Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Dielectrophoresis (i.e., using nonuniform electric field)

Subclass of:

204 - Chemistry: electrical and wave energy

204000000 - PROCESSES AND PRODUCTS

204450000 - Electrophoresis or electro-osmosis processes and electrolyte compositions therefor when not provided for elsewhere

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20130043133METHOD AND DEVICE FOR THE MANIPULATION OF PARTICLES BY OVERLAPPING FIELDS OF FORCE - Methods and related devices are illustrated for generating time-variable electric fields suitable for determining the creation of closed dielectrophoretic cages able to trap inside even single particles without the cages being necessarily positioned at relative minimum points of the electric field.02-21-2013
20130043132MANIPULATION OF MAGNETIC OR MAGNETIZABLE OBJECTS USING COMBINED MAGNETOPHORESIS AND DIELECTROPHORESIS - A device for manipulating magnetic or magnetizable objects in a medium is provided. The device has a surface lying in a plane and comprises a set of at least two conductors electrically isolated from each other, wherein the at least two conductors are adapted for both generating a magnetophoresis force for moving the magnetic or magnetizable objects over the surface of the device in a direction substantially parallel to the plane of the surface, and generating a dielectrophoresis force for moving the magnetic or magnetizable objects in a direction substantially perpendicular to the plane of the surface. Also provided is a method for manipulating magnetic or magnetizable objects in a medium. The method uses a combined magnetophoresis and dielectrophoresis actuation principle for controlling in-plane as well as out-of-plane movement of the magnetic or magnetizable objects.02-21-2013
20090194420Systems and Methods for Separating Particles and/or Substances from a Sample Fluid - Systems and methods for separating particles and/or toxins from a sample fluid. A method according to one embodiment comprises simultaneously passing a sample fluid and a buffer fluid through a chamber such that a fluidic interface is formed between the sample fluid and the buffer fluid as the fluids pass through the chambers the sample fluid having particles of interest therein; applying a force to the fluids for urging the particles of interest to pass through the interface into the buffer fluid; and substantially separating the buffer fluid from the sample fluid.08-06-2009
20130075259MICROFLUIDIC PUMPING BASED ON DIELECTROPHORESIS - This paper presents a microfluidic pumping approach using traveling-wave dielectrophoresis (tw-DEP) of microparticles. Flow is generated directly in the microfluidic devices by inducing electromechanical effects in the fluid using microelectrodes. The fluidic driving mechanisms due to the particle-fluid and particle-particle interactions under twDEP are analyzed, and the induced flow field is obtained from numerical simulations. Experimental measurements of the flow velocity in a prototype DEP micropumping device show satisfactory agreement with the numerical predications.03-28-2013
20110192726DEVICE AND METHOD FOR DETECTION OF ANALYTE FROM A SAMPLE - There is presently provided a device for detecting an analyte particle in a sample. The device comprises a chamber having an interior surface upon which is located an electrode array. The electrode array comprises pairs of electrodes, each pair having an inner electrode and an outer electrode that substantially surrounds the inner electrode. Each pair of electrodes is coated with a capture molecule that recognises and binds the analyte particle that is to be identified and quantified. The device uses a combination of dielectrophoresis and impedance measurements to capture and measure analyte particles from a sample.08-11-2011
20100116665SYSTEM AND METHOD FOR HIGH THROUGHPUT PARTICLE SEPARATION - The high throughput particle separation system includes an aqueous solution container for storing an aqueous solution containing specific particles to be separated, an electrode array, having a plurality of electrodes arranged at regular intervals or at various different intervals in series or in parallel, for deflecting specific particles simultaneously in a nonuniform electric field according to sizes and dielectric properties of the particles to separate a large quantity of the particles at high throughput, a path separation unit for establishing movement paths of the particles separated by the electrode array, and a control unit for applying the same voltage and frequency or different voltages and frequencies to the electrodes of the electrode array based on sizes and dielectric properties of specific particles to be separated.05-13-2010
20100044230METHODS FOR SEPARATING CARBON NANOTUBES - Disclosed herein too is a method that includes dispersing nanotubes in media that comprises flavin moieties substituted with solubilizing side chains, and/or non-flavin containing molecular species; self-assembling the flavin moieties and other non-flavin containing molecular species in a pattern that is orderly wrapped around the nanotubes to form a composite; introducing desired amounts of an optional reagent that competes with self-assembly in order to disturb the wrapping around nanotubes with moderate order; and centrifuging the mass of the nanotubes and the composites to extract the composite from other nanotubes that are not in composite form.02-25-2010
20100101955CATALYTIC MATERIALS, ELECTRODES, AND SYSTEMS FOR WATER ELECTROLYSIS AND OTHER ELECTROCHEMICAL TECHNIQUES - Catalysts, electrodes, devices, kits, and systems for electrolysis which can be used for energy storage, particularly in the area of energy conversion, and/or production of oxygen, hydrogen, and/or oxygen and/or hydrogen containing species. Compositions and methods for forming electrodes and other devices are also provided.04-29-2010
20100108516USE OF A FLUID MIXTURE FOR ELECTROWETTING A DEVICE - The invention relates to the use of a fluid mixture for electrowetting in a device that is suitable for this.05-06-2010
20090045062ION TRANSPORT DEVICE AND MODES OF OPERATION THEREOF - A device for transporting and focusing ions in a low vacuum or atmospheric-pressure region of a mass spectrometer is constructed from a plurality of longitudinally spaced apart electrodes to which oscillatory (e.g., radio-frequency) voltages are applied. In order to create a tapered field that focuses ions to a narrow beam near the device exit, the inter-electrode spacing or the oscillatory voltage amplitude is increased in the direction of ion travel.02-19-2009
20100006439METHODS AND APPARATUS FOR MANIPULATION AND/OR DETECTION OF BIOLOGICAL SAMPLES AND OTHER OBJECTS - Methods and apparatus for manipulation, detection, imaging, characterization, sorting and/or assembly of biological or other materials, involving an integration of CMOS or other semiconductor-based technology and microfluidics. In one implementation, various components relating to the generation of electric and/or magnetic fields are implemented on an IC chip that is fabricated using standard protocols. The generated electric and/or magnetic fields are used to manipulate and/or detect one or more dielectric and/or magnetic particles and distinguish different types of particles. A microfluidic system is fabricated either directly on top of the IC chip, or as a separate entity that is then appropriately bonded to the IC chip, to facilitate the introduction and removal of cells in a biocompatible environment, or other particles/objects of interest suspended in a fluid. The patterned electric and/or magnetic fields generated by the IC chip can trap and move biological cells or other objects inside the microfluidic system. Electric and/or magnetic field generating components also may be controlled using signals of various frequencies so as to detect one or more cells, particles or objects of interest, and even the type of particle or object of interest, by measuring resonance characteristics associated with interactions between samples and one or more of the field-generating devices. Such systems may be employed in a variety of biological and medical related applications, including cell sorting and tissue assembly.01-14-2010
