Patent application title: Vaccine For Periodontal Disease
Inventors:
John Morgan Hardham (Kalamazoo, MI, US)
Kendall Wayne King (Kalamazoo, MI, US)
Rajendra Krishnan (Portage, MI, US)
Kimberly Jean Dreier (Oakdale, CT, US)
David Ross Mcgavin (Portage, MI, US)
John David Haworth (Kalamazoo, MI, US)
Assignees:
PFIZER INC.
PFIZER PRODUCTS INC.
IPC8 Class: AA61K39295FI
USPC Class:
4242011
Class name: Drug, bio-affecting and body treating compositions antigen, epitope, or other immunospecific immunoeffector (e.g., immunospecific vaccine, immunospecific stimulator of cell-mediated immunity, immunospecific tolerogen, immunospecific immunosuppressor, etc.) combination of viral and bacterial antigens (e.g., multivalent viral and bacterial vaccine, etc.)
Publication date: 2008-12-18
Patent application number: 20080311151
Claims:
1.-75. (canceled)
76. A vaccine for treating or preventing periodontal disease in dogs and cats comprising inactivated whole cell preparations of P. gulae B43, P. salivosa B104 and P. denticanis B106 and a pharmaceutically acceptable carrier.
77. The vaccine of claim 76, wherein the bacteria are inactivated by formalin.
78. The vaccine of claim 76, further comprising at least one of Canine Distemper Virus (CDV), Canine Adenovirus-2 (CAV-2), Canine Parvovirus (CPV), Canine Parainfluenza Virus (CPI), or Canine Coronavirus (CCV).
79.-92. (canceled)
93. The vaccine according to claim 76, further comprising an adjuvant.
Description:
CROSS-REFERENCE TO RELATED APPLICATION
[0001]This application is a continuation of Ser. No. 10/851,965, filed May 21, 2004, which is a continuation-in-part of Ser. No. 10/323,069, filed Dec. 18, 2002, which claims the benefit of U.S. Provisional Patent Application No. 60/342,999 filed Dec. 21, 2001, the contents of which are hereby incorporated by reference in its entirety.
FIELD OF THE INVENTION
[0002]The present invention relates to novel bacterial isolates identified by their 16S rRNA DNA, that cause periodontal disease in companion animals, polynucleotide sequences contained therein, polypeptides encoded by such polynucleotide sequences and vaccines comprising such bacterial isolates that have been inactivated or attenuated, polynucleotides or polypeptides. Also provided are methods for treating and preventing periodontal disease and kits for detecting, treating, and preventing periodontal disease. In addition, methods for assessing the efficacy of a vaccine against periodontal diseases in an animal are provided.
BACKGROUND ART
[0003]The vast majority of experimental data concerning periodontal diseases is based on studies of humans or bacteria isolated from humans. Relatively little is known with respect to periodontal disease in non-human animals, such as companion animals, and in particular, dogs and cats.
[0004]Periodontal disease comprises a group of infections involving supporting tissues of the teeth. These range in severity from mild and reversible inflammation of the gingiva (gum) to chronic destruction of periodontal tissues (gingiva, periodontal ligament, and alveolar bone) with eventual exfoliation of teeth.
[0005]From a microbiological standpoint, several features of this disease are of interest. The bacterial etiology is complex, with a variety of organisms responsible for the initiation and progression of disease in humans. Many, if not all, of these organisms may also be present in periodontally healthy individuals and can exist in commensal harmony with the host. Thus, disease episodes may ensue from a shift in the ecological balance between bacterial and host factors, as a result of, for example, alteration in the absolute or relative numbers of certain organisms, changes in pathogenic potential, or modulation of particular host factors. The local environment imposes a variety of unique constraints upon the constituent microbiota of the supragingival tooth surface and the subgingival crevice (the channel between the tooth root and the gingiva that deepens into a periodontal pocket as disease progresses).
[0006]Both the calcified hard tissues of the tooth and the epithelial cells of the gingival are available for colonization. These tissues are exposed to host salivary secretions and gingival crevicular fluid (a serum exudate), both of which contain molecules that interact directly with bacteria and alter prevailing environmental conditions. In addition, it is known that in humans, successful colonizers of the teeth and subgingival area must coexist with many (over 600) other species of bacteria that inhabit these regions. Study of the pathogenesis of periodontal diseases in humans is thus complicated by the ecological intricacy of the microenvironment.
[0007]The classification of the various manifestations of periodontal disease in humans is continually changing, and it will suffice to mention that diseases range in severity, rate of progression, and number of teeth affected and that different age groups can be susceptible following the eruption of primary teeth. The nature of the pathogenic agents varies among these disease entities, as well as among human patients and even between different disease sites within a patient. In general, however, severe forms of the disease are associated with a number of gram-negative anaerobic bacteria. Of this group, in humans, most evidence points to a pathogenic role for Porphyromonas (formerly Bacteroides) gingivalis. The presence of this organism, acting either alone or as a mixed infection with other bacteria, and possibly in concert with the absence of beneficial species and certain immunological responses in the host, appears to be essential for disease activity.
[0008]Colonization of the oral cavity requires that the bacteria first enter the mouth and then localize at and attach to the available surfaces. Host factors which function to prevent bacterial colonization include the mechanical shearing forces of tongue movement along with saliva and gingival crevicular fluid flow. Successful oral colonizers therefore possess a variety of attributes to overcome host protective mechanisms. The sessite plaque biofilm that subsequently accumulates on the hard and soft tissues of the mouth is a dynamic system composed of diverse microbial species. In humans, P. gingivalis is usually among the late or secondary colonizers of the oral cavity, requiring antecedent organisms to create the necessary environmental conditions.
[0009]Initial entry of P. gingivalis into the human oral cavity is thought to occur by transmission from infected individuals. Other vectors would therefore also appear to be operational. These studies indicate that individuals are colonized by a single (or at least a predominant) genotype, regardless of site of colonization or clinical status. Strains of many different clonal origins, in contrast, are present in different individuals. This supports the concept that P. gingivalis is essentially an opportunistic pathogen, with virulence not being restricted to a particular clonal type.
[0010]The human oral cavity provides a variety of surfaces to which P. gingivalis can adhere. There are the mineralized hard tissues of the teeth, along with mucosal surfaces including those of the gingiva, cheek, and tongue.
[0011]While a great deal is known about periodontal disease in humans, as described above, very little is known about the same disease in companion animals. Fournier, D. et al., "Porphorymonas gulae sp. nov., an Anaerobic, Gram-negative, Coccibacillus from the Gingival Sulcus of Various Animal Hosts", International Journal of a Systematic and Evolutionary Microbiology (2001), 51, 1179-1189 describe several strains isolated from various animal hosts, including a strain, P. gulae spp. nov., designated ATCC 57100. The authors hypothesize that strains for the animal biotype of P. gingivalis represent a Porphyromonas species that is distinct from P. gingivalis. There is no mention of a vaccine useful in treating periodontal disease in companion animals. Hirasawa and Takada, in "Porphyromonas gingivicanis sp. nov. and Porphyromonas crevioricanis sp. nov., Isolated from Beagles", International Journal of Systemic Bacteriology, pp. 637-640, (1994), describe two bacterial species isolated from gingival crevicular fluids of beagles. These species are described in U.S. Pat. No. 5,710,039 and U.S. Pat. No. 5,563,063. Nowhere do the authors suggest the use of these species in a vaccine to treat periodontal disease. International Application PCT/AU98/01023, having publication number WO 99/29870, described various P. gingivalis polypeptides and nucleotides. However, no evidence of vaccines effective in preventing periodontal disease in companion animals is provided. Even though there is a great amount of information known about the human disease, little has been accomplished by way of preventing or treating the disease, even in humans.
[0012]There remains a need for a safe and effective vaccine for treating and preventing periodontal disease in companion animals.
[0013]Genco et al. (Trends in Microbiology 6: 444-449, 1998) describe a rat model for investigating Porphyromonas gingivicanis-mediated periodontal disease. Grecca et al. (J. Endodontics 27: 610, 2001) describe radiographic evaluation of periradicular repair after endodontic treatment of dog's teeth with induced periradicular periodontitis.
[0014]Prior to the present invention, there has been no animal model available for assessing the efficacy of a vaccine against one or more periopathogenic bacteria in a defined and quantitative manner.
SUMMARY OF THE INVENTION
[0015]The present invention provides an isolated pigmented anaerobic bacteria having a 16S rRNA DNA sequence comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 86 to 94, provided that the bacteria is not a strain of Porphyromonas gingivalis designated as dog 20B.
[0016]In one embodiment, the bacteria is selected from the group consisting of Porphyromonas gulae B43, P. cansulci B46, P. circumdentaria B52, P. gulae B69, P. circumdentaria B97, P. cangingivalis B98, P. salivosa B104, P. denticanis B106 and P. endodontalis B114, provided that the bacteria is not a strain of Porphyromonas gingivalis designated as dog 20B.
[0017]In another embodiment, the present invention provides an isolated pigmented anaerobic bacteria which causes, either directly or in combination with other pathogenic agents, periodontal disease in companion animals, wherein the bacteria can be used to prepare a vaccine for treating or preventing periodontal disease in companion animals, wherein the vaccine comprises an immunologically effective amount of at least one bacteria which has been inactivated or attenuated, provided that the bacteria is not a strain of P. gulae sp. nov. designated ATCC 51700. Preferably, the bacteria has a 16S rRNA DNA sequence at least about 95% homologous to any of the sequences depicted in SEQ ID NOS: 86 to 94. More preferably, the bacteria has a 16S rRNA DNA sequence comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 86 to 94.
