Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Electric power generator

Subclass of:

136 - Batteries: thermoelectric and photoelectric

136200000 - THERMOELECTRIC

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
136206000 Solar energy type 46
136212000 Plural hot or cold junctions arranged in a single plane 17
136208000 Plural junction concentrically or annularly arranged around source of temperature differential 7
136207000 Including an electric heater 5
20130074900Electrocaloric Refrigerator and Multilayer Pyroelectric Energy Generator - In accordance with the invention, there are electrocaloric devices, pyroelectric devices and methods of forming them. A device which can be a pyroelectric energy generator or an electrocaloric cooling device, can include a first reservoir at a first temperature and a second reservoir at a second temperature, wherein the second temperature is higher than the first temperature. The device can also include a plurality of liquid crystal thermal switches disposed between the first reservoir and the second reservoir and one or more active layers disposed between the first reservoir and the second reservoir, such that each of the one or more active layers is sandwiched between two liquid crystal thermal switches. The device can further include one or more power supplies to apply voltage to the plurality of liquid crystal thermal switches and the one or more the active layers.03-28-2013
20130068272THERMOELECTRIC CONVERSION DEVICE USING A SOLVATING MATERIAL - The present invention relates to a thermoelectric conversion device using a solvating material, the device comprising: a cell with a closed structure, comprising a metal ammonia or metal amine compound as a solvating material; a polarization or porous separation membrane; and a heating unit, which prevents the outflow of the solvating material and thus maintains the solvating material in a reversible state.03-21-2013
20090151767COMPOSITE THERMOELECTRIC MATERIAL AND METHODS FOR MAKING - Thermoelectric materials, devices, and systems are presented. One embodiment is a composite material comprising a matrix comprising a thermoelectric material; and an electrically conducting phase disposed within the matrix. The electrically conducting phase has a lower electrical resistivity than the thermoelectric material, and it forms a continuous electrically conducting path through the matrix from a first surface of the material to a second surface of the material. Another embodiment is a device, comprising a thermoelectric element. This element is made of the above composite material. A further embodiment is a thermoelectric system, made of a heat source, a heat sink, and the thermoelectric device disposed in thermal communication with the heat source and heat sink. The system may be configured for power generation or for thermal management.06-18-2009
20110290294DEVICE FOR CONVERTING ENERGY AND METHOD FOR MANUFACTURING THE DEVICE, AND ELECTRONIC APPARATUS WITH THE DEVICE - The present invention provides an energy converting device, which includes: a base substrate; and a plurality of thermoelectric element structures which are sequentially stacked on the base substrate and electrically interconnected in parallel to one another.12-01-2011
20090151768HEAT TRACING APPARATUS WITH HEAT-DRIVEN PUMPING SYSTEM - In a heat tracing system using heat from a radiant heater to heat a circulating fluid, thermoelectric generation modules are used to generate electricity for powering a circulating pump. Thermoelectric power generation modules are sandwiched between a heat-absorbing plate and a heat sink, and this assembly is positioned with the heat-absorbing plate adjacent to a radiant heater. A conduit loop passes through the heat sink, such that a fluid circulating through the conduit is heated from heat drawn from the heater into the heat sink. Due to the temperature differential between the hot and cold sides of the thermoelectric modules, the modules produce electricity to power the pump circulating the fluid through the conduit loop. Supplementary heat exchanger components may be provided for additional fluid-heating capacity, and thereby increasing the amount of heat available for the heat tracing loop.06-18-2009
136211000 Plural hot or cold junction arranged in a single line 3
20110132422THERMOELECTRIC GENERATOR, THERMOELECTRIC GENERATION METHOD, ELECTRICAL SIGNAL DETECTING DEVICE, AND ELECTRICAL SIGNAL DETECTING METHOD - A thermoelectric generation method using a thermoelectric generator includes: placing a thermoelectric generator in a temperature-changing atmosphere; drawing to outside a current that is generated due to a temperature difference between first and second support members when the temperature of the second support member is higher than that of the first support member, and that flows from a second thermoelectric conversion member to a first thermoelectric conversion member, using first and second output sections as a positive terminal and a negative terminal, respectively; and drawing to outside a current that is generated due to a temperature difference between the first and second support members when the temperature of the first support member is higher than that of the second support member, and that flows from a fourth thermoelectric conversion member to a third thermoelectric conversion member, using third and fourth output sections as a positive terminal and a negative terminal, respectively.06-09-2011
20110197942THIN-FILM THERMO-ELECTRIC GENERATOR AND FABRICATION METHOD THEREOF - For the thin-film thermo-electric generator and fabrication method of this invention, a P-type thermo-electric thin-film layer, an insulating thin-film layer and a N-type thermo-electric thin-film layer is deposited on a substrate to form a three-layer PN junction, multiple three-layer PN junctions in series are available, an insulating thin-film layer is provided between every to serial three-layer PN junctions, and electrodes are extracted from the substrate and the outermost thin-film layer of the last three-layer thin-film PN junctions. The present invention applies the deposition of P-type thermo-electric thin-film layer, an insulating thin-film layer and a N-type thereto-electric thin-film layer to form a three-layer PN junction, thus a thermo-electric generator is formed, during the deposition of the insulating thin-film layer, intentionally sheltering the substrate and one end of the deposited thin-film layer and depositing the P-type or N-type materials on the substrate and one end of the deposited thin-film layer directly, to form a connection of PN junction or a serial connection between two PN junction, the separate connection of the P-type or N-type materials is not required, simplifying the fabrication processes of the thin-film thermo-electric generator, owning to the function of the thin-film thermo-electric materials and serial connection structure of multiple three-layer PN junctions, the performance of the thin-film thermo-electric generator is greatly improved.08-18-2011
20100319748THERMOPILE WIRE, WINDING SUPPORT, AND METHOD AND MACHINE FOR THE PRODUCTION OF A THERMOELECTRIC GENERATOR - The invention relates to a thermopile wire (12-23-2010
Entries
DocumentTitleDate
20130042900THERMOELECTRIC ELEMENT - A thermoelectric element includes at least one thermopair and a pn-junction. The thermopair has a first material with a positive Seebeck coefficient and a second material with a negative Seebeck coefficient. The first material is selectively contacted by way of a conductor with the p-side of the pn-junction, and the second material is selectively contacted by way of a conductor with the n-side of the pn-junction.02-21-2013
20130081665THERMOELECTRIC ELEMENT - A thermoelectric element includes at least one thermocouple comprising an n-doped and a p-doped thermal leg made of semiconductor material, wherein the thermal legs extend between a hot and a cold side of the thermoelectric element and different temperatures can applied and tapped between the hot and the cold side. In order to create a thermoelectric element haying a high thermal power density that nevertheless ensures sufficient mechanical stability using less semiconductor material, the thermoelectric effect and the support function of the block between two components is split. The support function is performed by a multipart support, while the thermoelectric effect is initiated by thermal legs disposed on the support, in particular designed as a thin film04-04-2013
20130074899APPARATUS FOR THERMOELECTRIC GENERATION OF ELECTRICAL ENERGY - In the case of an apparatus for thermoelectric generation of electrical energy, a base part and an opposing piece are provided, between which a thermoelectric element is arranged and which can be connected to one another as a physical unit via latching elements which are formed on an attachment adaptor. The thermoelectric element can therefore be fixed with relatively low mechanical loads, and the physical unit can be arranged in a compact form at an installation location.03-28-2013
20130081666EMBEDDED OPTICAL ELEMENT PACKAGE MODULE USING A THERMOCOUPLE - An embedded optical element package module uses a thermocouple, which increases the optical output efficiency of an optical element, dissipates high-temperature heat generated by the optical element having high output to prevent degradation, converts waste heat into electrical energy, and supplies the electrical energy as a power source for the optical element to reutilize resources, thereby reducing the amount of power consumed by the optical element and minimizing costs.04-04-2013
20100043858POWER GENERATION SYSTEM FOR AN ELECTRONIC SYSTEM - An electronic system includes an electronic system cabinet housing at least one electronic system component and a power generation system. The power generation system includes a cooling system having a cooling medium that generates a cooling energy. The power generation system further includes a thermoelectric conversion element having a first side and a second side. The first side is in a heat exchange relationship with the at least one electronic system component and the second side is in a heat exchange relationship with the cooling medium. Heat energy generated by the at least one electronic system component raises a temperature of the first side and the cooling energy generated by the cooling medium lowers a temperature of the second side to establish a temperature difference. The thermoelectric conversion element produces an electro-motive force based on the temperature difference.02-25-2010
20090159110THERMOELECTRIC GENERATION SYSTEM - A thermoelectric generation system for turbine engines and the like has at least one thermoelectric generator disposed proximate the turbine engine such that waste heat from the turbine engine can be converted into electricity. Vehicle performance and efficiency can be enhanced by mitigating the need for mechanically driven electric power generators, which undesirably drain power from the turbine engine thus adversely affect the vehicle's performance.06-25-2009
20130068271Prototype Thermoelectric Generator Based on Ionized Gas in a Container Under Electric Potential Difference - In this prototype Thermoelectric Generator (TEG), a new configuration of ionized gas in a container under electric potential difference has been theoretically studied. This device is proposed to generate electric power from ambient air based on the Kinetic Theory of Gases. This prototype TGE has been designed based on the idea of making a number of ionic molecules move toward a selected direction. This prototype TEG has a similar functionality to that of photovoltaic device that is confined by the statistical limits of energy distribution over photons that have the ability to make a photoelectric effect releasing free electrons with energies greater than the voltage threshold, but in this prototype TEG, the advantage is taken from extracting power directly from the moving molecules forming gas. This design is convenient to be installed indoors to produce cold air and generate electric power.03-21-2013