20090301883METHOD AND SYSTEM FOR CONCENTRATING PARTICLES FROM A SOLUTION - Methods and systems are provided for concentrating particles (e.g., bacteria, viruses, cells, and nucleic acids) suspended in a liquid. Electric-field-induced forces urge the particles towards a first electrode immersed in the liquid. When the particles are in close proximity to (e.g., in contact with) the first electrode, the electrode is withdrawn from the liquid and capillary forces formed between the withdrawing electrode and the surface of the liquid immobilize the particles on the electrode. Upon withdrawal of the electrode from the liquid, the portion of the electrode previously immersed in the liquid has particles immobilized on its surface.12-10-2009
20120103813CELL SORTER AND CELL SORTING METHOD - Disclosed herein is a cell sorter including a measuring electrode, working electrode, detection electrode, and output section. The measuring electrode forms a measuring electric field in a flow path to measure a complex dielectric constant of each cells flowing through the flow path. The working electrode forms, in the flow path, a working electric field to sort the cells by imparting a dielectrophoretic force to the cells and using the flow path. The detection electrode detects the presence of the cell in the fluid flowing through the flow path. The output section acquires a sorting signal based on information about the measured complex dielectric constant and a detection signal indicating the detection of the cell by the detection electrode. The output section outputs a working signal adapted to form the working electric field to the working electrode when the detection signal is acquired if the sorting signal is acquired.05-03-2012
20090095630MICROFLUIDIC PUMPING BASED ON DIELECTROPHORESIS - This paper presents a microfluidic pumping approach using traveling-wave dielectrophoresis (tw-DEP) of microparticles. Flow is generated directly in the microfluidic devices by inducing electromechanical effects in the fluid using microelectrodes. The fluidic driving mechanisms due to the particle-fluid and particle-particle interactions under twDEP are analyzed, and the induced flow field is obtained from numerical simulations. Experimental measurements of the flow velocity in a prototype DEP micropumping device show satisfactory agreement with the numerical predications.04-16-2009
20130056354SENSING DEVICE AND SENSING METHOD FOR SENSING MULTIPLE DIMENSIONAL FORCE - Sensing device and sensing method are disclosed. The multi-dimensional force sensing device includes a soft laminose dielectric structure, a conductive sheet, at least one first electrode sheet, at least one second electrode sheet, a measuring unit and an analysis unit. The soft laminose dielectric structure has a first surface and a second surface opposite to each other. The conductive sheet is disposed on the first surface and has a vertical projection area. The first electrode sheet is disposed on the second surface and totally in the range of the vertical projection area. The second electrode sheet is disposed on the second surface and partially in the range of the vertical projection area. The analysis unit analyzes the magnitude and direction of a force applied on the conductive sheet according to the capacitance between the at least one first electrode sheet and between the first and the second electrode sheets.03-07-2013
20090050482CELL SEPARATION DEVICE AND CELL SEPARATION METHOD - Plural types of cells having different dielectrophoretic properties are separated using a simple structure. There is provided a cell separation device including: a flow path through which a cell suspension flows, the cell suspension containing plural types of cells which have different dielectrophoretic properties; electrodes disposed to face each other in a direction intersecting a flow direction of the cell suspension flowing in the flow path; an electric field gradient forming portion which generates an electric field strength gradient between the electrodes; and a power supply applying an alternating voltage having a direct current component across the electrodes.02-26-2009
20130068621DIELECTROPHORETIC CELL CAPTURE - Various aspects are described for selectivity capturing cells or bioparticles on designated surfaces in dielectrophoretic systems and processes. A particular adhesive composition is described for enhancing cell retention. In addition, certain permeable polyester membranes used in the systems and processes are also described.03-21-2013
20120292188SYSTEM AND METHOD FOR HIGH THROUGHPUT PARTICLE SEPARATION - The high throughput particle separation system includes an aqueous solution container for storing an aqueous solution containing specific particles to be separated, an electrode array, having a plurality of electrodes arranged at regular intervals or at various different intervals in series or in parallel, for deflecting specific particles simultaneously in a nonuniform electric field according to sizes and dielectric properties of the particles to separate a large quantity of the particles at high throughput, a path separation unit for establishing movement paths of the particles separated by the electrode array, and a control unit for applying the same voltage and frequency or different voltages and frequencies to the electrodes of the electrode array based on sizes and dielectric properties of specific particles to be separated.11-22-2012
20090020428MANIPULATION, DETECTION, AND ASSAY OF SMALL SCALE BIOLOGICAL PARTICLES - Systems, devices, and methods are presented that facilitate electronic manipulation and detection of submicron particles. A particle manipulation device contains a plurality of electrodes formed on an active semiconductor layer of an integrated circuit chip, where the electrodes and gap spacing between adjacent electrodes is submicron in size. The chip is oriented with its substrate face up, and at least a portion of the substrate is removed from the chip so the electrodes are in close proximity to a fluid chamber(s) placed over the chip, to facilitate manipulation of particles, contained in a buffer solution in the fluid chamber(s), to form a defined pattern. Innovative macro-scale optical detection is employed to detect the submicron particles, where a light beam is applied to the defined pattern, and interaction of the defined pattern with the light beam is detected and evaluated to facilitate detecting the particles.01-22-2009
20090205962Electrophoresis device and method - A continuous periodic electric wave electrophoresis device and method generates a continuous periodic electric wave that electrophoretically separates charged particles within a sample. The device can have a channel wherein the sample is introduced. At least three interdigitated arrays of conducting electrodes can be positioned adjacent the channel with each array having an externally controllable electrical potential. An externally controlled electric current can be applied to each array of conducting electrodes, creating a continuous periodic electric wave having a selectable wave speed within the channel that separates the particles within the sample. The continuous periodic electric wave can entrain high-mobility particles and immobilize low-mobility particles.08-20-2009
20100224493DEVICES AND METHODS FOR CONTACTLESS DIELECTROPHORESIS FOR CELL OR PARTICLE MANIPULATION - Devices and methods for performing dielectrophoresis are described. The devices contain sample channel which is separated by physical barriers from electrode channels which receive electrodes. The devices and methods may be used for the separation and analysis of particles in solution, including the separation and isolation of cells of a specific type. As the electrodes do not make contact with the sample, electrode fouling is avoided and sample integrity is better maintained.09-09-2010