[0018]In another embodiment, the present invention provides an isolated pigmented anaerobic bacteria which causes, either directly or in combination with other pathogenic agents, periodontal disease in companion animals, wherein the bacteria can be used to prepare a vaccine for treating or preventing periodontal disease in companion animals, wherein the vaccine comprises an isolated polypeptide immunologically effective as a vaccine for preventing or treating periodontal disease in companion animals, wherein the polypeptide is encoded by a polynucleotide molecule isolated from the bacteria provided that the bacteria is not a strain of P. gulae sp. nov. designated ATCC 51700. Preferably, the bacteria has a 16S rRNA DNA sequence at least about 95% homologous to any of the sequences depicted in SEQ ID NOS: 86 to 94. More preferably, the bacteria has a 16S rRNA DNA sequence comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 86 to 94.
[0019]In a further embodiment, the present invention provides an isolated pigmented anaerobic bacteria which causes, either directly or in combination with other pathogenic agents, periodontal disease in companion animals, wherein the bacteria can be used to produce a vaccine for treating or preventing periodontal disease in companion animals, wherein the vaccine comprises an isolated polynucleotide molecule which encodes a polypeptide immunologically effective as a vaccine for preventing or treating periodontal disease in companion animals, wherein the polynucleotide molecule is isolated from the bacteria, provided that the bacteria is not a strain of P. gulae sp. nov. designated ATCC 51700. Preferably, the bacteria has a 16S rRNA DNA sequence at least about 95% homologous to any of the sequences depicted in SEQ ID NOS: 86 to 94. More preferably, the bacteria has a 16S rRNA DNA sequence comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 86 to 94.
[0020]The companion animal is preferably a dog or a cat.
[0021]In another aspect, the present invention provides isolated polynucleotide molecule comprising a nucleotide sequence isolated from a bacteria selected from the group consisting of a bacterium having the identifying characteristics of Porphyromonas gulae B43, P. cansulci B46, P. circumdentaria B52, P. gulae B69, P. circumdentaria B97, P. cangingivalis B98, P. salivosa B104, P. denticanis B106 and P. endodontatis B114 provided that the bacteria is not a strain of P. gulae sp. nov. designated ATCC 51700.
[0022]In one embodiment, the isolated polynucleotide molecule is isolated from a bacterium, wherein the bacterium is selected from the group consisting of Porphyromonas gulae B43, P. cansulci B46, P. circumdentaria B52, P. gulae B69, P. circumdentaria B97, P. cangingivals B98, P. salivosa B104, P. denticanis B106 and P. endodontalis B114.
[0023]In another embodiment, the isolated polynucleotide encodes for a polypeptide.
[0024]In yet another embodiment, the isolated polynucleotide encodes ribosomal RNA or transfer RNA.
[0025]In yet a further embodiment, the present invention provides an isolated polynucleotide molecule comprising any of the nucleotide sequences selected from the group consisting of SEQ ID NOS: 86 to 94 and homologues having at least 95% homology thereto, provided that the nucleotide sequence is not the 16S rRNA DNA from bacteria P. gulae sp. nov. designated ATCC 51700.
[0026]Preferably, the isolated polynucleotide molecule comprising any of the nucleotide sequences selected from the group consisting of SEQ ID NOS: 95 to 102 and 111-119, (fimA or oprF, respectively), which sequence encodes a polypeptide immunologically effective as a vaccine for preventing or treating periodontal disease in companion animals, or complements thereto.
[0027]Also preferred is the isolated polynucleotide molecule comprises any of the nucleotide sequences depicted in SEQ ID NOS: 95 to 102 and 111-119, homologues having at least 95% homology thereto, which sequence encodes a polypeptide immunologically effective as a vaccine for preventing or treating periodontal disease in companion animals, or complements thereto.
[0028]In a further embodiment, the isolated polynucleotide molecule comprises any of the nucleotide sequences depicted in SEQ ID NOS: 95 to 102 and 111-119 or fragments or variants thereof, which sequence encodes a polypeptide immunologically effective as a vaccine for preventing or treating periodontal disease in companion animals, or complements thereto.
[0029]In yet a further embodiment, the isolated polynucleotide molecule comprises a nucleotide sequence which hybridizes under conditions of high stringency to any of the sequences depicted in SEQ ID NOS: 95 to 102 and 111-119, or complements thereto. Preferably, the isolated polynucleotide sequence, wherein said sequence comprises the sequence of fimA, selected from any of the sequences depicted in SEQ ID NOS: 95 to 102, a fragment or variant thereof, which fragment or variant has at least about 95%, 98% or 99% sequence identity thereto. Also preferred is the isolated polynucleotide molecule, wherein said sequence comprises the sequence of oprf, selected from, selected from any of the sequences depicted in SEQ ID NOS, 111 to 119, a fragment or variant thereof, which fragment or variant has at least about 95%, 98% or 99% sequence identity thereto.
[0030]Preferably, the fragment or variant of the polynucleotide molecule according to the present invention is at least about 98% homologous thereto.
[0031]In another embodiment, the present invention provides an isolated polynucleotide molecule, comprising a nucleotide sequence that hybridizes under conditions of high stringency to fimA, selected from any of the sequences depicted in SEQ ID NOS, 95 to 102, or the complement thereof.
[0032]In yet another embodiment, the present invention provides isolated polynucleotide molecule, comprising a nucleotide sequence that hybridizes under conditions of high stringency to oprF, selected from any of the sequences depicted in SEQ ID NOS, 111 to 119, or the complement thereof.
[0033]The present invention also provides an isolated polynucleotide molecule comprising a nucleotide sequence of about 30 nucleotides, which hybridizes under highly stringent conditions to a DNA molecule having a nucleotide sequence encoding a polypeptide having a sequence of at least about 10 contiguous amino acids of any of the polypeptides encoded by any of the nucleotide sequences of SEQ ID NOS: 95 to 102 and 109 to 119, or its complement. Preferably, the isolated polynucleotide molecule comprises at least about 90 nucleotides, which hybridizes under conditions of high stringency to a DNA molecule having a nucleotide sequence encoding a polypeptide having a sequence of at least about 30 contiguous amino acids of any of the polypeptides encoded by any of the nucleotide sequences of SEQ ID NOS: 95 to 102 and 111 to 119, or its complement.
[0034]In another aspect, the present invention provides the isolated polynucleotide according to the present invention operably linked to a heterologous promoter. The isolated polynucleotide can further comprise an origin of replication active in a prokaryotic or eukaryotic cell.
[0035]In another aspect, the present invention provides a recombinant expression vector comprising a polynucleotide selected from the group consisting of any of the nucleotide sequences SEQ ID NOS: 95 to 102 and 111 to 119, fragments or variants thereof, operably linked to a promoter sequence.
[0036]In yet another aspect, the present invention provides a plasmid comprising a polynucleotide selected from the group consisting of any of the nucleotide sequences SEQ ID NOS: 95 to 102 and 111 to 119, fragments or variants thereof, operably linked to a promoter sequence.
[0037]In a further aspect, the present invention provides a host cell comprising the isolated polynucleotide sequence, vector or plasmid according to the present invention.
[0038]Preferably, the host cell is E. coli BL21 and said polynucleotide further comprises the expression vector pBAD/HisA or a λ expression plasmid.
[0039]In a further aspect, the present invention provides, a method for the production of recombinant FimA or, OprF, selected from any of the sequences depicted in SEQ ID NOS: 103 to 110 or 120 to 128, or fragments or variants thereof, said method comprising (1) growing the cells of claim 36 under conditions in which a polypeptide comprising FimA, OprF, or fragments or variants thereof is expressed, and (2) recovering said polypeptide. The polypeptide can be recovered in soluble or insoluble form.
[0040]In another aspect, the isolated polypeptide of the present invention is immunologically effective as a vaccine for preventing or treating periodontal disease in companion animals and comprises an amino acid sequence depicted in SEQ ID NOS: 103 to 110 and 120 to 128.
[0041]In one embodiment, the isolated polypeptide immunologically effective as a vaccine for preventing or treating periodontal disease in companion animals comprises an amino acid sequence depicted in SEQ ID NOS: 103 to 110 and 120 to 128 and homologues having at least 95%, 98%, or 99% sequence identity thereto.
[0042]In another embodiment the isolated polypeptide immunologically effective as a vaccine for preventing or treating periodontal disease in companion animals comprises an amino acid sequence depicted in SEQ ID NOS: 103 to 110 and 120 to 128, or fragments or variants thereof.
[0043]In yet another embodiment, the isolated polypeptide immunologically effective as a vaccine for preventing or treating periodontal disease in companion animals having an amino acid sequence encoded by a DNA molecule comprises a nucleotide sequence which hybridizes under conditions of high stringency to any of the sequences depicted in SEQ ID NOS: 95 to 102 and 111 to 119.
[0044]In yet a further embodiment, the isolated polypeptide immunologically effective as a vaccine for preventing or treating periodontal disease in companion animals, which polypeptide comprises at least about 10 contiguous amino acids comprises a fragment of any of the polypeptide sequences of SEQ ID NOS: 103 to 110 and 120 to 128, which polypeptide is immunologically effective, either alone or linked to a carrier, as a vaccine for preventing or treating periodontal disease in companion animals. Preferably, the isolated polypeptide comprises at least about 25 amino acids.
[0045]Preferably, the isolated polypeptide, for preventing or treating periodontal disease in companion animals, encoded by a DNA molecule comprising a nucleotide sequence which comprises the sequence of fimA (SEQ ID NOS. 95 to 102).
[0046]Also preferred, the isolated polypeptide, for preventing or treating periodontal disease in companion animals, encoded for by a DNA molecule comprising a nucleotide sequence which comprises the sequence of oprF (SEQ ID NOS: 111 to 119).
[0047]In a preferred embodiment the isolated polypeptide is a recombinantly expressed polypeptide, which polypeptide is selected from the group consisting of FimA (SEQ ID NOS: 103 to 110) and OprF (SEQ ID NOS: 120 to 128).