20130087180WEARABLE THERMOELECTRIC GENERATOR SYSTEM - A wearable thermoelectric generator system thermoelectric generator may include a thermoelectric generator, a heat collector, and a heat exchanger. The heat collector may be configured to be placed in contact with a skin surface of a wearer. The heat exchanger may be configured to be exposed to ambient air. The thermoelectric generator may be mounted between the heat collector and the heat exchanger. The thermoelectric generator may be electrically connected to a load. The load may be packaged separately from the thermoelectric generator.04-11-2013
20090272418THERMOELECTRIC GENERATOR DEVICE - A thermoelectric generator includes an enclosure accommodating therein multiple segments of anode thermoelectric material and multiple segments of cathode thermoelectric material, both having low thermal conductivity. The anode thermoelectric material segments are respectively jointed to the corresponding ones of the cathode thermoelectric material segments to form a plurality of V-shaped electrode pairs each having an apex. The plurality of V-shaped electrode pairs is connected in cascade to form a serially connected sequence with the apexes of the V-shaped electrode pairs of the sequence set in a common given direction. A conductive lead is connected to each of a first one and a last one of the plurality V-shaped electrode pairs of the sequence and extends out of the enclosure. The generator can be directly put in a flame or a high temperature environment and can bear a maximum temperature beyond 1000° C. without additionally mounted heat dissipation device.11-05-2009
20130061901THERMOELECTRIC CONVERTING MODULE AND MANUFACTURING METHOD THEREOF - Provided is a high temperature thermoelectric converting module including a plurality of p type thermoelectric elements; a plurality of n type thermoelectric elements; a plurality of electrodes; and a lead line. The plurality of p type thermoelectric elements, the plurality of n type thermoelectric elements, and the plurality of electrodes are electrically serially connected to each other, a pair of connecting lines that connects the lead line to one of the plurality of electrodes to output to the outside is further included, at least one electrode which is disposed at the high temperature side and the plurality of p type and n type thermoelectric elements are bonded with an intermediate layer therebetween. The plurality of p type and n type thermoelectric elements contain silicon as a component and the intermediate layer is formed as a layer containing aluminum and silicon and components other than silicon of the thermoelectric elements.03-14-2013
20090235968APPARATUS FOR GENERATING ELECTRIC POWER USING THERMAL ENERGY - An apparatus for generating electric power using thermal energy includes a thermoelectric semiconductor device having opposite first and second ceramic layers spaced apart from each other, a row of first conductive members attached spacedly to an inner surface of the first ceramic layer, a row of second conductive members attached spacedly to an inner surface of the second ceramic layer, alternately arranged P-type and N-type semiconductor elements each disposed between the first and second ceramic layers and interconnecting electrically a corresponding first conductive member and a corresponding second conductive member, and a heat insulation material filled between the first and second ceramic layers. The thermoelectric semiconductor device outputs a DC power corresponding to a difference between temperatures of the first and second ceramic layers to a circuit unit so that the circuit unit outputs a voltage output corresponding to the DC power.09-24-2009
20090301541THERMOELECTRIC GENERATOR - A thermoelectric generator includes a plurality of thermoelectric modules that generate electrical power when subjected to a temperature differential. The generator also includes a plurality of first thermal elements to which heat is supplied by a first fluid and a plurality of second thermal elements from which heat is removed by a second fluid. The first and second thermal elements are arranged in a stack of alternating first and second thermal elements having one of the plurality of thermoelectric modules between each adjacent pair of first and second thermal elements. Each thermoelectric module is in contact on its first side with one of the first thermal elements and in contact on its second side with one of the second thermal elements such that no face of any thermal element contacts more than one of the thermoelectric modules.12-10-2009
20120111386ENERGY MANAGEMENT SYSTEMS AND METHODS WITH THERMOELECTRIC GENERATORS - In some embodiments, an integrated power generation system includes a primary power source supplying power to a primary power user, a thermoelectric power generator system thermally coupled to a heat source, and an electronic controller unit. In certain embodiments, an electronic controller unit monitors the power output of the primary power source and operatively connects the thermoelectric power generating system to the primary power user when one or more power usage factors occurs. One power usage factor that can occur is the power output of the primary power source falling below a threshold power level.05-10-2012
20130160806THERMOELECTRIC DEVICE AND FABRICATING METHOD THEREOF - Disclosed are a thermoelectric device and a fabricating method thereof. The thermoelectric device includes: a substrate; a heat absorbing part, a leg, and a heat radiating part formed on the substrate; and a heat radiating material formed between the substrate and the heat radiating part to radiate heat transferred from the heat radiating part.06-27-2013
20130160807SEMICONDUCTOR ELEMENT FOR A THERMOELECTRIC MODULE, METHOD FOR PRODUCING THE SEMICONDUCTOR ELEMENT AND THERMOELECTRIC MODULE - A semiconductor element includes at least a thermoelectric material and a first frame part which are force-lockingly connected to one another, with the frame part forming a diffusion barrier for the thermoelectric material and an electrical conductor. A method for producing the semiconductor element as well as a thermoelectric module having at least two semiconductor elements, are also provided.06-27-2013
20110100408Quantum well module with low K crystalline covered substrates - A thermoelectric module comprised of a quantum well thermoelectric material with low thermal conductivity and low electrical resitivity (high conductivity) for producing n-legs and p-legs for thermoelectric modules. These qualities are achieved by fabricating crystalline quantum well super-lattice layers on a substrate material having very low thermal conductivity. Prior to depositing the super-lattice thermoelectric layers the low thermal conductivity substrate is coated with a thin layer of crystalline semi-conductor material, preferably silicon. This greatly improves the thermoelectric quality of the super-lattice quantum well layers. In preferred embodiments the super-lattice layers are about 4 nm to 20 nm thick. In preferred embodiments about 100 to 1000 of these super-lattice layers are deposited on each substrate layer, to provide films of super-lattice layers with thicknesses of in the range of about 0.4 microns to about 20 microns on much thicker substrates. The substrates may be a few microns to a few millimeters thick. The thermoelectric films are then stacked and fabricated into thermoelectric p-legs and n-legs which in turn are fabricated into thermoelectric modules. These layers of quantum well material may in preferred embodiments be separated by much thicker layers of thermal and electrical insulating material such that the volume of insulating material in each leg is at least 20 times larger than the volume of quantum well material.05-05-2011
20110271994Hot Side Heat Exchanger Design And Materials - In certain embodiments, a hot side heat exchanger (HSHX) includes a folded fin structure including a plurality of fins. Each of the plurality of fins is formed from a composite fin material having a first fin layer positioned between a second fin layer and a third fin layer, the first fin layer being a first material and the second and third fin layers being a second material. A base plate is in thermal communication with the plurality of folded fins. The base plate is formed from a composite base plate material having a first base plate layer and a second base plate layer, the first base plate layer being a first material and the second base plate layer being the second material. The first material has a greater thermal conductivity than the second material and the second material has greater corrosion resistance and high temperature strength than the first material.11-10-2011
20100147351THERMOELECTRIC CONVERSION MODULE - A thermoelectric conversion module including a double angular cylinder including an inner tube and an outer tube disposed on an axis common to the inner tube and at a predetermined spacing. Electrodes are individually arranged on the opposing faces of the inner tube and the outer tube. A thermoelectric conversion element is connected with the electrodes of the faces of the thermoelectric conversion element arranged in opposing directions, one face is defined as a heating face, and the other face is defined as a cooling face. One of the inside of the inner tube and the outside of the outer tube is defined as a first fluid passage for passing a high-temperature fluid therethrough, and the other is defined as a second fluid passage for passing a low-temperature fluid therethrough.06-17-2010
20120012147DEVICE FOR CONVERTING THERMAL ENERGY INTO ELECTRICAL ENERGY - A current source and method of producing the current source are provided. The current source includes a metal source, a buffer layer, a filter and a collector. An electrical connection is provided to the metal layer and semiconductor layer and a magnetic field applier may be also provided. The source metal has localized states at a bottom of the conduction band and probability amplification. The interaction of the various layers produces a spontaneous current. The movement of charge across the current source produces a voltage, which rises until a balancing reverse current appears. If a load is connected to the current source, current flows through the load and power is dissipated. The energy for this comes from the thermal energy in the current source, and the device gets cooler.01-19-2012
20110139204ENERGY CONVERSION EFFICIENT THERMOELECTRIC POWER GENERATOR - The energy conversion efficient thermoelectric power generator includes a p-type thermoelectric element and an n-type thermoelectric element positioned adjacent the p-type thermoelectric element defining a gap therebetween, and first and second conductive members electrically connecting opposed top and the bottom ends of the p-type and n-type thermoelectric elements, respectively. The first conductive member forms a hot junction with the top ends of the p-type and n-type thermoelectric elements, and the second conductive member forms a cold junction with the bottom ends of the p-type and n-type thermoelectric elements. The materials and dimensions of the p-type and n-type thermoelectric elements are selected such that a slenderness ratio X of each falls within the range of 0≦X≦1.06-16-2011
