Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Friction gear transmission systems or components

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
476047000 STEPLESS RATIO CHANGE 26
476039000 FRICTION GEAR INCLUDES IDLER ENGAGING FACING CONCAVE SURFACES 25
476009000 FLUID CONTROL 17
476067000 FRICTION TRANSMISSION OR ELEMENT 13
476036000 FRICTION GEAR IS BALL 10
476001000 CONDITION RESPONSIVE RATIO CHANGE 7
476027000 PLURAL GEARING IN SERIES 6
476011000 ELECTRIC OR MAGNETIC CONTROL 4
20090280949ASSEMBLIES AND METHODS FOR CLAMPING FORCE GENERATION - Mechanisms and methods for clamping force generation are disclosed. In one embodiment, a clamping force generator system includes a permanent magnet bearing coupled to a traction ring and to a torque coupling. The traction ring can be provided with an electromagnetic bearing rotor and the torque coupling can be provided with an electromagnetic bearing stator. In some embodiments, a mechanical load cam, a permanent magnet bearing, and an electromagnetic bearing cooperate to generate a clamping force between the traction rings, the power rollers, and the idler. In other embodiments, a series of permanent magnet bearings and a mechanical bearing configured to produce a clamping force. In one embodiment an electromagnetic bearing is coupled to a control system and produces a specified clamping force that is associated with a torque transmitted in the transmission during operation. In some embodiments, a mechanical load cam produces a clamping force proportional to torque, while a permanent magnet bearing provides a minimum clamping force.11-12-2009
20110207577FAN CLUTCH SYSTEM AND METHOD - Some embodiments of a fan clutch system for use in a vehicle can provide efficient access to one or more components for inspection and service even after the fan clutch system is installed in the vehicle. In particular embodiments, the fan clutch system can include a fan clutch device and a coil retainer assembly that are removably mounted to a right-angle gear box assembly in a manner that permits a technician to accessing at least one component for inspection, repair, or replacement. The coil retainer assembly may at least partially house an electromagnetic coil for selective activation. The system may further include a fan clutch device removably mounted to the drive member of the gear box assembly.08-25-2011
20100273602TRACTION DRIVE SYSTEM - A traction drive system for an articulated robotic arm. The traction drive system can include an input drive disk, a spider, an array of traction balls, a traction plate, an output drive shaft, a clamping device to load the traction balls, and an absolute rotation position sensor system. The rotation of the output drive shaft can be coupled to the rotation of the input drive disk while the traction balls are frictionally engaged to the drive disk surface and traction plate surface. The rotational connection can be decoupled when the traction balls are not frictionally engaged to the drive disk surface and traction plate surface. A rotational position sensor located in proximity to the traction drive can provide absolute rotational position feedback of the output drive shaft.10-28-2010
20100120577SPEED ADJUSTING MECHANISM FOR ROLLER TRACTION TOROIDAL CONTINUOUSLY VARIABLE TRANSMISSION - A speed adjusting mechanism for roller traction toroidal continuously variable transmission is disclosed, which comprises an input disk; an output disk coaxially and symmetrically positioned relative to the input disk; a rotation shaft thought the axis of input disk and output disk; a screw rod coaxially connected to the rotation shaft and being rotated accordingly; and a plurality of friction balls respectively contact with the input disk and output disk and rotate same; each friction ball respectively revolved on its own center axis and each center axis respectively connected to a supporting bracket and each supporting bracket respectively connected to an arc-shaped screw gear; wherein the screw rod is engaged to the screw gears so that they will rotate correspondingly to let each center axis tilt to the same extent so that the input disk and out disk will have different rotation rate.05-13-2010
476007000 WITH FRICTION ENHANCING FLUID 4
20110152030CONICAL FRICTION RING TYPE CONTINUOUSLY VARIABLE TRANSMISSION DEVICE - A conical friction ring type CVT device configured with a ring interposed between opposing inclined surfaces of first and second friction wheels so as to surround the first wheel. A portion of the ring is submerged in an oil reservoir, and power is transmitted by contact between the ring and the first and second wheels, such that the ring in moves in the axial direction to steplessly changes speed. When the CVT device is mounted in a vehicle, a rotational direction is set such that, during forward travel of the vehicle, opposing, portions of the first and second wheels move upward from below. An oil strainer is disposed on a side of the second wheel opposite the axis of the first wheel with respect to the axis of the second wheel. Furthermore, a guide member is disposed on at least an upper portion of the second wheel.06-23-2011