[0048]In another embodiment, the recombinantly expressed polypeptide is fused to a carrier polypeptide. The fusion polypeptide is preferably essentially a poly-histidine or poly-threonine sequence.
[0049]In a further aspect, the present invention provides a vaccine for treating or preventing periodontal disease in companion animals comprising an immunologically effective amount of at least one inactivated pigmented anaerobic bacteria according to the present invention, and a pharmaceutically acceptable carrier.
[0050]In another embodiment, the present invention provides a vaccine for treating or preventing periodontal disease in companion animals comprising an immunologically effective amount of at least one inactivated pigmented anaerobic bacteria, at least one other bacteria or a virus, and a pharmaceutically acceptable carrier
[0051]In another aspect, the present invention provides a vaccine for treating or preventing periodontal disease in companion animals comprising an immunologically effective amount of at least one polynucleotide molecule according to the present invention, and a pharmaceutically acceptable carrier.
[0052]In yet another aspect, the present invention provides vaccine for treating or preventing periodontal disease in companion animals comprising an immunologically effective amount of at least one polypeptide according to the present invention, and a pharmaceutically acceptable carrier.
[0053]Preferably, the vaccine for treating or preventing periodontal disease in companion animals comprises an immunologically effective amount of FimA and a pharmaceutically acceptable carrier.
[0054]Also preferred is a vaccine for treating or preventing periodontal disease in companion animals comprising an immunologically effective amount of OprF and a pharmaceutically acceptable carrier.
[0055]The bacteria for use in the vaccines of the present invention may be selected from the group consisting of Porphyromonas gulae B43, P. cansulci B46, P. circumdentaria B52, P. gulae B69, P. circumdentaria B97, P. cangingivalis B98, P. salivosa B104, P. denticanis B106 and P. endodontalis B114.
[0056]In still another embodiment the present invention provides a vaccine composition for treating or preventing periodontal disease in companion animals comprising an immunologically effective amount of at least one inactivated isolated pigmented anaerobic bacteria according to the present invention, a pharmaceutically acceptable carrier, and optionally an adjuvant.
[0057]In yet another embodiment, the present invention provides a vaccine composition for treating or preventing periodontal disease in companion animals comprising an immunologically effective amount of at least one polynucleotide molecule according to the present invention, a pharmaceutically acceptable carrier, and optionally, an adjuvant.
[0058]In still a further embodiment, the present invention provides a vaccine composition for treating or preventing periodontal disease in companion animals comprising an immunologically effective amount of at least one polypeptide according to the present invention, a pharmaceutically acceptable carrier, and optionally, an adjuvant.
[0059]In another aspect the present invention provides a method for treating or preventing periodontal disease in companion animals comprising administering to a companion animal in need thereof, a vaccine composition according to the present invention.
[0060]In another aspect the present invention provides a method for diagnosing periodontal disease in companion animals by analyzing a sample for bacteria, polypeptides or polynucleotides of the present invention, wherein the presence of the bacteria, polypeptides, or polynucleotides are indicative of disease. Preferably, the analyzing step includes analyzing the sample using a method selected from the group consisting of PCR, hybridization, and antibody detection.
[0061]In yet another aspect the present invention provides a kit comprising, in at least one container, a composition for treating and preventing periodontal disease in companion animals comprising an effective amount of at least one inactivated isolated pigmented anaerobic bacteria, polypeptide, or polynucleotides of the present invention and a pharmaceutically acceptable carrier; wherein the kit further comprises a set of printed instructions indicating that the kit is useful for treating or preventing periodontal disease in companion animals. The kit may further comprises a means for dispensing said composition.
[0062]In still another aspect, the present invention provides a kit comprising in at least one container an isolated DNA molecule comprising a nucleotide sequence of at least about 15 contiguous nucleotides selected from any of SEQ ID NOS: 86 to 94, 95 to 102, and 111 to 119 which hybridizes under highly stringent conditions to the complement of any of the nucleotide sequences depicted in SEQ ID NOS: 86 to 94, 95 to 102, and 111 to 119, and a second isolated DNA molecule comprising in a second container an isolated DNA molecule comprising a nucleotide sequence of at least about 15 contiguous nucleotides selected from the complement of any of the nucleotide sequences depicted in SEQ ID NOS: 86 to 94, 95 to 102, and 111 to 119 which hybridizes under highly stringent conditions to any of the nucleotide sequences depicted in SEQ ID NOS: 86 to 94, 95 to 102, and 111 to 119, wherein the kit further comprises a set of instructions indicating that the kit is useful for the detection of Porphyromonas spp. Such a method may be used generally in all mammals, including humans.
[0063]In yet another aspect, the present invention provides a kit comprising in at least one container a protein having an amino acid sequence comprising at least 30 contiguous amino acids, which polypeptide is encoded by any of the nucleotide sequences of SEQ ID NOS: 95 to 102 and 111 to 119 and a statement indicating that the kit is useful for the detection of Porphyromonas spp. The kit may further comprise a second polypeptide, wherein the second polypeptide is an antibody which is conjugated to an enzyme that catalyzes a calorimetric or The enzyme is preferably selected from the group consisting of alkaline phosphatase and horseradish peroxidase. The kit may further comprise reagents for a colorimetric or chemiluminescent assay.
[0064]In a further aspect, the present invention provides a hybridization kit comprising in at least one container an isolated DNA molecule comprising a nucleotide sequence of at least about 15 contiguous nucleotides selected from any of SEQ ID NOS: 86 to 94, 95 to 102, and 111 to 119, or its complement, wherein the hybridization is specific to Porphyromonas spp. and wherein the kit further comprises a set of instructions indicating that the kit is useful for the detection of Porphyromonas spp. Preferably, the hybridization is performed under highly stringent conditions.
[0065]None of the bacteria, polynucleotides, polypeptides, vaccine, vaccine compositions or kits of the present invention comprise any of the bacteria, polynucleotides or peptides described in Fournier, D. et al., "Porphorymonas gulae sp. nov., an Anaerobic, Gram-negative, Coccibacillus from the Gingival Sulcus of Various Animal Hosts", International Journal of a Systematic and Evolutionary Microbiology (2001), 51, 1179-1189, including a strain, P. gulae spp. nov., designated ATCC 57100, Hirasawa and Takada, "Porphyromonas gingivicanis sp. nov. and Porphyromonas crevioricanis sp. nov., Isolated from Beagles", International Journal of Systemic Bacteriology, pp. 637-640, (1994), U.S. Pat. No. 5,710,039 or U.S. Pat. No. 5,563,063, or International Application PCT/AU98/01023, having publication number WO 99/29870.
[0066]In still a further aspect, the present invention provides methods of assessing the efficacy of a vaccine against one or more periopathogenic bacteria in an animal, particularly in a dog.
BRIEF DESCRIPTION OF THE FIGURES
[0067]FIG. 1 is a graph showing the results of a growth study identifying an "animal product-free" medium that supports the growth of Porphyromonas gulae B43. The following medium were tested: ME-complete, ME-hemin, ME-vitamin K, ME-both hemin and vitamin K, PYG-complete, PYG-hemin, PYG-vitamin K, PYG-both hemin and vitamin K, and BHI.
[0068]FIG. 2 is a graph showing mean bone loss in mice resulting from super infection with the indicated Porphyromonas sp.
[0069]FIG. 3 is a graph showing percent bone loss in mice resulting from super infection with the indicated Porphyromonas sp.
[0070]FIGS. 4A and B are photographs showing in FIG. 4A, an SDS PAGE, and in FIG. 4B a Western blot analysis, using the anti-Xpress® epitope serum (Invitrogen), of recombinant P. gulae B43 FimA expressed in E. coli BL21 from pBAD-HisA.
[0071]FIG. 5 is a photograph showing SDS-PAGE analysis of recombinant P. gulae B43 OprF expressed in E. coli BL21 cells from a lambda expression plasmid.
[0072]FIG. 6 is a graph showing the results of a homologous vaccine efficacy study based upon net bone loss;
[0073]FIG. 7 is a graph showing a P. gingivalis 53977 homologous vaccine efficacy study based upon percent bone loss.
[0074]FIG. 8 is a graph showing a P. gulae B43 homologous vaccine efficacy study based upon percent bone loss.
[0075]FIG. 9 is a graph showing the results of a heterologous vaccine efficacy study based upon net bone loss.
[0076]FIG. 10 is a graph showing the results for P. gulae B43 challenge groups of the heterologous vaccine efficacy study based upon percent bone loss.
[0077]FIG. 11 is a graph showing the results for P. gulae B69 challenge groups of the heterologous vaccine efficacy study based upon percent bone loss.
[0078]FIG. 12 is a graph showing the results for P. salivosa B104 challenge groups of the heterologous vaccine efficacy study based upon percent bone loss;
[0079]FIG. 13 is a graph showing the results for P. denticanis B106 challenge groups of the heterologous vaccine efficacy study based upon percent bone loss.
[0080]FIG. 14 is a graph showing the serological results of mice vaccinated with recombinant P. gulae B43 FimA or saline utilizing a FimA specific ELISA.
[0081]FIG. 15 is a graph showing the serological results of mice vaccinated with recombinant P. gulae B43 OprF or saline utilizing an OprF specific ELISA.
[0082]FIG. 16 is a graph showing bone loss at 0, 6, and 12 weeks post challenge. The T01 group is represented by dogs 3559424, 3592669, 3672859, 3673375, and 3691926; the T02 group is represented by dogs 3389600, 3628884, 3653552, 3657396, 3690164.
[0083]FIG. 17 is a graph showing bone reactivity scores for the T01, T02, and T03 groups at 0, 3, 6, 9, and 12 weeks post-challenge. Statistical significance of treatment effects are also indicated.
[0084]FIG. 18 is a graph showing bone reactivity scores for the T01, T02, and T03 groups at 0, 3, 6, and 9 weeks post-challenge. The statistical significance between the T01 and T02 groups is indicated.
