Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Fracturing (EPO)

Subclass of:

166 - Wells

166244100 - PROCESSES

166305100 - Placing fluid into the formation

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
166308200 Using a chemical (EPO) 56
Entries
DocumentTitleDate
20110174491BOTTOM HOLE ASSEMBLY WITH PORTED COMPLETION AND METHODS OF FRACTURING THEREWITH - A ported completion and method for use in fracturing multi-zone wells. A casing assembly having a plurality of casing lengths and one or more collars positioned so as to couple together the casing lengths. The collars may be a tubular body having an inner flow path, one or more fracture ports configured to provide fluid communication between an outer surface of the collar and the inner flow path, one or more valve holes intersecting the fracture ports, one or more valve vent holes positioned to provide fluid communication between the valve holes and the inner flow path, and one or more valves positioned in the valve holes for opening and closing the fracture ports. The valves are configured to open when a pressure differential is created between the fracture ports and the valve vent holes. The valve vent hole may be an annulus around the perimeter of the tubular body.07-21-2011
20130025868Downhole Actuating Apparatus - A mechanical counting device for actuating a plurality of output devices, the device comprising: linear indexing means adapted to count a plurality of actuating signals and to cause actuation of the output devices when a predetermined number of actuating signals for each output device has been received, wherein the mechanical counting device is adapted to cause actuation of a particular output device when a different predetermined number of actuating signals has been received such that the output devices are sequentially actuable.01-31-2013
20130025867METHOD OF SLICKWATER FRACTURING - The present invention relates to a method of slickwater hydraulic fracturing of a subterranean formation comprising introducing into a wellbore an aqueous fracturing fluid comprising a nonionic polymer and polyethylene oxide.01-31-2013
20130043030PROCESSES FOR FRACTURING A WELL - Processes and systems for fracturing a formation are disclosed. Tools that may be selectively opened and closed are positioned on a tubular liner that in turn is positioned within a subterranean well bore. Separate pairs of packers are also attached to and positioned along the tubular liner so as to straddle each tool. Fracturing fluid is pumped from the surface through the tubular and open tool and past a pair of packers at a temperature and injection rate which causes contraction of the tubular liner. Thereafter, the velocity of the fracturing fluid is sufficient to set the pair of packers adjacent the open tool. Continued pumping of fracturing fluid is directed by the set packers into the adjacent subterranean environs at a pressure sufficient to fracture the subterranean environs.02-21-2013
20130075099Pulse Fracturing Devices and Methods - A pulse fracturing device includes a normally open first valve and a normally closed second valve in a housing. The first valve is configured to close at a predetermined level of hydrodynamic force exerted on the first valve and to open when the force drops below the predetermined level. The first valve, when open, is configured to allow fluid flow out from the housing. The second valve is configured to open at a predetermined pressure within the housing and to close when pressure drops below the predetermined pressure. The second valve, when open, is configured to allow fluid flow out from the housing.03-28-2013
20110192605Degradable Polymers for Hydrocarbon Extraction - The present disclosure is directed degradable polymers. The polymers are solid when maintained under substantially dry conditions at a temperature of up to about 90 degrees C. When contacted with water at a temperature of up to about 90 degrees C., however, the polymers initially remain solid for a period of up to about 6 to about 24 hours, then depolymerize to provide a liquid having a viscosity of from about 1 to about 200,000 centipoise after a period of time from about 8 hours to about 3 days and then further depolymerizes to water-soluble components after a period of time at least about 3 days. Also disclosed are sand screen coatings made with the polymers and hydraulic and acid fracturing methods using the polymers.08-11-2011
20120175121Method for Increasing Productivity of Hydraulically Fractured Wells - Method is provided for increase production rate and improving economics of hydraulic fracturing of a well where a fracture can be formed extending a greater distance than the thickness of the pay zone in the well. A settling fluid containing proppant is injected to form a bank or pile of proppant that extends beyond the pay zone.07-12-2012
20130032349Method Of Fracturing Multiple Zones Within A Well Using Propellant Pre-Fracturing - A method of fracturing multiple zones within a wellbore formed in a subterranean formation is carried out by forming flow-through passages in two or more zones within the wellbore that are spaced apart from each other along the wellbore. The flow-through passages are arranged into clusters, where the directions of all flow-through passages, which belong to the same cluster, are aligned within a single plane (cluster plane). At least one cluster of flow-through passages is formed in each zone. The clusters within each zone have characteristics different from those of other zones provided by orienting the cluster planes at different angles relative to principal in-situ stresses and by placing them into different locations along the wellbore in each of the two or more zones. A propellant pre-fracturing treatment is then performed in the two or more zones to create initial fractures (pre-fractures) in each of the two or more zones. The fracturing fluid in the fracturing treatment is provided at a pressure that is above the pre-fracture propagation pressure of one of the two or more zones to facilitate fracturing of said one of the two or more zones. The pressure of the fracturing fluid is below the pre-fracture propagation pressure of any other non-treated zones of the two or more zones. The isolating of the treated zone is then performed. The fracturing process is then repeated for at least one or more non-treated zones of the two or more zones.02-07-2013
20100044049GREEN COAL BED METHANE FRACTURING FLUID COMPOSITIONS, METHODS OF PREPARATION AND METHODS OF USE - The invention describes improved environmentally friendly, non-toxic, CBM friendly, green fracturing compositions, methods of preparing fracturing compositions and methods of use. Importantly, the subject invention overcomes problems in the use of water-based mists as an effective fracturing composition particularly having regard to the ability of a mist to transport an effective volume of proppant into a formation. As a result, the subject technologies provide an effective economic solution to using high ratio gas fracturing compositions that can be produced in a continuous (i.e. non-batch) process without the attendant capital and operating costs of current pure gas fracturing equipment.02-25-2010
20100044048Non-toxic, green fracturing fluid compositions, methods of preparation and methods of use - The invention describes improved environmentally friendly, non-toxic, green fracturing compositions, methods of preparing fracturing compositions and methods of use. Importantly, the subject invention overcomes problems in the use of water-based mists as an effective fracturing composition particularly having regard to the ability of a mist to transport an effective volume of proppant into a formation. As a result, the subject technologies provide an effective economic solution to using high ratio gas fracturing compositions that can be produced in a continuous (i.e. non-batch) process without the attendant capital and operating costs of current pure gas fracturing equipment.02-25-2010
20100044047Method for impulse stimulation of oil and gas well production - A method for fracturing an oil or gas formation. The method includes introducing a gas impulse device into a wellbore followed by pumping a pressurized liquid into a wellbore at a pressure equal to or lower than the estimated fracture pressure of the formation. Finally, the method includes firing the gas impulse device periodically so that the device releases high pressure compressed gas impulses. The impulses when expanding through the pumped pressurized liquid substantially instantaneously increases the fracturing liquid flow rate into the oil or gas formation. It causes the total pressure to exceed the actual fracturing pressure of the formation thereby initiating or extending fractures in the formation stimulating the flow of the oil or gas therefrom into the wellbore. Use of the method of the invention in waterflooding and preventing lost circulation is also described.02-25-2010
20130133891Equalization Valve - An equalization valve that allows for continuous equalization of pressure above and below a sealing element is disclosed. The equalization valve includes a housing having a fluid passageway therethrough. The fluid passageway is fluidically continuous across a sealing element disposed on a mandrel. The mandrel is part of a sealing assembly that contains the sealing element. The equalization valve includes a valve plug moveable from an open position in which the valve plug is not engaged with the sealing mandrel to a seated position in which the valve plug is seated against the sealing mandrel. The valve plug defines a conduit, the conduit that provides for a minimal fluid flow across the sealing element, when the valve plug is seated against the sealing mandrel. The sealing element remains sealingly engaged against the wellbore while the plug is in the seated position and while minimal fluid flow is occurring. The conduit may be provided as part of an insert, the insert being positionable within the valve plug. The equalization valve further includes an outer port for permitting lateral flow of fluid from the tubing string to the annulus defined between the tubing string and the wellbore. The equalization valve may be part of a downhole tool assembly which includes the equalization valve and a sealing assembly.05-30-2013
20100059226Method of Delivering Frac Fluid and Additives - A method for the controlled delivery of a fracturing fluid to a well bore comprises formulating an aqueous base fluid such that it meets or exhibits desired physical and chemical characteristics for an optimal fracturing fluid. The formulation of the aqueous base fluid max involve commingling one or more sources of waste water with a source of fresh water followed by controlled injection of one or more additives. This process is substantially completed prior to delivering the aqueous base fluid to the well site. This allows the delivery of an optimal volume of the aqueous base fluid with homogeneously blended additives to the well bore.03-11-2010
20100108319Reduced Waste Cleaning Methods for Oil Well Related Systems - A method for using an engineered fluid in a manner that reduces or minimizes waste includes applying the engineered fluid to a container having a settled component of a stored fluid, retrieving the applied engineered fluid and at least a portion of the settled component from the container, and using the applied engineered fluid at least once in the same manner as the stored fluid was used. In certain applications, the applied engineered fluid may be put to a different use. The engineered fluid may be processed prior to use.05-06-2010
20130081819Breaking pumpable hydrocarbon gels - Where the loss of volatile organics during storage of high gravity oil is minimized by forming a flowable or pumpable gel in the high gravity oil, (and/or condensates and distillates), as they are introduced to a storage vessel, the gel is broken by the addition of a small amount of an amine/formaldehyde reaction product, which may be either a triazine or a mixture of non-triazine reaction products. The previously gelled hydrocarbon may then by more readily moved by draining or pumping into a pipeline.04-04-2013
20130081820HOSTILE ENVIRONMENT STABLE COMPOSITIONS AND DRILLING AND FRACTURING FLUIDS CONTAINING SAME - Foam systems including a surfactant subsystem including one alpha-olefin sulfonic acid or a plurality of alkali metal alpha-olefin sulfonic acid salts and optionally, one ethoxylated alcohol sulfonate or a plurality of ethoxylated alcohol sulfonates, optionally, a pour point depressant subsystem including one glyme or a plurality of glymes and optionally, a corrosion inhibiting subsystem including one corrosion inhibitor or a plurality of corrosion inhibitors, where the system is thermally or heat stable up to 450° F., the system is environmentally benign, the system is capable of producing a foam in an aqueous medium including high amounts of crude oil, the system is efficient at low usage levels and the system is capable of reuse or at least on foam-defoam cycle. Methods for making and using including preparation of the foam systems, drilling, fracturing, completion and producing using the systems in conjunction with a gas.04-04-2013
20080277120Retrievable frac mandrel and well control stack to facilitate well completion, re-completion or workover and method of use - A retrievable frac mandrel and a well control adapter are used to efficiently accomplish well completion, re-completion or workover. The retrievable frac mandrel is inserted in a tubing head spool of a well to be completed, re-completed or re-worked. The well control adapter is mounted to a top of the tubing head spool and seals off against a top of the retrievable frac mandrel. After well completion, re-completion or workover is completed, the frac mandrel can be retrieved from the tubing head spool without killing or plugging the well.11-13-2008
20130032350Method Of Fracturing Multiple Zones Within A Well - A method of fracturing multiple zones within a wellbore formed in a subterranean formation is carried out by forming flow-through passages in two or more zones within the wellbore that are spaced apart from each other along the length of a portion of the wellbore. The flow-through passages within each zone have different characteristics provided by orienting the flow-through passages in directions in each of the two or more zones relative to a selected direction to provide differences in fracture initiation pressures within each of the two or more zones. A fracturing fluid is introduced into the wellbore in a fracturing treatment. The fracturing fluid in the fracturing treatment is provided at a pressure that is above the fracture initiation pressure of one of the two or more zones to facilitate fracturing of said one of two or more zones while remaining below the fracture initiation pressure of any other non-fractured zones of the two or more zones. The process is repeated for at least one or more non-fractured zones of the two or more zones.02-07-2013
20120181033NANOHYBRID PHASE INTERFACES FOR FOAMING IN OIL FIELD APPLICATIONS - Methods of using nanohybrid-containing fluids in a well are provided. The methods include the steps of: (a) forming or providing a well fluid comprising a nanohybrid; and (b) introducing the well fluid into a well. The methods can be used in various applications, such as in drilling, completion, or intervention operations.07-19-2012
20120181032DISINTEGRATING BALL FOR SEALING FRAC PLUG SEAT - A composition for a ball that disintegrates, dissolves, delaminates or otherwise experiences a significant degradation of its physical properties over time in the presence of hydrocarbons and formation heat. The ball may be used in methods and apparatus for hydraulically fracturing a subterranean zone in a wellbore.07-19-2012
20120181031STIMULATING AND SURGING AN EARTH FORMATION - A method of enhancing communication between a wellbore and an earth formation intersected by the wellbore can include forming a fracture in the formation, and permitting communication between the wellbore and a low pressure volume in response to a desired characteristic of the fracture being maximized. Another method of enhancing communication between a wellbore and an earth formation can include forming a fracture in the formation, and then, while pressure in the formation proximate the wellbore is at least about a closure pressure of the fracture, decreasing pressure in the wellbore by exposing the wellbore to a low pressure volume.07-19-2012
20090044945METHOD FOR HYDRAULIC FRACTURING OF SUBTERRANEAN FORMATION - The invention provides economically effective methods for hydraulic fracturing a subterranean formation that ensure improvement of the hydraulic fracture conductivity because of forming strong proppant clusters uniformly placed in the fracture throughout its length. One of these methods comprises: a first stage that involves injection into a borehole of fracturing fluid containing thickeners to create a fracture in the formation; and a second stage that involves periodic introduction of proppant into the injected fracturing fluid to supply the proppant into a created fracture, to form proppant clusters within the fracture to prevent fracture closure and channels for flowing formation fluids between the clusters, wherein the second stage or its sub-stages involve additional introduction of either a reinforcing or consolidation material or both, thus increasing the strength of the proppant clusters formed into the fracture fluid. Another method comprises: a first stage that involves injection of said fracturing fluid into a borehole, and a second stage that involves introduction of proppant into the injected fracturing fluid and further, involving periodic introduction of an agent into the fracturing fluid to provide formation of proppant clusters in the created fracture and channels for flowing formation fluids. Still another method comprises: a first stage that involves injection of a fracturing fluid into a borehole; a second stage that involves continuous introduction of a proppant into the injected fracturing fluid, and a third stage that involves injection of a lower-viscosity, in comparison with fracturing, fluid into the fracturing fluid, the lower-viscosity fluid, owing to the difference in viscosity compared to the fracturing fluid, penetrating into the fracturing fluid in the form of intrusions that divide the proppant into discrete clusters to form channels between them through which formation fluids to pass.02-19-2009