20100101620Thermoelectric Conversion Module - A thermoelectric conversion device with reduced thermal stress between a thermoelectric conversion element and a substrate is disclosed. Solders are between a first conductor and first end faces of a plurality of thermoelectric conversion elements and between a second conductor and second end faces of the thermoelectric conversion elements. At least one of the first conductor and the second conductor comprises at least one protrusion which protrudes toward one of the thermoelectric conversion elements. The at least one protrusion is in an area of at least one of the first end faces and second end faces, and coated by the solder.04-29-2010
20120024333THERMOELECTRIC MATERIAL DEFORMED BY CRYOGENIC IMPACT AND METHOD OF PREPARING THE SAME - A thermoelectric material has a microstructure deformed by cryogenic impact. When the cryogenic impact is applied to the thermoelectric material, defects are induced in the thermoelectric material, and such defects increase phonon scattering, which results in enhanced figure of merit.02-02-2012
20110168222Amtec with heat pipe - There is provided an AMTEC (alkali metal thermal-electric converter) with a heat pipe and more particularly, to an AMTEC with a heat pipe minimized a heating part and a condensation part of the AMTEC and improved in efficiency of thermal to electric conversion through installing the heating and cooling heat pipes in the AMTEC, in which a metal fluid is heated by latent heat of an operating fluid of the heat pipe, instead of the heat conduction from a heat source, thereby reducing a temperature difference needed for heat transfer to vaporize the metal fluid even by a heat source of a lower temperature than a conventional heat source; improving a cooling performance in a condensation part to result in the high efficiency of thermal to electric conversion; using no additional driving components for driving the heat pipe.07-14-2011
20090120482DEVICE AND METHOD FOR GENERATING ELECTRICAL POWER - A device and method for generating electricity. The device includes a heat source, a cold source, and a thermoelectric generating plate, having a first side and an opposed side. When heat is introduced to the heat source, heat flows across the thermoelectric generating plate and electricity is generated. In the present arrangement, because the hot and cold sources are in thermal communication with opposed sides of the thermoelectric generating plate, the thermal gradient or rate of heat flow across the thermoelectric generating plate is maximized. Thus, because the rate of heat flow is increased, the rate at which electricity is generated is also increased, and the size of the device is maintained, or minimized.05-14-2009
20110168223THERMOELECTRIC APPLICATION FOR WASTE HEAT RECOVERY FROM SEMICONDUCTOR DEVICES IN POWER ELECTRONICS SYSTEMS - In a power electronics system of a next generation vehicle, a power module is provided including a thermoelectric device which is provided in a thermally conductive path between a power device and a cooling plate such that the thermoelectric device creates useful electric power from the waste heat of the power device.07-14-2011
20090038667THERMOELECTRIC CONVERSION MODULE AND HEAT EXCHANGER AND THERMOELECTRIC POWER GENERATOR USING IT - A thermoelectric conversion module (02-12-2009
20120031451HIGH TEMPERATURE THERMOELECTRIC GENERATOR - The present invention relates to a high temperature thermoelectric generator. The generator includes at least one thermocouple thermally connected to a high temperature surface, a power management circuit adapted to receive electric power from the at least one thermocouple and provide a regulated output voltage, and a storage device adapted to receive the regulated output voltage from the power management circuit such that the output voltage charges the storage device.02-09-2012
20110265837Rotary Heat Exchanger - A system for generating power from a low grade heat source includes a heat source inlet, heat sink inlet, heat exchanger unit, and a heat engine. The heat source inlet conveys a flow of a heated fluid into the system. The heat sink inlet conveys a flow of a cooled fluid into the system. The heat exchanger unit is configured to rotate. A portion of the heat exchanger unit alternates between thermal contact with the heated fluid and thermal contact with the cooled fluid in response to being rotated. The heat engine is configured to generate power in response to the heat exchanger unit being rotated.11-03-2011
20130213449THERMOELECTRIC PLATE AND FRAME EXCHANGER - An active thermoelectric plate exchanger is provided that includes a plurality of thermally conductive plates and a thermoelectric (TE) assembly having an array of thermoelectric modules (TEM) (e.g., TE coolers or TE generators) for heating/cooling or power generation. For cooling/heating, the TECs actively transfer heat between two fluids. For power generation, the TEGs generate and output power when two fluids having a thermal differential therebetween is applied across the TEGs. Several TE assemblies may be disposed in a stacked configuration between thermally conductive plates contacting the fluids. Additional fluid turbulence generating structures may be included with the fluid flow chambers/paths to generate fluid turbulence and increase thermal efficiency. These structures may include a thermally conductive plate with surface structures or may be a thermally conductive wire cloth, woven wire or wire mesh or screen. The resulting plate exchanger is modular and scalable.08-22-2013
20110214707THERMOELECTRIC GENERATOR - Thermoelectric generating parts having a plate-shape or film-shape are stacked in a thickness direction. Each of the thermoelectric generating parts generates an electric power as a temperature difference is generated in the thickness direction. Thermal conducting members are disposed between two of the thermoelectric generating parts adjacent in a stacked direction and on outer surfaces of outermost two thermoelectric generating parts. A first thermal coupling member is connected to and thermally coupled to the every other thermal conducting members. A second thermal coupling member is connected to and thermally coupled to the thermal conducting members not connected to the first thermal coupling member.09-08-2011
20090025772Glass-ceramic thermoelectric module - The invention is directed to a thermoelectric module that utilizes a glass-ceramic material in place of the alumina and aluminum nitride that are commonly used in such modules. The glass-ceramic has a coefficient of thermal expansion of <10×10−01-29-2009
20120138115SURFACE EXCITONIC THERMOELECTRIC DEVICES - A thermoelectric device is disclosed. The device includes an insulating layer, a first conducting layer configured to induce charge of a first polarity on a first surface of the insulating layer, and a second conducting layer configured to induce charge of a second polarity on a second surface of the insulating layer, the second polarity opposite the first polarity, and the first surface opposite the second surface across a transversal axis, wherein by induction of opposing charges on the first surface and the second surface of the insulating layer spatially separated surface excitons are formed on the first and the second surfaces of the insulating layer, the spatially separated surface excitons generate a counterflow electrical current when a thermal gradient is provided across a longitudinal axis of the insulating layer. The surface excitons could potentially condense into a superfluid under appropriate conditions, giving rise to superfluidic thermoelectric current.06-07-2012
20080271772Method for Manufacturing a Thermopile on a Membrane and a Membrane-less Thermopile, the Thermopile thus Obtained and a Thermoelectric Generator Comprising Such Thermopiles - A method for manufacturing thermopile carrier chips comprises forming first type thermocouple legs and second type thermocouple legs on a first surface of a substrate and afterwards removing part of the substrate form a second surface opposite to the first surface, thereby forming a carrier frame from the substrate and at least partially releasing the thermocouple legs from the substrate, wherein the thermocouple legs are attached between parts of the carrier frame. First type thermocouple legs and second type thermocouple lets may be formed on the same substrate or on a separate substrate. In the latter approach both types of thermocouple legs may be optimised independently. The thermocouple legs may be self-supporting or they may be supported by a thin membrane layer. After mounting the thermopile carrier chips in a thermopile unit or in a thermoelectric generator, the sides of the carrier frame to which no thermocouple legs are attached are removed. A thermoelectric generator according to the present disclosure may be used for generating electrical power, for example for powering an electrical device such as a watch. It may be used with a heat source and/or heat sink with high thermal resistance, such as a human body.11-06-2008
20110139203HETEROSTRUCTURE THERMOELECTRIC GENERATOR - A thermoelectric generator element includes a first material configured to generate hole and electron carriers and a second material configured to produce a thermoelectric effect and thermally and physically connected to the first material, wherein an interface between the first material and the second material forms a heterojunction that acts to selectively permit injection of one of either the hole carrier or the electron carrier from the first material to the second material.06-16-2011
20090260668System and method for efficient power utilization and extension of battery life - A circuit which extends the operational life of a main power source, said circuit comprising a pair of thermoelectric generators (TEGs) for converting thermal energy from a heat source into electrical energy; a pair of capacitors arranged in parallel, each coupled to one of the TEGs for storing the electrical energy generated by said TEG; a power converter; a first switching element coupled between a first capacitor in the pair of capacitors and the power converter; a second switching element coupled between a second capacitor in the pair of capacitors and the power converter; and a monitor/controller coupled to said first and second switching elements and each of said capacitors for selectively and alternatively switching the first and second switching elements in order to selectively provide power from one of the capacitors to a load, thereby reducing the amount of power drawn from the main power source.10-22-2009
20090250091DEVICE AND METHOD FOR GENERATING ELECTRICAL POWER - A mobile device for generating electrical power may include a combustion chamber and a heat sink. A TEC module is in thermal communication with the combustion chamber and the heat sink to transfer thermal energy from the combustion chamber to the heat sink. A heat flux across the TEC module causes electrical power to be generated. The mobile device may also include a fuel delivery system to feed fuel into the combustion chamber. A control system may be included to at least monitor and control delivery of fuel to the combustion chamber by the fuel delivery system and to control a temperature gradient across the TEC module to control the electrical power produced by the thermal-to-electric energy conversion device.10-08-2009
20120192908Sinkless thermoelectric energy generator - Disclosed is a sinkless electric generator for generating electrical power from temperature cycles encountered by the structure of an aircraft. The sinkless electric generator includes a thermoelectric generator which is in thermal contact with the structure of the aircraft (e.g., the aircraft's skin); an insulated housing containing a thermal mass; and a circuit for providing the energy generated by the thermoelectric generator during the temperature cycles encountered by the structure of the aircraft to a device. The insulated housing is positioned in thermal contact with the thermoelectric generator; wherein during the temperature cycles encountered by the structure of the aircraft, energy is created by the thermoelectric generator when heat is released from the thermal mass contained within the housing through the thermoelectric generator to the aircraft's structure and when heat is supplied from the aircraft's structure through the thermoelectric generator to the thermal mass.08-02-2012
