Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Semiconducting type

Subclass of:

250 - Radiant energy

250336100 - INVISIBLE RADIANT ENERGY RESPONSIVE ELECTRIC SIGNALLING

250338100 - Infrared responsive

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20110180713THERMAL DETECTOR, THERMAL DETECTOR DEVICE, ELECTRONIC INSTRUMENT, AND METHOD OF MANUFACTURING THERMAL DETECTOR - The thermal detector includes a support member supported on a substrate. The support member has a mounting portion supporting a thermal detector element, and at least one arm portion connected at one end to the mounting portion and connected at the other end to the substrate. At least one of the mounting portion and the at least one arm portion has a first member disposed towards the substrate, a transverse width of a transverse cross-sectional shape of the first member set to a first width; a second member disposed toward the thermal detector element and facing the first member, a transverse width of the second member set to the first width; and a third member linking the first member and the second member, a transverse width of the third member set to a second width that is smaller than the first width.07-28-2011
20090084958BOLOMETER - Bolometers utilize an organic semiconductor diode layer assembly for temperature measurement. These bolometers are particularly sensitive to the infrared wave range so that they are employable as infrared sensors and may be combined to form one-dimensional sensor rows or two-dimensional microbolometer arrays.04-02-2009
20100072368Spectral Measuring System - A spectral measuring system for determining substance properties using terahertz radiation comprises: one or more radiation sources of which at least one radiation source is adjustable or configurable with regard to its wavelength, wherein the first radiation source emits first radiation at a predetermined first wavelength; and is characterised by a sensor which responds to further radiation which is based on the radiation of the at least one radiation source; a control unit which is connected to the at least one radiation source and the sensor; wherein the control unit is configured to trigger at least one radiation source and to adjust the wavelength of the at least one adjustable radiation source as well as to read out the sensor.03-25-2010
20100072369VISIBLE-REGION LIGHT MEASURING INSTRUMENT AND VISIBLE-REGION LIGHT MEASURING INSTRUMENT MANUFACTURING METHOD - There is provided a visible-region light measuring instrument including: a first photodiode and a second photodiode. At least one of the first photodiode and the second photodiode comprises plural photodiodes, when the first photodiode comprises a first plural photodiodes, the visible-region light measuring instrument has first fuses that control connections between the first plural photodiodes and at least one of the first node and the first power supply node. When the second photodiode comprises a second plural photodiodes, the visible-region light measuring instrument has second fuses that control connections between the second plural photodiodes and at least one of the first node and the second power supply node.03-25-2010
20130032719ELECTRICAL CALIBRATED RADIOMETER - An electrical calibrated radiometer includes a base, a suspension unit extending from the base, and a first heat measuring unit and a second heat measuring unit formed in the base. By applying a known voltage to the first heat measuring unit, the first heat measuring unit could serve as a thermal background for the second heat measuring unit, and an absolute temperature of a heat source could be determined with high precision from output voltages of the second heat measuring unit.02-07-2013
20100032569Multi-function light sensor - The light sensor according to an exemplary embodiment of the present invention is a multi-function light sensor that is equipped at low cost with both an ultraviolet light sensor and a visible light sensor and suppresses leak current between adjacent elements on the same substrate. The light sensor is equipped with a SOI substrate, formed from a silicon oxide insulating film and a silicon semiconductor layer made up from single crystal silicon, on a silicon substrate. Photodiodes PD1 and PD2 are formed on the silicon substrate, and a photodiode UV-PD, and main portions (source, drain and channel regions) of a MOSFET configuring a control circuit, are formed in the silicon semiconductor layer on the insulating film.02-11-2010
20100044569INFRARED DETECTOR WITH CARBON NANOTUBE YARNS - An infrared detector based on CNT yarns includes a first electrode, a second electrode and a composite film between the first electrode and the second electrode. A first end of the composite film is electrically connected to the first electrode. A second end of the composite film and the second electrode cooperatively define a gap therebetween. The composite film is capable of extending in a direction towards the second electrode and, thereby forming an electrical connection between the first and the second electrodes when the composite film is illuminated by infrared light. The composite film includes a polymer layer, a plurality of semiconducting CNT yarns dispersed in the polymer layer, and a plurality of metallic CNT yarns dispersed in the polymer layer. Each semiconducting CNT yarn includes a plurality of twisted semiconducting CNTs. Each metallic CNT yarn includes a plurality of twisted metallic CNTs.02-25-2010
20130026366VERTICALLY STACKED THERMOPILE - A vertically stacked thermopile and an IR sensor using said stacked thermopiles are provided. The vertically stacked thermopile may include multiple thermocouples stacked vertically on one another. The thermocouples may be connected in series, parallel, or a combination of series and parallel. One or more vertically stacked thermopiles may be included in an IR sensor and the thermopiles may be connected in series, parallel, or a combination of series and parallel.01-31-2013
20090026372INFRARED SENSOR AND METHOD FOR MANUFACTURING INFRARED SENSOR - An economical and highly reliable infrared sensor with a wide field of view and a method for economically manufacturing a highly reliable infrared sensor with a wide field of view includes a package having supporting portions that support an optical filter at a location below the upper surfaces of sidewalls of the package and recessed portions that communicate with gaps between side surfaces of the optical filter supported by the supporting portions and the sidewalls of the package. An adhesive is supplied to the recessed portions while the optical filter is supported by the supporting portions such that the adhesive flows into the gaps between the optical filter and the sidewalls of the package by capillary action and such that the optical filter is fixed to an opening of the package via the adhesive. The optical filter is fixed to the package via the adhesive by applying the adhesive such that the adhesive spreads over substantially the entire circumference of the optical filter.01-29-2009
20130087707INFRARED THERMAL DETECTOR AND METHOD OF MANUFACTURING THE SAME - According to example embodiments, an infrared thermal detector includes a substrate, a detector spaced apart from the substrate, and a thermal legal configured to transmit a signal from the detector to the substrate. The detector is configured to absorb incident infrared light via localized surface Plasmon resonance, and the detector is configured to change a resistance value according to a temperature change caused by the absorbed infrared light.04-11-2013
20120181431Portable Terahertz Receiver for Advanced Chemical Sensing - The present invention is directed to a system and method for advanced chemical sensing utilizing a Terahertz receiver instrument having a compact tunable heterodyne mixer to detect chemical species in a noisy background of pollutants, and provide fast acquisition and analysis of the 0.1-2 THz spectrum. The present invention directly couples a microbolometer with a THz quantum cascade laser (QCL) that is utilized as the local oscillator (LO) source for the receiver.07-19-2012
20120181430INFRARED SENSOR AND INFRARED ARRAY SENSOR - An infrared sensor includes a MOSFET sensor, and a current source MOSFET which is connected to the MOSFET sensor in series and constitutes a constant current source for driving the MOSFET sensor with a constant current, wherein a terminal between the MOSFET sensor and the current source MOSFET constitutes a sensor output terminal, the MOSFET sensor is disposed on a heat-insulated structure, the current source MOSFET is disposed outside the heat-insulated structure, and the MOSFET sensor and the current source MOSFET are constituted by a same conductivity type MOSFET and operate in a subthreshold region.07-19-2012
20130048858Hybrid photodiode/APD focal plane array for solid state low light level imagers - A hybrid solid state imaging focal plane array (FPA) for night vision systems achieves a high dynamic range from deeply overcast starlight to full daylight by interleaving non-avalanche photodiode (NAP) pixels with APD pixels in a single imaging plane controlled by a common readout circuit. The APD pixels provide high performance at low light levels, while the NAP pixels provide unsaturated images in full daylight. The APD pixels can be Discrete. In low light the readout circuit can disable the NAP pixels and interpolate the NAP pixels using the APD signals. In daylight the readout circuit can do the opposite. The FPA can be digitally fused with sensors in a separate plane such as InGaAs APD's that detect wavelengths outside of the visible band. The NAP pixels can outnumber the APD pixels, for example by three-to-one. The APD's can be silicon for visible light, or InGaAs for SWIR light.02-28-2013
20090314941Infrared detecting device and manufacturing method thereof - The present invention provides an infrared detecting device capable of improving device characteristics thereof by narrowing the width of each beam portion. The infrared detecting device has an infrared detection portion having a thermoelectric transducing part formed over a semiconductor substrate via an air gap interposed therebetween, and the beam portions which are formed over the semiconductor substrate via the air gap interposed therebetween, support the infrared detection portion and electrically connect between the infrared detection portion and the semiconductor substrate, wherein each of the beam portions has an insulating material film and a conductive material layer exposed from the insulating material film to a side surface of each beam portion.12-24-2009
20120305771Proximity Sensor Packaging Structure And Manufacturing Method Thereof - The present invention pertains to a proximity sensor packaging structure, which comprises a substrate, two first electrically conductive layers and a plurality of second electrically conductive layers that are disposed on the substrate. The substrate has first and second grooves that are respectively defined by a bottom surface and an interior sidewall. Each electrically conductive layer extends from a bottom surface of the first groove, along the interior sidewall of the first groove and in an opposite direction relative to the other first electrically conductive layer, to an exterior sidewall of the substrate. The second electrically conductive layers include first and second electrically conductive portions. The first electrically conductive portion is disposed on a central region of the bottom surface of the second groove. The second electrically conductive portion extends from the bottom surface of the second groove, along the interior sidewall thereof, to the exterior sidewall of the substrate.12-06-2012
20130062522THREE DIMENSIONAL SENSORS, SYSTEMS, AND ASSOCIATED METHODS - 3D sensors, systems, and associated methods are provided. In one aspect, for example, a monolithic 3D sensor for detecting infrared and visible light can include a semiconductor substrate having a device surface, at least one visible light photodiode formed at the device surface and at least one 3D photodiode formed at the device surface in proximity to the at least one visible light photodiode. The device can further include a quantum efficiency enhanced infrared light region functionally coupled to the at least one 3D photodiode and positioned to interact with electromagnetic radiation. In one aspect, the quantum efficiency enhanced infrared light region is a textured region located at the device surface.03-14-2013
20090236526INFRARED RAY SENSOR ELEMENT - An infrared ray sensor element includes: a first signal wiring part including a first signal wire and provided on a first region of a semiconductor substrate different from a region on which a concave part is provided; a second signal wiring part including a second signal wire and provided on the first region so as to intersect the first signal wiring part; a supporter including a support wiring part disposed over the concave part, and including a first wire electrically connected at a first end thereof to the first signal wire, and a second wire insulated from the first wire, disposed in parallel with the first wire, and electrically connected at a first end thereof to the second signal wire; a thermoelectric transducer electrically connected to second ends of the first and second wires; an infrared ray absorption layer provided over the thermoelectric transducer; and a detection cell provided over the concave part.09-24-2009
20090236525Spectrally Tunable Infrared Image Sensor Having Multi-Band Stacked Detectors - A tunable infrared detector is provided that includes a substrate, a bottom wavelength detector formed over the substrate, a top wavelength detector formed over the first wavelength detector layer, and an interferometer filter formed over the top wavelength detector layer and the bottom wavelength detector layer. The interferometer filter is operatively configured to pass a first wavelength associated with a first portion of a predetermined band and a second wavelength associated with a second portion of the predetermined band to the top wavelength detector. The top wavelength detector is operatively configured to detect each wavelength associated with the first portion of the predetermined band and to transmit each wavelength associated with the second portion of the predetermined band to the bottom wavelength detector. The bottom wavelength detector is operatively configured to detect each wavelength associated with the second portion of the predetermined band.09-24-2009
