Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


ELECTROLYTIC ANALYSIS OR TESTING (PROCESS AND ELECTROLYTE COMPOSITION)

Subclass of:

205 - Electrolysis: processes, compositions used therein, and methods of preparing the compositions

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
205777500 Involving enzyme or micro-organism 237
205792000 Of biological material (e.g., urine, etc.) 141
205782000 For oxygen or oxygen containing compound (except water) 101
205780500 For nitrogen or nitrogen containing compound 73
205789000 For ion concentration (e.g., ion activity, pKa, etc.) 29
205775500 For corrosion 19
205787000 For organic compound 18
205790500 For properties of solid material (e.g., surface area, etc.) 17
205778500 For halogen or halogen containing compound 16
205787500 For pH 15
205794500 Using electrode containing precious metal or free carbon 9
205793000 Using semipermeable membrane 8
205786500 For sulfur or sulfur containing compound 5
20130062222ELECTROCHEMICAL SENSOR SYSTEM - An electrochemical sensor measuring concentration of an analyte in a test fluid at 50° C. or above by voltammetry uses electrodes in contact with an electrolyte containing the analyte and a redox-active species electrochemically convertible between reduced and oxidised forms. At least one form of the redox active species is present within surfactant micelles. The surfactant micelles enhance thermal stability of the redox active species and may also solubilise a species with poor water solubility, such as t-butylferrocene. A downhole tool incorporating such a sensor comprises a barrier, permeable to the analyte, to separate the electrolyte from subterranean reservoir fluid, so that the sensor directly measures analyte which has passed through the barrier and thereby indirectly measures analyte in the test fluid.03-14-2013
20090184005Sensor for Measurement of Hydrogen Sulfide - An electrochemical sensor for measurement of hydrogen sulfide is described. The electrochemical sensor comprises an electrolyte; an electrolyte container comprising a hydrogen sulfide permeable membrane; a working electrode and a reference electrode both disposed in the electrolyte; and an instrument capable of maintaining a fixed DC potential in the range of 0 mV to 1,000 mV between the working electrode and the reference electrode. Also a method of detecting hydrogen sulfide in a sample. The method comprises providing an electrochemical sensor; at least partially immersing the gas permeable membrane in the sample; and detecting hydrogen sulfide in the sample. The detection may be qualitative or quantitative.07-23-2009
20100243480MEASUREMENT OF HYDROGEN SULPHIDE AND THIOLS IN FLUIDS - A wellbore tool has an electrochemical sensor for measuring the amount of hydrogen sulphide or thiols in a fluid downhole in a wellbore. The sensor comprises a temperature- and pressure-resistant housing containing a flow path for the fluids. The fluids flow over one side of a gas permeable membrane the other side of the membrane being exposed to a chamber containing at least two electrodes and containing a reaction solution which together with the hydrogen sulphide or thiols create a redox reaction resulting in an electrical current dependent upon the amount of hydrogen sulphide or thiols in the fluid. Measurement is made by passing formation fluid along the flow path and repeatedly applying varying potential to one electrode and measuring the peak current flowing between that electrode and a second electrode.09-30-2010
20130153442REGENERATIVE GAS SENSOR - A gas sensor includes a housing having disposed therein a membrane electrode assembly comprising a sensing electrode, a counter electrode, and a polymer membrane disposed between the sensing electrode and the counter electrode. The polymer membrane comprises an ionic liquid retained therein. The sensor also includes a catalyst support that can be stable in a range of potentials to allow for detection mode and catalyst regeneration mode to be operative. The sensor further includes a circuitry and algorithm to implement the catalyst regeneration mechanism electrochemically. The sensor further includes a chamber for reference gas to which the counter electrode is exposed, and a chamber for test gas to which a gas to be tested is exposed. The sensor also includes a pathway for test gas to enter the chamber and a measured electrical circuit connecting the sensing electrode and the counter electrode.06-20-2013
20120073988Sensor for Measurement of Hydrogen Sulfide - An electrochemical sensor for measurement of hydrogen sulfide is described. The electrochemical sensor comprises an electrolyte; an electrolyte container comprising a hydrogen sulfide permeable membrane; a working electrode and a reference electrode both disposed in the electrolyte; and an instrument capable of maintaining a fixed DC potential in the range of 0 mV to 1,000 mV between the working electrode and the reference electrode. Also a method of detecting hydrogen sulfide in a sample. The method comprises providing an electrochemical sensor; at least partially immersing the gas permeable membrane in the sample; and detecting hydrogen sulfide in the sample. The detection may be qualitative or quantitative.03-29-2012
205790000 For composition of metal or metal alloy 4
20090159464Electrode preconditioning - An electrochemical sensing method comprising: (a) providing an electrochemical cell having a working electrode and a pseudo reference electrode; (b) providing a sample comprising a metal, the sample being in contact with the working electrode and the metal being capable of being oxidised or reduced at the working electrode when the metal is bound to the working electrode; (c) preconditioning the working electrode by (i) applying a time varying preconditioning potential between the working and pseudo reference electrodes; and/or (ii) baking the working electrode; and/or (iii) air-ageing the working electrode; and (d) applying a measuring potential between the working and pseudo reference electrodes and, during application of said measuring potential, measuring the current generated by oxidation/reduction of the metal at the working electrode.06-25-2009
20090288962Electrochemical Sensor and Methods for Making and Using Same - A mercury-free, electrochemical sensor is described that includes a self-assembled monolayer on a mesoporous support (SAMMS) composite and a fluoropolymer component that is deposited on a measurement surface. The SAMMS component provides outstanding metal preconcentration. The fluoropolymer component acts as an antifouling binder. The sensor can detect various metals at a low detection level in the presence of fouling agents and without sample pretreatment. The sensor is also able to detect mixtures of metals simultaneously with excellent single and inter-electrode reproducibility. Service lifetimes are excellent.11-26-2009
20110042240APPARATUS AND METHODS FOR TESTING IMPURITY CONTENT IN A PRECIOUS METAL - A precious metal testing apparatus and methods adapted to analyze impurities in a precious metal test sample is described. The testing apparatus contains a test probe that has a replaceable portion and that is connected to a meter to measure resistance. The replaceable portion contains or forms a reservoir that includes at least one electrolyte component, a conductive member, and a fibrous tip. The electrolyte component is fluidly associated with a fiber tip and the conductive member contacts an electrical contact located outside the reservoir. Methods of testing and instructions regarding such methods are also included.02-24-2011
20080264802Testing Method for Precious Metals - A precious metal assay method which includes the steps of forming an electrolytic cell comprising an anode specimen and a reference cathode, driving a ramp input into the electrolytic cell, measuring a resulting current through the electrolytic cell over a period of the ramp input. The assay value may be determined by comparing the locality, slope and peak or area of a current response of the resulting current against the localities, slopes and peaks or areas of a list of current responses of known precious metal compositions from an empirical look-up table and displaying the assay value on an electronics display.10-30-2008
205788500 Including titration 4
20090145777Titration device and method - A titration apparatus comprising a titration reservoir for a non-flowing sample solution to be titrated; an ion source reservoir comprising an ion source solution of selected ions; an ion exchange membrane barrier capable of passing ions from the ion source solution to the titration reservoir, but of blocking bulk liquid flow; a first electrode in electrical communication with the ion source reservoir; and a second electrode in electrical communication with the titration reservoir. Also, an electrolytic titrant generator for use in the titration apparatus.06-11-2009
20080251394Method and Device For the Electrochemical Pseudo-Titration of Antioxidant Substances - The method according to the invention consists of generating an electrochemical signature of the analyzed substance(s), obtained by carrying out a numerical pseudo-titration and to express the result of the measurements in antioxidant power units. It involves the processing of a current-potential response of the oxidation of the analyzed substance(s) by a predefined mathematical dimensionless function representing a virtual and ideal oxidizing agent. The method is useful for the identification and/or detection and/or titration of antioxidant substances in the tested material, including directly on wet biological tissues.10-16-2008
20090194430Analysis of copper ion and complexing agent in copper plating baths - A simple titration method involving a single copper ion titrant detected by a copper ion specific electrode provides the concentrations of both copper ions and bath complexing agent (ethylene diamine, for example) in alkaline copper electroplating baths of the type used to deposit or thicken copper seed layers on silicon wafers. Standard addition of an excess of a strong complexing agent (EDTA, for example) and back-titration with the copper ion titrant yields the bath copper ion concentration, and continued titration to a second endpoint, preferably after addition of hydroxide to adjust the pH of the analysis solution, yields the total concentration of bath complexing agent. Based on these analyzes, the concentration of free bath complexing agent may be calculated. The method also provides direct determination of the free bath complexing agent concentration via standard addition of excess bath complexing agent to a sample of the plating bath and titration with the copper ion titrant.08-06-2009