20110290649DEVICE AND METHOD FOR MEASURING MICROSPHERES - A device and a method for measuring microspheres are provided in which, in a microsphere measurement of a sample liquid in which blood or saliva exists mixedly with microorganisms (included in the definition of the microspheres in the application) that are the detection object, both a dielectrophoretic trap at a high solution electric conductivity, and a highly sensitive and accurate impedance measurement can be attained. The microsphere measuring device includes: a cell 12-01-2011
20100101956NANOSCALE DNA DETECTION SYSTEM USING SPECIES-SPECIFIC AND/OR DISEASE- SPECIFIC PROBES FOR RAPID IDENTIFICATION - A method and system for detecting a DNA strand using carbon nanotubes or nanowires. A specific single strand of template DNA serves as a probe for its complementary strand in a solution containing DNA segments to be tested. The single-stranded sequence-specific DNA probe segment, whose ends are modified with amine, is attached between two carbon nanotubes/nanowires. When complementary strands representing DNA segments under test are brought near the probe strands, a dielectrophoresis (DEP) field may enhance the probability of selective hybridization between the complimentary target DNA and probe DNA. A change in electrical conductance in the probe strand occurs upon hybridization of the complementary target DNA with the single probe strand. This conductance change may be measured using the two carbon nanotubes or nano-dimensional electrodes. By exploiting nano-dimensional electrodes and single strand probe DNA, the proposed system is capable of accurately detecting a single molecule of DNA.04-29-2010
20090188800ENHANCING PHORETIC SEPARATION - Among other things, a force is applied, at a first location in a medium and at a first time, to cause an object to move in a direction along the medium. At a later, second time, a force is applied at a second location, which is farther along the direction in which the object is moving, to cause the object to move an additional distance in the medium, when the force is no longer being applied at the first location. Both the distance traveled by the object and how long the object is subject to the force depend on a property of the object. At least one of the times and locations of applying the force is selected based on the property of the object.07-30-2009
20080264794Dielectrophoretic Process for Retaining Polarizable Target-Particles and Device for Performing that Process - A process and a device for retaining polarizable target-particles from a fluid suspension of polarizable target-particles comprising the steps of pumping that suspension into a vertical or inclined channel and applying an alternating electric field inducing a negative dielectrophoretic force on the target-particles, the force being sufficient to push them a distance of at least or about 25 m from the surface of an electrode-bearing wall, thereby creating an upward-moving clarified fluid zone in the vicinity of that wall and a downward-moving target-particle containing fluid zone at a distance from that wall.10-30-2008
20090283405FLOW DIELECTROPHORETIC SEPARATION OF SINGLE WALL CARBON NANOTUBES - According to some embodiments, a method for separating a first fraction of a single wall carbon nanotubes and a second fraction of single wall carbon nanotubes includes, but is not limited to: flowing a solution comprising the nanotubes into a dielectrophoresis chamber; applying a DC voltage, in combination with an AC voltage, to the dielectrophoresis chamber; and collecting a first eluent from the dielectrophoresis chamber, wherein the first eluent comprises the first fraction and is depleted of the second fraction, wherein the first and second fractions differ by at least one of conductivity, diameter, length, and combinations thereof.11-19-2009
20110259746Electrode for dielectrophoretic apparatus, dielectrophoretic apparatus, method for manufacturing the same, and method for separating substances using the electrode or dielectrophoretic apparatus - To provide an electrode for a dielectrophoretic apparatus in which a background detected by reflecting an excited light on an electrode present under the substance (molecule) is reduced and an S/N ratio is enhanced. Also, there is provided an dielectrophoretic apparatus, in an apparatus in which a liquid containing substances to be separated is present in a non-uniform electric field formed by a dielectrophoretic electrode, and separation is carried out by a dielectrophoretic force exerting on the substances, wherein the collecting ability of substances is enhanced. The present invention is characterized in that a vacant space is provided in an electrode whereby substances subjected to influence by a negative dielectrophoretic force can be concentrated in said vacant space of an electrode, or above or below portion of the space.10-27-2011
20110259745Three Dimensional Microelectrode System For Dielectrophoresis - A dielectrophoresis apparatus for separating particles from a sample, including an apparatus body; a dielectrophoresis channel in the apparatus body, the dielectrophoresis channel having a central axis, a bottom, a top, a first side, and a second side; a first mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the first mesa extending at an angle to the central axis of the dielectrophoresis channel; a first electrode extending along the first mesa; a second mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the second mesa extending at an angle to the central axis of the dielectrophoresis channel; a space between at least one of the first electrode and the second side or the second electrode and the second side; and a gap between the first electrode and the second electrode.10-27-2011
20090283406Method and apparatus for detection of bioparticles by single-bead based dielectrophoresis - A method and an apparatus for detection of a bioparticle by single-bead based DEP. The method includes the steps of immobilizing a single DEP bead in one electric field; immobilizing a first bio-recognizing molecule on the single DEP bead; intromitting at least one target bioparticle into the electric field for binding the first bio-recognizing molecule, whereby the target bioparticle and the first bio-recognizing molecule are bound with each other to form a complex molecule; and detecting the complex molecule by a detection device. The apparatus is composed of a chip, a power source, a single DEP bead, and a detection device.11-19-2009
20090294290Non-Contact Manipulation Device With An Electrode Pair and Manipulation Method Thereof - [Problems] To provide a manipulation device and the manipulation method such that the manipulation of the particles, which has been extremely difficult by conventional manipulation devices, is possible, and that easy movement and rotation of the microparticle is possible.12-03-2009
20090277792Method for concentrating charged particles and apparatus thereof - The present invention discloses a method for concentrating charged particles and an apparatus thereof. The method comprises: providing a substrate comprising a reservoir; disposing a conducting granule in the reservoir, the conducting granule being negatively charged or positively charged and comprising nano-pores or nano-channels capable of permitting ion permeation; disposing a buffer solution in the reservoir, the buffer solution comprising counter-ions having an opposite electric property to the conducting granule; adding the charged particles into the buffer solution, the charged particles being co-ions having an identical electric property as the conducting granule; and applying an external electric field on the conducting granule. While the external electric field is applied on the conducting granule, the counter-ions exit from the nano-pores or nano-channels and have a nonuniform concentration on a surface of the conducting granule such that a transient ion super-concentration phenomenon occurs at an ejecting pole on the conducting granule. Hence the present invention has potential application in bead-based molecular assays.11-12-2009
