the first electrode piece and the fourth electrode piece, is greater than the shortest distance between the first electrode piece and the third electrode piece.01-24-2013
20130020553SEMICONDUCTOR LIGHT EMITTING DEVICE - There is provided a semiconductor light emitting device including: first and second conductivity type semiconductor layers; and an active layer disposed between the first and second conductivity type semiconductor layers and having a structure in which a plurality of quantum barrier layers and a plurality of quantum well layers are alternately disposed, wherein at least one of the plurality of quantum well layers includes a first region in which band gap energy is reduced through a first slope and a second region in which band gap energy is reduced through a second slope different from the first slope. The influence of polarization is minimized by adjusting the shape of the band gap of the quantum well layer, crystallinity and internal quantum efficiency can be enhanced.01-24-2013
20130020555NITRIDE-BASED SEMICONDUCTOR LIGHT EMITING DEVICE - A nitride-based semiconductor light emitting device includes an anti-bowing layer having a composition of Al01-24-2013
20130020550Nanostructured Electroluminescent Device and Display - An electroluminescent device contains (1) first and second electrodes, at least one of which is transparent to radiation; (2) a hole conducting layer containing first nanoparticles wherein the hole conducting layer is in contact with said first electrode; (3) an electron conducting layer containing second nanoparticles where the electron conducting layer is in contact with the hole conducting layer and the second electrode; and optionally (4) a voltage source capable of providing positive and negative voltage, where the positive pole of the voltage source is connected to the first electrode and the negative pole is connected to the second electrode. In some embodiments, the electroluminescent device also includes an electron-hole combination layer between the hole and electron conducting layers.01-24-2013
20130020551GROUP III NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD OF FABRICATING GROUP III NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE - A group III nitride semiconductor light emitting device includes an n-type cladding layer and a p-type cladding layer on a primary surface of a substrate, the c-axes of which tilt relative to the normal axis of the primary surface of the substrate. The p-type cladding layer is doped with a p-type dopant providing an acceptor level, and the p-type cladding layer contains an n-type impurity providing a donor level. An active layer is disposed between the n-type cladding layer and the p-type cladding layer. The concentration of the p-type dopant is greater than that of the n-type impurity. The difference (E(BAND)−E(DAP)) between the energy E(BAND) of a band-edge emission peak value in the photoluminescence spectrum of the p-type cladding layer and the energy E(DAP) of a donor-acceptor pair emission peak value in the photoluminescence spectrum is not more than 0.42 electron volts.01-24-2013
20120241720GROUP III NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE - A Group III nitride semiconductor light-emitting device, includes a groove having a depth extending from the top surface of a p-type layer to an n-type layer is provided in a region overlapping (in plan view) with the wiring portion of an n-electrode or the wiring portion of a p-electrode. An insulating film is provided so as to continuously cover the side surfaces and bottom surface of the groove, the p-type layer, and an ITO electrode. The insulating film incorporates therein reflective films in regions directly below the n-electrode and the p-electrode (on the side of a sapphire substrate). The reflective films in regions directly below the wiring portion of the n-electrode and the wiring portion of the p-electrode are located at a level lower than that of a light-emitting layer. The n-electrode and the p-electrode are covered with an additional insulating film.09-27-2012
20120241721SEMICONDUCTOR LIGHT EMITTING ELEMENT, ELECTRONIC APPARATUS, AND LIGHT EMITTING DEVICE - Disclosed is a semiconductor light emitting element (09-27-2012
20120241718HIGH PERFORMANCE LIGHT EMITTING DIODE - A vertical light emitting diodes (LEDs) with new construction for reducing the current crowding effect and increasing the light extraction efficiency (LEE) of the LEDs is provided. By providing at least one current blocking portion corresponded to an electrode, the current flows from the electrode may be diffused or distributed more laterally instead of straight downward directly under the electrode and the current crowding effect could be reduced thereby. By providing at least one current blocking portion covered by a mirror layer to form an omni-directional reflective (ODR) structure, the internal light of the LEDs may be reflected by the ODR structure and the LEE could be increased thereby.09-27-2012
20080251780LIGHT-EMITTING DEVICE AND ARTICLE - A device comprising a light transmissive element, a nano-wire light-emitting device, and a light transmissive controller communicating with the nano-wire light-emitting device. The nano-wire light-emitting device, and the light transmissive controller, are supported by the light transmissive element. An article includes two or more of the devices.10-16-2008
20080237569SEMICONDUCTOR LIGHT EMITTING ELEMENT, METHOD FOR MANUFACTURING THE SAME, AND LIGHT EMITTING DEVICE - The present invention provides a semiconductor light emitting element with excellent color rendering properties, a method for manufacturing the semiconductor light emitting element, and a light emitting device. The semiconductor light emitting element includes: a semiconductor substrate that has a convex portion having a tilted surface as an upper face, and a concave portion formed on either side of the convex portion, the concave portion having a smaller width than the convex portion, a bottom face of the concave portion being located in a deeper position than the upper face of the convex portion; and a light emitting layer that is made of a nitride-based semiconductor and is formed on the semiconductor substrate so as to cover at least the convex portion.10-02-2008
20090267049Plasmon Enhanced Nanowire Light Emitting Diode - A nanowire light emitting diode (LED) and method of emitting light employ a plasmonic mode. The nanowire LED includes a nanowire having a semiconductor junction, a shell layer coaxially surrounding the nanowire, and an insulating layer, which is plasmonically thin, isolating the shell layer from the nanowire. The shell layer supports a surface plasmon that couples to the semiconductor junction by an evanescent field. Light is generated in a vicinity of the semiconductor junction and the surface plasmon is coupled to the semiconductor junction during light generation. The coupling enhances one or both of an efficiency of light emission and a light emission rate of the LED. A method of making the nanowire LED includes forming the nanowire, providing the insulating layer on the surface of the nanowire, and forming the shell layer on the insulating layer in the vicinity of the semiconductor junction.10-29-2009
20080230766Light emitting device - A light emitting element includes a group III nitride semiconductor substrate that emits a light by absorbing a UV ray and a light emitting diode structure. The light emitting diode structure is formed of a group III nitride semiconductor grown on the group III nitride semiconductor substrate, and has a p-type layer, an active layer that emits a light having a wavelength in the UV region, and an n-type layer. It is preferable that the group III nitride semiconductor substrate has a principal plane of a non-polar plane or a semi-polar plane and the group III nitride semiconductor having a same plane orientation as that of the principal plane is grown on the principal plane.09-25-2008
20130168636SEMICONDUCTOR LIGHT EMITTING DIODE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor light emitting diode is provided. The semiconductor light emitting diode comprises a metal electrode; an n-type cladding over the metal electrode, the n-type cladding comprising a pillar support part formed of an n-type semiconductor material, and a pillar part having a plurality of pillars formed of an n-type semiconductor material over the pillar support part; an active part conformally formed over the pillar part so as to enclose the pillar part and over the pillar support part between the pillar parts, the active part having a quantum well layer and a barrier layer stacked alternately; a p-type cladding conformally formed of a p-type semiconductor material over the active part; and a transparent electrode formed over the p-type cladding.07-04-2013
20130168637SEMICONDUCTOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE - A semiconductor light emitting element includes an n-type semiconductor layer containing n-type impurities, a light emitting layer stacked on the n-type semiconductor layer, and a p-type semiconductor layer stacked on the light emitting layer and containing p-type impurities. The light emitting layer includes three or more well layers, and four or more barrier layers composed of a group-III nitride semiconductor having a larger band gap than that of the well layers, and each of the three or more well layers is sandwiched from both sides by neighboring two of the barrier layers. The three or more well layers include plural n-side well layers each having a first thickness to emit light of a common wavelength, and one or plural p-side well layers each having a second thickness larger than the first thickness and having a different composition from the n-side well layers to emit light of the common wavelength.07-04-2013
20130168639NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE - A nitride semiconductor light emitting device includes first and second type nitride semiconductor layers. An active layer is disposed between the first and second type nitride semiconductor layers. A current spreading layer is disposed between the second type nitride semiconductor layer and the active layer. The current spreading layer includes first nitride thin films and second nitride thin films which are alternately laminated. The first nitride thin films have band gaps larger than those of the second nitride thin films. A first plurality of first nitride thin films are positioned at outer first and second sides of the current spreading layer. The first plurality of first nitride thin films have a thickness greater than that of a second plurality of first nitride thin films positioned between the first plurality of first nitride thin films.07-04-2013
