Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Substrate heater

Subclass of:

118 - Coating apparatus

118715000 - GAS OR VAPOR DEPOSITION

118722000 - With treating means (e.g., jarring)

118724000 - By means to heat or cool

Patent class list (only not empty are listed)

Deeper subclasses:

Entries
DocumentTitleDate
20120160170VAPOR PHASE GROWTH APPARATUS - Disclosed is a rotation/revolution type vapor phase growth apparatus that can maintain constant flow rates of a purge gas and a raw material gas when a raw material gas introducing direction is set to be the same as a susceptor rotation introducing direction. Inside a hollow drive shaft 06-28-2012
20120160169FILM FORMING APPARATUS - Provided is a film forming apparatus for forming a polyimide film on a substrate by supplying a first raw material gas formed as aromatic acid dianhydride and a second raw material gas formed as aromatic diamine to the substrate maintained within a film forming container, and thermally polymerizing the supplied first and second raw material gases on a surface of the substrate. The apparatus includes: a substrate maintaining unit within the film forming container; a substrate heating unit configured to heat the substrate; a supply mechanism within the film forming container, configured to include a supply pipe with supply holes for supplying the first and second raw material gases to the interior of the film forming container through the supply holes; and a controller configured to control the substrate maintaining unit, the substrate heating unit, and the supply mechanism.06-28-2012
20100154711SUBSTRATE PROCESSING APPARATUS - Films are formed on a plurality of substrates through a batch process while preventing formation of films on the rear surfaces of the substrates. For this, a substrate processing apparatus comprises a reaction vessel, supports, a support holder, and an induction heating device. The reaction vessel is configured to process substrates therein. The supports are made of a conductive material and having a disk shape, and each of the supports is configured to accommodate a substrate in its concave part in a state where the substrate is horizontally positioned with a top surface of the substrate being exposed. The concave part is formed concentrically with a circumference of the support, and a difference between radii of the support and the concave part is greater than a distance between neighboring two of the supports held by the support holder. The support holder is configured to hold at least the supports horizontally in multiple stages. The induction heating device is configured to heat at least the supports held by the support holder inside the reaction vessel by using an induction heating method.06-24-2010
20130047924SUBSTRATE PROCESSING APPARATUS AND FILM DEPOSITION APPARATUS - A substrate processing apparatus includes a process chamber; a turntable rotatably provided in the process chamber for mounting a substrate on one surface of the turntable and including a substrate mounting portion at which the substrate is to be mounted and a table body which is an other portion of the turntable, the substrate mounting portion being configured to have a heat capacity smaller than that the table body; and a heater that heats the substrate from an opposite surface side of the turntable.02-28-2013
20130074774HEATING SYSTEMS FOR THIN FILM FORMATION - A material deposition system is provided for forming one or more layers of one or more materials on one or more substrates. The system includes a susceptor component. A plurality of substrate holders are supported on or over the susceptor component. Either the susceptor component is configured to rotate around a susceptor axis, or each substrate holder is configured to rotate about a respective holder axis, or both. Heating devices heat each substrate to a substantially constant temperature relative to a radial distance of the substrate from a central point of the susceptor component substantially only through heat convection or radiation, with comparatively little, if any, heat conduction through the susceptor component and the one or more substrate holders.03-28-2013
20130074773HEATING SYSTEMS FOR THIN FILM FORMATION - System for forming one or more layers of one or more materials on one or more substrates. The system includes a susceptor component configured to rotate around a susceptor axis, and at least one substrate holder located directly or indirectly on the susceptor component and configured to support the one or more substrates. The substrate holder is further configured to cause the one or more substrates to rotate around at least the susceptor axis. Additionally, the system includes at least one heating device configured to heat the one or more substrates. Each of the one or more substrates includes a substrate surface facing the heating device and associated with a bow height, and the heating device is located away from the substrate surface by a distance. For each of the one or more substrates, the distance is at least twenty times as large as the bow height.03-28-2013
20120174866APPARATUS FOR CHEMICAL VAPOR DEPOSITION - An apparatus for chemical vapor deposition is disclosed. An aspect of the present invention provides an apparatus for chemical vapor deposition that includes: a process chamber configured to demarcate a reaction space; a back plate placed above the reaction space and having a gas inlet in a middle thereof; a gas diffusion member arranged below and separated from the gas inlet and coupled to the back plate by a first coupling member and configured to diffuse process gas supplied through the gas inlet; a shower head placed below and separated from the back plate and the gas diffusion member and having a middle part thereof coupled to the gas diffusion member by a second coupling member and having a plurality of spray holes perforated therein; and a susceptor arranged below and separated from the shower head and supporting a substrate. The gas diffusion member has a plurality of gas guiding holes that vertically penetrate the gas diffusion member such that the process gas supplied through the gas inlet is diffused toward a lower side of the gas diffusion member.07-12-2012
20100162958SUBSTRATE PROCESSING APPARATUS AND REACTION TUBE FOR PROCESSING SUBSTRATE - There are provided a substrate processing apparatus and a reaction tube for processing a substrate. The substrate processing apparatus comprises a process chamber configured to accommodate a substrate and process the substrate, a heater configured to heat the substrate, and a gas supply part configured to supply a gas to an inside of the process chamber. The process chamber comprises an alloy reaction tube made of a material comprising at least molybdenum (Mo) and cobalt (Co) but not comprising aluminum (Al).07-01-2010
20130055952REFLECTIVE DEPOSITION RINGS AND SUBSTRATE PROCESSING CHAMBERS INCORPORTING SAME - Apparatus for improving temperature uniformity across a substrate are provided herein. In some embodiments, a deposition ring for use in a substrate processing system to process a substrate may include an annular body having a first surface, an opposing second surface, and a central opening passing through the first and second surfaces, wherein the second surface is configured to be disposed over a substrate support having a support surface to support a substrate having a given width, and wherein the opening is sized to expose a predominant portion of the support surface; and wherein the first surface includes at least one reflective portion configured to reflect heat energy toward a central axis of the annular body, wherein the at least one reflective portion has a surface area that is about 5 to about 50 percent of a total surface area of the first surface.03-07-2013
20130068164HEATING UNIT AND FILM-FORMING APPARATUS - A heating unit and a film-forming apparatus comprising of a film-forming chamber, a heating unit for heating a substrate placed in the film-forming chamber, wherein the heating unit comprises of a heat source with a plane surfaced top, an electrode contacting electrically with the heat source, wherein the heat source has a ring-shape or a disk-shape that is formed by an individual, or plurality of heat source members. Wherein the heat source is comprised of a material selected from a group consisting of a carbon (C) material, a carbon material or a silicon carbide (SiC) material coated with silicon carbide (SiC), and a silicon carbide (SiC) material, and wherein the heat source has a ratio of the width (a) of the top portion direction to the thickness (X) of the side part (a/X) is 3 to 10.03-21-2013