20110168561DIELECTROPHORETIC PARTICLE CONCENTRATOR AND CONCENTRATION WITH DETECTION METHOD - A dielectrophoretic particle concentrator includes first substrate, detection electrodes, second substrate, protrudent structure and edge wall structures. The first substrate extends along first direction. The detection electrodes are disposed on the first substrate and extend along second direction. The second direction crosses the first direction. The second substrate is disposed over the first substrate and extends along the first direction. The protrudent structure is disposed on the second substrate and protruded towards the first substrate. A top portion of the protrudent structure includes a line-like structure extending along the second direction and adjacent to the detection electrodes. The edge wall structures are integrated with the first substrate and the second substrate, to form pipe-like structure to enable a fluid flowing through the protrudent structure from an end to another end. The particle concentration can trap particles at the gap by continuously trap mode or bidirectional trap mode with changing frequency.07-14-2011
20090008254Microfluidic System and Corresponding Control Method - The invention relates to a microfluidic system containing a carrier current channel (01-08-2009
20080283401TIME-VARYING FLOWS FOR MICROFLUIDIC PARTICLE SEPARATION - Methods, devices, and systems for separating a time-varying flow of disparate liquid-suspended particles through a channel using dielectrophoresis and field-flow fractionation.11-20-2008
20080283402SHAPED ELECTRODES FOR MICROFLUIDIC DIELECTROPHORETIC PARTICLE MANIPULATION - Methods, devices, and systems for separating disparate liquid-suspended particles in a flow channel using dielectrophoresis induced by concave-shaped electrodes and field-flow fractionation.11-20-2008
20080289965System and Method for Controlling Nanoparticles Using Dielectrophoretic Forces - The present invention is directed to the use of dielectrophoretic forces for the arbitrary manipulation of micrometer- and nanometer-sized particles and to devices capable of arbitrarily manipulating micrometer- and nanometer-sized particles by means of dielectrophoretic forces within a two- or three-dimensional region. The devices and methods of the invention are capable of arbitrarily controlling the velocities, locations, and forces applied to a particle, arbitrarily specifying a force or set of forces at a location in space, and determining friction and/or drag coefficients of a particle, and are thus well-suited for a range of applications including cell sorting, drug delivery, as a diagnostic tool for determining membrane stiffness, and in the heterogeneous integration of micro- and nano-components through directed assembly.11-27-2008
20120091001Method and apparatus for the separation and quantification of particles - The invention pertains to a method and apparatus to separate and quantify particles using time-variable force fields. The force fields can be for dielectrophoresis (positive or negative), electrophoresis or electrohydrodinamic. In a first aspect of the method, the fields are translated and/or modified in space at a speed substantially comparable to the speed of translation of the fastest particles in the sample so that only these follow by changing position, while the slowest particles are not affected.04-19-2012
20130118903METHOD AND APPARATUS FOR PROGRAMMABLE FLUIDIC PROCESSING - A method and apparatus for microfluidic processing by programmably manipulating a packet. A material is introduced onto a reaction surface and compartmentalized to form a packet. A position of the packet is sensed with a position sensor. A programmable manipulation force is applied to the packet at the position. The programmable manipulation force is adjustable according to packet position by a controller. The packet is programmably moved according to the programmable manipulation force along arbitrarily chosen paths.05-16-2013
20100140093Droplet-Based Surface Modification and Washing - The present invention relates to droplet-based surface modification and washing. According to one embodiment, a method of providing a bead-containing droplet with a reduced concentration of a substance is provided, the method including providing a droplet microactuator including a droplet having a starting volume and including one or more beads and a starting concentration and starting quantity of the substance. The method further includes conducting one or more droplet operations to merge a wash droplet with the droplet provided in the above step to yield a combined droplet and including one or more droplet operations to divide the combined droplet to yield a set of droplets including a droplet including substantially all of the one or more beads and having a decreased concentration of the substance relative to the starting concentration and a droplet which is substantially lacking in the beads.06-10-2010
20090205963Method And Apparatus For The Manipulation And/Or The Detection Of Particles - Method and apparatus for the manipulation and/or control of the position of particles by means of time-variable fields of force. The fields of force can be of dielectrophoresis (positive or negative), electrophoresis, electrohydrodynamic or electrowetting on dielectric, characterized by a set of stable points of equilibrium for the particles.08-20-2009
20110220505DROPLET MANIPULATIONS ON EWOD MICROELECTRODE ARRAY ARCHITECTURE - A method of manipulating droplet in a programmable EWOD microelectrode array comprising multiple microelectrodes, comprising: constructing a bottom plate with multiple microelectrodes on a top surface of a substrate covered by a dielectric layer; the microelectrode coupled to at least one grounding elements of a grounding mechanism, a hydrophobic layer on the top of the dielectric layer and the grounding elements; manipulating the multiple microelectrodes to configure a group of configured-electrodes to generate microfluidic components and layouts with selected shapes and sizes, comprising: a first configured-electrode with multiple microelectrodes arranged in array, and at least one second adjacent configured-electrode adjacent to the first configured-electrode, the droplet disposed on the top of the first configured-electrode and overlapped with a portion of the second adjacent-configured-electrode; and manipulating one or more droplets among multiple configured-electrodes by sequentially activating and de-activating one or more selected configured-electrodes to actuate droplets to move along selected route.09-15-2011
20090229980Micro-electrode device for dielectrophoretic characterisation of particles - A device for dielectrophoretic manipulation of suspended particulate matter comprises an analysis electrode and a separate cover electrode wherein the analysis electrode comprises an electrically conductive layer of material provided on a substrate support and apertures are defined through the electrically conductive layer. The device can be used for detection, analysis, fractionation, concentration or separation of particulate matter.09-17-2009
