Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Methods

Subclass of:

250 - Radiant energy

250336100 - INVISIBLE RADIANT ENERGY RESPONSIVE ELECTRIC SIGNALLING

250361000 - With or including a luminophor

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20110174980ENCLOSURE FOR HYGROSCOPIC SCINTILLATION CRYSTAL FOR NUCLEAR IMAGING - When employing hygroscopic scintillation crystals (07-21-2011
20100148074Scintillation Array Method and Apparatus - In one aspect a scintillation array includes a transparent material between portions of adjacent scintillation pixels. The transparent material can allow light to pass from one scintillation pixel to an adjacent scintillation pixel. The resulting image provides information regarding the depth at which a scintillation event occurs. Another aspect regards a scintillation array that includes reflector strips separating portions of adjacent scintillation pixels. Other spaces between portions of scintillation pixels need not include reflector strips and may be filled with other reflective material.06-17-2010
20130043398SYSTEM AND METHOD FOR ASSAYING A RADIONUCLIDE - A system for assaying a radionuclide includes a liquid scintillation detector, an analyzer connected to the liquid scintillation detector, and a delay circuit connected to the analyzer. A gamma detector and a multi-channel analyzer are connected to the delay circuit and the gamma detector. The multi-channel analyzer produces a signal reflective of the radionuclide in the sample. A method for assaying a radionuclide includes selecting a sample, detecting alpha or beta emissions from the sample with a liquid scintillation detector, producing a first signal reflective of the alpha or beta emissions, and delaying the first signal a predetermined time. The method further includes detecting gamma emissions from the sample, producing a second signal reflective of the gamma emissions, and combining the delayed first signal with the second signal to produce a third signal reflective of the radionuclide.02-21-2013
20100140482Self-Referencing Integrated Biosensor Based on Surface Plasmon Resonance Mediated Luminescence - A sensing device for characterizing a substance by modifying modes of resonance of surface plasmons is described. The sensing device comprises: a photo-emitting substrate layer for generating a luminescence signal; a dielectric adaptive layer applied onto the photo-emitting substrate layer; and a sensing layer applied onto the dielectric adaptive layer, the sensing layer having a sensing surface for coupling with the substance to be characterized. The luminescence signal generates surface plasmons having modes of resonance at the interface of the sensing layer and the substance to be characterized. The substance to be characterized, when coupled to the sensing layer, characteristically modifies the modes of resonance of the surface plasmons.06-10-2010
20110192982System and Method for Providing Depth of Interaction Detection Using Positron Emission Tomography - A system and method is provided for determining depth of interaction (DOI) information. The system and method includes a detector configured to generate DOI information as a result of radiation emitted from a radiation source. The system and method further includes a plurality of scintillator pixels forming a block, wherein the plurality of scintillator pixels have a first portion and a second portion. A first medium distributed in an alternating pattern of coupling and separation between each of the scintillator pixels in a first portion or second portion of the block is also provided. A plurality of sensors for detecting scintillation events across the plurality of scintillators based on the alternating pattern of coupling and separation between each of the scintillator pixels, wherein DOI information is provided by a position profile of the block, and an image processor for generating a 3 dimensional image from the DOI information are also included.08-11-2011
20110192981RADIATION DETECTION SYSTEM INCLUDING A PLURALITY OF SCINTILLATORS HAVING DIFFERENT LIGHT YIELDS AND METHOD OF USING THE SAME - A radiation detection system can include a scintillating member including a polymer matrix, a first scintillating material, and a second scintillating material different from the first scintillating material and at least one photosensor coupled to the scintillating member. The radiation detection system can be configured to receive particular radiation at the scintillating member, generate a first light from the first scintillating material and a second light from the second scintillating material in response to receiving the particular radiation, receive the first and second lights at the at least one photosensor, generate a signal at the photosensor, and determine a total effective energy of the particular radiation based at least in part on the signal. Practical applications of the radiation detection system can include identifying a particular isotope present within an object, identifying a particular type of radiation emitted by the object, or locating a source of radiation within the object.08-11-2011
20110192980SYSTEM AND METHOD FOR COMPENSATING FOR ANODE GAIN NON-UNIFORMITY IN MULTI-ANODE POSITION SENSITIVE PHOTOMULTIPLIER TUBE - The present invention relates to a system and method for compensating for anode gain non-uniformity in a Multi-anode Position Sensitive Photomultiplier Tube (PS-PMT), in which a compensation unit is disposed between the multi-anode position sensitive photomultiplier tube and a position detection circuit unit and configured to uniform a current signal inputted to the position detection circuit unit, thereby compensating for anode gain non-uniformity. In accordance with the present invention, the compensation unit for changing resistance is used. Accordingly, there is an advantage in that the gain non-uniformity of each of the anodes of the PS-PMT can be compensated for. Furthermore, the gain non-uniformity of each of the anodes of the PS-PMT is compensated for by changing resistance values of the variable resistances of the compensation unit. Accordingly, there is an advantage in that the interaction positions of gamma rays can be calculated more precisely.08-11-2011
20110192979AUTOMATIC GAIN STABILIZATION AND TEMPERATURE COMPENSATION FOR ORGANIC AND/OR PLASTIC SCINTILLATION DEVICES - A detector and associated method are provided including a first scintillation material having a light yield temperature dependence and an output at a first energy level, a second scintillation material having a light yield temperature dependence similar to the first material and an output at a second energy level, and detection circuitry. The first and second outputs are responsive to radiation emitted from an ionizing radiation source. The detection circuitry includes a photo multiplier tube configured to convert photon outputs from the first and second scintillating materials to electrical pulses, a counter circuit configured to count the electrical pulses generated in the photo multiplier tube by the first and second materials, and a gain control circuit configured to monitor the electrical pulses generated in the photomultiplier tube by the second material and adjust a gain of the detector upon detecting a drift in the output of the second material.08-11-2011
20100148073System and Method for Structured Illumination and Collection for Improved Optical Confocality of Raman Fiber Array Spectral Translator Imaging and Interactive Raman Probing - The disclosure relates generally to methods and apparatus for using telescope optics and a fiber array spectral translator-based (“FAST”) spectroscopic system for improved imaging, spectral analysis, and interactive probing of a sample. In an embodiment, the confocality of a fiber array spectral translator-based spectroscopic system is improved through the use of structured illumination and/or structured collection of photons. User input may be received and acted upon to allow a user to interactively in real time and/or near real time view and analyze specific regions of the sample.06-17-2010
20130037722METHOD AND SYSTEM FOR IMAGING USING NUCLEAR MEDICINE IMAGING APPARATUS, NUCLEAR MEDICINE IMAGING SYSTEM, AND RADIATION THERAPY CONTROL SYSTEM - In imaging on the basis of list mode data of a list of radioactive count data detected by a nuclear medicine imaging apparatus for measuring radiation in a pulse mode, the processing from the measurement to imaging of radiation is accelerated substantially to the real time level by selecting the number of count data to be used for online imaging computations on the basis of the counting rate of radiation.02-14-2013
20100116993RADIOGRAPHY MEASURING APPARATUS AND RADIOGRAPHY MEASURING METHOD - A neutron reactant layer (05-13-2010
20100072374Lead-iodide-based scintillator materials - Scintillator material comprising nanoparticles (nanocrystals) comprising lead (Pb), iodine (I), and optionally one or both of oxygen (O) and hydrogen (H) wherein the nanoparticles exhibit room-temperature scintillation under gamma irradiation. The scintillator nanoparticles can comprise Pb03-25-2010
20130032721PET Scanner with Emission and Transmission Structures in a Checkerboard Configuration - Apparatuses, computer-readable mediums, and methods are provided. In one embodiment, a positron emission tomography (“PET”) detector array is provided which includes a plurality of crystal elements arranged in a two-dimensional checkerboard configuration. In addition, there are empty spaces in the checkerboard configuration. In various embodiments, the empty spaces are filled with passive shielding, transmission source assemblies, biopsy instruments, surgical instruments, and/or electromagnetic sensors. In various embodiments, the crystal elements and the transmission source assemblies simultaneously perform emission/transmission acquisitions.02-07-2013
20100044571METHOD FOR DETERMINING THE THREE-DIMENSIONAL POSITION OF A SCINTILLATION EVENT - A method is provided for determining the three-dimensional position of an interaction location within a scintillating crystal at which an high-energy photon produces a plurality of scintillation photons. The method includes the use of a sensor-on-entrance-surface photodetector device to determine a distribution pattern of the scintillation photons in the crystal.02-25-2010
20090159800Process and Devices for Optically Sensing a Specimen with a Large Depth of Field - A device for optically sensing a specimen with a large depth of field has a lighting module which illuminates a zone of the specimen during a predetermined measurement period with a pattern whose phase is modified in time during the measurement period, generating a specimen light to which a corresponding time-variable phase is imparted. The device also includes a detection module having a space-resolving detection zone which records the specimen zone and has multiple recording pixels, two analysis channels which can be connected to the recording pixels, and an analysis unit is connected to both analysis channels. A control unit is provided which, during the measurement period, connects each recording pixel in synchrony with the phase of the detected specimen light to the two analysis channels, alternatively, in such a way that the detected specimen light is divided into two portions phased in relation to one another, and the analysis unit calculates an optical split-image of the specimen zone on the basis of the two phased portions supplied to the analysis channels.06-25-2009
20100108894METHOD AND APPARATUS FOR IMAGING USING ROBUST BAYESIAN SEQUENCE RECONSTRUCTION - Methods and systems for determining a sequence of energy interactions in a detector. A plurality of discrete energy interactions is received in a plurality of detector voxels. A plurality of possible sequences of interaction is formed based on the received plurality of discrete energy interactions. For each of the plurality of possible sequences of interaction, an a posteriori probability is computed, where the a posteriori probability is based on a likelihood that the possible sequence of interaction is consistent with the received plurality of discrete energy interactions. Additionally or alternatively, the a posteriori probability may be based on an a priori probability. One of the formed plurality of possible sequences of interaction is selected based on the computed a posteriori probability.05-06-2010
20130026370METHODS AND SYSTEMS FOR SCATTER ESTIMATION IN POSITRON EMISSION TOMOGRAPHY - Methods and systems for multiple scatter estimation in Positron Emission Tomography (PET) are provided. One method includes determining attenuation sinograms and determining a varying convolution kernel as a function of the attenuation sinograms, wherein the kernel varies in amplitude and width over a radial length of a PET imaging system. The method also includes using the varying convolution kernel to estimate multiple PET scatter.01-31-2013
20130026371INDEX OF REFRACTION MATCHED NANOPARTICLES AND METHODS OF USE - Embodiments of the present disclosure provide for nanoparticles, methods of making nanoparticles, materials including nanoparticles, the use of materials including nanoparticles, and the like.01-31-2013
20130087710Trigger Methods in Nuclear Medical Imaging - Disclosed herein are a system, method, and computer-readable storage medium for determining a time pickoff for both digital and analog photomultiplier circuits. Rather than basing time pickoff on the leading edge of a photomultiplier signal crossing a threshold or the first signal from a digital photomultiplier, a method for more accurate time calculations is disclosed. The system searches for peak values associated with the signal using differentiation, peak hold searching, and Gaussian distributions. Based on these calculations and comparisons, a more accurate time pickoff is determined.04-11-2013
20130087711Rare-Earth Metal Halide Scintillators with Reduced Hygroscopicity and Method of Making the Same - The present disclosure discloses rare earth metal halide scintillators compositions with reduced hygroscopicity. Compositions in specific implementations include three group of elements: Lanthanides, (La, Ce, Lu, Gd or V), elements in group 17 of the periodic table of elements (CI, Br and I) and elements of group 13 (B, AI, Ga, In, TI), and any combination of these elements. Examples of methods for making the compositions are also disclosed.04-11-2013
20120181435Detection System for High-Resolution Gamma Radiation Spectroscopy with Neutron Time-of-Flight Filtering - A γ-radiation detection system that includes at least one semiconductor detector such as HPGe-Detector, a position-sensitive α-Detector, a TOF Controller, and a Digitizer/Integrator. The Digitizer/Integrator starts to process the energy signals of a γ-radiation sent from the HPGe-Detector instantly when the HPGe-Detector detects the γ-radiation. Subsequently, it is determined whether a coincidence exists between the α-particles and γ-radiation signal, based on a determination of the time-of-flight of neutrons obtained from the α-Detector and the HPGe-Detector. If it is determined that the time-of-flight falls within a predetermined coincidence window, the Digitizer/Integrator is allowed to continue and complete the energy signal processing. If, however, there is no coincidence, the Digitizer/Integrator is instructed to be clear and reset its operation instantly.07-19-2012
20090302225Garnet UV Phosphor and Scintillator Materials Preparation and Use in Radiation Detection - A method of detecting radiological substances on a surface comprises coating the surface with a coating containing an indicator material that produces UV emissions and monitoring the coating to detect the radiological substances. A UV viewer can be used for monitoring the coating to detect the radiological substances. The invention also provides a coating that includes an indicator material carried by the coating that provides an indication of the radiological substances.12-10-2009
20090302224Charge Calibrator and System Incorporating the Same - A charge calibrator for simulating the output of a scintillation detector. The calibrator includes a processor for executing a Gaussian random number generator algorithm to produce an output comprising a Gaussian random number distribution having at least one characteristic established in response to a user input.12-10-2009
20130056639Timing Response Improvement in Light-Sharing Detectors - A method for improving timing response in light-sharing scintillation detectors is disclosed. The method includes detecting an event, by a plurality of photo sensors, from a scintillation crystal. The method then includes sampling and digitizing the photo sensor outputs by an analog-to-digital converter. Then the method includes correcting associated timing data, by a processor, for each of the photo sensor outputs based on a lookup table. The method then includes selectively time shifting the photo sensor outputs based on the lookup table to generate corrected photo sensor outputs. The method then includes summing the corrected photo sensor outputs by the processor. The method then includes generating an event time, by the processor, for the detected event based on the sum of the corrected photo sensor outputs.03-07-2013
20130056638Three-dimensional radiation position detector and method of identifying sensed positions therein - A three-dimensional position-sensitive radiation detector is provided which has a three-dimensional array of photodetectors disposed on the surface of a scintillator block and which is capable of three-dimensionally identifying the position of light emission at which radiation has been detected within the detector. The three-dimensional position-sensitive radiation detector includes: a scintillator block including a central portion which restricts the direction of diffusion of light so as to direct the light in three axial directions and which has an optically discontinuous region, and an outer portion which is disposed on the outside of the central portion and which does not restrict the direction of diffusion of light; and photodetectors disposed on at least two outer circumferential surfaces of the scintillator block. The detector identifies three-dimensionally the position of light emission, thereby preventing deterioration in position discrimination performance even when inner scintillator elements are smaller than the photodetectors.03-07-2013