20130068163FILM DEPOSITION APPARATUS - A film deposition apparatus includes a film deposition chamber into which a substrate is carried, a heating mechanism that heats the substrate carried into the film deposition chamber, an adhesion accelerating agent feed mechanism that feeds an adhesion accelerating agent gas into the film deposition chamber, and a control part that controls the heating mechanism and the adhesion accelerating agent feed mechanism. When depositing a polyimide film on the substrate by feeding a first source gas formed of dianhydride and a second source gas formed of diamine into the film deposition chamber, the control part is configured to control the adhesion accelerating agent feed mechanism to treat a surface of the substrate with the adhesion accelerating agent gas by feeding the adhesion accelerating agent gas into the film deposition chamber until the substrate is heated to a predetermined temperature for depositing the polyimide film.03-21-2013
20120222620Atomic Layer Deposition Carousel with Continuous Rotation and Methods of Use - Provided are atomic layer deposition apparatus and methods including a rotating wheel with a plurality of substrate carriers for continuous processing of substrates. The processing chamber may have a loading station on the front end which is configured with one or more robots to load and unload substrates from the substrate carriers without needing to stop the rotating wheel.09-06-2012
20130061805EPITAXIAL WAFER SUSCEPTOR AND SUPPORTIVE AND ROTATIONAL CONNECTION APPARATUS MATCHING THE SUSCEPTOR - Disclosed is an epitaxial wafer susceptor and a supportive and rotational connection apparatus matching the susceptor used for an MOCVD reaction chamber. The susceptor comprises a top surface and a susceptor rotating shaft protruding downward. A vertical driving shaft is coupled to the susceptor. The driving shaft comprises a counter bore inside an upper end of the driving shaft. At least a part of the susceptor rotating shaft is inserted into the counter bore if the susceptor is loaded. The susceptor is positioned and supported in the reaction chamber via coupling and connection between a contact surface of the susceptor rotating shaft and a corresponding contact surface of the counter bore. The susceptor is driven to rotate by the driving shaft if the driving shaft rotates. Reactant gases are introduced into the reaction chamber for an epitaxial reaction or a film deposition on the epitaxial wafers placed on the susceptor.03-14-2013
20090235866CERAMIC HEATER - A ceramic heater for a semiconductor substrate process includes a plate and a shaft. The plate includes a first base and a second base bonded to the first base. Defined on a mounting surface of the first base are: a first region having a surface contacting with a mounted substrate; a purge groove provided in the portion covered with the substrate and surrounds the first region; and a second region having a surface surrounding the purge groove. The first base has: an adsorber configured to adsorb the mounted substrate onto the surface of the first region; and multiple purge holes each penetrating from the bottom surface of the purge groove to the lower surface of the first base. The purge groove is supplied with a purge gas through the multiple purge holes. The surface of the second region is located lower than that of the first region.09-24-2009
20090078202SUBSTRATE HEATER FOR MATERIAL DEPOSITION - A radiative heater for substrates in a physical vapor deposition process for fabricating films of materials in a wide dynamic range of process temperatures and gas pressures includes a heat radiating member made from a high-temperature and oxidation resistant material tolerant to vacuum conditions which separates a heater volume containing heating filaments from a process volume which contains a deposition substrate heated by radiation of the walls of the heat radiating member. The heating elements extend through the body of the heat radiating member as well as in proximity to its surface to provide delivery of the heat to the substrate. The heat radiating member is shaped to form a cavity containing the substrate. The walls of the cavity envelope the substrate and radiate heat towards the substrate. Alternatively, the substrate is adhered to the flat surface of the heat radiating member.03-26-2009
20110283942FILM FORMING APPARATUS AND GAS INJECTION MEMBER - A film forming apparatus includes: a chamber for holding a wafer; a susceptor on which the wafer is placed within the chamber; heaters which heat the wafer placed on the susceptor; and a shower plate disposed opposite to the susceptor to inject a film formation processing gas toward the wafer, a main body of the shower plate being made of aluminum or an aluminum alloy. With the apparatus, a film is deposited on the surface of the wafer, the film having a low thermal expansion coefficient, measured at the film deposition temperature, lower by at least about 5×1011-24-2011
20100236481Preparation of Membranes Using Solvent-Less Vapor Deposition Followed by In-Situ Polymerization - A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.09-23-2010
20090114156Film formation apparatus for semiconductor process - A film formation apparatus for a semiconductor process includes a support member having a plurality of support levels configured to support target substrates inside a reaction chamber; a film formation gas supply system configured to supply a film formation gas into the reaction chamber and including a gas distribution nozzle; a cleaning gas supply system configured to supply a cleaning gas for etching a by-product film deposited inside the reaction chamber; and an exhaust system configured to exhaust gas from inside the reaction chamber. The cleaning gas supply system includes a gas nozzle disposed near a bottom of the reaction chamber and having a gas supply port at its top directed upward, and the gas supply port is located below the lowermost one of the support levels of the support member.05-07-2009
20100101495Restricted Radiated Heating Assembly for High Temperature Processing - A vapor deposition reactor and associated method are disclosed that increase the lifetime and productivity of a filament-based resistive-heated vapor deposition system. The reactor and method provide for heating the filament while permitting the filament to move as it expands under the effect of increasing temperature while limiting the expanding movement of the filament to an amount that prevents the expanding movement of the filament from creating undesired contact with any portions of the reactor.04-29-2010
20100101494ELECTRODE AND CHEMICAL VAPOR DEPOSITION APPARATUS EMPLOYING THE ELECTRODE - A chemical vapor deposition apparatus is disclosed. The chemical vapor deposition apparatus comprises a chamber having a base plate, a chamber wall, a gas inlet, a gas outlet and a plurality of electrodes each comprising an electrode body and an electrode cap removably attached to the electrode body. The electrode body can be positioned through the base plate. The cap can be positioned inside the chamber. An electrical isolation layer is positioned between the electrode and the base plate. The plurality of electrodes are capable of being attached to a power source. At least two of the plurality of electrodes are capable of being electrically coupled to a silicon rod positioned in the chamber.04-29-2010
20100242844HOLDER FOR SEMICONDUCTOR MANUFACTURING EQUIPMENT - A holder for semiconductor manufacturing equipment is provided, in which electrical leakage and sparks do not occur across the electrode terminals and lead wires to supply power to a resistive heating element embedded in a holder, and the thermal uniformity in the holder is within ±1.0%.09-30-2010
20120024231SEMICONDUCTOR GROWING APPARATUS - A semiconductor growing apparatus including: susceptor having a main face and a side face, the main face receiving a substrate for growing a semiconductor layer, and the side face having a groove; a heating element for heating the susceptor.02-02-2012
20090272323SUSCEPTOR, SEMICONDUCTOR MANUFACTURING APPARATUS, AND SEMICONDUCTOR MANUFACTURING METHOD - A susceptor includes a first step portion on which a wafer is placed; and a convex portion placed on a bottom surface of the first step portion, wherein a void is formed between a top surface of the convex portion and a rear surface of the wafer in a state in which the wafer is placed on the top surface of the convex portion.11-05-2009
20090277388HEATER WITH DETACHABLE SHAFT - Embodiments of the present invention generally include an apparatus for uniform heat distribution across the surface of a substrate during processing. The apparatus includes a substrate heater with a heated substrate support surface that is removable attached to a heater shaft via a fastening mechanism. The interface between the heated substrate support and the heater shaft may include a soft metal gasket and a vacuum or purge channel disposed therein. The substrate support surface may include regions for independently varying the back pressure of a substrate disposed thereon.11-12-2009