20120073989METHOD FOR OPERATING A MEASURING DEVICE HAVING AT LEAST ONE PROBE, WHICH HAS AT LEAST ONE ION SELECTIVE ELECTRODE - A method for operating a measuring device comprising the following steps: providing a first sample of the liquid; ascertaining an updated calibration function by means of a standard addition method, wherein the first sample is supplemented at least once with a standard solution, which has a known concentration of the measured ion; determining a measured value of concentration of the measured ion in the first sample; providing a second sample of the liquid; ascertaining a measured value of concentration of the measured ion in the second sample as a reference measured ion concentration (c03-29-2012
205781500 For alkali metal, alkaline earth metal, or compound thereof 3
20110042238SENSOR TO MEASURE A CONCENTRATION OF ALKALI ALCOHOLATE - A sodium sensor to measure a concentration of sodium methylate in methanol. The sensor assembly includes a solid alkali ion conducting membrane, a reference electrode, and a measurement electrode. The solid alkali ion conducting membrane transports ions between two alkali-containing solutions, including an aqueous solution and a non-aqueous solution. The reference electrode is at least partially within an alkali halide solution of a known alkali concentration on a first side of the solid alkali ion conducting membrane. The measurement electrode is on a second side of the solid alkali ion conducting membrane. The measurement electrode exhibits a measurable electrical characteristic corresponding to a measured alkali concentration within the non-aqueous solution, to which the measurement electrode is exposed.02-24-2011
20090218237LITHIUM ION-SELECTIVE MEMBRANE - The invention relates to a lithium ion-selective membrane, including a polymer carrier, a plasticizer, a conductive compound and a lithium ion specific ionophoric compound. The invention consists in that said ionophoric compound is dibenzyl-14-crown-4 and derivatives thereof, and represents between 0.5 and 3% by weight of the total composition of the membrane, the polymer carrier representing 25 to 30% by weight of the total composition of the membrane, the plasticizer from 65 to 72% by weight of the total composition of the membrane and the conductive compound from 0.2 to 1.5% by weight of the total composition of the membrane. Said invention can be used to determine the lithium ion concentration of a fluid, such as a primary fluid for a pressurized water reactor in a nuclear power plant.09-03-2009
20130168265CORRECTION LIQUID - This invention relates to a correction liquid for a liquid membrane type ion-selective electrode that makes it possible to measure a ratio between a sodium ion concentration and a potassium ion concentration in urine by correcting for an influence from an ionic strength of the urine. The correction liquid comprises a sodium ion-sensitive part that selectively reacts with the sodium ion and a potassium ion-sensitive part that selectively reacts with the potassium ion, and measures a ratio between a sodium ion concentration and a potassium ion concentration in urine, and comprises the sodium ion, the potassium ion, and an electrolytic ionic strength modifier.07-04-2013
205788000 For water (e.g., moisture, etc.) 2
20090283423WATER ANALYSIS USING A PHOTOELECTROCHEMICAL METHOD - A method of determining chemical oxygen demand in water samples containing chloride ions above 0.5 mM concentration in which the samples are diluted and a known quantity of an organic substance is added to the diluted sample which is the subjected to an assay by a photoelectrochemical method using a titanium dioxide nanoparticulate semiconductor electrode and measuring the photo current produced until a stable value is reached and then using the difference between the initial and stable photocurrents as a measure of the chemical oxygen demand. An alternative method involves determining chemical oxygen demand in water samples containing chloride ions by measuring the chlorine content and measuring chemical oxygen demand by a photoelectrochemical method using a titanium dioxide nanoparticulate semiconductor electrode and adjusting the chemical oxygen demand measurement using the chlorine measurement.11-19-2009
20120000794ONLINE WATER ANALYSIS - A method of determining chemical oxygen demand (COD) of a water sample, which is useful in an on-line configuration comprising the steps of a) applying a constant potential bias to a photoelectrochemical cell, having a photoactive working electrode, optionally a reference electrode and a counter electrode, and containing a supporting electrolyte solution; b) illuminating the working electrode with a light source and recording the background photocurrent produced at the working electrode from the supporting electrolyte solution; c) adding a water sample, to be analysed, to the photoelectrochemical cell; d) illuminating the working electrode with a light source and recording the hydro dynamic photocurrent produced under continuous flow of the water to be analysed; e) determining the chemical oxygen demand of the water sample using a number of different formulae. The applied potential is preferably from −0.4 to +O.8V more preferably about +0.3V. The method is applicable to water samples in the pH range of 2 to 10. An injection volume of 13 μL is preferred. A preferred flow rate is 0.3 mL/min.01-05-2012
205793500 Tracking chemical reactions 2
20090242430Electronic Methods for the Detection of Analytes - The present invention is directed to the detection of target analytes using electronic techniques, particularly AC techniques.10-01-2009
20120000796Measurement Device and Method Utilizing the Same - A measurement device measuring a solution and including a reference voltage generating unit, a plurality of sensing units, a reading unit and a processing unit is disclosed. The reference voltage generating unit is disposed in the solution to generate a reference voltage. The sensing units are disposed in the solution to generate a plurality of output signals relating to the reference voltage. The reading unit outputs a reading signal according to one of the output signals. The processing unit generates a measuring signal according to the reading signals.01-05-2012
205792500 Using ion exchange resin 1
20100176006THREE-DIMENSIONAL METAL ION SENSOR ARRAYS ON PRINTED CIRCUIT BOARDS - An electronic device includes a substrate and a plurality of sensors. Each sensor is disposed in a well over the substrate and includes a working electrode, an inner filling solution disposed thereover, and an ion-selective membrane. The working electrode is in contact with the substrate and the ion-selective membrane is disposed over the inner filling solution and substantially seals the well.07-15-2010
Entries
DocumentTitleDate
20100038262Detection of Analytes Using Reorganization Energy - The invention relates to novel methods and compositions for the detection of analytes using the nuclear reorganization energy, λ, of an electron transfer process.02-18-2010
20130075275METHOD AND APPARATUS FOR SIMULTANEOUS SPECTROELECTROCHEMICAL ANALYSIS - An apparatus and method of simultaneous spectroelectrochemical analysis is disclosed. A transparent surface is provided. An analyte solution on the transparent surface is contacted with a working electrode and at least one other electrode. Light from a light source is focused on either a surface of the working electrode or the analyte solution. The light reflected from either the surface of the working electrode or the analyte solution is detected. The potential of the working electrode is adjusted, and spectroscopic changes of the analyte solution that occur with changes in thermodynamic potentials are monitored.03-28-2013
20100072079Electrochemical method for detecting boron in water - The invention relates to a method for detecting the presence of boron in water comprising the production of a conductive buffer solution comprising water and at least one boron complexing agent, the introduction into an electrochemical cell of said solution in the presence of at least one work electrode (03-25-2010
20100140108ELECTRODE PRECONDITIONING - A method for improving the precision of electrochemical measurements made using an electrochemical cell is provided. The method comprises preconditioning a working electrode of the cell by (i) baking the working electrode; and/or (ii) incubating the working electrode; and/or (iii) applying a preconditioning potential across the cell; and/or (iv) treating the working electrode with a UV laser.06-10-2010
20100140109NANOSCALE SPINTRONIC CHEMICAL SENSOR - In general, the present disclosure is directed toward a novel hybrid spintronic device for converting chemical absorption into a change in magnetoresistance. This device uses a novel magnetic material which depends on the attachment of an organic structure to a metallic film for its magnetism. Changes in the chemical environment lead to absorption on the surface of this organometallic bilayer and thus modify its magnetic properties. The change in magnetic properties, in turn, leads to a change in the resistance of a magnetoresistive structure or a spin transistor structure, allowing a standard electrical detection of the chemical change in the sensor surface.06-10-2010
20090120806Method for Detecting Sample Supply Condition, and Analyzer - The present invention relates to an analytical tool 05-14-2009
20090184002BIOSENSOR DEVICE - A biosensor device (07-23-2009
20100044246PARTICULATE MATTER SENSOR WITH A HEATER - An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.02-25-2010
20100101965METHOD FOR DETECTING OR QUANTIFYING TARGET SUBSTANCE USING APPARATUS FOR ELECTROCHEMICAL MEASUREMENTS, APPARATUS FOR ELECTROCHEMICAL MEASUREMENTS, AND ELECTRODE PLATE FOR ELECTROCHEMICAL MEASUREMENTS - To provide an electrode plate for electrochemical measurements that enables detecting and quantifying the concentration of a target substance contained in a sample solution with rapidity and favorable sensitivity using an apparatus for electrochemical measurements is objected to.04-29-2010
20120181185CONFIGURATION, A SENSING ELEMENT WITH SUCH CONFIGURATION, ELECTROCHEMICAL SENSOR COMPRISING SUCH SENSING ELEMENT AND METHOD FOR ELECTROCHEMICAL SENSING USING SUCH ELECTROCHEMICAL SENSOR - A configuration is disclosed. In one aspect, the configuration includes a substantially planar electrode layer, in a first plane. The configuration further includes a substantially planar two-dimensional electron gas (2DEG) layer electrically connected in series with the electrode layer. The 2DEG layer is provided in a second plane substantially parallel with the first plane and located at a predetermined distance, in a direction orthogonal to the first plane, from the first plane. The 2DEG layer and the electrode layer are patterned such that the electrode layer overlays a part of the 2DEG layer, wherein the predetermined distance between the first plane and the second plane is selected to be sufficiently small for allowing electrostatic interaction between the electrode layer and the 2DEG layer.07-19-2012