20110220504MICROFLUIDIC CHANNEL DEVICE WITH ARRAY OF DRIVE ELECTRODES - Technologies are generally described for microfluidic channel devices. Some example devices may include a substrate having a substrate surface, with an array of drive electrode assemblies disposed upon the substrate surface. The drive electrode assemblies may be arranged along a path. Each drive electrode assembly may include one or more of a drive electrode layer, a dielectric layer and/or a stationary phase layer. The device may further include a plate including a plate surface. The device may further include a reference electrode configured on the plate surface to face the stationary phase layer of the drive electrode assemblies and separated from the substrate surface by a distance. The device may further include a voltage source effective to output a voltage potential, the voltage source configured in communication with the drive electrode assembly and the reference electrode. The device may further include an electrode selector effective to control the voltage source.09-15-2011
20090211910DIELECTROPHORETIC TWEEZERS APPARATUS AND METHODS - Dielectrophoretic (DEP) tweezers apparatus and methods for various applications, including particle trapping. Multiple electrodes (e.g., two or three) are disposed on or otherwise constitute an elongated object forming a tip. Exemplary electrode configurations include, but are not limited to, coaxial and triaxial arrangements. A voltage is applied across these electrodes to produce a non-uniform electromagnetic field proximate to the tip thereby creating a dielectrophoretic trap. Once trapped, a particle may be moved to desired locations via manipulation of the elongated object or the medium in which the particle is located. Multiple DEP tweezers apparatus may be arranged to form arrays of tips capable of respectively generating local electromagnetic fields confined to the tips. Such DEP arrays may be employed in nanofabrication processes involving nanolithography or nano-manipulation, as well as data storage and retrieval applications.08-27-2009
20100200404METHOD AND DEVICE FOR THE MANIPULATION OF PARTICLES BY OVERLAPPING FIELDS OF FORCE - Methods and relative devices are illustrated for generating time-variable electric fields suitable for determining the creation of closed dielectrophoretic cages able to trap inside even single particles without the cages being necessarily positioned at relative minimum points of the electric field.08-12-2010
20120103814APPARATUS FOR SAMPLE INTRODUCTION, CHIP FOR SAMPLE INTRODUCTION, AND METHOD FOR SAMPLE INTRODUCTION - The present disclosure provides an apparatus for sample introduction including a flow channel, a sample inlet, a metering unit, a separating unit, cell dischargers and, and a pressure controlling unit. The sample inlet is given a sample fluid such as blood. The sample inlet has a constricting hole that communicates with the flow channel for passage of a carrier fluid. The constricting hole has a diameter large enough for passage of a single cell contained in the sample fluid. The sample fluid is introduced into the flow channel through the constricting hole, and the cells in the sample fluid pass one by one through the constricting hole. The constricting hole does not exist inside the flow channel for passage of the carrier fluid, so that the diameter of the constricting hole does not affect the flow rate of the carrier fluid passing through the flow channel.05-03-2012
20120103812METHOD FOR FLOW MEASUREMENT - A novel method for capacitive flow measurement is disclosed, which is particularly suitable for media with low electrical conductivity.05-03-2012
20100155246ELECTRIC FIELD CAGE AND ASSOCIATED OPERATING METHOD - The invention relates to an electric field cage (06-24-2010
20100219075APPARATUS FOR ANALYZING CHARACTERISTICS OF PARTICULATE WITH DIELECTROPHORESIS OF PARTICULATE BY APPLYING ANGLE-MODULATED WAVE AND METHOD FOR THE SAME - (Problems) The present invention provides a method for analyzing characteristics of a particulate and an apparatus for the same, and it excels in easily and briefly optimizing an applied AC voltage frequency for the characteristics analysis on particulate characteristics or for the manipulation such as transfer, fractionation and concentration of the particle with utilizing the dielectrophoretic force.09-02-2010
20100193358MICROPARTICLE MEASURING APPARATUS AND MICROPARTICLE MEASURING METHOD - A microparticle measuring apparatus and microparticle measuring method which, in sample liquids having different electric conductivities, have a sensitivity and accuracy which are necessary and sufficient, without performing pretreatment of reducing the electric conductivity are provided. The microparticle measuring apparatus includes: a cell 08-05-2010
20100163414MICROELECTRONIC DEVICE WITH FIELD ELECTRODES - The invention relates to a microelectronic device, particularly a microelectronic biosensor, comprising an array of field electrodes (FE) for generating an alternating electrical field (E) in an adjacent sample chamber (SC). The field electrodes (FE) are coupled to associated local oscillators (OS), which are preferably tunable and connected in a matrix pattern to an external control unit (CU). The local oscillators (OS) allow high frequencies of the generated electrical fields (E), such that for example dielectrophoretic forces can be generated.07-01-2010
20100219076Dielectrophoresis Apparatus and Method - Provided is a dielectrophoresis apparatus with which it is possible to handle (move, stop, separate and sort, etc.) a dielectric particle utilizing dielectrophoresis and to measure dielectrophoretic force.09-02-2010
20090071831Methods and systems for producing arrays of particles - The invention provides apparatus and methods for arraying particles on a surface using dielectrophoresis.03-19-2009
20110031123DETECTING ANALYTES - Provided is a method for processing a sample, which method comprises:02-10-2011
20100170797DEVICE AND METHOD FOR SINGLE CELL AND BEAD CAPTURE AND MANIPULATION BY DIELECTROPHORESIS - A rapid and robust device and method for the capture and manipulation of single cells and beads in a microfluidic environment using positive dielectrophoresis (pDEP) is provided. The capture device uses a highly localized and non-uniform pDEP electric field gradient to allow for the simultaneous capture and manipulation of single cells and beads in standard cell growth media.07-08-2010
20090218223Method And Apparatus For Characterizing And Counting Particles, In Particular, Biological Particles - The present invention relates to a method and an apparatus for the characterization and/or the counting of particles by means of non uniform, time variable force fields and integrated optical or impedance meter sensors. The force fields can be of positive or negative dielectrophoresis, electrophoresis or electro-hydrodynamic motions, characterized by a set of stable equilibrium points for the particles (solid, liquid or gaseous); the same method is suitable for the manipulation of droplets (liquid particles) by exploiting effects known to the international scientific community with the name of Electro-wetting on dielectric. The aim of the present invention is to act on the control of the position of each particle which is present in the sample, for the purpose of displacing such particles in a deterministic or statistical way, in order to detect their presence with the integrated optical or impedance meter sensors and/or characterize their type, for the purpose of counting or manipulating them in an efficient way.09-03-2009
20100038247Electrode Assembly, Use Thereof, and Method for the Production Thereof - The invention relates to an electrode arrangement for the electrophysiologic analysis of biological cells and the like. The electrode arrangement comprises a contact area for contacting the electrode arrangement with a biological cell or the like as well as a terminal area for an external, electric contacting of the electrode arrangement. The contact area is formed with one or a plurality of electrode spike(s) which extend from the terminal area and comprise a geometrical shape which, in operation, allows an otherwise none-destructive penetration into a biological cell or the like through the membrane thereof into the interior thereof.02-18-2010