20100147350NANOWIRE THERMOELECTRIC DEVICE - A thermoelectric device is provided. The thermoelectric device includes a P-type thermoelectric component, an N-type thermoelectric component, and an electrically conductive layer. Each of the P-type thermoelectric component and the N-type thermoelectric component includes a substrate and a nanowire structure. The conductive layer connects the P-type thermoelectric component set with the N-type thermoelectric component set. The thermoelectric device is adapted for recycling heat generated by the heat source, and for effectively converting the heat into electrical energy.06-17-2010
20100170550THERMOELECTRIC CONVERSION MODULE AND THERMOELECTRIC POWER GENERATION SYSTEM - A thermoelectric conversion module and a thermoelectric power generation system are provided. The thermoelectric conversion module includes a thermoelectric device and an electrode fixed to the thermoelectric device, wherein a cavity is formed in the electrode. The thermoelectric power generation system includes a heat source and the thermoelectric conversion module, wherein heat from the heat source is supplied to the thermoelectric device through the electrode and substrate.07-08-2010
20100170551THERMOELECTRIC CONVERSION MODULE, THERMOELECTRIC CONVERSION DEVICE, AND THEIR MANUFACTURING METHOD - A thermoelectric conversion module includes a substrate and a plurality of thermoelectric conversion devices arranged on the surface of the substrate. The substrate is provided with a through hole formed to extend through the surface and the back thereof, and the thermoelectric conversion devices are arranged on at least one of the surface and the back of the substrate so as to enclose the through hole. The thermoelectric conversion device includes the thermoelectric conversion module, and a tube arranged to extend through the through hole of the thermoelectric conversion module and to allow a hot medium or a cold medium to flow therethrough. A method for manufacturing a thermoelectric conversion module includes a step of arranging a plurality of thermoelectric conversion devices on at least one of the surface and the back of a substrate having a through hole extending through the surface and the back thereof so as to enclose the through hole.07-08-2010
20130213450Thermoelectric Generation Apparatus - A thermoelectric generation apparatus 08-22-2013
20100258156THERMOELECTRIC GENERATOR - A thermoelectric generator includes: a high temperature member which conducts thermal energy of a high temperature medium; a low temperature member which is provided on a side opposing to the high temperature medium of the high temperature member and is provided with a low temperature medium passage therein; a thermoelectric module which is sandwiched between the high temperature member and the low temperature member and carries out a thermoelectric conversion element converting a thermal energy to an electrical energy using a temperature difference between the high temperature medium and the low temperature medium supplied to the low temperature medium passage, and at least one tie rod fastening between the low temperature member and the high temperature member.10-14-2010
20100212712THERMOELECTRIC GENERATOR - A thermoelectric generator has a hot side heat exchanger comprising: a silicon carbide (SiC) honeycomb support with a plurality of passages. The passage walls are coated with a pyrophoric solid fuel such as red oxide (Fe08-26-2010
20100236595Thermoelectric power generator for variable thermal power source - Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.09-23-2010
20100243016THERMOELECTRIC POWER GENERATING DEVICE AND POWER GENERATING SYSTEM USING SAID THERMOELECTRIC POWER GENERATING DEVICE - A thermoelectric power generating device and a power generating system using the same are provided which have easiness in maintenance and require a smaller space and which can perform thermoelectric conversion (power generation) from fluids with different temperatures to conduct electric power supply in a way cheaper and more stable than in the conventional devices.09-30-2010
20100243017SYSTEM AND METHOD FOR THE THERMAL MANAGEMENT OF BATTERY-BASED ENERGY STORAGE SYSTEMS - A system and method for the thermal management of a battery-based energy storage is described. One embodiment includes a thermal management system for a battery-based energy storage system, the thermal management system comprising a residual heat source, such as a geothermal heat source, and a battery-based energy storage system thermally connected to the residual heat source The thermal connection between the energy storage system and the residual heat source may be direct (i.e., the energy storage system may be adjacent to, partially located within, or fully located within the residual heat source) or indirect (e.g., the energy storage system and residual heat source may use a heat conduit to transfer heat). In embodiments using a heat conduit to transfer heat, the thermal management system may further comprise a control system for controlling the circulation of a fluid in the heat conduit in order to regulate the temperature of the energy storage system.09-30-2010
20120192909GENERATING POWER FROM HEAT PRODUCED BY AN ELECTRONIC SYSTEM - An electronic system includes an electronic system cabinet housing at least one electronic system component and a power generation system. The power generation system includes a cooling system having a cooling medium that generates a cooling energy. The power generation system further includes a thermoelectric conversion element having a first side and a second side. The first side is in a heat exchange relationship with the at least one electronic system component and the second side is in a heat exchange relationship with the cooling medium. Heat energy generated by the at least one electronic system component raises a temperature of the first side and the cooling energy generated by the cooling medium lowers a temperature of the second side to establish a temperature difference. The thermoelectric conversion element produces an electro-motive force based on the temperature difference.08-02-2012
20090107536SYSTEM FOR RECYCLING ENERGY - A system for generating electrical energy is disclosed. The system includes at least one device having a plurality of heat radiating components each having a cooling component. The system includes a converter system comprising a plurality of thermal electric generators contained in each of the at least one device, each of the plurality of thermal electric generators integrated between a respective one of the plurality of heat radiating components and its respective cooling component, the plurality of thermal electric generators electrically interconnected according to power requirements of the at least one device, and the plurality of thermal electric generators generating power used to power the at least one device.04-30-2009
20100294324MOLDING DEVICE CAPABLE OF CONVERTING HEAT FROM MOLTEN MOLDING MATERIAL INTO ELECTRICITY - A mold includes a first mold half, a second mold half opposite to the first mold half, and a thermoelectric generator. The thermoelectric generator includes a high temperature conductive portion, a semiconductor electricity-generating portion, and a low temperature conductive portion. The high temperature conductive portion is positioned in contact with the first mold half and configured to conduct heat from the first mold half to the semiconductor electricity-generating portion. The low temperature conductive portion is exposed to the air. The semiconductor electricity-generating portion is sandwiched between the high temperature conductive portion and the low temperature conductive portion, and positioned in contact with the high temperature conductive portion and the low temperature conductive portion; the semiconductor electricity-generating portion is configured for forming a voltage difference.11-25-2010
20130139864THERMOELECTRIC DEVICES - Provided is a thermoelectric device including two legs having a rough side surface and a smooth side surface facing each other. Phonons may be scattered by the rough side surface, thereby decreasing thermal conductivity of the device. Flowing paths for electrons and phonons may become different form each other, because of a magnetic field induced by an electric current passing through the legs. The smooth side surface may be used for the flowing path of electrons. As a result, in the thermoelectric device, thermal conductivity can be reduced and electric conductivity can be maintained.06-06-2013
20100170552THERMOELECTRIC CONVERTER AND METHOD THEREOF - A thermoelectric converter is made of a first thermoelectric conversion material in which at least one type of second thermoelectric conversion material particles having an average size of 1 to 100 nm is dispersed. At least a part of the second thermoelectric conversion material particles is dispersed at a distance not more than the mean free path of the phonons of the first thermoelectric conversion material.07-08-2010
20110023928THERMOELECTRIC CONVERSION DEVICE - A thermoelectric conversion device used in a computer uses a thermoelectric conversion module to fully utilize the redundant heat generated by the computer and converts it to electricity based on a temperature difference between a heat generating device and a low temperature device inside the computer. The electricity generated by the thermoelectric conversion module is then delivered to and used to activate a load.02-03-2011
20110017253Thermionic converter - A thermionic converter includes an emitter electrode and a collector electrode. The emitter electrode includes a P-type diamond semiconductor layer doped with a P-type impurity. The emitter electrode is configured to emit a thermion from the P-type diamond semiconductor layer when heat is applied from an external power source. The collector electrode includes an N-type diamond semiconductor layer doped with an N-type impurity. The N-type diamond semiconductor layer opposes the P-type diamond semiconductor layer and is located at a predetermined distance from the P-type diamond semiconductor layer. The collector electrode is configured to receive the thermion emitted from the emitter electrode at the N-type diamond semiconductor layer.01-27-2011
20090065041WIRELESS SENSING NODE POWERED BY ENERGY CONVERSION FROM SENSED SYSTEM - A sensing system for sensing conditions or characteristics associated with a process or thing. The sensing system includes one or more energy converters and a sensor, which are coupled to the process or thing. A node is coupled to the sensor and the energy-converter, and the node is powered by output from the energy converter. In a more specific embodiment, the node includes a controller that implements one or more routines for selectively powering a wireless transmitter of the node based on a predetermined condition. The predetermined condition may specify that sensor output values are within a predetermined range or are below or above a predetermined threshold. Alternatively, the predetermined condition may specify that electrical energy output from the energy converter is below a predetermined threshold. A remote computer may be wirelessly connected to node and may include software and/or hardware that is adapted to process information output by the sensor and relayed to the computer via the node.03-12-2009