20120181184MICROFLUIDIC, ELECTROCHEMICAL DEVICES - Microfluidic, electrochemical devices are described. The microfluidic, electrochemical device comprises one or more electrode(s) on a substrate and a patterned porous, hydrophilic layer having a fluid-impermeable barrier which substantially permeates the thickness of the porous, hydrophilic layer and defines boundaries of one or more hydrophilic channels within the patterned porous, hydrophilic layer, wherein the hydrophilic channel(s) comprises a hydrophilic region which is in fluidic communication with the electrode(s). In some embodiments, the electrodes comprise a working electrode, a counter electrode, and a reference electrode. In some embodiments, the microfluidic, electrochemical device further comprises a fluid sink. The method of assembling the microfluidic, electrochemical device is described. The method of using the device for electrochemical analysis of one or more analytes is also described.07-19-2012
20110000796Ion Selective Electrode Module for Clinical Diagnostics - A method of determining an electrolyte in a sample including adding the sample to an electrolyte module, the electrolyte module including a dilution cup, a flow cell, and a pump, the flow cell having a flow channel with a first end and a second end, the first end fluidically coupled to the dilution cup, and the second end fluidically coupled to the pump; combining the sample with a diluent in the dilution cup to produce a diluted sample; operating the pump to aspirate the diluted sample into the flow cell; measuring the electrolyte in the diluted sample in the flow cell; and reversing the pump to dispense fluid through the second end to displace the diluted sample from the flow cell back into the dilution cup.01-06-2011
20080264801Systems And Methods For Monitoring Plating And Etching Baths - Methods and systems for monitoring electrolyte bath fluids are provided. The electrolyte bath fluids can be electroplating, electroless plating or etching solutions. The monitoring systems employ microfluidic devices, which have built in microfluidic channels and microfabricated thin-film electrodes. The devices are configured with fluid pumps to control the movement and mixing of test fluids through the microfluidic channels. The microfabricated thin-film electrodes are configured so that the plating or etching bath fluid composition can be characterized by electrochemical measurements. The monitoring methods and system provide faster measurement times, generate minimal waste, and occupy dramatically reduced physical space compared to conventional bath-monitor systems. The monitoring systems and method also provide low-cost system and methods for measuring or monitoring electroless plating bath rates.10-30-2008
20120217171Sensor with Movable Part and Biasing - Methods and apparatuses are provided wherein a sensor which comprises at least two electrodes and a movable part is alternately biased with at least two different voltages.08-30-2012
20090218235Gas sensor - Metal-oxide gas sensor. According to one embodiment, the sensor includes a layer or pellet of tungsten trioxide (WO09-03-2009
20120186994FLUID DISTRIBUTION ASSEMBLY FOR TESTING SYSTEMS - Disclosed herein are fluid distribution methods and assemblies for supplying fluid to test assemblies. One embodiment of a fluid distribution assembly comprises at least two input lines each configured to supply a fluid. A source selection component is connected to the input lines and configured to receive the fluid of the input lines and select from the fluids a target fluid. A range selection component is configured to receive the target fluid and to select a flow range of the target fluid, outputting the target fluid to a flow component comprising a first flow adjustment component having a first flow rate resolution and a second flow adjustment component having a second flow rate resolution. The range selection component is configured to selectively output the target fluid to one of the first flow adjustment component and the second flow adjustment component based on the selected flow range.07-26-2012
20100032316Systems and Methods Including Amperometric and Voltammetric Duty Cycles - A sensor system including devices and methods for determining the concentration of an analyte in a sample is described. Input signals including amperometric and voltammetric duty cycles of excitations and relaxations may provide a shorter analysis time and/or improve the accuracy and/or precision of the analysis. The disclosed system may reduce analysis errors, thus improving measurement performance, by adjusting the potential and/or scan rate in response to output currents obtained from voltammetric scans. The disclosed system also may determine the concentration of more than one ionizable species in the sample by adjusting the potential and/or scan rate in response to output currents obtained from voltammetric scans. The multiple, determined concentrations may be used to determine the concentration of multiple analytes or to correct the concentration determined for an analyte, thus improving the measurement performance of the system.02-11-2010
20120111738GAS SENSOR TESTING DEVICE - Techniques are generally described for a gas sensor testing device. In some examples, the gas sensor testing device comprises a chamber including a wall having an inside surface and an outside surface, the inside surface defining a gas channel, the wall including at least one water molecule. In some examples, the gas sensor testing device includes a first electrode wire coupled to the outside surface of the wall. In some examples, the gas sensor testing device includes a second electrode wire coupled to the inside surface of the wall. In some examples, the wires are operable to generate a current through the wall when a voltage is applied across the wires. In some examples, the current is effective to electrolyze the at least one water molecule to generate a gas.05-10-2012
20120234698METHODS FOR TESTING IMPURITY CONTENT IN A PRECIOUS METAL - A precious metal testing apparatus and methods adapted to analyze impurities in a precious metal test sample is described. The testing apparatus contains a test probe that has a replaceable portion and that is connected to a meter to measure resistance. The replaceable portion contains or forms a reservoir that includes at least one electrolyte component, a conductive member, and a fibrous tip. The electrolyte component is fluidly associated with a fiber tip and the conductive member contacts an electrical contact located outside the reservoir. Methods of testing and instructions regarding such methods are also included.09-20-2012
20120234697SENSOR CONTROL APPARATUS, SENSOR CONTROL SYSTEM, AND SENSOR CONTROL METHOD - A sensor control apparatus is disclosed, including a preliminary control for supplying a constant current to a second oxygen pump cell of a gas sensor for a constant period of time so as to control to a constant level the amount of oxygen pumped out from a second measurement chamber (S09-20-2012
20120234696ELECTRODES, SENSORS AND METHODS FOR MEASURING COMPONENTS IN WATER - Improvements in references electrodes, halogen sensors, pH sensors, TDS sensors, combinations thereof, and related methods.09-20-2012
20130161203MONITORING LEVELER CONCENTRATIONS IN ELECTROPLATING SOLUTIONS - Provided herein are methods and apparatus for determining leveler concentration in an electroplating solution. The approach allows the concentration of leveler to be detected and measured, even at very low leveler concentrations. According to the various embodiments, the methods involve providing an electrode with a metal surface, exposing the electrode to a pre-acceleration solution with at least one accelerator, allowing the surface of the electrode to become saturated with accelerator, measuring an electrochemical response while plating the electrode in a solution, and determining the concentration of leveler in the solution by comparing the measured electrochemical response to a model relating leveler concentration to known electrochemical responses. According to other embodiments, the apparatus includes an electrode, a measuring apparatus or an electrochemical cell configured to measure an electrochemical response, and a controller designed to carry out the method outlined above.06-27-2013
20100089769METHOD OF DERIVATISING AN ANALYTE FOR SUBSEQUENT DETECTION THROUGH A NUCLEIC ACID BASED SENSOR - A method of derivatising an analyte for subsequent detection through a nucleic acid based sensor and a sensor based thereon.04-15-2010
20100089770Microfluidic device for detection of charged analytes contained in an electrolyte and a method for detecting charged analytes contained in an electrolyte - A device for selective preconcentration/detection of charged analytes contained in an electrolyte having at least two reservoirs separated by at least one rectilinear microchannel with no lengthwise axis X intersection and having at least one controllable voltage source configured to generate a potential difference between the ends of the rectilinear microchannel. The device has means for generating a controllable pressure that is associated with at least one of the reservoirs and is able to generate a pressure gradient between the two ends of the microchannel. The microchannel has, in its median part, means that are configured to generate at least one change in the surface area to volume ratio charge, the device configured to selectively concentrate the charged analytes in the median part of the microchannel upstream and/or downstream of the means configured to generate at least one change in the surface area to volume ration charge.04-15-2010
20090120807Device and Method for Performing Maintenance on an Apparatus in a Flow Duct - The invention relates to a device and a method for performing maintenance on an apparatus. The device has a flow duct with a wall section in which at least one apparatus which projects into the flow duct and which is to be reworked after a certain operating time is arranged. A vessel which is open towards the wall section is arranged to as to be movable relative to the wall section in such a way that in an open position it is arranged at a distance from the apparatus, and in a second position forms, together with the wall section, a sealed volume which is separated from the rest of the flow duct and in which the maintenance of the apparatus is performed.05-14-2009
20100200427SOLID ELECTROLYTE, METHOD OF PRODUCING THE SOLID ELECTROLYTE, AND GAS SENSOR EQUIPPED WITH GAS SENSOR ELEMENT USING THE SOLID ELECTROLYTE - A solid electrolyte is made of zirconia grains containing yttria and alumina grains dispersed in the zirconia grains. In the solid electrolyte, the yttria content per zirconia content is within a range of 2 to 10 mol. %, the relative density is not less than 93%, and the average particle size Rz of the zirconia grains is not more than 2 μm, an average particle size Ra of the alumina grains is not more than 1 μm. The average particle size Ra of the alumina grains is smaller than the average particle size Rz of the zirconia grains. An average distance value A08-12-2010