20090277387SUSCEPTOR AND CHEMICAL VAPOR DEPOSITION APPARATUS INCLUDING THE SAME - There are provided a susceptor and a chemical vapor deposition apparatus including the same. The susceptor includes: at least one pocket accommodating a deposition object therein; a seating part stepped downward from a top end of the pocket, the seating part having the deposition object placed thereon; and a recess recessed from the seating part to a predetermined depth, wherein the recess has a radius of curvature ranging from substantially 8000 mm to 25000 mm.11-12-2009
20090277389PROCESSING APPARATUS - A processing apparatus is provided for performing a process on a target object in a processing chamber which can be vacuumized, especially for performing high-k dielectric of HfO, HfSiO, ZrO, ZrSiO, PZT, BST and the like. A film adhesion preventing layer composed of an SAM (self-assembled monolayer) is arranged on the surface of the constituent member of the processing chamber to be exposed to the processing atmosphere in the processing chamber, for instance, on the inner wall surface of the processing chamber. Thus, on the surface of the constituent member, an unnecessary film difficult to be removed by dry cleaning is prevented from being deposited, so that cleaning frequency of the processing apparatus can be remarkably reduced.11-12-2009
20080245303MANUFACTURING METHOD OF SEMICONDUCTOR APPARATUS - The manufacturing method of a semiconductor apparatus has a step for carrying in the substrate into the processing chamber; a step for heating the processing chamber and the substrate to the predetermined temperature; and a gas supply and exhaust step for supplying and exhausting desired gas into and from the processing chamber, wherein the gas supply and exhaust step repeats by the predetermined times a first supply step for supplying silicon-type gas and hydrogen gas into the processing chamber; a first exhaust step for exhausting at least said silicon-type gas from the processing chamber; a second supply step for supplying chlorine gas and hydrogen gas into the processing chamber; and a second exhaust step for exhausting at least the chlorine gas from the processing chamber.10-09-2008
20120291709ROTATING SUBSTRATE SUPPORT AND METHODS OF USE - A method and apparatus for processing a substrate utilizing a rotating substrate support are disclosed herein. In one embodiment, an apparatus for processing a substrate includes a chamber having a substrate support assembly disposed within the chamber. The substrate support assembly includes a substrate support having a support surface and a heater disposed beneath the support surface. A shaft is coupled to the substrate support and a motor is coupled to the shaft through a rotor to provide rotary movement to the substrate support. A seal block is disposed around the rotor and forms a seal therewith. The seal block has at least one seal and at least one channel disposed along the interface between the seal block and the shaft. A port is coupled to each channel for connecting to a pump. A lift mechanism is coupled to the shaft for raising and lowering the substrate support.11-22-2012
20090165719EPITAXIAL BARREL SUSCEPTOR HAVING IMPROVED THICKNESS UNIFORMITY - A barrel susceptor for supporting semiconductor wafers in a heated chamber having an interior space. Each of the wafers has a front surface, a back surface and a circumferential side. The susceptor includes a body having a plurality of faces arranged around an imaginary central axis of the body. Each face has an outer surface and a recess extending laterally inward into the body from the outer surface. Each recess is surrounded by a rim defining the respective recess. The susceptor also includes a plurality of ledges extending outward from the body. Each of the ledges is positioned in one of the recesses and includes an upward facing support surface for supporting a semiconductor wafer received in the recess. Each of the support surfaces is separate from the outer surface of the respective face.07-02-2009
20090178620Process for Depositing Thin Layers on a Substrate in a Process Chamber of Adjustable Height - An apparatus for depositing thin layers on a substrate in a process chamber arranged in a reactor housing, the bottom of the process chamber consisting of a temperable substrate holder which can be rotatably driven about its vertical axis, and the cover of the chamber consisting of a gas inlet element. The cover extends parallel to the bottom and forms, together with its gas outlets arranged in a sieve-type manner, a gas exit surface which extends over the entire substrate bearing surface of the substrate holder, the process gas being introduced into the process chamber through the gas exit surface. The height of the process chamber is variable before the beginning of the deposition process and/or during the deposition process, which height is defined by the distance between the substrate bearing surface and the gas exit surface.07-16-2009
20120067286VAPOR DEPOSITION REACTOR SYSTEM AND METHODS THEREOF - Embodiments of the invention generally relate to apparatuses and methods for chemical vapor deposition (CVD) processes. In one embodiment, a CVD reactor has a reactor lid assembly disposed on a reactor body and containing a first showerhead assembly, an isolator assembly, a second showerhead assembly, and an exhaust assembly consecutively and linearly disposed next to each other on a lid support. The CVD reactor further contains first and second faceplates disposed on opposite ends of the reactor body, wherein the first showerhead assembly is disposed between the first faceplate and the isolator assembly and the exhaust assembly is disposed between the second showerhead assembly and the second faceplate. The reactor body has a wafer carrier disposed on a wafer carrier track and a lamp assembly disposed below the wafer carrier track and containing a plurality of lamps which may be utilized to heat wafers disposed on the wafer carrier.03-22-2012
20090241838Polycrystalline silicon manufacturing apparatus - A polycrystalline silicon manufacturing apparatus is provided which supplies raw gas to the inside of a reaction furnace and supplies a current from an electrode to a silicon seed rod in a state where the vertically extending silicon seed rod is uprightly stood on each of the plural electrodes disposed in a bottom plate portion of the reaction furnace so as to heat the silicon seed rod and thus to deposit polycrystalline silicon on a surface of the silicon seed rod by means of the reaction of the raw gas.10-01-2009
20120192794SOURCE SUPPLYING APPARATUS AND FILM FORMING APPARATUS - There is provided a source supplying apparatus 08-02-2012
20100162957DEVICE FOR COATING A PLURALITY OF CLOSEST PACKED SUBSTRATES ARRANGED ON A SUSCEPTOR - The invention relates to a device for coating a plurality of substrates (07-01-2010
20100162956Substrate Processing Apparatus and Substrate Mount Table Used in the Apparatus - Disclosed is a susceptor which achieves uniform temperature distribution of a wafer placed on the susceptor, and also disclosed is a substrate processing apparatus provided with the susceptor. An annular recess 07-01-2010
20100236480RAW MATERIAL GAS SUPPLY SYSTEM AND FILM FORMING APPARATUS - A raw material gas supply system (09-23-2010
20100212593SUBSTRATE PROCESSING APPARATUS - To inhibit a diffusion of particles into a processing chamber and reduce a cost required for exchanging a gas filter. A substrate processing apparatus comprises: a processing chamber processing substrates; a gas supply part supplying processing gas into the processing chamber; wherein the gas supply part has a gas supply nozzle disposed in the processing chamber; a filter removing impurities contained in the processing gas; and a gas supply port opened in the gas supply nozzle, for supplying into the processing chamber the processing gas from which impurities are removed by the filter.08-26-2010
20100224130ROTATING SUBSTRATE SUPPORT AND METHODS OF USE - A method and apparatus for processing a substrate utilizing a rotating substrate support are disclosed herein. In one embodiment, an apparatus for processing a substrate includes a chamber having a substrate support assembly disposed within the chamber. The substrate support assembly includes a substrate support having a support surface and a heater disposed beneath the support surface. A shaft is coupled to the substrate support and a motor is coupled to the shaft through a rotor to provide rotary movement to the substrate support. A seal block is disposed around the rotor and forms a seal therewith. The seal block has at least one seal and at least one channel disposed along the interface between the seal block and the shaft. A port is coupled to each channel for connecting to a pump. A lift mechanism is coupled to the shaft for raising and lowering the substrate support.09-09-2010