20090065040Electrical energy generating device - The invention results in an increased efficiency factor at electric energy generation. To achieve the mentioned technical result an electric energy generating device has a heat energy source, means for bringing heat energy from the source to an energy converter, heat-to-electric energy converter, and means of supplying the obtained electric energy to the mains. The heat-to-electric energy converter has at least, one converging module, including an irradiator with thermal luminescent coating, IR photo-cell, and concentrator that faces the irradiator with thermal luminescent coating and concentrates IR radiation directly onto the IR photo-cell, which is connected with the means for supplying the obtained electric energy to the mains. The device also differs in that each converting module is covered with heat insulation material from the outside, and also in that the means for supplying the obtained electric energy to the mains is made as an inverter.03-12-2009
20110139205THERMIONIC CONVERTER - A thermionic converter for converting thermal energy to electrical energy includes an emitter and a collector. The emitter emits thermionic electrons upon receipt of heat from a heat source. The emitter is made of a first semiconductor material to which a first semiconductor impurity is doped with a first concentration. The collector is spaced and opposite to the emitter to receive the thermionic electrons emitted from the emitter so that the thermal energy is converted to electrical energy. The collector is made of a second semiconductor material to which a second semiconductor impurity is doped with a second concentration less than the first concentration.06-16-2011
20090217961Integrated Thermoelectric Cooling Devices and Methods for Fabricating Same - Semiconductor integrated thermoelectric devices are provided, which are formed having high-density arrays of thermoelectric (TE) elements using semiconductor thin-film and VLSI (very large scale integration) fabrication processes. Thermoelectric devices can be either separately formed and bonded to semiconductor chips, or integrally formed within the non-active surface of semiconductor chips, for example.09-03-2009
20090217960ELECTRICAL POWER SOURCE USING HEAT FROM FLUIDS PRODUCED FROM THE EARTH'S SUBSURFACE - A thermoelectric generator for producing electric power from heat in fluids produced from a subsurface wellbore includes a conduit for moving therethrough fluids produced from the Earth's subsurface and at least one thermoelectric module affixed to an exterior of the conduit. The at least one thermoelectric module includes a collimating heat transfer device in contact with the conduit on a first side and in contact with a first side of a thermoelectric generator thermocouple on a second side. A second side of the thermocouple is in contact with a contact surface of a heat sink. The heat sink is exposed to ambient atmosphere at the Earth's surface to conduct heat away from the thermocouple.09-03-2009
20110083710Energy-Efficient Micro-Combustion System for Power Generation and Fuel Processing - An integrated micro-combustion power generator converts hydrocarbon fuel into electricity. The integrated micro-scale power generator includes a micro-machined combustor adapted to convert hydrocarbon fuel into thermal energy and a micro-machined thermoelectric generator adapted to convert the thermal energy into electrical energy. The combustion reaction in the combustor flows in a path in a first plane while the thermal energy flows in a second plane in the generator; the second plane being nearly orthogonal or orthogonal to the first plane. The fuel handler in the combustor is adjacent and thermally isolated from the thermoelectric generator. The fuel handler may include a nozzle and gas flow switch, where the frequency of activation of the gas flow switch controls the amount of the fuel ejected from the nozzle.04-14-2011
20100059096THERMOELECTRIC ELEMENT AND THERMOELECTRIC MODULE - The present invention aims at providing a thermoelectric device which can be prevented from being destroyed by thermal stresses, and a thermoelectric module using a plurality of such thermoelectric devices. The thermoelectric device in accordance with the present invention comprises an element for transforming energy between thermal energy and electric energy and a pair of electrodes connected to both end parts of the element, while the element is provided with a stress alleviating part for alleviating a stress caused by a temperature difference between the both end parts. Therefore, when generating electricity by using the thermoelectric device, the stress alleviating part can alleviate the stress caused by the temperature difference between both end parts of the element and restrain the element from being destroyed by the thermal stress.03-11-2010
20110100409THERMOELECTRIC NANO-COMPOSITE, AND THERMOELECTRIC MODULE AND THERMOELECTRIC APPARATUS INCLUDING THE THERMOELECTRIC NANO-COMPOSITE - A thermoelectric nano-composite including a thermoelectric matrix; a nano-metal particle; and a nano-thermoelectric material represented by Formula 1:05-05-2011
20110146741THERMOELECTRIC CONVERSION MODULE AND METHOD FOR MAKING THE SAME - A thermoelectric conversion module includes: p-type semiconductor blocks, each including a p-type thermoelectric conversion material, a first column portion and a first coupling portion that projects in a horizontal direction from an end of the first column portion; and n-type semiconductor blocks, each including an n-type thermoelectric conversion material, a second column portion and a second coupling portion that projects in a horizontal direction from an end of the second column portion, wherein the first coupling portions of the p-type semiconductor blocks are respectively coupled to the other ends of the second column portions of the n-type semiconductor blocks, and the second coupling portions of the n-type semiconductor blocks are respectively coupled to the other ends of the first column portions of the p-type semiconductor blocks, and the p-type semiconductor blocks and the n-type semiconductor blocks are alternately arranged and coupled to each other in series.06-23-2011
20110247669POWER-GENERATING DEVICE AND METHOD OF MAKING - A power-generating device includes a thermoelectric material contoured to conform to at least a portion of a tubular and at least two conductors in operable communication with the thermoelectric material.10-13-2011
20120199171THERMOELECTRIC GENERATION UTILIZING NANOFLUID - According to one aspect, a system generates electricity from a temperature differential using a thermoelectric module. At least one side of the temperature differential is supplied by a thermal element having a fluid flowing through it. The fluid contains suspended nanoparticles to enhance the transfer of heat between the fluid containing the nanoparticles and the thermal element, as compared with a similar fluid not containing the nanoparticles. The nanoparticles may include metal ions, for example silver ions, copper ions, or both. The system may further include an ion generator for generating the ions within the fluid.08-09-2012
20110253186Combined Thermoelectric and Thermomagnetic Generator - A thermoelectric device (10-20-2011
20110108080THERMOELECTRIC GENERATOR ASSEMBLY AND SYSTEM - A thermoelectric generator assembly may comprise a frame that may include a first frame member and a second frame member. The first frame member and the second frame member are adapted to retain one or more thermoelectric generator devices in position therebetween for transferring heat energy through the one or more thermoelectric generator devices from a heat source to a heat sink to generate electrical energy. The thermoelectric generator assembly may also include a spacer positioned between the first frame member and the second frame member. A power bus may be included to provide the electrical energy generated by the one or more thermoelectric generator devices for powering an electrical device.05-12-2011
20110114146UNIWAFER THERMOELECTRIC MODULES - A uniwafer device for thermoelectric applications includes one or more first thermoelectric elements and one or more second thermoelectric elements comprising respectively a first and second patterned portion of a substrate material. Each first/second thermoelectric element is configured to be functionalized as an n-/p-type semiconductor with a thermoelectric figure of merit ZT greater than 0.2. The second patterned portion is separated from the first patterned portion by an intermediate region functionalized partially for thermal isolation and/or partially for electric interconnecting. The one or more first thermoelectric elements and the one or more second thermoelectric elements are spatially configured to allow formation of a first contact region and a second contact region respectively connecting to each of the one or more first thermoelectric elements and/or each of the one or more second thermoelectric elements to form a continuous electric circuit.05-19-2011
20100212711Generator - A generator includes a heat-electricity transforming device and a heat collector. The heat-electricity transforming device is configured to transform heat into electricity. The heat collector includes at least one heat absorption module. The at least one heat absorption module includes a carbon nanotube structure. The at least one heat absorption module is connected to the heat-electricity transforming device and transfers heat to the heat-electricity transforming device.08-26-2010
20100180924Floating Platform with Detachable Support Modules - A floating support that can be joined with a floating platform while the floating platform is at a deployment location is disclosed. The support provides functionality to the floating platform in order to change, augment, upgrade, or diversify the platform's overall capability. In some embodiments, the present invention eases the serviceability of the platform by enabling a first support that has diminished capability to be readily replaced by a second support having superior capability—without removing the floating platform from its deployment location. In some embodiments, the present invention enables platform operation that is analogous to “plug and play” electronics systems. Further, in some embodiments, hydrodynamic performance of the floating platform can be changed with the addition or removal of one or more floating supports.07-22-2010
20100116307Module Comprising A Thermoelectric Generator, As Well As Power Source - According to a first aspect, the invention relates to a TEG module, in particular for a power source (05-13-2010
20110061703HEAT RECOVERY SYSTEM FOR THE HOT ROLLING LINE - A heat recovery system for a hot rolling line where a metallic material is heated and rolled, the system includes a thermoelectric converter converting heat generated by processing of the metallic material at the hot rolling line to electricity, and an electricity storage storing the electricity converted by the thermoelectric converter.03-17-2011
20120145213APPARATUS, SYSTEMS AND METHODS FOR ELECTRICAL POWER GENERATION FROM HEAT - Systems and methods are operable to generate electric power from heat. Embodiments employ one or more direct thermal electric converters that have at least a first recombination material having a first recombination rate, a second recombination material adjacent to the first recombination material and having a second recombination rate, wherein the second recombination rate is different from the first recombination rate, and a third recombination material adjacent to the second recombination material and having a third recombination rate substantially the same as the first recombination rate. Application of heat generates at least first charge carriers that migrate between the first recombination material and the second recombination material, and generates at least second charge carriers that migrate between the third recombination material and the second recombination material. The migration of the first charge carriers and the migration of the second charge carriers generates an electrical current.06-14-2012
