Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Diaphragm type

Subclass of:

204 - Chemistry: electrical and wave energy

204193000 - APPARATUS

204194000 - Electrolytic

204242000 - Cells

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
204263000 With feeding and/or withdrawal means 37
204253000 Plural cells 21
204262000 With heater or cooler 7
204260000 Concentrically arranged electrodes 4
20090266709CYLINDRICAL MEMBRANOUS ELECTROLYTIC CELL AND ASSEMBLED ANODE AND DIAPHRAGM - The disclosure is directed to the area of electrochemical processing of liquids and production of gases, and is used for anolyte and catholyte synthesis. The electrolytic cell comprises an assembled anode and a diaphragm. Elements of the anode and the diaphragm are assembled in axial alignment with help of sleeves, and free ends of the anode and the diaphragm are fixed in a coaxial manner with solid of electrolyte input and output covers. The cathode is made solid from a single pipe with current terminals on each side. The cathode is the internal electrode of the electrolytic cell, while the anode is the external one. The anode is may be provided with a visual indicator as a positive electrode.10-29-2009
20090277785Coaxial symmetrical completely open electrolytic bath - An electrolytic bath includes a shell, an upper cover joined on an upper end of the shell, an outer supporting member held in the shell, a hollow cylindrical positive electrode plate held in the outer supporting member, a hollow cylindrical negative electrode plate held in the positive electrode plate, an inner supporting member held in the negative electrode plate, a lower cover joined on a lower end of the shell, and a base member on a bottom of the lower cover; a space exists between the positive and the negative electrode plates; the electrolytic bath has a waste water outlet and a water outlet hole for acid waste water and alkaline water to flow out therethrough respectively; because the electrode plates are hollow cylindrical and completely open, they can't change shape easily, and there is no need for a separating plate, and scale can't form on the electrode plates easily.11-12-2009
20120292181ELECTROCHEMICAL PROCESSOR - An electrochemical processor may include a head having a rotor configured to hold a workpiece, with the head moveable to position the rotor in a vessel. Inner and outer anodes are in inner and outer anolyte chambers within the vessel. An upper cup in the vessel, has a curved upper surface and inner and outer catholyte chambers. A current thief is located adjacent to the curved upper surface. Annular slots in the curved upper curved surface connect into passageways, such as tubes, leading into the outer catholyte chamber. Membranes may separate the inner and outer anolyte chambers from the inner and outer catholyte chambers, respectively.11-22-2012
20100140080METHOD AND APPARATUS FOR MAKING ELECTROLYZED WATER - An insulating end cap for a cylindrical electrolysis cell the type comprising at least two tubular electrodes with a cylindrical membrane arranged co-axially between them, comprises a first annular section with first and second axial ends, having at its first axial end a circular seating or one end of an outer cylindrical electrode and at its second end a circular aperture, of smaller diameter than the circular seating and co-axial therewith, to accommodate one end of the membrane. A second annular section of the end cap is detachably secured to the first and has a central circular aperture of smaller diameter than the central aperture of the first section and co-axial therewith, to accommodate one end of the inner cylindrical electrode. The two part construction of the end cap facilitates the assembly of the cell, and reduces the likelihood of breakage of the fragile ceramic membrane.06-10-2010
204261000 With agitator 1
20100213052ELECTROLYTIC CELL AND METHOD OF USE THEREOF - In one embodiment of the present invention an electrolytic cell is provided comprising a containment vessel; a first electrode; a second electrode; a source of electrical current in electrical communication with the first electrode and the second electrode; an electrolyte in fluid communication with the first electrode and the second electrode; a gas, wherein the gas is formed during electrolysis at or near the first electrode; and a separator; wherein the separator includes an inclined surface to direct flow of the electrolyte and the gas due to a difference between density of the electrolyte and the combined density of the electrolyte and the gas such that the gas substantially flows in a direction distal to the second electrode.08-26-2010
Entries
DocumentTitleDate
20110174610PHOTOELECTROCHEMICAL CELL - A photoelectrochemical cell (07-21-2011