20110143881CONICAL FRICTION RING TYPE CONTINUOUSLY VARIABLE TRANSMISSION DEVICE - A conical friction ring type continuously variable transmission device configured a ring is provided such that it is interposed between opposing inclined surfaces of a first and second conical friction wheels so as to surround the first conical friction wheel. In this configuration, power is transmitted by contact between the ring and the first and second conical friction wheels, which moves the ring in the axial direction to steplessly change speed. A portion of the ring is submerged in an oil reservoir in a lower portion of the space when the ring is moved to any position in the axial direction. An oil guide is disposed on an axial partial region on the small diameter side of the first conical friction wheel, and guides oil raked up from the oil reservoir due to the rotation of the ring toward the first conical friction wheel.06-16-2011
20110111918BEVEL FRICTION RING GEAR - According to the invention, a bevel friction ring gear which transmits torque between the two bevels with both bevels mounted on a chassis by bearings may be provided which has a still greater efficiency, wherein at least one of the bevels has a bearing to both sides and that the first of the bearings is sealed relative to the bevel and the second of the bearings is open with relation to the bevel.05-12-2011
20120157261STEPLESS GEAR RATIO VARIATOR - A stepless gear ratio variator for wind generators wherein the transmission of motion between a driving member and a driven member takes place through friction of the respective convex contact surfaces translating simultaneously along respective incident axes of rotation; these surfaces being constrained, in use, to remain constantly in contact by means of a pair of support brackets mutually connected in an articulated manner by means of a pair of plates, pivoted to the same support brackets according to axes passing through the centre of the contact surfaces of the driven and driving members.06-21-2012
476061000 CONDITION RESPONSIVE MEANS TO VARY CONTACT PRESSURE 3
20110319223VEHICLE DRIVE FORCE DISTRIBUTING APPARATUS - A vehicle drive force distributing apparatus includes an irreversible transmission mechanism, an operating state determining component and a command value resolution switching component. The irreversible transmission mechanism prevents a radially oriented pressing force, generated between first and second rollers based on an inter-roller radial pressing force command value, from decreasing during a period while command value is constant to maintain the radially oriented pressing force at a prescribed value without operating an inter-roller radial pressing force generating source. The operating state determining component determines whether first or second vehicle operating states exists during which a first or a lower second precision level of drive force distribution control, respectively, is to occur between main and subordinate drive wheels. The command value resolution switching component provides the inter-roller radial pressing force command value at a constant value for a longer period during the second vehicle operating state.12-29-2011
20120277057Friction Wheel Drive - The invention is directed to a friction wheel drive with a driving roller capable of being driven in a rotary manner, which is mounted on a bearing unit so as to be rotatable about an axis of rotation. The bearing unit is displaceably guided transversely to the axis of rotation, and a circumferential surface of the driving roller can be brought into driving engagement with a friction surface. The bearing unit is coupled to a first mechanical forced guidance system, by which the driving roller, responding to a driving force acting in a first direction, can be automatically pressed against the friction surface with a contact pressing force that increases as the driving force increases. The bearing unit is also coupled to a second mechanical forced guidance system, by which the driving roller, responding to a driving force acting in an opposite second direction, can be automatically pressed against the friction surface with a contact pressing force that increases as the driving force increases.11-01-2012