20100193001THERMOELECTRIC CONVERSION MODULE, AND HEAT EXCHANGER, THERMOELECTRIC TEMPERATURE CONTROL DEVICE AND THERMOELECTRIC GENERATOR EMPLOYING THE SAME - A thermoelectric conversion module (08-05-2010
20110259385THERMOELECTRIC CONVERSION MODULE AND THERMOELECTRIC CONVERSION MODULE BLOCK - (Problem) To make a thermoelectric conversion module block with a plurality of connected thermoelectric conversion modules easy to handle and easy to connect the thermoelectric conversion modules to one another, operate stably for long periods of time.10-27-2011
20090071526Sustained-heat source and thermogenerator system using the same - A thermogenerator system includes a sustained-heat source with a plurality of pyrophoric material elements each having a same geometric shape and in an encasement having openings, a thermal power generator for converting thermal energy from the sustained-heat source into electricity, and an electrical control system for regulating the electricity.03-19-2009
20090000651Nanoporous Materials for Use in the Conversion of Mechanical Energy and/or Thermal Energy Into Electrical Energy - The present invention generally relates to a method for using nanoporous materials to convert mechanical motion and/or heat into electrical energy. In one embodiment, the present invention relates to the use of a nanopore confinement effect that results from a fluid infiltrating a porous material as a means to generating electrical energy. In another embodiment, the present invention relates to the use of a nanopore confinement effect that results from a continuous solid phase infiltrating a porous material as a means to generate electrical energy. In still another embodiment, the present invention relates to the use of a thermoelectric effect that results from a fluid infiltrating a porous material as a means to generate electrical energy. In yet another embodiment, the present invention relates to the use of a thermoelectric effect that results from a continuous solid phase infiltrating a porous material as a means to generate electrical energy. In yet another embodiment, the present invention relates to applying the foregoing mechanoelectric effect or thermoelectric effect to high surface area and/or small-structured solids as a means of enhancing and/or supplementing otherwise inefficient and/or insufficient electrical energy generation.01-01-2009
20100154855Thin walled thermoelectric devices and methods for production thereof - A thermoelectric generator is built into the wall of a heat exchanger by applying coatings of dielectric, electrical conductor and N-type and P-type thermoelectric materials. A tubular heat exchanger lends itself to the application of coatings in annular rings, providing ease of manufacture and a structure that is robust to damage.06-24-2010
20110146742THERMOELECTRIC CONVERSION ELEMENT - A thermoelectric conversion element is configured to have two types of conductors with different Seebeck coefficients physically connected alternately with an electrode via one or more electrical resistance layers formed by electrical resistor having electrical resistance rate of 1×1006-23-2011
20090007953Energy efficient micro combustion system for power generation and fuel processing - An integrated micro-scale power converter converts hydrocarbon fuel into electricity. The integrated micro-scale power converter includes a micromachined combustor adapted to convert hydrocarbon fuel into thermal energy and a micromachined thermoelectric generator adapted to convert the thermal energy into electrical energy. The combustion reaction in the combustor flows in a path in a first plane while the thermal energy flows in a second plane in the generator the second plane being nearly orthogonal or orthogonal to the first plane. The fuel handler in the combustor is adjacent and thermally isolated from the thermoelectric generator. The fuel handler may include a nozzle and gas flow switch, where the frequency of activation of the gas flow switch controls the amount of the fuel ejected from the nozzle.01-08-2009
20120305045THERMO-ELECTRIC GENERATOR SYSTEM - A thermoelectric generator system comprises a control unit (12-06-2012
20110315183METHOD AND APPARATUS FOR A THERMO-ELECTRIC ENGINE - An engine apparatus and method for operating same is disclosed. The engine generates electrical energy from phase changes of two different mixtures within chambers of the engine. Thermoelectric generators are preferably utilized to generate electrical energy from thermo differentials within the engine created by phase changes during engine operation. The engine may additionally be operated to perform mechanical based work.12-29-2011
20110155200Heat lamp - Device for the production of light contains at least one thermoelectric element, which is in thermal communication with a source of thermal energy, the electricity for production of light is generated by thermal effects on the surfaces of element through heat pumping, and the transformation of thermal energy into electrical energy is realized and electricity is produced in at least one thermoelectric cell, produced current is led into the controller of charge and/or discharge, and/or into at least one accumulator, and the regulator of charge and/or discharge is connected through power lines on at least one lighting element, which provides conversion of electric energy to light and is connected with at least one switch and leads into the regulator charge and/or discharge, and characteristic is that, the electrical current leads through at least one lighting element, the device transmits light energy and the light is on.06-30-2011
20110023927Micro-combustion power system with metal foam heat exchanger - A micro-combustion power system is disclosed. In a first embodiment, the invention is comprised of a housing that further comprises two flow path volumes, each having generally opposing flow path directions and each generally having opposing configurations.02-03-2011
20120012146THERMOELECTRIC GENERATOR UNIT - The invention relates to a thermoelectric generator unit (01-19-2012
20120055527STRUCTURAL ELEMENT FOR THERMALLY SHIELDING ENGINES OR ENGINE COMPONENTS, IN PARTICULAR A HEAT SHIELD FOR COMBUSTION ENGINES - The invention relates to a structural element for thermally shielding engines or engine components, in particular a heat shield for combustion engines, the structural element having a planar extension and comprising a first side that faces a hot element of the engine, and a second side that faces away from the hot element of the engine, characterized in that the structural element comprises a thermoelectric generator, which can be used to generate electric energy from a temperature difference resulting between the first side and the second side of the structural element during operation of the engine.03-08-2012
20120060884APPARATUS, SYSTEMS AND METHODS FOR ELECTRICAL POWER GENERATION FROM HEAT - Systems and methods are operable to generate electric power from heat. An exemplary direct thermal electric converter embodiment includes at least a first recombination material having a first recombination rate, a second recombination material adjacent to the first recombination material and having a second recombination rate, wherein the second recombination rate is different from the first recombination rate, and a third recombination material adjacent to the second recombination material and having a third recombination rate substantially the same as the first recombination rate. Application of heat generates at least first charge carriers that migrate between the first recombination material and the second recombination material, and generates at least second charge carriers that migrate between the third recombination material and the second recombination material. The migration of the first charge carriers and the migration of the second charge carriers generates an electrical current.03-15-2012
20120152297POWER GENERATION USING A THERMOELECTRIC GENERATOR AND A PHASE CHANGE MATERIAL - An energy harvesting device is disclosed that includes a thermoelectric device adapted to produce electricity according to a Seebeck effect when a thermal gradient is imposed across first and second major surfaces thereof, a housing enclosing a phase change material that is disposed for thermal communication with the first major surface of the thermoelectric device, and a radio transmitter electrically coupled to the thermoelectric device, the radio transmitter capable of transmitting wireless signals. In another aspect, the housing includes a conductive fin therein to provide more uniform distribution of heat to the phase change material.06-21-2012
20110088739HIGH EFFICIENCY THERMOELECTRIC CONVERTER - A composite includes a matrix having a plurality of matrix nanoparticles and a plurality of hetero-nanoparticles dispersed in the matrix. The hetero-nanoparticles include an atom having an atomic weight larger than the atoms in the matrix nanoparticles. A thermoelectric converter includes one or more first legs, each including an n-doped composite, and one or more second legs, each including a p-doped composite. The n-doped and p-doped composites include a matrix having a plurality of matrix nanoparticles and a plurality of hetero-nanoparticles dispersed in the matrix. The matrix nanoparticles and hetero-nanoparticles in each of the n-doped and p-doped composites can be the same or different. A method of making a composite for thermoelectric converter applications includes providing a mixture a plurality of matrix nanoparticles and a plurality of hetero-nanoparticles and applying current activated pressure assisted densification to form the composite.04-21-2011
20110088738ENERGY GENERATING SYSTEM AND METHOD FOR GENERATING ELECTRICAL ENERGY AT A SEABED - In an energy generating system for generating electrical energy at a seabed, the energy generating system has a canister arranged at the seabed, whereby in the canister at least one electrothermal converter is in contact with a cooling surface and a heating surface, whereby the cooling surface is cooled by the circumjacent seawater, a pipeline with a pump for feeding a hot medium out of a drilling well in the seabed to heat up the heating surface, and a power output in the canister for the electrical energy generated by the at least one electrothermal converter. Furthermore, a method for generating electrical energy at a seabed provides underwater installations with electrical energy, where such an energy generating system is used.04-21-2011
20120118346Thermoelectric Apparatus and Method of Fabricating the Same - A thermoelectric apparatus includes a first and a second assemblies, at least a first and a second heat conductors. The first assembly includes a first and a second substrates, and several first thermoelectric material sets disposed between the first and second substrates. The first substrate has at least a first through hole. The second assembly includes a third and a fourth substrates, and several second thermoelectric material sets disposed between the third and fourth substrates. The fourth substrate has at least a second through hole. Each of the first and second thermoelectric material sets has a p-type and an n-type thermoelectric element. The first and second heat conductors respectively penetrate the first and second through holes. Two ends of the first heat conductor respectively connect the second and fourth substrates, while two ends of the second heat conductor respectively connect the first and third substrates.05-17-2012