20130075250HYDROGEN PRODUCTION DEVICE - The hydrogen production device of the present invention includes: a first electrode (03-28-2013
20090120788Cation-Exchange Fluorinated Membrane for Electrolysis and Process for Producing the Same - A cation-exchange membrane for electrolysis which comprises a fluoropolymer having ion-exchange groups and a porous base. It is characterized by having, on the anode-side surface of the membrane, protrusions comprising a polymer having ion-exchange groups. It is further characterized in that: when the average value of the heights of the tops of the protrusions from the anode-side surface of the membrane is expressed as h (μm), then 20≦h≦150; when the density of the protrusions distributed is expressed as P (protrusions per cm05-14-2009
20100044216METHOD FOR CONTROLLING THE CONTACT ANGLE OF A DROPLET IN ELECTROWETTING AND AN APPARATUS USING THE DROPLET FORMED THEREBY - A method for controlling the hydrophilic droplet using the electrowetting principle is disclosed. More specifically, the present invention provides a method for increasing the change of the contact angle in the interface that is formed between the hydrophilic droplet and the nonpolar fluid by adding a constant concentration of two-element electrolyte or three-element electrolyte to the hydrophilic droplet; and an apparatus for controlling the droplet having the change of the contact angle and velocity scope increased by the method.02-25-2010
20090159435Micro-Structured Insulating Frame for Electrolysis Cell - The invention relates to an insulating frame of an electrolysis cell having a microstructured internal section allowing the penetration of the electrolyte even if the structured section is partly or completely overlapped by the membrane, and to an electrolysis cell equipped with the same.06-25-2009
20130048493ELECTROLYSIS DEVICE - The present invention relates to an electrolysis device comprising an elementary assembly (02-28-2013
20090236220Electrolysis cell - The invention relates to an electrolysis cell of the single-element type design for chlor-alkali electrolysis plants, comprising an anode compartment and a cathode compartment, each of the two compartments containing an electrode connected to the rear wall of the respective compartment by means of parallel bars. The electrodes are thus subdivided into several sections. In accordance with the invention, at least one of two electrodes is provided with a curved shape in each section, this curved section protruding towards the opposite electrode and pressing a membrane area against the opposite electrode. According to a preferred embodiment, the curved shape of the various electrode sections is obtained by means of springs.09-24-2009
20120234674CATION EXCHANGE MEMBRANE, ELECTROLYSIS VESSEL USING THE SAME AND METHOD FOR PRODUCING CATION EXCHANGE MEMBRANE - A cation exchange membrane includes: a membrane body containing a fluorine-based polymer having an ion-exchange group; and two or more reinforcing core materials arranged approximately in parallel within the membrane body. The membrane body is provided with two or more elution holes formed between the reinforcing core materials adjacent to each other. A distance between the reinforcing core materials adjacent to each other is represented by a, a distance between the reinforcing core materials and the elution holes adjacent to each other is represented by b, a distance between the elution holes adjacent to each other is represented by c, and the number of the elution holes formed between the reinforcing core materials adjacent to each other is represented by n. The relationship represented by the following expression (1) or expression (2) are satisfied:09-20-2012
20080210553Hydrogen generator having a porous electrode plate - There is provided a hydrogen generator having a porous electrode plate. The hydrogen generator including: an electrolytic bath having an electrolyte of a predetermined amount filled therein; a cover hermetically covering an open top of the electrolytic bath and having at least one hydrogen outlet; an electrode part fixed to the cover and having a porous structure formed on a body portion thereof to allow the electrolyte of the electrolytic bath to pass freely there through, the body portion of the electrode part immersed in the electrolytic bath; and a power supply supplying current to the electrode part.09-04-2008
20090014320ELECTROCHEMICAL ACTUATOR - The present invention provides systems, devices, and related methods, involving electrochemical actuation. In some cases, application of a voltage or current to a system or device of the invention may generate a volumetric or dimensional change, which may produce mechanical work. For example, at least a portion of the system may be constructed and arranged to be displaced from a first orientation to a second orientation. Systems such as these may be useful in various applications, including pumps (e.g., infusion pumps) and drug delivery devices, for example.01-15-2009