[0085]FIGS. 19A-19D are radiographic images from a single dog in the T01 (vaccinates) group at (19A) 0, (19B) 3, (19C) 6, and (19D) 9 weeks post-challenge.
[0086]FIGS. 19E-19H are radiographic images from a single dog in the T02 (non-vaccinates) group at (19E) 0, (19F) 3, (19G) 6, and (19H) 9 weeks post-challenge.
[0087]FIGS. 20A-20C are graphs showing average systemic reactions for the T01 and T02 groups; scores are based upon a graded assessment of the level of physical activity of all dogs in each respective group.
[0088]FIGS. 20D-20F are graphs showing average local reactions for the T01 and T02 groups; scores are based upon a graded assessment of the level of swelling present at the injection site on all dogs in each respective group.
DETAILED DESCRIPTION OF THE INVENTION
Bacterial Isolates
[0089]The present invention provides isolated anaerobic bacteria, identified by their 16S rRNA DNA sequences, which cause periodontal disease and various other diseases and clinical manifestations in companion animals. More specifically, the bacteria are selected from the genus Porphyromonas.
[0090]Preferably, the isolated bacteria of the present invention include P. gulae B43, P. cansulci B46, P. circumdentaria B52, P. gulae B69, P. circumdentaria B97, P. cangingivalis B98, P. salivosa B104, P. denticanis B106, and P. endodontalis B114, although other species or strains are encompassed by the invention. In a preferred embodiment, the isolated bacteria of the present invention can be identified by their 16S rRNA DNA sequences shown in SEQ ID Nos. 86 to 94.
[0091]The diseases caused by infection with the bacteria of the present invention include, but are not limited to, companion animal periodontal disease, companion animal oral malodor (halitosis), bovine foot rot, canine coronary heart disease and canine systemic infections. Bacteria within the genus Porphyromonas have also been connected with various human diseases, including coronary heart disease, parotitis, oral malodor, gingivitis, periodontis, stroke, atherosclerosis, hyperlipidemia, bacterial vaginosis, intrauterine growth retardation (IUGR), and increased incidence of pre-term delivery of low birth weight infants.
[0092]The present invention provides isolated polynucleotide and isolated polypeptide molecules of Porphyromonas spp. More particularly, the invention provides isolated polynucleotide molecules having the nucleotide sequence of Porphyromonas spp. fimA and oprF genes or degenerate variants thereof and isolated polypeptide molecules having the amino acid sequences of the FimA and OprF proteins encoded by such genes, respectively.
[0093]The present invention also provides polynucleotide sequences having at least about 90% homology, preferably at least about 95%, and most preferably at least 99%, sequence identity to any of SEQ ID NOS: 95 to 102 and 111 to 119 as determined using any known standard identity algorithm. In addition, the present invention provides polynucleotide sequences that hybridize under stringent conditions to the complement of any of the polynucleotide sequences shown in SEQ ID NOS: 95 to 102 and 111 to 119.
[0094]In another specific embodiment, a nucleic acid which is hybridizable to any of the polynucleotide sequences depicted in SEQ ID No. 86 to 102 and 111 to 119, or their complements, under conditions of high stringency is provided. By way of example and not limitation, procedures using such conditions of high stringency for regions of hybridization of over 90 nucleotides are as follows. Prehybridization of filters containing DNA is carried out for 8 h to overnight at 65° C. in buffer composed of 6×SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 μg/mL denatured salmon sperm DNA. Filters are hybridized for 48 h at 65° C. in prehybridization mixture containing 100 μg/mL denatured salmon sperm DNA and 5-20×106 cpm of 32P-labeled probe. Washing of filters is done at 37° C. for 1 h in a solution containing 2×SSC, 0.01% PVP, 0.01% Ficoll, and 0.01% BSA. This is followed by a wash in 0.1×SSC at 50° C. for 45 min before autoradiography.
[0095]Other conditions of high stringency which may be used depend on the nature of the nucleic acid (e.g. length, GC content etc.) and the purpose of the hybridization (detection, amplification, etc.) and are well known in the art. For example, stringent hybridization of an oligonucleotide of approximately 15-40 bases to a complementary sequence in the polymerase chain reaction (PCR) is done under the following conditions: a salt concentration of 50 mM KCl, a buffer concentration of 10 mM Tris-HCl, a Mg2+ concentration of 1.5 mM, a pH of 7-7.5 and an annealing temperature of 55-60° C.
[0096]In a preferred specific embodiment, after hybridization, wash conditions are as follows. Each membrane is washed two times each for 30 minutes each at 45° C. in 40 mM sodium phosphate, pH 7.2, 5% SOS, 1 mM EDTA, 0.5% bovine serum albumin, followed by four washes each for 30 minutes in sodium phosphate, pH 7.2, 1% SDS, 1 mM EDTA. For high stringency hybridization, the membranes are additionally subjected to four washes each for 30 minutes in 40 mM sodium phosphate, pH 7.2, 1% SDS, 1 mM EDTA at 55° C., followed by four washes each for 30 minutes in sodium phosphate, pH 7.2, 1% SDS, 1 mM EDTA at 65° C.
[0097]The present invention further provides vaccines and vaccine formulations which, when administered to a companion animal in a therapeutically effective amount, are useful in treating or preventing (i.e., conferring resistance) to periodontal disease in a companion animal.
[0098]In one embodiment, the present invention provides a vaccine that comprises at least one attenuated (modified live) or inactivated whole cell Porphyromonas spp. preparation (bacterin). In a preferred embodiment the present invention provides a vaccine that contains an inactivated whole cell preparation of at least three Porphyromonas spp., for example, the combination of P. gulae B43, P. salivosa B104 and P. denticanis B106. The bacterial cells can be inactivated using a variety of agents, such as formalin, binary ethyleneimine (BEI) or beta-propriolactone. Preferably, formalin is used as the inactivating agent.
[0099]In another embodiment, the vaccine comprises a subunit fraction of a Porphyromonas spp. capable of inducing an immune response.
[0100]In a preferred embodiment the vaccine of the present invention comprises one or more subunit polypeptides or fragments or variants thereof or one or more isolated polynucleotide sequences or fragments or variants thereof.
[0101]The attenuated (modified live) or inactivated vaccines (bacterins), or isolated subunit polypeptides, or isolated polynucleotides can be present in combination with other known vaccine formulation components such as with compatible adjuvants, diluents, or carriers.
DEFINITIONS AND ABBREVIATIONS
[0102]The term "ORF" indicates "open reading frame", i.e. the coding region of a gene.
[0103]The term "Percentage of sequence identity" for nucleotide sequences and polypeptide sequences is determined by comparing two optimally aligned sequences over a comparison window, wherein optimal alignment provides the highest order match and can introduce nucleotide or amino acid additions or to the test or reference sequence. The percentage identity is determined by calculating the percentage of nucleotides-that are identical between the test and reference sequence at each position over the entire sequence. Optimal sequence alignment and percentage identity can be determined manually, or more preferably by a computer algorithm including but not limited to TBLASTN, BLASTP, FASTA, TFASTA, GAP, BESTFIT, and CLUSTALW (Altschul et al., 1990, J. Mol. Biol. 215(3):403-10; Pearson and Lipman, 1988, Proc. Natl. Acad. Sci. USA 85(8):2444-8; Thompson, et al., 1994, Nucleic Acids Res. 22(22):4673-80; Devereux et al., 1984, Nuc. Acids. Res. 12:387-395); Higgins, et al., 1996, Methods Enzymol. 266:383-402). Preferably, the NCBI Blast Server (http://www.ncbi.nim.nih.gov) set at the default parameters is used to search multiple databases for homologous sequences.
[0104]The term "heterologous", when used herein means derived from a different bacterial species or strain.
[0105]The term "homology", "homologous", and the like, when used herein means the degree of identity shared between polynucleotide or polypeptide sequences.
[0106]The term "homologous", when used in reference to a bacterial species means the same bacterial species or strain.
[0107]The term "host cell", when used herein means a bacteria or eukaryotic cell that harbors a plasmid, virus, or other vector.
[0108]The term "isolated" when used herein means removed from its naturally occurring environment, either alone or in a heterologous host cell, or chromosome or vector (e.g., plasmid, phage, etc.).
[0109]The terms "isolated anaerobic bacteria", "isolated bacterial" "isolated bacterial strain" and the like refer to a composition in which the bacteria are substantial free of other microorganisms, e.g., in a culture, such as when separated from it naturally occurring environment.
[0110]The term "isolated polynucleotide" indicates a composition in which the isolated nucleotide comprises at least 50% of the composition by weight. More preferably, the isolated polynucleotide comprises about 95%, and most preferably 99% by weight of the composition.
[0111]The term "isolated polypeptide" indicates a composition in which the isolated polypeptide comprises at least 50% of the composition by weight. More preferably, the isolated polypeptide comprises about 95%, and most preferably 99% by weight of the composition.
[0112]The term "functionally equivalent" as utilized herein, refers to a recombinant polypeptide capable of being recognized by an antibody specific to native polypeptide produced by the bacteria which causes periodontal disease in companion animals, or a recombinant polypeptide capable of eliciting or causing a substantially similar immunological response as that of the native protein from the endogenous bacteria. Thus, an antibody raised against a functionally equivalent polypeptide also recognizes the native polypeptide produced by the bacteria which causes periodontal disease in companion animals.
[0113]The term "immunogenicity" refers to the capability of a protein or polypeptide to elicit an immune response directed specifically against the bacteria that causes periodontal disease in companion animals.
[0114]The term "antigenicity" refers to the capability of a protein or polypeptide to be immunospecifically bound by an antibody raised against the protein or polypeptide.