20130125819CHEMICAL GAS DEPOSITION REACTOR - The reactor includes: a chamber having a lower wall, an upper wall and a sidewall connecting the lower wall to the upper wall; a support plate mounted inside the chamber; at least one first supply line for a first gas, and at least one separate second supply line for a second gas; a gas injection device; and a gas collector. The gas injection device includes at least one injector connected to the first supply line and at least one injector connected to the second supply line, the injectors leading into the chamber through at least one inlet provided in the sidewall; all of the injectors of the first supply line and all of the injectors of the second supply line are connected one above the other; and the collector includes at least one outlet in the sidewall, opposite the inlet relative to the support plate, and substantially at the inlet.05-23-2013
20100058987Device For Vacuum Processing - Disclosed is a device for vacuum processing that performs vapor-deposition on a substrate being heated in a vacuum chamber; the device, wherein the chamber has a light transmissible window formed in a section of the chamber; the light transmissible window and a holding part holding the substrate are connected by a linear space isolated from other parts in the chamber; a laser emitter is installed outside the light transmissible window; and the laser emitter emits a laser beam to the substrate through the linear space, thereby heating the substrate. This device enables laser heating, eliminating conventional drawbacks such as a decrease in laser output.03-11-2010
20100199914CHEMICAL VAPOR DEPOSITION REACTOR CHAMBER - A chemical vapor deposition reactor is provided which includes a process chamber accommodating a substrate holder for multiple substrates, and a reactor gas inlet which supplies the reactant gases to a portion above the surface of the heated substrates. The reactant gases can be injected parallel or oblique to the substrates and the angle between the supplied reactant gas flow direction and the tangential component of the susceptor's angular rotation is independent of the susceptor's position. A secondary gas inlet which supplies gases perpendicular or at a sharp angle to the substrates is also included so as to change the boundary layer thickness created when hot gases come into contact with the colder reactant gases flowing parallel or oblique to the surface of the substrates.08-12-2010
20090178619Substrate processing apparatus - A substrate processing apparatus includes a processing chamber, a substrate holding part that holds substrates of required numbers in the processing chamber, a gas supply/exhaust part that supplies or exhausts required gas into the processing chamber, a rotation part that rotates the substrate holding part, a first heating part provided in the substrate holding part so as to face at least an upper surface of each substrate held by the substrate holding part, and a power supply part that supplies power to the first heating part in a non-contact state by electromagnetic coupling.07-16-2009
20130133580HIGH PRODUCTIVITY VAPOR PROCESSING SYSTEM - A processing chamber is provided. The processing chamber includes a lid having a plurality of valves affixed thereto, the plurality of valves operable to enable process gases to flow into the chamber. The chamber includes a bottom portion, where the bottom portion includes a base and side walls extending from the base. A surface of the base is configured to support a substrate. A showerhead is affixed to a bottom surface of the lid. A bottom surface of the showerhead is configured to include a central port for providing process gases into the chamber. The central port is surrounded by an annular pump channel. The annular pump channel is surrounded by an annular purge channel, where a first ridge separates the delivery region and the annular pump channel and a second ridge separates the annular pump channel and the annular purge channel.05-30-2013
20100300360ORGANIC/INORGANIC THIN FILM DEPOSITION DEVICE AND DEPOSITION METHOD - Provided is a method for depositing an organic/inorganic thin film. The method includes: i) heating a source vessel containing an organic material and an inorganic material; ii) transferring a deposition gas to a process chamber; iii) distributing the deposition gas onto a substrate disposed in the process chamber; iv) purging the process chamber; v) heating an activating agent source vessel; vi) transferring a heat initiator gas phase to the process chamber; vii) distributing the heat initiator gas phase onto the organic or inorganic material monomer deposited on the substrate through the process chamber, and forming an organic/inorganic thin film; and viii) exhausting the heat initiator gas phase and purging the process chamber. Depositing the organic/inorganic thin film in a time-division manner, the thickness of the thin film can be accurately adjusted and the deposition can be uniformly performed when the thin film is deposited on a large-scale substrate.12-02-2010
20090217875APPARATUS FOR THE HEAT TREATMENT OF DISC SHAPED SUBSTRATES - The application relates to an apparatus for the heat treatment of disc shaped substrates, in particular semi-conductor wafers. The apparatus has at least one radiation source and a treatment chamber accommodating the substrate having an upper wall element and a lower wall element, at least one of the wall elements lying adjacent to the at least one radiation source and being substantially transparent for the radiation from the radiation source. Furthermore, the apparatus makes provision for at least a first gas inlet apparatus. The first gas inlet apparatus has a plate element which is disposed within the treatment chamber between the substrate and the upper wall element, a collar ring disposed between the plate element and the upper wall element, and a first gas conveyance duct extending at least partially within the treatment chamber. The plate element has a larger diameter than the substrate and in a hole region approximately corresponding to the diameter of the substrate a plurality of through holes. The collar ring surrounds the hole region and has at least one inlet opening. The first gas conveyance duct has an outlet which is aligned with the inlet opening of the collar ring, a gas flow flowing out of the outlet having a main flow direction which is directed past a centre point of the collar ring.09-03-2009
20100037827CVD Device with Substrate Holder with Differential Temperature Control - The invention relates to a device for depositing especially crystalline layers on an especially crystalline substrate, comprising a high-frequency heated substrate support from a conductive material on which the substrate is two-dimensionally supported, and which comprises a zone of higher conductivity. The system is specifically characterized in that the higher conductivity zone is associated with the surface of support of the substrate and substantially corresponds to the area occupied by the substrate. Further, the zone on which the substrate rests heats up more than the substrate surface surrounding the substrate.02-18-2010
20100037826VACUUM VAPOR PROCESSING APPARATUS - There is provided a vacuum vapor processing apparatus which is capable of adjusting the amount of supply of metal atoms to an object to be processed and which has a simple construction. The vacuum vapor processing apparatus is provided with: a vacuum chamber (02-18-2010
20090031954SUSCEPTOR AND APPARATUS FOR MANUFACTURING EPITAXIAL WAFER - A susceptor capable of reducing unevenness in a film-thickness of an epitaxial film on an outer surface of a substrate wafer and a manufacturing apparatus of an epitaxial wafer are provided. The susceptor includes a wafer placement and a peripheral portion. The wafer placement is greater in size than the substrate wafer W and substantially disc-shaped. The peripheral portion is substantially in a ring-plate shape and includes: an inner circumference standing in a fashion surrounding a peripheral portion of the wafer placement; and an upper surface outwardly extending from an upper end of the inner circumference in parallel to the placement surface of the wafer placement. In the chemical vapor deposition control unit, an inner circumference has a curvature substantially similar to a curvature of the inner circumference of the peripheral portion, and the upper surface is leveled with the upper surface) of the peripheral portion. The chemical vapor deposition control unit is made of SiO2 which is less reactive with a reaction gas than a SiC film.02-05-2009
