Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Heterojunction

Subclass of:

257 - Active solid-state devices (e.g., transistors, solid-state diodes)

257009000 - THIN ACTIVE PHYSICAL LAYER WHICH IS (1) AN ACTIVE POTENTIAL WELL LAYER THIN ENOUGH TO ESTABLISH DISCRETE QUANTUM ENERGY LEVELS OR (2) AN ACTIVE BARRIER LAYER THIN ENOUGH TO PERMIT QUANTUM MECHANICAL TUNNELING OR (3) AN ACTIVE LAYER THIN ENOUGH TO PERMIT CARRIER TRANSMISSION WITH SUBSTANTIALLY NO SCATTERING (E.G., SUPERLATTICE QUANTUM WELL, OR BALLISTIC TRANSPORT DEVICE)

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
257013000 Incoherent light emitter 862
257014000 Quantum well 602
257026000 Ballistic transport device 25
Entries
DocumentTitleDate
20110193055NANOWHISKERS WITH PN JUNCTIONS, DOPED NANOWHISKERS, AND METHODS FOR PREPARING THEM - Nano-engineered structures are disclosed, incorporating nanowhiskers of high mobility conductivity and incorporating pn junctions. In one embodiment, a nanowhisker of a first semiconducting material has a first band gap, and an enclosure comprising at least one second material with a second band gap encloses said nanoelement along at least part of its length, the second material being doped to provide opposite conductivity type charge carriers in respective first and second regions along the length of the of the nanowhisker, whereby to create in the nanowhisker by transfer of charge carriers into the nanowhisker, corresponding first and second regions of opposite conductivity type charge carriers with a region depleted of free carriers therebetween. The doping of the enclosure material may be degenerate so as to create within the nanowhisker adjacent segments having very heavy modulation doping of opposite conductivity type analogous to the heavily doped regions of an Esaki diode. In another embodiment, a nanowhisker is surrounded by polymer material containing dopant material. A step of rapid thermal annealing causes the dopant material to diffuse into the nanowhisker. In a further embodiment, a nanowhisker has a heterojunction between two different intrinsic materials, and Fermi level pinning creates a pn junction at the interface without doping.08-11-2011
20090302306Nano Electronic Device and Fabricating Method of The Same - Disclosed herein are a nano electronic device and a method of fabricating the same. The nano electronic device includes a ferroelectric nano-structure and a semiconducting nano-wire. Polarization formed on the ferroelectric nano-structure is utilized.12-10-2009
20120175585CAGE NANOSTRUCTURES AND PREPARTION THEREOF - A unique family of nanoparticles characterized by their nanometric size and cage-like shapes (hollow structures), capable of holding in their hollow cavity a variety of materials is disclosed herein.07-12-2012
20120097917Aligned, Coated Nanowire Arrays for Gas Sensing - Aligned nanowire arrays were coated with semiconductor shell layers, and optionally with noble metal nanoparticles for use as three dimensional gas sensors. The sensors show room-temperature responses to low concentrations of various gases. Arrays containing different sensor types can discriminate among different gases, based upon changes in conductivity and response times.04-26-2012
20090189143Nanotube array electronic and opto-electronic devices - Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The discussed electronic and photonic devices and circuits rely on the nanotube arrays grown on a variety of substrates, such as glass or Si wafer. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for a large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on Si-wafers, the CNT-based devices can be combined with the Si circuit elements, thus producing hybrid Si-CNT devices and circuits.07-30-2009
20090189144Device For Absorbing Or Emitting Light And Methods Of Making The Same - A device disclosed herein includes a first layer, a second layer, and a first plurality of nanowires established between the first layer and the second layer. The first plurality of nanowires is formed of a first semiconductor material. The device further includes a third layer, and a second plurality of nanowires established between the second and third layers. The second plurality of nanowires is formed of a second semiconductor material having a bandgap that is the same as or different from a bandgap of the first semiconductor material.07-30-2009
20080230764Composite Quantum Dot Structures - A composite quantum dot structure (09-25-2008
20090085026STRUCTURE AND METHOD FOR MANIPULATING SPIN QUANTUM STATE THROUGH DIPOLE POLARIZATION SWITCHING - Disclosed herein is a structure and method for manipulating a spin state, regarded as important in the field of spintronics, by which the distribution of spin-up and spin-down states of carriers in a hybrid double quantum disk structure, composed of a diluted magnetic semiconductor and a ferroelectric compound semiconductor, is manipulated through dipole polarization switching of the ferroelectric compound semiconductor without a change in bias. Giant Zeeman splitting properties of the diluted magnetic semiconductor and polarization properties of the ferroelectric compound semiconductor are applied in conjunction with the Pauli exclusion principle, thus enabling the combination or separation of carriers in spin-up and spin-down states in the hybrid double quantum disk structure. The spin relaxation time in the structure is on the order of microseconds, during which the spin state is well-defined, and therefore, the structure can be applied to microprocessors having gigahertz clock speeds.04-02-2009
20120267605Methods for the Production of Nanoscale Heterostructures - The present invention is directed to a novel synthetic method for producing nanoscale heterostructures, and particularly nanoscale heterostructure particles, rods and sheets, that comprise a metal core and a monocrystalline semiconductor shell with substantial lattice mismatches between them. More specifically, the invention concerns the use of controlled soft acid-base coordination reactions between molecular complexes and colloidal nanostructures to drive the nanoscale monocrystalline growth of the semiconductor shell with a lattice structure incommensurate with that of the core. The invention also relates to more complex hybrid core-shell structures that exhibit azimuthal and radial nano-tailoring of structures. The invention is additionally directed to the use of such compositions in semiconductor devices.10-25-2012