20100084560TIMING RESPONSE IMPROVEMENT IN LIGHT-SHARING DETECTORS - A method for improving timing response in light-sharing scintillation detectors is disclosed. The method includes detecting an event, by a plurality of photo sensors, from a scintillation crystal. The method then includes sampling and digitizing the photo sensor outputs by an analog-to-digital converter. Then the method includes correcting associated timing data, by a processor, for each of the photo sensor outputs based on a lookup table. The method then includes selectively time shifting the photo sensor outputs based on the lookup table to generate corrected photo sensor outputs. The method then includes summing the corrected photo sensor outputs by the processor. The method then includes generating an event time, by the processor, for the detected event based on the sum of the corrected photo sensor outputs.04-08-2010
20100084559USE OF CRYSTAL LOCATION IN NUCLEAR IMAGING APPARATUS TO MINIMIZE TIMING DEGRADATION IN A PHOTODETECTOR ARRAY - A method, process and apparatus for improved nuclear imaging. Specifically, the disclosure relates to improving detection of true coincidence events and differentiating them from events detected from scattered and random gamma photons. Embodiments comprise receiving electromagnetic radiation at a plurality of photo detectors that was generated by a scintillating crystal impacted by a gamma photon. Embodiments further comprise processing data received at a subset of the plurality of photo detectors that are closer to a scintillating crystal, thereby improving a timing coincidence window for detecting a coincidence event.04-08-2010
20130062526POSITRON CT APPARATUS AND A TIMING CORRECTION METHOD - A PET apparatus and a timing correction method of this invention select two target gamma-ray detectors which count coincidences, select a reference detector which is one detector out of the two selected gamma-ray detectors, select a gamma-ray detector different from the other, opposite detector, and when repeating the selection, make a time lag histogram concerning two gamma-ray detectors selected in the past a reference, and correct a time lag histogram concerning gamma-ray detectors selected this time based on the reference. By repeating an operation to make the corrected time lag histogram concerning the two gamma-ray detectors a new reference, an optimal time lag histogram can be obtained without repeating many measurements and computations.03-14-2013
20130062525Positron Emission Tomography Block Detector Interconnect - Using standard or “off the shelf” cable to interconnect between the PET block detector and the detector circuit may save substantial costs given the number of PMTs in a PET system. Given space constraints, simple maintenance with reduced risk of disturbing cabling is desired, making ongoing use of standard cabling without adding further cabling desired. To implement digital gain control, a further communication is provided between the PET detector block and the detector circuit. Since the standard cable may not have additional wires for such communications and to reduce timing degradation, the PMT signals are combined, such as generating position and energy signals at the PET detector block. The four PMT signals are reduced to three signals without reduction in function, allowing a fourth twisted pair of wires in a CAT5 cable to be used for digital gain control.03-14-2013
20120223236MIXED GARNET OXIDE SCINTILLATORS AND CORRSPONDING SYSTEMS AND METHODS - Scintillator materials based on mixed garnet compositions, as well as corresponding methods and systems, are described.09-06-2012
20120223235Systems and Methods for Determining Fluid Mobility in Rock Samples - Systems and methods for determining fluid mobility in rock samples using time-lapse position emission particle tracking.09-06-2012
20100072376SPECTRAL FILTER FOR USE WITH LUTETIUM-BASED SCINTILLATORS - A spectral filter used in conjunction with a lutetium-based scintillation material in a radiation detector is in imaging systems. The spectral filter operates to block at least a portion, but preferably substantially all, of an undesired infrared afterglow which results from ytterbium impurities in the lutetium-based scintillation material.03-25-2010
20090236531HORIZONTAL SENSOR ARRAYS FOR NON-INVASIVE IDENTIFICATION OF HAZARDOUS MATERIALS - A system, method, and frame structure detect radiation and identify materials associated with radiation that has been detected. An entity to be examined is determined to have entered between a frame structure. A set of radiation data is received from a set of radiation sensors mechanically coupled to a portion of the frame structure. The set of radiation sensors includes multiple radiation sensors situated in a horizontal configuration with respect to each other and a direction of travel through the frame structure associated with the entity currently being examined. At least one histogram is generated based on the set of radiation data. The at least one histogram is compared to a plurality of spectral images associated with known materials. The at least one histogram is determined to substantially match at least one of the plurality of spectral images. Personnel are notified that the at least one radiation source is a hazardous material.09-24-2009
20090236530BORON LOADED SCINTILLATOR - A scintillating composition for detecting neutrons and other radiation comprises a phenyl containing silicone rubber with carborane units and at least one phosphor molecule. The carborane units can either be a carborane molecule dispersed in the rubber with the aid of a compatiblization agent or can be covalently bound to the silicone.09-24-2009
20130214168SYSTEM AND METHOD FOR CORRECTING TIMING ERRORS IN A MEDICAL IMAGING SYSTEM - A method of correcting a timing signal that represents an arrival time of a photon at a positron emission tomography (PET) detector includes receiving a timing signal that represents an arrival time of a photon at a PET detector, receiving an energy signal indicative of an energy of the photon, calculating a timing correction using the energy signal, modifying the timing signal using the timing correction, and generating an image of an object using the modified timing signal. A system and non-transitory computer readable medium are also described herein.08-22-2013
20110017915DRIFT SCANNER FOR RARE CELL DETECTION - A fluorescence microscope for rare cell detection includes a laser beam illumination source for generating a laser beam to illuminate a specimen. A laser beam shaper is configured to generate a flat top (or uniform) laser beam. A time delay integration (TDI) image acquisition system includes a movable stage to hold the specimen, and a bi-directional row shiftable CCD array of a CCD camera system. The movable stage and bi-directional row shiftable CCD array are synchronized to acquire an image of the specimen by TDI. A low resolution image conversion arrangement includes the bi-directional row-shiftable CCD array and a clock which controls operation of the bi-directional row-shiftable CCD array, whereby charge is combined and collected during a readout operation, resulting in a lower resolution, yet high speed, acquired image.01-27-2011
20110017914Ionizing Radiation Detector - The invention concerns an ionizing radiation detector comprising a housing containing: 01-27-2011
20110315885HIGH EFFECTIVE ATOMIC NUMBER POLYMER SCINTILLATORS FOR GAMMA RAY SPECTROSCOPY - A scintillator material according to one embodiment includes a bismuth-loaded aromatic polymer having an energy resolution at 662 keV of less than about 10%. A scintillator material according to another embodiment includes a bismuth-loaded aromatic polymer having a fluor incorporated therewith and an energy resolution at 662 keV of less than about 10%. Additional systems and methods are also presented.12-29-2011
20120001076DATA ACQUISITION - An imaging detector includes processing electronics with a thermal coefficient about equal to a negative of a summation of thermal coefficients of a photosensor array and a scintillator array of the detector. In another instance, the imaging detector includes an A/D converter that alternately converts first charge corresponding to impinging radiation into a first signal and second charge corresponding to decaying charge into a second signal and a logic unit that corrects the first signal based on the second signal. In another instance, the imaging detector includes an A/D converter, an integrator offset voltage signal determiner, and a logic unit, wherein the determiner induces an electrical current via an off-set voltage, the A/D converter measures the current, and the logic unit calculates a resistance of the photosensor array based on the reference voltage and the measured current.01-05-2012
20110284750NEUTRON IMAGE DETECTING METHOD AND NEUTRON IMAGE DETECTOR USING ITS METHOD - A neutron image detection method is disclosed, which collects a fluorescent light generated by a neutron incident at a designated position interval in one-dimensional geometry and determines an incident position of the neutron by detecting the collected fluorescent light, in which the fluorescent light is detected by a photon counting method; a pulse signal generated by an individual output photon is extracted on the basis of a clock signal generated with the same time interval as the time width of the pulse signal generated by a single photon; a count-value distribution is obtained in terms of incident position as variable determined by a single neutron incident by counting the pulse signal output; and a neutron incident position is determined by calculating a median point on the basis of the obtained count-value distribution.11-24-2011
20120104261FUEL ASSEMBLY RADIATION MEASURING APPARATUS AND METHOD OF MEASURING RADIATION OF FUEL ASSEMBLY - A fuel assembly radiation measuring apparatus has a radiation signal generation apparatus including a LaBr05-03-2012
20090283681Method and Device for Determining the Fluorescence of a Sample and Use Thereof - In a method and a device for determining the fluorescence of a sample, wherein the sample (11-19-2009
20110291014RADIATION SENSOR TO DETECT DIFFERENT TARGETED RADIATION AND RADIATION DETECTION SYSTEM INCLUDING THE RADIATION SENSOR - A radiation sensor can include a first layer and a second layer. The first layer can include a first scintillation material to produce first light in response to receiving a first targeted radiation, and the second layer can include a second scintillation material to produce second light in response to receiving a second targeted radiation. The first scintillation material can be different from the second scintillation material, and the first targeted radiation can be different from the second targeted radiation. The first layer can be configured to receive and transmit the second light. In an embodiment, the radiation sensor can be part of a radiation detection system that includes a photosensor that can produce an electronic pulse in response to the first and second lights. A method of detecting radiation can include using the radiation detection system to distinguish different radiations by differences in pulse shape.12-01-2011
20100276602RADIATION DETECTOR WITH OPTICAL WAVEGUIDE AND NEUTRON SCINTILLATING MATERIAL - A radiation detector includes a neutron sensing element comprising a neutron scintillating composite material that emits a first photon having a first wavelength and an optical waveguide material having a wavelength-shifting dopant dispersed therein that absorbs the first photon emitted by the neutron scintillating composite material and emits a second photon having a second, different wavelength, and a functionalized reflective layer at an interface between the neutron scintillating composite material and the optical waveguide material. The functionalized reflective layer allows the first photon emitted by the neutron scintillating composite material to pass through and into the optical waveguide material, but prevents the second photon emitted by the optical waveguide material from passing through and into the neutron scintillating composite material. The photons emitted from the neutron sensing element are collected and channeled through the optical waveguide material and into a photosensing element optically coupled to the neutron sensing element.11-04-2010
20110186740SYSTEM FOR CONTROLLING PHOTOMULTIPLIER GAIN DRIFT AND ASSOCIATED METHOD - A system for controlling photomultiplier gain drift is disclosed. According to one aspect, the system includes first means for measuring a noise signal of the photomultiplier, the first means configured emit a measurement signal representative of the photomultiplier's noise signal. The system further includes second means for maintaining the measured noise signal at a constant level, based on the measurement signal. The disclosed embodiments apply to stabilization of the gain of photomultipliers and, more specifically, to stabilization of neutron measurement systems using photomultipliers.08-04-2011
20100264319Intelligent Sensor Platform - A radiation detection apparatus that utilizes a radiation sensor device that includes a scintillator device that is optically coupled to a plurality of silicon drift detector devices. Each silicon drift detector device segment includes an output anode that supplies the segment output to dedicated sensor processing circuitry. With each anode having dedicated processing circuitry, each output can be processed simultaneously. Also provided is a spectroscopic analysis device that is coupled with the sensor processing circuitry for computing spectral data associated with the radiation detection event. The spectroscopic analysis device accurately characterizes the detected radionuclide and prepares the results for display before the user. Networking capabilities also allow multiples of such apparatuses to communicate in an intelligent grid, providing even greater radionuclide characterization capabilities.10-21-2010
20100032575METHODS AND SYSTEMS FOR PET/CT SCANNING FOR EVALUATION OF MALIGNANCY - Embodiments of the methods of the present disclosure allow interpretation of the 02-11-2010
20110260068RADIOACTIVE CONTAMINATION MONITORING DEVICE AND MONITORING METHOD - Provided are a radioactive contamination monitoring device and a radioactive contamination monitoring method for enabling easy detection of radiation from an object to be monitored in a little surrounding space. The radioactive contamination monitoring device comprises a radiation detection unit, a photoelectric conversion unit for converting the light generated in the radiation detection unit to electricity, and a signal processing unit connected to the photoelectric conversion unit. The radiation detection unit includes a quadrangular prism-shaped light guide bar having a rectangular cross-section and a scintillator attached only to two adjacent side faces of the four side faces of the light guide bar.10-27-2011
20110079723CONFIGURABLE COINCIDENCE PAIRING AND FILTERING SYSTEM AND METHOD FOR POSITRON EMISSION TOMOGRAPHY - A method of processing positron emission tomography (PET) information obtained from a PET detector having a plurality of detector regions, each detector region having at least one detector module and a corresponding regional collector, the method including the steps of receiving PET event information for a single PET event, the PET event information including energy information and crystal position information of the single PET event; receiving non-detector event information; generating an event list that includes (1) a PET event entry, the PET event entry including a fine time stamp, the energy information, and the crystal position information, and (2) a non-detector event entry that includes the received non-detector event information; and transmitting the generated event list to a computer for off-line processing.04-07-2011
20110079722SYSTEM AND METHOD FOR ENHANCED SAMPLING VIA HELICAL SCANNING AND LIST-MODE RECONSTRUCTION IN POSITRON EMISSION TOMOGRAPHY - A positron emission tomography (PET) scanner system, including a detector that acquires PET event information, the detector being configured to move during acquisition of the PET event information; a first motion unit that acquires first event information of a position of a patient bed, the patient bed being configured to move during acquisition of the PET event information; a second motion unit that acquires second event information of the detector; an event collector that generates an event list of events that includes the PET event information, the first event information, and the second event information; and a list-mode reconstructing unit that reconstructs an image by processing the generated event list.04-07-2011
20120292518Portable radiation detector - Apparatus for detecting ionizing radiation includes a mobile telephone, including an imaging assembly, which includes a solid-state image sensor. A radiation converter is mounted in proximity to the image sensor and is configured to emit, in response to the ionizing radiation, lower-energy radiation for detection by the image sensor. A processor, contained in the mobile telephone, is configured to process images captured by the image sensor so as to assess an intensity of the ionizing radiation.11-22-2012