20100065429METHOD FOR DETECTING ANALYTES - Provided is method for detecting an analyte, wherein the analyte is labelled with one or more labels relatable to the analyte which are suitable for optical detection, which method comprises: a) applying an oscillating voltage having a first frequency across the labelled analyte and simultaneously performing an optical detection method on the labelled analyte to obtain data from the one or more labels; b) applying an oscillating voltage having a second frequency across the labelled analyte and simultaneously performing an optical detection method on the labelled analyte to obtain data from the one or more labels; c) determining the identity and/or quantity of the analyte from the data obtained in step (a) and step (b).03-18-2010
20110100820TRIPLE FUNCTION ELECTRODES - Provided is a device for assaying one or more analytes, said device comprising an electrode, a means for optical detection; and a means for electrochemical detection, wherein the device is configured such that the electrode is capable of promoting transport of an analyte when a field is applied to the analyte via the electrode, and wherein the means for electrochemical detection employs the electrode and the means for optical detection employs the electrode, and wherein the device is configured to carry out dielectrophoresis.05-05-2011
20120118740METHODS AND DEVICES FOR SORTING CELLS AND OTHER BIOLOGICAL PARTICULATES - An optical pattern-driven light induced dielectrophoresis (DEP) apparatus and separation methods are described which provide for the manipulation of particles or cells and selection based on traits correlated with the DEP response. Embodiments of the apparatus use DEP electric field patterns in combination with microfluidic laminar flows to measure response, separate, segregate and extract particles from heterogeneous mixtures according to the relative response of the particles to one or more DEP fields without damaging living cells. The methods are particularly suited for selecting and extracting the best sperm and embryo candidates based on fitness for use with existing artificial reproduction procedures and excluding defective or non-viable gametes.05-17-2012
20110048950METHODS AND APPARATUS FOR PARTICLE INTRODUCTION AND RECOVERY - Particles may be injected into a matrix for concentration by scodaphoresis using a quadrupole injection field. Particles may be injected from two or more sample chambers simultaneously. Particle injection may be performed simultaneously with performing scodaphoresis. In some embodiments the particles are concentrated into a well containing fluid. The well can extend out of a plane of the matrix. Altering the relative phases of components of a scodaphoresis field permits concentration of selected particles and exclusion of other particles. Scodaphoresis methods may be applied to DNA, other bio-molecules and other particles.03-03-2011
20090294291ISO-DIELECTRIC SEPARATION APPARATUS AND METHODS OF USE - The present invention is directed to an iso-dielectric separation apparatus for separating particles based upon their electrical properties, and methods of using the apparatus.12-03-2009
20090000948Methods for Improving Efficiency of Cell Electroporation Using Dielectrophoreses - The present invention provides methods for enhancing the efficiency of cell electroporation using dielectrophoresis-assisted cell localization and uses thereof in a microfluidic biochip system. Cells are first subject to dielectrophoresis and localized to regions where the electric field intensity is high enough to render cells electroporated. The invention enhances the efficiency of in situ cell electroporation on a traditional microfluidic biochip.01-01-2009
20130168250Droplet Actuator Systems, Devices and Methods - The present invention is directed to droplet actuator systems, devices, and methods. In one embodiment, a microfluidic article of manufacture is provided. The microfluidic article of manufacture includes a first substrate; a second substrate separated from the first substrate to form a droplet operations gap; gap height setting spacers associated with the first and/or second substrate or situated between the first and second substrates; a spring forcing the second substrate against the gap height setting spacers, thereby establishing a substantially uniform gap height between the first and second substrates; and electrodes associated with the first and/or second substrate and configured to conduct droplet operations in the droplet operations gap.07-04-2013
20110042215AC FIELD INDUCED BIOMOLECULE CYRSTALLIZATION AND HYDRATION CAGE DISRUPTION - An apparatus and methods for biomolecular crystallization is disclosed. The method includes providing biomolecule solution and bringing the biomolecule solution into direct contact with a plurality of electrodes. An alternating current is applied to the plurality of electrodes to impart a dielectrophoresis force upon the biomolecule solution and to form at least one crystal from the biomolecule solution.02-24-2011
20110174623Concentration and Purification of Analytes Using Electric Fields - Embodiments of a device and method are described which provide for concentration and purification of analytes, e.g., polynucleotides, in channel devices using AC and DC electric fields.07-21-2011
20120273357CELL SORTING APPARATUS, CELL SORTING CHIP AND CELL SORTING METHOD - A cell sorting apparatus includes a flow channel through which fluid including cells flows, an electric-field application section capable of applying an electric field having a gradient in a direction different from the flowing direction of the fluid at a first position on the flow channel in accordance with a cell sorting signal requesting an operation to sort the cells, and a flow splitting section configured to split the cells changing their flowing directions due to a dielectrophoretic force caused by application of the electric field at a second position on the downstream side of the first position on the flow channel.11-01-2012
20110162966SYSTEMS AND METHODS FOR MAKING AND USING NANOELECTRODES - Systems and methods are provided for the manipulation of a polarizable object with a pair of elongated nanoelectrodes using dielectrophoresis. The nanoelectrodes can be carbon nanotubes and are coupled with one or more time-varying voltage sources to create an electric field gradient in a gap between the nanotubes. The gradient induces the movement of a polarizable object in proximity with the field. The nanotube pair can be used to trap a single polarizable object in the gap. A method of fabricating a nanoelectrode dielectrophoretic system is also provided. Applications extend to self-fabricating nanoelectronics, nanomachines, nanochemistry and nanobiochemistry. A nanoelectrode dielectrophoretic system having an extended nanoelectrode for use in applications including the self-fabrication of a nanowire, as well as methods for fabricating the same, are also provided.07-07-2011
20110108423NANOPORE DEVICE AND A METHOD FOR NUCLEIC ACID ANALYSIS - A nanopore device is described wherein is provided a sample input (05-12-2011
20120031759DIELECTROPHORETIC DEVICE WITH ACTUATOR - A dielectrophoretic fractionation device having a channel defining a direction of flow therethrough for the fractionation of particles in a liquid particle suspension is disclosed. The device also has a deflector unit affixed to a wall of the channel and arranged to generate an electric field gradient in the channel to spatially separate the particles in the liquid particle suspension. The device also has an actuator mounted to the channel and positioned to deform the wall. Also provided is a method for inhibiting aggregation of particles in a liquid particle suspension of the dielectrophoretic fractionation device, the method including periodically deforming the wall with the actuator.02-09-2012