20130214160VISIBLE AND NEAR-INFRARED RADIATION DETECTOR - The visible and near-infrared radiation detector includes a near-infrared photosensitive element, a readout circuit for reading the near-infrared photosensitive element, four visible photosensitive elements, one of which being placed facing the near-infrared photosensitive element, and three interference filters to define a pixel quadruplet. A first pixel, including the near-infrared photosensitive element and one of the visible photosensitive elements, has no filter. The three other pixels, respectively including the three other visible photosensitive elements, are respectively provided with filters associated with the three primary colors. Each interference filter includes an alternation of metal layers and of dielectric layers.08-22-2013
20130214159INFRARED LIGHT TRANSMISSIVITY FOR A MEMBRANE SENSOR - In conventional membrane infrared (IR) sensors, little to no attention has been paid toward transmissivity of IR near metal traces. Here, because the substrate of an integrated circuit carrying the sensor is used as a visible light filter, reflection of IR radiation back into the substrate can affect the operation and reliability of the IR sensor. As a result, an arrangement is provided that reduces the area occupied by metal lines by reducing the pitch and compacting the routing so as to reduce the effects from the reflection of IR radiation by metal traces.08-22-2013
20120228506SOLID STATE IMAGING DEVICE - According to one embodiment, a solid state imaging device includes an infrared detection pixel configured to change an output potential by receiving infrared light, a non-sensitive pixel, a row select line, and a differential amplifier. An amount of change in an output potential when the non-sensitive pixel receives infrared light is smaller than an amount of change in an output potential when the infrared detection pixel receives the infrared light. The row select line is configured to apply a drive potential to both the infrared detection pixel and the non-sensitive pixel. The differential amplifier includes one input terminal to which an output potential of the infrared detection pixel is inputted and another input terminal to which an output potential of the non-sensitive pixel is inputted.09-13-2012
20090008557INFRARED RECEIVING MODULE - An infrared receiving module is disclosed. The infrared receiving module including a first strip element, a second strip element, an infrared receiver disposed on the second strip element, and a resin wrapping the first strip element and the second strip element. The first strip element has a receiving window. The infrared receiver on the second strip element is under the receiving window.01-08-2009
20080283752Electromagnetic Wave Sensor with Terahertz Bandwidth - The field of the invention is that of the detection of high frequency electromagnetic waves. The invention can be applied to a very wide range of bandwidths, but the preferred field of application is the terahertz frequency domain. The core of the detection device involves a so-called active material with an absorption coefficient in the optical domain that depends on the intensity of the terahertz signal to be detected. By measuring the variations of the absorption coefficient by means of an optical probe, the intensity of the terahertz signal is thus determined. By this means, a frequency translation is performed in a frequency domain where the measurement no longer poses technical problems. It is notably possible to improve the sensitivity of the detector by having antennas suited to the active medium, by using semiconductor or quantum well materials. In this case, it is also possible to produce a matrix or an array of terahertz sensors, thereby enabling either terahertz imaging or terahertz spectroscopy to be carried out.11-20-2008
20120235040PHOTOCONDUCTIVE ELEMENT - Provided is a photoconductive element which solves a problem inherent in an element for generating/detecting a terahertz wave by photoexcitation that terahertz wave generation efficiency is limited by distortions and defects of a low temperature grown semiconductor. The photoconductive element includes: a semiconductor substrate; a semiconductor low temperature growth layer; and a semiconductor layer, which is positioned between the semiconductor low temperature growth layer and the semiconductor substrate and is thinner than the semiconductor low temperature growth layer, in which the semiconductor low temperature growth layer includes a semiconductor which lattice-matches with the semiconductor layer and does not lattice-match with the semiconductor substrate.09-20-2012
20100264312SUPERCONDUCTING SOURCE FOR TUNABLE COHERENT TERAHERTZ RADIATION - A system includes a solid state source of THz radiation and a detector. The source of THz radiation may be based on a superconducting material, such as materials containing one or more Josephson junctions (e.g. BSCCO). The source may include a crystal of superconducting material on which a mesa of superconducting material is formed. The resonant coupling between the Josephson oscillations and the fundamental cavity mode of the mesa may lead to synchronization of the Josephson junctions and emission of powerful THz radiation. The mesa may be formed and/or handled such that THz radiation can be emitted by the material without requiring application of an external magnetic field (e.g. the mesa may include a non-uniform compositional gradient, a non-uniform shape, may have radiation non-uniformly applied to the mesa, etc.).10-21-2010
20120286162Semiconductor Device and Electronic Apparatus Employing the Same - Disclosed is a semiconductor device, comprising a driver that causes first through third infrared LEDs to emit light sequentially at prescribed times; an infrared light sensor that receives infrared light that is emitted by the first through the third infrared LEDs and reflected by a reflecting object, and generates photoelectric currents at levels corresponding to the intensity of the received infrared light; an amplifier that generates first through third infrared light information, on the basis of the photoelectric current that is generated by the infrared light sensor, and which denote the intensity of the infrared light; an A/D converter; and a linear/logarithmic converter apparatus. It is thus possible to sense the movement of the reflecting object on the basis of the first through the third infrared light information.11-15-2012
20080265164THERMAL DETECTOR FOR ELECTROMAGNETIC RADIATION AND INFRARED DETECTION DEVICE USING SUCH DETECTORS - A thermal detector comprising a sensitive material having at least one electrical property of which varies with temperature; an electromagnetic radiation absorber which is in contact with the sensitive material; a substrate providing the function of support; and electrically conductive elements providing electrical continuity between sensitive material and substrate. The sensitive material is wholly or partly in the form of a sheet extending in a direction which is essentially perpendicular to the plane of the substrate. The sensitive material is suspended above the substrate by the absorber which is fixed to the sensitive material in the upper region of the sheet. The absorber is suspended by fixing means which is mechanically connected to the substrate.10-30-2008
20110062336ELECTROMAGNETIC BASED THERMAL SENSING AND IMAGING INCORPORATING STACKED SEMICONDUCTOR STRUCTURES FOR THz DETECTION - A novel pixel circuit and multi-dimensional array for receiving and detecting black body radiation in the SWIR, MWIR or LWIR frequency bands. An electromagnetic thermal sensor and imaging system is provided based on the treatment of thermal radiation as an electromagnetic wave. The thermal sensor and imager functions essentially as an electromagnetic power sensor/receiver, operating in the SWIR (200-375 THz), MWIR (60-100 THz), or LWIR (21-38 THz) frequency bands. The thermal pixel circuit of the invention is used to construct thermal imaging arrays, such as 1D, 2D and stereoscopic arrays. Various pixel circuit embodiments are provided including balanced and unbalanced, biased and unbiased and current and voltage sensing topologies. The pixel circuit and corresponding imaging arrays are constructed on a monolithic semiconductor substrate using in a stacked topology. A metal-insulator-metal (MIM) structure provides rectification of the received signal at high terahertz frequencies.03-17-2011
20110114841POWER CONTROL CIRCUIT OF A VARIABLE-FREQUENCY OPTO-INTERRUPTER FOR A PRINTER - A power control circuit of a variable-frequency opto-interrupter for a printer has a plurality of impedances electrically connected with a receiving terminal of the opto-interrupter in parallel for multi-stage variable adjustment, an IR photodiode having stronger penetration and adopted to a transmitting terminal, and a variable frequency generator generating variable frequency signal and electrically connected with a negative pole pin of the IR photodiode through a switching transistor. Accordingly, the emitting intensity of the opto-interrupter is significantly enhanced so that various printing media are penetrated through by infrared beams and the emitting intensity is adjusted to adapt to acquire a broader dynamic range of the load of the receiving terminal.05-19-2011
20110108729THz WAVE DETECTOR - A THz wave detector including a thermal isolation structure in which a supporting unit containing electrode wirings connected to a readout circuit formed in an substrate supports a temperature detecting unit connected to the electrode wirings so that one face of said temperature detecting unit and said substrate are opposed to each other with a predetermined gap, wherein a reflective film reflecting THz waves is formed on the substrate so as to face the temperature detecting unit, an absorbing film absorbing the THz waves is formed on the temperature detecting unit, the reflective film and the temperature detecting unit form an optical resonant structure, the distance between the reflective film and the temperature detecting unit is set to 8 to 14 μm, and the sheet resistance of the absorbing film is set to 100 to 200 Ω/square.05-12-2011
20090140147PIXEL STRUCTURE HAVING AN UMBRELLA TYPE ABSORBER WITH ONE OR MORE RECESSES OR CHANNELS SIZED TO INCREASE RADIATION ABSORPTION - A pixel structure for use in an infrared imager is provided. The pixel structure includes a substrate and a bolometer. The bolometer includes a transducer that has a spaced apart relationship with respect to the substrate and has an electrical resistance that varies in response to changes in the temperature of the transducer. The bolometer also includes an absorber that has a spaced apart relationship with respect to the transducer and has a thermal connection to the transducer permitting radiation absorbed by the absorber to heat the transducer. The absorber has a top side defining a recess or channel in the absorber. The recess or channel is adapted to effect the propagation path of a portion of radiation received by the absorber such that the radiation portion is absorbed by the absorber rather than exiting the absorber. The recess or channel also decreases the thermal mass of the bolometer.06-04-2009
20090152466MICROBOLOMETER WITH IMPROVED MECHANICAL STABILITY AND METHOD OF MANUFACTURING THE SAME - Provided are a microbolometer having a cantilever structure and a method of manufacturing the same, and more particularly, a microbolometer having a three-dimensional cantilever structure, which is improved from a conventional two-dimensional cantilever structure, and a method of manufacturing the same. The method includes providing a substrate including a read-out integrated circuit and a reflective layer for forming an absorption structure, forming a sacrificial layer on the substrate, forming a cantilever structure having an uneven cross-section in the sacrificial layer, forming a sensor part isolated from the substrate by the cantilever structure, and removing the sacrificial layer.06-18-2009
20090146059THERMAL-TYPE INFRARED IMAGE SENSING DEVICE AND METHOD OF PRODUCING THE SAME - An infrared image sensing device is provided having a pixel structure in which an output level as a reference voltage of a reference-pixel element is close to that of a pixel element. A thermal-type infrared image sensing device including pixel elements, being two-dimensionally arranged on a semiconductor substrate, each having a detector for detecting temperature, an infrared-light absorber, supported above the detector apart therefrom through a connector thereon, for absorbing incident infrared light and converting the light into heat, and a support for supporting the detector apart from the semiconductor substrate, includes reference-pixel elements, arranged adjacent to and along a row of the pixel elements, each for generating a reference signal to be a reference for a signal generated by each of the pixel elements, each having a structure for shielding a detector from incident infrared light, in which the detectors of the pixel elements and the reference-pixel elements each are connected to the semiconductor substrate through the respective supports. According to such a configuration, the difference between output levels from the reference-pixel element and the pixel element due to self-heat generation accompanying an operation of reading pixel signals is not significantly generated, and therefore the output level from the reference-pixel element is to be an ideal reference voltage.06-11-2009
20110079717INFRARED POSITIONING APPARATUS AND SYSTEM THEREOF - An infrared positioning apparatus comprises a plurality of infrared diodes, a plurality of amplifying units, a plurality of converting units and a positioning unit. The plurality of infrared diodes is configured to detect at least one infrared signal. The plurality of amplifying units are configured to amplify the at least one infrared signal for obtaining at least one amplified signal. The plurality of converting units are configured to convert the at least one amplified signal for obtaining at least one strength value of the at least one amplified signal. The positioning unit is configured to obtain the emitting direction of the at least one infrared signal in accordance with the at least one strength value of the at least one amplified signal.04-07-2011
20100116989INFRARED LIGHT DETECTOR - An infrared light detector with an infrared light sensitivity thereof further improved. According to the infrared light detector, an isolated region of a first electronic layer is switched between a “disconnected status” and a “connected status”. Under the connected status, saturation of an electrostatic charge quantity of the isolated region in the disconnected status is eliminated, and consequently, saturation of a variation amount of an electrical conductivity of a second electronic layer is eliminated. Therefore, the infrared light sensitivity is further improved by time integration of the variation amount of the electrical conductivity of the second electronic layer.05-13-2010