20120118345Thermal integration of thermoelectronic device - Disclosed is an improved thermoelectric component, a method for thermal integration of the improved thermoelectric component in an environment having thermally distinct zones, and a thermoelectric generation system. In general, the thermoelectric component includes a thermoelectric device having opposing surfaces for arrangement in comparatively hot and cold environments, and an extended surface mounted in close proximity to at least one of the opposing surfaces, the extended surface being a layer of porous material having at least a portion immersed in at least one of the hot or cold environments.05-17-2012
20100288325THERMOELECRIC CONVERSION MODULE AND CONNECTOR FOR THERMOELECTRIC CONVERSION ELEMENT - Provided is a thermoelectric conversion module which can be flexibly applied to element size difference and thermal expansion of an element and has high electrical reliability with no conduction failure. A connector for a thermoelectric conversion element is also provided. A connector (C11-18-2010
20100200039Device for supplying power to field devices - An arrangement is disclosed for supplying power to a field device used to monitor an industrial process in a plant, having an enclosure and a wireless communications interface for data communications with a central data-processing device, and having a thermoelectric converter, which converts an existing heat flow between two points at different temperatures into electrical power and supplies this power to the field device. The thermoelectric converter is arranged in a separate enclosure from the field device, and transfers the electrical power to the field device by means of electrical wires or wireless transmission.08-12-2010
20120160289SYSTEM AND METHOD FOR USING PRE-EQUILIBRIUM BALLISTIC CHARGE CARRIER REFRACTION - A method and system for using a method of pre-equilibrium ballistic charge carrier refraction comprises fabricating one or more solid-state electric generators. The solid-state electric generators include one or more of a chemically energized solid-state electric generator and a thermionic solid-state electric generator. A first material having a first charge carrier effective mass is used in a solid-state junction. A second material having a second charge carrier effective mass greater than the first charge carrier effective mass is used in the solid-state junction. A charge carrier effective mass ratio between the second effective mass and the first effective mass is greater than or equal to two.06-28-2012
20120132242THERMOELECTRIC GENERATOR APPARATUS WITH HIGH THERMOELECTRIC CONVERSION EFFICIENCY - A thermoelectric generator apparatus disposed on a high-temperature surface of an object (as a heat source), at least includes a heat concentrator, a thermoelectric module and a cold-side heat sink. The heat concentrator has a top surface and a bottom surface contacting a high-temperature surface of the object, and an area of the bottom surface is smaller than that of the high-temperature surface. The thermoelectric module is disposed on the top surface of the heat concentrator. The cold-side heat sink is disposed on the thermoelectric module. Heat generated by the heat source is concentrated on the heat concentrator and flows to the hot side of the thermoelectric module for increasing the heat flux (Q′) passing the thermoelectric module and the hot side temperature of the thermoelectric module. Consequently, the thermoelectric conversion efficiency (η) is improved, and the power generation of the thermoelectric module is increased.05-31-2012
20110174350THERMOELECTRIC GENERATOR - A thermoelectric generator including a plurality of thermoelectric elements placed on substrates, wherein a thermal conductivity of each substrate is defined as:07-21-2011
20100243018METALLIZATION FOR ZINTL-BASED THERMOELECTRIC DEVICES - A thermoelectric power generation device using molybdenum metallization to a Zintl thermoelectric material in a thermoelectric power generation device operating at high temperature, e.g. at or above 1000° C., is disclosed. The Zintl thermoelectric material may comprise Yb09-30-2010
20120247525TUNGSTEN-TITANIUM-PHOSPHATE MATERIALS AND METHODS FOR MAKING AND USING THE SAME - Tungsten-titanium-phosphate materials and methods of making and using the same. The Tungsten-titanium-phosphate materials comprise about 20 to 60 actual mol % WO10-04-2012
20110180120Thermomagnetic Generator - An apparatus for the conversion of thermal energy from a surface (07-28-2011
20120167936THERMOELECTRIC DEVICE BASED ON SILICON NANOWIRES AND MANUFACTURING METHOD THEREOF - Disclosed are a thermoelectric device based on silicon nanowires including: a substrate; a silicon heat absorbing part absorbing heat, a silicon nanowire leg transferring heat, and a silicon heat releasing part releasing heat, which are formed on the substrate; and an insulating film with at least one or more holes, which is formed on the substrate including the silicon heat absorbing part, the silicon nanowire leg, and the silicon heat releasing part, and a method for manufacturing the same.07-05-2012
20100012165Self-Powered Electrical System - A portable self-powered electrical system for converting heat energy into electrical energy to power one or more electric devices, the portable self-powered electrical system comprises a housing, a thermoelectric device positioned in the housing, and a power transfer medium, wherein the thermoelectric device converts heat energy from a heat source into electrical energy for providing power to at least one electronic device via a power transfer medium.01-21-2010
20100269879Low-cost quantum well thermoelectric egg-crate module - Quantum well thermoelectric modules and a low-cost method of mass producing the modules. The devices are comprised of n-legs and p-legs, each leg being comprised of layers of quantum well material in the form of very thin alternating layers. In the n-legs the alternating layers are layers of n-type semiconductor material and electrical insulating material. In the p-legs the alternating layers are layers of p-type semiconductor material and electrical insulating material. In preferred embodiments the layers, referred to as superlattice layers are about 4 nm to 20 nm thick. The layers of quantum well material is separated by much larger layers of thermal and electrical insulating material such that the volume of insulating material in each leg is at least 20 times larger than the volume of quantum well material.10-28-2010
20110094556PLANAR THERMOELECTRIC GENERATOR - A thermoelectric generator may comprise a pair of thermally conducive top and bottom plates having a foil assembly positioned therebetween. The foil assembly may comprise a substrate having a series of alternating thermoelectric legs formed thereon. The thermoelectric legs may be formed of alternating dissimilar materials arranged in at least one row. Each one of the thermoelectric legs may define a leg axis oriented in non-parallel relation to the row axis. Thermally conductive strips mounted on opposite sides of the substrate may be aligned with opposite ends of the thermoelectric legs in the rows such that one end of the thermoelectric legs is in thermal contact with the top plate and the opposite end of the thermoelectric legs is in thermal contact with the bottom plate. The thermally conductive strips define thermal gaps between the thermoelectric legs and the top and bottom plates causing heat to flow lengthwise through the thermoelectric legs resulting in the generation of electrical voltage.04-28-2011
20100263702THERMOELECTRIC CONVERSION ELEMENT, THERMOELECTRIC CONVERSION MODULE USING THE THERMOELECTRIC CONVERSION ELEMENT, AND MANUFACTURING METHOD FOR THE THERMOELECTRIC CONVERSION MODULE - Provided are a thermoelectric conversion element, a thermoelectric conversion module using the thermoelectric conversion element, and a method for manufacturing the thermoelectric conversion module. The thermoelectric conversion element has a hexahedral shape, of which the two faces opposing each other and the other four faces have different reflectances to light. The thermoelectric conversion module comprises a plurality of p-type thermoelectric conversion elements and a plurality of n-type thermoelectric conversion elements, and a plurality of electrodes connecting the end faces of each pair of the p-type thermoelectric conversion elements and the n-type thermoelectric conversion elements electrically with each other to connect the p-type thermoelectric conversion elements and the n-type thermoelectric conversion elements electrically in series alternately. At least one of the n-type thermoelectric conversion elements and the p-type thermoelectric conversion elements has a hexahedral shape, of which the two faces opposing each other and the other four faces have different reflectances to light, and of which the two faces opposing each other are individually jointed to the electrodes.10-21-2010
20120260961CARBON NANOTUBE PLATE LAYER AND APPLICATION THEREOF - A carbon nanotube plate is provided, having a first carbon nanotube layer composed of many first carbon nanotubes, and a second carbon nanotube layer disposed on the first carbon nanotube layer. The second carbon nanotube layer is composed of many second carbon nanotubes placed in an orderly manner on the first carbon nanotube layer. At least two second carbon nanotubes are located along a curve. The surface of the second carbon nanotube layer has a whirlpool pattern.10-18-2012
20120260962ELECTRICAL GENERATOR USING THE THERMOELECTRIC EFFECT AND TWO CHEMICAL REACTIONS, I.E. EXOTHERMIC AND ENDOTHERMIC REACTIONS, TO GENERATE AND DISSIPATE HEAT, RESPECTIVELY - An electric generator based on a thermoelectric effect includes at least a heat source, a heat dissipator and a thermoelectric converter provided with at least two areas respectively in contact with the heat source and the heat dissipator. The heat source is the center of an exothermic chemical reaction, such as the catalytic combustion of hydrogen. The heat dissipator is the center of an endothermic chemical reaction, at least one product of which forms one of the reagents of the exothermic chemical reaction. Once it is formed by the heat dissipator, said product is then directed towards the input of the heat source in order to react there. The endothermic chemical reaction is more particularly a steam reforming reaction for methanol.10-18-2012
20120090657REDUCED LOW SYMMETRY FERROELECTRIC THERMOELECTRIC SYSTEMS, METHODS AND MATERIALS - n-type and p-type thermoelectric materials having high figures of merit are herein disclosed. The n-type and p-type thermoelectric materials are used to generate and harvest energy in thermoelectric power generator and storage modules comprising at least one n-type thermoelectric element coupled to at least one p-type thermoelectric element.04-19-2012
20130008479THERMOELECTRIC ELEMENT DESIGN - Thermoelectric elements having a non-uniform effective thermal conductivity include opposing contact surfaces for making electrical and thermal contact with respective hot side and cold side electrical interconnects. The contact surfaces having corresponding contact areas that are each greater than an intermediate cross-sectional area of the thermoelectric elements.01-10-2013
20100132754SYSTEM AND METHOD FOR USING PRE-EQUILIBRIUM BALLISTIC CHARGE CARRIER REFRACTION - A method and system for using a method of pre-equilibrium ballistic charge carrier refraction comprises fabricating one or more solid-state electric generators. The solid-state electric generators include one or more of a chemically energized solid-state electric generator and a thermionic solid-state electric generator. A first material having a first charge carrier effective mass is used in a solid-state junction. A second material having a second charge carrier effective mass greater than the first charge carrier effective mass is used in the solid-state junction. A charge carrier effective mass ratio between the second effective mass and the first effective mass is greater than or equal to two.06-03-2010