20100058988MANUFACTURING APPARATUS OF POLYCRYSTALLINE SILICON - A manufacturing apparatus of polycrystalline silicon products polycrystalline silicon by depositing on a surface of a silicon seed rod by supplying raw-material gas to the heated silicon seed rod provided vertically in a reactor, includes: an electrode which holds the silicon seed rod and is made of carbon; an electrode holder which holds the electrode, and cooled by coolant medium flowing therein, wherein the electrode includes: a seed rod holding member which holds the silicon seed rod; a heat cap which is provided between the seed rod holding member and the electrode holder; and a cap protector having a ring-like plate shape, which covers an upper surface of the heat cap, and in which a through hole penetrating the lower-end portion of the seed rod holding member is formed.03-11-2010
20090241837CERAMIC MEMBER, CERAMIC HEATER, SUBSTRATE PLACING MECHANISM, SUBSTRATE PROCESSING APPARATUS AND METHOD FOR MANUFACTURING CERAMIC MEMBER - A wafer mounting table constituted as a ceramic heater has a power feeding terminal section for a heating element and a bonding section to a supporting member as portions which are likely to be crack starting points. The wafer mounting table is constituted to permit compressive stress to be generated in the power feeding terminal section and/or the bonding section which are likely to be the crack starting points.10-01-2009
20110073039SEMICONDUCTOR DEPOSITION SYSTEM AND METHOD - A novel heating method and a novel gas inject schemes for a depositing semiconductor layers on wafers with improved disposition uniformity and disposition composition, deposition rates and decreased depletion rates. The novel heating and gas design can be readily changed in size to accommodate the ever increasing demand for larger substrates, increased batch sizes and increased deposition and heating efficiencies. The heating scheme can operate to 1500° C., and has a high resolution capability for tuning the temperature and gas flows for easy of setup and improved control and repeatability of the deposition process. This novel heating and gas inject scheme in conjunction with the unconventional usage of a non-quartz process chamber promises higher throughputs and higher wafer yields and reduced manufacturing costs for the manufacturing of silicon devices, silicon solar cells and white High Brightness LEDs.03-31-2011
20110146578SUBSTRATE PROCESSING APPARATUS - There are provided a substrate placing plate and a substrate processing apparatus using the substrate placing plate. The substrate processing apparatus comprises a process chamber configured to accommodate a substrate and perform a heat treatment on the substrate; and a substrate transfer machine configured to carry the substrate into the process chamber in a state where the substrate is placed on a substrate placing plate. The substrate placing plate comprises at least three substrate placing parts. The substrate placing parts are located on the same horizontal plane, and in a state where the substrate placing parts are located at a top side of the substrate placing plate, top surfaces of the substrate placing parts are higher than a surface of the substrate placing plate surrounded by the substrate placing parts and are higher than all peripheral surfaces of the substrate placing parts.06-23-2011
20100263594SUBSTRATE PROCESSING APPARATUS - A substrate processing apparatus that forms thin films on a plurality of substrates and thermally processes the substrates, by uniformly heating the substrates. The substrate processing apparatus includes a processing chamber, a boat in which substrates are stacked, an external heater located outside of the processing chamber, a feeder to move the boat into and out of the processing chamber, a lower heater located below the feeder, and a central heater located in the center of the boat.10-21-2010
20090126635Metalorganic Chemical Vapor Deposition Reactor - Affords MOCVD reactors with which, while deposited films are uniformized in thickness, film deposition efficiency can be improved. An MOCVD reactor (05-21-2009
20080245304SYSTEM FOR SELECTIVE DEPOSITIONS OF MATERIALS TO SURFACES AND SUBSTRATES - A system is described for selectively depositing materials to surfaces at preselected locations and at controlled thicknesses. Materials can be further selectively deposited to sub-surfaces of composite or structured silicon wafers, e.g., for the deposition of barrier films on silicon wafer surfaces, e.g., to fill substrate feature patterns (vias). The invention finds application in such commercial processes as semiconductor chip manufacturing. The system is envisioned to provide alternatives to, or decreased need for, chemical mechanical planarization in semiconductor chip manufacturing.10-09-2008
20090293809STAGE UNIT FOR SUPPORTING A SUBSTRATE AND APPARATUS FOR PROCESSING A SUBSTRATE INCLUDING THE SAME - In a stage for supporting a substrate, a body, a base plate and a buffer are provided in the stage. The body on which the substrate is positioned includes a plate having a heating electrode for generating heat therein and a tube protruded from a bottom surface of the plate. The body is mounted on the base plate. The buffer is interposed between the base plate and the tube and has a thermal expansion ratio higher than that of the tube of the body and lower than that of the base plate. Accordingly, thermal expansion of the base plate may be absorbed by the buffer and may not have direct effect on the body. Therefore, the body may be prevented from being damaged due to the thermal expansion of the base plate.12-03-2009
20120145080SUBSTRATE SUPPORT UNIT, AND APPARATUS AND METHOD FOR DEPOSITING THIN LAYER USING THE SAME - A substrate support unit includes a support member configured to accommodate a plurality of substrate holders and a driving member configured to rotate the substrate holders and the support member on their respective axes.06-14-2012
20110315082FILM COATING APPARATUS - A film coating apparatus for coating a patterned roller using an atomic layer deposition process includes a deposition chamber and a heater. The deposition chamber defines an inlet and an outlet. The inlet is misaligned with the outlet. The heater is received in the deposition chamber. The heater includes a number of coiled filaments each formed into a generally circular loop. The filaments are spaced from each other and surrounds the patterned roller. The filaments are configured for heating the patterned roller.12-29-2011
20120055405APPARATUS AND METHOD FOR SUPPORTING, POSITIONING AND ROTATING A SUBSTRATE IN A PROCESSING CHAMBER - An apparatus and method for supporting, positioning and rotating a substrate are provided. In one embodiment, a support assembly for supporting a substrate includes an upper base plate and a lower base plate. The substrate is floated on a thin layer of air over the upper base plate. A positioning assembly includes a plurality of air bearing edge rollers or air flow pockets used to position the substrate in a desired orientation inside above the upper base plate. A plurality of slanted apertures or air flow pockets are configured in the upper base plate for flowing gas therethrough to rotate the substrate to ensure uniform heating during processing.03-08-2012
20120055406Vapor Phase Deposition Apparatus and Support Table - A vapor phase deposition apparatus includes a chamber, a support table arranged in the chamber, and having a first support unit which is in contact with a back side surface of a substrate and on which the substrate is placed and a second support unit which is connected to the first support unit to support the first support unit, a heat source arranged at a position having a distance from a back side surface of the substrate, the distance being larger than a distance between back side surface of the support table and the heat source, and which heats the substrate, a first flow path configured to supply a gas to form a film into the chamber, and a second flow path configured to exhaust the gas from the chamber.03-08-2012
20110155061REACTOR, CHEMICAL VAPOR DEPOSITION REACTOR, AND METALORGANIC CHEMICAL VAPOR DEPOSITION REACTOR - A reactor for film deposition having a first heating unit and the second heating units is described. The temperature of each heating unit is controlled individually by heating and/or cooling means. The first heating unit and the second heating unit are disposed face-to-face to each other to form a reaction region therein, and their inner sides are placed with an inclined angle. At least one substrate is disposed on the inner surface of the first heating unit. The temperature of the second heating unit can be adapted to a temperature higher than the temperature of the first heating unit to improve the thermal decomposition efficiency of input reactants so that a low-temperature film deposition can be accomplished.06-30-2011