[0115]The term "antibody", as used herein, refers to an immunoglobulin molecule able to bind to an antigen. Antibodies can be a polyclonal mixture or monoclonal. Antibodies can be intact immunoglobulins derived from natural sources or from recombinant sources, or can be immunoreactive portions of intact immunoglobulins. Antibodies can exist in a variety of forms including, for example, as, Fv, Fab', F(ab')2, as well as in single chains.
[0116]The term "companion animal", as used herein, refers to any non-human animal in captivity considered to be a pet. These may include, but are not restricted to, dogs, cats, horses, sheep, rabbits, monkeys, and rodents, including mice, rats, hamsters, gerbils, and ferrets.
[0117]The term "protection", "protecting", and the like, as used herein with respect to a vaccine, means that the vaccine prevents or reduces the symptoms of the disease caused by the organism from which the antigen(s) used in the vaccine is derived. The terms "protection" and "protecting" and the like, also mean that the vaccine can be used to "treat" the disease or one of more symptoms of the disease that already exists in a subject.
[0118]The term "therapeutically effective amount" refers to an amount of the bacteria, or a subunit, (e.g., polypeptides, polynucleotide sequences) and combinations thereof sufficient to elicit an immune response in the subject to which it is administered. The immune response can comprise, without limitation, induction of cellular and/or humoral immunity.
[0119]The term "preventing infection" means to prevent or inhibit the replication of the bacteria which cause periodontal disease in companion animals, to inhibit transmission of the bacteria, or to prevent the bacteria from establishing itself in its host, or to alleviate the symptoms of the disease caused by infection. The treatment is considered therapeutic if there is a reduction in bacterial load.
[0120]The term "pharmaceutically acceptable carrier" refers to a carrier medium that does not interfere with the effectiveness of the biological activity of the active ingredient and is not toxic to the subject to whom it is administered.
[0121]The term "therapeutic agent" refers to any molecule, compound or treatment, preferably an antibacterial molecule or compound, that assists in the treatment of a bacterial infection or a disease or condition caused thereby.
[0122]The term "fragment or variant thereof" refers to partial nucleotide or amino acid sequences according to the present invention, Preferably the fragments or variants of the polypeptides that are provided in the present invention are capable of eliciting a humoral and/or cellular immune response in a companion animal, Analogs are encompassed by the term "fragment or variant thereof". Mutant polynucleotides which may possess one or more mutations which are deletions, insertions or substitutions of nucleotide residues are encompassed by the term "fragment or variant thereof". Allelic variants are encompassed by the term "fragment or variant thereof".
Isolation and Characterization of Porphyromonas spp
[0123]Bacteria provided by the present invention can be obtained using known sampling, culture and isolation techniques. For example, microbial samples can be obtained from a population of companion animals, such as from dogs and cats, exhibiting periodontal disease. Evidence of periodontal disease can be observed using known measures, such as dogs with periodontal pockets >3 mm and cats with periodontal pockets >2 mm. Known parameters for characterizing periodontal disease such as dental indices (gingival index and periodontal index) and periodontal pocket depths can determined for the sample population of companion animals. Individual samples can be obtained from the periodontal pocket of a particular animal, maintained under anaerobic conditions and cultured using various known culture media.
[0124]Clinical isolates can be characterized using known techniques such as a number of biochemical tests, and 16S rRNA DNA sequence analysis to determine their genus and species. Individual isolates can be transferred to plates and antibiotic disks (Anaerobe Systems) can be placed on the agar surface to determine the antibiotic resistance patterns of each isolate. Purified colonies can also be subjected to known indole and catalase tests (Anaerobe Systems). Lipase and lecithinase production patterns can be determined for individual isolates.
[0125]The isolates can be typed based on their 16S rRNA DNA sequence. Individual, well-isolated colonies can be utilized as a template for polymerase chain reactions (PCR) amplification of the 16S rRNA region using, for example, primers D0056 and D0057 (Seq. ID NO. 1 and Seq. ID NO. 2; Table 1). The resulting PCR products can be purified using available PCR preps kits (Promega Corp.; Madison, Wis.) and pooled by isolate. The purified PCR products can then be desalted and subjected to DNA sequence analysis. The resulting DNA sequences can be used to search available DNA databases. The bacterial isolates can then be typed based on the closest match identified by database searches.