20090044944Multi-Position Valve for Fracturing and Sand Control and Associated Completion Methods - A completion tubular is placed in position adjacent the zone or zones to be fractured and produced. It features preferably sliding sleeve valves that can assume at least two configurations: wide open and open with a screen material juxtaposed in the flow passage. In a preferred embodiment the valve assembly has three positions, adding a fully closed position to the other two mentioned. After run in, the valves can be put in the wide open position in any order desired to fracture. After fracturing, the valves can be closed or selectively be put in filtration position for production from the fractured zones in any desired order. Various ways are described to actuate the valves. The tubular can have telescoping pistons through which the fracturing can take place if the application calls for a cemented tubular. Alternatively, the tubular can be in open hole and simply have openings for passage of fracture fluid and external isolators to allow fracturing in any desired order.02-19-2009
20090301725Proppant Addition Method and System - A method of injecting a fracturing fluid may include pressurizing a first fluid with clean high-pressure pumps, joining proppant with the pressurized first fluid to form a fracturing fluid, and moving the fracturing fluid to a wellhead and downhole into a formation for fracturing. A pump may pressurize the proppant without the proppant passing therethrough.12-10-2009
20130056212PERFORATING STIMULATING BULLET - A method and device for fracturing a subterranean formation by projecting a bullet assembly into the formation and then reacting energetic material within the bullet assembly. The bullet assembly can be part of a charge device that is in a perforating gun. A delay fuse can be included so the energetic material reaction begins after the bullet assembly reaches the end of its travel in the formation.03-07-2013
20120217013HYDRAULIC FRACTURE DIVERTER APPARATUS AND METHOD THEREOF - A downhole apparatus positionable along a pipe string in a wellbore. The apparatus including a tubular structure having an outermost diameter greater than an outer diameter of an adjacent portion of the pipe string. A first end face facing a flow path in the wellbore, and at least one indentation or protuberance provided on an outer surface of the tubular structure. The at least one indentation or protuberance arranged to cause particulates in slurry within the flow path to collect and remain in a vicinity of the tubular structure. A method of diverting fracturing treatments in a wellbore is also included.08-30-2012
20120217014Wellbore tool for fracturing hydrocarbon formations, and method for fracturing hydrocarbon formations using said tool - A wellbore tool for adapted for insertion into a wellbore extending into a hydrocarbon-containing formation, for fracturing said formation, comprising an elongate, substantially cylindrical tubular member. The tubular member has at a first end external thread means adapted for threadable connection to internal thread means disposed on an end of a wellbore piping member, and at an opposite end having internal thread means. At least a pair of longitudinally-spaced apart radially-outwardly protruding annular rib members are located on an exterior periphery of said tubular member, each of an outer diameter greater than an outer diameter of said wellbore piping member to which said tool is adapted to be threadably coupled. A method for fracturing a hydrocarbon formation using such wellbore tool is further disclosed.08-30-2012
20090266548Rock Stress Modification Technique - A technique involves facilitating fracturing operations along a wellbore extending through a subterranean formation. A stress device is deployed in a wellbore and activated to engage a surrounding wall. The stress device can then be manipulated to create a reduced stress region in the formation at a desired location along the wellbore. The reduced stress region facilitates the controlled formation of a fracture in the formation at the desired location. Furthermore, the stress device can be moved and the process repeated at multiple locations along the wellbore.10-29-2009
20120222863ALKANESULFONIC ACID MICROCAPSULES AND USE THEREOF IN DEEP WELLS - Alkanesulfonic acid microcapsules and the use thereof as an additive for acidizing applications in carbonatic rock formations, especially for increasing the permeability of underground carbonatic mineral oil- and/or natural gas-bearing and/or hydrothermal rock formations and for dissolving carbonatic and/or carbonate-containing impurities in the production of mineral oil and/or natural gas or geothermal power generation are described. Additionally described is an acidic formulation comprising the inventive microcapsules and the use thereof for the aforementioned purpose, and a corresponding process.09-06-2012
20110011592PULSE FRACTURING DEVICE AND METHOD - A method of inducing fracture in at least a portion of a geologic structure includes inducing acoustic waves into a fluid medium present in a borehole extending at least partially into the structure. Embodiments may include preheating or pressurizing the fluid medium prior to inducing the acoustic wave therein. A device for fracturing at least a portion of a geologic structure includes electrodes for producing a spark to generate ordinary acoustic waves in the fluid medium. Embodiments may include structures for preheating or pressurizing the fluid medium prior to inducing the acoustic wave therein.01-20-2011
20130161015APPARATUS AND METHOD FOR FRACTURING A WELL - Apparatus and methods are provided for fracturing a well in a hydrocarbon bearing formation. The apparatus can include one or more valve sub-assemblies assembled into a tubing string inserted into an unlined well. The valve sub-assembly can include a sliding piston initially pinned in place to seal off ports that provide communication between the interior of the tubing string and a production zone of the formation. A ball can be inserted into a tubing string and moved along the tubing string by injected pressurized fracturing fluid until the ball sits on a valve seat of a valve sub-assembly coupled to the sliding piston to close off the tubing string below the valve. The force of the fluid forces the piston downwards to shear off the pins and open the ports. Fracturing fluid can then exit the ports to fracture the production zone of the formation.06-27-2013
20120234547HYDRAULIC FRACTURE DIVERTER APPARATUS AND METHOD THEREOF - An apparatus positionable along a downhole string. The apparatus includes a flexible structure retained on a surface of the string in a first condition. The flexible structure movable by a flow to substantially fill an annular space between the string and a radially positioned structure in a second condition. A method of diverting fracturing treatments in a wellbore is also included.09-20-2012
20120234546SYSTEM AND METHOD FOR FRACTURING A FORMATION AND A METHOD OF INCREASING DEPTH OF FRACTURING A FORMATION - A system for fracturing a formation includes a tubular positionable within a formation borehole having at least one port therethrough configured to provide fluidic communication from inside the tubular to the formation borehole. The system also includes a seal sealably attachable to both the tubular and walls of the formation borehole, a seat in operable communication with the tubular and a member in operable communication with the seat such that movement of the seat relative to the tubular causes the member to engage the walls and provide stress thereto.09-20-2012
20120234545VALVING SYSTEM, METHOD OF ADJUSTING A VALVE AND METHOD OF FRACING A WELLBORE - A valving system includes a tubular and a sleeve slidably engaged with the tubular having a seat thereon. The sleeve is configured to occlude flow from an inside of the tubular to an outside of the tubular when in a first position, allow flow between an inside of the tubular and an outside of the tubular at a first location upstream of the seat and a second location downstream of the seat when in a second position, and allow flow between an inside of the tubular and an outside at the tubular at the first location and not the second location when in a third position. The valving system also includes a disappearing member in operable communication with the tubular and the sleeve configured to prevent movement of the sleeve to the third position until disappearance thereof.09-20-2012
20130161013Corrosion Resistant Fluid End for Well Service Pumps - The present invention relates to the use of corrosion resistant alloys in fluid ends to prolong the life of a well service pump. One embodiment of the present invention provides a method of providing a fluid end that has a corrosion resistant alloy having a fatigue limit greater than or equal to the tensile stress on the fluid end at maximum working pressure in the fluid end for an aqueous-based fluid; installing the fluid end in a well service pump; and pumping the aqueous-based fluid through the fluid end.06-27-2013
20130161014AMINE ADDUCTS, DERIVATIVES THEREOF, METHODS FOR MAKING SUCH ADDUCTS AND DERIVATIVES, AND METHODS FOR USING SUCH ADDUCTS AND DERIVATIVES - An amine adduct is made by (1) forming an addition intermediate by heating a mixture comprising at least one diene and at least one unsaturated fatty acyl compound, and reacting the addition intermediate with a diamine to form the amine adduct, or by (2) reacting at least one unsaturated fatty acyl compound with at least one diamine to form an amine intermediate, and heating a mixture of the amidoamine intermediate and at least one diene to form the amine adduct, or by (3) reacting at least one unsaturated fatty tertiary amine compound with at least at least one diene to form the amine adduct. A surfactant composition is derived from the amine adduct and is particularly useful in a method for enhancing the recovery of oil from a reservoir having a production wellbore, comprising introducing an aqueous flooding fluid into the reservoir at one or more locations different from the location of the production wellbore, said fluid comprising the surfactant composition and recovering the oil through the production wellbore.06-27-2013
20120267112WELL SERVICE COMPOSITIONS AND METHODS - A composition for isolating a zone in a wellbore comprising: an aqueous liquid hydrophobic solid particles, and an oil.10-25-2012
20130206415Method and Apparatus for Modifying a Cargo Container to Deliver Sand to a Frac Site - A cargo container is modified to carry a fracing proppant such as sand from a quarry or source to the frac site. Openings are cut in the top and bottom of a cargo container and hydraulically operated sliding doors are placed there under. A hopper module with the walls being inclined to approximately the angle of repose for the proppant is installed inside the cargo container. The hopper module is sealed inside the cargo container so that a proppant enters through the top opening at the quarry and flows out through the bottom opening at the fracing site.08-15-2013
20110005760SYSTEM AND METHOD FOR LOW DAMAGE FRACTURING - A method of fracturing a subterranean formation comprising at least in part shale formation, comprises providing a carrier fluid; providing a particulate blend including a first amount of particulates having a first average particle size between about 100 and 2000 microns and a second amount of particulates having a second average particle size between about three and twenty times smaller than the first average particle size, such that a packed volume fraction of the particulate blend exceeds 0.75; combining the carrier fluid and the particulate blend into a fracturing slurry; fracturing the formation with the fracturing slurry to create at least a fracture; and removing the second amount of particulates from the fracture.01-13-2011
20110000672Clay Stabilization with Nanoparticles - A treating fluid may contain an effective amount of a particulate additive to stabilize clays, such as clays in a subterranean formation, by inhibiting or preventing them from swelling and/or migrating, where the particulate additive is an alkaline earth metal oxide, alkaline earth metal hydroxide, alkali metal oxide, alkali metal hydroxide, transition metal oxide, transition metal hydroxide, post-transition metal oxide, post-transition metal hydroxide, piezoelectric crystal, and/or pyroelectric crystal. The particle size of the magnesium oxide or other agent may be nanometer scale, which scale may provide unique particle charges that help stabilize the clays. These treating fluids may be used as treatment fluids for subterranean hydrocarbon formations, such as in hydraulic fracturing, completion fluids, gravel packing fluids and fluid loss pills. The carrier fluid used in the treating fluid may be aqueous, brine, alcoholic or hydrocarbon-based.01-06-2011
20110120719PROPPANTS FOR HYDRAULIC FRACTURING TECHNOLOGIES - The invention is directed to systems and methods for forming and using proppant particles having desirable attributes.05-26-2011
20110297383Proppant - A proppant comprises a particle and a polycarbodiimide coating disposed on the particle. The polycarbodiimide coating comprises the reaction product of a polymeric isocyanate and a monomeric isocyanate, in the presence of a catalyst. A method of forming the proppant comprises the steps of providing the particle, providing the polymeric isocyanate, providing the monomeric isocyanate, providing the catalyst, reacting the polymeric isocyanate and the monomeric isocyanate in the presence of the catalyst to form the polycarbodiimide coating, and coating the particle with the polycarbodiimide coating.12-08-2011
20120285693CONTROLLED RELEASE BIOCIDES IN OILFIELD APPLICATIONS - Described is a method for treating a subterranean formation penetrated by a wellbore, the method including the introduction of a well treatment fluid containing at least an encapsulated biocide. Once the encapsulated biocide is introduced and after a predetermined period of time, a biocide is released from an encapsulation material and treats the wellbore and the subterranean formation.11-15-2012
20110272159HYDRAULIC FRACTURE HEIGHT GROWTH CONTROL - A method is given for creating a fracture, in a subterranean formation, that has a fluid flow barrier at the top, at the bottom, or at both the top and the bottom. The method is applied before or during a conventional hydraulic fracturing treatment and is used to limit undesired vertical growth of a fracture out of the productive zone. A lower-viscosity pad fluid is used to initiate the fracture; a higher-viscosity fluid containing barrier particles is then injected; a lower-viscosity particle-free fluid is then injected to promote settling (or rising) of the barrier particles and to finger through the slug of barrier particles and cut it into an upper and lower portion. If the barrier is to be at the bottom of the fracture, the barrier particles are denser than the fluids; if the barrier is to be at the top of the fracture, the barrier particles are less dense than the fluids. Optionally, between the barrier transport stage and the subsequent lower-viscosity stage, there may be a stage of a higher viscosity particle-free fluid that pushes the barrier particles farther into the fracture. To provide both upper and lower particles in one treatment, the pad stage may be of higher-viscosity, or the barrier particles may include particles less dense than, and more dense than, the fluid.11-10-2011
20110284230LIQUIFIED PETROLEUM GAS FRACTURING METHODS - Methods of tailoring a hydrocarbon fracturing fluid for a subterranean formation are disclosed. Fluid in the subterranean formation has a fluid temperature. A first critical temperature of a hydrocarbon fluid is adjusted to a critical temperature above the fluid temperature by adding a liquefied petroleum gas component to the hydrocarbon fluid to produce the hydrocarbon fracturing fluid. The liquefied petroleum gas component has a second critical temperature, and the hydrocarbon fluid comprises liquefied petroleum gas. A hydrocarbon fracturing fluid made by these methods are also disclosed. Methods of treating a subterranean formation are also disclosed. A hydrocarbon fracturing fluid is introduced into the subterranean formation, the hydrocarbon fracturing fluid having a critical temperature that is above a fluid temperature of the hydrocarbon fracturing fluid when the hydrocarbon fracturing fluid is in the subterranean formation. The hydrocarbon fracturing fluid is subjected to pressures above the formation pressure.11-24-2011
20110284229SYSTEM, METHOD AND APPARATUS FOR FRACTURE OF WELLS HAVING A LINER - A process for fracturing a lined well uses a packer assembly in a liner string that provides a cement-free segment and interface with the formation. The device has multiple packers with inflatable elements that are run as an integral assembly. After the liner assembly is positioned, cement is circulated into the assembly and wiped from the interior of the liner string into the annulus. Pressure within the liner string is elevated to initiate time delays for the radial inflation of the packer elements. The inflation radially and axially displaces the cement surrounding the elements before the cement sets. Each packer is subsequently opened to expose the frac ports in the packer directly to the formation for frac operations.11-24-2011
20110284228Increasing the Viscosity of Viscoelastic Fluids - In hydrocarbon recovery applications, viscoelastic surfactant (VES) gelled fluids may be preheated to a temperature that will increase viscosity of the VES gelled fluid. The preheated VES gelled fluid retains at least a portion of its preheated viscosity when cooled such as by introduction into a low temperature condition. In an embodiment, the VES gelled fluid may be a drilling fluid, completion fluid, or fracturing fluid, and the low temperature condition may be an offshore operation, an operation in a locality having a cold climate, and/or a shallow oil, gas, or both land-based operation where the formation temperature is 120° F. or less. The surfactant in the VES gelled fluid may be one or more of an amine, amine salt, quaternary ammonium salt, betaine, amidoamine oxide, amine oxide, and combinations thereof.11-24-2011