20130140519LIGHT EMITTING DIODE - A light emitting diode including a substrate, a first semiconductor layer, an active layer, and a second semiconductor layer is provided. The first semiconductor layer includes a first surface and a second surface, and the first surface is connected to the substrate. The active layer and the second semiconductor layer are stacked on the second surface in that order, and a surface of the second semiconductor layer away from the active layer is configured as the light emitting surface. A first electrode electrically is connected with the first semiconductor layer. A second electrode is electrically connected with the second semiconductor layer. A number of three-dimensional nano-structures are located on the surface of the first surface of the first semiconductor layer and the light emitting surface, and a cross section of each of the three-dimensional nano-structures is M-shaped.06-06-2013
20130140520LIGHT EMITTING DIODE - A light emitting diode including a substrate, a first semiconductor layer, an active layer, and a second semiconductor layer is provided. The substrate includes an epitaxial growth surface and a light emitting surface. The first semiconductor layer, the active layer and the second semiconductor layer is stacked on the epitaxial growth surface. The first semiconductor layer includes a first surface and a second surface, and the first surface is connected to the substrate. The active layer and the second semiconductor layer are stacked on the second surface in that order. A first electrode electrically is connected with the first semiconductor layer. A second electrode is electrically connected with the second semiconductor layer. A number of three-dimensional nano-structures are located on the surface of the first surface of the first semiconductor layer and aligned side by side, and a cross section of each of the three-dimensional nano-structure is M-shaped.06-06-2013
20130140521OPTOELECTRONIC DEVICE INCLUDING NANOWIRES WITH A CORE/SHELL STRUCTURE - Optoelectronic device including light-emitting means in the form of nanowires (06-06-2013
20130140522LIGHT-EMITTING PANEL, MANUFACTURING METHOD OF LIGHT-EMITTING PANEL, AND FILM FORMING SYSTEM - A light-emitting panel includes: a substrate; and a light-emitting functional multilayer formed on the substrate, wherein the light-emitting functional multilayer including a first functional layer and a second functional layer, a thickness of part of the first functional layer positioned in a first light-emitting region is smaller than a thickness of part of the first functional layer positioned in a second light-emitting region, a thickness of part of the second functional layer positioned in the first light-emitting region is greater than a thickness of part of the second functional layer positioned in the second light-emitting region, and when the light-emitting functional multilayer is viewed in a layering direction thereof, the first light-emitting region and the second light-emitting region are adjacent or distant from each other in a direction perpendicular to the layering direction, and each include a plurality of pixels that are each composed of a plurality of adjacent sub-pixels.06-06-2013
20080224121SPONTANEOUS EMISSION OF TELECOMMUNICATION WAVELENGTH EMITTERS COUPLED TO AT LEAST ONE RESONANT CAVITY - Systems and methods for devices that include a structure having at least one resonant cavity and at least one emitter having an emission frequency that is substantially in the telecommunication wavelengths are provided. The emission frequency can be coupled to the resonant frequency of resonant cavity so that emitted wavelengths corresponding to the resonant wavelengths of the resonant cavity are enhanced. Moreover, the devices of the present invention may be capable of operating at room temperatures.09-18-2008
20130175498LIGHT EMITTING DIODE - A light emitting diode and a light emitting diode (LED) manufacturing method are disclosed. The LED comprises a substrate; a first n-type GaN layer; a second n-type GaN layer; an active layer; and a p-type GaN layer formed on the substrate in sequence; the second n-type GaN layers has a bottom surface interfacing with the first n-type GaN layer, a rim of the bottom surface has a roughened exposed portion, and Ga-N bonds on the bottom surface has an N-face polarity.07-11-2013
20080217601Light emitting devices - Light-emitting devices, and related components, systems and methods are disclosed.09-11-2008
20120248406GROUP III NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE - The present invention provides a Group III nitride semiconductor light-emitting device exhibiting high-intensity light output in a specific direction and improved light extraction performance. The Group III nitride semiconductor light-emitting device comprises a sapphire substrate, and a layered structure having a light-emitting layer provided on the sapphire substrate and formed of a Group III nitride semiconductor. On the surface on the layered structure side of the sapphire substrate, a two-dimensional periodic structure of mesas is formed with a period which generates a light intensity interference pattern for the light emitted from the light-emitting layer. The light reflected by or transmitted through the two-dimensional periodic structure has an interference pattern. Therefore, the light focused on a region where the light intensity is high in the interference pattern can be effectively output to the outside, resulting in the improvement of light extraction performance as well as the achievement of desired directional characteristics.10-04-2012
20130168638NITRIDE-BASED LIGHT EMITTING DEVICE WITH EXCELLENT LIGHT EMITTING EFFICIENCY USING STRAIN BUFFER LAYER - The nitride-based light emitting device according to one embodiment includes a first nitride semiconductor layer doped with a first conductive impurity; a strain buffer layer formed on the first nitride semiconductor layer and comprised of InGaN; an active layer formed on the strain buffer layer and having a multi-quantum well structure in which a quantum-well layer and a quantum-barrier layer are alternately stacked one above another; and a second nitride semiconductor layer formed on the active layer and doped with a second conductive impurity opposite to the first conductive impurity, wherein the ratio B/A satisfies 1.407-04-2013
20130134386LIGHT EMITTING DIODE HAVING STRAIN-ENHANCED WELL LAYER - An exemplary embodiment of the present invention includes a light emitting diode including a strain-enhanced well layer. The light emitting diode includes an n-contact layer, an active layer having a barrier layer and a well layer, a p-contact layer, and a strain-enhancing layer configured to enhance a strain applied to the well layer.05-30-2013
20130092899COALESCED NANOWIRE STRUCTURES WITH INTERSTITIAL VOIDS AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device, such as an LED, includes a plurality of first conductivity type semiconductor nanowire cores located over a support, a continuous second conductivity type semiconductor layer extending over and around the cores, a plurality of interstitial voids located in the second conductivity type semiconductor layer and extending between the cores, and first electrode layer that contacts the second conductivity type semiconductor layer and extends into the interstitial voids.04-18-2013
20130092898SEMICONDUCTOR LIGHT-EMITTING DEVICE - A semiconductor light-emitting device including a substrate, an n-type semiconductor layer formed on the substrate, an active layer laminated on the n-type semiconductor layer and capable of emitting a light, a p-type semiconductor layer laminated on the active layer, an n-electrode which is disposed on a lower surface of the semiconductor substrate or on the n-type semiconductor layer and spaced away from the active layer and p-type semiconductor layer, and a p-electrode which is disposed on the p-type semiconductor layer and includes a reflective ohmic metal layer formed on the dot-like metallic layer, wherein the light emitted from the active layer is extracted externally from the substrate side.04-18-2013
20130092901EPITAXIAL WAFER FOR LIGHT-EMITTING DIODES - The present invention relates to an epitaxial wafer for a light-emitting diode wherein the peak emission wavelength is 655 nm or more, and it is possible to improve reliability. The epitaxial wafer for light-emitting diodes includes a GaAs substrate (04-18-2013
20130092900NANOWIRE SIZED OPTO-ELECTRONIC STRUCTURE AND METHOD FOR MANUFACTURING THE SAME - An opto-electric structure includes a plurality of nano elements arranged side by side on a support layer, where each nano element includes at least a first conductivity type semiconductor nano sized core, and where the core and a second conductivity type semiconductor form a pn or pin junction. A first electrode layer that extends over the plurality of nano elements and is in electrical contact with at least a portion of the second conductivity type semiconductor, and a minor provided on a second conductivity type semiconductor side of the structure.04-18-2013
20130092897Ultrafast photonic crystal cavity single-mode light-emitting diode - Electrical pumping of photonic crystal (PC) nanocavities using a lateral p-i-n junction is described. Ion implantation doping can be used to form the junction, which under forward bias pumps a gallium arsenide photonic crystal nanocavity with indium arsenide quantum dots. Efficient cavity-coupled electroluminescence is demonstrated in a first experimental device. Electrically pumped lasing is demonstrated in a second experimental device. High speed modulation of a single mode LED is demonstrated in a third experimental device. This approach provides several significant advantages. Ease of fabrication is improved because difficult timed etch steps are not required. Any kind of PC design can be employed. Current flow can be lithographically controlled to focus current flow to the active region of the device, thereby improving efficiency, reducing resistance, improving speed, and reducing threshold. Insulating substrates can be employed, which facilitates inclusion of these devices in photonic integrated circuits.04-18-2013
20130092896Optoelectronic Device with a Wide Bandgap and Method of Making Same - A light-emitting device epitaxially-grown on a GaAs substrate which contains an active region composed of Al04-18-2013