20120204796CVD reactor having a substrate holder resting on a gas cushion comprising a plurality of zones - The invention relates to a CVD reactor having a process chamber (08-16-2012
20090165720SUBSTRATE TREATING APPARATUS - A substrate treating apparatus comprising a treatment chamber for housing a substrate, a stage on which the substrate is placed within the treatment chamber, a heating member arranged within the stage and used for heating the substrate, a sealing member arranged between the stage and the treatment chamber, and a cooling mechanism having a cooling medium, whose latent heat of vaporization is utilized for cooling the sealing member.07-02-2009
20120055404APPARATUS FOR CONTINUOUS COATING - Apparatus for continuous coating has a chamber wall which forms a processing chamber, thermal insulation which forms a processing area within the chamber, a transportation device for substrates located in the processing area with a substrate transportation direction of the substrates lying in the lengthwise extension of the apparatus for continuous coating, and heating equipment which heats the substrates, is designed to minimize unwanted coating, in particular of parts of the apparatus, in order to minimize the expense of maintaining and servicing the apparatus A condensation element is positioned in the processing chamber, which extends into the processing area and binds the arising vapor through condensation.03-08-2012
20120055403MOUNTING TABLE STRUCTURE, FILM FORMING APPARATUS AND RAW MATERIAL RECOVERY METHOD - Provided is a mounting table structure for use in forming a thin film on a surface of a target object mounted on the mounting table structure by using a raw material gas including an organic metal compound in a processing chamber. The mounting table structure includes: a mounting table main body which mounts thereon the target object and has therein a heater; and a base which supports the mounting table main body while surrounding a side surface and a bottom surface of the mounting table main body, the base having therein a coolant path where a coolant flows therethrough and being maintained at a temperature higher than the solidification temperature or the liquefaction temperature of the raw material gas, but lower than the decomposition temperature of the raw material gas.03-08-2012
20120152170METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE AND SUBSTRATE PROCESSING APPARATUS - A manufacturing method of a semiconductor device of the present invention includes the step of forming an insulating film on a substrate, and the step of forming a high dielectric constant insulating film on the insulating film, and the step of forming a titanium aluminum nitride film on the high dielectric constant insulating film, wherein in the step of forming the titanium aluminum nitride film, formation of an aluminum nitride film and formation of a titanium nitride film are alternately repeated, and at that time, the aluminum nitride film is formed firstly and/or lastly.06-21-2012
20120118234METAL ORGANIC CHEMICAL VAPOR DEPOSITION EQUIPMENT - Metal organic chemical vapor deposition equipment is metal organic chemical vapor deposition equipment for forming a film on a substrate by using a reactant gas, and includes a susceptor heating the substrate and having a holding surface for holding the substrate, and a flow channel for introducing the reactant gas to the substrate. The susceptor is rotatable with the holding surface kept facing an inner portion of the flow channel, and a height of the flow channel along a flow direction of the reactant gas is kept constant from a position to a position, and is monotonically decreased from the position to the downstream side. It is thereby possible to improve film formation efficiency while allowing the formed film to have a uniform thickness.05-17-2012
20120312235MANUFACTURING METHOD OF SEMICONDUCTOR APPARATUS - The manufacturing method of a semiconductor apparatus has a step for carrying in the substrate into the processing chamber; a step for heating the processing chamber and the substrate to the predetermined temperature; and a gas supply and exhaust step for supplying and exhausting desired gas into and from the processing chamber, wherein the gas supply and exhaust step repeats by the predetermined times a first supply step for supplying silicon-type gas and hydrogen gas into the processing chamber; a first exhaust step for exhausting at least said silicon-type gas from the processing chamber; a second supply step for supplying chlorine gas and hydrogen gas into the processing chamber; and a second exhaust step for exhausting at least the chlorine gas from the processing chamber.12-13-2012
20110180001VAPOR PHASE EPITAXY APPARATUS OF GROUP III NITRIDE SEMICONDUCTOR07-28-2011
20100212594SUBSTRATE MOUNTING MECHANISM AND SUBSTRATE PROCESSING APPARATUS HAVING SAME - A substrate mounting mechanism on which a substrate is placed is provided. The mechanism includes a heater plate having a substrate mounting surface, and a first insertion hole having large and small diameter portions, and a temperature control jacket formed to cover at least a surface of the heater plate other than the substrate mounting surface and having a non-deposition temperature a second insertion hole having large and small diameter portions. The mechanism further includes a first lift pin having a cover inserted into the large diameter portion of the first insertion hole and a shaft inserted into both the large and small diameter portions of the first insertion hole, and a second lift pin having a cover to be inserted into the large diameter portion of the second insertion hole and a shaft to be inserted into both the large and small diameter portions of the second insertion hole.08-26-2010
20100012035VACUUM VAPOR PROCESSING APPARATUS - There is provided a vacuum evaporating apparatus which is suitable for performing a process in which a metal vapor atmosphere is formed in a processing chamber, the metal atoms in this metal vapor atmosphere are caused to be adhered to the surface of an object to be processed, and the metal atoms adhered to the surface of the object to be processed are diffused into grain boundary phases thereof. The apparatus comprises: a processing furnace (01-21-2010
20100012036ISOLATION FOR MULTI-SINGLE-WAFER PROCESSING APPARATUS - An MSW processing apparatus includes two or more semi-isolated reaction chambers separated from one another by isolation regions configured with two or more TIG elements, either or both of which may be independently purged. The TIG elements may be configured in a staircase-like fashion and include vertical and horizontal conductance spacings, sized so that, under different operational process temperatures of the MSW processing apparatus, a change in the horizontal conductance spacing is less than a change in the vertical conductance spacing.01-21-2010
20100269754Polycrystalline silicon reactor - A polycrystalline silicon reactor in which the polycrystalline silicon is deposited by supplying raw-material gas to a heated silicon seed rod has; a bottom plate on which the silicon seed rod stands, having a dished upper surface; an opening of a path penetrating the bottom plate from the upper surface to a lower surface, being provided at a lowest part of the upper surface; and a plug which is detachably attached to the opening.10-28-2010
20120073503PROCESSING SYSTEMS AND APPARATUSES HAVING A SHAFT COVER - Apparatus and systems are disclosed for processing a substrate. In an embodiment, a system includes a processing chamber, which includes a substrate support to support the substrate. The chamber further includes a plate member positioned below the substrate support and designed to improve heating efficiency within the processing chamber. The processing chamber further includes a lower dome positioned below the plate member. The plate member is designed to prevent a coating from being deposited on the lower dome during processing conditions. The plate member is designed to prevent particles and debris from falling below the plate member. The plate member is designed to improve heating uniformity between the plate member and the substrate within the processing chamber.03-29-2012
20120073502HEATER WITH LIQUID HEATING ELEMENT - A heater for a heating system of a chemical vapor deposition process includes a relatively highly emissive body and an electrically conductive heating element disposed within a passageway in the body. The heating element is constructed to melt below an operating temperature of the heater. The passageway is constructed to retain the melted heating element in a continuous path, so that an electrical current along the heating element may be maintained during operation of the heater. Various shapes and arrangements of the passageway within the body may be used, and the heating system may be constructed to provide multiple, independently controllable temperature zones.03-29-2012