20100243256BORE-HOLE JET DEVICE FOR FORMATION HYDRAULIC FRACTURING AND HORIZONTAL WELL EXAMINATION AND A METHOD FOR THE OPERATION THEREOF - A jet pump and packer. The pump body comprises nozzle and mixing chamber with diffuser, coaxially arranged therein, and a stepped through channel therein, tapers from the top downward and is provided with a seat between steps. The channel is made coaxially with a pipe string and coupled thereto. Channels for supplying pumped from the well and active media is provided with return valve and restrictor for limiting locking member displacement of the return valve upward respective to the seat thereof. A sealing unit being a hollow stepped body with sealing element can be arranged in the through channel. An axial channel for passing a rigid logging cable with well-logging instrument is made in the sealing element. A guiding separation bush cantilever fitted by the top end thereof to the top part of the body of the pump mounts above the channel axially thereto in the pump body. Longitudinal slotted orifices are made in the separation bush wall. The invention makes it possible to improve the reliability of the device and to optimise the sequence of operations during the well test.09-30-2010
20110297382PROCESS FOR TRANSPORTING FRACTURE ("FRAC") FLUID ADDITIVES TO OIL AND GAS WELLS UTILIZING ION EXCHANGE RESIN - There is disclosed a process for transporting fracture fluid additives underground to oil and gas wells by attaching a fracture fluid additive to an ion exchange resin and flowing the ion exchange resin underground and thereafter releasing the frac fluid additives from the ion exchange resins and also there is provided the use of an ion exchange resin as a proppant and a frac fluid lubricant.12-08-2011
20090242205METHOD AND APPARATUS FOR DETECTING ACOUSTIC ACTIVITY IN A SUBSURFACE FORMATION - A method of monitoring acoustic activity in a formation from a wellbore includes positioning a flow manipulation device into the wellbore, the flow manipulation device defining a flow path through which fluid may flow. Fluid is then pumped into the wellbore and through the manipulation device. A sensor disposed near the manipulation device is then coupled to the formation, the formation is fractured with fluid, and acoustic events in the formation are detected with the sensor.10-01-2009
20110214869Active Seismic Monitoring of Fracturing Operations - A method for managing a fracturing operation. In one implementation, the method may include positioning a seismic source and at least one seismic receiver near a hydrocarbon reservoir; pumping a fracturing fluid into a well bore of the hydrocarbon reservoir such that the fracturing fluid may include an additive that enhances acoustic impedance between the fracturing fluid and subsurface formations in which the hydrocarbon reservoir is located; performing a seismic survey with the seismic source and the at least one seismic receiver during the fracturing operation; and identifying locations of the fracturing fluid within subsurface formations in which the hydrocarbon reservoir is located.09-08-2011
20110214868Clean Viscosified Treatment Fluids and Associated Methods - Treatment fluids comprising an aqueous base fluid, a viscosifying agent, and a compliant dual-functional additive are provided. The present invention provides methods of using the treatment fluids in subterranean formations. One example of a suitable method includes providing a fracturing fluid comprising an aqueous base fluid, a viscosifying agent, and a compliant dual-functional additive that acts as a fluid loss control agent and a breaker and introducing the fracturing fluid into at least a portion of a subterranean formation at a rate and pressure sufficient to create or enhance at least one or more fractures in the subterranean formation.09-08-2011
20120097397Fracturing System and Method - A system and method for fracturing a stage of a multiple stage hydrocarbon production well. One embodiment of the system comprises at least one ported sleeve assembly and a flapper assembly positioned downwell of the ported sleeve assembly. Each ported sleeve assembly comprises a ported housing having a plurality of ports disposed radially therethrough; a first sleeve at least partially within the ported housing and moveable between a first position and a second position, wherein in the first position the first sleeve is radially positioned between the plurality of ports and the flowpath. The first sleeve has an exterior surface, a first slot formed in the first exterior surface, and a first engagement surface having a first inner diameter. A first guiding member is fixed relative to the ported housing and positionable within the first slot. A first compression spring positioned between the a upper end of the first sleeve and the ported housing, the first compression spring being under compression when the first sleeve is in the first position. The flapper assembly comprises a flapper seal; a flapper plate rotatable between an opened position and a closed position, wherein in the opened position fluid flow in the downwell direction through the flapper seal is at least substantially unimpeded, and wherein in the closed position the flapper plate is engaged against the flapper seal to at least substantially prevent fluid flow through the flapper seal in the downwell direction; a second sleeve moveable between a first position and a second position, wherein in the first position at least a portion of the second sleeve is radially positioned between the flapper plate and the flowpath, the second sleeve having a second exterior surface, a second slot formed in the second exterior surface, and a second engagement surface having a second inner diameter; a second guiding member fixed relative to the flapper seal and positionable within the second walking jay slot; and a second compression spring positioned between an upper end of the second sleeve and the flapper seal, the second compression spring being under compression when the second sleeve is in the second position.04-26-2012
20120097396Bottom hole assembly - A bottom hole assembly is provided. The bottom hole assembly comprises an upper component, a lower component and a telescoping assembly disposed between the upper component and the lower component.04-26-2012
20110192606Degradable Polymers for Hydrocarbon Extraction - The present disclosure is directed degradable polymers. The polymers are solid when maintained under substantially dry conditions at a temperature of up to about 90 degrees C. When contacted with water at a temperature of up to about 90 degrees C., however, the polymers initially remain solid for a period of up to about 6 to about 24 hours, then depolymerize to provide a liquid having a viscosity of from about 1 to about 200,000 centipoise after a period of time from about 8 hours to about 3 days and then further depolymerizes to water-soluble components after a period of time at least about 3 days. Also disclosed are sand screen coatings made with the polymers and hydraulic and acid fracturing methods using the polymers.08-11-2011
20110198089METHODS TO REDUCE SETTLING RATE OF SOLIDS IN A TREATMENT FLUID - The invention discloses a method of treating a subterranean formation of a well bore, comprising: providing a treatment fluid comprising a carrier fluid, proppant, a viscosifying agent and a viscosifier material, wherein the viscosifier material is inactive in a first state and is able to increase viscosity of the treatment fluid when in a second state; introducing the treatment fluid into the wellbore; and, allowing the treatment fluid to interact with a trigger able to activate the viscosifier material from first state to second state.08-18-2011
20110198087Blasting Lateral Holes From Existing Well Bores - A system for blasting lateral holes in the formation around a well bore, the well bore containing production casing and production tubing inside the producting casing. The system includes: a coiled tubing system including a first pump for pumping under pressure cutting fluid; coiled tubing for inserting into the production tubing; a flexible hose having a first end attached to the bottom end of the coiled tubing; a jetting nozzle attached to a second end of the flexible hose; and a deflection shoe adapted for attaching to the bottom of the production tubing. The system further comprises a centering system for centering the coiled tubing within the production tubing; a fluid transport system comprising a second pump and tubing adapted for pumping circulating fluid through the production casing; and a flow-back system comprising tubing adapted for receiving spent cutting fluid out of the production casing.08-18-2011
20080264640WELL TREATMENT USING ELECTRIC SUBMERSIBLE PUMPING SYSTEM - A technique provides an electric submersible pumping system to facilitate a well treatment, such as a hydraulic fracturing well treatment. The electric submersible pumping system is positioned downhole and oriented to intake a fluid delivered downhole for use in the well treatment. Once the fluid is delivered downhole, the electric submersible pumping system pumps, pressurizes and discharges this fluid to perform the well treatment, e.g. the hydraulic fracturing treatment. The pumping system reduces the pressure at which the treatment fluid must be delivered downhole.10-30-2008
20100122817Apparatus and method for servicing a wellbore - A wellbore servicing apparatus, comprising a housing comprising a plurality of housing ports, a sleeve being movable with respect to the housing, the sleeve comprising a plurality of sleeve ports to selectively provide a fluid flow path between the plurality of housing ports and the plurality of sleeve ports, and a sacrificial nozzle in fluid communication with at least one of the plurality of the housing ports and the plurality of sleeve ports. A method of servicing a wellbore, comprising placing a stimulation assembly in the wellbore, the stimulation assembly comprising a housing comprising a plurality of housing ports, a selectively adjustable sleeve comprising a plurality of sleeve ports, and a sacrificial nozzle in fluid communication with one of the plurality of the housing ports and the plurality of sleeve ports, the sacrificial nozzle comprising an aperture, a fluid interface, and a housing interface.05-20-2010
20110114321Open/Close Outlet Internal Hydraulic Device - A fluid-driven adapter for a mineral extraction system is provided. The adapter includes a sleeve (e.g., annular piston) that engages a mandrel disposed in a wellhead component and moves in an axial direction in response to fluid pressure. The adapter moves the mandrel between a first position and a second position to open or close passages in the wellhead component. The adapter includes a lock ring that moves in response to fluid pressure and that locks the adapter to a wellhead assembly to prevent axial movement of the adapter. Methods of operation are also provided.05-19-2011
20110198088TECHNIQUE OF FRACTURING WITH SELECTIVE STREAM INJECTION - A technique facilitates enhanced hydrocarbon recovery through selective stream injection. The technique employs a system and methodology for combining a fracturing technique and application of selective injection streams. The selective injection streams are delivered to select, individual subterranean layers until a plurality of unique subterranean layers are fractured to enhance hydrocarbon recovery.08-18-2011
20120292031HYDRAULIC FRACTURING METHODS AND WELL CASING PLUGS - A hydraulic fracturing method includes injecting a fluid containing a transitory binder and filler into a substantially horizontal well casing without any placement apparatus present in the substantially horizontal well casing, the filler containing particles of a solid material. The transitory binder and filler are placed over first perforations in the well casing. The method includes opening second perforations through the well casing, injecting additional fracturing fluid through the substantially horizontal well casing, and forming a plug over and through the first perforations with the transitory binder and filler.11-22-2012
20120292030SYSTEM AND METHOD FOR PINPOINT FRACTURING INITIATION USING ACIDS IN OPEN HOLE WELLBORES - Downhole tools for pumping an acid into a wellbore prior to pumping a fracturing fluid comprise a housing and an actuator member disposed therein. The housing comprises a port that is initially placed in fluid communication with an acid so the acid can be pumped into the wellbore and is then placed in fluid communication with a fracturing fluid so the fracturing fluid can be pumped into the same location within the wellbore. The downhole tool may comprise a chamber having the acid disposed therein. Alternatively, the acid can be part of an acid slug disposed at a leading edge of a fracturing fluid being pumped through the downhole tool.11-22-2012
20100101795HYDRAULIC FRACTURING OF SUBTERRANEAN FORMATIONS - Methods of hydraulically fracturing subterranean coal seams and formations resulting in improved permeability to stimulate Coalbed Methane. In one method, the coal seam is fractured using a proppant-containing fracturing fluid in alternating stages with an aqueous base solution that etches the fracture faces of the coal thereby creating channels for fluid flow. In another method, the coal seam is fractured using a fracturing fluid without propping agents in alternating stages with an aqueous base solution that is pumped at a pressure sufficient to maintain the fractures in an open position thereby etching the fracture faces to create channels for fluid flow. In yet another embodiment, a base solution is injected into the formation at a pressure sufficient to create fractures therein and simultaneously etch the faces of the open fractures to thereby form channels in the faces for increased fluid flow.04-29-2010
20090032260INJECTION PLANE INITIATION IN A WELL - Initiation of injection planes in a well. A method of forming at least one generally planar inclusion in a subterranean formation includes the steps of: expanding a wellbore in the formation by injecting a material into an annulus positioned between the wellbore and a casing lining the wellbore; increasing compressive stress in the formation as a result of the expanding step; and then injecting a fluid into the formation, thereby forming the inclusion in a direction of the increased compressive stress. Another method includes the steps of: expanding a wellbore in the formation by injecting a material into an annulus positioned between the wellbore and a casing lining the wellbore; reducing stress in the formation in a tangential direction relative to the wellbore; and then injecting a fluid into the formation, thereby forming the inclusion in a direction normal to the reduced tangential stress.02-05-2009
20100263874METHOD AND APPARATUS FOR FREEZE-THAW WELL STIMULATION USING ORIFICED REFRIGERATION TUBING - A method and apparatus for introducing refrigerant into a wellbore, for freeze-fracturing a selected region of a subsurface formation, uses refrigerant diffuser pipe having multiple orifices in a selected pattern along a designated section of its length. The orificed supply tubing is disposed within a refrigerant return conduit, thereby forming a tubing annulus. A flow of liquid refrigerant is introduced into the diffuser pipe and flows through the orifices into the tubing annulus, with the orifices acting as expander means creating a pressure drop and causing vaporization of the refrigerant as it passes into the annulus. To facilitate use of the same diffuser pipe in different wells having different requirements, a helical orifice-isolation wrap may be disposed around the diffuser pipe, with the orifice-isolation wrap having orifice-plugging elements arrayed to effectively block fluid flow through selected orifices, while leaving other orifices open as required. In this way, it is possible to design diffuser pipes with particular orifice arrangements that will accommodate two or more different isolation wraps, with each different wrap plugging different patterns of orifices.10-21-2010
20080271894Method and apparatus for subterranean fracturing - A subterranean formation stimulation system, comprising a gas generator, a high pressure seal, and means to activate the generator. The high pressure may be a packer and or plug having an outer sealing surface on its outer periphery. The outer sealing surface is configured for metal to metal contact with the inner circumference of wellbore casing. The gas generator can be compressed gas or a propellant. The means to activate the generator includes a shaped charge. The system is disposable in a wellbore on wireline, slick line, or tubing.11-06-2008
20100206571METHOD AND APPARATUS FOR SETTING AN INFLATABLE PACKER IN A SUBHYDROSTATIC WELLBORE - An embodiment of an assembly for setting an inflatable packer within a wellbore comprises a coiled tubing, an inflatable packer to be set in a wellbore, a back pressure valve, and a drain valve operable to allow fluid flow therepast and prevent inadvertent inflation of the inflatable packer.08-19-2010
20120067585TREATMENT OF SUBTERRANEAN FORMATIONS - A method of preparing and using a subterranean formation stabilization agent. The stabilization agent includes a guanidyl copolymer and may be admixed with a fracturing fluid and optionally brine. The stabilization agent is effective in preventing and/or reducing, for example, clay swelling and fines migration from a subterranean formation contacted with the stabilization agent.03-22-2012
20120067584HYDROCARBON-BASED FLUID COMPOSITIONS AND METHODS OF USING SAME - The present invention provides hydrocarbon-based fracturing fluid compositions comprising a hydrocarbon fluid, proppant, and a small amount of water, and methods of using same. The small amount of water, preferably present at a concentration ranging from about 0.1% to about 5%, causes water bridging between the proppant particulates, causing the proppant particles to agglomerate. The compositions are useful in mitigating proppant flowback in hydraulic fracturing operations and are useful in isolating one or more zones in vertical as well as horizontal wells having multiple pay zones.03-22-2012
20120067583SYSTEM AND METHOD FOR STIMULATING MULTIPLE PRODUCTION ZONES IN A WELLBORE WITH A TUBING DEPLOYED BALL SEAT - A system and method for selectively stimulating a plurality of producing zones in a wellbore in oil and gas wells. The system includes a plurality of modules connected in a string that may be selectively actuated to stimulate a producing zone. Each module may be adapted to engage a tubing run ball seat. After installation of the string within the wellbore, a ball seat may be run into the well and positioned to selectively engage a desired module. The ball seat may be used to open a sleeve of the module permitting the stimulation of the producing zone. After stimulation of the producing zone, the ball seat may be removed from the wellbore rather than needing to drill out the ball seat. The sleeve may include a profile adapted to engage a shifting tool permitting the selective closure of the sleeve after stimulation of the producing zone.03-22-2012