20130112942COMPOSITE HAVING SEMICONDUCTOR STRUCTURES EMBEDDED IN A MATRIX - Composites having semiconductor structures embedded in a matrix are described. In an example, a composite includes a matrix material. A plurality of semiconductor structures is embedded in the matrix material. Each semiconductor structure includes an anisotropic nanocrystalline core composed of a first semiconductor material and having an aspect ratio between, but not including, 1.0 and 2.0. Each semiconductor structure also includes a nanocrystalline shell composed of a second, different, semiconductor material at least partially surrounding the anisotropic nanocrystalline core. An insulator layer encapsulates each nanocrystalline shell and anisotropic nanocrystalline core pairing.05-09-2013
20130112939NEW III-NITRIDE GROWTH METHOD ON SILICON SUBSTRATE - A circuit structure includes a substrate and a patterned dielectric layer over the substrate. The patterned dielectric layer includes a plurality of vias; and a number of group-III group-V (III-V) compound semiconductor layer. The III-V compound semiconductor layers include a first layer in the vias, a second layer over the first layer and the dielectric layer, and a bulk layer over the second layer.05-09-2013
20130112940SEMICONDUCTOR STRUCTURE HAVING NANOCRYSTALLINE CORE AND NANOCRYSTALLINE SHELL - Semiconductor structures having a nanocrystalline core and corresponding nanocrystalline shell are described. In an example, a semiconductor structure includes an anisotropic nanocrystalline core composed of a first semiconductor material and having an aspect ratio between, but not including, 1.0 and 2.0. The semiconductor structure also includes a nanocrystalline shell composed of a second, different, semiconductor material at least partially surrounding the anisotropic nanocrystalline core.05-09-2013
20130112941SEMICONDUCTOR STRUCTURE HAVING NANOCRYSTALLINE CORE AND NANOCRYSTALLINE SHELL WITH INSULATOR COATING - Semiconductor structures having a nanocrystalline core and corresponding nanocrystalline shell and insulator coating are described. In an example, a semiconductor structure includes an anisotropic nanocrystalline core composed of a first semiconductor material and having an aspect ratio between, but not including, 1.0 and 2.0. The semiconductor structure also includes a nanocrystalline shell composed of a second, different, semiconductor material at least partially surrounding the anisotropic nanocrystalline core. An insulator layer encapsulates the nanocrystalline shell and anisotropic nanocrystalline core.05-09-2013
20130099201LIGHT EMITTING DIODE AND METHOD OF FABRICATING THE SAME - Exemplary embodiments of the present invention disclose a light emitting diode including an n-type contact layer doped with silicon, a p-type contact layer, an active region disposed between the n-type contact layer and the p-type contact layer, a superlattice layer disposed between the n-type contact layer and the active region, the superlattice layer including a plurality of layers, an undoped intermediate layer disposed between the superlattice layer and the n-type contact layer, and an electron reinforcing layer disposed between the undoped intermediate layer and the superlattice layer. Only a final layer of the superlattice layer closest to the active region is doped with silicon, and the silicon doping concentration of the final layer is higher than that of the n-type contact layer.04-25-2013
20130099199NANOROD LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - A nanorod light emitting device and a method of manufacturing the same. The nanorod light emitting device may include at least one nitride semiconductor layer, light emitting nanorods formed on the nitride semiconductor layer and spaced apart from each other, and a first filling layer, a conductive layer, and a second filling layer formed in spaces between the light emitting nanorods.04-25-2013
20130099198SEMICONDUCTOR LIGHT EMITTING ELEMENT AND METHOD OF MANUFACTURING THE SAME - According to one embodiment, a semiconductor light emitting element, including a first semiconductor layer with a first conductive type, a second semiconductor layer with a second conductive type, a semiconductor light emitting layer provided between the first semiconductor layer and the second semiconductor layer, a first electrode having a mesh-shaped structure with a plurality of mesh shapes provided on the first semiconductor layer opposed to the semiconductor light emitting layer, a plurality of second electrodes provided on the second semiconductor layer opposed to the semiconductor light emitting layer, each of the second electrode having a dot shape and being superimposed with the center of each of the mesh shapes in plain view with parallel to a surface of the second semiconductor layer.04-25-2013
20130112945NANOWIRE-BASED OPTOELECTRONIC DEVICE FOR LIGHT EMISSION - An optoelectronic device includes: 05-09-2013
20130112944NANOROD LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - A nanorod light emitting device includes at least one nitride semiconductor layer, a mask layer, multiple light emitting nanorods, nanoclusters, a filling layer disposed on the nanoclusters, a first electrode and connection parts. The mask layer is disposed on the nitride semiconductor layer and has through holes. The light emitting nanorods are disposed in and extend vertically from the through holes. The nanoclusters are spaced apart from each other. Each of the nanoclusters has a conductor and covers a group of light emitting nanorods, among the multiple light emitting nanorods, with the conductor. The first electrode is disposed on the filling layer and has a grid pattern. The connection parts connect the conductor and the first electrode.05-09-2013
20110266518Light Emitting Device, Light Emitting Device Package, and Lighting System - Provided are a light emitting device, a light emitting device package, and a lighting system. The light emitting device includes a light emitting structure, a non-periodic light extraction pattern, and a phosphor layer. The light emitting structure includes a first conductive type semiconductor layer, a second conductive type semiconductor layer over the first conductive type semiconductor layer, and an active layer between the first conductive type semiconductor layer and the second conductive type semiconductor layer. The non-periodic light extraction pattern is disposed over the light emitting structure. The phosphor layer is disposed over the non-periodic light extraction pattern. The phosphor layer fills at least one portion of the non-periodic light extraction pattern.11-03-2011
20130126826Optical Tilted Charge Devices And Methods - A method for making an optical tilted-charge device that is substantially matched to GaAs lattice constant, including the following steps: providing a layered semiconductor structure that includes: a GaAs substrate; a semiconductor collector region; a semiconductor base region that includes a doped GaAs second base sub-region, an InGaAsN quantum size region, and a doped GaAs first base sub-region; and a semiconductor emitter region; and providing collector, base, and emitter electrodes respectively coupled with the collector region, the base region, and the emitter region. Electrical signals, applied with respect to the collector, base, and emitter electrodes, produces light emission from the base region.05-23-2013
20130134390LIGHT-EMITTING DIODE, LIGHT-EMITTING DIODE LAMP, AND ILLUMINATION DEVICE - A light-emitting diode of the present invention includes a light-emitting unit, containing an active layer having a quantum well structure prepared by alternately stacking a well layer and a barrier layer each formed from a compound semiconductor having a composition formula of (Al05-30-2013
20130134385SEMICONDUCTOR LIGHT EMITTING DEVICE - According to one embodiment, in a semiconductor light emitting device, a semiconductor laminated body is made by laminating, in order, a first semiconductor layer of a first conductivity-type, a semiconductor light emitting layer and a second semiconductor layer of a second conductivity-type. The semiconductor laminated body includes a plurality of trenches arranged in a periodical manner to penetrate through the second semiconductor layer and the semiconductor light emitting layer and reach the first semiconductor layer. An insulating film is buried into the trenches, and has transparency to light emitted from the semiconductor light emitting layer. A first electrode is electrically connected to the first semiconductor layer. A second electrode covers an upper surface of the second semiconductor layer.05-30-2013
20130134388NITRIDE SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND METHOD FOR PRODUCING NITRIDE SEMICONDUCTOR LIGHT-EMITTING ELEMENT - To provide a nitride semiconductor light-emitting element in which a buffer layer provided between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer has a first buffer layer expressed by an equation of In05-30-2013
20110215290ANTI-REFLECTED HIGH EFFICIENCY LIGHT EMITTING DIODE DEVICE - The present invention is related to a light emitting diode device in which a fine prominence and depression is formed on a semiconductor layer to make an anti-reflection region. The light emitting diode device comprises, a substrate; a N-type semi-conductor layer; an active layer for generating light; P-type semiconductor layer; a first exposed region formed by etching the active layer and the P-type semiconductor layer to partly expose the N-type semiconductor layer; a first ohmic contact formed on the first exposed layer; a second ohmic contact formed on the P-type semiconductor layer, and having an opening to partly form a second exposed region on the P-type semiconductor layer, said second exposed layer being formed to partly have a ultra-fine prominence and depression.09-08-2011
20130146838QUANTUM DOT DEVICE INCLUDING DIFFERENT KINDS OF QUANTUM DOT LAYERS - A quantum dot device includes: a cathode layer; an anode layer; an active layer that is disposed between the cathode layer and the anode layer and includes a quantum layer; and an electron movement control layer that is disposed between the cathode layer and the anode layer and includes a different kind of quantum layer having an energy level different from that of the quantum layer comprised in the active layer.06-13-2013