20080237468SOLID-STATE IMAGING DEVICE AND DRIVING METHOD THEREOF - This disclosure concerns a solid-state imaging device including a pixel thermally separated from a substrate; a heat conduction switch having one end connected to the substrate and other end capable of contacting to the substrate or the pixel, the heat conduction switch changing over a state of the pixel to one of a first state and a second state, the first state being a state in which the pixel is thermally isolated from the substrate by causing the other end of the heat conduction switch to contact with the substrate, the second state being a state in which the pixel is thermally shorted to the substrate by causing the other end of the heat conduction switch to contact with the pixel; and a signal detector detecting a difference between the signal voltage of the pixel in the first state and the signal voltage of the pixel in the second state.10-02-2008
20100078559Infra-red light stimulated high-flux semiconductor x-ray and gamma-ray radiation detector - A method of detecting radiation through which the residence time of charge carriers is dramatically reduced by an external optical energy source and the occupancy of the deep-level defects is maintained close to the thermal equilibrium of the un-irradiated device even under high-flux exposure conditions. Instead of relying on thermal energy to release the trapped carriers, infra-red light radiation is used to provide sufficient energy for the trapped carriers to escape from defect levels. Cd04-01-2010
20100084556OPTICAL-INFRARED COMPOSITE SENSOR AND METHOD OF FABRICATING THE SAME - Provided are an optical-infrared composite sensor and a method of fabricating the same. The optical-infrared composite sensor can sense both optical and infrared radiation. The optical-infrared composite sensor includes an infrared sensor formed on a substrate, a silicon cap enveloping the infrared sensor to vacuum-package the infrared sensor, and an optical sensor formed at one side of the silicon cap.04-08-2010
20090272903Infrared detector, infrared detecting apparatus, and method of manufacturing infrared detector - An infrared detector comprises: a reflection portion transmitting far- and middle-infrared rays and reflecting near-infrared and visible rays; a photo-current generating portion having a quantum well structure in which electrons are excited by the far- and middle-infrared rays having passed through the reflection portion so as to generate photo-current; a light emitting portion having a quantum well structure into which electrons of the photo-current generated by the photo-current generating portion are injected and the electrons thus injected thereinto are recombined with holes, thus emitting near-infrared and visible rays; and a photo-detecting portion detecting the near-infrared and visible rays emitted from the light emitting portion, and detecting the near-infrared and visible rays emitted from the light emitting portion and reflected by the reflection portion. The reflection portion, the photo-current generating portion, and the light emitting portion are made of group III-V compound semiconductors layered on a semiconductor substrate.11-05-2009
20120292512WAVEGUIDE, APPARATUS INCLUDING THE WAVEGUIDE, AND METHOD OF MANUFACTURING THE WAVEGUIDE - Provided are a waveguide with which strain and defect caused by a manufacturing process or the like or caused in a semiconductor in an initial stage or during operation are suppressed so that improvement and stabilization of characteristics are expected, and a method of manufacturing the waveguide. A waveguide includes a first conductor layer and a second conductor layer that are composed of a negative dielectric constant medium having a negative real part of dielectric constant with respect to an electromagnetic wave in a waveguide mode, and a core layer that is in contact with and placed between the first conductor layer and the second conductor layer, and includes a semiconductor portion. The core layer including the semiconductor portion has a particular depressed and projected structure extending in an in-plane direction.11-22-2012
20090266987INFRARED DETECTOR AND SOLID STATE IMAGE SENSOR HAVING THE SAME - An infrared detector includes: a readout wiring portion provided on a semiconductor substrate; a support structure portion disposed over a concave portion formed in a surface portion of the semiconductor substrate, the support structure portion having connection wiring connected electrically to the readout wiring portion; and a cell portion disposed over the concave portion and supported by the support structure portion. The cell portion includes: an infrared absorption layer absorbing incident infrared rays; and a plurality of thermoelectric conversion elements connected electrically to the support structure portion and insulated electrically from the infrared absorption layer to generate an electric signal by detecting a temperature change of the cell portion, each of the thermoelectric conversion elements includes a semiconductor layer, a p-type silicon layer and an n-type silicon layer formed with a space between them in the semiconductor layer, and a polysilicon layer formed on the semiconductor layer between the p-type silicon layer and the n-type silicon layer.10-29-2009
20110266446LIGHT DETECTION CIRCUIT FOR AMBIENT LIGHT AND PROXIMITY SENSOR - A circuit for implementing an ambient light sensing mode and a proximity sensing mode includes a light sensor, a light source, and a controller coupled to the light sensor and the light source. The controller is configured to process outputs from the light sensor before and after the light source is energized to obtain an ambient light level output and to compare the ambient light level output with an output from the light sensor when the light source is energized to implement the proximity sensing mode.11-03-2011
20100102230Light detection circuit for ambient light and proximity sensor - A circuit for implementing an ambient light sensing mode and a proximity sensing mode includes a first light sensor that is more sensitive to light in the infrared spectrum than to light in the visible spectrum and a light source that emits light in the infrared spectrum. The circuit further includes a second light sensor that is sensitive to light in the visible spectrum and a controller coupled to the first light sensor, the light source, and the second light sensor. The controller is configured to process an ambient light level output from the first light sensor without the light source energized with an output from the first light sensor with the light source energized to implement a proximity sensing mode. Further, the controller is configured to process an output from the second light sensor to implement an ambient light sensing mode.04-29-2010
20100102231SEMICONDUCTOR DEVICE - Disclosed is a bolometer infrared imaging device including a plural number of readout circuits, each comprising a bias circuit that includes a bias transistor that supplies a constant voltage to a bolometer device, a bias cancellation circuit that includes a canceller transistor that removes offset current component of the bolometer device and an integrating operational amplifier that integrates the difference current between the current flowing in the bias transistor and that flowing in the canceller transistor. The bias circuit includes a source follower circuit that receives a first input voltage and supplies an output voltage to the gate of the bias transistor. The bias cancellation circuit includes a source follower circuit that receives a second input voltage and supplies an output voltage to the gate of the canceller transistor.04-29-2010
20080251723Electromagnetic and Thermal Sensors Using Carbon Nanotubes and Methods of Making Same - Electromagnetic radiation detecting and sensing systems using carbon nanotube fabrics and methods of making the same are provided. In certain embodiments of the invention, an electromagnetic radiation detector includes a substrate, a nanotube fabric disposed on the substrate, the nanotube fabric comprising a non-woven network of nanotubes, and first and second conductive terminals, each in electrical communication with the nanotube fabric, the first and second conductive terminals disposed in space relation to one another. Nanotube fabrics may be tuned to be sensitive to a predetermined range of electromagnetic radiation such that exposure to the electromagnetic radiation induces a change in impedance between the first and second conductive terminals. The detectors include microbolometers, themistors and resistive thermal sensors, each constructed with nanotube fabric. Nanotube fabric detector arrays may be formed for broad-range electromagnetic radiation detecting. Methods for making nanotube fabric detectors, arrays, microbolometers, thermistors and resistive thermal sensors are each described.10-16-2008
20120292513DIODE SENSOR MATRIX AND METHOD OF READING OUT A DIODE SENSOR MATRIX - A diode sensor matrix including a multitude of diodes is configured to detect, in a first measuring cycle, a first sensor value at a first diode or at diodes of a first group of diodes while operating the first diode and/or the diodes of the first group in the flow direction and operating the diodes, which share an anode or cathode or terminal with the first diode or with any of the diodes of the first group, in the reverse direction, and to detect, in a second measuring cycle, a second sensor value at a second diode among the diodes which share an anode or cathode terminal with the first diode or with any of the diodes of the first group, while operating the second diode in the flow direction and operating the first diode or a diode from the first group in the reverse direction.11-22-2012
20110204233Infrared Attenuating or Blocking Layer in Optical Proximity Sensor - An optical proximity sensor is provided that comprises an infrared light emitter an infrared light detector, a first molded optically transmissive infrared light pass component disposed over and covering the light emitter and a second molded optically transmissive infrared light pass component disposed over and covering the light detector. Located in-between the light emitter and the first molded optically transmissive infrared light pass component, and the light detector and the second molded optically transmissive infrared light pass component is a gap. Layers of infrared opaque, attenuating or blocking material are disposed on at least some of the external surfaces forming the gap to substantially attenuate or block the transmission of undesired direct, scattered or reflected light between the light emitter and the light detector, and thereby minimize optical crosstalk and interference between the light emitter and the light detector.08-25-2011
20090152467MULTILAYER-STRUCTURED BOLOMETER AND METHOD OF FABRICATING THE SAME - Provided are a multilayer-structured bolometer and a method of fabricating the same. In the multilayer-structured bolometer, the number of support arms supporting the body of a sensor structure is reduced to one, and two electrodes are formed on the one support arm. Thus, the sensor structure is electrically connected with a substrate through the only one support arm. According to the multilayer-structured bolometer and method of fabricating the bolometer, the thermal conductivity of the sensor structure is considerably reduced to remarkably improve sensitivity to temperature, and also the pixel size of the bolometer is reduced to obtain high-resolution thermal images. In addition, the multilayer-structured bolometer can have a high fill-factor due to a sufficiently large infrared-absorbing layer, and thus can improve infrared absorbance.06-18-2009
20100140475DETECTION DEVICE - Reflective means comprising substrates, selectively reflects electromagnetic radiation whose frequency lies between 3×1006-10-2010
20120267531ELECTRONIC DEVICE FOR BASELINING THE CURRENT EMITTED BY ELECTROMAGNETIC RADIATION DETECTORS - A microelectronic device for electromagnetic radiation measurement including a bolometer and an integrator including an integration capacitor, to output, during an integration time, a first signal with variable amplitude and frequency according to the current emitted by the detector, in a form of a series of pulses, and a controller controlling the first signal, to deliver a second signal. The controller includes: a counting device to count each pulse of the first signal detected during an integration time and to indicate an end of counting when a predetermined number N of pulses is reached, and when the end-of-integration time is reached and a predetermined number N of pulses has been counted or deducted by the counter, to emit a second amplitude signal, depending on or equal to the amplitude of the first signal.10-25-2012
20090184246Infrared detector and fabricating method of infrared detector - There is provided an infrared detector including: a silicon substrate provided with a concave portion; an infrared receiver having a polysilicon layer; and a beam that supports the infrared receiver above the concave portion, and extends along a side of the infrared receiver from the infrared receiver to connect with the silicon substrate, the beam having at least two bent portions, wherein at least one of the bent portions of the beam is disposed at a position on a side opposite to the concave portion with the polysilicon layer as a reference point.07-23-2009
20120138800ON-CHIP CALIBRATION SYSTEM AND METHOD FOR INFRARED SENSOR - A radiation sensor includes an integrated circuit radiation sensor chip (06-07-2012
20100200755APPARATUS AND METHOD FOR DETECTING TERAHERTZ WAVE - A terahertz wave detecting apparatus includes a semiconductor chip 08-12-2010
20090321644BOLOMETER AND METHOD OF PRODUCING A BOLOMETER - A bolometer includes a membrane, a first spacer and a second spacer, the membrane including resistive and contact layers. At a side facing a foundation, the contact layer has a first contact region at which the first spacer electrically contacts the contact layer, and a second contact region at which the second spacer electrically contacts the contact layer. In this manner, the membrane is kept at a predetermined distance to the foundation. The contact layer is laterally interrupted by a gap, so that the contact layer is subdivided at least into two parts, the first part including the first contact region, and the second part including the second contact region, and no direct connection existing within the contact layer from the first contact region to the second contact region, and the resistive layer being in contact with the first and second parts of the contact layer.12-31-2009