20120067582APPARATUS AND METHOD FOR FRACTURING PORTIONS OF AN EARTH FORMATION - A method of fracturing an earth formation is disclosed. The method includes: isolating a section of a borehole in the earth formation; introducing a fluid into the isolated section and pressurizing the isolated section from a first pressure to a second pressure; introducing a stress concentration to a borehole wall at least one location in the isolated section when the fluid is at the selected pressure or during the pressurization; and initiating a hydraulic fracture in the earth formation at the at least one location.03-22-2012
20120067581MECHANISM FOR TREATING SUBTERANEAN FORMATIONS WITH EMBEDDED ADDITIVES - The subject disclosure discloses mechanisms for embedding and controlling multifunctional additives within a polymer matrix for use in oilfield applications. More particularly, the subject disclosure discloses methods of treating a subterranean formation with a polymer matrix comprising one or a plurality of polymers and one or a plurality of functional additives embedded into this polymer matrix.03-22-2012
20110139456Controlled Fracture Initiation Stress Packer - A method for selective placement, initiation and propagation of a hydraulically induced fracture in an open wellbore.06-16-2011
20090223670SYSTEMS, ASSEMBLIES AND PROCESSES FOR CONTROLLING TOOLS IN A WELL BORE - A dedicated hydraulic line for transmission of a signal device capable of generating one or more unique signals to one or more tools within a subterranean well. Each tool can be equipped with a reader device for receiving signals from and transmitting signals to the signal device. Each reader device can control operation of the tool associated therewith if the reader device is programmed to respond to signals received from the control device. Hydraulic fluid used to operate the tool can be conveyed via the dedicated hydraulic line or a separate hydraulic line. A separate hydraulic line can be used to reset the tool. Where the tools include sliding sleeves, the tools can be used to hydraulically fracture subterranean environs at spaced apart locations along a well bore in any desired sequence and without removing the tools from the well during the fracturing process.09-10-2009
20100263871Open Hole Frac System - A fracturing operation is done in open hole without annular space isolation. The annular space is spanned by telescoping members that are located behind isolation valves. A given bank of telescoping members can be uncovered and the telescoping members extended to span the annular space and engage the formation in a sealing manner. Pressurized fracturing fluid can be pumped through the telescoped passages and the portion of the desired formation fractured. In a proper formation, cementing is not needed to maintain wellbore integrity. The telescoping members can optionally have screens. Normally, the nature of the formation is such that gravel packing is also not required. A production string can be inserted into the string with the telescoping devices and the formation portions of interest can be produced through the selectively exposed telescoping members.10-21-2010
20120103616Methods of Fracturing Subterranean Formations Using Sulfonated Synthetic Gelling Agent Polymers - Methods of forming one or more fractures in a subterranean formation penetrated by a well bore. The methods generally include providing a treating fluid that comprises water and one or more sulfonated gelling agent polymers, wherein the one or more sulfonated gelling agent polymers comprise a sulfonated synthetic polymer selected from the group consisting of sulfonated polyvinyl alcohol, sulfonated polyacrylate, sulfonated polyacrylamide/acrylic acid copolymers, and any combination thereof; and introducing the treating fluid into the subterranean formation. The treating fluid may be placed at a pressure sufficient to create or extend fractures within the subterranean formation.05-03-2012
20120103615VISCOUS WELLBORE FLUIDS - A wellbore fluid contains a viscosifying polymer in which portions of the polymer are connected through formation of an inclusion complex involving cucurbituril 8 (i.e. CB[8]) as host molecule. The fluid contains guest molecules with first and second guest groups covalently attached wherein at least one of the guest molecules comprises a polymer chain. The CB [8] host and the guest molecules attach together through reception of first and second guest groups within CB[8] host cavities, thereby connecting polymer chains together as a larger, supramolecular polymer and enhancing viscosity of the fluid. Polymer molecules may be synthetic polymers and guest groups may be attached to monomers before polymerization. Alternatively guest groups may be attached to existing polymers which may be polysaccharide.05-03-2012
20130126174WATER CONVERSION SYSTEM - A mobile water conversion system including an electro-coagulation stage, a microfiltration stage, a cooling stage, a nanofiltration stage, and a reverse osmosis stage. The electro-coagulation stage receives heated input water, such as geothermal brackish water, and reduces total suspended solids. The microfiltration stage removes suspended solids and dissolved solids. The cooling stage provides cooled brine water. The nanofiltration stage removes hardness from the cooled brine water to provide sodium brine water. A portion of sodium brine water is provided to circulating water in the cooling stage. The reverse osmosis stage reduces sodium content and provides fresh water suitable for a specified purpose, such as fracking.05-23-2013
20100243255Apparatus and Method for Oilfield Material Delivery - In an embodiment, a method of operating at least one pressure vessel to inject a particulate slurry into a high-pressure line, comprises a first operating cycle comprising: isolating the at least one pressure vessel from the high-pressure line; introducing particulate solids into the pressure vessel through a particulate solids inlet aperture; a second operating cycle comprising: providing high-pressure flow into the pressure vessel; and providing a high-pressure slurry flow from the pressure vessel into the high-pressure line. The method further comprises operating the at least one pressure vessel in the second operating cycle to create a heterogeneous flow of slurry into the high-pressure line.09-30-2010
20100252268USE OF CALIBRATION INJECTIONS WITH MICROSEISMIC MONITORING - A method of treating a subterranean formation penetrated by a wellbore is carried out by performing a diagnostic operation wherein a fluid is introduced into the wellbore at a pressure sufficient to create at least one microseismic event within the formation. The at least one microseismic event is monitored. At least one property of the formation surrounding the well is determined based on the monitored at least one microseismic event. A well treatment is performed based upon the determined at least one property of the well wherein the well is modified by the well treatment.10-07-2010
20100126728SINTERED SPHERICAL PELLETS - Sintered, spherical composite pellets or particles comprising alumina fines, at least one of clay and bauxite and optionally a sintering aid, are described, along with a process for their manufacture. The use of such pellets in hydraulic fracturing of subterranean formations and in grinding is also described.05-27-2010
20090107680Apparatus and method for ratcheting stimulation tool - A method and apparatus for ratcheting a stimulation tool in a well is disclosed. The stimulation tool is movable from a first radial position to a second radial position without moving the tool string.04-30-2009
20100300693Enzyme Surfactant Fluids Used in Non-Gel Hydraulic Fracturing of Oil Wells - The present application describes improved total recovery of oil, condensate and associated gas in a subterranean formation such that said hydrocarbons are released by a hydraulic fracturing process with a non-gel hydraulic fracturing fluid that comprises an enzyme surfactant fluid with at least one anionic surfactant thereby forming a non-gel hydraulic fracturing fluid enzyme surfactant composition which is injected at 1 to 3 percent of total frac fluid during fracturing.12-02-2010
20120241158RADICAL TRAP IN OIL AND GAS STIMULATION OPERATIONS - A method for using a fracture fluid in forming subterranean fractures includes delaying degradation of a polymer in a fracture fluid when the fracture fluid comprises a breaker by combining at least one radical scavenger with the fracture fluid. The mixture for use in a fracture fluid comprises a radical scavenger and a breaker. A method of fracturing a subterranean formation may include providing a fracture fluid comprising a proppant, a polymer, and a breaker and adding a radical scavenger to the fracture fluid. The fracture fluid is supplied to a desired location in the subterranean formation to form at least one fracture where the viscosity of the fracture fluid is maintained. The breaker is then allowed to degrade the polymer and reduce the viscosity of the fracture fluid at a specific time or temperature.09-27-2012
20110127038METHOD OF HYDRAULICALLY FRACTURING A FORMATION - A method of hydraulically fracturing a formation comprises controlling a pump rate during hydraulic fracturing of the first section of the horizontal well bore during a first period to break down the formation while reducing pick up of sand positioned in the well bore; during a subsequent second period to pick up the sand positioned in the well bore generally at a rate at which the formation will accept the sand; and, during a subsequent third period to fracture the formation.06-02-2011
20110005759FRACTURING SYSTEM AND METHOD - A telescoping unit for a downhole tool including an innermost portion of the telescoping unit; a block defining a restriction disposed within the innermost portion of the telescoping unit; and an erodable coating on the block to segregate the block from downhole fluids and method.01-13-2011
20110108277Formation Treatment Using Electromagnetic Radiation - A method of treating a subterranean formation includes injecting a magnetically permeable material into the formation and energizing the magnetically permeable material using electromagnetic radiation. The magnetically permeable material reacts to the electromagnetic radiation by producing heat. In some embodiments, a fracturing fluid is made magnetically permeable, injected into the formation to fracture the formation, and heated in response to electromagnetic radiation applied to the magnetically permeable material. In some embodiments, electromagnetically heated material is caused to explode. In some embodiments, the magnetically permeable material is tracked or monitored for fluid or fracture propagation. A system includes a fluid treatment tool (05-12-2011
20100181073Method For Controlling Loss of Drilling Fluid - Methods for drilling and treating for lost returns continuously while drilling are provided. High fluid loss drilling fluid is used, along with particulate material that forms an immobile mass in hydraulic fractures to prevent their growth. The particulate material may be selected based on the predicted size of a hydraulic fracture, based on particle size to minimize fines, based on specific gravity to attain high solids content for a selected fluid density, and/or based on permeability of the particles to a high spurt loss.07-22-2010
20110240295CONVERTIBLE DOWNHOLE ISOLATION PLUG - A downhole tool that is capable of isolating communication pressure from below the set downhole tool, and is capable of being converted to a frac plug is provided. The downhole tool includes a packer with a ball seat defined therein. A plug is disposed at a lower end of the downhole tool to isolate the upper well from the lower well. A sealing ball is carried with the packer into the well by a setting tool. The movement of the sealing ball away from the ball seat is limited by isolation of the sealing ball from the lower well. A rod is disposed through the downhole tool contacting the plug. The rod is partially disposed in the ball seat, preventing the sealing ball from sealing. When the packer is set, flow within the well is isolated, thereby allowing treatment of the well above the packer. With the application of sufficient pressure, the sealing ball applies force to the rod which shears the plug from within the tool. The tool is converted to a standard frac plug.10-06-2011
20110017458Method for Inducing Fracture Complexity in Hydraulically Fractured Horizontal Well Completions - A method of inducing fracture complexity within a fracturing interval of a subterranean formation comprising characterizing the subterranean formation, defining a stress anisotropy-altering dimension, providing a wellbore servicing apparatus configured to alter the stress anisotropy of the fracturing interval of the subterranean formation, altering the stress anisotropy within the fracturing interval, and introducing a fracture in the fracturing interval in which the stress anisotropy has been altered. A method of servicing a subterranean formation comprising introducing a fracture into a first fracturing interval, and introducing a fracture into a third fracturing interval, wherein the first fracturing interval and the third fracturing interval are substantially adjacent to a second fracturing interval in which the stress anisotropy is to be altered.01-27-2011
20110127039SYSTEM, METHOD, AND APPARATUS FOR ACID FRACTURING WITH SCALE INHIBITOR PROTECTION - A method for treating a subterranean formation includes forming a treatment fluid including a carrier fluid, a solid acid-precursor, and a solid scale inhibitor. The solid acid-precursor includes a material that forms an acid at downhole conditions in the subterranean formation. The method further includes adding a solid acid-responsive material into the treatment fluid, where the solid acid-responsive material enhances formation of acid from the solid acid-precursor in acidic conditions. The method includes performing an acid fracture treatment and inhibiting scale formation within the subterranean formation. The solid scale inhibitor allows for long-term scale inhibition after the treatment.06-02-2011
20110024121METHOD AND APPARATUS FOR MULTILATERAL MULTISTAGE STIMULATION OF A WELL - A method enables stimulation of a well having a plurality of lateral wellbores. The method comprises deploying fracturing equipment downhole for isolated interaction with each lateral wellbore of the plurality of lateral wellbores. The method and the fracturing equipment are designed to enable fracturing of the plurality of lateral wellbores during a single mobilization.02-03-2011
20090321076Completion Method with Telescoping Perforation & Fracturing Tool - An apparatus and method for perforating a liner, fracturing a formation, and injection or producing fluid, all in one trip with a single tool. The tool has a plurality of outwardly telescoping elements (12-31-2009
20110240296Methods Relating to Improved Stimulation Treatments and Strengthening Fractures in Subterranean Formations - Of the many methods provided herein, one method comprises: providing at least one fracture in a subterranean formation that comprises tight gas, a shale, a clay, and/or a coal bed; providing a plasticity modification fluid that comprises an aqueous fluid and an alkaline embrittlement modification agent; placing the plasticity modification fluid into the fracture in the subterranean formation; and embrittling at least one fracture face of the fracture to form an embrittled fracture face.10-06-2011
20110061869Formation of Fractures Within Horizontal Well - Producing transverse fractures in a horizontal well may be achieved at a relatively lower fracturing pressure by forming one or more tunnels extending from the horizontal wellbore. One or more tunnels may be formed at each location along the horizontal wellbore where a transverse fracture is desired. The tunnel(s) may be formed mechanically, optically, or hydraulically. Further, fracturing may be formed at a lower pressure than would otherwise be required to form transverse fractures from a horizontal wellbore. According to some implementations, the transverse fractures may be formed without isolating a portion of the horizontal wellbore.03-17-2011
20110083852FRAC ADAPTER FOR WELLHEAD - There is provided a frac adapter configured to couple a frac tree to a wellhead component. The frac adapter may couple the frac tree to a casing head without a tubing head, thereby enabling the well to be fractured before the tubing head is installed. As a result, the tubing head used in well production may be pressure-rated for production pressures rather than for fracing pressures. The frac adapter may be coupled to or integral with the frac tree. In addition, a union-nut coupling may be employed to quickly and easily assemble and disassemble the frac adapter from the wellhead component, such as the casing head. The union-nut coupling may further enable the components to be pressure-tested before the fracturing process is initiated.04-14-2011
20100065276METHOD AND APPARATUS FOR WELLBORE FLUID TREATMENT - A tubing string assembly is disclosed for fluid treatment of a wellbore. The tubing string can be used for staged wellbore fluid treatment where a selected segment of the wellbore is treated, while other segments are sealed off. The tubing string can also be used where a ported tubing string is required to be run in in a pressure tight condition and later is needed to be in an open-port condition.03-18-2010
20110174490SYSTEM AND METHOD FOR PERFORMING A FRACTURE OPERATION ON A SUBTERRANEAN FORMATION - A system and method for performing a fracture operation on a well site having a subterranean formation with a reservoir therein is provided. The method involves measuring at least one seismic wave before and after stimulating the subterranean formation, comparing the seismic waves measured before the stimulation of the subterranean formation to the seismic waves measured after stimulation of the subterranean formation, and determining at least one fracture parameter of the subterranean formation from the compared seismic waves.07-21-2011