20110278159CATION EXCHANGE MEMBRANE, PRODUCTION PROCESS THEREOF AND ELECTROLYTIC CELL USING THE SAME - A cation exchange membrane which shows suppressed deterioration of the strength of the membrane in the upper portion of an electrolytic cell when the membrane is employed in the electrolytic cell and used for a long term, which can perform electrolysis with good production efficiency, and which can be produced simply with low cost; its production process and; such an electrolytic cell; are provided.11-17-2011
20090288946Electroactivated film with layered structure - An electroactivated film that includes: a first electrode that is spaced apart from a second electrode, a water insoluble electrically conductive medium which is permeable to moisture and oxygen and which contacts both electrodes, an electrocatalyst which can be reversibly oxidized and reduced and which facilitates the production of a peroxide when an electrical potential is imposed across the electrodes, and an optional peroxide-activating catalyst which converts the peroxide to an activated peroxide, wherein the first electrode, the conductive medium, the second electrode and the optional peroxide-activating catalyst are arranged in layers.11-26-2009
20090242391Electrode for Electrochemical Cell Operating With High Differential Pressure Difference, Procedure for the Manufacturing of Such Electrode and Electrochemical Cell for the Use of Such Electrode - The invention relates to a porous electrode used in an electrochemical cell, containing a carrier and/or catalytic agent, which is characterised by that it consists of two or more layers with different average pore sizes, out of which layers the contact layer with the smallest average pore size is in contact with the membrane, and one or more supporting layers with a greater average pore size are linked to the other side of this contact layer. Furthermore, the invention relates to a procedure for the manufacturing of such electrodes and to electrochemical cells containing such electrodes.10-01-2009
20100089745IR-DOPED RUTHENIUM OXIDE CATALYST FOR OXYGEN EVOLUTION - A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.04-15-2010
20110198217WATER ELECTROLYSIS APPARATUS - Each unit cell of a water electrolysis apparatus includes a pair of an anode separator and a cathode separator and a membrane electrode assembly interposed between the pair of separators. The anode separator has a first flow field to which water is supplied, and the cathode separator has a second flow field for producing high-pressure hydrogen through electrolysis of the water. A second seal groove for receiving a second seal member is disposed annularly around the second flow field. A pressure-releasing chamber is disposed outwardly of the second seal groove, is capable of communicating with the second seal groove and communicates with the outside through a depressurizing channel.08-18-2011
20090294282WATER ELECTROLYSIS DEVICE - Electrolysis device intended to produce hydrogen by the reduction of water, comprising a cathode compartment, an anode compartment, and an element connecting said compartments and allowing ions to migrate between them,12-03-2009
20080245661Electrolysis Cell with Enlarged Active Membrane Surface - The invention relates to an electrolytic cell for the production of chlorine from an aqueous alkali halide solution, which mainly consists of two semi-shells, an anode, a cathode and an ion exchange membrane arranged between the electrodes. Spacer elements are arranged between the ion-exchange membrane and the electrodes for fixing the membrane in position and distributing the compressive forces, made of electrically conductive and corrosion-resistant material on at least one side of the membrane10-09-2008
20080264779ANODE FOR GAS EVOLUTION REACTIONS - The invention describes an improved anode suitable for being installed in chlor-alkali electrolysis cells intercalated to cathode elements provided with a diaphragm.10-30-2008
20090050472Elastic Current Distributor for Percolating Cells - An electrolysis cell comprising an anodic compartment and a cathodic compartment separated by an ion-exchange membrane, at least one of said compartments equipped with a gas-diffusion electrode having two major surfaces, the first major surface of said gas-diffusion electrode facing the membrane and being in contact with a planar porous element to be traversed by an electrode flow, the second major surface of said gas-diffusion electrode being in contact with a current distributor comprising a multiplicity of elastic conductive protrusions for compressing said gas-diffusion electrode against said planar porous element.02-26-2009