20120097552REFERENCE ELECTRODE HAVING A FLOWING LIQUID JUNCTION AND FILTER MEMBERS - A flowing junction reference electrode comprising a liquid junction member matched with a filter. The junction member and the filter are situated between a reference electrolyte solution and a sample solution. An array of nanochannels spans the junction member and provides fluid communication between the electrolyte solution and the sample solution. The filter is configured to allow a greater flux of electrolyte than that associated with the junction member. Preferably, the number of pores is greater than the number of nanochannels. The filter is preferably configured to have pores with an inner diameter that is the same or less than the inner diameter of the nanochannels. In some embodiment, the resistance of the filter is made lower relative to the resistance of the junction member by selecting suitable length, number, and inner diameter size for the pores of the filter relative to the nanochannels of the junction member.04-26-2012
20090184000Electrochemical Sensor System Using a Substrate With at Least One Aperture and Method of Making the Same - An electrochemical sensor system is adapted to assist in determining an analyte concentration of a fluid. The electrochemical sensor system comprises a substrate, conductive material and a hydrogel or liquid. The substrate having porosity therethrough. The conductive material includes at least one electrode. The at least one electrode is coupled to the substrate. The at least one electrode has a first surface and an opposing second surface. The hydrogel or liquid is adapted to assist in carrying the analyte of the fluid to the first and second surfaces of the at least one electrode.07-23-2009
20090188811PREPARATION AND MAINTENANCE OF SENSORS - Apparatus and methods are described for preparing, maintaining, and stabilizing sensors. The apparatus and methods for preparing sensors for use are utilized in advance of the sensor being removed from a sealed, sterilized package. The apparatus include packaging materials having electrical circuits capable of stabilizing a sensor to prepare the sensor for use. The methods for preparing a sensor for use includes methods of providing a solution to a sterilized packaging that contains a sensor connected to a sensor activating circuit, activating the circuit, and allowing the sensor to stabilize. These methods can be performed without compromising the packaging. The apparatus for stabilizing a sensor that is in use include a circuit connectable to the sensor that provides a signal to the sensor that prevents the sensor from becoming destabilized when disconnected from a monitoring device.07-30-2009
20100084286MICROFLUIDIC SYSTEMS AND METHODS FOR SCREENING PLATING AND ETCHING BATH COMPOSITIONS - Methods and systems for screening for the effect of bath composition on the performance of electroplating, electroless-plating, electrochemical-etching, electropolishing, and chemical-etching processes are provided. The methods and systems use microfluidic channels that allow for etching or plating studies on an electrode exposed to a multitude of bath compositions at different positions on its surface. After deposition or etching, the electrode surface can be quickly and easily detached from the device for analysis of deposited or etched film properties.04-08-2010
20090095641SAMPLE FLUID TESTING DEVICE AND METHOD FOR ANALYZING A SAMPLE FLUID - The invention refers to a sample fluid testing device for analyzing a sample fluid, comprising a test media tape (04-16-2009
20100084285PROCESS ANALYTIC SENSOR WITH MOISTURE-SCAVENGING ELECTRODE BACKFILL - A process analytic sensor for sensing a characteristic of a process fluid is disclosed. The sensor includes a housing including a sensing portion having an electrical characteristic that varies with a characteristic of the process fluid. An instrument cable has at least one electrical conductor. An electrode connection space is located within the housing and the at least one electrical conductor is electrically coupled to a respective conductor of a sensing element of the sensing portion. A fill material is disposed in the electrode connection space. The fill material cures through exposure to moisture and the fill material is uncured and sealed within the electrode connection space.04-08-2010
20110168573APPARATUS AND METHOD FOR CONTROLLING A GAS SENSOR - A gas sensor control apparatus including internal resistance detection means for detecting an internal resistance value of one of cells of a gas sensor, concentration detection means for detecting a concentration value of a specific gas component in a gas to be measured and outputting the detected concentration value, heater current supply control means for controlling a current to be supplied to a heater of the gas sensor such that the detected internal resistance value becomes a target value, determination means for determining whether or not the detected internal resistance value is within a permissible range including the target value, nullification information generation means for generating nullification information to nullify the detected concentration value, when it is determined that the target value is out of the permissible range, and nullification information output means for outputting the nullification information to an external device connected to the gas sensor control apparatus.07-14-2011
20090294301Reference Electrodes Having An Extended Lifetime for Use in Long Term Amperometric Sensors - The present application provides Ag/AgCl based reference electrodes having an extended lifetime that are suitable for use in long term amperometric sensors. Electrochemical sensors equipped with reference electrodes described herein demonstrate considerable stability and extended lifetime in a variety of conditions.12-03-2009
20090277805ELECTROCHEMICAL SENSORS, SENSOR SYSTEMS AND METHOD OF SENSING ANALYTES - A sensor, includes a working electrode including a first layer formed of a polymeric material. The first layer includes a first surface across which an analyte in a sample can be transported and a second surface generally opposite of the first surface. The first layer satisfies the formula l≦(σD11-12-2009
20090084685DESIGN OF AN IC-PROCESSED POLYMER NANO-LIQUID CHROMATOGRAPHY SYSTEM ON-A-CHIP AND METHOD OF MAKING IT - Embodiments in accordance with the present invention relate to packed-column nano-liquid chromatography (nano-LC) systems integrated on-chip, and methods for producing and using same. The microfabricated chip includes a column, frits/filters, an injector, and a detector, fabricated in a process compatible with those conventionally utilized to form integrated circuits. The column can be packed with supports for various different stationary phases to allow performance of different forms of nano-LC, including but not limited to reversed-phase, normal-phase, adsorption, size-exclusion, affinity, and ion chromatography. A cross-channel injector injects a nanolitre/picolitre-volume sample plug at the column inlet. An electrochemical/conductivity sensor integrated at the column outlet measures separation signals. A self-aligned channel-strengthening technique increases pressure rating of the microfluidic system, allowing it to withstand the high pressure normally used in high performance liquid chromatography (HPLC). On-chip sample injection, separation, and detection of mixture of anions in water is successfully demonstrated using ion-exchange nano-LC.04-02-2009
20110168574APPARATUS AND METHOD FOR CONTROLLING A GAS SENSOR - A gas sensor control apparatus including internal resistance detection means for detecting an internal resistance value of one of cells of a gas sensor, concentration detection means for detecting a concentration value of a specific gas component in a gas to be measured and outputting the detected concentration value, heater current supply control means for controlling a current to be supplied to a heater of the gas sensor such that the detected internal resistance value becomes a target value, determination means for determining whether or not the detected internal resistance value is within a permissible range including the target value, and nullification setting means for setting the detected concentration value to a predetermined nullification concentration value to nullify the detected concentration value, when it is determined that the target value is out of the permissible range.07-14-2011
20100126880DNA COMPLEXING AGENTS - The invention provides a compound of structure (I): wherein X is S, O or NR05-27-2010
20090166220MICROCHIP AND ANALYSIS METHOD USING THE SAME - Provided is a microchip including a substrate, a channel on the substrate, a lid sealing the channel, and an upper lid bonded to the lid. The lid is formed of an elastic material. The lid is detachable from the substrate. The upper lid is formed of a material harder than the elastic material. The area of the upper lid surface that is bonded to the lid is smaller than the area of the upper surface of the lid.07-02-2009
20110203941ELECTROCHEMICAL SENSOR AND METHOD FOR MANUFACTURING - A sensor includes a sheath that is elongated along a longitudinal axis; a spacer positioned within the sheath and defining first and second channels having lengths that extend along the longitudinal axis; a first elongated member positioned within the first channel; and a second elongated member positioned within the second channel. The first elongated member includes an active surface forming a working electrode and the second elongated member including an active surface defining a counter electrode.08-25-2011
20080223732Electrochemical detection method - There is disclosed a method of measuring formation of a barrier to restrict or reduce movement of an electroactive species. The method comprises providing an electrochemical cell having a working electrode and a counter electrode spaced from the working electrode, providing a subject component, a testing component and at least one electroactive species within the cell, the subject and testing components being intended to cause the formation of a barrier to restrict or reduce movement of an electroactive species, applying a potential between the working electrode and the counter electrode sufficient to produce a current proportional to the concentration of the electroactive species being measured, and measuring the current at the working electrode to obtain a measure of the formation of the barrier to restrict or reduce movement of the electroactive species.09-18-2008
20100140110MICROFLUIDIC-BASED LAB-ON-A-TEST CARD FOR A POINT-OF-CARE ANALYZER - A microfluidic-based lab-on-a-test card is described. The test card is used with a point-of-care (POC) analyzer. The test card is designed to receive a sample and then, with the use of the POC analyzer, quantify or count a particular substance in the sample. The test card may be comprised of multiple layers. In one embodiment, the test card includes a primary separation chamber with a filtration surface, a trapping channel, and a particle detector. The test card may also include a nanowire sensor.06-10-2010