20120118574COMPOSITION AND METHOD FOR PRODUCING AN ULTRA-LIGHTWEIGHT CERAMIC PROPPANT - An ultra-lightweight, high strength ceramic proppant made from mixture of naturally occurring clays, preferably porcelain clay, kaolin and/or flint-clay, earthenware clay or other naturally occurring clays having an alumina content between about 5.5% and about 35%. The proppant has an apparent specific gravity from about 2.10 to about 2.55 g/cc, and a bulk density of from about 1.30 to about 1.50 g/cc. This ultra-lightweight proppant is useful in hydraulic fracturing of oil and gas wells, and has greater conductivity than sand at pressures up to 8,000 psi as measured by Stim-Lab after 50 hours and 275° F. on Ohio Sandstone, in the presence of deoxygenated aqueous 2% solution of KCI.05-17-2012
20120118573Fracturing with Telescoping Members and Sealing the Annular Space - A fracturing operation is done in open hole. The annular space is spanned by telescoping members that are located behind isolation valves. A given bank of telescoping members can be uncovered and the telescoping members extended to span the annular space and engage the formation in a sealing manner. Pressurized fracturing fluid can be pumped through the telescoped passages and the portion of the desired formation fractured. In a proper formation, cementing is not needed to maintain wellbore integrity. In formations that need annular space isolation, the string in a preferred embodiment can have an external material that grows to seal the annular space in lieu of a traditional cementing operation.05-17-2012
20120118572METHODS OF LIMITING LEAK OFF AND DAMAGE IN HYDRAULIC FRACTURES - A method of heterogeneous proppant placement in a subterranean fracture is disclosed. The method comprises injecting well treatment fluid including proppant and a channelant through a wellbore into the fracture, heterogeneously placing the proppant in the fracture in a plurality of proppant clusters or islands spaced apart by the channelant, and removing the channelant filler material to form open channels around the pillars for fluid flow from the formation through the fracture toward the wellbore. The proppant and channelant can be segregated within the well treatment fluid, or segregated during placement in the fracture. The channelant can be dissolvable particles, initially acting as a filler material during placement of the proppant, and later dissolving to leave the flow channels between the proppant pillars. The well treatment fluid can include fibers to provide reinforcement and consolidation of the proppant and/or to inhibit settling of the proppant in the treatment fluid.05-17-2012
20110146994Methods of Fracturing An Openhole Well Using Venturi Section - Methods of fracturing a well can include the steps of: (A) obtaining a fracturing job design having at least one treatment interval; (B) running a tubular string into the treatment interval; (C) before or after the step of running, forming one or more tubular string openings in the tubular string, wherein after the step of running, the one or more tubular string openings are positioned in the treatment interval; (D) except for the axial passageway of the tubular string, blocking at least 86% of the nominal cross-sectional area of the treatment interval that is between one of the ends of the treatment interval and the axially closest of the one or more tubular string openings, and, except for the axial passageway of the tubular string, leaving unblocked at least 4% of the nominal cross-sectional area of the treatment interval; and (E) pumping a fracturing fluid through the one or more tubular string openings at a rate and pressure sufficient to initiate at least one fracture in the subterranean formation surrounding the treatment interval.06-23-2011
20100263873METHOD AND APPARATUS FOR USE IN SELECTIVELY FRACING A WELL - An apparatus for selectively fracing a well includes a tubular body having an exterior surface, and an interior surface that defines an interior bore. An annular flow area that has at least one fluid flow port extends radially through the tubular body to permit fluids from the interior bore to pass through the at least one fluid flow port into a surrounding earth formation. An external sealing sleeve selectively covers the annular flow area. There is a pressure actuated sleeve shifting mechanism, where increasing pressure tending to cause axial movement of the external sealing sleeve. The axial movement is resisted until a pre-selected pressure threshold is reached to permit movement of the external sealing sleeve to open the at least one fluid flow port.10-21-2010
20110146995METHODS OF FRACTURING A WELL USING VENTURI SECTION - Methods of fracturing a well can include the steps of: (A) obtaining a fracturing job design having at least one treatment interval; (B) running a tubular string into the treatment interval; (C) before or after the step of running, forming one or more tubular string openings in the tubular string, wherein after the step of running, the one or more tubular string openings are positioned in the treatment interval; (D) except for the axial passageway of the tubular string, blocking at least 86% of the nominal cross-sectional area of the treatment interval that is between one of the ends of the treatment interval and the axially closest of the one or more tubular string openings, and, except for the axial passageway of the tubular string, leaving unblocked at least 4% of the nominal cross-sectional area of the treatment interval; and (E) pumping a fracturing fluid through the one or more tubular string openings at a rate and pressure sufficient to initiate at least one fracture in the subterranean formation surrounding the treatment interval.06-23-2011
20100263872Erosion Resistant Flow Connector - A wellbore servicing apparatus, comprising an inlet space, a central space adjacent and in fluid communication with the inlet space along a central axis, a dome space adjacent and in fluid communication with the central space along the central axis, and a plurality of channels adjacent to and in fluid communication with the dome space, wherein the plurality of channels are radially spaced about the central axis, and wherein a channel axis of the at least one of the plurality of channels is incident the central axis by less than ninety degrees.10-21-2010
20100282471HYDRAULIC FRACTURING OF SUBTERRANEAN FORMATIONS - Methods of hydraulically fracturing subterranean coal seams and formations resulting in improved permeability to stimulate Coalbed Methane. In one method, the coal seam is fractured using a proppant-containing fracturing fluid in alternating stages with an aqueous base solution that etches the fracture faces of the coal thereby creating channels for fluid flow. In another method, the coal seam is fractured using a fracturing fluid without propping agents in alternating stages with an aqueous oxidizing solution that is pumped at a pressure sufficient to maintain the fractures in an open position thereby etching the fracture faces to create channels for fluid flow. In yet another embodiment, the aqueous oxidizing agent solution is pumped into the formation at a pressure sufficient to create fractures therein and simultaneously etch the faces of the open fractures to thereby form channels in the faces for increased fluid flow.11-11-2010
20110162849Method and System for Determining Formation Properties Based on Fracture Treatment - A method and system for determining formation properties based on a fracture treatment that may include collecting data from a fracture treatment for a well. A flow regime of the fracture treatment is determined based on the data. Formation properties may be determined based on the flow regime and the data.07-07-2011
20100319923MOBILE SYSTEMS AND METHODS OF SUFFICIENTLY TREATING WATER SO THAT THE TREATED WATER MAY BE UTILIZED IN WELL-TREATMENT OPERATIONS - A system is provided that includes: (a) a mobile platform; (b) an input pump operatively connected to be capable of pumping a treatment stream through the system; (c) a centrifugal separator operatively connected downstream of the input pump to centrifugally treat the treatment stream; (d) a borate filter operatively connected downstream of the centrifugal separator to filter the treatment stream capable of removing at least some of a borate when the treatment stream is at a pH of 8 or above; and (e) a chemical-additive subsystem operatively connected to be capable of: (i) selectively adding one or more chemical agents to the treatment stream upstream of the centrifugal separator, wherein the chemical agents can be selected to be capable of precipitating dissolved ions selected from the group consisting of: sulfate, calcium, strontium, or barium, magnesium, iron; and (ii) selectively adding a chemical agent to the treatment stream upstream of the borate filter to increase the pH of the treatment stream to 8 or above.12-23-2010
20100319922Methods of Fracturing Subterranean Formations Using Sulfonated Gelling Agent Polymers - Methods of forming one or more fractures in a subterranean formation penetrated by a well bore including the steps of providing a high ionic strength treating fluid that comprises water and one or more sulfonated gelling agent polymers wherein the high ionic strength treating fluid comprises one or more water soluble salts in a concentration of greater than about 8% by weight of the treating fluid, and introducing the treating fluid into the subterranean formation at a rate and pressure sufficient to create or enhance one or more fractures therein.12-23-2010
20100282469Fracturing with Telescoping Members and Sealing the Annular Space - A fracturing operation is done in open hole. The annular space is spanned by telescoping members that are located behind isolation valves. A given bank of telescoping members can be uncovered and the telescoping members extended to span the annular space and engage the formation in a sealing manner. Pressurized fracturing fluid can be pumped through the telescoped passages and the portion of the desired formation fractured. In a proper formation, cementing is not needed to maintain wellbore integrity. In formations that need annular space isolation, the string in a preferred embodiment can have an external material that grows to seal the annular space in lieu of a traditional cementing operation.11-11-2010
20100282470METHODS OF INCREASING FRACTURE RESISTANCE IN LOW PERMEABILITY FORMATIONS - A method of increasing the fracture resistance of a low permeability formation that includes emplacing a wellbore fluid in a wellbore through the low permeability formation, the wellbore fluid comprising: a settable carrier fluid; and a solid particulate bridging material; increasing the pressure in the wellbore such that fractures are formed in the formation; allowing the settable carrier fluid to enter the fractures; bridging and sealing the mouths of the fractures to form a substantially impermeable bridge proximate the mouth of the fractures thereby strengthening the formation; and holding the increased pressure for an amount of time sufficient for setting of the carrier fluid in the fractures is disclosed.11-11-2010
20110108276APPARATUS AND METHOD FOR CREATING PRESSURE PULSES IN A WELLBORE - In accordance with a broad aspect of the present invention there is provided an apparatus for wellbore fluid treatment, comprising: a body with a lower end, an upper end, an exterior surface and an interior surface defining a long bore open at the upper end; an outlet port spaced from the upper end, the outlet port permitting the communication of fluids between the long bore and the exterior surface; and, a die in the long bore between the upper end and the outlet port, the die being substantially immovable within the long bore and having an inner open diameter in which a plug can land to create a seal in the long bore before passing through the inner open diameter.05-12-2011
20110114319OPEN HOLE STIMULATION WITH JET TOOL - A fracturing method for preferably open hole uses fluid velocity impinging on the wellbore wall to initiate fractures. Telescoping members that extend using nozzles inside them but come out to a distance from the wellbore wall can be used. Fixed nozzles that do not extend are also another option. The nozzles can be eroded or corroded as the fracturing takes place or they can be made of sufficiently durable materials or have coatings to withstand the erosive effects of high velocity slurries pumped to impinge the wellbore wall to initiate fractures.05-19-2011
20110114320STAND-ALONE FRAC LINER SYSTEM - A stand-alone frac liner that allows for fracturing of multiple lateral legs of a multilateral well on a single call out and rig-up of fracturing equipment. Tools and techniques are provided that include setting multiple stand-alone frac liners in multiple lateral legs of the multilateral well. The liners may rest in the legs physically untethered to surface equipment. Thus, a single call out of a frac string tubular and associated equipment may be used to frac the lateral legs in sequence from one leg to the next. This may be achieved without the requirement of removal of the tubular from the well or disconnect of surface fracturing equipment between the lateral fracture applications. Thus, a considerable amount of expenses associated with time and manpower may be saved.05-19-2011
20120199356Equipment For Quick Dispersion Of Polyacrylamide Powder For Fracturing Operations - A compact and transportable installation, which is quick to start up and is independent, which allows for dissolution of at high concentration, in very short periods of time, substantial quantities of polyacrylamide powder and which is designed to be used in fracturing operations on gas or oil fields, is provided. The installation successively includes a polymer storage area, a vertical polymer transfer hopper, a supply overflow pipe, a polymer dosing system fed by the pipe, a polymer slicing unit (PSU) type polymer dispersion device, a tank for storage and degassing of polymer in solution, and a volumetric pump to inject and dose the solution of polymer obtained at a suction of a high pressure pump enabling the fracturing operations.08-09-2012
20100116500Method of Fracturing a Subterranean Formation at Optimized and Pre-determined Conditions - Prior to a hydraulic fracturing treatment, the requisite injection rate for a desired propped fracture length of a fracture may be estimated with knowledge of certain physical properties of the proppant and transport fluid such as fluid viscosity, proppant size and specific gravity of the transport slurry as well as fracture geometry and the fracture length. The requisite injection rate may be determined for the desired propped fracture length of the fracture, D05-13-2010
20110094745DOWNHOLE PERFORATION TOOL - A propellant assembly for subsurface fracturing and method for using the same are provided. The assembly can include a first tubular member having an annulus formed therethrough; a second tubular member at least partially disposed within the annulus of the first tubular member; one or more tubular propellants housed within the first tubular member, between an inner diameter of the first tubular member and an outer diameter of the second tubular member; and one or more detonating cords housed within the second tubular member, wherein the second tubular member has one or more portions thereof having a reduced wall thickness.04-28-2011
20110259593Method of over-pressured well fracturing with periodic shock waves - Fractures are initiated or extended into earth formations from a well by providing pressured fluid in said wellbore at pressures exceeding the fracture gradient pressure of said formation and by generating a cyclic shock waves. Periodic shock waves applied simultaneously with a high pressured fluid on a formation increases the length of fractures/cracks in the formation.10-27-2011
20110186297APPLICATIONS OF SMART FLUIDS IN WELL SERVICE OPERATIONS - Smart fluid compositions and methods of use in the well service operations.08-04-2011
20120097398Multi-Zone Fracturing Completion - A wellbore completion is disclosed. The wellbore completion comprises a casing assembly comprising a plurality of casing lengths. At least one collar is positioned so as to couple the casing lengths. The at least one collar comprises a tubular body having an inner flow path and at least one fracture port configured to provide fluid communication between an outer surface of the collar and the inner flow path. A length of coiled tubing can be positioned in the casing assembly. The coiled tubing comprises an inner flow path, wherein an annulus is formed between the coiled tubing and the casing assembly. A bottom hole assembly is coupled to the coiled tubing. The bottom hole assembly comprises a fracturing aperture configured to provide fluid communication between the inner flow path of the coiled tubing and the annulus. A packer can be positioned to allow contact with the at least one collar when the packer is expanded. The packer is capable of isolating the annulus above the packer from the annulus below the packer so that fluid flowing down the coiled tubing can cause a pressure differential across the packer to thereby open the fracture port.04-26-2012
20110036583SLIP-LAYER FLUID PLACEMENT - A method of fluid placement in a hydraulic fracture created in a subterranean formation penetrated by a wellbore that comprises the use of one or more reactants that form a low friction layer between the fluids that penetrate the fracture in consecutive treatment stages. Reactants can be added to the fluid that is the carrier or other fluid to be placed in a specific region of the fracture, namely as an upper or lower boundary of the fracture, or added to both the stage that requires placement in a specific section of the fracture and in the stage preceding it, especially the pad and carrier fluids used in consecutive stages.02-17-2011
20120037373DOWNHOLE FRACTURE SYSTEM AND METHOD - A system for fracturing a subterranean formation includes a housing having one or more radially directed ports therein. A valve disposed within the housing proximate the one or more ports. A seat member interactive with the valve to rapidly prevent or substantially retard fluid flow therethrough. A method for initiating a fracture in a subterranean formation is included.02-16-2012