20130146839GROUP III NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE - A Group III nitride semiconductor light-emitting device includes a sapphire substrate; and an n contact layer, an n cladding layer, a light-emitting layer, a p cladding layer, and a p contact layer, each of the layers being formed of Group III nitride semiconductor, are sequentially deposited on the sapphire substrate. The n cladding layer includes two layers of a high impurity concentration layer and a low impurity concentration layer in this order on the n contact layer, and the low impurity concentration layer is in contact with the light-emitting layer. The low impurity concentration layer is a layer having a lower n-type impurity concentration than that of the high impurity concentration layer, which has an n-type impurity concentration of 1/1000 to 1/100 of the p-type impurity concentration of the p cladding layer and a thickness of 10 Å to 400 Å.06-13-2013
20130146835NANOSTRUCTURES AND METHODS FOR MANUFACTURING THE SAME - A resonant tunneling diode, and other one dimensional electronic, photonic structures, and electromechanical MEMS devices, are formed as a heterostructure in a nanowhisker by forming length segments of the whisker with different materials having different band gaps.06-13-2013
20130146836CNT-BASED ELECTRONIC AND PHOTONIC DEVICES - The carbon nanotube-based electronic and photonic devices are disclosed. The devices are united by the same technology as well as similar elements for their fabrication. The devices consist of the vertically grown semiconductor nanotube having two Schottky barriers at the nanotube ends and one Schottky barrier at the middle of the nanotube. Depending on the Schottky barrier heights and bias arrangements, the disclosed devices can operate either as transistors, CNT MESFET and CNT Hot Electron Transistor, or as a CNT Photon Emitter.06-13-2013
20110220871NITRIDE SEMICONDUCTOR LIGHT-EMITTING DEVICE AND SEMICONDUCTOR LIGHT-EMITTING DEVICE - In a nitride semiconductor light-emitting device, a nitride semiconductor layer, a p-type nitride semiconductor layer and an active layer are successively stacked on an n-type nitride semiconductor layer. In a semiconductor light-emitting device, a first lower layer, a second lower layer, an active layer, and an upper layer having a thickness not greater than 40 nm are successively stacked on a substrate, and an interface of a second electrode for n-type in contact with the upper layer includes a metal of which a surface plasmon can be excited by light generated from the active layer.09-15-2011
20110220868NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - Discussed are a nitride semiconductor light emitting device in which a critical angle is increased by rounding corners of a substrate so as to improve light extraction efficiency due to increase in an amount of light generated from the inside thereof and extracted to the outside, and a method for manufacturing the same. The nitride semiconductor light emitting device includes according to an embodiment a buffer layer formed on a substrate, a light emitting structure including a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer, formed on the buffer layer, a first electrode formed on the first conductive semiconductor layer, and a second electrode formed on the second conductive semiconductor layer, wherein the substrate has a light transmitting property, and respective corners of the substrate are rounded so as to have a designated curvature.09-15-2011
20110220866SOLID STATE LIGHTING DEVICES GROWN ON SEMI-POLAR FACETS AND ASSOCIATED METHODS OF MANUFACTURING - Solid state lighting devices grown on semi-polar facets and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state light device includes a light emitting diode with an N-type gallium nitride (“GaN”) material, a P-type GaN material spaced apart from the N-type GaN material, and an indium gallium nitride (“InGaN”)/GaN multi quantum well (“MQW”) active region directly between the N-type GaN material and the P-type GaN material. At least one of the N-type GaN, InGaN/GaN MQW, and P-type GaN materials is grown a semi-polar sidewall.09-15-2011
20130146837LIGHT EMITTING DIODE WITH MULTIPLE TRANSPARENT CONDUCTIVE LAYERS AND METHOD FOR MANUFACTURING THE SAME - An LED includes a first semiconductor layer, a second semiconductor layer, an active layer, a first transparent conductive layer, and a second transparent conductive layer. The first transparent conductive layer is formed on the second semiconductor layer. The second transparent conductive layer is formed on the first transparent conductive layer. The thickness of the first transparent conductive layer is less than that of the second transparent conductive layer. The density of the first transparent conductive layer is larger than that of the second transparent conductive layer. The disclosure further includes a method for manufacturing the LED.06-13-2013
20130146840SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device includes: n-type and p-type semiconductor layers; and an active layer disposed between the n-type and p-type semiconductor layers. The active layer has a structure in which a plurality of quantum well layers and a plurality of quantum barrier layers are alternately disposed, wherein the plurality of quantum well layers are made of Al06-13-2013
20130146841LIGHT EMITTING DEVICE PACKAGE - A light emitting device package includes a body having a cavity, at least one insulating layer disposed on the body, first and second electrode layers disposed on the insulating layer and electrically isolated from each other, at least one light emitting device disposed on a bottom surface of the cavity and electrically connected to the first and second electrode layer, a light-transmissive resin layer sealing the light emitting device disposed in the cavity, and a metal layer disposed on a rear surface of the body to face the light emitting device, wherein the light emitting device is grown in an m-direction on the (1123) plane of a substrate and includes a light emitting structure including a first conductive semiconductor layer, and active layer, and a second conductive semiconductor layer.06-13-2013
20100283037CORE-SHELL QUANTUM DOT FLUORESCENT FINE PARTICLES - Disclosed is an ultraviolet fluorescent material having high light emission efficiency, wherein the peak wavelength of ultraviolet light to be emitted can be controlled by having a quantum dot structure wherein a fine crystal of zinc oxide having an average diameter of 1-10 nm serves as a core, and the surface of the zinc oxide fine crystal is covered with at least one of LiGaO11-11-2010
20100283034Concentration - gradient alloyed semiconductor quantum dots, LED and white light applications - The present invention involves concentration-gradients alloyed quantum dots that have shell modifications and ligands that lower the barrier for electronic quantum dot activation, and electronic and photonic applications of such quantum dots. The present invention also describes emissive layers using such quantum dots in electronic applications.11-11-2010
20120256161Light Diode - A light-emitting diode is specified, comprising a first semiconductor body (10-11-2012
20130153856INFRARED LED DEVICE WITH ISOLATION AND METHOD OF MAKING - An infrared LED device comprising a plurality of LED mesas; each mesa being approximately 25 to 500 microns separated by a gap of approximately 50 to 100 microns; each mesa having at least two indium contacts; a substrate; and a plurality of leads for connection to the contacts, whereby upon application of electrical power infrared light emission occurs. The method of making comprises providing a first substrate; using molecular beam epitaxy, growing a quantum well structure comprising alternating active and injection regions on the substrate; growing a thin p-type layer on the quantum well structure; etching the mesa area down to the substrate to form a plurality of mesas, forming first electrical contacts; deep etching to isolate each of the mesas; depositing first indium contacts on the mesas; providing a second substrate; depositing second electrical contacts; bonding the first and second substrates at the points of the electrical contacts.06-20-2013
20130153858NITRIDE SEMICONDUCTOR TEMPLATE AND LIGHT-EMITTING DIODE - A nitride semiconductor template includes a substrate, and a group III nitride semiconductor layer formed on the substrate and including a Si-doped layer doped with Si as an uppermost layer thereof. The group III nitride semiconductor layer has a total thickness of not less than 4 μm and not more than 10 μm. The Si-doped layer includes a Si concentration gradient layer having a carrier concentration that gradually decreases toward an outermost surface thereof so as to be not less than 1×1006-20-2013
20100308300INTEGRATED CIRCUIT LIGHT EMISSION DEVICE, MODULE AND FABRICATION PROCESS - An integrated circuit device, which can be a light emission device such as a light emitting diode (LED), comprises a substrate, a plurality of device layers formed on a first surface of the substrate, including a first device layer and a second device layer, a first electrode formed on the first device layer, and a second electrode formed on a second surface of the substrate which is parallel and opposite to the first surface of the substrate. A plurality of substantially identical such devices can formed on a semiconductor wafer, where one or both of the first and second electrodes are shared by the plurality of devices prior to dicing the wafer. All of the devices can be tested simultaneously on the wafer, prior to dicing. Formation of the electrodes on opposite sides of the substrate allow the device to be directly connected to a mounting substrate, without any wire bonding.12-09-2010
20120273758NITRIDE SEMICONDUCTOR LIGHT-EMITTING DIODE DEVICE - A nitride semiconductor light-emitting diode device includes an n-type nitride semiconductor layer, a p-type nitride semiconductor layer and an active layer provided between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer, while the active layer has a multiple quantum well structure including a quantum well layer and a barrier layer in contact with the p-type semiconductor layer, the barrier layer consists of a two-layer structure of an AlGaN layer and a GaN layer, and the AlGaN layer included in the barrier layer is in contact with a side of the quantum well layer closer to the p-type nitride semiconductor layer11-01-2012
20120273757LIGHT EMITTING DIODE AND METHOD FOR MANUFACTURING THE SAME - A light emitting diode and a light emitting diode (LED) manufacturing method are disclosed. The LED comprises a substrate; a first n-type GaN layer; a second n-type GaN layer; an active layer; and a p-type GaN layer formed on the substrate in sequence; the second n-type GaN layers has a bottom surface interfacing with the first n-type GaN layer, a rim of the bottom surface has a roughened exposed portion, and Ga—N bonds on the bottom surface has an N-face polarity.11-01-2012