TABLE-US-00001 TABLE 1 DNA sequence identification listing. All oligo- nucleotide primers were synthesized by either Gibco-BRL (USA) or Lark Technologies Inc. (USA). SEQ ID NO. Name Target DNA Sequence 1 D0056 16S rRNA GGATTAGATACCGTGGTAGTC 2 D0057 16S rRNA CCCGGGAACGTATTCACCG 3 PFZ175-AP1 16S rRNA GGCTTAAGTGCCATAACGAG 4 PFZ175-AP2 16S rRNA CTGGCGTCTTACGACGGCTG 5 PFZ175-AP3 16S rRNA TGTCGTCAGCTCGTGCCGTG 6 D0067 fimA GCGCAGCAAGGCCAGCCCGG 7 D0068 fimA GAGCGAACCCCGCTCCCTGT 8 D0078 fimA GCGACGCTATATGCAAGACAATC 9 D0097 fimA ggcctcgagAACAAAGACAACGAAGCAGAACCC 10 D0098 fimA ggcaagcttACCAAATAACATTTTGTACAACACC 11 PFZ185-AP1 fimA TCATCCGACAATCCTGTGTG 12 PFZ185-AP2 fimA AGCAGCTGCTAAATCGGCTC 13 PFZ185-AP3 fimA TTGGCAAGACTCTTGCAGAG 14 PFZ185-AP4 fimA CTGCAGTCAGTTCAGTTGTC 15 PFZ186-AP1 fimA TACGTCAACAGGCTCTGCTG 16 PFZ186-AP2 fimA GACAACTGAACTAACTGCAG 17 PFZ186-AP3 fimA AACATAGAAACCTTGTGGAG 18 PFZ186-AP4 fimA TGTCGTCTGGTTGGGAAGAG 19 PFZ186-AP5 fimA AATCTGATTGCCTCCCTGAG 20 PFZ187-AP1 fimA GGGAACCGATTTAGCAGCAG 21 PFZ187-AP2 fimA CCAATACAGGGTAATAGGTC 22 PFZ187-AP3 fimA GTTGTCAATGCTTTTACCTC 23 PFZ187-AP4 fimA GATTGAGAATATCAAATGTG 24 PFZ187-AP5 fimA TTAGGCGTATAACCATTGTC 25 PFZ187-AP6 fimA ATTTAACGGTGCTTACACAC 26 PFZ187-AP7 fimA CCAATTGGCGGCCTGAGCTG 27 PEZ187-AP8 fimA TGGCATAGTTGGTAGGTGTG 28 PFZ187-AP9 fimA TGTAAGCACCGTTAAATGTG 29 PFZ187-AP11 fimA CTGACAGGTTCTTTGACCAC 30 PFZ187-AP12 fimA TGTTCCTTGGTTGAGCCGTG 31 PFZ187-AP13 fimA GTGGTCAAAGAACCTGTCAG 32 PFZ187-AP14 fimA CATAAACACACAGGATTGTC 33 PFZ187-AP15 fimA TTGCTTCTTTGCAATGAGAC 34 PFZ187-AP16 fimA AGCCATGCGAGCATGTACAC 35 PFZ187-AP17 fimA CTGTCATGATCAAACCTGTG 36 PFZ187-AP18 fimA ACCGTCTGCATTCACGAGTG 37 PFZ188-AP1 fimA GCCTTCCAATGATGCTCCAC 38 PFZ188-AP2 fimA GGACGTAGACCTGCATTCTG 39 PFZ188-AP3 fimA CGCAATACGGGCATGAACAC 40 PFZ188-AP4 fimA TTATGGTTATGATGGACCTC 41 PPZ188-AP5 fimA TGGTACTCCTTTGAGTTCTG 42 PPZ188-AP6 fimA CACACTTGCGCGGTAACCAC 43 D0086 oprF1 ATGAAGGTAAAGTACTTAATGC 44 D0087 oprF1 AGATGAATTACTTGGAGCGAACGAT 45 KWK-Pg-03 oprF1 TTACTTGGAGCGAACGATTACAACACG 46 PFZ209-AP1 oprF1 TTGGTGCAGCTCACTTCGAC 47 PFZ209-AP2 oprF1 ACCACATCAAACATAAAGTC 48 PFZ209-AP3 oprF1 ACATTCGGGGCATGATACAG 49 PFZ209-AP4 oprF1 ATGCCATTGAGCCAATGGAC 50 PFZ210-AP1 oprF1 TTGACTTCATGTTCGATGTG 51 PFZ210-AP2 oprF1 TGCCAATGAATTTTATGCTG 52 PFZ210-AP3 oprF1 CGCTTGGAGAGTTCTTCGAC 53 PFZ210-AP4 oprF1 TATCAACGATCTGAATGGTC 54 PFZ211-AP1 oprF1 AACTACTTCAAGCCCTACAG 55 PFZ211-AP2 oprF1 CGTAACCCAAACCTACCCAC 56 PFZ211-AP3 oprF1 ACGGGACGCTTGCTCAACTC 57 PFZ211-AP4 oprF1 ATTGGGGCTTGGTAAATGAC 58 PFZ211-AP5 oprF1 ATACGCTCTACACGAGGCTC 59 PFZ212-AP1 oprF1 CCGCCATGGCTGGAGCTCAC 60 PFZ212-AP2 oprF1 TTTGAAACCATATCCCACAC 61 PFZ212-AP3 oprF1 AGTAACTTCAGGACATTCTG 62 PFZ212-AP4 oprF1 ACGTCCAGTTTCTTGCCCAG 63 PFZ213-AP1 oprF1 TTGACTTCATGTTCGATGTG 64 PFZ213-AP2 oprF1 TTTGTGTTGGTAACCAACAC 65 PFZ213-AP3 oprF1 ACAGGACGCTTAGAGAGCTC 66 PFZ213-AP4 oprF1 ACGCGCTTATCAACGATCTG 67 PFZ213-AP5 oprF1 CTTCCCAAGGAACGTGTGTG 68 PFZ214-AP1 oprF1 ACTTTATGTTTGATGTTGTG 69 PFZ214-AP2 oprF1 CCAACACCGAACCAAGGCAC 70 PFZ214-AP3 oprF1 TCTCAACTCAGTATTCTCAG 71 PFZ214-AP4 oprF1 TAACCTTAATTTTGGTCGTG 72 PFZ215-AP1 oprF1 CACACCTACAACACTGCCAC 73 PFZ215-AP2 oprF1 TCAAACATGAAATCATAGTG 74 PFZ215-AP3 oprF1 CTCGGGGCAGAAAGCAGGAC 75 PFZ215-AP4 oprF1 GACTTGAACTCTCAGATCAG 76 KWK-Pg-06 oprF1 atgCAGGAAAATACTGTACCGGCAACG 77 KWK-Pgu-14 oprF1 gtgtgtcatatgCAGGAAAATACTGTACC 78 KWK-Pgu-15 oprF1 gtgtgttctagattaTTACTTGGAGCGAACG 79 KWK-Ps-02 oprF1 ACACCTGAGACTCAGACATTGC 80 KWK-Ps-03 oprF1 CATGCGCGAGCCTCAAAAAGC 81 KWK-Ps-04b oprF1 CCTGCCACTCAACAGAAATCATATCAGAA GGAACTCC 82 KWK-Ps-05b oprF1 CTGCTCATAAGACGGCTTTTGACCGTTCT GCAGG 83 KWK-Ps-06b oprF1 CTTTTGACCGTTCTGCAGGACATTGGTTC TTGACTCTCC 84 D122 fimA TGGCTAARYTGACYGTAATGGTYTA 85 D123 fimA AGTTYACYAATACAGGRTAATAGGT 86 P. gulae NA CACGCAGTAAACGATGATTACTAGGAGT B43 16S TTGCGATATACCGTCAAGCTTCCACAGC rRNA GAAAGCGTTAAGTAATCCACCTGGGGAG poly- TACGCCGGCAACGGTGAAACTCAAAGGA nucleotide ATTGACGGGGGCCCGCACAAGCGGAGGA sequence ACATGTGGTTTAATTCGATGATACGCGA GGAACCTTACCCGGGATTGAAATGTAGA CGACGGATGGTGAAAGCCGTCTTCCCTT CGGGGCGTCTATGTAGGTGCTGCATGGT TGTCGTCAGCTCGTGCCGTGAGGTGTCG GCTTAAGTGCCATAACGAGCGCAACCCA CATCGGTAGTTGCTAACAGGTTTAGCTG AGGACTCTACCGAGACTGCCGTCGTAAG GCGCGAGGAAGGTGTGGATGACGTCAAA TCAGCACGGCCCTTACATCCGGGGCGAC ACACGTGTTACAATGGGAGGGACAAAGG GCAGCTACCGGGCGACCGGGTGCGAATC TCGAAACCCTTCCCCAGTTCGGATCGGA GTCTGCAACTCGACTCCGTGAAGCTGGA TTCGCTAGTAATCGCGCATCAGCCATGG CGCGGTGAATAC 87 P. cansulci NA CACGCCGTAAACGATGATTACTCGGAGT B46 16S ATGCGATATGAGTGTATGCTTCTTAGCG rRNA AAAGCGTTAAGTAATCCACCTGGGGAGT poly- ACGTCGGCAACGATGAAACTCAAAGGAA nucleotide TTGACGGGGGCCCGCACAAGCGGAGGAA sequence CATGTGGTTTAATTCGATGATACGCGAG GAACCTTACCCGGGATTGAAATATAGAT GACAGGCAGCGAGAGTTGTTATCCCTTC GGGGCATCTATGTAGGTGCTGCATGGTT GTCGTCAGCTCGTGCCGTGAGGTGTCGG CTTAAGTGCCCTAACGAGCGCAACCCAC ATTATTAGTTACTAACAGGTTAAGCTGA GGACTCTAATAAGACTGCCGGCGTAAGC CGTGAGGAAGGTGTGGATGACGTCAAAT CAGCACGGCCCTTACATCCGGGGCGACA CACGTGTTACAATGGTAGGGACAAAGGG CAGCTACCGGGCGACCGGATGCGAATCT CCAAACCCTATCCCAGTTCGGATCGGAG TCTGCAACTCGACTCTGTGAAGCTGGAT TCGCTAGTAATCGCGCATCAGCCATGGC GCGGTGAATAC 88 P. NA CACGCTGTAAACGATGAATACTAGATTT circumdentaria TTGCGATATACAGTAAGAGTCTAAGCGA B52 16S AAGCGATAAGTATTCCACCTGGGGAGTA rRNA poly- CGCCGGCAACGGTGAAACTCAAAGGAAT nucleotide TGACGGGGGCCCGCACAAGCGGAGGAAC sequence ATGTGGTTTAATTCGATGATACGCGAGG AACCTTACCTGGGATTGAAATTTAGGAG AACGATTTATGAAAGTAGATTTTCCCTT CGGGGCTCCTAAGTAGGTGCTGCATGGT TGTCGTCAGCTCGTGCCGTGAGGTGTCG GCTTAAGTGCCATAACGAGCGCAACCCG CGTTGATAGTTACTAACAGATAAAGCTG AGGACTCTATCGAGACAGCCGTCGTAAG ACGCGAGGAAGGGGCGGATGACGTCAAA TCAGCACGGCCCTTACATCCAGGGCGAC ACACGTGTTACAATGGCAAGGACAAAGG GAAGCCACATAGCGATATGGAGCAGATC CTCAAACCTTGTCCCAGTTCGGATCGGA GTCTGCAACTCGACTCCGTGAAGCTGGA TTCGCTAGTAATCGCGCATCAGCCATGG CGCGGTGAATACC 89 P. gulae NA CACGCAGTAAACGATGATTACTAGGAGT B69 16S TTGCGATATACCGATAAGCTTCCACAGC