20100090113METHOD AND APPARATUS FOR RETRIEVING INFORMATION FROM OPTICAL STORAGE MEDIUM - To retrieve information from an optical storage medium having a recording layer in which binary information is recorded in a form of presence or absence of a fluorescing property, the recording layer is illuminated with a light beam in a linearly polarized state, to induce fluorescence in the recording layer. Fluorescent light is isolated from light reflected in the optical storage medium by a polarized light separation element attenuating a linearly polarized component (including the light reflected in the optical storage medium) of the light coming from the optical storage medium, and the fluorescent light derived from the induced fluorescence is detected by a photosensor, which outputs a signal bearing the binary information recorded in the recording layer.04-15-2010
20100078568SYSTEM AND METHOD FOR SCATTER NORMALIZATION OF PET IMAGES - In positron emission tomography (PET), a detector's response to scattered radiation may be different from its response to unscattered (true coincidence) photons. This difference should be accounted for during normalization and scatter correction. The disclosure shows that only a knowledge of the ratio of the scatter to trues efficiencies is necessary, however. A system and method are disclosed for measuring the scatter/trues detection efficiency ratio, as well as for applying this compensation during the scatter correction of PET emission data. PET detector efficiencies are measured in two steps, the first using a plane radiation source, and the second using a plane radiation source in combination with a scattering medium. A ratio of the scatter and trues detection efficiency is obtained from this data for each detector/crystal, and is applied as a correction factor to PET data obtained during medical imaging processes.04-01-2010
20100078567Position-Weighted Location of Scintillation Events - Determining a scintillation event location b04-01-2010
20110198503METHODS AND APPARATUS FOR MULTI-CAMERA X-RAY FLAT PANEL DETECTOR - According to some aspects, a device comprising a plurality of cameras arranged in an array, each of the plurality of cameras producing a signal indicative of radiation impinging on the respective camera, the plurality of cameras arranged such that the field of view of each of the plurality of cameras at least partially overlaps the field of view of at least one adjacent camera of the plurality of cameras, to form a respective plurality of overlap regions, an energy conversion component for converting first radiation impinging on a surface of the energy conversion component to second radiation at a lower energy that is detectable by the plurality of cameras, and at least one computer for processing the signals from each of the plurality cameras to generate at least one image, the at least one processor configured to combine signals in the plurality of overlap regions to form the at least one image is provided.08-18-2011
20110198504DETECTOR ARRANGEMENT FOR A TOMOGRAPHIC IMAGING APPARATUS, PARTICULARLY FOR A POSITRON EMISSION TOMOGRAPH - The invention relates to a detector arrangement (08-18-2011
20090294677METHOD FOR SIGNAL INTENSITY CORRECTION IN WAVEGUIDE SENSORS - Methods are provided for enhancing the detection of analytes with waveguides by accounting for cumulative light absorptions attributable to the presence of one or more analytes in a sample as well as the waveguide material.12-03-2009
20120292517REAL-TIME IMAGING DOSIMETER SYSTEMS AND METHOD - A radiation therapy system including a linear accelerator configured to emit a beam of radiation and a dosimeter configured to detect in real-time the beam of radiation emitted by the linear accelerator. The dosimeter includes at least one linear array of scintillating fibers configured to capture radiation from the beam at a plurality of independent angular orientations, and a detection system coupled to the at least one linear array, the detection system configured to detect the beam of radiation by measuring an output of the scintillating fibers.11-22-2012
20100127176SCINTILLATOR MATERIALS WHICH ABSORB HIGH-ENERGY, AND RELATED METHODS AND DEVICES - A scintillator composition is described, including a lutetium silicate or lutetium phosphate matrix; along with selected amounts of cerium, praseodymium, and gadolinium. A radiation detector for detecting high-energy radiation is also described. The radiation detector incorporates a crystal scintillator having the composition mentioned above. Related methods for detecting high-energy radiation with a scintillation detector are also disclosed herein.05-27-2010
20110204241METHODS AND SYSTEMS FOR RADIATION DETECTION - An apparatus for detecting ionizing radiation from a source. A detector is disposed relative to the source to receive the ionizing radiation. The ionizing radiation causes ionization and/or excitation in the detector, wherein an optical property of the detector is altered in response to the ionization and/or excitation. A source of coherent probing light is disposed relative to the detector to probe the detector. The detector outputs the probing light, wherein the output light is modulated in response to the altered optical property. A receiver receives the output light and detects modulation in the output light.08-25-2011
20110266451Fast neutron spectroscopy using neutron-induced charged particle reactions - The invention provides a method of performing fast neutron detection or spectroscopy comprising selecting at least one isotope which exhibits fast neutron-induced charged particle reactions, selecting a host medium capable of performing radiation energy spectroscopy, combining the isotope and host medium into an interactive spectroscopic combination, exposing the combination structure to radiation comprising fast neutrons to provide a spectroscopic output, which includes at least one peak in the pulse-height spectrum whose height and amplitude correlate to the energy and intensity respectively of the incident neutrons; and processing the output to detect or to provide measurements of the energy and intensity of incident fast neutron radiation. The invention also provides a fast neutron spectrometer for use with the method.11-03-2011
20090166540DEVICE AND METHOD FOR DETECTING ORIENTATION OF RADIOACTIVE MATERIAL - Disclosed is a device for detecting orientation of a radioactive material to determine presence and position of the radioactive material, comprising: at least one first radiation detector; at least one second radiation detector, each of said at least one second radiation detector and each of said at least one first radiation detector being arranged side by side and in pairs, detection surfaces of said first and second radiation detector being in the same plane to receive radiation from the same direction in the same manner and to generate a first detection signal and a second detection signal, respectively; a shielding plate, said shielding plate being arranged between said first radiation detector and said second radiation detector arranged in a pair and extending forward beyond said detection surfaces; and a determination device for receiving the first and second detection signals from said first and second radiation detector, and determining whether a radioactive material exists or not according to said first and second detection signals and simultaneously determining the orientation of the radioactive material according to the difference between said first detection signal and said second detection signal. Also disclosed is a method for detecting orientation of a radioactive material.07-02-2009
20130119258METHOD AND APPARATUS FOR THE DETECTION OF X-RAY QUANTS - A method for the detection of X-ray quants is provided. The X-ray quants are generated in an X-ray tube and impact on a multi-pixel X-ray detector including a two-dimensional matrix of test-signal-generating pixels. The method includes assigning, by an evaluation unit, pixels that generate a test signal within a predetermined time interval and are located in a cohesive cluster including a plurality of pixels to an event cluster. The test signals are used to approximate a position, at which the X-ray quant has interacted with the multi-pixel X-ray detector.05-16-2013
20100140484REDUCING TRAP EFFECTS IN A SCINTILLATOR BY APPLICATION OF SECONDARY RADIATION - According to an embodiment of the invention, a radiation detector device (06-10-2010
20100140483RADIOIMAGING APPLICATIONS OF AND NOVEL FORMULATIONS OF TEBOROXIME - A method for cardiac imaging is provided, including administering to an adult human subject an amount of a teboroxime species having a radioactivity of less than 5 mCi at a time of administration, and performing a SPECT imaging procedure of a cardiac region of interest (ROI) of the subject. Other embodiments are also described.06-10-2010
20120138804LINE OF RESPONSE ESTIMATION FOR HIGH-RESOLUTION PET DETECTOR - A method for estimating a line or response in a positron emission tomography scanner having depth of interaction estimation capability. The method utilizes information from both detector modules detecting a coincident event. A joint probability density function combining factors accounting for intermediate Compton scattering interactions and/or a final interaction that may be either a Compton scattering interaction or photoelectric absorption is calculated. In a preferred embodiment, a Bayesian estimation scheme is used to integrate the PDF for all permutations of the measured signal pairs, and the permutation with the largest joint probability is selected to construct the estimated line of response.06-07-2012
20090250615 Scanning system and method for imaging and sequencing - A scanning detection system is provided wherein emissions from locations in a flow cell are detected. In some embodiments, the system can comprise an excitation source, a photocleavage source, and modulating optics configured to cause an excitation beam generated by the excitation source to irradiate a first group of the fixed locations and to cause a photocleavage beam generated by the photocleavage source to irradiate a second group of the fixed locations, which is separate and apart from the first group of fixed locations. Methods of detecting sequencing reactions using such a system are also provided.10-08-2009
20120068075REAL-TIME IN VIVO RADIATION DOSIMETRY USING SCINTILLATION DETECTORS - Apparatus and methods for measuring radiation levels in vivo in real time. Apparatus and methods include a scintillating material coupled to a retention member.03-22-2012
20100200759MULTI-SHORT-SCAN TECHNIQUE IN SPECT IMAGING - A SPECT system which scans over multiple separate scans and individually motion compensates the information obtained from each of these scans. The separate scans may be over different angular extents and may be for different purposes. One of the scans for example may be a scout scan, and the other scans may then be scans which concentrate on areas identified during the scout scan. Alternatively, the scans may all being exactly the same and stitched together after the individual motion compensation. Since each of the scans are shorter, the patient will presumably have moved less during each individual scan, and the amount of motion is hence presumably less.08-12-2010
20100200758RADIATION DETECTING APPARATUS AND METHOD FOR DETECTING RADIATION - A radiation detecting apparatus of the present invention is an apparatus comprising a scintillator for converting incident radiation into ultraviolet radiation having a wavelength of 220 nm or less, the scintillator being composed of, for example, Nd-doped LaF08-12-2010
20090266991METHOD OF AUTHENTICATING TAGGED POLYMERS - In one embodiment, a tagged polymer composition, comprises: a base polymer composition comprising a forensic polymer composition and a dynamic response authentication marker. The forensic polymer composition comprises a marked polymer having a forensic authentication marker. The forensic authentication marker is present in an amount sufficient to be detected by a forensic analytical technique. The dynamic response authentication marker is present in an amount sufficient to be detected by a dynamic response analytical technique and wherein, when tested, the dynamic response authentication marker has a change in mode.10-29-2009
20090200473METHOD FOR MEASURING RADON AND THORON IN AIR - A novel method for measuring airborne radon and thoron capable of separately measuring radon and thoron with high sensitivity, having a small-sized device structure, and free of the influence from its measurement environment. In the method, by measuring Cherenkov light generated when airborne radon and thoron are adsorbed to an absorbent and then β rays emitted in process of disintegrations of radon and thoron pass through the absorbent, radon and thoron are measured. Based on a decay time of the Cherenkov light, a mixture ratio between radon and thoron is measured. As the absorbent, porous glass is preferably employed which is provided with fine pores of 0.3 to 30 nm in diameter.08-13-2009
20120104260METHOD AND APPARATUS TO FACILITATE CRYSTAL IDENTIFICATION IN A PET DETECTOR - A method for creating a look-up table includes arranging a mask configured to cover a subset of crystals of a plurality of crystals in a scintillation array. The method includes collecting a first set of data from at least one photosensor positioned to receive light generated by the scintillation array. The method further includes realigning the mask in a second position on the scintillation array to cover a second subset of crystals of the plurality of crystals. Further, the method includes collecting a second set of data from the at least one photosensor with the mask aligned on the scintillation array in the second position. Additionally, the method includes creating first and second flood histograms from the first and second sets of collected data, respectively. The method also superimposing the first flood histogram with the second flood histogram to create a superimposed flood histogram.05-03-2012
20120267535RADIATION IMAGING DEVICE, SYSTEM, AND METHOD - A radiation detector includes a sensor panel, a scintillator panel, a reflective layer, and a radiation irradiation detecting photodetector laminated in this order from a side of a radiation receiving surface. Radiation transmitted through a patient's body enters the scintillator panel through the sensor panel, and is converted into light. The converted light propagates through columnar crystals in the scintillator panel with total internal reflection. Apart of the light reaches the sensor panel, while the remains reach the reflective layer. The light reaching the sensor panel is detected by photoelectric converters. Out of the light reaching the reflective layer, a short wavelength component with a relatively high refractive index is specularly reflected to the sensor panel. A long wavelength component with a relatively low refractive index is transmitted through the reflective layer, and enters the radiation irradiation detecting photodetector, which detects a start of radiation irradiation.10-25-2012
20090256078METHOD AND APPARATUS FOR EMISSION GUIDED RADIATION THERAPY - An apparatus comprising a radiation source, coincident positron emission detectors configured to detect coincident positron annihilation emissions originating within a coordinate system, and a controller coupled to the radiation source and the coincident positron emission detectors, the controller configured to identify coincident positron annihilation emission paths intersecting one or more volumes in the coordinate system and align the radiation source along an identified coincident positron annihilation emission path.10-15-2009
20120193541GAMMA RAY DETECTOR LINEARITY CALIBRATION - A gamma ray detector having a scintillator with segments allows for a linearity calibration of the gamma ray detector without the use of a linearity phantom. The segments in the scintillator are configured to channel output radiation received by the gamma ray detector to loci identifiable in image data generated by photomultiplier tubes. The non-linearity in the detector system may be characterized, and a correction map may be generated, based upon the identifiable loci.08-02-2012
20110101228Skin Contamination Dosimeter - A technique and device provides absolute skin dosimetry in real time at multiple tissue depths simultaneously. The device uses a phoswich detector which has multiple scintillators embedded at different depths within a non-scintillating material. A digital pulse processor connected to the phoswich detector measures a differential distribution (dN/dH) of count rate N as function of pulse height H for signals from each of the multiple scintillators. A digital processor computes in real time from the differential count-rate distribution for each of multiple scintillators an estimate of an ionizing radiation dose delivered to each of multiple depths of skin tissue corresponding to the multiple scintillators embedded at multiple corresponding depths within the non-scintillating material.05-05-2011
20100155606Method and apparatus for acquiring images created by penetration of radioactive ray - Disclosed is an apparatus and method of acquiring images created by penetration of a radioactive ray. The apparatus includes a scintillator to generate a light signal in response to an irradiated radioactive ray, and to change an advancing direction of the generate light signal, a light receiving unit to receive the light signal whose advancing direction is changed, and a signal processing unit to convert the received light signal into an electrical signal, and acquire an image corresponding to the penetrated irradiated radioactive ray based on the converted electrical signal.06-24-2010
20100148075SYSTEM AND METHOD FOR USING MULTIPLE COLLIMATION DATA FOR TOMOGRAPHY - Methods and systems for producing an image. A measurement is obtained, and a projector function is generated using the obtained measurement. The generated projector function is modified based on an a priori image. An image is reconstructed using the modified projector function.06-17-2010