20120305255Method of Treating the Near-Wellbore Zone of the Reservoir - The invention describes a method for treating near-wellbore zones involving the steps of injecting a magnesium metal with a catalyst into the desired area of the formation to be treated. Subsequently, combustive-oxidizing solution (COS) is injected into the zone of the formation to be treated. The COS initially reacts with the magnesium, which in turn initiates a vigorous oxidation reaction of the COS. The reaction gases and heat produced by the COS oxidation reaction are harnessed to enhance the productivity of the well by creating fractures in the treatment zone and by melting of paraffin and resin deposits in the treatment zone. As a final step, acid is injected into the formation to react with the formation thereby further enhancing the porosity of the fractures. In one embodiment, the COS uses ammonium nitrate as the oxidizer, and in another, urea or ethylene glycol may be added as a reaction fuel.12-06-2012
20110108275WELLHEAD ISOLATION PROTECTION SLEEVE - An isolation sleeve extends from an adapter into the bore of a tubing head to isolate high pressure frac fluid from the body of the tubing head. The isolation sleeve may be installed by a running tool that can screw the sleeve onto a packoff bushing located within the tubing head. The running tool can also retrieve the isolation sleeve by unscrewing it from the packoff bushing.05-12-2011
20120247775DOWNHOLE TOOL WITH PUMPABLE SECTION - A downhole tool for use in a well. The tool has a packer assembly and a pumpable plug associated with the packer assembly. The pumpable plug has a diameter greater than the maximum outer diameter of the packer assembly. The pumpable plug may be pumped through a casing having a diameter larger than that for which the packer assembly is designed and will urge the packer assembly through the large diameter casing into a smaller diameter casing for which the packer assembly is designed.10-04-2012
20120043085WELLBORE SERVICE FLUID AND METHODS OF USE - A method is described to predict the composition of favorable bridging agents for a particular situation in which the solution thermodynamics of the chemicals used in the composition of the bridging material is carefully evaluated. Wellbore service fluids are also described that contain materials such as sodium bicarbonate, a material such as a salt containing water in a crystal structure, a material containing at least one boron-oxygen bond, or a non-polymer material having low solubility at low temperatures and high solubility at temperatures close to an expected long-term static bottom hole temperature. The material is provided in aqueous medium in sufficient concentration in the aqueous medium so as to act as a diverting agent during a hydraulic fracturing procedure using the fluid. The wellbore service fluid is pumped through the wellbore and the flow of the fluid is diverted using a plug that subsequently substantially dissolves due to changes in temperature and/or pressure.02-23-2012
20120205111REINFORCED FRAC TUBING HEAD - A reinforced wellhead member for use during fracing operations. The wellhead member is preloaded at a flange section by creating compressive stresses via a ring that interacts with a tightening nut on a bolt. The bolt is rigidly attached to an adapter which may also be modified to create stresses on the flange of the wellhead member. The induced stresses counter the tensile stresses experienced by the flange during fracing operations, allowing a standard wellhead member to be utilized.08-16-2012
20120000661Low temperature hydrocarbon gel II - A composition useful for crosslinking phosphate esters in hydrocarbon gels used in formation fracturing performs especially well in cold temperatures, such as temperatures lower than (−)20° C. Methods of making the crosslinking composition and the gel are described; also methods of fracturing subterranean formations. Specific forms of ferric sulfate and ferric ammonium citrate are useful as ingredients of the crosslinking composition.01-05-2012
20120000660Low temperature hydrocarbon gel - A composition useful for crosslinking phosphate esters in hydrocarbon gels used in formation fracturing performs especially well in cold temperatures, such as temperatures lower than (−)20° C. Methods of making the crosslinking composition and the gel are described; also methods of fracturing subterranean formations. Specific forms of ferric sulfate and ferric ammonium citrate are useful as ingredients of the crosslinking composition.01-05-2012
20120000662VISCOSITY DIFFERENTIAL FRACTURING FOR ENHANCED APPLICATION OF AMENDMENTS TO GROUND AND GROUNDWATER - Viscosity Differential Fracturing uses pneumatic and hydraulic fracturing techniques and a viscosity differential to achieve greater networking, higher amendment loading rates and more controlled propagation. Pneumatic fracturing is applied first in order to create a dense network of small fractures. This is followed by a hydraulic component using a viscosity adjusted fluid. This material can be injected into these fractures at a significant flow rate and extend/expand these fractures while filling them with the fluid. The significant advantage of VDF versus traditional hydraulic fracturing is that the density of fractures created by the initial gas process leads to an overall greater density of fractures emplaced within the subsurface coupled with the ability to emplace a greater mass of material (e.g. proppants, sand, reactants).01-05-2012
20110155377JOINT OR COUPLING DEVICE INCORPORATING A MECHANICALLY-INDUCED WEAK POINT AND METHOD OF USE - A system and method using liner joints, pup joints, couplings, or similar components incorporating a mechanically-induced weak point to access targeted subterranean rock formations. More particularly, the mechanically-induced weak point may comprise a machined weakness, blow-out plug, burst disc, soluble plug, or the like. The mechanically-induced weak point may be adapted to burst at a predetermined blow-out pressure differential. Alternatively, the soluble plug may be manufactured of soluble material adapted to selectively dissolve in certain solutions.06-30-2011
20120012324METHOD OF FRACTURING A SUBTERRANEAN FORMATION AT OPTIMIZED AND PRE-DETERMINED CONDITIONS - Prior to a hydraulic fracturing treatment, the requisite median diameter of a proppant, d01-19-2012
20120012323METHOD OF FRACTURING A SUBTERRANEAN FORMATION AT OPTIMIZED AND PRE-DETERMINED CONDITIONS - Prior to a hydraulic fracturing treatment, ΔSG01-19-2012
20120012322Auto-production frac tool - Fracturing tools for use in oil and gas wells comprise an inner sleeve, an outer sleeve, a run-in position, and two operational positions. The inner sleeve comprises two ports and two positions. The first port is aligned with a first port of the housing when the tool and sleeve are in the first operational position and is closed when the tool and sleeve are in the run-in position. After performing the first operation, the inner sleeve is returned to its initial position and the outer sleeve is moved placing the tool in the second operational position in which the second port in the inner sleeve is in fluid communication with a second port in the housing. Movement of the tool from the first operational position to the second operational position so that a second operation can be performed is done without the need for an additional well intervention step.01-19-2012
20120055676Fluid Loss Control in Viscoelastic Surfactant Fracturing Fluids Using Water Soluble Polymers - Water soluble uncrosslinked polysaccharides may be fluid loss control agents for viscoelastic surfactant (VES) fluids used for stimulation (e.g. fracturing) or well completion in hydrocarbon recovery operations. The VES fluid may further include proppant or gravel, if it is intended for use as a fracturing fluid or a gravel packing fluid, although such uses do not require that the fluid contain proppant or gravel. The water soluble uncrosslinked polysaccharide fluid loss control agents may include, but not be limited to guar gum and derivatives thereof; cellulose and derivatives thereof; propylene glycol alginate; salts (e.g. sodium, potassium, and calcium salts) of iota, kappa, and lambda carrageenan; agar-agar; xanthan gum; and the like; and/or mixtures thereof. The fluid loss control agent may be added to the aqueous viscoelastic treating fluid prior to VES addition, and/or at the same time and/or after the VES is added.03-08-2012
20120024530Increasing Fracture Complexity in Ultra-Low Permeable Subterranean Formation Using Degradable Particulate - A method of increasing the fracture complexity in a treatment zone of a subterranean formation is provided. The subterranean formation is characterized by having a matrix permeability less than 1.0 microDarcy. The method includes the step of pumping one or more fracturing fluids into a far-field region of a treatment zone of the subterranean formation at a rate and pressure above the fracture pressure of the treatment zone. A first fracturing fluid of the one or more fracturing fluids includes a first solid particulate, wherein: (a) the first solid particulate includes a particle size distribution for bridging the pore throats of a proppant pack previously formed or to be formed in the treatment zone; and (b) the first solid particulate comprises a degradable material. In an embodiment, the first solid particulate is in an insufficient amount in the first fracturing fluid to increase the packed volume fraction of any region of the proppant pack to greater than 73%. Similar methods using stepwise fracturing fluids and remedial fracturing treatments are provided.02-02-2012
20120205112High Pressure Multistage Centrifugal Pump For Fracturing Hydrocarbon Reserves - The present invention relates to a multistage centrifugal pump design, which has the diffusers, impellors, and a shaft, inserted within a high pressure housing, such that this assembly is fully enclosed within the housing, and the housing is of sufficient strength to be suitable for safe pressure containment of the fluids being pumped. This invention describes the technical details used to reconfigure the multistage centrifugal pump design to increase the discharge pressure capabilities higher than the 6,000 prig of current designs.08-16-2012
20120152550Method for Inducing Fracture Complexity in Hydraulically Fractured Horizontal Well Completions - A formation servicing system comprising a casing string, a first sleeve system and a second sleeve system, each of the first and second sleeve system being incorporated within the casing string and each comprising a body defining an axial flowbore and comprising one or more ports, a sliding sleeve being movable between (a) a first position in which the sliding sleeve obstructs fluid communication via the one or more ports and (b) a second position in which the sliding sleeve does not obstruct fluid communication via the one or more ports, and a shifting tool operable to shift the first or second sliding sleeves between their first and second positions.06-21-2012
20120152549METHOD OF A FORMATION HYDRAULIC FRACTURING - Method of a formation hydraulic fracturing provides injection of a hydraulic fracturing fluid into a borehole with the increase of a fluid flow rate to a working value. During the injection a power consumption of a pump used for the injection is measured continuously. A pump power consumption jump indicates the fracturing fluid flow turbulization in the borehole.06-21-2012
20100096139Method for Intervention Operations in Subsurface Hydrocarbon Formations - Methods are provided for improved intervention processes in a well. Nanoparticles are added to a fluid containing a wetting agent to enhance wetting of solid surfaces in and around the well, leading to improved flow capacity of the well.04-22-2010
20110088905METHOD FOR IMPULSE STIMULATION OF OIL AND GAS WELL PRODUCTION - A method for improving liquid injection into a rock formation. The method includes the steps of introducing a gas impulse device into a wellbore in the formation and pumping a pressurized liquid into the wellbore. The method also includes firing the gas impulse device periodically so that the device generates impulses of high pressure compressed gas. The gas expands through the pumped pressurized liquid substantially instantaneously increasing the liquid flow rate into the rock formation, and creates rapid cyclical injected liquid surges into the rock formation with liquid oscillation occurring inside the fractures and/or pores of the formation. The method may be used in regular oil production applications, waterflooding of wells that have ceased to be productive, in preventing lost circulation in oil wells, and in injecting hazardous wastes into rock formations.04-21-2011
20120125619ACTIVE EXTERNAL CASING PACKER (ECP) FOR FRAC OPERATIONS IN OIL AND GAS WELLS - A zonal isolation device (05-24-2012
20120125617METHODS TO CREATE HIGH CONDUCTIVITY FRACTURES THAT CONNECT HYDRAULIC FRACTURE NETWORKS IN A WELL - The invention discloses a method of treating a subterranean formation of a well bore, that provides a first treatment fluid; subsequently, pumps the first treatment fluid to initiate a network of low conductivity fractures in the subterranean formation; provides a second treatment fluid comprising a second carrier fluid, a particulate blend including a first amount of particulates having a first average particle size between about 100 and 2000 μm and a second amount of particulates having a second average particle size between about three and twenty times smaller than the first average particle size, such that a packed volume fraction of the particulate blend exceeds 0.74; and subsequently, pumps the second treatment fluid to initiate at least one high conductivity fracture in the subterranean formation, wherein the high conductivity fracture has a conductivity higher than the average of the conductivity of the low conductivity fractures and connects the network of the low conductivity fractures.05-24-2012
20120125618METHOD FOR HYDRAULIC FRACTURING OF SUBTERRANEAN FORMATION - The invention provides economically effective methods for hydraulic fracturing a subterranean formation that ensure improvement of the hydraulic fracture conductivity because of forming strong proppant clusters uniformly placed in the fracture throughout its length. One of these methods comprises: a first stage comprising injection of fracturing fluid into a borehole, the fluid containing thickeners to create a fracture in the formation; and a second stage comprising introduction of proppant into the injected fracturing fluid to prevent closure of the created fracture, and further, comprising introducing an agent into the fracturing fluid to provide formation of proppant clusters in the created fracture and channels for flowing formation fluids.05-24-2012
20100288500FIBER AGGREGATE - Fiber aggregate comprising organic polymeric fibers, wherein the organic polymeric fibers have an average length in a range from 2 to 20 millimeters, an average diameter up to 100 micrometer, and comprise at least 75 percent by solid volume of the fiber aggregate, wherein the fiber aggregate has an unrestrained bulk density of at least 0.05 g/cm11-18-2010
20120160501Zirconium-Based Cross-Linking Composition for Use with High pH Polymer Solutions - A cross-linking composition comprising (a) an aqueous liquid; (b) a pH buffer; (c) a cross-linkable organic polymer; and (d) a solution of a zirconium cross-linking agent comprising the product of contacting a zirconium complex with an alkanolamine and ethylene glycol wherein the mole ratio of alkanolamine to zirconium is 2:1 to 4:1 and the mole ratio of ethylene glycol to zirconium is 1:1 to 10:1. Optionally, water, hydroxyalkylated ethylenediamine, or both are added to the zirconium complex. The cross-linking composition of this invention is useful in oil field applications, for example, for hydraulically fracturing a subterranean formation and for plugging permeable zones or leaks in a subterranean formation.06-28-2012
20120160500METHODS FOR USING NON-VOLATILE PHOSPHORUS HYDROCARBON GELLING AGENTS - New fluids are disclosed for use in servicing subterranean formations containing oil and gas. In particular, an improved chemical gelling additive for hydrocarbon based fracturing fluids is disclosed having reduce, negligible or no volatile phosphorus at temperatures below about 250° C.06-28-2012
20120160499PROCESS FOR TRANSPORTING FRACTURE ("FRAC") FLUID ADDITIVES TO OIL AND GAS WELLS UTILIZING ION EXCHANGE RESIN - There is disclosed a process for transporting fracture fluid additives underground to oil and gas wells by attaching a fracture fluid additive to an ion exchange resin and flowing the ion exchange resin underground and thereafter releasing the frac fluid additives from the ion exchange resins and also there is provided the use of an ion exchange resin as a proppant and a frac fluid lubricant.06-28-2012
20120132426FORMATION TREATMENT SYSTEM AND METHOD - A formation treatment system includes an annulus spanning member having one or more openings therein, the one or more openings incorporating a degradable material. A tubular having one or more ports therein in fluid communication with the one or more openings. A sleeve capable of isolating or communicating the one or more ports with an ID of the tubular. A method for effecting precision formation treatment is included.05-31-2012
20120160498Concentrated Polymer Systems Having Increased Polymer Loadings and Enhanced Methods of Use - One method described includes the steps of: providing an HPG concentrate having a polymer load of about 2 to about 25% w/v and being present in a worse-than-theta aqueous solvent, the HPG concentrate comprising HPG polymer and an aqueous based solvent that comprises water and a non-solvent for the HPG that is soluble in the aqueous based solvent; and diluting the HPG concentrate with an aqueous fluid to form a subterranean treatment fluid.06-28-2012
20110203799Open Hole Fracing System - A method of producing petroleum from at least one open hole in at least one petroleum production zone of a hydrocarbon well comprising the steps of locating a plurality of sliding valves along at least one production tubing; inserting the plurality of sliding valves and the production tubing into the at least one open hole; cementing the plurality of sliding valves in the at least one open hole; opening at least one of the cemented sliding valves; removing at least some of the cement adjacent the opened sliding valves without using jetting tools or cutting tools to establish at least one communication path between the interior of the production tubing and the at least one petroleum production zone; directing a fracing material radially through the at least one sliding valve radially toward the at least one production zone; producing hydrocarbons from the at least one petroleum production zone through the plurality of the sliding valves the cement adjacent to which has been removed.08-25-2011