20090184001Sensor Apparatus for an Electrochemical Measuring Device and Method for Carrying Out Electrochemical Measurements - A sensor apparatus for an electrochemical measuring device. The apparatus has at least one electrode, which can be heated using a heating current in the form of an alternating current, and a first and a second connection for the supply line for the heating current. The electrochemical measuring device is connected to the electrode by a third connection. In this case, the apparatus has the third connection connected to the electrode by a bridge circuit, which is also connected to the first and second connections. There also is provided a method for carrying out electrochemical measurements at elevated temperature. The sensor apparatus and the method for carrying out electrochemical measurements enable electrochemical measurements with little interference and directly heated electrodes in conjunction with a simplified design of the electrodes.07-23-2009
20090026090METHOD AND APPARATUS FOR MEASURING PROPERTIES OF WEAK ELECTROLYTIC, ORGANIC FLUIDS SUCH AS HYDROCARBON-BASED FLUIDS - A method and system for determining chemical properties of a fluid. The method and system include providing a weak electrolyte fluid, a container for the fluid, a detection method performed by a device having at least two electrodes, a detection and amplification device coupled to the electrodes and a sensed current compared to an uncontaminated, base fluid or compared to data characteristic of fluid contaminated or chemically changed in order to monitor and characterize the fluid.01-29-2009
20090183999GAS SENSOR ELEMENT AND METHOD - Disclosed herein is a gas sensor cell comprising a solid electrolyte layer comprising a first solid electrolyte layer surface, a sensor electrode disposed on the first solid electrolyte layer surface, a reference electrode disposed on the first solid electrolyte layer surface, and an insulating layer comprising a first insulating layer surface and a second insulating layer surface opposite the first insulating layer surface, wherein the first insulating layer surface is disposed on the first solid electrolyte layer surface, and wherein the sensor electrode is in fluid communication with a gas. Also disclosed is a method of adjusting an impedance of the gas sensor cell, comprising adjusting a structural dimension of a sensing end of the gas sensor cell, wherein the sensing end comprises the sensor electrode and the reference electrode.07-23-2009
20090139876Apparatus and Method for Measuring Hydrogen Concentration - The subject invention pertains to an apparatus for measuring hydrogen concentration, wherein the apparatus comprises a sensor comprising a sensor wall enclosing a cavity containing a metal/hydrogen reference. A portion of the wall is formed of a proton-conducting solid electrolyte, connected to a reference electrode on its surface within the cavity and a measurement electrode on its surface outside the cavity. The apparatus comprises a hygroscopic material in the region of the sensor, to enable rehydration of the sensor following hydrogen concentration measurements.06-04-2009
20120067741APPARATUS AND PROCESS FOR IMPROVED MEASUREMENTS OF A MONITORING DEVICE - Methods and devices for improving measurements of test meter, and in particular for detecting a presence of an electrochemical sensor or strip in the test meter and a start time of an electrochemical reaction, are provided. In one exemplary embodiment of an electrochemical system includes an electrochemical sensor , a test meter, and a circuit. The circuit is configured to form an electrical connection with the electrochemical sensor such that the circuit can detect three distinct voltage ranges. The voltage ranges can be indicative of an absence of the electrochemical sensor, a presence of the sensor that is devoid of a sample, and a presence of the sensor with a sample. Test meters, methods for detecting when a sample starts to fill an electrochemical sensor for establishing when a reaction starts, and circuits for use with electrochemical strips, are also provided.03-22-2012
20090255829APPARATUS AND METHOD FOR DETERMINING THE COMPOSITION OF A MATERIAL BEING EXAMINED - A method includes identifying first data associated with cyclic voltammetry measurements of a material being examined. The cyclic voltammetry measurements include applying a varying first voltage to the material and measuring a first current. The method also includes identifying second data associated with impedance measurements. The impedance measurements include applying a second voltage to the material and measuring a second current. The second data includes a scaling factor. The method further includes adjusting at least part of the first data using the scaling factor and identifying a composition of the material using the adjusted first data. The first data could include a current versus voltage curve that associates values of the first current to values of a sweep voltage. The first data could be adjusted by normalizing the curve using the scaling factor, and the normalized curve could be used to generate a current derivative curve.10-15-2009
20100163430EROSION AND WEAR RESISTANT SONOELECTROCHEMICAL PROBE - The present invention, in one set of embodiments, provides methods and systems for integrating conducting diamond electrodes into a high power acoustic resonator. More specifically, but not by way of limitation, in certain embodiments of the present invention, diamond electrodes may be integrated into a high power acoustic resonator to provide a robust sensing device that may provide for acoustic cleaning of the electrodes and increasing the rate of mass transport to the diamond electrodes. The diamond electrodes may be used as working, reference or counter electrodes or a combination of two or more of such electrodes. In certain aspects, the high power acoustic resonator may include an acoustic horn for focusing acoustic energy and the diamond electrodes may be coupled with the acoustic horn.07-01-2010
20090314660Novel Electropolymerisable Monomers, Soluble in an Aqueous Solution and Comprising a Metalloporphyrin - The invention relates to novel electropolymerisable monomers which are to be polymerised in an aqueous solution and comprise: an electropolymerisable pattern selected from acetylene, pyrrols, thiophenes, indols, anilines, azines, p-phenylene vinylenes, p-phenylenes, pyrenes, furanes, selenophenes, pyrridazines, carbazoles, acrylates, methacrylates and the derivatives thereof, and a metalloporphyrine which is substituted by at least two ionised or ionisable entities in an aqueous solution. The invention also relates to a method for the polymerisation of such monomers, to the electroactive probe that can be obtained by the polymerisation of such monomers, and to a method for detecting a target ligand in a biological sample using one such electroactive probe.12-24-2009
20100181209METHOD OF ELECTRICALLY DETECTING BIOMOLECULE - Provided is a method of sensing biomolecules using a bioFET, the method including: forming a layer including Au on a gate of the bioFET; forming a probe immobilized on a substrate separated from the gate by a predetermined distance, and a biomolecule having a thiol group (—SH) which is incompletely bonded to the probe; reacting the probe with a sample including a target molecule; and measuring a current flowing in a channel region between a source and a drain of the bioFET.07-22-2010
20100193375SEMICONDUCTOR GAS SENSOR HAVING ADDITIONAL FUNCTIONALITIES OF THE SIGNAL-GENERATING ELECTRODE - In a method for operating a semiconductor gas sensor, the gas sensor including at least one gas-sensitive electrode, the method may provide for impression of a voltage sequence on the gas-sensitive electrode. The operation may take place in a measuring cycle which is subdivided into at least one initialization phase and at least one subsequent measuring phase, a first voltage sequence being impressed on the gas-sensitive electrode during the initialization phase, a second voltage sequence being impressed on the gas-sensitive electrode during the measuring phase, and the first voltage sequence differing from the second voltage sequence. A semiconductor gas sensor may be provided for implementing the method according to the invention, and a method may relate to the use of such a sensor.08-05-2010
20090205976BIOSENSOR MEASUREMENT SYSTEM AND METHOD FOR DETECTING ABNORMAL WAVEFORM IN BIOSENSOR - A biosensor measurement system and a method for detecting abnormal measurement in a biosensor, which can significantly enhance the measurement precision without depending on the user's operation manner or the like, can be provided. A voltage application pattern for applying a voltage to a working electrode, a counter electrode, and a detection electrode has a halt period between a first application period and a second application period, and a reduction current measurement value obtained in the first application period is compared with a reduction current measurement value obtained in the second application period, and the measurement values are not outputted when a difference between the measurement values is outside a predetermined range.08-20-2009
20100219083Method and apparatus for processing electrochemical signals - Systems and methods are provided herein for improving the selectivity and productivity of sensors via digital signal processing techniques. According to one illustrative embodiment, in an electrochemical method for monitoring of a select analyte in a mixed sample with an interfering analyte, an improvement is provided that includes applying a large amplitude potential stimulus waveform to the sample to generate a nonlinear current signal; and resolving a signal contribution from the select analyte in the generated signal by a vector projection method with an analyte vector comprising a plurality of real and imaginary parts of one or more Fourier coefficients at one or more frequencies of a reference current signal for the select analyte.09-02-2010
20100213079MICROSECOND RESPONSE ELECTROCHEMICAL SENSORS AND METHODS THEREOF - A system for the measurement of analyte concentration includes an electrochemical cell having a working electrode coated with a protein layer and a diffusion limiting barrier covering the protein layer, and a counter electrode; a voltage source which provides a voltage between the working electrode and the counter electrode when electrically connected by a conductive medium; and a computing system which measures the dynamic voltage output to the counter electrode within a time period prior to a response from the working electrode and method for use is disclosed.08-26-2010