rRNA poly- GAAAGCGTTAAGTAATCCACCTGGGGAG nucleotide TACGCCGGCAACGGTGAAACTCAAAGGA sequence ATTGACGGGGGCCCGCACAAGCGGAGGA ACATGTGGTTTAATTCGATGATACGCGA GGAACCTTACCCGGGATTGAAATGTAGA TGACAGATGGTGAAAGCCGTCTTCCCTT CGGGGCGTCTATGTAGGTGCTGCATGGT TGTCGTCAGCTCGTGCCGTGAGGTGTCG GCTTAAGTGCCATAACGAGCGCAACCCA TATCGGTAGTTGCTAACAGGTCAAGCTG AGGACTCTACCGAGACTGCCGTCGTAAG GCGAGAGGAAGGTGTGGATGACGTCAAA TCAGCACGGCCCTTACATCCGGGGCGAC ACACGTGTTACAATGGGAGGGACAAAGG GCAGCTACCGGGCGACCGGATGCGAATC TCGAAACCCTTCCCCAGTTCGGATCGGA GTCTGCAACTCGACTCCGTGAAGCTGGA TTCGCTAGTAATCGCGCATCAGCCATGG CGCGGTGAATACC 90 P. NA CACGCTGTAAACGATGAATACTAGATTT circumdentaria TTGCGATATACAGTAAGAGTCTAAGCGA B97 16S AAGCGATAAGTATTCCACCTGGGGAGTA rRNA poly- CGCCGGCAACGGTGAAACTCAAAGGAAT nucleotide TGACGGGGGCCCGCACAAGCGGAGGAAC sequence ATGTGGTTTAATTCGATGATACGCGAGG AACCTTACCTGGGATTGAAATTTAGGAG AACGATTTATGAAAGTAGATTTTCCCTT CGGGGCTCCTAAGTAGGTGCTGCATGGT TGTCGTCAGCTCGTGCCGTGAGGTGTCG GCTTAAGTGCCATAACGAGCGCAACCCG CGTCGATAGTTACTAACAGGTAATGCTG AGGACTCTATCGAGACAGCCGTCGTAAG ACGAGAGGAAGGGGCGGATGACGTCAAA TCAGCACGGCCCTTACATCCAGGGCGAC ACACGTGTTACAATGGCAAGGACAAAGG GAAGCCACATAGCGATATGGAGCAGATC CTCAAACCTTGTCCCAGTTCGGATCGGA GTCTGCAACTCGACTCCGTGAAGCTGGA TTCGCTAGTAATCGCGCATCAGCCATGG CGCGGTGAATAC 91 P. NA CAGTAAACGATGATTACTCGGAGTATGC cangingivalis GATATATGGTATGCTCCCAAGGGAAACC B98 16S GATAAGTAATCCACCTGGGGAGTACGCC rRNA poly- GGCAACGGTGAAACTCAAAGGAATTGAC nucleotide GGGGGCCCGCACAAGCGGAGGAACATGT sequence GGTTTAATTCGATGATACGCGAGGAACC TTACCCGGGATTGAAATGTACATGACGG TTGGGCGAGAGCCTGACTTCCCTTCGGG GCATGTATGTAGGTGCTGCATGGTTGTC GTCAGCTCGTGCCGTGAGGTGTCGGCTT AAGTGCCATAACGAGCGCAACCCACATC GTCAGTTACTAACAGGTAGAGCTGAGGA CTCTGACGAGACTGCCGTCGTAAGGCGC GAGGAAGGTGTGGATGACGTCAAATCAG CACGGCCCTTACATCCGGGGCGACACAC GTGTTACAATGGTAGGGACAAAGGGCAG CTACCTGGCGACAGGATGCGAATCTCCA AACCCTATCTCAGTTCGGATCGGAGTCT GCAACTCGACTCCGTGAAGCTGGATTCG CTAGTAATCGCGCATCAGCCATGGCGCG GTGAATACGTT 92 P. salivosa NA CAGTAAACGATGATAACTGGGCGTATGC B104 16S GATATACAGTATGCTCCTGAGCGAAAGC rRNA poly- GTTAAGTTATCCACCTGGGGAGTACGCC nucleotide GGCAACGGTGAAACTCAAAGGAATTGAC sequence GGGGGCCCGCACAAGCGGAGGAACATGT GGTTTAATTCGATGATACGCGAGGAACC TTACCCGGGATTGAAATTTAGCGGACTA TGTATGAAAGTACATATCCTGTCACAAG GCCGCTAAGTAGGTGCTGCATGGTTGTC GTCAGCTCGTGCCGTGAGGTGTCGGCTT AAGTGCCATAACGAGCGCAACCCACGTT GTCAGTTACTATCGGGTAAAGCCGAGGA CTCTGACAAGACTGCCGTCGTAAGGCGC GAGGAAGGTGTGGATGACGT 93 P. denticanis NA CACGCCGTAAACGATGCTCACCGGCTCT B106 16S ATGCGATAAGACAGTATGGGGCTAATAG rRNA poly- AAATAATTAAGTGAGCCACCTGGGGAGT nucleotide ACGTCGGCAACGATGAAACTCAAAGGAA sequence TTGACGGGGGCCCGCACAAGCGGAGGAA CATGTGGTTTAATTCGATGATACGCGAG GAACCTTACCCGGGTTTAAATGTATGTT GCATTATGTAGAAATACGTATTTTCTTC GGAACTGCATACAAGGTGCTGCATGGTT GTCGTCAGCTCGTGCCGTGAGGTGTCGG GTTAAGTCCCATAACGAGCGCAACCCTT ATGATTAGTTGCTAACGGTTCAAGCCGA GCACTCTATTCACACTGCCACCGTAAGG TGCGAGGAAGGAGGGGATGATGTCAAAT CAGCACGGCCCTTATATCCGGGGCTACA CACGTGTTACAATGGTCGGTACAGCGGG TTGCATTTACGTGAGTAACAGCTAATCC CAAAAATCGGTCTCAGTTCGGATTGGAG TCTGCAACTCGACTCCATGAAGTTGGAT TCGCTAGTAATCGCACATCAGCCATGGT GCGGTGAATAC 94 P. NA CACCGCAGTAAACGATGAATACTAGATC endodontalis TTTGCGATATACGGTAAGGGTCTAAGCG B114 16S AAAGCGATAAGTATTCCACCTGGGGAGT rRNA poly- ACGTCGGCAACGATGAAACTCAAAGGAA nucleotide TTGACGGGGGCCCGCACAAGCGGAGGAA sequence CATGTGGTTTAATTCGATGATACGCGAG GAACCTTACCCGGGATTGAAATTTAGCG GGCGGGCTATGAGAGTAGCCTTTCCTAC GGGACTGCTAAGTAGGTGCTGCATGGTT GTCGTCAGCTCGTGCCGTGAGGTGTTGG CTTAAGTGCCATAACGAGCGCAACCCAC GTTGATAGTTACTAACAGTTAAAGCTGA GGACTCTATCGAGACAGCCGGCGTAAGC CGTGAGGAAGGTGTGGATGACGTCAAAT CAGCACGGCCCTTACATCCGGGGCGACA CACGTGTTACAATGGTGAGGACAGCGGG AAGCGGCCTGGTGACAGGTAGCAGATCC CCAAACCTCATCCCAGTTCGGATTGGAG TCTGCAACTCGACTCTATGAAGCTGGAT TCGCTAGTAATCGCGCATCAGCCATGGC GCGGTGAATAC 95 P. gulae NA TCTAAATCGAAAAAGATCCTAATAAAAC B43 fimA AATATTCACTTTTAAAACAAAAACGAGA poly- TGAAAAAGACTAAGTTTTTCTTGTTGGG nucleotide ACTTGCTGCCCTTGCTATGACAGCTTGT sequence AACAAAGACAACGAAGCAGAACCCGTTG TAGAAGGTAACGCTACCATTAGCGTAGT ATTGAAGACCAGCAATCCGAATCGTGCT TTCGGGGTTGCAGATGACGAAGCAAAAG TGGCTAAACTGACTGTAATGGTCTACAA GGGTGAGCAGCAGGAAGCCATCAAATCA GCCGAAAATGCAATTAAGGTTGAGAACA TCAAATGTGGTGCAGGCTCACGTACGCT GGTCGTAATGGCCAATACGGGTGGAATG GAATTGGCTGGCAAGACTCTTGCAGAGG TAAAAGCATTGACAACTGAACTAACTGC AGAAAACCAAGAGGCTACAGGTTTGATC ATGACAGCAGAGCCTGTTGACGTAACAC TTGTCGCCGGCAATAACTATTATGGTTA TGATGGAACTCAGGGAGGCAATCAGATT TCGCAAGGTACTCCTCTTGAAATCAAAC GTGTTCATGCCCGTATTGCGTTCACCAA GATTGAAGTGAAGATGAGCGAGTCTTAT GTGAACAAATACAACTTTACCCCCGAAA ACATCTATGCACTTGTGGCTAAGAAGAA GTCTAATCTATTCGGTACTTCATTGGCA AATAGTGATGATGCTTATTTGACCGGTT CTTTGACGACTTTCAACGGTGCTTATAC CCCTGCAAACTATACTCATGTCGTCTGG TTGGGAAGAGGCTACACAGCGCCTTCCA ATGATGCTCCACAAGGTTTCTATGTTTT GGAGAGTGCATACGCTCAGAATGCAGGT CTACGTCCTACCATTCTATGTGTAAAGG GTAAGCTGACAAAGCATGATGGTACTCC TTTGAGTTCTGAGGAAATGACAGCTGCA TTCAATGCCGGCTGGATTGTTGCAAACA ATGATCCTACGACCTATTATCCTGTATT AGTGAACTTTGAGAGC 96 P. NA TAATGGAGAACAGCAGGAAGCCATCGAA circumdentaria TCAGCCGAAAATGCGACTAAGATTGAGA B52 fimA ATATCAAATGTGGTGCAGGCCAACGTAC poly- GCTGGTCGTAATGGCCAATACGGGTGGA nucleotide ATGGAATTGGCTGGCAAGACTCTTGCAG sequence AGGTAAAAGCATTGACAACTGTACTGAC TGAAGAAAACCAAGAGGCCACAGGTTTG ATCATGACAGCAGAGCCAAAAGCAATCG TTTTGAAGGCAGGCAAGAACTATATTGG ATACGATGGAGCCGGAGAGGGCAACCAC ATTGAGAATGCTCCTCTTGAAATCAAAC GTGTACATGCTCGCATGGCTTTCACCGA AATTAAAGTACAGATGAGCGCAGCCTAC GATAACATTTACACATTTACCCCTGAAA AGATTTATGGTCTCATTGCAAAGAAGCA ATCTAATTTGTTCGGGGCAACACTCGTG AATGCAGACGCTAATTATCTGACAGGTT CTTTGACCACATTTAACGGTGCTTACAC ACCTACCAACTATGCCAATGTTCCTTGG TTGAGCCGTGATTACGTTGCACCTACCG CTGGTGCTCCTCAGGGCTTCTACGTATT AGAAAATGACTACTCAGCTAACAGTGGA ACTATTCATCCGACAATCCTGTGTGTTT ATGGCAAACTTCAGAAAAACGGAGCCGA CCTGACGGGAACCGATTTAGCAGCAGCT CAGGCCGCCAATTGGGTGGATGCAGAAG GCAAG 97 P. gulae NA GGCGCAGCATAACCTCGACGAACTGCGA B69 fimA CACTATATGCAGGACAATCTCTAAATCG poly- AATAAAGATTCTAATAAAACAATATTCA nucleotide CTTTTAAAACAAAAACAAGATGAAAAAG sequence ACTAAGTTTTTCTTGTTGGGACTTGCTG CCCTTGCTATGACAGCTTGTAACAAAGA