20100012846NOVEL SCINTILLATION DETECTOR ARRAY AND ASSOCIATE SIGNAL PROCESSING METHOD FOR GAMMA RAY DETECTION WITH ENCODING THE ENERGY, POSITION, AND TIME COORDINATIES OF THE INTERACTION - A gamma ray detector module includes at least one scintillation detector configured to operate in a dot-decoding mode, or at least two scintillation detectors configured to operate in a line-decoding mode, wherein the at least one scintillation detector is each coupled to a single photodetector, and wherein the at least two scintillation detectors are coupled to at least two photodetectors arranged substantially along a line; and at least four scintillation detectors configured to operate in a plane-decoding mode, wherein the at least four scintillation detectors are coupled to a plurality of photodetectors arranged in a two-dimensional array.01-21-2010
20090314946Membrane-Based Assay Devices that Utilize Time-Resolved Fluorescence - A membrane-based assay device for detecting the presence or quantity of an analyte residing in a test sample is provided. The device utilizes time-resolved fluorescence to detect the signals generated by excited fluorescent labels. Because the labels can have relatively long emission lifetime, short-lived background interference can be practically eliminated through delayed fluorescence detection. In addition, the resulting fluorescent reader can have a simple and inexpensive design. For instance, in one embodiment, the reader can utilize a silicon photodiode and a pulsed light-emitting diode (LED) to accurately excite labels and detect fluorescence on a membrane-based assay device without requiring the use of expensive components, such as monochromators or narrow emission band width optical filters.12-24-2009
20100276601Scintillator Operation and Control - A method and system for reducing scintillator afterglow. Methods for reducing afterglow include conditioning a scintillator by exposing it to high flux densities of ionizing radiation. One technique includes operating an x-ray tube at elevated amperage.11-04-2010
20100219345VIRTUAL PET DETECTOR AND QUASI-PIXELATED READOUT SCHEME FOR PET - When designing detector arrays for diagnostic imaging devices, such as PET or SPECT devices, a virtual detector, or pixel, combines scintillator crystals (09-02-2010
20100001191RADIATION DETECTION APPARATUS AND METHOD OF DETECTING RADIATION - A radiation detection apparatus comprising a scintillator composed of a lanthanum fluoride crystal containing neodymium or a lithium barium fluoride crystal containing neodymium, for converting incident radiation into ultraviolet ray and a micro-strip gas chamber for converting the incident ultraviolet ray into an electric signal and capable of extracting the radiation as an electric signal.01-07-2010
20100001190MULTI-CAP DETECTORS FOR NUCLEAR MEDICINE - An imaging system (01-07-2010
20120241629RADIOGRAPHIC IMAGE CAPTURING SYSTEM, PROGRAM STORAGE MEDIUM, AND METHOD - A radiographic image capturing system includes a radiographic image capturing device, a grid, an acquiring unit, and a processor. The radiographic image capturing device includes a radiation detector in which pixels having a sensitivity with respect to radiation or light are disposed two-dimensionally at a predetermined pixel spacing. The grid is placed on a radiation source side of the radiation detector, and includes radiation absorbing members that are disposed at a predetermined spacing. The acquiring unit acquires an inclination angle of the grid, with respect to an array direction of the pixels, with which a spatial frequency of moiré fringes generated by the absorbing members in a captured radiographic image will be equal to or greater than a predetermined spatial frequency. The processor executes predetermined processing for making a relative angle between the grid and the radiation detector the acquired inclination angle.09-27-2012
20120241628DETECTOR FOR THE DETECTION OF IONIZING RADIATION - The invention relates to a detector (09-27-2012
20100127177DISCRIMINATION-ENHANCED FIBER-OPTIC SCINTILLATOR RADIATION DETECTOR - A fiber-optic scintillator radiation detector includes a multitude of optical fibers that each include an optical core. The optical cores are spaced apart from one another by an interposer material. In various embodiments, the interposer material has an average atomic number less than 13 and a density greater than 1.3 g/cm05-27-2010
20080283758PROMPT GAMMA CORRECTION FOR NON-STANDARD ISOTOPES IN A PET SCANNER - A method for correcting PET emission data for prompt gamma emission background components present in non-pure positron-emitting isotopes uses a two component fit of modeled scatter and modeled prompt gamma emission in the area of scatter tails in a normalized emission sinogram. The method allows a PET scan using non-standard PET isotopes to be quantitative and thus more clinically useful.11-20-2008
20110127435GAMMA RAY DETECTOR, RADIATION DIAGNOSTIC DEVICE, TOMOGRAPHY DEVICE, AND METHOD OF ANALYZING TOMOGRAPHY DEVICE - A gamma ray detector for detecting a gamma ray emitted from a target of measurement includes: an organic scintillator for detecting Compton electrons resulting from a gamma ray emitted from the target of measurement; an inorganic scintillator for detecting a Compton gamma ray; and photodetector modules for detecting light generation in the corresponding scintillators. Light generation signals from the organic and inorganic scintillators are synchronously measured, and a detection window of a gamma ray is generated. Thus, an inexpensive radiation diagnostic device of an ultra-high S/N ratio and low cost is provided.06-02-2011
20110127434METHODS AND SYSTEMS FOR DETERMINING A MEDICAL SYSTEM ALIGNMENT - Methods and systems for performing a patient scan using a three-dimensional (3D) cylindrical Positron Emission Tomography (PET) imaging system are provided. The method includes acquiring a count-rate profile of a brain, repositioning at least one of a detector and the brain based on the count-rate profile and a detector sensitivity profile, and scanning the brain when the acquired count-rate profile substantially matches the detector sensitivity profile.06-02-2011
20110001049METHOD FOR DETECTING RADIATION, DEVICE THEREOF, AND POSITRON EMISSION TOMOGRAPHY SCANNER - A light receiver for detecting incident time is installed on the side of a radiation source of a scintillator (including a Cherenkov radiation emitter), and information (energy, incident time, an incident position, etc.) on radiation made incident into the scintillator is obtained by the output of the light receiver. It is, thereby, possible to identify an incident position and others of radiation into the scintillator at high accuracy.01-06-2011
20110001050TWO-DIMENSIONAL POSITION MAP CORRECTING METHOD (AS AMENDED) - A radiation detecting apparatus of this invention includes an arithmetic processing device which has a first adding step for adding signal strengths in one portion of a two-dimensional position map, draws respective boundaries based on results of addition in the first adding step, and corrects the two-dimensional position map based on signal strengths enclosed by these boundaries. The signal strengths of one portion of the two-dimensional position map, and not all the areas of the two-dimensional position map, are added. As a result, incident positions can be discriminated efficiently, and radiation detecting positions can be determined efficiently.01-06-2011
20110024636MODULAR MULTI-GEOMETRY PET SYSTEM - When performing positron emission tomography (PET) scanning and image reconstruction, a primary PET system (02-03-2011
20110024634ENRICHED CsLiLn HALIDE SCINTILLATOR - Li-6 enriched Li-containing scintillator compositions, as well as related structures and methods. Radiation detection systems and methods include a Cs2LiLn Halide scintillator composition.02-03-2011
20110024635CsLiLn HALIDE SCINTILLATOR - Li-containing scintillator compositions, as well as related structures and methods are described. Radiation detection systems and methods are described which include a Cs02-03-2011
20120032085SPECTRAL IMAGING - An imaging system includes a scintillator array (02-09-2012
20110031405SCINTILLATION DETECTOR GAIN CONTROL SYSTEM USING REFERENCE RADIATION - A method for controlling gain of a scintillation detector includes using a reference radiation source and a photomultiplier tube and controlling the gain of the scintillation detector based on the reference radiation source. The controlling includes detecting change in the gain of the scintillation detector, determining an amount of the change in the gain, outputting a control signal to compensate the amount of the change in the gain, and stabilizing the gain against the reference radiation source based on the control signal. A gain control system for controlling gain of a scintillation detector includes computer-readable instructions stored in the memory for causing the processor to detect change in the gain of the scintillation detector determine an amount of the change in the gain, output a control signal to compensate the amount of the change in the gain, and stabilize the gain against the reference radiation source based on the control signal.02-10-2011
20110042572Method for Improving Clinical Data Quality In Positron Emission Tomography - A method for improving clinical data quality in Positron Emission Tomography (PET). The method provides for the processing of PET data to accurately and efficiently determine a data signal-to-noise (SNR) corresponding to each individual clinical patient scan, as a function of a singles rate in a PET scanner. The method relates an injected dose to the singles rate to determine SNR(D02-24-2011
20110240865HIGH DYNAMIC RANGE LIGHT SENSOR - When detecting photons in a computed tomography (CT) detector, a sensor (10-06-2011
20100163736SPECT GAMMA CAMERA WITH A FIXED DETECTOR RADIUS OF ORBIT - The current invention presents designs of SPECT gamma cameras without the in-out mechanical motion of the detectors. The elimination of this motion is achieved by the implementation of iterative algorithms, such as Resolution Recovery and/or Wide Beam Reconstruction, which compensate for the Line Spread Function effect due to the collimator characteristics. The use of these methods enables construction of SPECT gamma cameras with a range of novel designs, having their gamma detector (or detectors) orbiting the patient in a predetermined orbit of fixed radius. For example, the radius might be chosen as such that the majority of all patients can be scanned by the system. The shows the advantages of the invention for gamma cameras with any numbers of detectors.07-01-2010
20110240866SCINTILLATOR OPERATION AND CONTROL - A method and system for reducing scintillator afterglow. Methods for reducing afterglow include conditioning a scintillator by exposing it to high flux densities of ionizing radiation. One technique includes operating an x-ray tube at elevated amperage.10-06-2011
20110240864AUTONOMOUS DETECTOR MODULE AS A BUILDING BLOCK FOR SCALABLE PET AND SPECT SYSTEMS - When detecting scintillation events in a nuclear imaging system, time-stamping and energy-gating processing is incorporated into autonomous detection modules (ADM) (10-06-2011
20090218496SENSING APPARATUS AND A METHOD OF DETECTING SUBSTANCES - A sensing apparatus comprises: a prism; a metal film provided on a surface of the prism and which has provided on its surface a material that binds to an analyte; a substrate that is provided on a surface of the prism and which has formed therein a channel for supplying a liquid sample to the metal film; a light source for issuing light; an optical unit for incident light by which the light issued from the light source is launched into the prism at a specified angle; a light detecting unit for detecting as a first detection signal the light being generated in neighborhood of the metal film before the liquid sample is supplied and for detecting as a second detection signal the light being generated in neighborhood of the metal film that has become dry after the liquid sample is supplied; and an analyte detection unit for detecting the analyte contained in the liquid sample based on a difference between the first and the second detection signals detected by the light detecting unit.09-03-2009
20090218497RADIATION IMAGE CAPTURING SYSTEM, RADIATION IMAGE CAPTURING METHOD AND PROGRAM - The present invention relates to a radiation image capturing system, a radiation image capturing method and a program. The radiation image capturing system includes a plurality of image capturing apparatus of different specifications for capturing a radiation image of a subject, a processor for controlling the image capturing apparatus according to predetermined image capturing conditions, an image capturing condition setting unit for setting the image capturing conditions to be appropriate for an image capturing apparatus selected from among the plurality of image capturing apparatus, and an image capturing condition changer for, when the image capturing apparatus is changed, changing the image capturing conditions to be appropriate for the changed image capturing apparatus. The processor controls the changed image capturing apparatus according to the changed image capturing conditions.09-03-2009
20090218495Device and Method for Discriminating Cernkov and Scintillation Radiation - A device for discriminating Cerenkov and scintillation radiation and a beam inspection device, including an inspection head comprising a scintillator and at least one ionizing radiation diffuser block, a device for discriminating Cerenkov and scintillation radiation, and an imaging system for forming an image from at least a part of the inspection head, along with a corresponding method. In order to suppress spurious Cerenkov radiation contributions to the scintillation radiation, the device has periodically arranged first and second filters, having different relative absorption properties with respect to scintillation radiation and ionizing radiation. Also, an imaging apparatus comprising means for reducing parasitic contributions to a signal of interest, wherein the apparatus has a modulation mask for modulating a signal of interest, wherein, in particular, the signal of interest is the signal illuminating the object or the signal emitted or reflected from the object, and an image analyzing means configured to remove—at least partially—parasitic contributions added to the modulated signal of interest based on the shift of the signal of interest towards higher frequencies due to the modulation.09-03-2009
20100038546CRYSTAL IDENTIFICATION FOR HIGH RESOLUTION NUCLEAR IMAGING - A detector for a nuclear imaging system includes a scintillator including an array of scintillator elements and a light guide including a grid which defines light guide elements. Light from scintillations in the scintillation crystal in response to received radiation, passes through the light guide and strikes light sensitive elements of a light sensitive element array. The light sensitive element array includes larger elements in an array in the center surrounded by smaller light sensitive elements located in a peripheral array around the central array.02-18-2010
20100072375Iterative algorithms for crystal efficiencies estimations from TOF compressed normalization data - Time-of-flight (TOF) clinical data collected during a PET scan are very sparse and have significant size. These data undergo TOF axial rebinning and azimuthal mashing if histogrammed data-based reconstruction algorithms are used. In a clinical environment, TOF compression is typically performed by the hardware rebinner. Normalization data, acquired on a regular basis and used for estimation of some norm components, are compressed by the hardware rebinner in a similar manner. This disclosure presents simple update iterative algorithms for crystal efficiencies norm component estimation from TOF compressed normalization data. Previously known methods are not directly applicable since the compression procedure significantly complicates normalization data model equations. The iterative algorithms presented herein have advantages of being easily adapted to any acquisition geometry, and of allowing estimation of parameters at crystal level when a number of crystals is relatively small. A monotonic sequential coordinate descent algorithm, which optimizes the Least Squares objective function, is presented. A simultaneous update algorithm, which possesses the advantage of easy parallelization, is also presented.03-25-2010
20120187301Method of Using Radon Detection for Locating Thermals - A method of locating a thermal updraft. In one embodiment, the method includes the steps of flying an aircraft in a flight path; making ionization measurements at a plurality of locations along the aircraft flight path using an ionization measuring device to measure ionization rate; determining in response to the ionization measurements areas of increased ionization rate; and denoting areas of increased ionization rate as areas of thermal updraft. In another embodiment, the method includes the steps of measuring ionizing radiation at each location along the aircraft flight path; and if ionizing radiation levels are above a predetermined value, determining that the location is within a thermal updraft and if the ionizing radiation levels are below a predetermined value, determining that the location is outside of a thermal updraft.07-26-2012
20100051816DETERMINATION OF A SPATIAL GAIN DISTRIBUTION OF A SCINTILLATOR - A method for providing information about a spatial gain distribution of a scintillator for a primary radiation is provided which does not require the irradiation of the scintillator with the primary radiation. The method comprises the step of irradiating the scintillator with a secondary radiation for generating an image of a spatial secondary gain distribution of the scintillator for said second radiation. The spatial secondary gain distribution image corresponds to an image of the spatial primary gain distribution for the primary radiation. In an embodiment of the invention, i.e. in an X-rayimaging device where the primary radiation is X-rayradiation, the invention provides for an accurate calibration of the X-raydetector without irradiating the X-raydetector with X-rayradiation. Rather, irradiation with UV radiation as the secondary radiation provides the desired spatial secondary gain distribution image which can be used for calibration.03-04-2010