20080315175ALIGNMENT, TRANSPORTATION AND INTEGRATION OF NANOWIRES USING OPTICAL TRAPPING - Individually trapping, transferring, and assembling high-aspect-ratio semiconductor nanowires into arbitrary structures in a fluid environment. Nanowires with diameters as small as 20 nm and aspect ratios of above 100 can be trapped and transported in three dimensions, enabling the construction of nanowire architectures which may function as active photonic devices. Moreover, nanowire structures can now be assembled in physiological environments. In one aspect, nanowires are positioned to direct light to remote samples, reducing exposure of the overall sample to intense source illumination. A tunable nanowire probe for subwavelength imaging is also described utilizing efficient second harmonic generation (SHG) whose optical frequency conversion allows implementing subwavelength microscopes.12-25-2008
20120126200Nanowhiskers with PN Junctions, Doped Nanowhiskers, and Methods for Preparing Them - Nano-engineered structures are disclosed, incorporating nanowhiskers of high mobility conductivity and incorporating pn junctions. In one embodiment, a nanowhisker of a first semiconducting material has a first band gap, and an enclosure comprising at least one second material with a second band gap encloses said nanoelement along at least part of its length, the second material being doped to provide opposite conductivity type charge carriers in respective first and second regions along the length of the of the nanowhisker, whereby to create in the nanowhisker by transfer of charge carriers into the nanowhisker, corresponding first and second regions of opposite conductivity type charge carriers with a region depleted of free carriers therebetween.05-24-2012
20120248403LAYER ASSEMBLY - The invention inter alia relates to a method of fabricating a layer assembly comprising the steps of: arranging a first layer on top of a carrier; arranging a second layer on top of the first layer; locally modifying the material of the buried first layer and providing at least one modified section in the first layer, wherein the modified material changes or induces mechanical strain in a portion of the second layer which is arranged above the at least one modified section; after locally modifying the material of the buried first layer, depositing a third material on top of the second layer, at least one characteristic of the third material being sensitive to the local mechanical strain in the second layer.10-04-2012
20120175584STRUCTURES FOR RADIATION DETECTION AND ENERGY CONVERSION USING QUANTUM DOTS - Inorganic semiconducting materials such as silicon are used as a host matrix in which quantum dots reside to provide a radiation detector or energy converter. The quantum dot material may be disposed by incorporating materials sensitive to neutron detection such as boron-containing compounds, or the use of methods such as chemical vapor deposition or atomic layer deposition to insert the quantum dot material. Electrodes may be extended deep into the host matrix material to improve efficiency. Likewise, the host matrix may be machined to create pores in the matrix material. Further, amplification and signal-processing structures may be used in close proximity to the radiation-sensitive region of the device.07-12-2012
20120241717Organic Photosensitive Optoelectronic Devices - A photosensitive optoelectronic device (09-27-2012
20130140518QUANTUM DOT GATE FETS AND CIRCUITS CONFIGURED AS BIOSENSORS AND GENE SEQUENCERS - Quantum dot (QD) gate FETs and the use of quantum dot (QD) gate FETs for the purpose of sensing analytes and proteins is disclosed and described. Analytes, proteins, miRNAs, and DNAs functionalized to the QDs change the charge density in the gate and hence the current-voltage characteristics. In one embodiment, QD-FETs, such as 06-06-2013
20110220865TRANSISTOR AND MANUFACTURING METHOD THEREOF - According to an embodiment of the present invention, a transistor includes a source electrode, a drain electrode, a graphene film formed between the source electrode and the drain electrode and having a first region and a second region, and a gate electrode formed on the first region and the second region of the graphene film via a gate insulating film. The graphene film functions as a channel. A Schottky junction is formed at a junction between the first region and the second region. The first region has a conductor property, and the second region is adjacent to the drain electrode side of the first region and has a semiconductor property.09-15-2011
20120256160Piezo-phototronic Effect Devices - A semiconducting device includes a piezoelectric structure that has a first end and an opposite second end. A first conductor is in electrical communication with the first end and a second conductor is in electrical communication with the second end so as to form an interface therebetween. A force applying structure is configured to maintain an amount of strain in the piezoelectric member sufficient to generate a desired electrical characteristic in the semiconducting device.10-11-2012
20110272665Nitride semiconductor device - An inventive nitride semiconductor device includes: a substrate; a first buffer layer provided on the substrate, and having a superlattice structure which includes two types of Group III nitride semiconductor sublayers having different compositions and alternately stacked in pairs; a second buffer layer provided on the first buffer layer in contact with the first buffer layer, and having a superlattice structure which includes two types of Group III nitride semiconductor sublayers having different compositions and alternately stacked in pairs; and a device operation layer of a Group III nitride semiconductor provided on the second buffer layer; wherein an average lattice constant LC11-10-2011
20130181185TUNNELING FIELD EFFECT TRANSISTOR AND METHOD FOR FABRICATING THE SAME - A tunneling field effect transistor and a method for fabricating the same are provided. The tunneling field effect transistor comprises: a semiconductor substrate and a drain layer formed in the semiconductor substrate, in which the drain layer is first type heavily doped; an epitaxial layer formed on the drain layer, with an isolation region formed in the epitaxial layer; a buried layer formed in the epitaxial layer, in which the buried layer is second type lightly doped; a source formed in the buried layer, in which the source is second type heavily doped; a gate dielectric layer formed on the epitaxial layer, and a gate formed on the gate dielectric layer; and a source metal contact layer formed on the source, and a drain metal contact layer formed under the drain layer.07-18-2013

Patent applications in class Heterojunction

Patent applications in all subclasses Heterojunction