20100126865Electrode for dielectrophoretic apparatus, dielectrophoretic apparatus, method for manufacturing the same, and method for separating substances using the electrode or dielectrophoretic apparatus - To provide an electrode for a dielectrophoretic apparatus in which a background detected by reflecting an excited light on an electrode present under the substance (molecule) is reduced and an S/N ratio is enhanced. Also, there is provided an dielectrophoretic apparatus, in an apparatus in which a liquid containing substances to be separated is present in a non-uniform electric field formed by a dielectrophoretic electrode, and separation is carried out by a dielectrophoretic force exerting on the substances, wherein the collecting ability of substances is enhanced. The present invention is characterized in that a vacant space is provided in an electrode whereby substances subjected to influence by a negative dielectrophoretic force can be concentrated in said vacant space of an electrode, or above or below portion of the space.05-27-2010
20110108422EX VIVO MULTI-DIMENSIONAL SYSTEM FOR THE SEPARATION AND ISOLATION OF CELLS, VESICLES, NANOPARTICLES AND BIOMARKERS - Devices and techniques are described that involve a combination of multidimensional electrokinetic, dielectrophoretic, electrophoretic and fluidic forces and effects for separating cells, nanovesicles, nanoparticulates and biomarkers (DNA, RNA, antibodies, proteins) in high conductance (ionic) strength biological samples and buffers. In disclosed embodiments, a combination of continuous and/or pulsed dielectrophoretic (DEP) forces, continuous and/or pulsed field DC electrophoretic forces, microelectrophoresis and controlled fluidics are utilized with arrays of electrodes. In particular, the use of chambered DEP devices and of a properly scaled relatively larger electrode array devices that combines fluid, electrophoretic and DEP forces enables both larger and/or clinically relevant volumes of blood, serum, plasma or other samples to be more directly, rapidly and efficiently analyzed. The invention enables the creation of “seamless” sample-to-answer diagnostic systems and devices. The devices and techniques described can also carry out the assisted self-assembly of molecules, polymers, nanocomponents and mesoscale entities into three dimensional higher order structures.05-12-2011
20090314642CARBON NANOTUBES BONDING ON METALLIC ELECTRODES - A method for large scale bonding carbon nanotubes on metallic electrodes is disclosed. The method includes that the wafer with a number of patterned electrodes deposited by CNTs via dielectrophoresis method is put onto the pedestal of our designed RF induction heating system. Then, the winding with alternating current induces scroll current on the surface of metallic electrodes due to skin effect. In this case, the current will generate Joule heat which could melt the surface metal of the electrodes. Finally, the CNTs will sink into the surface of the electrodes after short time heating. By varying the parameters of the RF source we can control the bonding process.12-24-2009
20100018863Standing wave field induced force - At least one transducer of an apparatus in one example is configured to generate a first standing wave field within a cavity. The first standing wave field exerts a first field-induced force to cause a plurality of particles within the cavity to align in a desired configuration. The at least one transducer is configured to generate a second standing wave field within the cavity. The second standing wave field causes one or more of the plurality of particles within the cavity to fuse into the desired configuration.01-28-2010
20120152745LASER DOPPLER ELECTROPHORESIS USING A DIFFUSION BARRIER - In one general aspect, an electrophoretic measurement method is disclosed that includes providing a vessel that holds a dispersant, providing a first electrode immersed in the dispersant, and providing a second electrode immersed in the dispersant. A sample is placed at a location within the dispersant between the first and second electrodes with the sample being separated from the electrodes, an alternating electric field is applied across the electrodes, and the sample is illuminated with temporally coherent light. A frequency shift is detected in light from the step of illuminating that has interacted with the sample during the step of applying an alternating electric field, and a property of the sample is derived based on results of the step of detecting.06-21-2012
20100206731DEVICES AND METHODS FOR OPTOELECTRONIC MANIPULATION OF SMALL PARTICLES - A method for sorting cells in a biological sample comprising a first type of cells and a second type of cells may comprise introducing the biological sample into a chamber comprising a first surface and a second surface, wherein the first surface is associated with a transparent electrode and the second surface is associated with a photoconductive portion of an electrode. The method may further comprise moving incident light and the photoconductive portion relative to one another so as to illuminate regions of the photoconductive portion and modulate an electric field in the chamber in proximity to the illuminated regions. The method may further comprise separating the first type of cells from the second type of cells in the chamber via dielectrophoretic movement of the first type of cells and the second type of cells caused by the modulated electric field, wherein a dielectrophoretic characteristic of at least one of the first type of cells and the second type of cells has been modified.08-19-2010
20120085649DIELECTROPHORESIS DEVICES AND METHODS THEREFOR - Devices and methods for performing dielectrophoresis are described. The devices contain a sample channel which is separated by physical barriers from electrode channels which receive electrodes. The devices and methods may be used for the separation and analysis of particles in solution, including the separation and isolation of cells of a specific type. As the electrodes do not make contact with the sample, electrode fouling is avoided and sample integrity is better maintained.04-12-2012
20120091003OPEN OPTOELECTROWETTING DROPLET ACTUATION DEVICE AND METHOD - An open optoelectrowetting (o-OEW) device for liquid droplet manipulations. The o-OEW device is realized by coplanar electrodes and a photoconductor. The local switching effect for electrowetting resulting from illumination is based on the tunable impedance of the photoconductor. Dynamic virtual electrodes are created using projected images, leading to free planar movements of droplets.04-19-2012
20120091002ELECTROLYTIC SYSTEM AND METHOD FOR CONCENTRATING AN AQUEOUS PARTICULATE SUSPENSON - An electrolytic method and apparatus for the concentration and collection of suspended particulates from solutions is disclosed. In one embodiment, the solution is an aqueous solution and the suspended particles are algae particles. The electrolytic cell contains at least an anode and a cathode, and in one embodiment contains a plurality of anodes and cathodes. While not bound by theory, the electrolytic method and apparatus is based on the electrophoretic movement of algae particles suspended in an aqueous solution under the influence of an electric field. In one embodiment the electric field is a pulsed wavefrom with unidirectional voltage or current pulses. In another embodiment, the electric field is a pulsed waveform with bidirectional voltage or current pulses.04-19-2012
20130008793METHOD FOR ANTIBIOTIC SUSCEPTIBILITY TESTING AND DETERMINING MINIMUM INHIBITORY CONCENTRATION OF THE ANTIBIOTIC - A method of antibiotic susceptibility testing is disclosed, and includes the following steps: (A) providing a sample to be tested wherein the sample contains a microbe; (B) adding an antibiotic into the sample, wherein the antibiotic serves to inhibit cell wall synthesis; (C) checking the sample by dielectrophoresis and observing a shape change of the microbe; and (D) determining whether the microbe is susceptible to the antibiotic according to the shape change thereof. The present invention also discloses a method for determining a minimum inhibitory concentration of the antibiotic.01-10-2013