20110073764Method and System for Nuclear Imaging Using Multi-Zone Detector Architecture - A method and system for nuclear imaging normally involve detection of energy by producing at most two or three bursts of photons at a time in response to events including incident gamma radiation. F number of sharing central groups of seven photodetectors, depending on the photodetector array size, is arranged in a honeycomb array for viewing zones of up to F bursts of optical photons at a time for each continuous detector and converting the bursts of optical photons into signal outputs, where each of the central groups is associated with a zone. This enables the detector sensitivity to be increased by as much as two orders of magnitude, and to exchange some of this excess sensitivity to achieve spatial resolution comparable to those in CT and MRI, which would be unprecedented. Signal outputs that are due to scattered incident radiation are rejected for each of the central groups to reduce image blurring, thereby further improving image quality. For planar imaging, the energy and position signals of up to the F number of valid events are generated once every deadtime period and transferred to computer memory for image display and data analysis. The number of valid events detected is up to 6F for SPECT and up to 3F for PET imaging.03-31-2011
20110101227METHOD FOR IDENTIFYING AND SORTING SENSING SIGNALS WITH RESPECT TO CRYSTAL LOCATION OF SCINTILLATION DETECTOR - The present invention provides a method for identifying and sorting sensing signals with respect to crystal locations of a scintillation detector, comprising steps of: (a) providing a crystal map detected by a crystal array, the crystal map having a plurality of peak points, each being represented by a coordinate location; (b) finding a basis point with respect to a specific area enclosing an amount of the peak points within the crystal map; (c) determining the peak point within the specific area having the shortest distance to the basis point, the peak point corresponding to a crystal element of the crystal array; (d) changing the location of the specific area; and (e) repeating steps (b) to (d) for a plurality of times to find all the crystal elements with respect to the peak points respectively.05-05-2011
20110068273Device and Method for Detecting High Energy Radiation Through Photon Counting - The present invention relates to a radiation-detecting device and an associated detection method. The detection device includes a scintillation crystal and an avalanche photodiode. The surface of the scintillation crystal is coated with a high-reflection layer. When ionizing radiation irradiates the scintillation crystal, the crystal emits luminescence, which passes through or is reflected by the high-reflection layer at least once within the scintillation crystal before it is received by the avalanche photodiode, generating a detection signal.03-24-2011
20120119093Procedures to Minimize the Orientation Dependency of Automatic Drift Compensation of a Scintillation Counter - A method of minimizing the orientation dependence of an automatic drift compensation of a scintillation counter having a rod-shaped scintillator is provided. The cosmic radiation energy spectrum is analyzed above a predefined energy threshold value for the automatic drift compensation. A counting rate of particles having an energy deposition in the scintillator greater than an energy threshold value is controlled to a constant desired counting rate value. The method determines a first integral energy spectrum of the cosmic radiation while the scintillator is upright, and a second integral energy spectrum while the scintillator is in a horizontal position. An intersection point of the first and second integral energy spectrums is detected, and the energy threshold value of the drift compensation is set to the energy threshold value pertaining to the intersection point and the desired counting rate value is set to the counting rate pertaining to the intersection point.05-17-2012
20100264320POSITRON EMISSION TOMOGRAPHY APPARATUS AND NUCLEAR MEDICAL IMAGE GENERATING METHOD - In a case that a gamma ray has entered into a plurality of scintillators adjacent to each other simultaneously, a detector detects the gamma ray having entered simultaneously. A position calculator calculates the ratio of wave heights representing the energies of the detected gamma ray. The position calculator obtains a trajectory of such a gamma ray that a ratio of distances passed by the gamma ray inside the plurality of scintillators, respectively, coincides with the ratio of the wave heights. The position calculator obtains an intersection between the boundary of the plurality of scintillators and the trajectory, as a passing position of the gamma ray. A reconstructing part executes a back projection process with the trajectory passing through the calculated passing position as a projection position.10-21-2010
20100025587STAND-ALONE MINI GAMMA CAMERA INCLUDING A LOCALISATION SYSTEM FOR INTRASURGICAL USE - The invention relates to a portable mini gamma camera for intrasurgical use. The inventive camera is based on scintillation crystals and comprises a stand-alone device, i.e. all of the necessary systems have been integrated next to the sensor head and no other system is required. The camera can be hot-swapped to any computer using different types of interface, such as to meet medical grade specifications. The camera can be self-powered, can save energy and enables software and firmware to be updated from the Internet and images to be formed in real time. Any gamma ray detector based on continuous scintillation crystals can be provided with a system for focusing the scintillation light emitted by the gamma ray in order to improve spatial resolution. The invention also relates to novel methods for locating radiation-emitting objects and for measuring physical variables, based on radioactive and laser emission pointers.02-04-2010
20100078566ENHANCED PET SCANNER DETECTOR MODULE - A programmable memory is provided in each of a plurality of detector modules arrayed in a positron emission tomography (PET) scanner. Each detector module memory stores data associated with its respective detector module. Each memory may be coupled to a processor via a transmission bus. A display device may be coupled to the processor for displaying information relating to information obtained from the detector module memories.04-01-2010
20120273686APPARATUS AND METHODS FOR ELECTRON BEAM DETECTION - One embodiment disclosed relates a method of detecting a patterned electron beam. The patterned electron beam is focused onto a grating with a pattern that has a same pitch as the patterned electron beam. Electrons of the patterned electron beam that pass through the grating un-scattered are detected. Another embodiment relates to focusing the patterned electron beam onto a grating with a pattern that has a second pitch that is different than a first pitch of the patterned electron beam. Electrons of the patterned electron beam that pass through the grating form a Moiré pattern that is detected using a position-sensitive detector. Other embodiments, aspects and features are also disclosed.11-01-2012
20110163237METHOD, APPARATUS AND SYSTEM FOR LOW-ENERGY BETA PARTICLE DETECTION - An apparatus, method, and system relating to radiation detection of low-energy beta particles are disclosed. An embodiment a radiation detector with a first scintillator and a second scintillator operably coupled to each other. The first scintillator and the second scintillator are each structured to generate a light pulse responsive to interaction with beta particles. The first scintillator is structured to experience full energy deposition of low-energy beta particles, and permit a higher-energy beta particle to pass therethrough and interact with the second scintillator. The radiation detector further includes a light-to-electrical converter operably coupled to the second scintillator and configured to convert light pulses generated by the first scintillator and the second scintillator into electrical signals. The first scintillator and the second scintillator have at least one mutually different characteristic to enable an electronic system to determine whether a given light pulse is generated in the first scintillator or the second scintillator.07-07-2011
20100123082METHOD FOR ELECTRON BACK-ILLUMINATION OF A SEMICONDUCTOR IMAGE SENSOR - A method is disclosed for acquiring an image in a sensor having a substrate side and a front side comprising illuminating the semiconductor image sensor with electrons that approach the sensor from the substrate side.05-20-2010
20100276599RADIONUCLIDE DETECTION DEVICES AND ASSOCIATED METHODS - Radionuclide detection devices comprise a fluid cell comprising a flow channel for a fluid stream. A radionuclide collector is positioned within the flow channel and configured to concentrate one or more radionuclides from the fluid stream onto at least a portion of the radionuclide collector. A scintillator for generating scintillation pulses responsive to an occurrence of a decay event is positioned proximate at least a portion of the radionuclide collector and adjacent to a system for detecting the pulses. Methods of selectively detecting a radionuclide are also provided.11-04-2010
20120199747SYSTEMS AND METHODS FOR NEUTRON DETECTION USING SCINTILLATOR NANO-MATERIALS - In one embodiment, a neutron detector includes a three dimensional matrix, having nanocomposite materials and a substantially transparent film material for suspending the nanocomposite materials, a detector coupled to the three dimensional matrix adapted for detecting a change in the nanocomposite materials, and an analyzer coupled to the detector adapted for analyzing the change detected by the detector. In another embodiment, a method for detecting neutrons includes receiving radiation from a source, converting neutrons in the radiation into alpha particles using converter material, converting the alpha particles into photons using quantum dot emitters, detecting the photons, and analyzing the photons to determine neutrons in the radiation.08-09-2012
20080203309Digital silicon photomultiplier for TOF-PET - A radiation detector includes an array of detector pixels each including an array of detector cells. Each detector cell includes a photodiode biased in a breakdown region and digital circuitry coupled with the photodiode and configured to output a first digital value in a quiescent state and a second digital value responsive to photon detection by the photodiode. Digital triggering circuitry is configured to output a trigger signal indicative of a start of an integration time period responsive to a selected number of one or more of the detector cells tranisitioning from the first digital value to the second digital value. Readout digital circuitry accumulates a count of a number of transitions of detector cells of the array of detector cells from the first digital state to the second digital state over the integration time period.08-28-2008
20100320390Liquid xenon gamma ray imager - A gamma ray imager includes a chamber containing a scintillation liquid such as xenon and several mutually optically isolated interaction modules immersed in the scintillation liquid within the chamber. Multiple photodetectors optically coupled to the modules separately detect scintillation light resulting from gamma ray interactions in the modules. Charge readout devices coupled to the modules provide time projection chamber-class detection of ionization charges produced by gamma ray interactions within the modules. A signal processor connected to the multiple photodetectors and charge readout devices analyzes signals produced by gamma ray interactions within the modules and calculates from the signals gamma ray energy and gamma ray angle. The calculations use Compton scattering formula inversion and also use anti-correlation of prompt scintillation light signals from gamma ray interactions and charge signals from gamma ray interactions.12-23-2010
20100282972INDIRECT RADIATION DETECTOR - The present invention relates to an indirect radiation detector for detecting radiation (X), e.g. for medical imaging systems. The detector has an array of pixels (P11-11-2010
20110133091DIGITAL SILICON PHOTOMULTIPLIER FOR TOF-PET - A radiation detector includes an array of detector pixels each including an array of detector cells. Each detector cell includes a photodiode biased in a breakdown region and digital circuitry coupled with the photodiode and configured to output a first digital value in a quiescent state and a second digital value responsive to photon detection by the photodiode. Digital triggering circuitry is configured to output a trigger signal indicative of a start of an integration time period responsive to a selected number of one or more of the detector cells transitioning from the first digital value to the second digital value. Readout digital circuitry accumulates a count of a number of transitions of detector cells of the array of detector cells from the first digital state to the second digital state over the integration time period.06-09-2011
20110073763Method and apparatus for high-sensitivity Single-Photon Emission Computed Tomography - A method and apparatus are disclosed for high-sensitivity Single-Photon Emission Computed Tomography (SPECT), and Positron Emission Tomography (PET). The apparatus includes a two-dimensional (2D) gamma detector array that, unlike a conventional SPECT machine, moves to different positions in a three-dimensional (3D) volume space near an emission source and records a data vector g which is a measure of gamma emission field. In particular, the 3D volume space in which emission data g is measured extends substantially along a radial direction r pointing away from the emission source, and unlike a conventional SPECT machine, each photon detector element in the 2D gamma detector array is provided with a very large collimator aperture. Data g is related to the 3D spatial density distribution f of the emission source, noise vector n, and a system matrix H of the SPECT/PET apparatus through the linear system of equations g=Hf+n. This equation is solved for f by a method that reduces the effect of noise.03-31-2011
20110260067DETECTING BAR PERMITTING TO MEASURE THE DOI FOR HIGH-PERFORMANCE TEP IMAGING - The invention concerns an optical weighing method for measuring a DOI by-estimating the position (X) at the time of impact of a gamma photon in a crystalline medium, which has a juxtaposition of sections between which are created the conditions for a discrete energy loss of known magnitude, and wherein is compared the energy (E10-27-2011
20120145908RADIOGRAPHIC IMAGE CAPTURE DEVICE, RADIOGRAPHIC IMAGE CAPTURE METHOD, AND RADIOGRAPHIC IMAGE CAPTURE PROGRAM STORAGE MEDIUM - A radiographic image capture device includes a wavelength conversion layer that converts radiation that has passed through an imaging subject into visible light, a first photodetector that detects the converted visible light and that converts the converted visible light into a first image signal expressing a radiographic image, a second photodetector that detects the converted visible light and that converts the converted visible light into a second image signal expressing a radiographic image, and a synthesizing section that combines the first image signal read from the first photodetector and the second image signal read from the second photodetector such that misalignment between the first and the second photodetectors is eliminated.06-14-2012
20130009063System and Method for Improving Detection of Gamma Interactions in a Positron Emission Tomography System - A system and method are provided for determining the onset of gamma interactions for positron emission tomography (PET) imaging more accurately than with existing techniques. The timing of a sequence of primary trigger events is obtained and used to determine a weighted combination, which mixes the timing information from the various primary trigger events to compute an overall event trigger timing with improved time resolution. Numerical simulations demonstrate that the invention improves time resolution by approximately 10% over state-of-the-art methods. This improved time resolution directly benefits the imaging performance of the PET scanner, especially in time-of-flight (TOF) mode, where a high time resolution directly translates to a reduction in image noise at the same dose—or, alternatively, a reduction of dose to the patient or scan time for the same image quality.01-10-2013
20100059682POSITRON EMISSION TOMOGRAPHY (PET) IMAGING USING SCATTERED AND UNSCATTERED PHOTONS - Determining the position of a radioactive source in a PET system. Detecting a scatter coincidence event characterized by a full-energy photon detected at a first detector and partial-energy photon at a second detector. Measuring the arrival time difference between the partial energy photon and the full energy photon. Measuring the energy of the partial-energy photon. Determining a scattering point as a function of the position of the first detector, the position of the second detector, the energy of the partial-energy photon, the energy of an unscattered photon, the mass of a scattering electron, and the speed of light. Determining the position of a radioactive PET source along a line between the scatter point and the first detector as a function of the distance between scatter point and the first detector, the distance between scatter point and the second detector, and the measured time difference.03-11-2010