20090152105Proton exchange membrane (PEM) electrochemical cell having an integral electrically-conductive, resiliently compressible, porous pad - Electrolysis cell comprises, in one embodiment, a proton exchange membrane (PEM), an anode positioned along one face of the PEM, and a cathode positioned along the other face of the PEM. An electrically-conductive, compressible, spring-like, porous pad for defining a fluid cavity is placed in contact with the outer face of the cathode. The porous pad comprises a mat of carbon fibers bound together with one or more, preferably thermoplastic, resins, the mat having a density of about 0.2-1.5 g/cm06-18-2009
20100213051ELECTROCHEMICAL APPARATUS - A hydrogen electrolysis apparatus includes a stack of unit cells each having a membrane electrode assembly sandwiched between an anode separator and a cathode separator. The anode separator has a first flow field which is supplied with water, and the cathode separator has a second flow field which produces high-pressure hydrogen through an electrolysis of the water. The cathode separator also has a first seal groove defined therein which extends around the second flow field and a first seal member inserted in the first seal groove. The first seal groove and the second flow field are held in fluid communication with each other through passageways. The passageways keep the first seal groove and the second flow field in direct fluid communication with each other in bypassing relation to the boundary between the cathode separator and a solid polymer electrolyte membrane.08-26-2010
20120193222Electrochemical Reactor for CO2 Conversion Utilization and Associated Carbonate Electrocatalyst - Electrochemical reactors are provided that operate on the carbonate cycle at extremely low temperatures (e.g., less than 50° C.), thereby allowing operation in as many as three (3) modes, namely as: (i) a room temperature carbonate fuel cell; (ii) an electrochemically assisted CO08-02-2012
20110024288DECARBOXYLATION CELL FOR PRODUCTION OF COUPLED RADICAL PRODUCTS - A method that produces coupled radical products from biomass. The method involves obtaining a lipid or carboxylic acid material from the biomass. This material may be a carboxylic acid, an ester of a carboxylic acid, a triglyceride of a carboxylic acid, or a metal salt of a carboxylic acid, or any other fatty acid derivative. This lipid material or carboxylic acid material is converted into an alkali metal salt. The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the carboxylic acid decarboxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.02-03-2011
20110031113ELECTROPLATING APPARATUS - Embodiments of the invention contemplate the formation of a low cost solar cell using a novel high speed electroplating method and apparatus to form a metal contact structure having selectively formed metal lines using an electrochemical plating process. The apparatus and methods described herein remove the need to perform one or more high temperature screen printing processes to form conductive features on the surface of a solar cell substrate. The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. It is thus desirable to form a solar cell device that has a low resistance connection that is reliable and cost effective. Therefore, one or more embodiments of the invention described herein are adapted to form a low cost and reliable interconnecting layer using an electrochemical plating process containing a common metal, such as copper.02-10-2011
20100213050APPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSIS - In one embodiment of the present invention an electrolytic cell is provided comprising: a containment vessel; a first electrode; a second electrode; a source of electrical current in electrical communication with the first electrode and the second electrode; an electrolyte in fluid communication with the first electrode and the second electrode; a gas, wherein the gas is formed during electrolysis at or near the first electrode; and a separator; wherein the first electrode is configured to control the location of nucleation of the gas by substantially separating the location of electron transfer and nucleation.08-26-2010
20090205952ELECTROLYSIS INSTALLATION - The invention relates to an electrolysis installation comprising at least two rows of electrodes that are immersed at least in part in a liquid electrolyte giving off one or more gaseous species of corrosive nature at the electrodes, at least one separation membrane being disposed between two adjacent rows of electrodes. Each membrane is constituted by carbon fiber reinforcement stiffened by a carbon matrix and presents porous portion that is permeable to ions and impermeable to the or each gaseous species, given off at the electrolytes.08-20-2009