20090321643DETECTOR FOR AND A METHOD OF DETECTING ELECTROMAGNETIC RADIATION - A detector unit (12-31-2009
20090321642PHOTODETECTOR WITH DARK CURRENT REDUCTION - A detector of incident infrared radiation has a first region with a first spectral response, and a second region with a second, different spectral response. The second absorption region is stacked on the first and may be separated therefrom by a region in which the chemical composition of the compound semiconductor is graded. Separate contacts are provided to the first and second absorption regions and a further common contact is provided so as to permit the application of either a bias voltage or a skimming voltage across the respective pn junctions. The detector may be operated such that a preselected one of the absorption regions responds to incident infrared radiation of a predetermined waveband while the other absorption region acts as a skimmer of dark current, thereby enhancing the signal to noise ratio of the detector.12-31-2009
20130214161VISIBLE AND NEAR-INFRARED RADIATION DETECTOR - The detector of visible and near-infrared radiation comprises a near-infrared photosensitive element, a readout circuit for reading the near-infrared photosensitive element, four visible photosensitive elements, one of which being placed facing the near-infrared photosensitive element, and four pigmented resin filters to define a pixel quadruplet. A first pixel, including the near-infrared photosensitive element and one of the visible photosensitive elements, is provided with a resin filter opaque to visible radiation. The three other pixels, respectively including the three other visible photosensitive elements, are respectively provided with filters associated with the three primary colors.08-22-2013
20090095909BOLOMETER TYPE UNCOOLED INFRARED RAY SENSOR AND METHOD FOR DRIVING THE SAME - A bolometer type uncooled infrared ray sensor includes: an image pickup region having detection pixels arranged in a matrix form on a semiconductor substrate to detect incident infrared rays; a plurality of row selection lines provided in the image pickup region; current sources capable of letting constant currents flow through the respective row selection lines; a plurality of signal lines provided in the image pickup region; voltage readout circuits provided so as to respectively correspond to the signal lines to read out signal voltages generated on the respectively corresponding signal lines; coupling capacitances respectively provided between the respective signal lines and the corresponding voltage readout circuits; and a calculator which calculates a difference between two signal voltages read out by the voltage readout circuits, corresponding to outputs of the same detection pixel for two different current values supplied from the current sources.04-16-2009
20100155601INFRARED SENSOR AND METHOD OF FABRICATING THE SAME - An infrared sensor and a method of fabricating the same are provided. The sensor includes a substrate including a reflection layer and a plurality of pad electrodes, an interdigitated sensing electrode connected to the pad electrode and formed to be spaced apart from the reflection layer by a predetermined distance and a sensing layer formed on the sensing electrode and having an opening exposing a portion in which an interdigitated region of the sensing electrode connected to one pad region is separated from the sensing electrode connected to the other pad electrode. Therefore, the sensor has an electrode in a very simple constitution, and a sensing layer divided into rectangular blocks, so that current that non-uniformly flows into the electrode can be removed. Accordingly, the sensor in which current of the sensing layer can be uniformly flown, and noise is lowered can be implemented.06-24-2010
20100155602SILICON SURFACE STATE DETECTORS AND DETECTOR ARRAYS - Photodetection devices and methods are described. The photodetection devices comprise semiconductor tapered pillars.06-24-2010
20100181486SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A micro-bolometer type infrared (IR) sensing device is provided. The IR sensing device includes an absorbed heat discharging part; a sensing structure part formed as bean structure, spaced apart from the absorbed heat discharging part, supported at least at one end on the absorbed heat discharging part, and discharging heat absorbed in the sensing structure part by being elastically deformed and thus touching the absorbed heat discharging part. The sensing structure part includes: a sensing part with variation in secondary attribute (for example, in electrical resistance property) according to heat; and a light-absorbing part formed into one unit with the sensing part in a manner to surround the sensing part as seen in section view, and converting energy of incident photons into heat. The sensing structure part discharges heat absorbed therein by being elastically deformed and thus touching the absorbed heat discharge part spaced apart downward from the sensing structure part. According to an aspect of the present invention, the sensing structure part has a meander structure which is meandered while advancing and returning and showing a shape ‘⊂’ or a shape ‘⊃’ in turns at curved portions, as seen from above, near at least one end where the sensing structure part is supported, wherein the meander structure is based on a serpentine structure which is narrow in width and curved in form.07-22-2010
20100213373Infrared sensor structure and method - A radiation sensor (08-26-2010
20100213374On-chip calibration system and method for infrared sensor - A radiation sensor includes an integrated circuit radiation sensor chip (08-26-2010
20100243897High Voltage Supply to Increase Rise Time of Current Through Light Source in an Optical Sensor System - A high voltage supply circuit to drive a light source in an optical sensor system. The high voltage supply provides a high voltage output to the light source during the start of an on time for the light source to decrease current rise time through the light source. After the start of the light source on time, the high voltage output is disconnected from the circuit and a current source provides current output to the light source to drive the light source during the remainder of the light source on time.09-30-2010
20110057108Compact Optical Proximity Sensor with Ball Grid Array and Windowed Substrate - Various embodiments of a compact optical proximity sensor with a ball grid array and windowed or apertured substrate are disclosed. In one embodiment, the optical proximity sensor comprises a printed circuit board (“PCB”) substrate comprising an aperture and a lower surface having electrical contacts disposed thereon, an infrared light emitter and an infrared light detector mounted on an upper surface of the substrate, an integrated circuit located at least partially within the aperture, a molding compound being disposed between portions of the integrated circuit and substrate, an ambient light detector mounted on an upper surface of the integrated circuit, first and second molded infrared light pass components disposed over and covering the infrared light emitter and the infrared light detector, respectively, and a molded infrared light cut component disposed between and over portions of the first and second infrared light pass components.03-10-2011
20100219342ANTIBLOOMING IMAGING APPARATUS, SYSTEMS, AND METHODS - Apparatus, systems, and methods are described to assist in reducing dark current in an active pixel sensor. In various embodiments, a potential barrier arrangement is configured to block the flow of charge carriers generated outside a photosensitive region. In various embodiments, a potential well-potential barrier arrangement is formed to direct charge carriers away from the photosensitive region during an integration time.09-02-2010
20090114819INFRARED SENSOR UNIT AND PROCESS OF FABRICATING THE SAME - An infrared sensor unit has a thermal infrared sensor and an associated semiconductor device commonly developed on a semiconductor substrate. A dielectric top layer covers the substrate to conceal the semiconductor device formed in the top surface of the substrate. The thermal infrared sensor carried on a sensor mount which is supported above the semiconductor device by means of a thermal insulation support. The sensor mount and the support are made of a porous material which is superimposed on top of the dielectric top layer.05-07-2009
20100294935DETECTION BEYOND THE STANDARD RADIATION NOISE LIMIT USING REDUCED EMISSIVITY AND OPTICAL CAVITY COUPLING - The present invention provides thermal detectors having an optical cavity that is optimized to couple light into a sensor. Light that is on resonance is coupled with the sensor with as high as 100% efficiency, while light off resonance is substantially reflected away. Light that strikes the sensor from the sides (i.e. not on the optical cavity axis) only interacts minimally with sensor because of the reduced absorption characteristics of the sensor. Narrowband sensors in accordance with the present invention can gain as much as 100% of the signal from one direction and spectral band, while receiving only a fraction of the normal radiation noise, which originates from all spectral bands and directions.11-25-2010
20090218493WIDE SPECTRAL RANGE HYBRID IMAGE DETECTOR - An apparatus for detecting radiation of a plurality of wavelengths of the electromagnetic spectrum may be provided. The apparatus includes a substrate, a laser irradiated layer proximal to a first side of the substrate, and a microbolometer and at least one readout circuit proximal to a second side of the substrate in electrical communication with the laser irradiated layer. The substrate, laser irradiated layer, and the microbolometer are disposed and arranged such that radiation of a first wavelength is substantially detected by the laser irradiated layer, and radiation of a second wavelength is substantially detected by the microbolometer.09-03-2009
20100301216METHOD AND SYSTEM FOR DETECTING LIGHT - A light detecting system is disclosed. The system comprises an arrangement of quantum dots forming an optically active region, a channel region and a charge carrier extractor between the active region and the channel region. The charge carrier extractor is characterized by a set of gradually decreasing energy levels between a characteristic excited energy level of the active region and a characteristic conductance energy level of the channel region.12-02-2010
20110240859ALTERNATIVE PIXEL SHAPE FOR UNCOOLED MICRO-BOLOMETER - An infrared imaging system including a substrate, a plurality of hexagonal shaped micro-bolometer pixels combined to define a focal plane array. Each pixel is electrically connected to the substrate with a pair of opposing isolation legs. One end of the isolation leg is attached to the pixel's periphery while the other is fixed to that substrate so that the focal plane array and a plane containing the substrate have a parallel, spaced-apart relationship. In this manner, the isolation legs provides an electrical communication path from each pixel to the substrate as each pixel undergoes an internal change in resistance due to absorption of infrared energy. At the same time, the legs separate the pixels from the substrate so that there is no heat transfer between the pixel and the substrate due to direct contact. The hexagonal shape arrangement also allows for a staggered arrangement of adjacent rows in the array, thereby increasing the fill factor for the focal plane array of the device. The addition of stepped areas to the hexagonal pixel provides for improved energy absorption through increase in area and multiple coupling of resonant cavities between the pixel and the substrate.10-06-2011
20090140148BOLOMETER AND METHOD OF MANUFACTURING THE SAME - A bolometer having decreased noise and increased temperature sensitivity and a method of manufacturing the same are provided. The bolometer has a resistive layer formed of single crystalline silicon (Si) or silicon germanium (Si06-04-2009
20100133434Organic semiconductor infrared distance sensing apparatus and organic infrared emitting apparatus thereof - An organic semiconductor infrared distance sensing apparatus and an organic infrared emitting apparatus thereof are disclosed. The organic semiconductor infrared distance sensing apparatus comprises an organic infrared emitting apparatus and an organic infrared receiving apparatus. The organic infrared emitting apparatus has a positive electrode layer and a negative electrode layer to form an electric field, and organic light emitting molecules are sandwiched between the two layers and correspond to the positive electrode layer and the negative electrode layer. Under a positive bias, a plurality of electrons and holes are respectively injected from electrodes and recombine with each other to emit photons. An infrared organic conversion layer absorbs and transfers the energy to infrared emitting molecules to emit infrared light. The organic infrared receiving apparatus receives the infrared light reflected by an obstacle to generate photocurrent which varies with distance, thereby sensing the distance between the obstacle and the apparatus.06-03-2010
20110017910PRODUCTION METHOD FOR A SURFACE SENSOR, SYSTEM AND USE OF A SURFACE SENSOR - The invention relates to a surface sensor (01-27-2011
20110024628APPARATUS HAVING A SCREENED STRUCTURE FOR DETECTING THERMAL RADIATION - An apparatus for detecting radiation has a substrate, a protective housing fitting on the substrate, which has an electrically conductive material and a top facing away from the substrate, and that has an aperture therein. A stack is fitted on the substrate inside the protective housing and includes at least one detector substrate having at least one thermal detector element thereon that converts incoming thermal radiation into an electrical signal, at least one circuit carrier having at least one read circuit for reading out the electrical signal, and at least one cover that covers the detector element. The detector substrate is located between the circuit substrate and the cover. The detector substrate and the cover are arranged on each other such that the detector element of the detector substrate and the cover have at least one first stack cavity of the stack therebetween, the stack cavity being defined by the detector support and the cover. The circuit substrate and the detector substrate are arranged on each other such that the detector substrate and the circuit substrate have at least one second stack cavity therebetween, the second stack cavity being defined by the circuit substrate and the detector substrate. At least one of the first stack cavity and the second stack cavity is evacuated. The stack top that faces the substrate is accessible from outside of the protective housing.02-03-2011