20120273756LIGHT EMITTING DIODE - A light emitting diode includes a substrate, a carbon nanotube layer, a first semiconductor layer, an active layer, a second semiconductor layer, a first electrode, and a second electrode. The first semiconductor layer, the active layer, and the second semiconductor layer are stacked on one side of the substrate in that order. The first semiconductor layer is adjacent to the substrate. The carbon nanotube layer is located between the first semiconductor layer and the substrate. The first electrode is electrically connected to the first semiconductor layer. The second electrode is electrically connected to the second semiconductor layer.11-01-2012
20120273755LIGHT EMITTING DIODE - A light emitting diode includes a first semiconductor layer, an active layer and a second semiconductor layer stacked in that order; a first electrode electrically connected to the first semiconductor layer; a second electrode electrically connected to the second semiconductor layer. The light emitting diode further includes a carbon nanotube layer. The carbon nanotube layer is enclosed in the interior of the first semiconductor layer. The carbon nanotube layer includes a number of carbon nanotubes.11-01-2012
20120273754LIGHT EMITTING DIODE - A light emitting diode includes a second electrode, a first semiconductor layer, an active layer, a second semiconductor layer, a reflector, and a first electrode. The second electrode, the first semiconductor layer, the active layer, the second semiconductor layer, and the reflector are stacked on the first electrode in that order. The first semiconductor layer defines a plurality of grooves on a surface contacting the second electrode. The plurality of grooves form a patterned surface used as the light extraction surface. A carbon nanotube layer is located on the patterned surface and embedded into the grooves.11-01-2012
20120273753SEMICONDUCTOR LIGHT EMITTING DEVICE - According to an embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a plurality of thin parts thinner than other part being provided in the first semiconductor layer; a second semiconductor layer of a second conductivity type; and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. A transparent electrode is provided on a surface of the first semiconductor layer; a first electrode is provided on the transparent electrode; and a second electrode contacts a surface of the second semiconductor layer, wherein the second semiconductor layer is provided between the second electrode and the light emitting layer. A current blocking layer is provided for blocking a part of a current path between the transparent electrode and the second electrode, not overlapping the thin part in a planar view parallel to the surface of the second semiconductor layer.11-01-2012
20120273752LATERAL-EPITAXIAL-OVERGROWTH THIN-FILM LED WITH NANOSCALE-ROUGHENED STRUCTURE AND METHOD FOR FABRICATING THE SAME - The present invention discloses a lateral-epitaxial-overgrowth thin-film LED with a nanoscale-roughened structure and a method for fabricating the same. The lateral-epitaxial-overgrowth thin-film LED with a nanoscale-roughened structure comprises a substrate, a metal bonding layer formed on the substrate, a first electrode formed on the metal bonding layer, a semiconductor structure formed on the first electrode with a lateral-epitaxial-growth technology, and a second electrode formed on the semiconductor structure, wherein a nanoscale-roughened structure is formed on the semiconductor structure except the region covered by the second electrode. The present invention uses lateral epitaxial growth to effectively inhibit the stacking faults and reduce the thread dislocation density in the semiconductor structure to improve the crystallization quality of the light-emitting layer and reduce leakage current. Meanwhile, the surface roughened structure on the semiconductor structure can promote the external quantum efficiency.11-01-2012
20120273750LIGHT EMITTING DEVICES HAVING DOPANT FRONT LOADED TUNNEL BARRIER LAYERS - Light emitting devices described herein include dopant front loaded tunnel barrier layers (TBLs). A front loaded TBL includes a first surface closer to the active region of the light emitting device and a second surface farther from the active region. The dopant concentration in the TBL is higher near the first surface of the TBL when compared to the dopant concentration near the second surface of the TBL. The front loaded region near the first surface of the TBL is formed during fabrication of the device by pausing the growth of the light emitting device before the TBL is formed and flowing dopant into the reaction chamber. After the dopant flows in the reaction chamber during the pause, the TBL is grown.11-01-2012
20120273749METHOD AND STRUCTURE FOR LED WITH NANO-PATTERNED SUBSTRATE - The present disclosure provides one embodiment of a method for fabricating light-emitting diode (LED) devices. The method includes forming a nano-mask layer on a first substrate, wherein the nano-mask layer has a randomly arranged grain pattern; growing a first epitaxy semiconductor layer in the first substrate, forming a nano-composite layer; growing a number of epitaxy semiconductor layers over the nano-composite layer; bonding a second substrate to the epitaxy semiconductor layers from a first side of the epitaxy semiconductor layers; applying a radiation energy to the nano-composite layer; and separating the first substrate from the epitaxy semiconductor layers from a second side of the epitaxy semiconductor layers.11-01-2012
20110233518SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor light emitting device including a first semiconductor layer including a first type dopant; a second semiconductor layer including the first type dopant on the first semiconductor layer; an active layer on the second semiconductor layer, the active layer including a multi-quantum well structure having a plurality of quantum barrier layers and a plurality of quantum well layers; a third semiconductor layer including a second type dopant on the active layer; and a fourth semiconductor layer including the second type dopant on the third semiconductor layer. The first semiconductor layer has a composition equation of Al09-29-2011
20110233517LIGHT EMITTING DEVICE, METHOD OF MANUFACTURING THE SAME, LIGHT EMITTING DEVICE PACKAGE AND LIGHTING SYSTEM - A light emitting device according to the embodiment includes a light emitting structure including a first conductive semiconductor layer, an active layer on the first conductive semiconductor layer, a second conductive semiconductor layer on the active layer, a superlattice structure layer on the second conductive semiconductor layer, and a third conductive semiconductor layer on the superlattice structure layer; a light transmission electrode layer on the light emitting structure; a first electrode connected to the first conductive semiconductor layer; a second electrode electrically connected to the light transmission electrode layer on the light emitting structure; and an insulating layer extending from a lower portion of the second electrode to an upper portion of the second conductive semiconductor layer.09-29-2011
20110233516OPTICAL SEMICONDUCTOR DEVICE INCLUDING PROTRUSION STRUCTURE OF PARALLELOGRAM CELLS AND ITS MANUFACTURING METHOD - In an optical semiconductor device including a support body, semiconductor layers made of (Al09-29-2011
20110233515Light Emitting Device, Light Emitting Device Package And Lighting System - Disclosed are a light emitting device, a light emitting device package, and a lighting system. The light emitting device includes a substrate; a light emitting structure including a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer, which are formed on the substrate such that a part of the first conductive semiconductor layer is exposed; a dielectric layer formed from a top surface of the second conductive semiconductor layer to an exposed top surface of the first conductive semiconductor layer; a second electrode on the second conductive semiconductor layer; and a first electrode on the exposed top surface of the first conductive semiconductor layer while making contact with a part of the dielectric layer on the second conductive semiconductor layer.09-29-2011
20110233514Surface plasmon enhanced light-emitting diode - A surface plasmon enhanced light-emitting diode includes, from bottom to top, a substrate, an n-type semiconductor layer, a light-emitting layer, a p-type semiconductor layer, and a plurality of metal filler elements. The p-type semiconductor layer includes upper and lower surfaces, and the upper surface is recessed downward to form a plurality of spaced apart recesses for receiving the metal filler elements, respectively.09-29-2011
20100314607DIODE HAVING VERTICAL STRUCTURE AND METHOD OF MANUFACTURING THE SAME - A light emitting diode includes a conductive layer, an n-GaN layer on the conductive layer, an active layer on the n-GaN layer, a p-GaN layer on the active layer, and a p-electrode on the p-GaN layer. The conductive layer is an n-electrode.12-16-2010
20100314606LIGHT-EMITTING DEVICE - A light-emitting device is disclosed, including a light-emitting element and a surface plasmon coupling element, having an intermediary layer connected to the light-emitting element and a metal structure on the intermediary layer, wherein the intermediary layer is conductive under low-frequency injection current and has the characteristics as dielectric material in a wavelength range 100 nm˜20000 nm.12-16-2010
20110272670NITRIDE SEMICONDUCTOR DEVICE AND PRODUCTION METHOD THEREOF - A nitride semiconductor device according to the present invention includes a p-type nitride semiconductor layer, an n-type nitride semiconductor layer, and an active layer interposed between the p-type nitride semiconductor layer and the n-type nitride semiconductor layer. The p-type nitride semiconductor layer includes: a first p-type nitride semiconductor layer containing Al and Mg; and a second p-type nitride semiconductor layer containing Mg. The first p-type nitride semiconductor layer is located between the active layer and the second p-type nitride semiconductor layer, and the second p-type nitride semiconductor layer has a greater band gap than a band gap of the first p-type nitride semiconductor layer.11-10-2011
20110272669PLASMONIC LIGHT EMITTING DIODE - A light emitting diode (11-10-2011