20100065420ELECTRODE, METHOD OF MANUFACTURE AND USE THEREOF - An electrode for effective ozone production in an electrochemical cell uses a modified electrode design which adopts a novel catalytic component. The catalytic component has a number of elements selected from various metals and metalloids, and is applied to a substrate in multiple coatings or layers. The catalytic component forms a catalytic surface which is at least partially disrupted by the presence of an element which is relatively inactive with respect to oxygen evolution.03-18-2010
20110073467ELECTROLYTIC OZONE CELL ANODE SPRING BOARD FIXTURE STRUCTURE - An electrolytic ozone cell anode spring fastening board structure includes a solid polymer electrolyte membrane (03-31-2011
20110042205CAPACITIVE DEIONIZATION DEVICE - A capacitive deionization device includes; at least one flow path configured for influent water flow, at least one pair of electrodes, at least one charge barrier disposed between the at least one flow path and a corresponding electrode of the at least one pair of electrodes, and at least one electrolyte solution disposed between the at least one electrode of the at least one pair of electrodes and a corresponding charge barrier of the at least one charge barrier, wherein the at least one electrolyte solution is different in at least one of ionic concentration and ionic species from the influent water.02-24-2011
20080314740Ozone Generating Electrolysis Cell - The ozone generating electrolysis cell (12-25-2008
20110000784Method and electrode for defining and replicating structures in conducting materials - The present invention concerns an electrochemical pattern replication method, ECPR, and a construction of a conductive electrode for production of applications involving micro and nano structures. An etching or plating pattern, which is defined by a conductive electrode, a master electrode, is replicated on an electrically conductive material, a substrate. The master electrode is put in close contact with the substrate and the etching/plating pattern is directly transferred onto the substrate by using a contact etching/plating process. The contact etching/plating process is performed in local etching/plating cells, that are formed in closed or open cavities between the master electrode and the substrate.01-06-2011
20090308738Alkaline electrolyzer - An Alkaline Electrolyzer Cell Configuration (AECC) has a hydrogen half cell; an oxygen half cell; a GSM (Gas Separation Membrane);two inner hydrogen half cell spacer screens; an outer hydrogen half cell spacer screen; a hydrogen electrode; two inner oxygen half cell spacer screens; an outer oxygen half cell spacer screen; and an oxygen electrode. The hydrogen half cell includes the hydrogen electrode which is located between said two inner hydrogen half cell spacer screens and said outer hydrogen half cell spacer screen. The oxygen half cell includes the oxygen electrode which is located between said two inner oxygen half cell spacer screens and said outer oxygen half cell spacer screen. The the GSM is provided between said two inner hydrogen half cell spacer screens of the hydrogen half cell and said two inner oxygen half cell spacer screens of the oxygen half cell to from the electrolyzer.12-17-2009
20090071820ION EXCHANGE MEMBRANE ELECTROLYTIC CELL - [Problems] The liquid pressure of an anode chamber in a two-chamber ion exchange membrane electrolytic cell using a gas diffusion electrode are different among one another depending on depths so that the liquid pressures are applied on an anode or an ion exchange membrane, thereby introducing damage or deformation of the elements.03-19-2009
20080264780Water electrolysis system - In a water electrolysis system having an anode catalyst layer containing anode catalyst and a cathode catalyst layer containing cathode catalyst tightly attached, respectively, to each surface of a solid polymer electrolyte membrane comprising a cation exchange membrane, wherein at least one catalyst layer of said anode catalyst layer and cathode catalyst layer comprises a porous structure of anode catalyst or cathode catalyst dispersed in fluorine resin containing resin, featuring the surface of the anode catalyst layer or the cathode catalyst layer being hydrophobized and the water contact angle with the surface of the anode catalyst layer or the cathode catalyst layer of said porous structure being 90 degrees or more, whereby the transfer of gas to the counter electrode can be significantly suppressed, gas purity and current efficiency be improved, and safety operation of the electrolysis system be secured, without a major change in configuration of the water electrolysis system.10-30-2008