20120100955TRACTION TRANSMISSION CAPACITY CONTROL DEVICE USED IN DRIVE FORCE DISTRIBUTION DEVICE - A traction transmission capacity control device used in a drive force distribution device includes a second-roller turning means configured to turn the second roller around an eccentric axis deviated from a rotation axis of the second roller, and thereby to control a mutual radially-pressing force between the first roller and the second roller so that a traction transmission capacity is controlled. The traction transmission capacity control device further includes a one-direction turning-stop-position detecting means configured to detect a position at which the turning of the second roller stops after the second-roller turning means starts to turn the second roller in one direction; an another-direction turning-stop-position detecting means configured to detect a position at which the turning of the second roller stops after the second-roller turning means starts to turn the second roller in another direction; and a second-roller turning-motion reference-point setting means configured to set a center position between the position detected by the one-direction turning-stop-position detecting means and the position detected by the another-direction turning-stop-position detecting means, as a turning-motion reference point of the second roller. The traction transmission capacity control device is configured to perform a traction transmission capacity control based on a second-roller turning amount given from the turning-motion reference point of the second roller.04-26-2012
476008000 WITH LUBRICATION 3
20090286646TOROIDAL CONTINUOUSLY VARIABLE TRANSMISSION UNIT - In a toroidal continuously variable transmission unit, a pair of guide surface portions 11-19-2009
20090247352POWER TRANSMISSION DEVICE - A partition plate is provided in a case to separate a first space where a CVT is disposed and a second space where a forward/backward travel switching mechanism and a differential gear are disposed. Bearings respectively supporting an input cone and an output cone and formed as pure rolling cylindrical roller bearings are disposed in the first space. A bearing supporting one end of an input shaft and formed as a conical roller bearing capable of receiving thrust force, a bearing supporting an output shaft and formed as a conical roller bearing capable of receiving thrust force, and a bearing supporting one end of the output cone are disposed in the second space. The first space and the second space are sealed by oil seals. The first space is filled with traction oil and the second space is filled with lubricating oil.10-01-2009
20090017982Power Transmission Device - A power transmission device 01-15-2009
476014000 WITH TRANSMISSION COOLING OR HEATING MEANS 2
20110015030 CAM SELF-ADAPTIVE AUTOMATIC SPEED SHIFT HUB - A cam self-adaptive automatic speed shift hub comprises a left hub frame (01-20-2011
20120244990CONTINUOUSLY VARIABLE TRANSMISSION - A continuously variable transmission includes a continuously variable transmission mechanism that includes an input disk, an output disk, and planetary balls sandwiched between them and that steplessly changes a transmission ratio between the input disk and the output disk by tilting the planetary balls, wherein cooling performance of a cooling device for the continuously variable transmission mechanism is enhanced as the transmission ratio becomes larger than 1 or smaller than 1.09-27-2012
476059000 STEPPED RATIO CHANGE 2
20110245032DRIVE TRANSMISSION MECHANISM AND IMAGE FORMING APPARATUS INCLUDING THE SAME - A driving force transmission mechanism (10-06-2011
20110053732FRICTION TYPE TRANSMISSION DEVICE AND PRESSING FORCE CONTROL METHOD FOR FRICTION TYPE TRANSMISSION DEVICE - In a friction drive transmission apparatus arranged to transmit power by a frictional transmission force between two roller units pressed against each other, there is provided a pressing force imparting means to increase and decrease a pressing force imparted to a roller pair to vary the frictional transmission force between both roller units smoothly at the time of a shift.03-03-2011
476065000 SPRING URGES CONTACTING GEARS INTO ENGAGEMENT 1
20110070997FRICTIONAL DRIVE DEVICE AND INVERTED PENDULUM TYPE VEHICLE USING THE SAME - In a frictional drive device comprising a pair of drive disks (03-24-2011
476064000 FRICTION GEAR ON SHAFT OF MOVABLY MOUNTED MOTOR 1
20090011894Spindle drive - A spindle drive for a movable component includes a threaded spindle, which can be driven in rotation about a rotational axis by a reversible drive. A spindle nut is mounted nonrotatably on the spindle. By means of the spindle nut, a transmission element connected to the movable component can be driven axially with respect to the spindle axis. The spindle nut can be connected to and disconnected from the transmission element by a connecting device. A nut position sensor detects the position of the spindle nut and a component sensor detects the axial position of the transmission element. If it is concluded that there is plausibility between the signals of the nut position sensor and the component sensor, the spindle nut can be connected to the transmission element by the connecting device.01-08-2009

Patent applications in class Friction gear transmission systems or components

Patent applications in all subclasses Friction gear transmission systems or components