20120181030GOAT HEAD TYPE INJECTION BLOCK FOR FRACTURING TREES IN OILFIELD APPLICATIONS - The disclosure provides a goat head, as a mixing block, for multiple fluids in oilfield applications, the goat head having a reversing directional flow, mixing portion, wear reduction surfaces, and restricted outlet bore. The goat head provides an underneath approach for piping, reducing the overall height, and mixes the fluids dynamically within the goat head from angled flow paths. The goat head then reverses at least a component of the fluid flow direction that enters the wellbore below the goat head and exits the goat head into the well therebelow. The goat head to contains hardened wear surfaces, including surfaces in specific zones, to resist erosion caused by the reversing directional flow. A restricted outlet bore has a cross-sectional area that is less than the sum of cross-sectional areas of the inlets to assist in creating higher velocity and streamlined flow as the fluid exits the goat head.07-19-2012
20120073819METHOD AND SYSTEM FOR HYDRAULIC FRACTURING - A fracturing operation is done in open hole without annular space isolation. The annular space is spanned by extendable members that are located behind isolation valves. The extendable members can comprise a biodegradable plug that allows extension of the extendable members by application of pressure. With the plug remained in place, additional pressure can be delivered until at least a portion of the degradable material is pushed onto the surface of the formation. At least a portion of the pushed degradable material provides a seal between the end of the extendable members and the surface of the formation to allow pressure to build until the formation frac gradient is exceeded and the formation is fraced.03-29-2012
20120255735WATER HEATING APPARATUS FOR CONTINUOUS HEATED WATER FLOW AND METHOD FOR USE IN HYDRAULIC FRACTURING - A method of hydraulic fracturing of an oil producing formation includes the provision of a heating apparatus which is transportable and that has a vessel for containing water. A water stream of cool or cold water is transmitted from a source to a mixer, the cool or cold water stream being at ambient temperature. The mixer has an inlet that receives cool or cold water from the source and an outlet that enables a discharge of a mix of cool or cold water and the hot water. After mixing in the mixer, the water assumes a temperature that is suitable for mixing with chemicals that are used in the fracturing process, such as a temperature of about 40°-120° F.+ (4.4-48.9° C.+). An outlet discharges a mix of the cool and hot water to surge tanks or to mixing tanks. In the mixing tanks, a proppant and an optional selected chemical or chemicals are added to the water which has been warmed. From the mixing tanks, the water with proppant and optional chemicals is injected into the well for part of the hydraulic fracturing operation.10-11-2012
20120227971Sulfates and Phosphates as Allosteric Effectors in Mannanohydrolase Enzyme Breakers - The allosteric effectors, sulfate and phosphate, can be used with mannanohydrolase enzymes to better control the break of gelled fracturing fluids in wellbore operations.09-13-2012
20110120718Simulating Subterranean Fracture Propagation - Systems, methods, and instructions encoded in a computer-readable medium can perform operations related to simulating subterranean fracture propagation. A subterranean formation model representing rock blocks of a subterranean formation is received. The subterranean formation model is used to predict a response of each rock block to one or more forces acting on the rock block during an injection treatment for the subterranean formation. The predicted responses of the rock blocks may include, for example, a fracture, a rotation, a displacement, a dilation of an existing fracture, and/or another type of response. In some implementations, an injection treatment may be designed for a subterranean formation based on the predicted response of the rock blocks.05-26-2011
20110036584DETERMINING FLUID RHEOLOGICAL PROPERTIES - Controlling a well injection operation, such as a well fracturing operation, includes identifying a flow characteristic of a fracturing fluid, identifying a flow characteristic of a base fluid used for forming the fracturing fluid, determining an amount of friction reduction change of the fracturing fluid, and adjusting the amount of friction reduction of the fracturing fluid to coincide with a selected friction reduction amount. Identifying a flow characteristic may be performed by a rheology measuring device including a measurement tube, a first pressure sensor disposed at a first position on the measurement tube, a second pressure sensor disposed at a second position on the measurement tube, a flow meter disposed at a third position along the measurement tube, a temperature sensor disposed at a fourth location along the measurement tube, and a control unit interconnected to the first and second pressure sensors, the flow meter, and the temperature sensor.02-17-2011
20110036582Solid incorporated reversible emulsion for a fracturing fluid - Embodiments of this invention relate to an apparatus and a method for treating a subterranean formation permeated by a wellbore including forming a fluid comprising a reverse emulsion and a degradable material, introducing the fluid into a wellbore, and allowing the degradable material to degrade. Embodiments of this invention relate to an apparatus and a method for treating a subterranean formation permeated by a wellbore including forming a fluid comprising a reverse emulsion and a fluid loss additive, introducing the fluid into a wellbore, and allowing the fluid loss additive to degrade.02-17-2011
20110265998METHOD FOR HYDRAULIC FRACTURING OF A LOW PERMEABILITY SUBTERRANEAN FORMATION - A fracturing fluid containing proppant particles is injected into a fracture made in a low-permeability subterranean formation, providing a turbulent flow of the fluid in the fracture during injection. This allow to increase a fracture conductivity after its closure by means of preventing transverse migration of proppant particles within the fracture and the reduction of their setting rate.11-03-2011
20120080192HYDRAULIC FRACTURE COMPOSITION AND METHOD - A method for improving the performance of fracturing processes in oil production fields may rely on polymer coated particles carried in the fracturing fluid. The particles may include heavy substrates, such as sand, ceramic sand, or the like coated with polymers selected to absorb water, increasing the area and volume to travel more readily with the flow of fluid without settling out, or allowing the substrate to settle out. Ultimately, the substrate may become lodged in the fissures formed by the pressure or hydraulic fracturing, resulting in propping open of the fissures for improved productivity.04-05-2012
20120080191Apparatus and methods for separating sand from well fracturing return water - Apparatus and methods for removing sand or other particulate from well fracturing return water are disclosed. In a sand separator box, a barrier element divides the tank into an upper compartment and a lower compartment. Particulate-laden return water flows through a gas separator and then into the upper compartment of the box. The barrier element allows the water in the upper compartment to pass into the lower compartment while keeping the sand or particulate in the upper compartment. As water accumulates in the lower compartment, it is pumped out to storage tanks or back to the well for reuse.04-05-2012
20110247824AUTOMATIC STAGE DESIGN OF HYDRAULIC FRACTURE TREATMENTS USING FRACTURE HEIGHT AND IN-SITU STRESS - A method for treating a subterranean formation comprising measuring mechanical properties of a formation comprising Young's modulus, Poisson's ratio, and in-situ stress; determining formation fracture height based on the mechanical properties; estimating number and location of hydraulic fractures based on the determining; identifying hydraulic fracturing treatment stages based on the estimating; and performing hydraulic fracturing treatments in the stages. A method for treating a subterranean formation comprising measuring mechanical properties of a formation comprising Young's modulus, Poisson's ratio, and in-situ stress; determining a target zone based on the mechanical properties; estimating number and location of hydraulic fractures based on the determining; identifying hydraulic fracturing treatment stages based on the estimating; and performing hydraulic fracturing treatments in the stages.10-13-2011
20120279714CHEMICAL LINE FLUSH SYSTEMS - A method for performing an oil field service including forming a fluid comprising ammonium salt and exposing an equipment surface to the fluid, wherein the surface retains less residue than if no exposing occurred. A method for preparing for an additional oil field service including forming a fluid comprising ammonium salt, exposing an equipment surface to the fluid wherein the surface retains less residue than if no exposing occurred, and performing an oil field service.11-08-2012
20120285692METHODS OF ZONAL ISOLATION AND TREATMENT DIVERSION - Methods of treating a subterranean formation penetrated by a well bore, by providing a treatment fluid comprising a blend including a first amount of particulates having a first average particle size between about 3 mm and 2 cm and a second amount of particulates having a second average size between about 1.6 and 20 times smaller than the first average particle size or a second amount of flakes having a second average size up to 10 times smaller than the first average particle size; by introducing the treatment fluid into the well bore; and by creating a plug with the treatment fluid.11-15-2012
20100132949PROCESS AND PROCESS LINE FOR THE PREPARATION OF HYDRAULIC FRACTURING FLUID - A process and process line is provided for preparing a friction-reduced hydraulic fracturing fluid at a central location which can be readily transported to an oil or gas well in a formation at a well site, comprising: preparing a mixture of polymer and water at the central location by shearing the polymer in the water in a high shear environment to create the friction-reduced hydraulic fracturing fluid; pumping the friction-reduced hydraulic fracturing fluid through a series of pumps and pipelines to the well site; and injecting the hydraulic fracturing fluid into the oil or gas well at a pressure sufficient to cause fracturing of the formation.06-03-2010
20130014952TREATMENT OF HYDROCARBON CONTAINING RESERVOIRS WITH ELECTROLYZED WATER - Systems and methods for using one or more electrolyzed aqueous solutions to treat subterranean reservoirs containing hydrocarbons are disclosed herein. In some cases, the methods include using an electrochemical cell to produce electrolyzed acidic water and electrolyzed alkaline water. In such cases, the electrolyzed acidic water or the electrolyzed alkaline water is introduced to the well. While the electrolyzed acidic or alkaline water can be used for a variety of purposes, in some cases, it is used to improve hydraulic fracturing, water flooding, and well stimulation techniques. In some cases, the electrolyzed acidic or alkaline water is mixed with one or more other materials, such as a proppant, a hydraulic fracturing fluid, a polymer, or another additive. Additional implementations are disclosed.01-17-2013
20120241157SINTERED PARTICLES AND METHODS FOR PRODUCING SINTERED PARTICLES FROM A SLURRY OF AN ALUMINA-CONTAINING RAW MATERIAL - Sintered, substantially round and spherical particles and methods for producing such sintered, substantially round and spherical particles from an alumina-containing raw material and a metal oxide sintering aid. The alumina-containing raw material contains from about 40% to about 55% alumina. Methods for using such sintered, substantially round and spherical particles in hydraulic fracturing operations.09-27-2012
20080230226METHOD AND APPARATUS FOR ISOLATING A WELLHEAD FOR FRACTURING - A welihead assembly to seal to a production casing including one or more pressure-containing wellhead body members defining a vertical bore, with the lowermost of the wellhead body members sealing to the production casing. A fracturing isolation tool is sealed in the vertical bore of the wellhead body members above the production casing, and forms a pressure barrier profile in its internal bore. A removable protector sleeve is located at least partially within the fracturing isolation tool to seal, protect, isolate and cover the pressure barrier profile against a fracturing pressure and a fracturing fluid. After fracturing the protector sleeve is removed and a pressure barrier is sealed in the pressure barrier profile of the fracturing isolation tool. The invention also extends to the method of isolating the wellhead body members and to the fracturing isolation tool assembly which includes the fracturing isolation tool and the protector sleeve.09-25-2008
20130140031SYSTEM AND METHOD FOR PERFORMING OPTIMIZED DOWNHOLE STIMULATION OPERATIONS - A method of performing a stimulation operation for an unconventional wellsite having natural fractures and hydraulic fractures. The method involves providing at least one treatment parameter with a corresponding objective function value and performing a fracture operation based on the treatment parameter. The fracture operation involves defining a treatment schedule, conducting a hydraulic fracture operation, and estimating production. The objective function value is based on an objective function. The method also involves modifying the treatment parameter and performing the fracture operation based on the modified treatment parameter. The modified treatment parameter has a corresponding modified objective function value based on the objective function. The method continues with optimizing the treatment operation by comparing the objective function value with the modified objective function value, and repeating the modifying and optimizing for new modified treatment parameters until convergence about a desired outcome whereby an optimized parameter is defined at convergence.06-06-2013
20130175038INTEGRAL FRACTURING MANIFOLD - A fracturing system with an integral fracturing manifold is provided. In one embodiment, the system includes a plurality of fracturing trees and an integral fracturing manifold may be directly coupled to each of the plurality of fracturing trees. In some embodiments, the integral fracturing manifold may accommodate spacing and elevation differences between the fracturing trees. Additional systems, devices, and methods are also disclosed.07-11-2013
20130168099WELLBORE FRAC TOOL WITH INFLOW CONTROL - An apparatus for fluid treatment of a borehole, the apparatus allowing initial outflow injection of fluids into a wellbore in which it is installed and then is actuable to allow fluid inflow control. The apparatus includes: a tubular body, a first port and a second port opened through the wall of the tubular body, the second port having a fluid inflow controller positioned to control the flow of fluid into the tubular body through the port, a sliding sleeve valve in the tubular body moveable from (i) a first position closing the first port and the second port to (ii) a second position closing the second port and permitting fluid flow through the first port and to (iii) a third position closing the first port and permitting fluid flow through the second port; a sleeve actuator for actuating the sliding sleeve valve to move from the first position to the second position in response to a force applied thereto; a releasable lock for locking the sliding sleeve valve in the first position and selected to maintain the sliding sleeve valve in the first position after the force is removed; and a lock release mechanism configured to actuate the releasable lock to release the sliding sleeve valve to move into the third position.07-04-2013
20130168098Apparatus and Method for Fracturing a Well - An apparatus and method is provided for fracturing a well in a a hydrocarbon bearing formation. The apparatus can include a valve subassembly that is assembled with sections of casing pipe to form a well casing for the well. The valve subassembly includes a sliding piston that is pinned in place to seal off ports that provide communication between the interior of the well casing and a production zone of the formation. A dart can be inserted into the well casing and propelled by pressurized fracturing fluid until the dart reaches the valve subassembly to plug off the well casing below the valve subassembly. The force of the fracturing fluid against the dart forces the piston downwards to shear off the pins and open the ports. The fracturing fluid can then exit the ports to fracture the production zone of the formation.07-04-2013
20130175039ADJUSTABLE FRACTURING SYSTEM - An adjustable fracturing system is provided. In one embodiment, the system includes a fracturing manifold and a fracturing tree. A fluid conduit is coupled between the fracturing manifold and the fracturing tree to enable receipt of fracturing fluid by the fracturing tree from the fracturing manifold. Further, the fluid conduit is an adjustable fluid conduit that allows an operator to vary a dimension of the fluid conduit to facilitate coupling of the fluid conduit between the fracturing manifold and the fracturing tree. Additional systems, devices, and methods are also disclosed.07-11-2013
20120247776Hydrocarbon-Based Fracturing Fluid Compositions, Methods Of Preparation And Methods Of Use - The invention describes improved fracturing compositions, methods of preparing fracturing compositions and methods of use. Importantly, the subject invention overcomes problems in the use of mists as an effective fracturing composition particularly having regard to the ability of a mist to transport an effective volume of proppant into a formation. As a result, the subject technologies provide an effective economic solution to using high ratio gas fracturing compositions that can be produced in a continuous (i.e. non-batch) process without the attendant capital and operating costs of current pure gas fracturing equipment.10-04-2012