20100288629Proton exchange membrane (PEM) electrochemical cell having an integral, electrically-conductive, resiliently compressible, porous pad - Electrochemical cell comprises, in one embodiment, a proton exchange membrane (PEM), an anode positioned along one face of the PEM, and a cathode positioned along the other face of the PEM. An electrically-conductive, compressible, spring-like, porous pad for defining a fluid cavity is placed in contact with the outer face of the cathode or the outer face of the anode. The porous pad comprises a particulate or mat of one or more doped- or reduced-valve metal oxides, which are bound together with one or more thermoplastic resins.11-18-2010
20100219067Electrochemical High Pressure Pump - The invention provides electrochemically-based methods and devices for producing fluid flow and/or changes in fluid pressure. In the methods and devices of the invention, current is passed through a divided electrochemical cell. Adjacent compartments of the cell are divided by a separator which comprises an ionically conducting separator. Each compartment includes an electrode and an electrolyte solution or ionic liquid. The electrolyte solution(s) or ionic liquid(s) and the ionically conducting separator are selected to obtain the desired relationship between the current through the cell and the fluid flowrate and/or change in fluid pressure.09-02-2010
20120152734ALKALINE ELECTROLYZER - An Alkaline Electrolyzer Cell Configuration (AECC) has a hydrogen half cell; an oxygen half cell; a GSM (Gas Separation Membrane); two inner hydrogen half cell spacer screens; an outer hydrogen half cell spacer screen; a hydrogen electrode; two inner oxygen half cell spacer screens; an outer oxygen half cell spacer screen; and an oxygen electrode. The hydrogen half cell includes the hydrogen electrode which is located between said two inner hydrogen half cell spacer screens and said outer hydrogen half cell spacer screen. The oxygen half cell includes the oxygen electrode which is located between said two inner oxygen half cell spacer screens and said outer oxygen half cell spacer screen. The GSM is provided between said two inner hydrogen half cell spacer screens of the hydrogen half cell and said two inner oxygen half cell spacer screens of the oxygen half cell to from the electrolyzer.06-21-2012
20110089028ALL CERAMICS SOLID OXIDE FUEL CELL - The present invention provides an all ceramics solid oxide cell, comprising an anode layer, a cathode layer, and an electrolyte layer sandwiched between the anode layer and the cathode layer, wherein the electrolyte layer comprises doped zirconia and has a thickness of from 40 to 300 μm; wherein the anode layer and the cathode layer both comprise doped ceria or both comprise doped zirconia; and wherein the multilayer structure formed of the anode layer, the electrolyte layer and the cathode layer is a symmetrical structure. The present invention further provides a method of producing said solid oxide cell.04-21-2011
20100206722ELECTROLYSIS APPARATUS - A unit cell of an electrolysis apparatus includes a membrane electrode assembly sandwiched between an anode separator and a cathode separator. The membrane electrode assembly includes a solid polymer electrolyte membrane, an anode current collector disposed on one side of the solid polymer electrolyte membrane and held against the anode separator, and a cathode current collector disposed on the other side of the solid polymer electrolyte membrane and held against the cathode separator. A protective sheet having a number of through holes defined therein is interposed between the anode current collector and the solid polymer electrolyte membrane.08-19-2010
20120132521SYSTEMS AND DEVICES FOR TREATING WATER, WASTEWATER AND OTHER BIODEGRADABLE MATTER - The invention relates to bio-electrochemical systems for the generation of methane from organic material and for reducing chemical oxygen demand and nitrogenous waste through denitrification. The invention further relates to an electrode for use in, and a system for, the adaptive control of bio-electrochemical systems as well as a fuel cell.05-31-2012
20120132520Electrolytic Ozone Generator with Membrane Electrode - An electrolytic ozone generator with membrane electrode includes a proton exchange membrane (05-31-2012