20110024627Proximity Sensor with Ceramic Housing and Light Barrier - An optical proximity sensor is provided that comprises an infrared light emitter, an infrared light detector, a ceramic housing, a substrate, and a cover or shield. The ceramic housing is mounted on or attached to the substrate, and comprises first and second recesses separated by a light barrier. The cover is mounted over the ceramic housing, the light emitter and the light detector. The infrared light emitter is located within the first recess and mounted on the substrate. The infrared light detector is located within the second recess and mounted on the substrate. The light barrier between the first and second recesses, in conjunction with the remainder of the ceramic housing, the substrate, and the cover or shield substantially attenuates or blocks the transmission of undesired direct, scattered or reflected infrared light between the light emitter and the light detector, and thereby minimizes optical crosstalk and interference between the light emitter and the light detector.02-03-2011
20110031400METHOD FOR CREATING AND COHERENTLY DETECTING TERAHERTZ RADIATION - The present invention relates to a device for creating and coherently detecting terahertz radiation, comprising a laser light source (02-10-2011
20110127431PHOTOCONDUCTOR DEVICE HAVING POLYCRYSTALLINE GaAs THIN FILM AND METHOD OF MANUFACTURING THE SAME - A photoconductor device and a method of manufacturing the same are provided. The photoconductor device includes a photoconductor substrate, a photoconductor thin film deposited on the photoconductor substrate, and a photoconductive antenna electrode formed on the photoconductor thin film. The photoconductor thin film includes polycrystalline GaAs.06-02-2011
20090321641BIPOLAR JUNCTION TRANSISTOR-BASED UNCOOLED INFRARED SENSOR AND MANUFACTURING METHOD THEREOF - A BJT (bipolar junction transistor)-based uncooled IR sensor and a manufacturing method thereof are provided. The BJT-based uncooled IR sensor includes: a substrate; at least one BJT which is formed to be floated apart from the substrate; and a heat absorption layer which is formed on an upper surface of the at least one BJT, wherein the BJT changes an output value according heat absorbed through the heat absorption layer. Accordingly, it is possible to provide a BJT-based uncooled IR sensor capable of being implemented through a CMOS compatible process and obtaining more excellent temperature change detection characteristics.12-31-2009
20110240860DETECTION BEYOND THE STANDARD RADIATION NOISE LIMIT USING SPECTRALLY SELECTIVE ABSORPTION - High sensitivity thermal detectors that perform beyond the blackbody radiation noise limit are described. Thermal detectors, as described herein, use spectrally selective materials that absorb strongly in the wavelength region of the desired signal but only weakly or not at all in the primary thermal emission band. Exemplary devices that can be made in accordance with the present invention include microbolometers containing semiconductors that absorb in the MWIR and/or THz range but not the LWIR.10-06-2011
20100258727WAVEFORM INFORMATION ACQUISITION APPARATUS AND WAVEFORM INFORMATION ACQUISITION METHOD - Provided are an apparatus and a method which enable acquisition of a temporal waveform of a propagating terahertz wave by changing a propagation velocity of the terahertz wave. A waveform information acquisition apparatus includes a generation portion for generating a terahertz wave, a propagation portion for allowing the terahertz wave generated by the generation portion to propagate therethrough, a detection portion for detecting waveform information of the terahertz wave, a first delay portion for changing a propagation velocity of the terahertz wave, and a control portion for controlling the first delay portion to change the propagation velocity of the terahertz wave in the propagation portion, and acquires information regarding the temporal waveform of the terahertz wave detected by the detection portion.10-14-2010
20090218492Radiation sensor device and method - A radiation sensor device including an integrated circuit chip including a radiation sensor on a surface of the integrated chip, one or more electrical connections configured to connect between an active surface of the integrated circuit chip and a lead frame, a cap attached to said integrated circuit chip spaced from and covering said radiation sensor, the cap having a transparent portion defining a primary lens transparent to the radiation to be sensed, a secondary lens disposed in a recess proximate and spaced from said primary lens transparent to the radiation to be sensed, and an air gap between said primary lens and said secondary lens.09-03-2009
20100038542Wideband Semiconducting Light Detector - A detector incorporating a laser-doped element that is favorably absorbing to at least a portion of the electromagnetic spectrum, for example in the infra-red range, is used in a light detector article. Readout circuits permitting a detector to operate in a substantial range of the electromagnetic spectrum, including the visual and infra-red range, enable day and night imaging in some embodiments. Configurations for making the detectors are also disclosed.02-18-2010
20110073762LIGHT DETECTOR, LIGHT DETECTING APPARATUS, INFRARED DETECTOR AND INFRARED DETECTING APPARATUS - An infrared detector which converts entering infrared IR into light in a different wavelength band, and which detects the converted light in the different wavelength band includes: a convex-concave structure provided on a light acceptance surface of the infrared detector; and a metal film provided on an outer circumferential face of the light detector other than the light acceptance surface thereof, the metal film covering the outer circumferential face. In the infrared detector, light which enters the light detector after passing through the convex-concave structure and the converted light in the different wavelength band are confined inside the light detector: by causing the entering light to be reflected on the metal film; by causing light reflected on the metal film to be reflected on the convex-concave structure; and by causing the converted light in the different wavelength band to be reflected between the metal film and the convex-concave structure.03-31-2011
20110068271EMISSIVITY ENHANCED MID IR SOURCE - An infrared (IR) source apparatus that includes a desired infrared source element coupled to an insulating housing so to minimize overall source inefficiency at desired optical bandwidths is introduced. The insulation itself is machined or configured in a way so that the infrared source element is in contact with a designed cavity in the insulation so that the IR source image becomes the average of the insulation material and the infrared element. Such an arrangement of the present invention increases the emissivity of the IR source below about 1500 wave numbers, more often, below about 1100 wave numbers, and even more particularly, at about 1079 wave numbers. Accordingly, the combined emissivity of the infrared source and the insulation substantially enhances spectral emission and eliminates or reduces spectral artifacts from the formation of oxides on the infrared source surfaces.03-24-2011
20120119089Optical System, Method and Computer Program for Detecting the Presence of a Living Biological Organism - The system is comprised of at least one pair of light sources (05-17-2012
20110031401RADIATION DETECTOR HAVING A BANDGAP ENGINEERED ABSORBER - A radiation detector is provided that includes a photodiode having a radiation absorber with a graded multilayer structure. Each layer of the absorber is formed from a semiconductor material, such as HgCdTe. A first of the layers is formed to have a first predetermined wavelength cutoff. A second of the layers is disposed over the first layer and beneath the first surface of the absorber through which radiation is received. The second layer has a graded composition structure of the semiconductor material such that the wavelength cutoff of the second layer varies from a second predetermined wavelength cutoff to the first predetermined wavelength cutoff such that the second layer has a progressively smaller bandgap than the first bandgap of the first layer. The graded multilayer radiation absorber structure enables carriers to flow toward a conductor that is used for measuring the radiation being sensed by the radiation absorber.02-10-2011
20100294936ORGANIC PHOTODETECTOR FOR THE DETECTION OF INFRARED RADIATION, METHOD FOR THE PRODUCTION THEREOF, AND USE THEREOF - An organic photodetector detects infrared radiation, particularly radiation within the spectral region of over 1100 nm, the so-called imager region. Contrary to the currently known photodetectors, such as the Bolometer, II-VI semiconductor, and quantum well detectors, the photodetector contains semiconducting nano-particles for shifting the range of detection, requires no technical and cost-intensive effort in the production thereof, and may be constructed of flexible substrates by simple printing methods.11-25-2010
20080315101DIAMOND-LIKE CARBON INFRARED DETECTOR AND ASSOCIATED METHODS - Diamond-like carbon based energy conversion devices and methods of making and using the same are disclosed. Such devices may include a surface for detection of infrared photons. Such a surface may include at least one metal cone and a diamond-like carbon layer disposed on the at least one metal cone. The at least one diamond-like carbon-coated metal cone is thus configured to receive infrared photons and generate electrons therefrom. In another aspect, the at least one metal cone may be an array of electronically coupled metal cones.12-25-2008
20100301217MINIATURE PHASE-CORRECTED ANTENNAS FOR HIGH RESOLUTION FOCAL PLANE THz IMAGING ARRAYS - An array of backward diodes of a cathode layer adjacent to a first side of a non-uniform doping profile and an Antimonide-based tunnel barrier layer adjacent to a second side of the spacer layer have a monolithically integrated antenna bonded to each backward diode. The Antimonide-based tunnel barrier may be doped with, for example, a non-uniform delta doping profile. An imaging/detection device includes a 2D focal plane array of an array of backward diodes, wherein each backward diode is monolithically bonded to an antenna, which array is located at the back of an extended hemispherical lens, and wherein certain of the arrays are tilted for correcting optics aberrations. The antennas may be a bow-tie antenna, a planar log-periodic antenna, a double-slot with microstrip feed antenna, a spiral antenna, a helical antenna, a ring antenna, a dielectric rod antenna, or a double slot antenna with co-planar waveguide feed antenna.12-02-2010
20100148068APPARATUS FOR AUTHENTICATING A PERSON OF AT LEAST ONE BIOMETRIC PARAMETER - The apparatus for authenticating a person on the basis of at least one biometric parameter, particularly on the basis of a fingerprint, comprises a biometric detector (06-17-2010
20110163233Optical Proximity Sensor with Improved Dynamic Range and Sensitivity - Various embodiments of an optical proximity sensor and corresponding circuits and methods for measuring small AC signal currents arising from the detection of pulsed AC light signals emitted by a light emitter and reflected from an object to detected in the presence of larger ambient light DC current signals are disclosed. Circuits and corresponding methods are described that improve the dynamic range, sensitivity and detection range of an optical proximity sensor by cancelling the contributions of DC current signals arising from ambient light signals that otherwise would dominate the detected small AC signal currents. The DC signal cancellation occurs in a differential amplifier circuit before small AC signal currents are provided to an analog-to-digital converter The circuits and methods may be implemented using conventional CMOS design and manufacturing techniques and processes.07-07-2011
20100320387QUANTUM UNCOOLED INFRA-RED PHOTO-DETECTOR - A photo-detector comprising: a p-doped semiconductor layer; an n-doped semiconductor layer juxtaposed with the p-doped semiconductor layer; one of an intrinsic amorphous silicon layer sandwiched between the p-doped semiconductor layer and the n-doped semiconductor layer and a depletion region formed between the p-doped semiconductor layer juxtaposed with the n-doped semiconductor layer; a plurality of mesoscopic sized particles within the one of the intrinsic amorphous silicon layer sandwiched between the p-doped semiconductor layer and the n-doped semiconductor layer and the depletion region formed between the p-doped semiconductor layer juxtaposed with the n-doped semiconductor layer. A source of pumping light is provided and arranged to be received at the mesoscopic sized particles thereby generating free carriers confined in the mesoscopic sized particles. Received light of a target waveband releases the carriers from confinement which is detected as a flow of current.12-23-2010
20100320386Adhesive Sensor for Hot Melt and Liquid Adhesives - Apparatus and methods for detecting adhesives. The apparatus includes an adhesive sensor having a photodiode sensitive to infrared radiation at different wavelengths. The adhesive sensor may sense infrared radiation thermally emitted from a sufficiently hot adhesive. Alternatively, the adhesive sensor may sense infrared radiation from first and second near infrared diodes that emit at different wavelengths that are reflected with different intensities from an adhesive that is at a temperature insufficient to emit infrared radiation at an intensity to be readily detectable. A visible light source may be provided for targeting and focusing the adhesive sensor.12-23-2010
20110068272DEVICE AND METHOD FOR DETECTING INFRARED RADIATION THROUGH A RESISTIVE BOLOMETER MATRIX - An infrared radiation detection device comprising: a substrate; a matrix of at least one line of elements for detecting said radiation, each comprising a resistive imaging bolometer, said matrix being formed above the substrate; means for reading the bolometers of the matrix, means for measuring the temperature in at least one point of the substrate; and means for correcting the signal formed from each bolometer as a function of the temperature measured in at least one point of the substrate. The correcting means are capable of correcting the signal formed from the imaging bolometer by means of a predetermined physical model of the temperature behaviour of said signal.03-24-2011