20110272668NANOPARTICLES - The present application provides a light-emissive nitride nanoparticle, for example a nanocrystal, having a photoluminescence quantum yield of at least 1%. This quantum yield is significantly greater than for prior nitride nanoparticles, which have been only weakly emissive and have had poor control over the size of the nanoparticles produced. The nanoparticle includes at least one capping agent provided on a surface of the nitride crystal and containing an electron-accepting group for passivating nitrogen atoms at the surface of the crystal. The invention also provides non-emissive nitride nanoparticles.11-10-2011
20110272667SEMICONDUCTOR LIGHT EMITTING DEVICE - A semiconductor light emitting device includes: a first cladding layer made of a first conductivity type group III nitride semiconductor; an active layer formed on the first cladding layer; a quantum well electron barrier layer which is formed on the active layer, and includes electron trapping barrier layers made of Al11-10-2011
20110272666LIGHT EMITTING DIODE AND METHOD FOR MANUFACTURING THE SAME - A light-emitting diode comprises a light-emitting diode chip having a first semiconductor layer, a first electrode, an active layer formed on the first semiconductor layer, a second semiconductor layer formed on the active layer and a second electrode formed on the second semiconductor layer. The first semiconductor layer, the active layer, the second semiconductor layer and the second electrode sequentially compose a stacked multilayer. A blind hole penetrates the second electrode, the second semiconductor layer, the active layer and inside the first semiconductor layer. The first electrode is disposed on the first semiconductor layer inside the blind hole. A first supporting layer and a second supporting layer are respectively disposed on the first electrode and the second electrode, wherein the first supporting layer and the second supporting layer are separated from each other. A method for manufacturing the light-emitting diode is also provided in the disclosure.11-10-2011
20130126829HIGH EFFICIENCY LIGHT EMITTING DIODE - A high-efficiency LED includes a substrate, an n-semiconductor layer, an active layer, a p-semiconductor layer, and a transparent electrode layer. The substrate has a plurality of tapered recesses in the underside thereof, the recesses being filled with light-reflecting filler.05-23-2013
20130126828OPTOELECTRONIC DEVICE BASED ON NON-POLAR AND SEMI-POLAR ALUMINUM INDIUM NITRIDE AND ALUMINUM INDIUM GALLIUM NITRIDE ALLOYS - A high-power and high-efficiency light emitting device with emission wavelength (λ05-23-2013
20130126827LIGHT EMITTING DIODE STRUCTURE - A micro light emitting diode (LED) and a method of forming an array of micro LEDs for transfer to a receiving substrate are described. The micro LED structure may include a micro p-n diode and a metallization layer, with the metallization layer between the micro p-n diode and a bonding layer. A conformal dielectric barrier layer may span sidewalls of the micro p-n diode. The micro LED structure and micro LED array may be picked up and transferred to a receiving substrate.05-23-2013
20130126825High Speed Optical Tilted Charge Devices And Methods - A method for producing optical signals with improved efficiency, including the following steps: providing a layered semiconductor structure that includes a substrate, a semiconductor collector region of a first conductivity type, a semiconductor base region of a second conductivity type disposed on the collector region, and a semiconductor emitter region of the first semiconductor type disposed as a mesa over a portion of a surface of the base region; providing, in the base region, at least one region exhibiting quantum size effects; providing collector, base, and emitter electrodes, respectively coupled with the collector, base and emitter regions; providing a tunnel barrier layer over at least the exposed portion of the surface of the base region; and applying signals with respect to the collector, base, and emitter electrodes to produce optical signals from the base region.05-23-2013
20130153859SEMICONDUCTOR NANOPARTICLE ASSEMBLY - A semiconductor nanoparticle assembly including semiconductor nanoparticles having a core/shell structure, and wherein the semiconductor nanoparticles are bonded by means of amide bonds.06-20-2013
20130153857SEMICONDUCTOR LIGHT EMITTING DEVICE - In one embodiment, a semiconductor light emitting device includes a stacked structure, a first electrode, a second electrode and a transparent conductive film. The stacked structure includes a first semiconductor layer with a first conductivity type, a light emitting layer and a second semiconductor layer with a second conductivity type which are formed and stacked directly or indirectly. The stacked structure is taken out light from the light emitting layer side to the second semiconductor layer side. The first electrode is connected to the first semiconductor layer. The second electrode is connected to a first principal surface of the second semiconductor layer which is exposed at the light emitting layer side. The second electrode is arranged in parallel with the first electrode. The transparent conductive film is provided so as to cover a second principal surface of the second semiconductor layer.06-20-2013
20130181186INTEGRATION OF CURRENT BLOCKING LAYER AND n-GaN CONTACT DOPING BY IMPLANTATION - An improved method of fabricating a semiconductor light emitting diode (LED) is disclosed. The current blocking layer and the contact area for the n-type layer are implanted at the same time. In some embodiments, a dopant, which may be an n-type dopant, is implanted into a portion of the p-type layer to cause that portion to become either u-type or n-type. Simultaneously, the same dopant is implanted into at least a portion of the exposed n-type layer to increase its conductivity. After this implant, the dopant in both portions of the LED may be activated through the use of a single anneal cycle.07-18-2013
20130181188III NITRIDE EPITAXIAL SUBSTRATE AND DEEP ULTRAVIOLET LIGHT EMITTING DEVICE USING THE SAME - A III nitride epitaxial substrate which makes it possible to obtain a deep ultraviolet light emitting device with improved light output power is provided. A III nitride epitaxial substrate 07-18-2013
20130181187SEMICONDUCTOR LIGHT EMITTING DEVICE - In one embodiment, a semiconductor light emitting device includes a stacked structure, a first electrode and a second electrode. A first semiconductor layer is broken into several pieces. Light is taken out from a light emitting layer side to a third semiconductor layer side. The first electrode includes a first region connected to the first semiconductor layer and a second region directly connected to the second semiconductor layer. The second electrode is connected to the third semiconductor layer, is provided above the second region from an upper direction of view, and has a thin wire shape or a dot shape.07-18-2013
20120280207Optoelectronic Semiconductor Chip - An optoelectronic semiconductor chip comprises the following sequence of regions in a growth direction (c) of the semiconductor chip (11-08-2012
20110284822LIGHT EMITTING DIODE CHIP HAVING WAVELENGTH CONVERTING LAYER AND METHOD OF FABRICATING THE SAME, AND PACKAGE HAVING THE LIGHT EMITTING DIODE CHIP AND METHOD OF FABRICATING THE SAME - An exemplary embodiment of the present invention discloses an LED chip including a substrate, a GaN-based compound semiconductor stacked structure arranged on the substrate, an electrode electrically connected to the semiconductor stacked structure, and a wavelength converting layer covering a portion of the semiconductor stacked structure. The electrode passes through the wavelength converting layer. The semiconductor stacked structure includes a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer.11-24-2011
20130119345THIN FILM TRANSISTOR AND A DISPLAY DEVICE INCLUDING THE SAME - A thin film transistor includes a gate electrode configured to receive a control voltage, a source electrode insulated from the gate electrode, and configured to receive an input voltage, a drain electrode insulated from the gate electrode, and configured to receive an output voltage, at least two carbon nanotube patterns formed in a channel region between the source electrode and the drain electrode, wherein the carbon nanotube patterns are separated from each other, and at least one floating electrode connecting the two carbon nanotube patterns to each other.05-16-2013
20110303896BROADBAND LIGHT EMITTING DEVICE LAMPS FOR PROVIDING WHITE LIGHT OUTPUT - A light emitting device (LED) includes a broadband LED chip having a multi-quantum well active region including alternating active and barrier layers. The active layers respectively include different thicknesses and/or different relative concentrations of at least two elements of a semiconductor compound, and are respectively configured to emit light of different emission wavelengths that define an asymmetric spectral distribution over a wavelength range within a visible spectrum. Related devices are also discussed.12-15-2011
20110303895VERTICAL LIGHT-EMITTING DIODE - A vertical light-emitting diode with a short circuit protection function includes a heat dissipation substrate, a second electrode, a welding metal layer and a third electrode; a semiconductor light-emitting layer formed on the third electrode; a barrier for the semiconductor light-emitting layer with an isolation trench, so that the barrier for the semiconductor light-emitting layer surrounds the semiconductor light-emitting layer on a central region of the third electrode, with the isolation trench therebetween. The barrier for the semiconductor light-emitting layer has a structure the same as the semiconductor light-emitting layer, and the isolation trench exposes the third electrode. A fourth electrode is formed on the semiconductor light-emitting layer. The barrier prevents the metal particles in chip dicing and the conductive adhesive in packaging from reaching the semiconductor light-emitting layer, thereby providing short circuit protection and improving the reliability of the vertical light-emitting diode.12-15-2011
20110303894SEMICONDUCTOR LIGHT EMITTING ELEMENT AND FABRICATING METHOD - A method of forming a semiconductor light emitting element. The method can include forming a seed layer on a semiconductor layer assembly including at least one nitride semiconductor layer. An insulating mask can be formed on the seed layer. The insulating mask can include a plurality of element areas separated by cross spaces. Each element area of the plurality of element areas can be connected to at least one of the other element areas of the plurality of element areas. The seed layer can be plated such that a plating substrate is formed in each of the plurality of element areas.12-15-2011