20100236941ELECTRICAL CONNECTION SYSTEM FOR AN ELECTROCHEMICAL ANALYSIS SYSTEM - An electrical connection system for an analysis system and a method for analysis of a liquid sample on an analytical test element using the described analysis system are disclosed. The analysis system provides an evaluation appliance for evaluation of electrical signals, a test element holder for holding and positioning of an analytical test element in a measurement position, and an electrical contact element which makes electrical contact with an electrical contact surface of an analytical test element to produce an electrical connection between the contact surface and the evaluation appliance. The contact element is moved by means such that contact with the electrical contact surface of the test element is made when the test element holder is in the measurement position.09-23-2010
20100252450ELECTRODE AND SENSOR HAVING CARBON NANOSTRUCTURES - An active electrode structure is disclosed that includes fullerenes produced by conversion from a carbide. Also disclosed is an electrode that includes a fullerene covalently bonded to a carbide, the fullerene being an aligned or non-aligned array. The fullerene is included in an active electrode structure of the electrode that also includes about 50% or less non-crystalline carbon and about 5% or less of a transition metal that interferes with the ability of the active electrode structure to transfer electrons or detect an analyte. The active electrode substrate or the electrode may be included in a sensor.10-07-2010
20100126881Method for Determination of Analyte Concentrations and Related Apparatus - A method is provided for determining analyte concentrations, for example glucose concentrations, that utilizes a dynamic determination of the appropriate time for making a glucose measurement, for example when a current versus time curve substantially conforms to a Cottrell decay, or when the current is established in a plateau region. Dynamic determination of the time to take the measurement allows each strip to operate in the shortest appropriate time frame, thereby avoiding using an average measurement time that may be longer than necessary for some strips and too short for others.05-27-2010
20110056844ELECTROCHEMICAL MOLECULAR RECOGNITION PROBES - Constitute a molecular recognition probe comprising: an electrochemically active group; an activity suppression group that suppresses an electrochemical activity of the electrochemically active group; a receptor area where a molecule of a target substance is specifically recognized; and a molecule area where a steric structure is changed as a result of molecular recognition; wherein the electrochemically active group is suppressed of its activity by the activity suppression group before the molecule is recognized and restores its activity after the molecule is recognized; or constitute a molecular recognition sensor by providing an anchor area on the molecular recognition probe and fixing it on a surface of an electrode.03-10-2011
20080277290Gas Sensor - The present invention provides a unique solution to the problems of both steady-state and transient signals produced by a variety of interfering stimuli, including humidity, which relies upon the inclusion in a gas sensing electrode in an electrochemical gas sensor of a catalyst material in addition to a first catalyst material reactive to the target gas, the additional, or second, catalyst material producing a response to an interfering stimulus which is of the opposite polarity to that generated by the first catalyst material.11-13-2008
20090283421Invention Concerning Gas Sensors - The invention at hand concerns a novel class of gas sensors, in particular for hydrogen or hydrogen-containing fluids (gases or liquids), such as hydrocarbons, hydrogen sulphides or more complex gas mixtures or gas compositions which contain hydrogen or hydrogen compounds.11-19-2009
20100193376ELECTRODES SELECTIVE FOR SOLID-CONTACT IONS BASED ON CARBON NANOTUBES - The invention defines an all-solid-contact ISE which comprises a transducer layer of carbon nanotubes which brings the sensing layer and conducting element into contact. The invention also defines a method for the preparation of said all-solid-contact ISE and the use of the same for the qualitative, quantitative or semi-quantitative analysis of analytes. Said all-solid-contact ISE makes it possible to detect or quantify highly diverse chemical species in a reliable and reproducible manner, with the added advantages derived from its simplicity and low construction cost.08-05-2010
20080302672SYSTEMS AND METHODS FOR SENSING - A sensor system for measuring a plurality of chemical species is disclosed. The sensor system includes a plurality of semiconductor device sensor elements, wherein each sensor element includes at least one wide band gap semiconductor layer and at least one catalytic layer configured to have an electrical property modifiable on exposure to an analyte including one or more chemical species; and an acquisition and analysis system configured to receive sensor signals from the plurality of sensor elements and to use multivariate analysis techniques to analyze the sensor signals to provide multivariate analyte measurement data.12-11-2008
20100300895APPARATUS AND METHODS FOR PERFORMING ELECTROCHEMICAL REACTIONS - The invention is directed to apparatus and methods for delivering multiple reagents to, and monitoring, a plurality of analytical reactions carried out on a large-scale array of electronic sensors underminimal noise conditions. In one aspect, the invention provides method of improving signal-to-noise ratios of output signals from the electronic sensors sensing analytes or reaction byproducts by subtracting an average of output signals measured from neighboring sensors where analyte or reaction byproducts are absent. In other aspects, the invention provides an array of electronic sensors integrated with a microwell array for confining analytes and/or particles for analytical reactions and a method for identifying microwells containing analytes and/or particles by passing a sensor-active reagent over the array and correlating sensor response times to the presence or absence of analytes or particles. Such detection of analyte- or particle-containing microwells may be used as a step in additional noise reduction methods.12-02-2010
20110000795ELECTROCHEMICAL DATA REJECTION METHODOLOGY - A method is provided for determining the concentration of an analyte in a sample which comprises: a) performing an electrochemical test comprising: (i) contacting the sample with an electrochemical cell comprising at least two electrodes; and (ii) obtaining at least one group of three or more measurements of an electrochemical parameter from the cell, wherein each measurement in each at least one group is obtained at a different time; b) deriving from said at least one group of three or more measurements a single value that is indicative of the time-dependent behavior of the measured parameter; c) comparing the single value indicative of the time-dependent behavior of the measured parameter with a pre-determined range of acceptable time-dependent behaviors; d) determining whether the test is acceptable based on the result of said comparison; e) optionally repeating the above-mentioned steps; and 0 determining the concentration of the analyte from the measurements obtained from the acceptable test or acceptable tests. Also provided is a device on which such a method can be performed and a computer program suitable for performing the data rejection methodology comprised in the method.01-06-2011
20110042237ELECTROCHEMICAL SENSOR DEVICE AND ELECTROCHEMICAL MEASURING METHOD USING THE SAME - Provided is an electrochemical sensor device capable of micromachining a channel while maintaining its measurement sensitivity and of reliably quantitating an analyte in a trace amount of a sample. An electrochemical sensor device includes: a channel portion formed in a substrate; and working electrodes for subjecting an analyte in a solution flowing in the channel portion to electrochemical measurement, the electrochemical sensor device includes a plurality of measuring portions individually provided with the working electrodes, and each of the working electrodes has a plurality of conductive protrusion portions formed to protrude from a bottom surface of each of the measuring portions.02-24-2011
20120199496Analyzing Device, Sensor Testing Device, Testing Method and Computer-Readable Storage Medium - There is provided a sensor testing method including: applying at least one of a first voltage that obtains a response caused by a substance and a second voltage that either obtains no response or substantially no response caused by the substance across a first electrode and a second electrode of a sensor; measuring current flowing between the first electrode and the second electrode; and determining whether or not there is a defect present in the sensor based on a quantity related to an amount of change per specific period of time of a current measured when the first voltage and/or the second voltage have been applied.08-09-2012
20100276302CHEMIRESISTOR FOR USE IN CONDUCTING ELECTROLYTE SOLUTION - The present invention provides a chemiresistor-based sensor for measuring the presence or amount of analyte in an electrolyte solution; said chemiresistor comprising (i) a chemiresistor film wherein the impedance of said nanoparticle film changes in the presence of an analyte; and (ii) two electrically conducting electrodes in electrical contact with said nanoparticle film; wherein said electrically conducting electrodes are adapted to be connected to a device for measuring the impedance of said chemiresistor film under a voltage signal and wherein the impedance of the double layer capacitor formed by the two electrically conducting electrodes in the presence of the electrolyte solution, is larger than the impedance of the chemiresistor film either before or after exposure of the chemiresistor film to the analyte. A method of using said chemiresistor-based sensor to measure the presence or amount of analyte is also provided. Further provided is a method of determining the partition coefficient of an analyte using said chemiresistor-based sensor.11-04-2010
20090127133Apparatus and Method for Measuring Hydrogen Concentration in Molten Metals - The present invention concerns a probe for measuring hydrogen concentration in molten metals comprising a probe body and a hydrogen sensor. The sensor structure is based on a sensor body having a wall within which a sealed cavity is defined. The cavity contains a solid reference material for generating a reference partial pressure of hydrogen within the cavity. At least a portion of the wall of the cavity is formed from a solid electrolyte material carrying a measurement electrode on a surface of the solid electrolyte outside the cavity and a reference electrode on a surface of the solid electrolyte within the cavity, exposed to the reference partial pressure of hydrogen. An electrical conductor extends from the reference electrode through the wall of the cavity to an external surface of the sensor body. The probe body comprises a chamber for receiving the sensor and a reference-signal connection for connecting to the electrical conductor when the sensor is received in the chamber.05-21-2009