20100282968Device and method for terahertz imaging with combining terahertz technology and amplitude-division interference technology - This invention provides a device and a method for THz imaging to obtain real 3D image of sample and achieve high resolution, by combining THz technology and amplitude-division interference technology.11-11-2010
20100230595INFRARED SENSOR - To improve thermal insulation, a thermal infrared sensing element is carried on a sensor mount of a porous material and is spaced upwardly from a substrate by means of anchor studs projecting on the substrate. The sensor mount is formed with a pair of coplanar beams carry thereon leads extending from the sensing element. The leads and the beams are secured to the upper ends of the anchor studs to hold the sensing element at a predetermined height above the substrate. The beams and the leads are combined with each other by intermolecular adhesion such that the sensing element as well as the sensor mount can be altogether supported to the anchor studs.09-16-2010
20110168895FOOD QUALITY EXAMINATION DEVICE, FOOD COMPONENT EXAMINATION DEVICE, FOREIGN MATTER COMPONENT EXAMINATION DEVICE, TASTE EXAMINATION DEVICE, AND CHANGED STATE EXAMINATION DEVICE - There is provided, for example, a food quality examination device configured to inspect the quality of food with high sensitivity using an InP-based photodiode in which a dark current is decreased without a cooling mechanism and the sensitivity is extended to a wavelength of 1.8 μm or more. An absorption layer has a multiquantum well structure composed of a III-V group semiconductor. A pn junction is formed by selectively diffusing an impurity element into the absorption layer. The concentration of the impurity in the absorption layer is 5×1007-14-2011
20110168894NANOWIRE BOLOMETER PHOTODETECTOR - A photodetector for the detection of radiated electromagnetic energy includes at least one bolometer nanowire disposed at least partially within a photon trap. The at least one nanowire has at least one blackened surface. The blackened surface is configured to absorb radiated electromagnetic energy ranging from far-infrared light to visible light.07-14-2011
20110133087SCANNING METHOD AND APPARATUS - In a terahertz imaging system, a scanning component for scanning a field of view is tracked by an optical beam to obtain positional information. The optical tracking beam can be steered by the scanning component for example by reflection, refraction or diffraction. The steered tracking beam can then be detected by a spatially sensitive detector such as a charge-coupled device array. In a preferred embodiment, the output of a terahertz detector receiving terahertz radiation from the scanned field of view is used to modulate the tracking beam. This means that the spatially sensitive detector can provide an image directly derived from the scanning of the field of view by the terahertz radiation.06-09-2011
20100116988SEMICONDUCTOR FOR SENSING INFRARED RADIATION AND METHOD THEREOF - A semiconductor device for sensing infrared radiation is provided. In an embodiment, the semiconductor device includes a sensor configuration which includes a light receiving portion for converting incident photons into heat and a sensing portion integrated with the light receiving portion and having a resistance varying according to the converted heat; and a sensing circuit which includes a common mode current providing portion and a current subtraction portion, wherein the common mode current providing portion outputs a common mode current related to a value of a current which is flowing in the sensing portion when there is no incident light and the current subtraction portion outputs subtraction currents for the common mode current and a sensing current related to a current output from the sensing portion. In another embodiment, the sensing configuration includes a heat removing portion which is disposed to form an empty space between the heat removing portion and the light receiving portion and the sensing portion, and removes accumulated heat from the light receiving portion and the sensing portion, and the sensing circuit includes an actuating voltage supplying portion which applies electric potential between the sensing portion and the heat removing portion to make the light receiving portion and the sensing portion elastically deflect into the empty space and consequently contact the heat removing portion to remove the heat.05-13-2010
20120145906Portable system for detecting explosives and a method of use thereof - A portable device for detecting explosives and other target materials using SWIR spectroscopic imaging, including hyperspectral imaging. The device may comprise a lens, a tunable filter, and a detector. The device may use solar radiation, or may comprise an illumination source such as a laser, to illuminate at target material and thereby produce interacted photons. The device may utilize multi-conjugate liquid crystal filter technology to filter interacted photons. The disclosure also provides for a method for using the portable device comprising illuminating a target material to produce interacted photons. The interacted photons are used to form a SWIR spectroscopic image, which may be a hyperspectral image. This image is analyzed to thereby identify the target material. This analysis may comprise comparing at least one spectrum or image representative of the target material to a reference spectrum or image. This comparison may be accomplished using a chemometric technique.06-14-2012
20110095188BACKSIDE ILLUMINATED IMAGING SENSOR WITH IMPROVED INFRARED SENSITIVITY - A backside illuminated imaging sensor includes a semiconductor layer and an infrared detecting layer. The semiconductor layer has a front surface and a back surface. An imaging pixel includes a photodiode region formed within the semiconductor layer. The infrared detecting layer is disposed above the front surface of the semiconductor layer to receive infrared light that propagates through the imaging sensor from the back surface of the semiconductor layer.04-28-2011
20110186737METHOD AND DEVICE FOR CONTROLLING THE RESISTANCE OF THE SENSITIVE MEMBER OF A BOLOMETRIC SENSOR - The invention relates to a method for controlling the resistance of a bolometer in a bolometer matrix of a sensor, said sensor comprising a circuit for reading said matrix which is capable of addressing said bolometer.08-04-2011
20110186736Optical Proximity Sensor Package with Lead Frame - Various embodiments of an optical proximity sensor having a lead frame and no overlying metal shield are disclosed. In one embodiment, a light emitter and a light detector are mounted on a lead frame comprising a plurality of discrete electrically conductive elements having upper and lower surfaces, at least some of the elements not being electrically connected to one another. An integrated circuit is die-attached to an underside of the lead frame. An optically-transmissive infrared pass compound is molded over the light detector and the light emitter and portions of the lead frame. Next, an optically non-transmissive infrared cut compound is molded over the optically-transmissive infrared pass compound to provide an optical proximity sensor having no metal shield but exhibiting very low crosstalk characteristics.08-04-2011
20100025584IMAGE SENSOR AND MANUFACTURING METHOD THEREOF - An image sensor includes a semiconductor substrate; first pixels laid out above cavities provided within the semiconductor substrate, the first pixels converting thermal energy generated by incident light into an electric signal; supporting parts connected between the first pixels and the semiconductor substrate, the supporting parts supporting the first pixels above the cavities; and second pixels fixedly provided on the semiconductor substrate without via the cavities, wherein a plurality of the first pixels and a plurality of the second pixels are laid out two-dimensionally to form a pixel region, and each of the second pixels is adjacent to the first pixels.02-04-2010
20110215245OPTICAL ELEMENT, AND OPTICAL DEVICE AND TERAHERTZ TIME-DOMAIN SPECTROSCOPIC APPARATUS INCLUDING THE SAME - An optical element includes a semiconductor layer having an energy band gap larger than a photon energy of light, and a plurality of electrodes in electrical contact with the semiconductor layer. At least one of the electrodes forms a Schottky junction between the electrode and the semiconductor layer; the Schottky junction has a barrier height smaller than the photon energy of the light. At least part of a junction surface between the electrode that forms the Schottky junction and the semiconductor layer includes a light irradiation surface arranged to be irradiated with the light from a surface of the semiconductor layer without the electrodes, and a portion of a coupling structure arranged to be coupled to a terahertz wave that is generated or detected through the irradiation with the light.09-08-2011
20090127462nBn AND pBp INFRARED DETECTORS WITH GRADED BARRIER LAYER, GRADED ABSORPTION LAYER, OR CHIRPED STRAINED LAYER SUPER LATTICE ABSORPTION LAYER - An nBn detector is described where for some embodiments the barrier layer has a concentration gradient, for some embodiments the absorption layer has a concentration gradient, and for some embodiments the absorption layer is a chirped strained layer super lattice. The use of a graded barrier or absorption layer, or the use of a chirped strained layer super lattice for the absorption layer, allows for design of the energy bands so that the valence band may be aligned across the device. Other embodiments are described and claimed.05-21-2009
20110108728AMBIT LIGHT SENSOR WITH FUNCTION OF IR SENSING - An ambit light sensor with a function of IR sensing and a method of fabricating the same are provided. The ambit light sensor includes a substrate, an ambit light sensing structure, an infrared ray (IR) sensing structure, and a dielectric layer. The ambit light sensing structure is located over the substrate for sensing and filtering visible light. The IR sensing structure is located in the substrate under the ambit light sensing structure for sensing IR. The dielectric layer is located between the ambit light sensing structure and the IR sensing structure.05-12-2011
20090173883MULTI-BAND FOCAL PLANE ARRAY - A multi-band focal plane array architecture operative to detect multiple spectral image. The multi-band focal plane array architecture has an integrated readout circuit, a plurality of first detectors integrated in the readout circuit and a plurality of second detectors deposited on the readout circuit. Preferably, the first detectors are operative to detect visible signals and the second detectors are operative to detect infrared signals. The first and second detectors are arranged in a checkerboard pattern, in alternate rows or columns, or at least partially overlapped with each other to realize simultaneous detection in two different wavelength bands. The architecture may also have an additional integrated readout circuit flip-chip bonded to the integrated readout circuit. By forming a plurality of third detectors on the additional integrated readout circuit, a tri-band focal plane array may be realized. In one embodiment, a dual-band focal plane array architecture by forming two arrays of detectors on two individual integrated readout circuit and flip-chip bonding these two readout circuits.07-09-2009
20110133088METHOD AND SYSTEM FOR DETECTING LIGHT AND DESIGNING A LIGHT DETECTOR - A light detection system which comprises an active region between a back contact layer and a front contact layer is disclosed. The active region comprises a quantum well structure having a quantum well between quantum barriers, wherein the quantum well comprises foreign atoms that induce an excited bound state at an energy level which is above an energy level characterizing the quantum barriers.06-09-2011
20120305772DEVICE FOR ANALYZING A SAMPLE USING RADIATION IN THE TERAHERTZ FREQUENCY RANGE - A device for analyzing a sample using radiation in the terahertz frequency range is provided. The device comprises a transmitter (12-06-2012
20110315879IR DETECTOR SYSTEM AND METHOD - An Infra Red detector system and method are disclosed for a SAR ADC capable of operation at low power and for use on a Focal Plane Array FPA) detector. High power consumption makes known converter approaches unattractive for use on Focal Plane Array (FPA) detectors that are to be cooled to cryogenic temperatures. Many such ADCs are used on a FPA detector (e.g., up to one ADC per column of the imaging array) to digitise image data for the whole array at standard frame rates. Increased power makes cooling difficult to achieve or unattractive at system level. An exemplary system as disclosed can use an adaptive approach to set the comparator gain and settling time depending on the dynamics of the input signal, thereby achieving specified performance whilst reducing overall power.12-29-2011
20120205541PLASMONIC DETECTORS - A plasmonic detector is described which can resonantly enhance the performance of infrared detectors. More specifically, the disclosure is directed to enhancing the quantum efficiency of semiconductor infrared detectors by increasing coupling to the incident radiation field as a result of resonant coupling to surface plasma waves supported by the metal/semiconductor interface, without impacting the dark current of the device, resulting in an improved detectivity over the surface plasma wave spectral bandwidth.08-16-2012
20110155914INFRARED SENSOR AND INFRARED SENSOR MODULE - The present invention provides an infrared sensor and an infrared sensor module having reduced noise, improved detection precision, and reduced manufacture cost. The infrared sensor includes a first substrate transmitting infrared light including at least one reduced-pressure and sealed cavity, at least one infrared sensing unit provided on the side of the first substrate, and at least one infrared sensing unit generating an output change. The infrared sensor includes a second substrate stacked on the first substrate with a recess, a reflection face capable of reflecting the infrared light, and at least one arithmetic circuit for amplifying or integrating an output, arranged in such a manner that the reflection face is sandwiched between the at least one sensing unit and the least one arithmetic circuit.06-30-2011