20090321650Radiation Security Blanket - A radiation detection blanket for use in surveying a broad or irregular area of interest for radiation emissions. Small radiation detectors are affixed to the fabric and distributed relative to its surface area. The detector materials may be of the OSL, TLD, or ERD variety, or may be a combination of OSL, TLD and ERD. Detector materials having varying thicknesses of high Z coatings may be clustered together in the blanket fabric to yield a gamma radiation spectrum. Use of a converter material on the detector material allows the blanket to detect neutron radiation. The blanket includes specialized transmission means for allowing the detector materials to be read individually, by passing the reader along a surface or along an edge of the blanket. A composite radiation measurement is obtained upon reading the individual detectors, allowing determination of the radiation distribution within the object being surveyed by the blanket.12-31-2009
20110147595TUNGSTATE-BASED SCINTILLATING MATERIALS FOR DETECTING RADIATION - A tungstate-based scintillating material and a method for using a tungstate-based scintillating material is provided. In addition, a radiation detector and an imaging device incorporating a tungstate-based scintillating material are provided.06-23-2011
20110147594RADIATION IMAGING METHOD WITH INDIVIDUAL SIGNAL RESOLUTION - An imaging method and apparatus, the method comprising collecting detector output data from a radiation detector positioned near a subject provided with a radio-active tracer, and resolving individual signals in the detector output data by (i) determining a signal form of signals present in the data, (ii) making parameter estimates of one or more parameters of the signals, wherein the one or more parameters comprise at least a signal temporal position, and (iii) determining the energy of each of the signals from at least the signal form and the parameter estimates. The acceptable subject to detector distance is reduced or increased, spatial resolution is improved, tracer dose or concentration is reduced, subject radiation exposure is reduced and/or scanning time is reduced.06-23-2011
20100301219Metal-Organic Scintillator Crystals for X-Ray, Gamma Ray, and Neutron Detection - New metal-organic materials are useful as scintillators and have the chemical formula LX12-02-2010
20120037807APPARATUS AND METHOD FOR DETECTING RADIATION EXPOSURE LEVELS - Method and apparatus for detection and monitoring of radiation exposure are disclosed, utilising photoexcitable storage phosphors and reading apparatus in a number of configurations for use in homeland security, emergency response and medical fields. In one form, apparatus comprises a portable dosimeter device adapted to receive and multiple phosphor elements to allow population screening in event of mass exposure. Further forms for medical use include insertable probes and adhesive phosphor patches for use in detecting radiation exposure in medical therapy or imaging.02-16-2012
20120112077METHOD FOR THE DETECTION OF THE IRRADIANCE DISTRIBUTION IN AN EXTREME ULTRAVIOLET LIGHT SOURCE DEVICE AND AN EXTREME ULTRAVIOLET LIGHT SOURCE DEVICE - An extreme ultraviolet light source device, comprising a collector mirror focusing extreme ultraviolet radiation at a focal point, wherein a porous plate having a plurality of through holes arranged such that only radiation focusing at said focal point passes is provided insertably between said collector mirror and said focal point on an optical axis of said collector mirror, and a detection means is provided to receive radiation having passed through said porous plate and to detect an intensity of said received radiation, and a method for detecting an irradiance distribution in an extreme ultraviolet light source device.05-10-2012
20110315884COMPACT PET SCANNER - A nuclear imaging system including a PET scanner having a bore sized no larger than necessary to accommodate a human head; and a wheel-mounted scanner gantry for supporting the PET scanner, the wheel-mounted scanner gantry having a width small enough to fit through a standard doorway.12-29-2011
20120043466Radiometric Measuring Device - A radiometric measuring device for measuring a physical, measured variable, especially a fill level or a density, of a fill substance located in a container, and/or for monitoring an exceeding or subceeding of a predetermined limit value for the physical, measured variable, comprising: a radioactive radiator, which, during operation, sends radioactive radiation through the container; and a detector arranged on a side of the container lying opposite the radiator and serving to receive a radiation intensity penetrating through the container, dependent on the physical, measured variable, and to convert such into an electrical output signal. With this measuring device, in an extremely flexibly predeterminable region to be metrologically registered by the detector, a very exact measuring of the radiation intensity can be put into practice. For this, the detector includes a carrier, on which at least one scintillation fiber is wound, which converts radiometric radiation impinging thereon into light flashes, whose light propagates in the respective scintillation fiber toward its ends. The detector further includes at least one array of avalanche photodiodes operated in the Geiger mode, which convert light impinging thereon into an electrical signal, wherein at least one end of each scintillation fiber is connected to avalanche photodiodes of one of the arrays. The detector also has a measuring device electronics connected to the avalanche photodiodes for producing the electrical output signal, based on the electrical signals of the avalanche photodiodes.02-23-2012
20120043465Flat Image Detector and Method for the Generation of Medical Digital Images - In a flat image detector and method for the generation of medical digital images, the flat image detector is in particular suitable for a medical X-ray device and equipped with at least one active matrix (MX, MX02-23-2012
20120061574DETECTION OF IONISING RADIATION - A detector for detecting ionising radiation comprises a scintillator 03-15-2012
20120061576PET DETECTOR SYSTEM WITH IMPROVED CAPABILITIES FOR QUANTIFICATION - A nuclear medical imaging system employing radiation detection modules with pixelated scintillator crystals includes a scatter detector (03-15-2012
20120056093Substance detection, inspection and classification system using enhanced photoemission spectroscopy - A handheld or portable detection system with a high degree of specificity and accuracy, capable of use at small and substantial standoff distances (e.g., greater than 12 inches) is utilized to identify specific substances and mixtures thereof in order to provide information to officials for identification purposes and assists in determinations related to the legality, hazardous nature and/or disposition decision of such substance(s). The system uses a synchronous detector and visible light filter to enhance detection capabilities.03-08-2012
20120056094COMBINED METHOD FOR DETECTING AND POSITIONING HIGH ENERGY RADIATION - A combined method for detecting and positioning high energy radiation, belonging to the radiation detection and imaging technology field, comprises: arranging scintillation crystals for capturing high energy radiation into a regular array; assembling a plurality of PMTs with different sizes into a combined array where smaller PMT is located at the center of larger PMTs; forming a combined high energy radiation detector by bonding the scintillation crystal array and the combined PMT array with an optical adhesive; when a high energy gamma ray is incident into the scintillation crystal array, scintillation light is generated and amplified by the combined PMT array into electrical pulse signals; then obtaining the position coordinates, energy and time of the high energy gamma ray by processing the electrical pulse signals. The method provides more effective and uniform high-energy radiation detection, has higher spatial and energy resolution, and simultaneously has high-speed response.03-08-2012
20120012752DENTAL RADIOLOGY APPARATUS AND SIGNAL PROCESSING METHOD USED THEREWITH - A dental radiology apparatus having: an intraoral sensor comprising a detector that includes an active pixel array produced using biCMOS technology and converting a received x-ray into at least one analog electrical output signal; an electronic module encapsulated in a case and which has at least one detector activation device, the module being linked to the sensor by a wire link for the transmission to said sensor of a detector activation signal generated in the module and for the transmission to the module of said at least one analog electrical output signal, the module having analog-digital means for converting said at least one analog electrical output signal into at least one digital output signal; and a remote processing and display unit of said at least one digital output signal which is linked to the electronic module by a wire link intended to ensure the transmission to the unit of said at least one digital output signal.01-19-2012
20120012751Electron focusing systems and techniques integrated with a scintillation detector covered with a reflective coating - The present disclosure provides systems and methods where an electron focusing device can be combined with a scintillation detector to better focus the electrons generated by a light sensing device. The scintillation detector can include a scintillation crystal that is covered by an inner light-reflecting coating layer where the scintillation crystal may emit photons due to measurement radiation(s). The light sensing device can include a photomultiplier that may receive the photons emitted by the scintillation crystal and convert them into the electrons generated. The electron focusing device can include a metal ring magnet or one or more conducting coils encircling the scintillation crystal that may create a magnetic field so as to focus the electrons generated by the light sensing device.01-19-2012
20120153166Radiation measurement using timing-over-Ethernet protocol - A highly scalable platform for radiation measurement data collection with high precision time stamping and time measurements between the elements in the detection array uses IEEE 1588 with or without Synchronous Ethernet (timing over Ethernet) to synchronize the measurements. At a minimum, the system includes at least two radiation detector units, an IEEE 1588 and SyncE enabled Ethernet switch, and a computer for processing. The addition of timing over Ethernet and power over Ethernet (PoE) allows a radiation measurement system to operate with a single Ethernet cable, simplifying deployment of detectors using standardized technology with a multitude of configuration possibilities. This eliminates the need for an additional hardware for the timing measurements which simplifies the detection system, reduces the cost of the deployment, reduces the power consumption of the detection system and reduces the overall size of the system.06-21-2012
20120153167Positron annihilation characteristics measurement system and method for measuring positron annihilation characteristics - A positron annihilation characteristics measurement system 06-21-2012
20120153164GAMMA RAY SPECTROSCOPY EMPLOYING DIVALENT EUROPIUM-DOPED ALKALINE EARTH HALIDES AND DIGITAL READOUT FOR ACCURATE HISTOGRAMMING - A scintillator radiation detector system according to one embodiment includes a scintillator; and a processing device for processing pulse traces corresponding to light pulses from the scintillator, wherein pulse digitization is used to improve energy resolution of the system. A scintillator radiation detector system according to another embodiment includes a processing device for fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times and performing a direct integration of fit parameters. A method according to yet another embodiment includes processing pulse traces corresponding to light pulses from a scintillator, wherein pulse digitization is used to improve energy resolution of the system. A method in a further embodiment includes fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times; and performing a direct integration of fit parameters. Additional systems and methods are also presented.06-21-2012
20120061575DETECTION OF IONISING RADIATION - A detector for detecting ionising radiation comprises a scintillator 03-15-2012
20110049372PARTICLE BEAM IRRADIATION APPARATUS AND PARTICLE BEAM IRRADIATION METHOD - The particle beam irradiation apparatus according to the present invention comprises: a beam generation unit; a beam emission control unit which controls emission of the particle beam; a beam scanning indication unit which two-dimensionally indicates a position of the particle beam in series for each of slices obtained by dividing an affected area to be irradiated in an axial direction of the particle beam; a beam scanning unit which two-dimensionally scans the particle beam based on an indication signal from the beam scanning indication unit; a phosphor film which is provided between the beam scanning unit and a patient and emits light in an amount corresponding to a particle dose of the particle beam transmitting therethrough; an imaging unit which images the phosphor film for each slice; and a display unit which obtains an irradiation dose distribution of each slice from image data imaged by the imaging unit and displays the obtained irradiation dose distribution associated with a scanning position of the particle beam.03-03-2011
20120153165POSITRON EMISSION DETECTION AND IMAGING - A positron emission scanner is disclosed having a timing compensation element which uses position information originating from a spatial locator element to compensate for travel time of timing signals. A method of constructing a PET image is also discussed in which a timing error function is convolved with an envelope function evaluated along a line of response to derive an emission event weight for use in image construction.06-21-2012
20120161013NEUTRON DETECTOR - A device having: a scintillator material, an optically transparent element containing a glass or polymer and gadolinium oxide, and one or more photomultiplier tubes adjacent to the scintillator material. The optically transparent element is surrounded by the scintillator material.06-28-2012
20100288934APPARATUS AND METHOD FOR EXTERNAL BEAM RADIATION DISTRIBUTION MAPPING - An apparatus and method for in vivo and ex vivo control, detection and measurement of radiation in therapy, diagnostics, and related applications accomplished through scintillating fiber detection. One example includes scintillating fibers placed along a delivery guide such as a catheter for measuring applied radiation levels during radiotherapy treatments, sensing locations of a radiation source, or providing feedback of sensed radiation. Another option is to place the fibers into a positioning device such as a balloon, or otherwise in the field of the radiation delivery. The scintillating fibers provide light output levels correlating to the levels of radiation striking the fibers and comparative measurement between fibers can be used for more extensive dose mapping. Adjustments to a radiation treatment may be made as needed based on actual and measured applied dosages as determined by the fiber detectors. Characteristics of a radiation source may also be measured using scintillating materials.11-18-2010
20110180715SCINTILLATING MATERIAL AND RELATED SPECTRAL FILTER - A host lattice modified GOS scintillating material and a method for using a host lattice modified GOS scintillating material is provided. The host lattice modified GOS scintillating material has a shorter afterglow than conventional GOS scintillating material. In addition, a radiation detector and an imaging device incorporating a host lattice modified GOS scintillating material are provided.07-28-2011
20120132814RADIATION DETECTION DEVICE, SYSTEM AND RELATED METHODS - An omni-directional sensor device is provided for detecting radiation emission sources, such as nuclear and atomic weapons and dirty bombs. The omni-directional sensor device is constructed as a three-dimensional structure formed of a plurality of walls of gamma ray detector arrays. The walls face in multiple directions to establish omni-directional sensing of incident gamma rays from substantially all directions. As constructed, a first wall of the device intercepts an incident gamma ray at a first location. The gamma ray experiences a Compton scattering effect whereby a deflected gamma ray is emitted into the inner chamber of the device before intercepting a second wall of the device at a second location. The first and second locations can be used to trace the location of the emission source. Also provided are radiation detection systems including the omni-directional sensor devices, and methods of locating a radiation emission source.05-31-2012
20120132815RADIATION DETECTION SYSTEM, A RADIATION SENSING UNIT, AND METHODS OF USING THE SAME - A radiation sensing unit for a radiation detection system can include a scintillator and a photosensor optically coupled to the scintillator. In an embodiment, the radiation detection system may provide an output signal to a particular radiation flux that is substantially temperature independent over a normal operating temperature range for the scintillator. The radiation sensing unit may further include a controllable radiation source configured to emit radiation and another photosensor coupled to controllable radiation source. A radiation detection system can include a radiation sensing unit and a control module that is coupled to the controllable radiation source and the photosensors. The control module may control the controllable radiation source and control a power supply coupled to the second photosensor in response to signals from the photosensors. In another aspect, a dynode tap from a photomultiplier tube can be used during calibration. Methods of using the foregoing are disclosed.05-31-2012