20100326358BATCH TYPE ATOMIC LAYER DEPOSITION APPARATUS - Provided is a batch-type Atomic Layer Deposition (ALD) apparatus for performing ALD processing collectively for a plurality of substrates, leading to an improved throughput, and achieving perfect uniformity of ALD on the substrates. The batch-type ALD apparatus includes: a chamber that can be kept in a vacuum state; a substrate support member, disposed in the chamber, supporting a plurality of substrates to be stacked one onto another with a predetermined pitch; a substrate movement device moving the substrate support member upward or downward; a gas spray device continuously spraying a gas in a direction parallel to the extending direction of each of the substrates stacked in the substrate support member; and a gas discharge device, disposed in an opposite side of the chamber to the gas spray device, sucking and evacuating the gas sprayed from the gas spray device.12-30-2010
20120260857HEAT TREATMENT APPARATUS - A heat treatment apparatus includes a reaction tube extending in a first direction; a substrate support unit which is placed in the reaction tube and is configured to be capable of supporting plural substrates along the first direction; plural gas supply pipes provided at a side surface of the reaction tube to be aligned in the first direction with intervals for supplying a gas into the reaction tube; a gas dispersing plate which is provided in the reaction tube between opening edges of the plural gas supply pipes and the substrate support unit placed in the reaction tube, the gas dispersing plate being provided with plural opening portions formed to correspond to the gas supply pipes, respectively; and a heater which is placed outside the reaction tube for heating the substrates.10-18-2012
20110265725FILM DEPOSITION DEVICE AND SUBSTRATE PROCESSING DEVICE - A film deposition device includes a substrate transporting device arranged in a vacuum chamber to include a circulatory transport path in which substrate mounting parts arranged in a row are transported in a circulatory manner, the circulatory transport path including a linear transport path in which the substrate mounting parts are transported linearly. A first reactive gas supplying part is arranged along a transporting direction in which the substrate mounting parts are transported in the linear transport path, to supply a first reactive gas to the substrate mounting parts. A second reactive gas supplying part is arranged alternately with the first reactive gas supplying part along the transporting direction, to supply a second reactive gas to the substrate mounting parts. A separation gas supplying part is arranged to supply a separation gas to a space between the first reactive gas supplying part and the second reactive gas supplying part.11-03-2011
20110265724METAL-ORGANIC CHEMICAL VAPOR DEPOSITION APPARATUS - A metal-organic chemical vapor deposition (MOCVD) apparatus is described. The MOCVD apparatus includes a reaction chamber, a rotation stand, a wafer susceptor, a heater and a shower head. The reaction chamber includes an opening. The rotation stand is disposed within the reaction chamber. The wafer susceptor is disposed on the rotation stand, and the wafer susceptor rotates by rotating of the rotation stand. The wafer susceptor includes a plurality of wafer pockets of at least two different diameters disposed on a surface of the wafer susceptor and the wafer pockets are suitable to correspondingly carry a plurality of wafers. The heater is disposed under the wafer susceptor and within the rotation stand. The shower head covers the opening of the reaction chamber and applies a gaseous precursor toward the surface of the wafer susceptor.11-03-2011
20110265723METAL-ORGANIC CHEMICAL VAPOR DEPOSITION APPARATUS - A metal-organic chemical vapor deposition (MOCVD) apparatus is described. The MOCVD apparatus includes a reaction chamber, a rotation stand, a wafer susceptor, a heater and a shower head. The reaction chamber includes an opening. The rotation stand is disposed within the reaction chamber. The wafer susceptor is disposed on the rotation stand, and the wafer susceptor can rotate by the driving of the rotation stand. The wafer susceptor includes a plurality of polygon-shaped wafer pockets disposed on a surface of the wafer susceptor, and the polygon-shaped wafer pockets are suitable to correspondingly accommodate a plurality of wafers. The heater is disposed under the wafer susceptor and within the rotation stand. The shower head covers the opening of the reaction chamber and introduces a gaseous precursor toward the surface of the wafer susceptor.11-03-2011
20110265722WAFER TRAY FOR CVD DEVICE, HEATING UNIT FOR CVD DEVICE AND CVD DEVICE - The present invention provides a wafer tray for a CVD device, heating unit for a CVD device provided with the wafer tray for a CVD device, and a CVD device provided with the wafer tray for a CVD device that includes a wafer tray main body provided with cavities enabling mounting of a wafer on a first surface, and a connection portion formed to project towards a second surface of the wafer tray main body. A connection indented portion is provided in the connection portion to enable detachable connection to the rotation shaft that enables rotation of the wafer tray main body.11-03-2011
20100229795SUBSTRATE PROCESSING APPARATUS - Provided is a substrate processing apparatus that can suppress formation of an Si thin film on the inner wall of a film-forming gas supply nozzle. The substrate processing apparatus comprises a process chamber configured to process a substrate, a heating member configured to heat the substrate, a coating gas supply member including a coating gas supply nozzle configured to supply coating gas into the process chamber, a film-forming gas supply member including a film-forming gas supply nozzle supplying film-forming gas into the process chamber, and a control unit configured to control the heating member, the coating gas supply member, and the film-forming gas supply member. The control unit executes a control such that the coating gas supply nozzle supplies the coating gas to coat a quartz member in the process chamber and the film-forming gas supply nozzle supplies the film-forming gas to form an epitaxial film on the substrate.09-16-2010
20100229794VAPOR PHASE EPITAXY APPARATUS OF GROUP III NITRIDE SEMICONDUCTOR - Provided is a vapor phase epitaxy apparatus for a III nitride semiconductor, including a susceptor for holding a substrate, an opposite face of the susceptor, a heater for heating the substrate, a raw material gas-introducing portion provided at the central portion of the susceptor, and a reactor formed of a gap between the susceptor and the opposite face of the susceptor, in which a distance between the installed substrate and the opposite face of the susceptor is extremely narrow, and a constitution through which a coolant is flown is provided for the opposite face of the susceptor. The vapor phase epitaxy apparatus further includes, on the opposite face of the susceptor, a fine porous portion for ejecting an inert gas toward the inside of the reactor and a constitution for supplying the inert gas to the fine porous portion. The vapor phase epitaxy apparatus for a III nitride semiconductor is capable of efficient, high-quality crystal growth even when a crystal is grown on the surface of each of many large-aperture substrates held by a susceptor having a large diameter or even when a substrate is heated at a temperature of 1000° C. or higher before a crystal is grown.09-16-2010
20120090547SYSTEM AND METHOD OF VAPOR DEPOSITION - Provided is a system for vapor deposition of a coating material onto a semiconductor substrate. The system includes a chemical supply chamber, a supply nozzle operable to dispense vapor, and a heating element operable to provide heat to a substrate in-situ with the dispensing of vapor. The system may further include reaction chamber(s) and/or mixing chamber(s).04-19-2012
20120132139APPARATUS OF MANUFACTURING SILICON CARBIDE SINGLE CRYSTAL - Disclosed is an apparatus (05-31-2012
20100132615FILM DEPOSITION APPARATUS - In a film deposition apparatus, a first separation gas is discharged from a separation gas supplying portion to a separation area between a first process area to which a first reaction gas is supplied and a second process area to which a second reaction gas is supplied. A heater is provided to heat the turntable by radiation heat. An outer sidewall member is provided in a bottom part of a vacuum chamber to surround the turntable in an area where the heater is provided. A space forming member is provided between the separation areas adjacent to each other in a rotating direction of the turntable and extending from the outer sidewall member to form a narrow space between the turntable. A purge gas flows from a lower side of the turntable to an area outside the turntable in a radial direction through the narrow space.06-03-2010