20100001188Method of construction of CTE matching structure with wafer processing and resulting structure - A method includes bonding a first side of a metal shim to a silicon shim, removing metal from the metal shim to form a plurality of cleared metal lanes in accordance with a pattern, bonding a readout integrated circuit having a plurality of saw lanes in accordance with the pattern to a second side of the metal shim to form a wafer assembly wherein the plurality of saw lanes is aligned with the plurality of cleared metal lanes, and dicing the wafer assembly.01-07-2010
20120061571LASER NAVIGATION MODULE - Disclosed herein is a laser navigation module. The laser navigation module includes a light source emitting laser light. An IR window allows the laser light emitted by the light source to pass therethrough and be reflected thereon, and prevents the entry of visible light. A housing is equipped with the IR window and includes a transparent or semi-transparent part. An illuminator is provided in the housing to emit light to the outside of the housing. The laser navigation module further includes an opaque part or a blocking layer for selective blocking, thus enabling light to be emitted to a desired area of the housing, therefore making it convenient to use even in a dark place.03-15-2012
20120061572SEMICONDUCTOR FOR SENSING INFRARED RADIATION AND METHOD THEREOF - The bolometric sensing circuit includes a pixel array comprising pixels, each pixel comprising a sensor configuration to comprise a light receiving portion to convert incident photons into heat and a sensing portion integrated with the light receiving portion and having a resistance varying according to the converted heat; an output portion to output a common mode voltage that represents a voltage of the sensing portion from which accumulated heat has been removed in response to a heat removing voltage to thermally reset the sensing portion, and output a sensed voltage that represents a voltage of the sensing portion which has accumulated heat for an integration period after being thermally reset; and a processor to subtract the common mode voltage from the sensed voltage to produce a signal voltage that represents a change in resistance of the sensing portion due to the heat accumulated for the integration period.03-15-2012
20120061570INFRARED LIGHT TRANSMISSIVITY FOR A MEMBRANE SENSOR - In conventional membrane infrared (IR) sensors, little to no attention has been paid toward transmissivity of IR near metal traces. Here, because the substrate of an integrated circuit carrying the sensor is used as a visible light filter, reflection of IR radiation back into the substrate can affect the operation and reliability of the IR sensor. As a result, an arrangement is provided that reduces the area occupied by metal lines by reducing the pitch and compacting the routing so as to reduce the effects from the reflection of IR radiation by metal traces.03-15-2012
20110049367ORGANIC THIN FILMS FOR INFRARED DETECTION - The present invention provides methods and organic photosensitive materials and devices for detection of infrared radiation.03-03-2011
20110049366RESISTIVE MATERIAL FOR BOLOMETER, BOLOMETER FOR INFRARED DETECTOR USING THE MATERIAL, AND METHOD OF MANUFACTURING THE BOLOMETER - A resistive material for a bolometer, a bolometer for an infrared detector using the material, and a method of manufacturing the bolometer are provided. In the resistive material, at least one element selected from the group consisting of nitrogen (N), oxygen (O) and germanium (Ge) is included in antimony (Sb). The resistive material has superior properties such as high temperature coefficient of resistance (TCR), low resistivity, a low noise constant, and is easily formed in a thin film structure by sputtering typically used in a complementary metal-oxide semiconductor (CMOS) process, so that it can be used as a resistor for the bolometer for an uncooled infrared detector, and thus provide the infrared detector with superior temperature precision.03-03-2011
20120153154Optical Module for Simultaneously Focusing on Two Fields of View - The invention relates to an optical module, comprising a semiconductor element having a surface that is sensitive to electromagnetic radiation and an objective for projecting electromagnetic radiation onto the sensitive surface of the semiconductor element (image sensor or camera chip, in particular CCD or CMOS). The objective preferably comprises at least one lens and one lens retainer.06-21-2012
20100276594Photoconductive device - A photoconductive device (11-04-2010
20100288927Enhanced Direct Injection Circuit - A charge injection circuit is used to control injection of an electronic charge to be added to a photon-induced charge generated by a detector of a direct integration circuit. The electronic charge can be injected directly to the detector or through a parallel path to the detector. Injection of the electronic charge is controlled through one or more switching transistors11-18-2010
20120126122HIGH REPETITION RATE PHOTOCONDUCTIVE TERAHERTZ EMITTER USING A RADIO FREQUENCY BIAS - A terahertz generation system that emits pulsed THz radiation and incorporates a rapidly oscillating, high voltage bias across electrodes insulated from a photoconductive material. The system includes an ultrafast optical pulse source configured to generate an optical pulse having a duration between about ten picoseconds and ten femtoseconds, the pulse further having a repetition rate of about one megahertz or higher. The system further includes a photoconductor configured to receive the optical pulse from the ultrafast optical pulse source and to generate a terahertz frequency pulse, the photoconductor having insulated electrodes. The system still further includes a radio frequency generator configured to apply an electric field to the photoconductor via the insulated electrodes.05-24-2012
20120126121Processing Detector Array Signals Using Stacked Readout Integrated Circuits - According to certain embodiments, an apparatus comprises a first readout integrated circuit (ROIC), a second ROIC, and a dual band detector array. The first ROIC comprises first unit cells. The second ROIC is disposed outwardly from the first ROIC and comprises a second unit cells. Electrically conductive vias are disposed through the second ROIC and at least into the first ROIC. The detector array is disposed outwardly from the second ROIC. The detector array is configured to detect high dynamic range infrared light and comprises detector pixels. Each detector pixel is configured to generate a current in response to detecting light and send the current to a via. A via is configured to send the signal to a second unit cell and a first unit cell.05-24-2012
20100207028Laser-Pulse Matrix Detector with Rapid Summation - The invention relates to a light pulse sensor (08-19-2010
20110180712METHOD FOR MANUFACTURING MEMS DEVICE, METHOD FOR MANUFACTURING THERMAL DETECTOR, THERMAL DETECTOR, THERMAL DETECTION DEVICE, AND ELECTRONIC INSTRUMENT - A method for manufacturing a MEMS device having an undercut shape formed on a fixed part includes a first step of forming an etching layer having a first cavity on the fixed part; a second step of forming a mask layer on a side wall of the etching layer, the side wall facing the first cavity; and a third step of directing an etchant fed into the first cavity on a surface side of the mask layer to a back surface side of the mask layer, isotropically etching the etching layer, forming a second cavity communicated with the first cavity on the back surface side of the mask layer, and processing the etching layer into an undercut shape.07-28-2011
20110180711THERMAL DETECTOR, THERMAL DETECTION DEVICE AND ELECTRONIC INSTRUMENT, AND METHOD FOR MANUFACTURING THERMAL DETECTOR - A thermal detector includes a substrate, a thermal detection element and a support member. The substrate has a concave portion, a bottom surface of the concave portion forming a light-reflecting curved surface. The thermal detection element includes a light-absorbing film. The support member supports the thermal detection element with a cavity being provided between the substrate and the support member. The light-reflecting curved surface and the light-absorbing film overlap each other in plan view, the light-reflecting curved surface having a projected area in plan view larger than an area of the light-absorbing film.07-28-2011
20110180710SERIES DIODE ELECTRO-THERMAL CIRCUIT FOR ULTRA SENSITIVE SILICON SENSOR - Electro-thermal feedback is utilized for reducing the effective thermal conductance between the detector stage of a bolometer pixel in a thermal radiation sensor assembly and the environment through its mechanical support structure and electrical interconnects, thereby coming closer to achieving thermal conductance limited primarily through photon radiation. Minimization of the effective thermal conductance associated with the mechanical support structure and electrical interconnects is achieved by electro-thermal feedback that adjusts the temperature of an intermediate stage and the mechanical support structure and electrical interconnects, connecting it to the detector stage, to equal the temperature of the bolometer pixel's detector stage (i.e., by active thermal isolation). Increased temperature sensitivity is preferably achieved through temperature sensing with reverse biased Schottky diodes connected in series.07-28-2011
20090250612POST-SUPPORTED MICROBOLOMETER PIXEL - A post-supported bolometer pixel and a process for manufacturing it comprising the steps of depositing a sacrificial layer over a substrate with readout integrated circuit pads that connect to the integrated circuit; forming vias through the sacrificial layer to the metal pads connecting to the readout integrated circuit; filling the vias with metal and polishing said metal to the surface of the sacrificial layer; forming microbolometer pixel layers over the filled vias and sacrificial layer; and removing the sacrificial layer to leave a post-supported pixel.10-08-2009
20120074323THZ FREQUENCY RANGE ANTENNA - A THz frequency range antenna is provided which comprises: a semiconductor film (03-29-2012
20120074322Double Layer Photodiodes in Ambient Light Sensors and Proximity Detectors - Embodiments of the present invention provide systems, devices and methods for detecting both ambient light and proximity to an object. This detection is performed by a double-layered photodiode array and corresponding circuitry such that ambient light and proximity detection are enabled by a plurality of integrated photodiodes. In various embodiments of the invention, ambient light is sensed using a first set of photodiodes and a second set of photodiodes such that a spectral response is created that is approximately equal to the visible light spectrum. Proximity detection is realized using an integrated photodiode, positioned below the first and second sets of photodiodes, that detects infrared light and generates a response thereto.03-29-2012
20090078872Doped Carbon Nanostructure Field Emitter Arrays for Infrared Imaging - An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are absorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.03-26-2009
20120312990METHOD AND DEVICE FOR OPTOELECTRONIC SENSORS WITH IR BLOCKING FILTER - Semiconductor structures for optoelectronic sensors with an infrared (IR) blocking filter and methods for using such sensors with post-detection compensation for IR content that passes through the IR blocking filter are provided herein.12-13-2012
20120312989SHIELDING OF AN IR DETECTOR - In an electrical device controlled by infrared signals from a remote control, a power saving device has an infrared detection module and a processor. The infrared detection module includes an infrared sensor configured to monitor the output of the remote control device, and a shield which is at least substantially impervious to infrared radiation, and which at least partially shields the infrared sensor from infrared radiation which does not emanate from the remote control device. The processor is coupled to the infrared detection module, and supplies power to the electrical device at least substantially only when the electrical device is in active use by a nearby user, and based at least in part upon input from the infrared sensor.12-13-2012
20120261577Light Mixer for Generating Terahertz Radiation - The invention relates to a light mixer for generating terahertz radiation, comprising a photodetector (PHD) coupled to an antenna (AT) for terahertz radiation, characterized in that the photodetector comprises a layer of photoconductive material capable of absorbing optical radiation, said layer having a thickness that is less than the absorption length of said radiation by the photoconductive material and being contained between an at least partially transparent so-called upper electrode and a reflective so-called lower electrode, said lower and upper electrodes comprising a resonant cavity for said optical radiation. The invention further relates to a terahertz radiation source comprising such a light mixer and to two laser radiation sources arranged to stack two laser radiation beams on the upper electrode of the photodetector. The invention also relates to the use of such a light mixer for generating terahertz radiation via light mixing.10-18-2012
20120228505OPTICAL SENSOR - An optical sensor includes a visible light sensor includes a visible light sensing transistor and an infrared light sensor includes an infrared light sensing transistor, wherein the visible light sensing transistor receives a first driving voltage through a first driving voltage line, the infrared light sensing transistor receives a second driving voltage through a second driving voltage line, and the visible light sensing transistor and the infrared light sensing transistor receive a reference voltage through a reference voltage line.09-13-2012
20110036984TUNABLE BROADBAND ANTI-RELFECTION APPARATUS - A broadband anti-reflection apparatus for use with terahertz radiation includes a layer having an outer surface comprising a plurality of pyramid structures having about a 30 μm to about a 110 μm period, and wherein reflectance of the terahertz radiation is reduced compared to a layer comprising a planar outer surface. Also disclosed is a method for modifying terahertz radiation which includes receiving terahertz radiation on a device having an anti-reflection layer having an outer surface comprising a plurality of pyramid structures having about a 30 μm to a 110 μm period, and modifying the terahertz radiation passing through the device or processing the terahertz radiation in the device.02-17-2011