20110303893Electrically Pixelated Luminescent Device Incorporating Optical Elements - Electrically pixelated luminescent devices incorporating optical elements, methods for forming electrically pixelated luminescent devices incorporating optical elements, and systems including electrically pixelated luminescent devices incorporating optical elements.12-15-2011
20110303892LIGHT-EMITTING DEVICE AND PROJECTOR - A light-emitting device includes a first layer, a second layer, and a semiconductor body interposed between the first and second layers, wherein the semiconductor body has a first fine-wall-shape member, a second fine-wall-shape member, and a semiconductor member interposed between the first and second fine-wall-shape members, the first and second fine-wall-shape members have a third layer, a fourth layer, and a fifth layer interposed between the third and fourth layers, the fifth layer is a layer that generates light and guides the light, the third and fourth layers are layers that guide the light generated in the fifth layer, and the first and second layers are layers that suppress leakage of the light generated in the fifth layer.12-15-2011
20110303891Mixed Alloy Defect Redirection Region and Devices Including Same - An optical semiconductor device such as a light emitting diode is formed on a transparent substrate having formed thereon a template layer, such as AlN, which is transparent to the wavelength of emission of the optical device. A mixed alloy defect redirection region is provided over the template layer such that the composition of the defect redirection region approaches or matches the composition of the regions contiguous thereto. For example, the Al content of the defect redirection region may be tailored to provide a stepped or gradual Aluminum content from template to active layer. Strain-induced cracking and defect density are reduced or eliminated.12-15-2011
20110309328NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE, EPITAXIAL SUBSTRATE, AND METHOD FOR FABRICATING NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE - Provided is a nitride semiconductor light emitting device including a light emitting layer above a GaN support base with a semipolar surface and allowing for suppression of reduction in luminous efficiency due to misfit dislocations. A nitride semiconductor light emitting device 12-22-2011
20110309327LIGHT EMITTING DEVICE, METHOD FOR FABRICATING LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE PACKAGE, AND LIGHTING SYSTEM - A light emitting device is provided. The light emitting device includes a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, an active layer disposed between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer and comprising a plurality of well layers and a plurality of barrier layers, a first nitride semiconductor layer disposed between the first conductivity type semiconductor layer and the active layer, and a second nitride semiconductor layer disposed between the active layer and the second conductivity type semiconductor layer, wherein the first nitride semiconductor layer has a higher indium composition than that of at least one of the plurality of well layers.12-22-2011
20110309326DEEP ULTRAVIOLET LIGHT EMITTING DIODE - A light emitting diode is provided, which includes an n-type contact layer and a light generating structure adjacent to the n-type contact layer. The light generating structure includes a set of quantum wells. The contact layer and light generating structure can be configured so that a difference between an energy of the n-type contact layer and an electron ground state energy of a quantum well is greater than an energy of a polar optical phonon in a material of the light generating structure. Additionally, the light generating structure can be configured so that its width is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure. The diode can include a blocking layer, which is configured so that a difference between an energy of the blocking layer and the electron ground state energy of a quantum well is greater than the energy of the polar optical phonon in the material of the light generating structure. The diode can include a composite contact, including an adhesion layer, which is at least partially transparent to light generated by the light generating structure and a reflecting metal layer configured to reflect at least a portion of the light generated by the light generating structure.12-22-2011
20110309325LIGHT SOURCE MODULE USING QUANTUM DOTS, BACKLIGHT UNIT EMPLOYING THE LIGHT SOURCE MODULE, DISPLAY APPARATUS, AND ILLUMINATION APPARATUS - A light source module using quantum dots, a backlight unit employing the light source module, a display apparatus, and an illumination apparatus. The light source module includes a light emitting device package including a plurality of light emitting device chips, and a quantum dot sealing package disposed on the light emitting device package in a light emitting direction, and converts wavelengths of light emitted from the light emitting device chips to generate wavelength-converted light.12-22-2011
20110309324SOLID STATE DEVICES WITH SEMI-POLAR FACETS AND ASSOCIATED METHODS OF MANUFACTURING - Solid state lighting devices with semi-polar or non-polar surfaces and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting device includes a substrate material having a substrate surface and an epitaxial silicon structure in direct contact with the substrate surface. The epitaxial silicon structure has a sidewall extending away from the substrate surface. The solid state lighting device also includes a semiconductor material on at least a portion of the sidewall of the epitaxial silicon structure. The semiconductor material has a semiconductor surface that is spaced apart from the substrate surface and is located on a semi-polar or non-polar crystal plane of the semiconductor material.12-22-2011
20130187128LIGHT-EMITTING ELEMENT AND METHOD FOR MANUFACTURING SAME - The present invention provides a light-emitting element comprising: a carbon layer comprising a graphene; a plurality of fine structures having grown toward the upper side of the carbon layer; and a light-emitting structure layer formed on the surface of the fine structures07-25-2013
20130187127LIGHT-EMITTING ELEMENT AND METHOD FOR MANUFACTURING SAME - The present invention provides a light-emitting element comprising: a carbon layer comprising a graphene; a plurality of fine structures having grown toward the upper side of the carbon layer; a thin film layer for coating the fine structures; and a light-emitting structure layer formed on the thin film layer.07-25-2013
20130187126Compositions, Devices and Methods for Optimizing Photosynthetically Active Radiation - Compositions, devices, and methods for optimizing photosynthetically active radiation by utilizing a composition comprising a quantum confinement material having an emission spectra of between 300 nm and 545 nm, and a quantum confinement material having an emission spectra of between 545 nm and 750 nm where the composition may be embedded in and/or coated on one or more transparent surfaces.07-25-2013
20130187125GALLIUM-NITRIDE-BASED LIGHT EMITTING DIODES WITH MULTIPLE POTENTIAL BARRIERS - A light emitting diode (LED) includes an active layer having one or more multilayer potential barriers and at least one well layer. Each multilayer potential barrier includes interlacing first and second InAlGaN thin layers. The first and second InAlGaN thin layers have compositions selected with respect to the well layer such that a polarization effect is substantially reduced.07-25-2013
20130187124LIGHTING-EMITTING DEVICE WITH NANOSTRUCTURED LAYER AND METHOD FOR FABRICATING THE SAME - A light emitting device has a nanostructured layer with nanovoids. The nanostructured layer can be provided below and adjacent to active region or on a substrate or a template below an n-type layer for the active region, so as to reduce strain between epitaxial layers in the light emitting device. A method of manufacturing the same is provided.07-25-2013
20130112943SEMICONDUCTOR LIGHT EMITTING DEVICE - According to one embodiment, in a semiconductor light emitting device, a light emitting layer is partially provided on a first semiconductor layer of a first conductivity type, and has a multiple quantum well structure made by alternately laminating well layers having a first impurity concentration of the first conductivity type and barrier layers having a second impurity concentration of the first conductivity type higher than the first impurity concentration. A second semiconductor layer of a second conductivity type is provided on the light emitting layer, and has a single composition and uniform bandgap. A first distance between a first electrode provided on the first semiconductor layer and a second electrode provided on the second semiconductor layer in a direction parallel to the light emitting layer is larger than a second distance between the first electrode and the second electrode in a direction perpendicular to the light emitting layer.05-09-2013
20080246017LIGHT-EMITTING DEVICE HAVING SEMICONDUCTOR NANOCRYSTAL COMPLEXES - Light-emitting devices are provided that incorporate one or more underlying LED chips or other light sources and a layer having one or more populations of nanoparticles disposed over the light source. The nanoparticles may absorb some light emitted by the underlying source, and re-emit light at a different level. By varying the type and relative concentration of nanoparticles, different emission spectra may be achieved. White light and specialty-color emission may be achieved. Devices also may include multiple LED chips, with nanoparticles disposed over one or more underlying chips in an array.10-09-2008
20120018701Group III Nitride Based Quantum Well Light Emitting Device Structures with an Indium Containing Capping Structure - Group III nitride based light emitting devices and methods of fabricating Group III nitride based light emitting devices are provided. The emitting devices include an n-type Group III nitride layer, a Group III nitride based active region on the n-type Group III nitride layer and comprising at least one quantum well structure, a Group III nitride layer including indium on the active region, a p-type Group III nitride layer including aluminum on the Group III nitride layer including indium, a first contact on the n-type Group III nitride layer and a second contact on the p-type Group III nitride layer. The Group III nitride layer including indium may also include aluminum.01-26-2012