20110162977ELECTROCHEMICAL SENSOR UTILISING A DUAL REDOX SYSTEM CONTAINED WITHIN A SINGLE MOLECULE - An electrochemical sensor utilises a chemical compound which is not a macromolecule but rather is a single chemical compound of determinate structure, incorporating two redox systems which differ in their response to a species to be detected. In one form, one redox system displays a voltammetric wave which is pH dependent while another displays a voltammetric wave which is pH independent and acts as an internal reference. The sensor comprises a solid substrate, which may be carbonaceous, on which the compound is immobilized. The sensor may be incorporated into a tool to be suspended in a wellbore.07-07-2011
20080202943Particulate Sensor and Method For Operating a Particulate Sensor - A sensor for determining the concentration of particulates in gas mixtures is described, a soot sensor in particular, having a ceramic sensor body surrounded by a metallic housing and having a first and a second measuring electrode. In this instance, the first measuring electrode is connected to the metallic housing of the sensor or the metallic housing of the sensor is designed as the first measuring electrode. By additional electrodes on the ceramic body, the sensor is operable also as a lambda sensor.08-28-2008
20110132773APPARATUS AND METHOD FOR DETECTING SUBSTANCES - An apparatus for detecting at least one substance present in a fluid flow includes at least one field effect transistor which acts as a measuring sensor, and at least one field effect transistor which acts as a reference element, the field effect transistors each having at least one source electrode, one drain electrode, and one gate electrode. The gate electrode of the field effect transistor which acts as the measuring sensor is sensitive to the at least one substance to be detected, and the gate electrode of the field effect transistor which acts as the reference element is essentially insensitive to the at least one substance to be detected. The source electrode of one of the field effect transistors and the drain electrode of the other of the field effect transistors are connected to one another and to a signal line. A method for detecting at least one substance present in a fluid flow by using the apparatus is also described, a potential of 0 volt being applied to the signal line and the current flowing on the signal line being measured.06-09-2011
20100163429GAS SENSING MATERIAL AND GAS SENSOR EMPLOYING THE SAME - Gas sensing material and gas sensor employing the same are provided. The gas sensing material includes an inorganic metal oxide and an organic polymer, wherein the organic polymer includes a repeat unit having the structure of07-01-2010
20110024305Differential Amplifier Sensor Architecture for Increased Sensing Selectivity - A differential amplifier and method of sensing includes a first carbon nanotube field effect transistor (CNTFET) that selectively detects an analyte from an environment comprising analytes and nonspecific interferences, and produces a first signal associated with the detected analyte and any nonspecific interferences; a second CNTFET adjacent to the first CNTFET, wherein the second CNTFET detects the nonspecific interferences of the environment, and produces a second signal associated with the detected nonspecific interferences; and means for generating a differential output signal using the first signal and the second signal as input, wherein the differential output signal is completely devoid of the second signal.02-03-2011
20080314765Method for detecting defective electrodes in a micro-electrode matrix - Method for detecting defective electrodes in a micro-electrode matrix The method for detecting defective electrodes in an electrode matrix comprises measurement of an electrochemical impedance spectrum for each of the electrodes. Modeling of the spectrum impedance relative to each electrode by means of an implicit non-integral frequency model is performed in the form of a parameter matrix. Principal components analysis of the matrix is performed to transform said parameter matrix into a final matrix containing decorrelated variables representing the parameter matrix in a new space. The distance between each electrode and a reference point is calculated. These calculated distances are compared with a preset threshold distance and the electrodes having a distance greater than the threshold distance are classified as being defective.12-25-2008
20120043225Method and Apparatus for Electrocatalytic Amplification on Pre-Oxidized Measuring Electrode - The present invention includes methods and compositions having at least one nanoparticle for analyzing a chemical analyte. The device includes an electrochemical cell connected to a measuring apparatus, wherein the electrochemical cell comprises a container and at least one electrode comprising a surface modification; a solution within the container comprising one or more chemical analytes and one or more metal nanoparticles in the solution, wherein one or more electrocatalytic properties are generated by the one or more metal nanoparticles at the at least one electrode and the contact of individual nanoparticles can be measured.02-23-2012
20120205258DIGITAL POTENTIOSTAT CIRCUIT AND SYSTEM - A small, portable, and inexpensive potentiostat circuit that is suitable for wide-spread electrochemical analysis is disclosed. The potentiostat may be fabricated as a stand-alone electrical component or it may be fabricated in conjunction with a Programmable System-on-Chip (SoC) to facilitate on-the-fly calibration and configuration.08-16-2012
20100133116GAS SENSOR CONTROL DEVICE AND GAS SENSOR CONTROL METHOD - A gas sensor control apparatus 06-03-2010
20120055809ASSAY CARTRIDGES AND METHODS OF USING THE SAME - Assay modules, preferably assay cartridges, are described as are reader apparatuses which may be used to control aspects of module operation. The modules preferably comprise a detection chamber with integrated electrodes that may be used for carrying out electrode induced luminescence measurements. Methods are described for immobilizing assay reagents in a controlled fashion on these electrodes and other surfaces. Assay modules and cartridges are also described that have a detection chamber, preferably having integrated electrodes, and other fluidic components which may include sample chambers, waste chambers, conduits, vents, bubble traps, reagent chambers, dry reagent pill zones and the like. In certain preferred embodiments, these modules are adapted to receive and analyze a sample collected on an applicator stick.03-08-2012
20110089050METHOD AND APPARATUS FOR CHEMICAL ANALYSIS OF FLUIDS - An apparatus and method for electrochemical fluid analysis comprises a chamber (04-21-2011
20120125788ELECTROCHEMICAL AFFINITY BIOSENSOR SYSTEM AND METHODS - The present invention provides novel osmium-based electrochemical species for the detection of wide variety of analytes using immunological techniques. The present invention also provides diagnostic kits and test sensors supporting electrode structures that can be used with the osmium-based electrochemical species. The test sensor can be fabricated to support interdigitated arrays of electrodes that have been designed to provide amplification of the electrical signal amplification desired to analyze analytes that may be present at low concentrations.05-24-2012
20120160707PROCESSES AND SYSTEMS FOR CHARACTERIZING AND BLENDING REFINERY FEEDSTOCKS - A method for characterizing refinery feedstocks according to their corrosivity is provided. The characterization is based on any of: dissociation of acids in the crude, breakup of naphthenic acid molecular associations, and/or dissociation of sulfur compounds in the feedstocks. In one embodiment, the characterization is done via vibrational spectroscopic measurements over a range of temperature, e.g., from ambient to 700° F. The method can be practiced in any of refinery, terminal, and laboratories. It can be used in conjunction with models and hardware to optimize the usage of refinery feedstocks in the blending and valuation of the feedstocks.06-28-2012
20120132540METHOD FOR AUTOMATICALLY AND RAPIDLY DISTINGUISHING BETWEEN CONTROL AND SAMPLE SOLUTIONS IN A BIOSENSOR STRIP - The present invention is directed to electrochemical sensors and systems and methods for electrochemically sensing a particular constituent within a fluid through the use of a diagnostic test. The methods provide for automatic discrimination of sample from control or standard solutions. A device and system used to determine a constituent level within a fluid that employ such automatic sample discrimination methods or specially formulated solutions is also provided.05-31-2012
20120168321ELECTROCHEMICAL HALF CELL, ELECTROCHEMICAL SENSOR AND METHOD FOR MEASURING AT LEAST ONE MEASURED VARIABLE OF A MEASURED MEDIUM WITH AN ELECTROCHEMICAL SENSOR - The invention relates to an electrochemical half cell for application in an electrochemical sensor, wherein a fill electrolyte (07-05-2012
20120211371PARTICULATE MATTER AMOUNT DETECTION SYSTEM - A porous structure including a pair of electrodes disposed in a flow direction of exhaust gas and a solid electrolyte interposed between the electrodes is arranged in an exhaust passage of an internal combustion engine, and the amount of a particulate matter in exhaust gas is specified based on a potential difference generated between the electrodes.08-23-2012
20100051478HIGH-THROUGHPUT SCREENING AND DEVICE FOR PHOTOCATALYSTS - The disclosure relates to compositions, devices and methods for screening of photocatalysts for water-splitting.03-04-2010
20120073986Electrochemical Test Device - An assay module for an electrochemical test device, said assay module comprising: at least one channel for transporting a liquid to be tested from a deposition zone, where a sample of said liquid to be tested can be deposited, to a testing zone, the testing zone being spaced apart from said deposition zone; and electrodes for measuring an electrical property of liquid in said testing zone, an electrochemical test device comprising such an assay module and a method of testing a liquid sample using such an electrochemical test device.03-29-2012
20120228154GAS SENSOR ELEMENT AND METHOD OF DETECTING CONCENTRATION OF TARGET DETECTION GAS - A gas sensor element has a first cell, a second cell, and a solid electrolyte layer having proton conductivity commonly used by the first cell and the second cell. The first cell has a first cathode and a first anode exposed to the target detection gas containing hydrogen atoms. The second cell has a second anode, a second cathode, and a shield layer with which the second anode is covered. A voltage is supplied to the first and second cells. A gas concentration of the target detection gas is calculated on the basis of a difference between a current of the first cell and a current of the second cell because the current in the first cell is a sum of proton conductivity current and an electron conductivity current. The current in the second cell is an electron conductive current only.09-13-2012