20120186976METAL-SUPPORTED ELECTROCHEMICAL CELL AND METHOD FOR FABRICATING SAME - A metal-supported electrochemical cell is provided. The cell may contain a porous metal support comprising a first- and a second-main surfaces, a porous thermomechanical adaptive layer on the second main surface, a porous layer that is a barrier against the diffusion of chromium on the porous thermomechanical adaptive layer, this porous barrier layer being in stabilised zirconia and/or substituted ceria, and in a mixed oxide of spinel structure, a porous hydrogen electrode layer on the porous barrier layer, a dense electrolyte layer on the porous hydrogen electrode layer; a dense or porous reaction barrier layer on the dense electrolyte layer, and a porous oxygen or air electrode layer on the reaction barrier layer. A method for fabricating a metal-supported electrochemical cell is also provided. The method may comprise a step for the simultaneous sintering of the green support and of all the previously deposited layers in the green state.07-26-2012
20120318666METHOD AND APPARATUS FOR ELECTROPLATING ON SOI AND BULK SEMICONDUCTOR WAFERS - An electroplating apparatus and method for depositing a metallic layer on the surface of a wafer is provided wherein said apparatus and method do not require physical attachment of an electrode to the wafer. The surface of the wafer to be plated is positioned to face the anode and a plating fluid is provided between the wafer and the electrodes to create localized metallic plating. The wafer may be positioned to physically separate and lie between the anode and cathode so that one side of the wafer facing the anode contains a catholyte solution and the other side of the wafer facing the cathode contains an anolyte solution. Alternatively, the anode and cathode may exist on the same side of the wafer in the same plating fluid. In one example, the anode and cathode are separated by a semi permeable membrane.12-20-2012
20110226615ELECTROCHEMICAL MODULAR CELL FOR PROCESSING ELECTROLYTE SOLUTIONS - The invention relates to the production of different chemical products by the electrochemical processing of electrolyte solutions of different concentrations. A cylindrical electrochemical cell for processing solutions comprises an inner, hollow, tubular anode, an outer, cylindrical cathode, and a permeable, tubular, ceramic diaphragm that is arranged between said anode and cathode and divides the interelectrode space into anode and cathode chambers so that a working section of the cell is formed. The cell comprises units for mounting, securing and sealing the electrodes and the diaphragm, which are located at the end sections of the cell, and devices for supplying and removing the processed solutions. The cathode and anode of the cell are made of titanium tubes; furthermore, the ratio of the cross-sectional area of the cathode chamber to the total cross-sectional area of the anode chamber and the diaphragm ranges from 0.9 to 1.0, and the length of the working section of the cell is 15-25 times the outside diameter of the anode. The invention makes it possible to preserve the stability of the hydrodynamic characteristics of the electrode chambers and the electric field characteristics, intensify the electrolysis process and extend the cell functionalities.09-22-2011
20120298504Electro chemical deposition and replenishment apparatus - An electrochemical deposition apparatus adapted to deposit metal onto a surface of a substrate, the apparatus has a frame configured for holding a process electrolyte. A substrate holder is removably coupled to the frame, the substrate holder supporting the substrate in the process electrolyte. An anode fluid compartment is removably coupled to the frame and containing an anolyte and having an anode facing the surface of the substrate, the anode fluid compartment further having a ion exchange membrane disposed between the anode and the surface of the substrate, the anode fluid compartment removable from the frame as a unit with the ion exchange membrane and the anode. The holder, the anode and the membrane are arranged in the frame so that ions from the anode pass through the ion exchange membrane into and primarily replenish ions in the process electrolyte depleted by ion deposition onto the surface of the substrate.11-29-2012
20100230277Capacitive Deionization Cell With Balanced Electrodes - A capacitive deionization cell comprising a first electrode, an anion membrane adjacent said first electrode forming an anion membrane-electrode conjugate, a cation membrane in spacial relation with said anion membrane defining a fluid flow path between said anion membrane and said cation membrane, and a second electrode adjacent said cation membrane forming a cation membrane-electrode conjugate, wherein said anion membrane-electrode conjugate and said cation membrane-electrode conjugate each have an effective capacitance, and the ratio of the effective capacitance of said cation membrane-electrode conjugate to the effective capacitance of said anion membrane-electrode conjugate is a non-zero number less than 2.09-16-2010