20130019803METHODS AND APPARATUS FOR THE DEPOSITION OF MATERIALS ON A SUBSTRATE - Methods and apparatus for deposition of materials on substrates are provided herein. In some embodiments, an apparatus may include a process chamber having a substrate support; a heating system to provide heat energy to the substrate support; a gas inlet port disposed to a first side of the substrate support to provide at least one of a first process gas or a second process gas across a processing surface of the substrate; a first gas distribution conduit disposed above the substrate support and having one or more first outlets disposed along the length of the first gas distribution conduit to provide a third process gas to the processing surface of the substrate, wherein the one or more first outlets are substantially linearly arranged; and an exhaust manifold disposed to a second side of the substrate support opposite the gas inlet port to exhaust the process gases from the process chamber.01-24-2013
20130019804METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE AND SUBSTRATE PROCESSING APPARATUS - Provided is a substrate processing apparatus. The apparatus includes: a process vessel, a heater, a source gas supply system, an oxygen-containing gas supply system, a hydrogen-containing gas supply system, a pressure regulator, and a controller. The controller is configured to control the parts so as to perform: (a) forming an oxide film on a substrate by alternately repeating: (a-1) forming a layer by supplying a source gas into the process vessel accommodating the substrate; and (a-2) changing the layer into an oxide layer by supplying an oxygen-containing gas and an hydrogen-containing gas into the process vessel, the inside of the process vessel being under a heated atmosphere having a low pressure; and (b) modifying the oxide film formed on the substrate by supplying the oxygen-containing gas and the hydrogen-containing gas into the process vessel, the inside of the process vessel being under the heated atmosphere having the low pressure.01-24-2013
20120240857VERTICAL HEAT TREATMENT APPARATUS - A vertical heat treatment apparatus includes a reaction tube surrounded by a heating part and including a substrate holder to hold substrates; and a process gas feed part having gas ejection openings to feed a process gas onto the substrates. The reaction tube has an exhaust opening at a position opposite to the gas ejection openings relative to the center of the reaction tube. The substrate holder includes circular holding plates stacked in layers and each having substrate placement regions; and support rods supporting the holding plates and provided in a circumferential direction of the holding plates to penetrate through the holding plates with the outside positions of the support rods being at the same radial position as the outer edges of the holding plates or at a radial position inside the outer edges of the holding plates relative to the center of the reaction tube.09-27-2012
20130174783FILM-FORMING APPARATUS - A film-forming apparatus capable of discharging a feedstock gas and a reactive gas to an inner side of the vacuum chamber by more effectively cooling the gases without mixing them in comparison with the conventional art. A discharge plate having a first face exposed inside the vacuum chamber is provided with a plurality of feedstock gas introduction holes and a plurality of reactive gas introduction holes penetrating the discharge plate. A plurality of grooves having the feedstock gas introduction holes located on the bottom face are formed in the second face opposite to the first face of the discharge plate, a top plate that covers the groove is arranged over the second face, and the feedstock gas through-hole formed in the top plate and the feedstock gas introduction hole are connected to each other with the first auxiliary pipe.07-11-2013
20100307418VAPOR PHASE EPITAXY APPARATUS OF GROUP III NITRIDE SEMICONDUCTOR - Provided is a vapor phase epitaxy apparatus of a group III nitride semiconductor capable of improving the uniformity of the film thickness distribution, and reaction rate, of a semiconductor. The vapor phase epitaxy apparatus of a group III nitride semiconductor includes: a susceptor for holding a substrate; the opposite face of the susceptor; a heater for heating the substrate; a reactor formed of a gap between the susceptor and the opposite face of the susceptor; a raw material gas-introducing portion for supplying a raw material gas to the reactor; and a reacted gas-discharging portion. In the vapor phase epitaxy apparatus of a group III nitride semiconductor, the raw material gas-introducing portion includes a first mixed gas ejection orifice capable of ejecting a mixed gas obtained by mixing three kinds, i.e., ammonia, an organometallic compound, and a carrier gas at an arbitrary ratio, and a second mixed gas ejection orifice capable of ejecting a mixed gas obtained by mixing two or three kinds selected from ammonia, the organometallic compound, and the carrier gas at an arbitrary ratio.12-09-2010
20130118407SUBSTRATE SUSCEPTOR AND DEPOSITION APPARATUS HAVING SAME - The present disclosure relates to a deposition apparatus used to manufacture a semiconductor device including a process chamber; a substrate susceptor installed in the process chamber and including a plurality of concentrically arranged stages on which substrates are positioned; a plurality of members for supplying reaction gas; a member for supplying purge gas; a spray member including a plurality of baffles for independently spraying reaction gas and purge gas, supplied from the plurality of members supplying reaction gas and the member supplying purge gas, on the entirety of the treating surfaces of the substrate, in positions corresponding respectively to the substrates positioned on the stages; and a driving unit for rotating the substrate susceptor or the spray member in order for the baffles of the spray member to sequentially revolve each of the plurality of substrates positioned on the stages.05-16-2013
20110303152SUPPORT STRUCTURE, PROCESSING CONTAINER STRUCTURE AND PROCESSING APPARATUS - A support structure for supporting a plurality of objects to be processed and to be disposed in a processing container structure in which a processing gas flows horizontally from one side to the opposite side, includes a top plate section; a bottom section; and a plurality of support posts connecting the top plate section and the bottom section, wherein a plurality of support portions for supporting the objects to be processed are formed in each support post at a predetermined pitch along the longitudinal direction, and the distance between the topmost support portion of the support portions of each support post and the top plate section as well as the distance between the lowermost support portion of the support portions of each support post and the bottom section are set not more than the pitch of the support portions. The support structure can prevent the occurrence of a turbulent gas flow in the top and bottom areas of the processing container structure.12-15-2011
20130186338Shielding Design for Metal Gap Fill - The present disclosure is directed to a physical vapor deposition system configured to heat a semiconductor substrate or wafer. In some embodiments the disclosed physical vapor deposition system comprises at least one heat source having one or more lamp modules for heating of the substrate. The lamp modules may be separated from the substrate by a shielding device. In some embodiments, the shielding device comprises a one-piece device or a two piece device. The disclosed physical vapor deposition system can heat the semiconductor substrate, reflowing a metal film deposited thereon without the necessity for separate chambers, thereby decreasing process time, requiring less thermal budget, and decreasing substrate damage.07-25-2013
20120085285SEMICONDUCTOR GROWTH APPARATUS - A according to one embodiment, a semiconductor growth apparatus growing a semiconductor layer on a substrate includes a susceptor, a heater element, a gas feed unit and an auxiliary susceptor. The susceptor includes a first major surface, a second major surface and a substrate holder provided in the first major surface. The heater element heats the susceptor from the second major surface side. The gas feed unit feeds source gases of the semiconductor layer flowing along the first major surface. The auxiliary susceptor is disposed on a portion adjacent to the substrate holder on an upstream side in the source gas flow in the first major surface.04-12-2012

Patent applications in class Substrate heater