20130008794FLUIDIC LOGIC GATES AND APPARATUS FOR CONTROLLING FLOW OF ER FLUID IN A CHANNEL - An apparatus for controlling flow of ER fluid. The apparatus has a first channel 01-10-2013
20130015069DEVICE FOR ELECTROPHORESIS, DEVICE FOR TRANSFER, DEVICE FOR ELECTROPHORESIS AND TRANSFER, CHIP FOR ELECTROPHORESIS AND TRANSFER, AND METHOD FOR ELECTROPHORESIS, METHOD FOR TRANSFER, AND METHOD FOR ELECTROPHORESIS AND TRANSFER - A device for electrophoresis applies a voltage to a medium in contact with a plurality of electric conductors so that a potential of adjacent conductors is within a certain range. This allows preventing decline in electrophoresis speed. A device for electrophoresis and transfer includes an electrode having a plurality of electrode regions being insulated one another and arranged in a specific direction. This allows providing a practical and easy-to-use device for electrophoresis and transfer. A device for transfer alters an applied voltage or applied voltage duration to a certain position to another position. This allows improving transfer efficiency.01-17-2013
20100012496METHOD AND APPARATUS FOR EVALUATING DIELECTROPHORETIC INTENSITY OF MICROPARTICLE - A distribution of AC electric field regularly arranged in a cell is formed while storing a sample having particles dispersed in a medium in the cell, whereby the particles are dielectrically migrated in the medium to generate a diffraction grating by density distribution of the particles. Diffracted light generated by irradiating the diffraction grating by density distribution with measuring light is detected, and evaluation of dielectrophoretic intensities of the particles and/or the medium is performed from the detection result. According to this method, evaluation of dielectrophoretic characteristics can be performed without adhering a phosphor to particles, and since even a particle small in size can achieve a detection level by collecting a number of such particles to form a diffraction grating, dielectric characteristics of microparticles of several nanometers in diameter can be thus quantitatively measured with high sensitivity.01-21-2010
20130175173SAMPLE ANALYSIS SYSTEMS, DEVICES, AND ASSOCIATED METHODS OF OPERATION - Embodiments of analysis systems, electrophoresis devices, and associated methods of analysis are described herein. In one embodiment, a method of analyzing a sample containing an electrolyte includes sequentially introducing a leading electrolyte, a sample electrolyte, and a trailing electrolyte into a extraction channel carried by a substrate. The extraction channel has a constriction in cross-sectional area. The method also includes applying an electrical field to separate components of the sample electrolyte into stacks and to concentrate the separated components by forcing the sample electrolyte to migrate through the constriction in the extraction channel. Thereafter, the applied electrical field is removed and the separated and concentrated components of the sample are detected in a detection channel carried by the substrate.07-11-2013
20130134041DROPLET MOVING DEVICE, DROPLET MOVING METHOD, PLASMA SEPARATION DEVICE, AND PLASMA SEPARATION METHOD - A droplet can be moved along a surface of a moving surface forming member in a simple method. At both sides of the moving surface forming member 05-30-2013
20110226624Microfluidic dielectrophoresis system - A microfluidic dielectrophoresis system, at least including one supply device for a liquid medium having particles contained therein, N≧2 microfluidic, dielectrophoretically active channels, which are equipped with electrodes, lines for the fluidic connection of the supply device to the channels, for the connection of the channels to one another, and for the drainage of the medium and/or the particles from the channels, and valves for setting the flow direction of the medium in the lines, the dielectrophoretically active channels being situated and being connected by lines in such a way that they may be operated connected in parallel and in series by switching the valves in relation to the flow direction of the medium and the electrodes of the various channels are activatable independently of one another. In addition, the present invention relates to the use of a microfluidic dielectrophoresis system according to the present invention and a method for performing a dielectrophoresis.09-22-2011
20090283407METHOD FOR USING MAGNETIC PARTICLES IN DROPLET MICROFLUIDICS - Methods of utilizing magnetic particles or beads (MBs) in droplet-based (or digital) microfluidics are disclosed. The methods may be used in enrichment or separation processes. A first method employs the droplet meniscus to assist in the magnetic collection and positioning of MBs during droplet microfluidic operations. The sweeping movement of the meniscus lifts the MBs off the solid surface and frees them from various surface forces acting on the MBs. A second method uses chemical additives to reduce the adhesion of MBs to surfaces. Both methods allow the MBs on a solid surface to be effectively moved by magnetic force. Droplets may be driven by various methods or techniques including, for example, electrowetting, electrostatic, electromechanical, electrophoretic, dielectrophoretic, electroosmotic, thermocapillary, surface acoustic, and pressure.11-19-2009
20110233061AMPLIFICATION OF ENERGETIC REACTIONS - Methods and apparatus for energy production through the amplification of energetic reactions. A method includes amplifying an energy release from a dispersion of nanoparticles containing a concentration of hydrogen/deuterium nuclei, the nanoparticles suspended in a dielectric medium in a presence of hydrogen/deuterium gas, wherein an energy input is provided by high voltage pulses between two electrodes embedded in the dispersion of nanoparticles.09-29-2011
20130118904SEPARATION OF PARTICLES USING MULTIPLEXED DIELECTROPHORESIS - Systems, devices, and methods are presented that facilitate electronic manipulation and detection of submicron particles. Time-multiplexed dielectrophoresis can be employed by cycling between two or more disparate electric fields during separate portions of a duty cycle. By cycling between these two or more disparate electric fields, two or more disparate particle types can be separated from one another based on differences in electrical properties of the two or more disparate particle types.05-16-2013
20120018306Sample Processing Droplet Actuator, System and Method - Sample processing droplet actuators, systems and methods are provided. According to one embodiment, a stamping device including a droplet microactuator is provided and includes: (a) a first plate including a path or network of control electrodes for transporting droplets on a surface thereof; (b) a second plate mounted in a substantially parallel orientation with respect to the first plate providing an interior volume between the plates, the second plate including one or more stamping ports for transporting some portion or all of a droplet from the interior volume to an exterior location; (c) a port for introducing fluid into the interior volume between the plates; and (d) a path or network of reference electrodes corresponding to the path or network of control electrodes. Associated systems and methods including the stamping device are also provided.01-26-2012
20120085648MICROFLUIDIC FLUID SEPARATOR AND RELATED METHODS - A microfluidic fluid separator for separating target components of a fluid by filtration is described. Methods for separating target components of a fluid by filtration and methods for processing blood on a large scale with the microfluidic fluid separator are provided.04-12-2012

Patent applications in class Dielectrophoresis (i.e., using nonuniform electric field)