20120018700Light Emitting Diode Having Vertical Topology And Method Of Making The Same - An LED having vertical topology and a method of making the same is capable of improving a luminous efficiency and reliability, and is also capable of achieving mass productivity. The method includes forming a semiconductor layer on a substrate; forming a first electrode on the semiconductor layer; forming a supporting layer on the first electrode; generating an acoustic stress wave at the interface between the substrate and semiconductor layer, thereby separating the substrate from the semiconductor layer; and forming a second electrode on the semiconductor layer exposed by the separation of the substrate.01-26-2012
20120018699METHOD OF ZINC OXIDE FILM GROWN ON THE EPITAXIAL LATERAL OVERGROWTH GALLIUM NITRIDE TEMPLATE - A growth method is proposed for high quality zinc oxide comprising the following steps: (1) growing a gallium nitride layer on a sapphire substrate around a temperature of 1000° C.; (2) patterning a SiO01-26-2012
20130193406LIGHT EMITTING DIODE AND FABRICATION METHOD THEREOF - The present invention discloses an LED and its fabrication method. The LED comprises: a sapphire substrate; an epitaxial layer, an active layer and a capping layer arranged on the sapphire substrate in sequence; wherein a plurality of cone-shaped structures are formed on the surface of the sapphire substrate close to the epitaxial layer. The cone-shaped structures can increase the light reflected by the sapphire substrate, raising the external quantum efficiency of the LED, thus increasing the light utilization rate of the LED. Furthermore, the formation of a plurality of cone-shaped structures can improve the lattice matching between the sapphire substrate and other films, reducing the crystal defects in the film formed on the sapphire substrate, increasing the internal quantum efficiency of the LED.08-01-2013
20130193408LIGHT-EMITTING DIODE FOR EMITTING ULTRAVIOLET LIGHT - An ultraviolet (UV) light-emitting diode including an n-type semiconductor layer, an active layer disposed on the n-type semiconductor layer, a p-type semiconductor layer disposed on the active layer and formed of p-type AlGaN, and a p-type graphene layer disposed on the p-type semiconductor layer and formed of graphene doped with a p-type dopant. The UV light-emitting diode has improved light emission efficiency by lowering contact resistance with the p-type semiconductor layer and maximizing UV transmittance.08-01-2013
20130193409Deep Ultraviolet Light Emitting Diode - A light emitting diode is provided, which includes an n-type contact layer and a light generating structure adjacent to the n-type contact layer. The light generating structure includes a set of quantum wells. The contact layer and light generating structure can be configured so that a difference between an energy of the n-type contact layer and an electron ground state energy of a quantum well is greater than an energy of a polar optical phonon in a material of the light generating structure. Additionally, the light generating structure can be configured so that its width is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure.08-01-2013
20120292592SEMICONDUCTOR LIGHT EMITTING DEVICE, NITRIDE SEMICONDUCTOR WAFER, AND METHOD FOR MANUFACTURING NITRIDE SEMICONDUCTOR LAYER - According to one embodiment, a semiconductor light emitting device includes: first and second semiconductor layers, a light emitting part, and an In-containing layer. The first semiconductor layer is formed on a silicon substrate via a foundation layer. The light emitting part is provided on the first semiconductor layer, and includes barrier layers and a well layer provided between the barrier layers including Ga11-22-2012
20120032140LIGHT-EMITTING DIODE INCLUDING A METAL-DIELECTRIC-METAL STRUCTURE - A light-emitting diode (LED) (02-09-2012
20120056152LIGHT EMITTING DEVICES - In one aspect of the invention, a light emitting device includes an epi layer having multiple layers of semiconductors formed on a substrate, a first electrode and a second electrode having opposite polarities with each other, and electrically coupled to corresponding semiconductor layers, respectively, of the epi layer, and a rod structure formed on the epi layer. The rod structure includes a plurality of rods distanced from each other.03-08-2012
20130200335LIGHT EMITTING DEVICE PACKAGE - Provided is a light emitting device package. The light emitting device package comprises a body formed of a silicon-based material; an insulating layer having a first opening on a surface of the body; a first and second metal layers disposed on the insulating layer; a light emitting device having a plurality of compound semiconductor layers disposed on a top surface of the body and connected to the first and second metal layers; and a protection device disposed on the body and electrically connected to the light emitting device, wherein the insulating layer has a second opening on a bottom surface of the body, wherein a first portion of the first metal layer is connected to the protective device and is disposed in the second opening of the insulating layer.08-08-2013
20130099200LAYER ASSEMBLY - A device including a locally modified buried first layer. A second layer is arranged on top of the first layer. The first layer includes at least one modified section and at least one unmodified section. The modified material of the locally modified buried first layer changes or induces mechanical strain in a portion of the second layer which is arranged above the at least one modified section. At least one nanostructure is placed on top of the second layer in an area, which is located above the at least one unmodified section of the first layer or adjacent thereto, said at least one nanostructure being formed by a strain-sensitive third material deposited on the locally strained second layer.04-25-2013
20120298955GROUP III NITRIDE BASED LIGHT EMITTING DIODE STRUCTURES WITH A QUANTUM WELL AND SUPERLATTICE, GROUP III NITRIDE BASED QUANTUM WELL STRUCTURES AND GROUP III NITRIDE BASED SUPERLATTICE STRUCTURES - A semiconductor device is provided that includes a Group III nitride based superlattice and a Group III nitride based active region comprising at least one quantum well structure on the superlattice. The quantum well structure includes a well support layer comprising a Group III nitride, a quantum well layer comprising a Group III nitride on the well support layer and a cap layer comprising a Group III nitride on the quantum well layer. A Group III nitride based semiconductor device is also provided that includes a gallium nitride based superlattice having at least two periods of alternating layers of In11-29-2012
20120298952SEMICONDUCTOR LIGHT EMITTING DEVICE, NITRIDE SEMICONDUCTOR LAYER, AND METHOD FOR FORMING NITRIDE SEMICONDUCTOR LAYER - According to an embodiment, a semiconductor light emitting device includes a foundation layer, a first semiconductor layer, a light emitting layer, and a second semiconductor layer. The foundation layer has an unevenness having recesses, side portions, and protrusions. A first major surface of the foundation layer has an overlay-region. The foundation layer has a plurality of dislocations including first dislocations whose one ends reaching the recess and second dislocations whose one ends reaching the protrusion. A proportion of a number of the second dislocations reaching the first major surface to a number of all of the second dislocations is smaller than a proportion of a number of the first dislocations reaching the first major surface to a number of all of the first dislocations. A number of the dislocations reaching the overlay-region of the first major surface is smaller than a number of all of the first dislocations.11-29-2012
20120074380WHITE LIGHT EMITTING DIODE - A white light emitting diode (LED) and method for forming the white LED are provided, wherein a semiconductor material is formed directly with a epitaxial method on a GaN epitaxial structure. The semiconductor material is a doped II-VI semiconductor compound with a broad FWHM (Full Width at Half Maximum) compared to conventional phosphor, can provide a white LED with better color rendering.03-29-2012
20120085988LIGHT-EMITTING DIODE DEVICE AND MANUFACTURING METHOD THEREOF - A light-emitting diode (LED) device includes a substrate, an epitaxial layer, a first electrode and a second electrode. The epitaxial layer is disposed on the substrate. The first electrode is disposed to the epitaxial layer and the second electrode is disposed on the epitaxial layer, and a first conductive finger of the second electrode and a first conductive finger of the first electrode are overlapped. Because the first conductive finger of the second electrode and the first conductive finger of the first electrode are overlapped, the light-emitting area of the LED device can be increased and the light shielded by the electrodes can be decreased significantly. Besides, overlapped electrodes can form a capacitor which can store electric charges to enhance the antistatic ability of the LED device.04-12-2012
20120085987LIGHT EMITTING DEVICE - A light emitting device is provided, which includes a light-emitting structure having an active layer and a magnetic material. The active layer includes at least one quantum well structure, and a thickness of at least one of the quantum well structure is greater than or substantially equal to 1.2 nm at room temperature. The magnetic material is coupled with the light-emitting structure to produce a magnetic field perpendicular to a surface of the active layer in the light-emitting structure.04-12-2012
20130207071LIGHT EMITTING DIODE ARRAY - A light emitting diode (LED) array includes a substrate with an array having a plurality of LED chips thereon, a dielectric layer, a plug, and a conductive connection layer. Each of the LED chips is isolated from another LED chip adjacent thereto by a trench. The dielectric layer covers a surface of the substrate exposed by the trench and sidewalls and partial surfaces of the LED chips adjacent to the trench. The plug fills the trench. The conductive connection layer is disposed over the plug and the dielectric layer to connect the LED chips with the LED chips adjacent thereto. Radiation emitted from one of the LED chips can be reflected by the dielectric layer and the plug, and finally reflected and output from a side of the LED chip not adjacent to the trench, thereby not affecting the adjacent LED chip and being absorbed by it.08-15-2013