20120138456SOLAR FUELS GENERATOR - The solar fuels generator includes photoanodes that each extends outward from a first side of a membrane. The generator also includes photocathodes that each extends outward from a second side of the membrane. The photocathodes each includes a p-type semiconductor and the photoanodes each includes an n-type semiconductor. The p-type semiconductors are in electrical communication with the n-type semiconductors.06-07-2012
20120138455ANODIZING APPARATUS - An apparatus for anodizing substrates immersed in an electrolyte solution. A substrate holder mounted in a storage tank includes a first support unit having first support elements for supporting, in a liquid-tight condition, only lower circumferential portions of the substrates, and a second support unit attachable to and detachable from the first support unit and having second support elements for supporting, in a liquid-tight condition, remaining circumferential portions of the substrates. A drive mechanism separates the first support unit and the second support unit when loading and unloading the substrates, and for connecting the first support unit and the second support unit after the substrates are placed in the substrate holder.06-07-2012
20120241314ELECTROLYTIC CATHODE STRUCTURE AND ELECTROLYZER USING THE SAME - Provided are an electrolytic cathode structure that can suppress the degradation of an activated cathode even if a reverse current flows upon the stoppage of operation of an electrolyzer in an electrode structure allowing the distance between the electrode and an electrode current collector to be maintained at an approximately constant value, and an electrolyzer using the same.09-27-2012
20130092530APPARATUS FOR PRODUCING ELECTROLYTIC REDUCED WATER AND CONTROL METHOD THEREOF - An apparatus for producing electrolytic reduced water capable of electrolyzing purified water, which is filtered through reverse osmosis, by use of concentrated water that remains after the purification. The apparatus includes a water purifying apparatus, and an electrolytic cell provided with a first chamber having a cathode, a second chamber having an anode, and a third chamber disposed between the first chamber and the second chamber to receive concentrated water from the water purifying apparatus.04-18-2013
20130175163APPARATUS AND METHOD FOR GENERATING HYDROGEN FROM WATER - Described herein is an apparatus is capable of generating hydrogen and oxygen gases from water containing little or no electrolyte. The apparatus includes a container and at least one electrolysis assembly comprising one or more permanent magnets which are covered with at least one pair of porous conductive electrodes separated by a non conductive insulator. The assembly is connected to the leads of a direct current power supply. After the container is filled with water to cover the electrodes, application of voltage from the power supply results in the generation of hydrogen and oxygen gases. This apparatus and method provides a means of producing and distributing hydrogen on-site, simply and inexpensively, since it uses very little energy and liquefaction, transportation, and delivery costs can be avoided.07-11-2013
20130146448MEMBRANE REACTOR - A membrane reactor used for electrochemically converting a carbon dioxide gas into an expected product includes a cavity, a solid electrolyte membrane separator, a cathode, an anode, and a power source. The solid electrolyte membrane separator is disposed in the cavity and divides the cavity into two chambers defined as a cathode chamber and an anode chamber. The cathode is disposed in the cathode chamber, and the anode is disposed in the anode chamber. The cathode is a trickle bed structure including a porous conductive layer and cathode particles disposed on the porous conductive layer. The power source is disposed outside the cavity to provide an electrolytic voltage.06-13-2013
20120024697Membranes - Process for manufacturing a composite membrane comprising a porous support and a polymeric separation layer having acidic or basic groups comprising the steps of: (i) applying a composition to a porous support; and (ii) curing the composition to form the polymeric separation layer thereon; wherein the composition comprises the components (a) a compound having one ethylenically unsaturated group; and (b) a crosslinking agent having an acrylamide group; and wherein the curing is achieved by irradiating the composition for less than 30 seconds. The membranes are useful in reverse electrodialysis e.g. for generating blue energy and have good resistance to deterioration, even under hot and high pH conditions.02-02-2012

Patent applications in class Diaphragm type

Patent applications in all subclasses Diaphragm type