20120211660SENSOR DEVICES AND RELATED METHODS - Embodiments of sensor systems and related methods of operating and manufacturing the same are described herein. The sensor systems can be used to detect atomic or subatomic particles or radiation. Other embodiments and related methods are also disclosed herein.08-23-2012
20120168630LIQUID SCINTILLATOR FOR 3D DOSIMETRY FOR RADIOTHERAPY MODALITIES - A liquid scintillator detector for three-dimensional dosimetric measurement of a radiation beam is provided wherein a volumetric phantom liquid scintillator is exposed to the radiation beam to produce light that is captured by the cameras that provide a three-dimensional image of the beam.07-05-2012
20120312994APPARATUSES AND METHODS FOR DETECTION OF RADIATION INCLUDING NEUTRONS AND GAMMA RAYS - A scintillation detector includes: a photodetector; a scintillating material configured to emit light in response to exposure to ionization particles; an optically transparent material having a light absorption coefficient that is less than a light absorption coefficient of the scintillating material, the optically transparent material optically coupled to a surface of the scintillating material and configured to transmit the emitted light; and a reflective material at least partially surrounding the scintillating material and the optically transparent material, the reflective material configured to reflect the emitted light and direct the emitted light toward the photodetector.12-13-2012
20120074326APPARATUS AND METHOD FOR NEUTRON DETECTION WITH NEUTRON-ABSORBING CALORIMETRIC GAMMA DETECTORS - An apparatus for detecting neutron radiation includes a gamma ray scintillator having an inorganic material with an attenuation length L03-29-2012
20120187302GAMMA-RAY SPECTROMETER - A gamma-ray spectrometer comprising a scintillation body (07-26-2012
20120187300METHOD FOR OPTIMIZING STEP SIZE IN A MULTI-STEP WHOLE-BODY PET IMAGING - A method of imaging a region of interest (ROI) in an object, the ROI having an axial extent greater than an axial FOV of a PET scanner. The method includes determining a number of overlapping scans of the PET scanner necessary to image at least the axial extent of the ROI, wherein each scan has a same axial length equal to the axial FOV, and each scan overlaps an adjacent scan by a predetermined overlap percentage of the axial length of each scan. Further, the method includes determining a total amount of excess scanning length of the scans based on the number, the axial extent of the ROI, and the axial FOV, and determining a new overlap percentage based on the total amount of excess scanning length and the predetermined overlap percentage, so that a new total amount of excess scanning length, as determined with the new overlap percentage, is zero.07-26-2012
20120228510SHIFTING SCINTILLATOR NEUTRON DETECTOR - Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.09-13-2012
20130181135COMPOUNDS FOR NEUTRON RADIATION DETECTORS AND SYSTEMS THEREOF - A material according to one embodiment exhibits an optical response signature for neutrons that is different than an optical response signature for gamma rays, said material exhibiting performance comparable to or superior to stilbene in terms of distinguishing neutrons from gamma rays, wherein the material is not stilbene, the material comprising a molecule selected from a group consisting of: two or more benzene rings, one or more benzene rings with a carboxylic acid group, one or more benzene rings with at least one double bound adjacent to said benzene ring, and one or more benzene rings for which at least one atom in the benzene ring is not carbon.07-18-2013
20110121186CESIUM AND LITHIUM-CONTAINING QUATERNARY COMPOUND SCINTILLATORS - The present invention relates to quaternary compound scintillators and related devices and methods. The scintillators may include, for example, a quaternary compound, the quaternary compound having a first position, a second position, a third position, a fourth position; wherein the first position is Cs; the second position is Li; the third position is La or Lu; and the fourth position is Cl, Br, or I. In certain embodiments, the scintillator composition can further include a single dopant or mixture of dopants.05-26-2011
20100327168TWO-DIMENSIONAL POSITION MAP CORRECTING METHOD, AND RADIATION DETECTING APPARATUS - A radiation detecting apparatus of this invention includes an arithmetic processing device which carries out arithmetic processes for drawing boundaries based on peaks of signal strengths and separating respective positions by the boundaries, and for determining, by using spatial periodicity of the peaks, the number of peaks having failed to be separated, with a plurality of peaks connecting to each other. If the separation fails with a plurality of peaks connecting to each other, the number of peaks in error is determined using spatial periodicity of the peaks. Thus, by using spatial periodicity of the peaks, the number of peaks in error can be determined and boundaries can be set easily. As a result, incident positions can also be discriminated easily, and detecting positions of radiation can be determined easily.12-30-2010
20100032574RADIATION DETECTING METHOD UTILIZING ENERGY INFORMATION AND POSITIONAL INFORMATION AND EQUIPMENT THEREOF - Upon detection of radiation by using a (three-dimensional) detector capable of distinguishing a detection position in a depth direction and energy, an energy window for distinguishing between a signal and noise is changed depending on the detection position in the depth direction, thus making it possible to obtain scattering components inside the detector. Alternatively, a weight is given to a detection event depending on the detection position in the depth direction and energy information to obtain scattering components inside the detector. Thereby, scattering components inside the detector can be obtained to increase the sensitivity of the detector. In this case, different detecting elements can be used depending on the detection position in the depth direction.02-11-2010
20130009064COINCIDENCE DETERMINATION METHOD AND APPARATUS OF PET DEVICE - In a coincidence determination processing of a PET device for regarding and counting a pair of annihilation radiations detected within a predetermined time as occurring from the same nuclide, a priority of a line of response to acquire is set and a true coincidence is extracted from multiple coincidences by using information on a detection time difference if a plurality of coincidences are detected with the predetermined time. Consequently, a true coincidence is extracted from multiple coincidences which have heretofore been discarded. This improves detection sensitivity at high radioactive concentration and contributes to an improved dynamic range.01-10-2013
20120298875Radiation Measurement Apparatus and Method of Measuring Radiation - In a radiation measurement apparatus, an analog pulse signal output from a semiconductor radiation detector is converted to a plurality of digital signals by an analog-to-digital converter for each analog pulse signal. A threshold circuit for inputting these digital signals discriminates digital signals exceeding a threshold value. A digital signal integration circuit integrates the plurality of discriminated digital signals for each analog pulse signal and obtains an integrated value for each analog pulse signal. A spectrum generation circuit for inputting the respective integrated values generates a radiation energy spectrum using the integrated values and accurately performs the quantitative analysis and energy analysis of a radioactive nuclide using the radiation energy spectrum. A quantitative analysis and an energy analysis of a radioactive nuclide can be accurately performed while a time resolution of a radiation detector can be maintained.11-29-2012
20120318988HIGH RESOLUTION POSITRON EMISSION TOMOGRAPHY - A method for extracting photon depth of interaction information in a positron emission tomography system is provided. A pulse is detected in a photodetector. A height of the pulse is measured. A determination of whether the pulse height is within a set range is made. Photon depth of interaction is extracted from the pulse height. An energy of interaction is calculated from the pulse height and calibration data. The extracted photon depth and calculated energy spectrum are used in image reconstruction.12-20-2012
20100025588DETERMINING DIFFUSION LENGTH OF MINORITY CARRIERS USING LUMINESCENCE02-04-2010
20120080599APPARATUS AND METHOD FOR NEUTRON DETECTION BY CAPTURE-GAMMA CALORIMETRY - An apparatus for detecting neutron radiation includes a first section with a high neutron absorption capability and a second section with a low neutron absorption capability. The second section includes a gamma ray scintillator having an inorganic material with an attenuation length of less than 10 cm for gamma rays of 5 MeV energy. The material of the first section releases the energy deployed in the first section by neutron capture mainly via gamma radiation. A substantial portion of the first section is covered by the second section. An evaluation device determines the amount of light detected by a light detector for one scintillation event, and the amount is in a known relation to the energy deployed by gamma radiation in the second section. The evaluation device classifies detected radiation as neutrons when the measured total gamma energy E04-05-2012
20120080598Apparatus and Method for Radiation Analysis - Embodiments of the present invention provide an apparatus for radiation analysis, comprising a pulse discrimination module arranged to receive a signal corresponding to a pulse output by a scintillator and to determine a discrimination value indicative of one or more characteristics of the pulse, and a radiation type determination module for determining a type of radiation responsible for the pulse according to the discrimination value.04-05-2012
20110253899THERMOLUMINESCENT LAYERED PRODUCT, THERMOLUMINESCENT PLATE, METHOD OF PRODUCING THERMOLUMINESCENT LAYERED PRODUCT, METHOD OF PRODUCING THERMOLUMINESCENT PLATE AND METHOD OF ACQUIRING THREE-DIMENSIONAL DOSE DISTRIBUTION OF RADIATION - Provided are a dosimeter which uses thermoluminescent plates and with which a three-dimensional dose distribution of radiation can be acquired, a method of producing the dosimeter, and a method of using the dosimeter. A thermoluminescent layered product 10-20-2011
20110266450Method to improve three-dimensional spatial resolution of gamma scintillation events in plate scintillators by means involving fiberoptic light guides - A first embodiment can comprise increasing three-dimensional spatial resolution of gamma scintillation events in scintillator plates wherein the increase is by inserting a fiberoptic plate light guide between one or more photodetectors and the scintillator and optically coupling the fiberoptic plate light guides to the photodetectors.11-03-2011
20100230603INTEGRATED NEUTRON-GAMMA RADIATION DETECTOR WITH OPTICAL WAVEGUIDE AND NEUTRON SCINTILLATING MATERIAL - A radiation detector includes a neutron sensing element having a neutron scintillating material at least partially surrounded by an optical waveguide material; and a photosensing element optically coupled to the neutron sensing element. The photons emitted from the neutron sensing element are collected and channeled through the optical waveguide material and into the photosensing element.09-16-2010
20100230602METHOD FOR POSITRON EMISSION TOMOGRAPHY AND PET SCANNER - Disclosed is a method for positron emission tomography and to a PET scanner. The positron emission tomography method employs the following steps: a) two photons are emitted in opposite directions by an annihilation event in the sample, b) at least two of a plurality of detectors arranged around the sample are prompted to output a signal by the two photons, c) a signal line on which the event may have taken place is determined from the location of the detectors which have output a signal, d) this signal line is evaluated in the tomographic reconstruction of the sample, wherein for each event a plurality of signal lines are determined and evaluated in the tomographic reconstruction of the sample. As described at the outset, the reconstructed image thus becomes more accurate and noise is reduced. The method and the apparatus can improve the signal-to-noise ratio of images.09-16-2010
20100219344Electrochemically Modulated Separations for In-line and At-line Monitoring of Actinides in High-Volume Process Streams - Methods for monitoring target actinides in a fuel reprocessing or waste remediation facility. The methods can be characterized by providing a fuel reprocessing or waste remediation stream having at least one target actinide and at least one other radionuclide. At least a portion of the stream is flowed through an electrochemically modulated separations (EMS) device comprising a carbon-based electrode. A potential is applied to the carbon-based electrode to adjust the redox states of the target actinide, at least one of the radionuclides, or both. The target actinide is separated from the other radionuclides through reaction with, or at, the carbon-based electrode. Finally, direct, in-line chemical nondestructive analysis, at-line chemical separations and sampling analysis, or both, of the target actinide is performed.09-02-2010
20110291015METHOD AND APPARATUS FOR EMISSION GUIDED RADIATION THERAPY - An apparatus comprising a radiation source, coincident positron emission detectors configured to detect coincident positron annihilation emissions originating within a coordinate system, and a controller coupled to the radiation source and the coincident positron emission detectors, the controller configured to identify coincident positron annihilation emission paths intersecting one or more volumes in the coordinate system and align the radiation source along an identified coincident positron annihilation emission path.12-01-2011
20130015358SYSTEM AND METHOD FOR REDUCTION OF OPTICAL NOISE - A variety of methods and systems are described that relate to reducing optical noise. In at least one embodiment, the method includes, emitting a first light having a selected wavelength from a light source, receiving a reflected first light onto a phosphor-based layer positioned inside a receiver, the reflected first light being at least some of the emitted first light that has been reflected by an object positioned outside of a desired target location. The method further includes, shifting the wavelength of the received reflected first light due to an interaction between the received reflected first light and the phosphor-based layer, and passing the received reflected first light with respect to which the wavelength has been shifted through a light detector without detection.01-17-2013
20120326043NEUTRON DETECTION APPARATUS AND A METHOD OF USING THE SAME - A neutron detection apparatus can include a neutron sensor and a photosensor optically coupled to the neutron sensor. In an embodiment, the photosensor includes a box-and-line photomultiplier, and in another embodiment, the photosensor includes a box-and-grid photomultiplier. The neutron detection apparatus provide unexpectedly better pulse shape analysis, pulse shape discrimination, or both. In a particular embodiment, the neutron may also be configured to detect gamma rays.12-27-2012
20120091349PLASMONIC ELECTRICITY - The present invention relates to detection systems and methods that detect fluorescence, luminescence, chemiluminescence or phosphorescence signatures in the form of an electrical signal conducted and emitted from metallic containing surfaces. Thus, the present invention provides for detecting fluorescence digitally and directly without the need for expensive detectors.04-19-2012
20120091348SEGMENTED DETECTOR ARRAY - A radiation detector that includes multiple adjacent modular detector segments. Each segment includes an array of scintillation crystal elements, a light guide arranged adjacent to the array of scintillation crystal elements, and reflectors arranged around a periphery of the segment so that light produced by a scintillation event in the segment is substantially confined to the segment. In one embodiment, each segment is coupled to multiple photosensors, each photosensor receiving light from at least one of the segments.04-19-2012
20120138805Method for the Spatially Resolved Measurement of Parameters in a Cross Section of a Beam Bundle of High-Energy Radiation of High Intensity - The invention is directed to methods and arrangements for spatial acquisition of measurement data over the cross section of a bundle of high-energy, high-intensity radiation. The object of finding a novel possibility for radiation measurement within the cross section of a beam bundle of high intensity which acquires highly spatially resolved measurement data without impairment of the measuring accuracy through saturation or degradation of the detectors is met according to the invention in that the entire cross section of the beam bundle is imaged on a shading element, the cross section is separated successively into partial beam bundles having reduced cross section and reduced intensity through movement of at least one opening, and measurement values of the partial beam bundles passing the opening are acquired so as to be associated temporally and spatially with the positions of the opening and are stored.06-07-2012
20130020489COINCIDENCE DETERMINATION METHOD AND APPARATUS FOR PET DEVICE - For coincidence determination, a PET device that regards and counts a pair of annihilation radiations detected within a predetermined time as occurring from the same nuclide changes a coincidence time width according to a maximum detection time difference. This prevents the inclusion of extra noise data for improved image quality.01-24-2013
20130020487Depth-of-Interaction in an Imaging Device01-24-2013
20130020488Detector with a Conical Scintillator - A detector of ionizing radiation comprises a photodetector and a scintillator in the shape of truncated cone comprising a large base, a small base and a lateral surface, the large base of the scintillator being coupled to the photodetector, any half-angle at the apex of the cone being in the range between 5° and 35°, the lateral face being coated with a black coating. The detector in accordance with an embodiment can produce a very short pulse.01-24-2013