20130014798THERMOELECTRIC CONVERSION ELEMENTAANM NISHIDE; AkinoriAACI KokubunjiAACO JPAAGP NISHIDE; Akinori Kokubunji JPAANM Kurosaki; YosukeAACI HachiojiAACO JPAAGP Kurosaki; Yosuke Hachioji JPAANM Hayakawa; JunAACI HinoAACO JPAAGP Hayakawa; Jun Hino JPAANM Yabuuchi; ShinAACI MusashinoAACO JPAAGP Yabuuchi; Shin Musashino JPAANM Okamoto; MasakuniAACI TokyoAACO JPAAGP Okamoto; Masakuni Tokyo JP - A thermoelectric conversion element is provided as an element module with improved utility having an enhanced performance index and utilizing Fe01-17-2013
20130014797SUPPLYING ELECTRICAL POWER IN A HYDROCARBON WELL INSTALLATIONAANM ELLSON; NicholasAACI BristolAACO GBAAGP ELLSON; Nicholas Bristol GB - A method of providing electrical power in an underwater hydrocarbon well installation comprising a pipeline for conveying a hydrocarbon fluid is provided. The method comprises attaching at least one clamp to the pipeline at the outside of the pipeline, the clamp housing at least one thermoelectric generating device so that the device is in a temperature gradient resulting from a difference in temperature between the hydrocarbon fluid and the water surrounding the pipeline.01-17-2013
20130167894ANNULAR SEMICONDUCTOR ELEMENT AND ANNULAR INSULATION MATERIAL FOR A THERMOELECTRIC MODULE, THERMOELECTRIC MODULE AND METHOD FOR MANUFACTURING THE MODULE - An annular semiconductor element for producing a thermoelectric module includes at least one groove extending in a radial direction from an internal circumferential face to an external circumferential face. An annular insulation material insulates n-doped and p-doped semiconductor elements and is accordingly disposed on a lateral face of the semiconductor elements. The insulation material has a slit which extends in the radial direction and divides the insulation material. A thermoelectric module and a method for manufacturing the thermoelectric module are also provided.07-04-2013
20130167895METHOD FOR HEAT DISSIPATION ON SEMICONDUCTOR DEVICE - A device and method wherein a thermo electric generator device is disposed between stacks of a multiple level device, or is provided on or under a die of a package and is conductively connected to the package. The thermo electric generator device is configured to generate a voltage by converting heat into electric power. The voltage which is generated by the thermo electric generator can be recycled back into the die itself, or to a higher-level unit in the system, even to a cooling fan.07-04-2013
20130118542Energy Generation Device - An energy generator capable of transferring heat from a cold region to a hot region, which utilizes the adiabatic temperature difference called lapse rate generated in gas or gas-like particles when a force field or an energy potential gradient is applied to the particles. The temperature difference is increased by the thermal conductivity of the particles and lowered by the thermal conductivity of the substrate or container holding the particles and by parasitic thermal shorts caused by photons, phonons, or other particles not subjected or less affected by the force field. Implementations include semiconductors with a doping gradient or with an externally applied voltage; vapors in contact with their liquids; gases in contact with adsorbing surfaces; polar molecules with electrons in the conduction band. Multilayer devices are described. Applications include, for example, coolers, heaters, electrical generators and photon generators.05-16-2013
20080230107ELECTRIC POWER GENERATION METHOD USING THERMOELECTRIC POWER GENERATION ELEMENT, THERMOELECTRIC POWER GENERATION ELEMENT AND METHOD OF PRODUCING THE SAME, AND THERMOELECTRIC POWER GENERATION DEVICE - The present invention provides an electric power generation method using a thermoelectric power generation element, a thermoelectric power generation element, and a thermoelectric power generation device, each of which has high thermoelectric power generation performance and can be used for more applications. The thermoelectric power generation element includes a first electrode and a second electrode that are disposed to oppose each other, and a laminate that is interposed between the first and second electrodes and that is electrically connected to both the first and second electrodes, where the laminate has a structure in which SrB09-25-2008
20130139865COMPOSITE STRUCTURE OF GRAPHENE AND POLYMER AND METHOD OF MANUFACTURING THE SAME - A composite structure of graphene and polymer and a method of manufacturing the complex. The composite structure of graphene and polymer includes: at least one polymer structure having a three-dimensional shape; and a graphene layer formed on the at least one polymer structure.06-06-2013
20110209739Integrated Thermoelectric Honeycomb Core and Method - The disclosure provides a thermoelectric composite sandwich structure with an integrated honeycomb core and method for making. The thermoelectric composite sandwich structure comprises two prepreg composite face sheets and an integrated honeycomb core assembled between the face sheets. The honeycomb core comprises a plurality of core elements bonded together with a core adhesive. Each core element has a first side substantially coated with a negative Seebeck coefficient conductive material having a plurality of first spaced gaps, and each core element further has a second side substantially coated with a positive Seebeck coefficient conductive material having a plurality of second spaced gaps. The honeycomb core further comprises a plurality of electrical connections for connecting in series the first side to the second side. A temperature gradient across the honeycomb core generates power.09-01-2011
20110226300DEVICE FOR RAPIDLY TRANSFERRING THERMAL ENERGY - Device for rapidly transferring thermal energy from a heat source to a point of arrival at a velocity greater than the convective capacity of the adjacent element, enabling the thermal energy to be converted into electrical energy via a conversion device positioned at the point of arrival, the thermal energy being transferred via a coating composed of one or more nanomaterials with atoms which form an ordered geometrical structure.09-22-2011
20100065098HEATING APPARATUS COMPRISING A THERMOELECTRIC MODULE - Disclosed is a thermoelectric module (03-18-2010
20130180562TUNNEL-EFFECT POWER CONVERTER - A tunnel-effect power converter including first and second electrodes having opposite surfaces, wherein the first electrode includes protrusions extending towards the second electrode.07-18-2013
20110284047MULTI-USE CAMPING POT THAT PRODUCES POWER FROM HEAT - People often need to recharge batteries for portable electronics in remote locations where there is no electrical grid. One way to recharge these batteries is to harvest energy from a source of heat such as a camping stove using a thermoelectric module. Prior art depicts using a thermoelectric module harvesting energy from a stove and using a pot of water to cool one side of the module. The current invention improves upon prior art by maximizing power output and efficiency, increasing energy and power density, reducing the risk of damaging the thermoelectric module, and providing communication to the electronic device being charged.11-24-2011
20110303258SYSTEM FOR RECLAMATION OF WASTE THERMAL ENERGY - A waste heat reclamation device absorbs waste heat from a heat generating object. A thermocouple loop is used to convert thermal energy into electrical energy which may be utilized to provide electrical power to an electronic device that is the heat generating object. The invention increases the efficiency of electronic devices such as computer processing units.12-15-2011
20110308560TEMPERATURE AND FLOW CONTROL OF EXHAUST GAS FOR THERMOELECTRIC UNITS - A vehicle exhaust system includes an exhaust pipe that provides heated exhaust gases to a thermoelectric unit as an input. A temperature control mechanism ensures that exhaust gas is directed into the thermoelectric unit only if the exhaust gas is within a specified temperature range. The thermoelectric unit transforms the exhaust gas heat into electrical power.12-22-2011
20120017964Apparatus, System, and Method for On-Chip Thermoelectricity Generation - An apparatus, system, and method for a thermoelectric generator. In some embodiments, the thermoelectric generator comprises a first thermoelectric region and a second thermoelectric region, where the second thermoelectric region may be coupled to the first thermoelectric region by a first conductor. In some embodiments, a second conductor may be coupled to the first thermoelectric region and a third conductor may be coupled to the second thermoelectric region. In some embodiments, the first conductor may be in a first plane, the first thermoelectric region and the second thermoelectric region may be in a second plane, and the second conductor and the third conductor may be in a third plane.01-26-2012
20130199590THERMOELECTRIC MODULE FOR A THERMOELECTRIC GENERATOR OF A VEHICLE WITH A SEALING ELEMENT AND VEHICLE HAVING THE THERMOELECTRIC MODULE - A thermoelectric module includes an inner circumferential surface and an outer circumferential surface each being assigned to a respective hot side or cold side and forming an intermediate space therebetween, a geometric axis and at least one sealing element. The sealing element at least partially forms the inner circumferential surface or is separated from the hot side or cold side disposed there only by an electric insulation layer. The sealing element seals the intermediate space at least with respect to the cold side and has at least one electric conductor connecting at least one thermoelectric element disposed in the thermoelectric module to at least one other electric conductor disposed outside the thermoelectric module. A vehicle having the thermoelectric module is also provided.08-08-2013
20130098418DEVICE FOR USE IN A FURNACE EXHAUST STREAM FOR THERMOELECTRIC GENERATION - A device for generating voltage or electrical current includes an inner elongated member mounted in an outer elongated member, and a plurality of thermoelectric modules mounted in the space between the inner and the outer members. The outer and/or inner elongated members each include a plurality of passages to move a temperature altering medium through the members so that the device can be used in high temperature environments, e.g. the exhaust system of an oxygen fired glass melting furnace. The modules are designed to include a biasing member and/or other arrangements to compensate for differences in thermal expansion between the first and the second members. In this manner, the modules remain in contact with the first and second members. The voltage generated by the modules can be used to power electrical loads.04-25-2013
20120085382ENERGY CONVERSION EFFICIENT THERMOELECTRIC POWER GENERATOR - The energy conversion efficient thermoelectric power generator includes a p-type thermoelectric element and an n-type thermoelectric element positioned adjacent the p-type thermoelectric element defining a gap therebetween, and first and second conductive members electrically connecting opposed top and the bottom ends of the p-type and n-type thermoelectric elements, respectively. The first conductive member forms a hot junction with the top ends of the p-type and n-type thermoelectric elements, and the second conductive member forms a cold junction with the bottom ends of the p-type and n-type thermoelectric elements. The materials and dimensions of the p-type and n-type thermoelectric elements are selected such that a slenderness ratio X of each falls within the range of 0≦X≦1.04-12-2012

Patent applications in class Electric power generator

Patent applications in all subclasses Electric power generator