20110215246PHOTOCONDUCTIVE ELEMENT - A photoconductive element for performing at least one of generation and detection of terahertz radiation includes a photoconductive layer formed of a semiconductor material and configured to generate photoexcited carriers by being irradiated with excitation light, and a plurality of electrodes provided on the photoconductive layer. The material of the photoconductive layer is a material that makes a depletion layer produced in the photoconductive layer have a thickness smaller than an optical absorption length of the photoconductive layer for a wavelength of the excitation light. A film thickness of the photoconductive layer is adjusted so that the depletion layer is formed over an entirety in a direction of the film thickness within at least a portion of the photoconductive layer between the plurality of electrodes.09-08-2011
20100252737SPECTROMETER FOR FLUID ANALYSIS - A spectrometer includes: a lighting device (LSRC) configured to generate a light beam covering a wavelength band, a probe configured so that the light beam coming from the lighting device interacts with a fluid to be analyzed, and a spectrum analyzing device configured to receive the light beam after it has interacted with the fluid to be analyzed, and to provide light intensity measurements for various ranges of wavelengths. The lighting device includes several light-emitting components (10-07-2010
20110266444Pixel structure for microbolometer detector - Microbolometer pixel structures including membrane material in a current path between at least two spaced electrodes, the membrane material having multiple openings defined in the current path that are configured such that substantially the entire volume of electrically conductive membrane material in at least a portion of the current path contributes to conduction of current between the electrical contacts.11-03-2011
20100230596PHOTOCONDUCTIVE ANTENNA ELEMENT - This invention relates to a photoconductive antenna element having a structure capable of preventing element characteristics from deteriorating and attain a smaller size at the same time. This photoconductive antenna element (09-16-2010
20120280129DUAL FUNCTION INJECTION TYPE ARRAY READOUT DEVICE AND CIRCUIT AND DUAL FUNCTION READOUT MODULE - A dual function injection type array readout device includes at least two sensor groups and a dual function injection type array readout circuit. Each sensor group has two sensors of different functions, and each sensor generates a sense current according to a corresponding sensed target. The dual function injection type array readout circuit includes at least two dual function readout modules, each having two readout units, each electrically coupled to a respective sensor of a corresponding sensor group. Each readout unit includes a current-to-voltage converter having an integration capacitor, and a sample-and-hold device electrically coupled to the current-to-voltage converter. A switch unit is electrically coupled to the integration capacitors of the readout units.11-08-2012
20120326039TERAHERTZ FREQUENCY DOMAIN SPECTROMETER WITH PHASE MODULATION OF SOURCE LASER BEAM - An apparatus for analyzing, identifying or imaging an target including first and second laser beams coupled to a pair of photoconductive switches to produce CW signals in one or more bands in a range of frequencies greater than 100 GHz focused on, and transmitted through or reflected from the target; and a detector for acquiring spectral information from signals received from the target and using a multi-spectral heterodyne process to generate an electrical signal representative of some characteristics of the target. The lasers are tuned to different frequencies and a phase modulator in the path of one laser beam allows the constructive or destructive interference of the signals on the detector as the laser beams are swept in frequency to be adjusted to achieve greater resolution in one or more selected frequency bands.12-27-2012
20120091343DEVICE FOR DETECTING ELECTROMAGNETIC RADIATION WITH POLARIZED BOLOMETRIC DETECTOR, AND APPLICATION FOR INFRARED DETECTION - A device for detecting electromagnetic radiation, including pixels each detecting a radiation and providing an electric current representative of the detected radiation, a column to which the pixels are connected, and transmitting the electric currents provided by the pixels, and an electrical module, to which the transmission column is connected, processing the electric currents provided by the pixels. Each pixel includes a detection circuit including a bolometric detector connected in series to a voltage polarization device of the bolometric detector for adjusting the electric current supplied to the processing module by the transmission column. A current polarization circuit of the bolometric detector adjusts the electric current supplied to the electrical processing module by the transmission column, the current polarization circuit being different from the detection circuit and being connected to the bolometric detector at one point in the detection circuit located between the bolometric detector and the voltage polarization device.04-19-2012
20120091342MONOLITHIC PASSIVE THz DETECTOR WITH ENERGY CONCENTRATION ON SUB-PIXEL SUSPENDED MEMS THREMAL SENSOR - A THz radiation detector comprising a plurality of antenna arms separated from a suspended platform by an isolating thermal air gap. The detector functions to concentrate THz radiation energy into the smaller suspended MEMS platform (e.g., membrane) upon which a thermal sensor element is located. The THz photon energy is converted into electrical energy by means of a pixilated antenna using capacitive coupling in order to couple this focused energy across the thermally isolated air gap and onto the suspended membrane on which the thermal sensor is located.04-19-2012
20130009061PROCESSING METHOD AND APPARATUS FOR ENERGY SAVING OF AN ACTIVE INFRARED INDUCTION INSTRUMENT POWERED BY A DRY BATTERY - An active infrared induction instrument powered by a dry battery capable of reducing power consumption through the adjustment of the emitter pulse width. The infrared emitted LED emits infrared signals, which, after being reflected by an object, are received by the infrared photodiode. The infrared signals received the infrared signals received by the infrared photodiode then enter an integrated circuit chip through a comparator. The pulse widths of the infrared emission pulse signals are dynamically adjusted after the width of the pulse series is received by the discrimination chip, thus reducing the emission power consumption to save energy.01-10-2013
20100090112SINGLE TERAHERTZ WAVE TIME-WAVEFORM MEASURING DEVICE - A single terahertz wave time-waveform measuring device 04-15-2010
20080224046Method of Treating Non-Refrigerated, Spectrally-Selective Lead Selenide Infrared Detectors - The invention relates to a method of processing non-refrigerated lead selenide infrared detectors, consisting in: 1) selecting the substrate and preparing same; 2) delineating and depositing multilayer interference filters; and 3) treating polycrystalline lead selenide infrared detectors on the interference filters, comprising the following steps, namely 3a) metal deposition, 3b) delineation of the metal deposit, 3c) delineation of the sensor, 3d) PbSe deposition by means of thermal evaporation, 3f) processing of sensor, 3g) thermal treatment in order to sensitise the active material, and 3h) deposition of a passivator layer on the active material. The inventive method is unique in that it can be used to treat differently-shaped non-refrigerated infrared detectors on the same substrate, including discrete elements, multielements, linear matrices, two-dimensional matrices, etc., with the responses of each being modified by design by the corresponding interference filter. The invention is suitable for low-cost infrared detectors that are used for process control, gas analyses, temperature measurements, military applications, etc.09-18-2008
20080224045ULTRA-SENSITIVE SILICON SENSOR, LONG-WAVE INFRARED MICROANTENNA - Hybrid microantennas and improved sensor structures incorporating hybrid microantenna embodiments are described herein. A hybrid long-wave infrared (LWIR) microantenna includes four inner pie-shaped arms in which the four inner pie-shaped arms are in a double bow-tie configuration and a plurality of outer pie-shaped arms in which a subset of the outer pie-shaped arms is connected to the four inner pie-shaped arms and the pie-shaped arms are sensitive to electric fields and absorb radiation.09-18-2008
20080217538Optical Semiconductor Device - The present invention provides an optical semiconductor device including a semiconductor thin film (09-11-2008
20110266443Pixel-level optical elements for uncooled infrared detector devices - Pixel-level monolithic optical element configurations for uncooled infrared detectors and focal plane arrays in which a monolithically integrated or fabricated optical element may be suspended over a microbolometer pixel membrane structure of an uncooled infrared detector element A monolithic optical element may be, for example, a polarizing or spectral filter element, an optically active filter element, or a microlens element that is structurally attached by an insulating interconnect to the existing metal interconnects such that the installation of the optical element substantially does not impact the thermal mass or thermal time constant of the microbolometer pixel structure, and such that it requires little if any additional device real estate area beyond the area originally consumed by the microbolometer pixel structure interconnects.11-03-2011
20110266445Optically transitioning thermal detector structures - A thermal absorption structure of a radiation thermal detector element may include an optically transitioning material configured such that optical conductivity of the thermal absorption structure is temperature sensitive and such that the detector element absorbs radiation less efficiently as its temperature increases, thus reducing its ultimate maximum temperature.11-03-2011
20130146770TERAHERTZ CONTINUOUS WAVE SYSTEM AND METHOD OF OBTAINING THREE-DIMENSIONAL IMAGE THEREOF - A terahertz continuous wave system in accordance with the inventive concept may include a terahertz wave generator generating a terahertz continuous wave; a non-destructive detector measuring a change of the terahertz continuous wave by emitting the generated terahertz continuous wave to a sample and controlling a focal point of the emitted terahertz continuous wave while two-dimensionally moving the sample at predetermined intervals; and a three-dimensional image processor obtaining a three-dimensional image using two-dimensional images corresponding to the measured terahertz continuous wave.06-13-2013
20090072144INFRARED RETINA - Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. “Color” imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 μm to about 12 μm as well as the mid-wave portion ranging from about 3 μm to about 5 μm.03-19-2009
20110233409QUANTUM CASCADE LASER THAT GENERATES WIDELY VIEWABLE MID-INFRARED LIGHT - A laser source assembly (09-29-2011
20100314544DEVICE FOR DETECTION AND/OR EMISSION OF ELECTROMAGNETIC RADIATION AND METHOD FOR FABRICATING SUCH A DEVICE - The device for detection and/or emission of radiation has an encapsulation micropackage in a vacuum or under reduced pressure that comprises a cap and a substrate delineating a sealed housing. The housing encapsulates at least one uncooled thermal detector and/or emitter having a membrane sensitive to electromagnetic radiation suspended above the substrate, a reflector and at least one getter. The getter is arranged on at least a part of a second main surface of the reflector to form a reflector/getter assembly. A free space, releasing an accessible surface of the getter and in communication with the housing, is also formed between the reflector/getter assembly and the front surface of the substrate.12-16-2010
20110297831Small Low-Profile Optical Proximity Sensor - In an embodiment, the invention provides a proximity sensor including a transmitter die, a receiver die, an ASIC die, a lead frame, wire bonds, a first transparent encapsulant, a second transparent encapsulant, and an opaque encapsulant. The transmitter die, the receiver die and the ASIC die are attached to portions of the lead frame. Wire bonds electrically connect the transmitter die, the receiver die, the ASIC die, and the lead frame. The first transparent encapsulant covers the receiver die, the ASIC die, the wire bonds, and a portion of the lead frame. The second transparent encapsulant covers the transmitter die, the wire bonds, and a portion of the lead frame. The opaque encapsulant covers portions of the first and second encapsulants and a portion of the lead frame.12-08-2011
20110303847BOLOMETER TYPE TERAHERTZ WAVE DETECTOR - A bolometer type Terahertz wave detector comprises: a temperature detecting portion having a thin bolometer film formed on a substrate, a reflective film that reflects Terahertz waves formed on the substrate at a position facing the temperature detecting portion, and an absorption film formed on the top surface of part of an eave-like member that extends to the inside from the perimeter edge section of the temperature detecting portion and that absorbs Terahertz waves. The reflective film and the absorption film form an optical resonant structure. A thermal isolation structure is formed by a support portion that supports the temperature detecting portion such that it is separated from the substrate by a gap. The eave-like member is supported by the support portion so that it is separated from the substrate by a gap.12-15-2011
20130193324INTEGRATED TERAHERTZ IMAGING SYSTEMS - A low-power 4×4-pixel THz camera with responsivity greater than 2.5 MV/W and sub-10 pW/√Hz NEP at 0.25 THz is integrated in 130 nm silicon without using either high-resistivity substrates or silicon lenses. Imaging results with a fully integrated radiating CMOS power source demonstrate the first entirely silicon-based THz imager.08-01-2013
20130206990Background Limited Focal Plane Array Assembly - The thermoelectric detector comprises an infrared absorber pixel structure supported by two electrically connected beams made of a thermoelectric material. One end of the thermoelectric beam connects to the infrared absorber pixel structure; the other end connects to the substrate. The detector comprises a microlens for collecting and focusing infrared radiation on the detector. Infrared radiation is incident on the infrared absorber pixel structure results in a temperature gradient along the length of the thermoelectric legs, and generating an electrical voltage proportional to the gradient. A low noise SIGe BiCMOS readout integrated circuit is coupled to the detector to provide a background limited detector having improved detectivity.08-15-2013

Patent applications in class Semiconducting type