20080302673Devices, systems and methods for testing gas sensors and correcting gas sensor output - A method of adjusting the output of an electrochemical sensor including a working electrode and a counter electrode, includes: electronically causing a current flow between the working electrode and the counter electrode via an electrolyte without introducing a test analyte to the electrochemical sensor; measuring a response of the sensor to the current demand resulting from the electronically generated current flow; and using the measured response to adjust the sensor output during sampling of an analyte gas.12-11-2008
20120298528BIOSENSOR AND ANALYSIS METHOD USING SAME - The present invention provides a biosensor including a working electrode or working electrodes on which a reaction material or a bonding material is immobilized, where the reaction material is reactive with a target material so as to produce a product, and the bonding material is bondable with a target material; a counter electrode; and a reaction section for holding a sample liquid containing the target material, the working electrode and the counter electrode being provided on a bottom surface of the reaction section, and the working electrode occupying the bottom surface of the reaction section by a ratio of 0.7 or greater.11-29-2012
20120080323SYSTEMS AND METHODS OF DISCRIMINATING BETWEEN A CONTROL SAMPLE AND A TEST FLUID USING CAPACITANCE - Methods for distinguishing between an aqueous non-blood sample (e.g., a control solution) and a blood sample are provided herein. In one aspect, the method includes using a test strip in which multiple current transients are measured by a meter electrically connected to an electrochemical test strip. The current transients are used to determine if a sample is a blood sample or an aqueous non-blood sample based on characteristics of the sample (e.g., amount of interferent present, reaction kinetics, and/or capacitance). The method can also include calculating a discrimination criteria based upon these characteristics. Various aspects of a system for distinguishing between a blood sample and an aqueous non-blood sample are also provided herein.04-05-2012
20120091011BIOCOMPATIBLE ELECTRODE - A biocompatible electrode formed from an integrated circuit, the electrode comprising: a semiconductor substrate; and an electrode layer at least partially comprising porous valve metal oxide.04-19-2012
20120138483METHOD AND SYSTEM FOR ELECTROLYSER SINGLE CELL CURRENT EFFICIENCY - There is described a method for determining single cell current efficiency in an electrolyser, the method comprising: measuring voltage of a plurality of single cells in the electrolyser; measuring electrolyser current feeding the single cells; detecting one of a shutdown period and a start-up period; and for each single cell: determining a time t taken for a voltage level to reach a predetermined occurrence in a voltage curve after a polarization current has been triggered; and calculating cell current efficiency as a function of the time t.06-07-2012
20110139633PROCESS FOR VERIFYING AN ELECTROCHEMICAL SUBSTANCE IN A GAS SAMPLE - A process is provided for verifying an electrochemical substance in a gas sample. The process generates in an electrochemical sensor a measured electric value changing over time with a characteristic rising from a reference line to a maximum and again declining to the reference line. The percentage of the electrochemical substance in the gas sample is determined in an analysis circuit by setting a first interval and a second interval in the range of the characteristic after the maximum has been exceeded. The first interval includes the range of the characteristic in the vicinity of the maximum and the second interval includes the range of the maximum in the vicinity of the reference line. The electrochemical substance is determined by determining the ratio of the slopes of the first and second intervals and by comparison with a reference value of the ratio of the slopes of the first and second intervals.06-16-2011
20080237061Electronic methods for the detection of analytes - The present invention is directed to the detection of target analytes using electronic techniques, particularly AC techniques.10-02-2008
20110048969ELECTROCHEMICAL SENSOR - An electrochemical sensor and a method for using an electrochemical sensor are described where the electrochemical sensor comprises a working electrode having thereon one or more redox species that are sensitive to an analyte to be measured and a polymer coating that provides for interaction between the redox species and the analyte.03-03-2011
20080202944Method for Use of an Electrochemical Sensor and Electrodes Forming Said Sensor - A method for in situ self-calibrating of an electrochemical sensor for measuring the concentration of one or more species in an aqueous medium. The method includes: taking a first measurement of the current of a working electrode representative of the concentration of dissolved oxygen in the medium, applying an anode current of predetermined density and duration to a generating electrode to produce a defined increase in the local concentration of the dissolved oxygen, taking a second measurement of the current of the working electrode representative of the concentration of oxygen after applying the anode current to the generating electrode, and computing from the first and second measurements a calibration factor for one or more species that relates the oxygen concentration of the medium to be analyzed and the actually measured current between the working electrode and its counter electrode.08-28-2008
20110210013SELECTIVE GAS SENSOR DEVICE AND ASSOCIATED METHOD - A detection system is presented. The detection system includes a sensing component and a data analyzer. The sensing component includes a first sensor and a second sensor in fluid communication with the first sensor. The first sensor is disposed to allow operation at a predetermined temperature T09-01-2011
20130146478Analyte Test Strip and Analyte Meter Device - A test strip with an incorporated optical waveguide and deflectors punched through the optical waveguide allows light to exit through a layer of the test strip and be detected by a photo detector. Using light and a photodetector, these uniquely coded strips are identified. The waveguide can be constructed by sandwiching two layers of the test strip around a light transmissible layer. This configuration allows light to be transmitted through the test strip and out the other end, as well as allowing some light to escape the deflector. This light is detected by a photodetector mounted in the analyte test meter. The deflectors may be placed in patterns such that detection of this light indicates certain characteristics of the strip, such as non-counterfeit, regional identification, type of analyte tested, and coding information.06-13-2013
20080197022GAS SENSOR CONTROL APPARATUS DESIGNED TO ENSURE ACCURACY OF MEASUREMENT IN GAS SENSOR - The gas sensor control apparatus develops a first voltage based on a first reference voltage at a negative terminal of a gas sensor device through a resistor and a second voltage based on a second reference voltage at a positive terminal of the gas sensor device. A controller samples through the resistor a sensor current, as created upon the development of the first and second voltage for measuring the concentration of gas. When the impedance of the gas sensor device is measured, the controller alternates the first voltage across the first reference voltage. The value (i.e., a zero-point) of the voltage applied to the gas sensor device when the sensor current is zero (i.e., 0 mA) depends upon the first and second reference voltages. The zero-point is corrected by regulating the second reference voltage to match an applying voltage characteristic to the gas sensor device correctly.08-21-2008
20120273369GAS SENSOR APPARATUS AND METHOD FOR CONTROLLING THE SAME - When a detection signal obtained from the cell of a gas sensor (S11-01-2012
20120273368Analysis Device - An analysis device is disclosed which includes an electron detection medium to obtain information needed for analyzing an analyte in correlation with an electron transfer level, and a reagent part which is disposed on the electron detection medium and includes an electron transporting substance to transport electrons between the analyte and the electron detection medium, the electron transporting substance including a water-soluble aromatic heterocycle compound, and being free of a metal complex. An analysis method using the analysis device is also disclosed.11-01-2012
20130193003METHOD AND APPARATUS FOR SENSING A PROPERTY OF A FLUID - A device for sensing a property of a fluid comprising a first substrate having formed thereon a sensor configured in use to come into contact with a fluid in order to sense a property of the fluid, and a wireless transmitter for transmitting data over a wireless data link and a second substrate having formed thereon a wireless receiver for receiving data transmitted over said wireless link by said wireless transmitter. The first substrate is fixed to or within said second substrate. Additionally or alternatively, the device comprises a first substrate defining one or more microfluidic structures for receiving a fluid to be sensed and a second substrate comprising or having attached thereto a multiplicity of fluid sensors, the number of sensors being greater than the number of microfluidic structures. The second substrate is in contact with the first substrate such that at least one of the sensors is aligned with the or each microfluidic structure so as to provide an active sensor for the or each structure, and such that one or more of the sensors is or are not aligned with any microfluidic structure and is or are thereby redundant.08-01-2013
20130199941CONDITIONING APPARATUS AND METHOD FOR ION-SELECTIVE ELECTRODE - Ion-selective electrodes (ISE's) optimised for analyte determinations and provides methods and apparatus for conditioning ion selective electrodes. The conditioning methods and apparatus are particularly useful for ISE's selective for, difficult to condition, less stable and temperature sensitive products, an are based on a concentration gradient and/or a short exposure to an increased temperature.08-08-2013
20120080324METHOD OF ELECTROCHEMICALLY DETECTING TARGET SUBSTANCE, METHOD OF ELECTROCHEMICALLY DETECTING ANALYTE, TEST CHIP, AND DETECTION SET - The present invention provides a method for electrochemically detecting a target substance and a method for electrochemically detecting an analyte using a probe holding substrate with a probe for trapping a target substance or an analyte held on the substrate body as well as a test chip and a detection set using the above detection methods.04-05-2012

Patent applications in class ELECTROLYTIC ANALYSIS OR TESTING (PROCESS AND ELECTROLYTE COMPOSITION)

Patent applications in all subclasses ELECTROLYTIC ANALYSIS OR TESTING (PROCESS AND ELECTROLYTE COMPOSITION)