20130112419PROCESS AND PROCESS LINE FOR THE PREPARATION OF HYDRAULIC FRACTURING FLUID - A process and process line is provided for preparing a friction-reduced hydraulic fracturing fluid at a central location which can be readily transported to an oil or gas well in a formation at a well site, comprising: preparing a mixture of polymer and water at the central location by shearing the polymer in the water in a high shear environment to create the friction-reduced hydraulic fracturing fluid; pumping the friction-reduced hydraulic fracturing fluid through a series of pumps and pipelines to the well site; and injecting the hydraulic fracturing fluid into the oil or gas well at a pressure sufficient to cause fracturing of the formation,05-09-2013
20130098621FRACTURING SYSTEM - The present invention relates to a fracturing system for fracturing a formation surrounding a well tubular structure, comprising a tubular part to be mounted as a part of the well tubular structure, the tubular part being made of metal, an expandable sleeve made of metal, the sleeve having a wall thickness and surrounding the tubular part, a fastening means for connecting the sleeve with the tubular part, and an aperture in the tubular part or the fastening means. Furthermore, the invention relates to a fracturing method for fracturing a formation surrounding a well tubular structure.04-25-2013
20130118751FORMATION FRACTURING - A method described herein involves lowering a tool into a wellbore adjacent a subterranean formation; inflating a first packer on the tool to initiate a fracture of the formation; inflating second and third packers on the tool to seal an interval of the wellbore containing the fracture, the first packer being between the second and third packers; and pumping fluid into the interval to increase a pressure in the interval to propagate the fracture.05-16-2013
20130126175Synthetic Sweet Spots in Tight Formations by Injection of Nano Encapsulated Reactants - Provided is a method and composition for the in-situ generation of synthetic sweet spots in tight-gas formations. The composition can include gas generating compounds, which upon activation, exothermically react to generate heat and gas. The method of using the composition includes injecting the composition into a tight-gas formation such that upon activation, the heat and gas are generated, resulting in the formation of fractures and microfractures within the formation.05-23-2013
20080202757METHOD OF STIMULATING A COALBED METHANE WELL - A method of stimulating gas production from a coalbed methane well that involves injecting a foam forming liquid and an expandable fluid into a coal seam proximate the wellbore. When the wellbore pressure is reduced, at least a portion of the expandable fluid can vaporize, which can generate foam that aids in the formation and/or enlargement of a cavity in the coal seam proximate the wellbore.08-28-2008
20130146291Ball Seat Milling and Re-fracturing Method - A well that has a plurality of sliding sleeves used to originally fracture multiple zones with balls of increasing size dropped on balls seats to sequentially open ports for fracturing in a direction toward the well surface is refractured. The method involves using a bottom hole assembly (BHA) that has a fluid motor driven mill that mills out ball seats and has with it a ported sub and a resettable packer. Once the lowermost ball seat is milled out a ball is dropped into the BHA to isolate the fluid motor and open a ported sub below a resettable packer. The dropped ball also enables a collet to latch an open sleeve to give a surface signal that the BHA is located properly for packer deployment so that the refracturing can begin through the coiled tubing string that can support the BHA or in a surrounding annular space.06-13-2013
20130146292HETEROGENEOUS PROPPANT PLACEMENT IN A FRACTURE WITH REMOVABLE EXTRAMETRICAL MATERIAL FILL - A method of injecting well treatment fluid including proppant and proppant-spacing filler material through a wellbore into the fracture, heterogeneously placing the proppant in the fracture in a plurality of proppant clusters or islands spaced apart by the material, and removing the filler material to form open channels around the pillars for fluid flow from the formation through the fracture toward the wellbore. The proppant and channelant can be segregated within the well treatment fluid, or segregated during placement in the fracture. The filler material can be dissolvable particles, initially acting as a filler material during placement of the proppant in the fracture, and later dissolving to leave the flow channels between the proppant pillars. The well treatment fluid can include extrametrical materials to provide reinforcement and consolidation of the proppant and/or to inhibit settling of the proppant.06-13-2013
20130146293Methods for Unconventional Gas Reservoir Stimulation With Stress Unloading For Enhancing Fracture Network Connectivity - The invention discloses a method for use in a wellbore in a tight gas shale formation, comprising: providing a hydraulic fracturing fluid to initiate at least a fracture in the shale; injecting a treatment fluid in the fracture to at least partially destabilize and remove the shale; and repeating the step of fracturing the shale.06-13-2013
20130146294Method for Controlling Loss of Drilling Fluid - Methods for drilling and treating for lost returns continuously while drilling are provided. High fluid loss drilling fluid is used, along with particulate material that forms an immobile mass in hydraulic fractures to prevent their growth. The particulate material may be selected based on the predicted size of a hydraulic fracture, based on particle size to minimize fines, based on specific gravity to attain high solids content for a selected fluid density, and/or based on permeability of the particles to attain a high spurt loss.06-13-2013
20110220362Method and Materials for Proppant Flow Control With Telescoping Flow Conduit Technology - Porous objects, such as porous balls, may be employed within telescoping devices to control proppant flowback through a completed well during production. The telescoping devices may connect a reservoir face to a production liner without perforating. Acid-soluble plugs initially disposed within the telescoping devices may provide enough resistance to enable the telescoping devices to extend out from the production liner under hydraulic pressure. The plugs may then be dissolved in an acidic solution, which may also be used as the hydraulic extension fluid. After the plugs are substantially removed from the telescoping devices, the reservoir may be hydraulically fractured using standard fracturing processes. The porous balls may then be inserted into the telescoping devices to block proppant used in the fracturing process from flowing out of the reservoir with the production fluids.09-15-2011
20110220361Method and Materials for Proppant Fracturing With Telescoping Flow Conduit Technology - Acid-soluble plugs may be employed within telescoping devices to connect a reservoir face to a production liner without perforating. Such technology eliminates formation damage and debris removal associated with perforating, as well as reducing risk and time. The plugs may provide enough resistance to enable the telescoping devices to extend out from the production liner under hydraulic pressure. The plugs may then be dissolved in an acidic solution, which may also be used as the hydraulic extension fluid. After the plugs are substantially removed from the telescoping devices, the reservoir may be hydraulically fractured using standard fracturing processes.09-15-2011
20100307756GEOTHERMAL CIRCULATION SYSTEM - The invention relates to a method for configuring a geothermal circulation system in a target underground region, comprising at least one injection wellbore (12-09-2010
20100307755METHOD AND APPARATUS FOR EFFICIENT REAL-TIME CHARACTERIZATION OF HYDRAULIC FRACTURES AND FRACTURING OPTIMIZATION BASED THEREON - Methods and systems for characterizing hydraulic fracturing of a subterranean formation based upon inputs from sensors measuring field data in conjunction with a fracture model. Such characterization can be generated in real-time to automatically manipulate surface and/or down-hole physical components supplying hydraulic fluids to the subterranean formation to adjust the hydraulic fracturing process as desired. The hydraulic fracture model as described herein can also be used as part of forward calculations to help in the design and planning stage of a hydraulic fracturing treatment. In a preferred embodiment, the fracture model constrains geometric and geomechanical properties of the hydraulic fractures of the subterranean formation using the field data in a manner that significantly reduce the complexity of the fracture model and thus significantly reduces the processing resources and time required to provide accurate characterization of the hydraulic fractures of the subterranean formation.12-09-2010
20120273207CHITOSAN AS BIOCIDE IN OILFIELD FLUIDS - The current application discloses fluids and methods for treating a subterranean formation penetrated by a wellbore, such as hydraulic fracturing. In one aspect, there is provided an oilfield fluid comprising chitosan at an amount sufficient to inhibit the growth of bacterial in the oilfield fluid. In another aspect, there is provided a method of preserving an oilfield fluid containing adding chitosan at a concentration that is sufficient to inhibit the growth of bacteria in the oilfield fluid. In a further aspect, there is provided a method of treating a subterranean formation penetrated by a wellbore, comprising preparing a treatment fluid, adding chitosan at a concentration sufficient to inhibit the growth of bacteria in the treatment fluid, introducing the mixture to the subterranean formation, and treating the subterranean formation with the mixture.11-01-2012
20120273206DRY POLYMER MIXING PROCESS FOR FORMING GELLED FLUIDS - Apparatus, methods and systems for preparing a polymer concentrate for treating a formation with slick water systems viscous fluid or a gelled viscous fluid are disclosed. The method includes directing a powdered gel into a vortex mixing chamber, while directing a first portion of a base fluid into the vortex mixing chamber to form partially hydrated fluid concentrate. The partially hydrated fluid concentrate is then sucked or sweep into a main portion of base fluid for form the slick water systems viscous fluid or gelled viscous fluid.11-01-2012
20130153233METHOD OF FRACTURING SUBTERRANEAN FORMATIONS WITH CROSSLINKED FLUID - Subterranean formations, such as tight gas formations, may be subjected to hydraulic fracturing by introducing into the formation a fracturing fluid of an aqueous fluid, a hydratable polymer, a crosslinking agent and proppant. The fracturing fluid is prepared in a blender and then pumped from the blender into the wellbore which penetrates the formation. The fluid enters the reservoir through an entrance site. The apparent viscosity of the fluid decreases distally from the entrance site such that at least one of the following conditions prevails at in situ conditions:06-20-2013
20100314118Liquid Crystals for Drilling, Completion and Production Fluids - Fluids containing liquid crystal-forming surfactants or polymeric surfactants, or polymers, or complex polymers or copolymers, or graphite nanotubes or Janus particles in a polar and/or non polar liquid, and optionally, co-surfactants, are useful in drilling, completion and production operations to give increased viscosity (solids suspension ability) and/or decreased fluid loss, as compared to otherwise identical fluids absent the liquid crystals. These liquid crystal compositions contain organized micelles. The liquid crystal-containing fluids are useful in completion fluids, fracturing fluids, formation damage remediation, waste management, lost circulation, drilling optimization, reducing trapped annular pressure during the hydrocarbon production process, well strengthening, friction and drag reducers, fluids introduced through an injection well, for geothermal wells, and the controlled release of additives into a wellbore, at a subterranean formation or at the oil production facilities.12-16-2010
20130180721Downhole Fluid Treatment Tool - A treatment device and method for use in delivering fluid treatment to a wellbore is described. The device includes a first treatment housing and a second treatment housing, mounted along a tubing string, each of the first and second housing defining a fluid pathway which is continuous with the tubing string and each of the first and second treatment housing defining a port for fluid communication between the tubing string and the wellbore. Fluid flow through the first housing may be selectively blocked by delivery of a deformable ball to the tubing string to seal against a ball seat disposed between the first and second housing. While the first pathway is blocked, fluid may be selectively delivered to the wellbore through the port on the second treatment housing. The ball may be removed from the ball seat by application of hydraulic pressure in excess of the deformation threshold of the ball, forcing the ball to deform and pass through the seat, re-opening the fluid flow through the first treatment housing and allowing for treatment through port defined in the first housing.07-18-2013
20130180722TECHNIQUE OF FRACTURING WITH SELECTIVE STREAM INJECTION - A technique facilitates enhanced hydrocarbon recovery through selective stream injection. The technique employs a system and methodology for combining a fracturing technique and application of selective injection streams. The selective injection streams are delivered to select, individual subterranean layers until a plurality of unique subterranean layers are fractured to enhance hydrocarbon recovery.07-18-2013
20110278010METHOD AND APPARATUS FOR WELLBORE FLUID TREATMENT - A tubing string assembly is disclosed for fluid treatment of a wellbore. The tubing string can be used for staged wellbore fluid treatment where a selected segment of the wellbore is treated, while other segments are sealed off. The tubing string can also be used where a ported tubing string is required to be run in a pressure tight condition and later is needed to be in an open-port condition.11-17-2011
20130118750System And Method For Performing Treatments To Provide Multiple Fractures - A method includes initiating a first hydraulic fracture with a first fracture initiation fluid at a first position in a wellbore. The method further includes positioning a high-solids content fluid (HSCF) in the first hydraulic fracture. The method further includes initiating a second hydraulic fracture with a second fracture initiation fluid at a second position in the wellbore, where the second position is not hydraulically isolated from the first position. The method further includes positioning the HSCF in the second hydraulic fracture.05-16-2013
20110308803Fracturing Method to Reduce Tortuosity - A series of jet nozzles have a telescoping structure designed to impact the borehole wall and initiate a fracture. The nozzles can be extended through fluid pumped through them or with some mechanical force from within the bottom hole assembly. The leading ends of the telescoping assembly can be sharp and hardened to facilitate the initiation of a formation fracture in an open hole. The telescoping structures can be disposed in a single or multiple rows with the circumferential spacing being such that each telescoping structure is designed to cover a target circumferential distance of 45 degrees or less so that jetted fluid from at least one jet will be within 22.5 degrees of a location of maximum formation stresses to reduce the tortuosity of the created fractures from jetting through the nozzles with possible enhancement of the fracturing from added annulus pressure.12-22-2011
20120018162PROPPANT - A proppant comprises a particle and a polyamide imide coating disposed on the particle. A method of forming the proppant comprises the steps of providing the particle, providing the polyamide imide coating, and coating the particle with the polyamide imide coating.01-26-2012
20130192837METHOD OF INCREASING EFFICIENCY IN A HYDRAULIC FRACTURING OPERATION - Multiple zones of a subterranean formation penetrated by a multi-zoned completed well may be fractured by pumping into one or more zones an acidizing solution at or above the fracturing pressure of the subterranean formation. After fractures are created or enhanced in the formation, a displacement fluid is pumped into the formation to farther advance the acidizing solution into the fractures.08-01-2013
20130192838NON-HYDRAULIC FRACTURING SYSTEMS, METHODS, AND PROCESSES - Methods and systems of fracturing subterranean formations to are provided comprising pumping metacritical phase natural gas into a subterranean formation to create or extend one or more fissures in the formation. Methods and systems may further comprise maintaining or increasing pressure of the metacritical phase natural gas in the formation by pumping more metacritical phase natural gas into the fissures to hold the fissures open. Methods and systems may further comprise delivering a proppant into the subterranean formation. Disclosed methods and systems may be used to extract hydrocarbons from subterranean formations without the use of liquids.08-01-2013
20120085541Method and Apparatus for Hydraulically Fracturing Wells - A mobile plant for supplying hydraulic fracturing service to a well is provided. The plant is particularly useful for wells that require multi-stage fracturing treatments, where the surface equipment may not be moved for longer times than when supplying conventional treatments. Skid-mounted equipment is used, so that the transport vehicle for the equipment can be released after delivery of the equipment to a well site. A method for marketing and executing fracturing treatments is also provided, wherein a customer is provided price data for each item included in the total cost of a fracturing treatment, along with software for calculating the total cost of a treatment to be purchased. The customer may calculate the cost of a treatment from computer-readable storage or over the internet. The customer may also monitor the fracturing treatment remotely and obtain a post-treatment report.04-12-2012

Patent applications in class Fracturing (EPO)

Patent applications in all subclasses Fracturing (EPO)