20120241630MATERIALS, METHOD, AND APPARATUS FOR DETECTING NEUTRONS AND IONIZING RADIATION - Embodiments of the invention provide a scintillator material, a scintillator system, and/or a method of detecting incident radiation using a scintillator material, or scintillator system, comprising a polymer material that comprises chromophores. Additional embodiments provide a scintillator material, scintillator system, and/or a method of detecting incident radiation using a scintillator material, or scintillator system, comprising a polymer material having one, two, three, or more, organic dyes dissolved therein wherein the polymer material having the one, two, three, or more dyes dissolved therein comprises chromophores. At least one of the dyes, termed the base dye, has a concentration in the range 0.5 to 3.5 mol/L. In a specific embodiment, the base dye has a concentration in the range 1.0 to 3.0 mol/L. This base dye concentration is high enough to achieve a substantial triplet-triplet state annihilation rate despite the negligible diffusion of the dye in the rigid polymer matrix.09-27-2012
20080224050Method of and Software for Calculating a Scatter Estimate for Tomographic Scanning and System for Tomographic Scanning - The method calculates a scatter estimate for annihilation photons in a subject having a distribution of attenuation. The method can be used for scatter correction of detection data from a positron emission tomographic scanner. The method uses the following steps: —select a first scatter point S09-18-2008
20130168556METHODS AND APPARATUS FOR A RADIATION MONITOR - Methods and apparatus for a radiation monitor. In one embodiment, a radiator monitor comprises a housing, a detector material having an adjustable density in the housing, an optical coupler adjacent the detector material to receive Cherenkov energy generated in the detector material, a photodetector coupled to the optical coupler, and a processing module coupled to the photodetector to determine whether a detection threshold is exceeded.07-04-2013
20130168557RADIATION DETECTOR WITH STEERING ELECTRODES - The invention relates to a radiation detector (07-04-2013
20120248319METHOD AND APPARATUS FOR ACQUIRING IMAGES CREATED BY PENETRATION OF RADIOACTIVE RAY - Disclosed is an apparatus and method of acquiring images created by penetration of a radioactive ray. The apparatus includes a scintillator to generate a light signal in response to an irradiated radioactive ray, and to change an advancing direction of the generate light signal, a light receiving unit to receive the light signal whose advancing direction is changed, and a signal processing unit to convert the received light signal into an electrical signal, and acquire an image corresponding to the penetrated irradiated radioactive ray based on the converted electrical signal.10-04-2012
20130134311NUCLEAR MEDICINE IMAGING APPARATUS AND NUCLEAR MEDICINE IMAGING METHOD - In the nuclear medicine imaging apparatus according to the one embodiment, the ADC converts the output data of each of the photodetectors to digital data. The counting information collecting unit collects counting results from the digital data, and the counting information storage unit stores the counting result in association with the digital data. The coincidence counting information generating unit generates coincidence counting information. The image reconstructing unit reconstructs a PET image, based on the coincidence counting information. The time correction data stores a correction time for each of the photodetectors. The system controlling unit controls to correct the detection time of the gamma rays in the digital data associated with each piece of the counting information by use of the correction time, and to generate new coincidence counting information. The system controlling unit controls to reconstruct a new nuclear medicine image, based on the new coincidence counting information generated.05-30-2013
20130112883Radiation Image Detector and Method of Driving the Same - In one embodiment, the radiation image detector includes: a radiation sensor, which includes an image detection unit in which a plurality of pixels a reading circuit, which reads image signal information from a group of pixels that are connected to an arbitrary row select line to which a drive voltage is applied, and also reads noise signal information from pixels when the drive voltage is not applied to all the row select lines; and a noise correction circuit, which corrects the image signal information on the basis of the noise signal information.05-09-2013
20100288933Active Voltage Divider for Detector - A voltage divider for supplying a photomultiplier. The voltage divider may include a plurality of active circuits, each of the active circuits configured to establish divided voltage levels at separate ports of a photomultiplier.11-18-2010
20130126741Ce3+ ACTIVATED MIXED HALIDE ELPASOLITES AND HIGH ENERGY RESOLUTION SCINTILLATOR - A scintillator composition is described. The scintillator composition includes a matrix material and an activator. The matrix material includes at least one alkali metal or thallium; at least one alkali metal, different than the previously selected alkali metal; at least one lanthanides; and at least two halogens. The activator is cerium. Further, radiation detectors, which include the scintillator composition and methods for detecting high-energy radiation are also described and form part of this disclosure.05-23-2013
20130126740SYSTEM AND METHOD FOR ASSAYING RADIATION - A system for assaying radiation includes a sample holder configured to hold a liquid scintillation solution. A photomultiplier receives light from the liquid scintillation solution and generates a signal reflective of the light. A control circuit biases the photomultiplier and receives the signal from the photomultiplier reflective of the light. A light impermeable casing surrounds the sample holder, photomultiplier, and control circuit. A method for assaying radiation includes placing a sample in a liquid scintillation solution, placing the liquid scintillation solution in a sample holder, and placing the sample holder inside a light impermeable casing. The method further includes positioning a photomultiplier inside the light impermeable casing and supplying power to a control circuit inside the light impermeable casing.05-23-2013
20100276600PROTECTION OF HYGROSCOPIC SCINTILLATORS - A radiation detector (11-04-2010
20130146775RADIATION DETECTOR - A radiation detector for neutrons and gamma-rays is described. The detector includes a conversion screen (06-13-2013
20110210255 MULTIPLEXING READOUT SCHEME FOR A GAMMA RAY DETECTOR - A method for producing a PET image of a tissue using a PET scanner, the scanner comprising a plurality of scintillation crystals (09-01-2011
20080197287SYSTEM AND METHOD FOR SUPER RESOLUTION OF A SAMPLE IN A FIBER ARRAY SPECTRAL TRANSLATOR SYSTEM - The disclosure relates generally to methods and apparatus for obtaining a super resolution image of a sample using a fiber array spectral translator system. In one embodiment includes collecting photons from a sample at a first end of a fiber array spectral translator; delivering the photons from a second end of the fiber array spectral translator into a multiple detector rows of a photon detector; interpolating between the multiple detector rows to thereby form interpolated rows; and arranging an output of the multiple detector rows and the interpolated rows so as to obtain a super resolution image of the sample.08-21-2008
20110272587Increasing Edge Sensitivity in a Radiation Detector - An apparatus and method to increase the sensitivity at the edge of radiation detector blocks is disclosed herein. Reduced sensitivity can result from photons entering a first detector block, escaping, and scattering into an adjacent detector, thereby depositing energy into two detectors blocks. Energy lost into adjacent detector blocks can be compensated with energy detected in the adjacent detector block. This can be done, for example, by processing channels from multiple detector blocks with one Field Programmable Gated Array (FPGA) on one Event Process Module (EPM) board. This can enable summing energy of one detector block with energy from an adjacent detector block when the initial interaction occurs at the edge of the first detector block. This can result in a better estimate of the amount of energy associated with the initial photon being detected.11-10-2011
20110272586Chloride Scintillator for Radiation Detection - The present disclosure discloses, in one arrangement, a single crystalline chloride scintillator material having a composition of the formula A11-10-2011
20110272585Halide Scintillator for Radiation Detection - A halide scintillator material is disclosed. The material is single-crystalline and has a composition of the formula A11-10-2011
20130153773METHOD AND APPARATUS TO MONITOR A BEAM OF IONIZING RADIATION - Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.06-20-2013
20110303851HIGH RESOLUTION SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY (SPECT) SYSTEM - A high resolution single photon emission computed tomography (SPECT) imaging system comprising: 12-15-2011
20110303850NOVEL DISCRIMINATING MOLECULE FAMILY FOR NEUTRON AND GAMMA RADIATION - The invention relates to a novel discriminating molecule family for neutron and gamma radiation, and to the preparation method thereof. Said molecules are also useful for detecting radiation (X, gamma, electrons, protons, ions), and thus for manufacturing radar, and industrial or medical dosimetry instruments.12-15-2011
20110303849DUAL SCREEN RADIOGRAPHIC DETECTOR WITH IMPROVED SPATIAL SAMPLING - Embodiments of radiographic imaging apparatus and methods for operating the same can include a first scintillator, a second scintillator, a plurality of first photosensitive elements, and a plurality of second photosensitive elements. The plurality of first photosensitive elements receives light from the first scintillator and has first photosensitive element characteristics chosen to cooperate with the first scintillator properties. The plurality of second photosensitive elements are arranged to receive light from the second scintillator and has second photosensitive element characteristics different from the first photosensitive element characteristics and chosen to cooperate with the second scintillator properties. Further, the first scintillator can have first scintillator properties and the second scintillator can have second scintillator properties different from the first scintillator properties.12-15-2011
20110309253Detector with Active Collimators - an apparatus and methods for detecting radiation. A plurality of substantially parallel active collimation vanes are sensitive to the incident radiation for generating at least a first detection signal, and a rear detector detects incident radiation that passes between the substantially parallel active collimation vanes and generates a second detection signal. A processor receives and processes both the first and second detection signals. The active collimator vanes may be enclosed within a light-tight enclosure, and a first photodetector may be provided for detecting scintillation arising at the active collimation vanes, while a second photodetector may be provided for detecting scintillation arising at the rear detector.12-22-2011
20110309252NUCLEAR MEDICINE IMAGING APPARATUS, AND NUCLEAR MEDICINE IMAGING METHOD - According to one embodiment, a nuclear medicine imaging apparatus includes a detector, a calibrator, and an image reconstruction unit. The detector includes a plurality of detector modules, each counting light originating from a gamma ray. The calibrator unit calibrates time information of all of the plurality of detector modules by calibrating time information for determining each detection time of a pair of detector modules based on each detection time of the pair of the detector modules which approximately coincidentally count annihilation gamma rays and a distance between the pair of detector modules in a state in which a point radiation source including a positron emitting nuclide is installed in each position near a plurality of predetermined detector modules. The image reconstruction unit reconstructs a nuclear medicine image using a time difference between detection times of annihilation gamma rays corrected based on time information calibrated by the calibrator.12-22-2011
20110309251Method For Determining Radiation Attenuation In A Positron Emission Tomography Scanner - A method is disclosed for determining radiation attenuation as a result of an object in a positron emission tomography scanner. In at least one embodiment, a phantom object is arranged in the positron emission tomography scanner during the method. First raw radiation data of the phantom object is acquired while the object is not arranged in the positron emission tomography scanner. A first image of the phantom object is calculated from the first raw radiation data. The object then is arranged in the positron emission tomography scanner (12-22-2011
20130187052DUAL RANGE DIGITAL NUCLEAR SPECTROMETER - The present invention comprises a spectrometer (07-25-2013
20120001075METHOD TO OPTIMIZE THE LIGHT EXTRACTION FROM SCINTILLATOR CRYSTALS IN A SOLID-STATE DETECTOR - A light transmitting element such as a scintillating element (01-05-2012
20120018645Method and Apparatus to Optimize Injected Dose and Scan Time in SPECT Imaging - An apparatus and method are provided for optimizing an amount of radiation dose and acquisition time in cardiac Single Photon Emission Computed Tomography (SPECT) imaging. The apparatus and method include providing an organ, acquiring images of the organ at projected views. Then a projected view that projects the organ as an annulus is selected; a region of interest (ROI) is also selected in the projected view, wherein the ROI is in a lateral wall of the organ. An average count in the ROI is determined; and an image quality of a reconstructed image based on the average count is predicted.01-26-2012
20120018644MR-PET Imaging System Integration - A data processing unit for an integrated magnetic resonance (MR) and positron emission tomography (PET) system includes an RF shield housing, a first input port in the RF shield housing configured to receive a PET detector signal, a first filter disposed in the RF shield housing, in communication with the first input port, and configured to remove MR noise from the PET detector signal, a second input port in the RF shield housing configured to receive DC power, a second filter disposed in the RF shield housing, in communication with the second input port, and configured to remove the MR noise from the DC power, and a signal processing circuit disposed in the RF shield housing and powered by the DC power, the signal processing circuit including an analog-to-digital converter to digitize the PET detector signal.01-26-2012
20120018643Dual Amplifier For MR-PET Hybrid Imaging System - PET signals are amplified in a hybrid PET/MR system. An amplifier structure is provided for operation in the magnetic field of the MR magnets. By filtering to remove signals at the MR frequency (e.g., about 123 MHz) as part of the amplification circuit, the amplification circuit may be positioned within the RF cabin, within the magnetic field, and even within a same housing as the MR magnets. MR interference may be reduced by staged amplification. The filtering may be bi-directional, such as using parallel and series traps. Digitization of the PET signals may be provided within the magnetic field with no or little interference with MR operation.01-26-2012
20130193330SYSTEM AND METHOD FOR PIXELATED DETECTOR CALIBRATION - Present embodiments relate to the calibration of detectors having one or more arrays of pixelated detectors. According to an embodiment, a method includes detecting optical outputs generated by a plurality of scintillation crystals of a detector with an array of pixelated detectors, generating, with the array of pixelated detectors, respective signals indicative of the optical outputs, generating, from the respective signals, a unique energy spectrum correlated to each of the plurality of scintillation crystals, grouping subsets of the plurality of scintillation crystals into macrocrystals, determining a representative energy spectrum peak for each macrocrystal based on the respective energy spectra of the scintillation crystals in the macrocrystal, comparing a value of the representative energy spectrum peak for each macrocrystal with a target peak value, and adjusting an operating parameter of at least one pixelated detector in the array of pixelated detectors as a result of the comparison.08-01-2013
20130099125COMPACT THERMAL NEUTRON MONITOR - A thermal neutron monitor includes at least one neutron scintillator sheet interposed between light guides. Scintillation light emitted in opposite transverse directions is captured by the light guides and conveyed to a common detector. The sandwiched geometry of the monitor avoids the need to provide multiple detectors and permits construction of a relatively inexpensive, compact monitor.04-25-2013
20120085911TOMOGRAPHIC IMAGING METHODS AND SYSTEMS FOR DIGITAL WAVE FRONT DECIMATION IN TIME SAMPLING - Some embodiments can comprise a tomographic imaging data acquisition method(s) and/or systems embodying the method(s). Some methods according to embodiments of the invention include simultaneously reading each photoconverter of a scintillation detector; reading the photoconverters at a frequency sufficient to obtain a plurality of digital sample measurements of a scintillation wave front; and recording the data read from each of the plurality of photoconverters as a function of time.04-12-2012

Patent applications in class Methods