CAACGAAGCAGAACCCGTTGTAGAAGGT AACGCTACCATTAGCGTAGTATTGAAGA CCAGCAATCCGAATCGTGTTTTCGGGGT TGCAGATGACGAAGCAAAAGTGGCTAAG TTGACCGTAATGGTTTATAATGGAGAAC AGCAGGAAGCCATCGAATCAGCCGAAAA TGCGACTAAGATTGAGAATATGAAATGT GGTGCAGGCCAACGTACGCTGGTCGTAA TGGCCAATACGGGTGGAATGGAATTGGC TGGCAAGACTCTTGCAGAGGTAAAAGCA TTGACAACTGTACTGACTGAAGAAAACC AAGGGGCCACAGGTTTGATCATGACAGC AGAGCCAAAAGCAATCGTTTTGAAGGCA GGCAAGAACTATATTGGATACGATGGAG CCGGAGAGGGCAACCACATTGAGAATGC TCCTCTTGAAATCAAACGTGTACATGCT CGCATGGCTTTCACCGAAATTAAAGTAC AGATGAGCGCAGCCTACGATAACATTTA CACATTTACCCCTGAAAAGATTTATGGT CTCATTGCAAAGAAGCAATCTAATTTGT TCGGGGCAACACTCGTGAATGCAGACGC TAATTATCTGACAGGTTCTTTGACCACA TTTAACGGTGCTTACACACCTACCAACT ATGCCAATGTTCCTTGGTTGAGCCGTGA TTACGTTGCACCTACCGCTGGTGCTCCT CAGGGCTTCTACGTATTAGAAAATGACT ACTCAGCTAACAGTGGAACTATTCATCC GACAATCCTGTGTGTTTATGGCAAACTT CAGAAAAACGGAGCCGACCTGACGGGAA CCGATTTAGCAGCAGCTCAGGCCGCCAA TTGGGTGGATGCAGAA 98 P. NA TAATGGAGAACAGCAGGAAGCCATCGAA circumdentaria TCAGCCGAAAATGCGACTAAGATTGAGA B97 fimA ATATCAAATGTGGTGCAGGCCAACGTAC poly- GCTGGTCGTAATGGCCAATACGGGTGGA nucleotide ATGGAATTGGCTGGCAAGACTCTTGCAG sequence AGGTAAAAGCATTGACAACTGTACTGAC TGAAGAAAACCAAGAGGCCACAGGTTTG ATCATGACAGCAGAGCCAAAAGCAATCG TTTTGAAGGCAGGCAAGAACTATATTGG ATACGATGGAGCCGGAGAGGGCAACCAC ATTGAGAATGCTCCTCTTGAAATCAAAC GTGTACATGCTCGCATGGCTTTCACCGA AATTAAAGTACAGATGAGCGCAGCCTAC GATAACATTTACACATTTACCCCTGAAA AGATTTATGGTCTCATTGCAAAGAAGCA ATCTAATTTGTTCGGGGCAACACTCGTG AATGCAGACGCTAATTATCTGACAGGTT CTTTGACCACATTTAACGGTGCTTACAC ACCTACCAACTATGCCAATGTTCCTTGG TTGAGCCGTGATTACGTTGCACCTACCG CTGGTGCTCCTCAGGGCTTCTACGTATT AGAAAATGACTACTCAGCTAACAGTGGA ACTATTCATCCGACAATCCTGTGTGTTT ATGGCAAACTTCAGAAAAACGGAGCCGA
CCTGACGGGAACCGATTTAGCAGCAGCT CAGGCCGCCAATTGGGTGGATGCAGAAG GCAAG 99 P. NA ggcctcgagAACAAAGACAACGAAGCAG cangingivalis AACCCGTTGTAGAAGGTAACGCTACCAT B98 fimA TAGCGTAGTATTGAAGACCAGCAATCCG poly- AATCGTGCTTTCGGGGTTGCAGATGACG nucleotide AAGCAAAAGTGGCTAAACTGACTGTAAT sequence GGTCTACAAGGGTGAGCAGCAGGAAGCC ATCAAATCAGCCGAAAATGCAATTAAGG TTGAGAACATCAAATGTGGTGCAGGCTC ACGTACGCTGGTCGTAATGGCCAATACG GGTGGAATGGAATTGGCTGGCAAGACTC TTGCAGAGGTAAAAGCATTGACAACTGA ACTAACTGCAGAAAACCAAGAGGCTACA GGTTTGATCATGACAGCAGAGCCTGTTG ACGTAACACTTGTCGCCGGCAATAACTA TTATGGTTATGATGGAACTCAGGGAGGC AATCAGATTTCGCAAGGTACTCCTCTTG AAATCAAACGTGTTCATGCCCGTATTGC GTTCACCAAGATTGAAGTGAAGATGAGC GAGTCTTATGTGAACAAATACAACTTTA CCCCCGAAAACATCTATGCACTTGTGGC TAAGAAGAAGTCTAATCTATTCGGTACT TCATTGGCAAATAGTGATGATGCTTATT TGACCGGTTCTTTGACGACTTTCAACGG TGCTTATACCCCTGCAAACTATACTCAT GTCGTCTGGTTGGGAAGAGGCTACACAG CGCCTTCCAATGATGCTCCACAAGGTTT CTATGTTTTGGAGAGTGCATACGCTCAG AATGCAGGTCTACGTCCTACCATTCTAT GTGTAAAGGGTAAGCTGACAAAGCATGA TGGTACTCCTTTGAGTTCTGAGGAAATG ACAGCTGCATTCAATGCCGGCTGGATTG TTGCAAACAATGATCCTACGACCTATTA TCCTGTATTAGTGAACTTTGAGAGCAAT AATTACACCTACACAGGTGATGCTGTTG AGAAAGGGAAAATCGTTCGTAACCACAA GTTTGACATCAATGTGACGATCACCGGT CCTGGTACGAATAATC 100 P. salivosa NA TGGCTAARTTGACTGTAATGGTTTATAA B104 fimA TGGAGAACAGCAGGAAGCCATCRAATCA poly- GCCGAAAATGCGACTAAGRTTGARRAYA nucleotide TCAAATGTRGTGCAGGCCAACGTACGCT sequence GGTCGTAATGGCCAATACGGGTGSAATG GAAYTGGYTGGCAAGACTCTTGCAGAGG TAAAAGCATTGACAACTGWACTGACTGM AGAAAACCAAGAGGCYRCAGGKTTGATC ATGACAGCAGAGCCAAAARCAATCGTTT TGAAGGCAGGCAAGAACTAYATTGGATA CRRTGGARCCGGAGAGGGYAAYCACATT GAGAATGMTCCTCTTRARATCAARCGTG TWCATGCTCGCATGGCTTTCACCGAAAT TAAAGTRCARATGAGCGCAGCCTACGAT AACATTTACACATTYRYCCCTGAAAAGA TTTATGGTCTCATTGCAAAGAAGCAATC TAATTTGTTCGGGGCAACACTCGTRAAT GCAGACGCTAATTATCTGACAGGTTCTT TGACCACATTTAACGGTGCTTACACACC TRCCAACTATGCCAATGTKCCTTGGYTG AGCCGTRATTACGTTGCACCTRCCGCYG RTGCTCCTCAGGGYTTCTACGTATTAGA AAATGACTACTCAGCTAACRGTGGAACT ATTCATCCGACAATCCTGTGTGTTTATG GCAAACTTCAGAAAAACGGAGGCGACYT GRCGGGARCCGATTTAGCARCWGCTCAG GCCGCCAATTGGGTGGATGCAGAAGGCA AGACCTATTACCCTGTATTRGTRAACT 101 P. denticanis NA TAATGGAGAACAGCAGGAAGCCATCGAA B106 fimA TCAGCCGAAAATGCGACTAAGATTGAGA poly- ATATCAAATGTGGTGCAGGCCAACGTAC nucleotide GCTGGTCGTAATGGCCAATACGGGTGGA sequence ATGGAATTGGCTGGCAAGACTCTTGCAG AGGTAAAAGCATTGACAACTGTACTGAC TGAAGAAAACCAAGAGGCCACAGGTTTG ATCATGACAGCAGAGCCAAAAGCAATCG TTTTGAAGGCAGGCAAGAACTATATTGG ATACGATGGAGCCGGAGAGGGCAACCAC ATTGAGAATGCTCCTCTTGAAATCAAAC GTGTACATGCTCGCATGGCTTTCACCGA AATTAAAGTACAGATGAGCGCAGCCTAC GATAACATTTACACATTTACCCCTGAAA AGATTTATGGTCTCATTGCAAAGAAGCA ATCTAATTTGTTCGGGGCAACACTCGTG AATGCAGACGCTAATTATCTGACAGGTT CTTTGACCACATTTAACGGTGCTTACAC ACCTACCAACTATGCCAATGTTCCTTGG TTGAGCCGTGATTACGTTGCACCTACCG CTGGTGCTCCTCAGGGCTTCTACGTATT AGAAAATGACTACTCAGCTAACAGTGGA ACTATTCATCCGACAATCCTGTGTGTTT ATGGCAAACTTCAGAAAAACGGAGCCGA CCTGACGGGAACCGATTTAGCAGCAGCT CAGGCCGCCAATTGGGTGGATGCAGAAG GCAAG 102 P. NA CAAGGGTGAGCAGCAGGAAGCCATCAAA endodontalis TCAGCCGAAAATGCAATTAAGGTTGAGA B114 fimA ACATCAAATGTGGTGCAGGCTCACGTAC poly- GCTGGTCGTAATGGCCAATACGGGTGGA nucleotide ATGGAATTGGCTGGCAAGACTCTTGCAG sequence AGGTAAAAGCATTGACAACTGAACTAAC TGCAGAAAACCAAGAGGCTACAGGTTTG ATCATGACAGCAGAGCCTGTTGACGTAA CATTGTCGCCGGCAATAACTATTATGGT TATGATGGAACTCAGGGAGGCAATCAGA TTTCGCAAGGTACTCCTCTTGAAATCAA ACGTGTTCATGCCCGTATTGCGTTCACC AAGATTGAAGTGAAGATGAGCGAGTCTT ATGTGAACAAATACAACTTTACCCCCGA AAACATCTATGCACTTGTGGCTAAGAAG AAGTCTAATCTATTCGGTACTTCATTGG CAAATAGTGATGATGCTTATTTGACCGG TTCTTTGACGACTTTCAACGGTGCTTAT ACCCCTGCAAACTATACTCATGTCGTCT GGTTGGGAAGAGGCTACACAGCGCCTTC CAATGATGCTCCACAAGGTTTCTATGTT TTGGAGAGTGCATACGCTCAGAATGCAG GTCTACGTCCTACCATTCTATGTGTAAA GGGTAAGCTGACAAAGCATGATGGTACT CCTTTGAGTTCTGAGGAAATGACAGCTG CATTCAATGCCGGCTGGATTGTTGCAAA CAATGATCCTACG 103 P. gulae NA MKKTKFFLLGLAALAMTACNKDNEAEPV B43 FimA VEGNATISVVLKTSNPNRAFGVADDEAK polypeptide VAKLTVMVYKGEQQEAIKSAENAIKVEN sequence IKCGAGSRTLVVMANTGGMELAGKTLAE VKALTTELTAENQEATGLIMTAEPVDVT LVAGNNYYGYDGTQGGNQISQGTPLEIK RVHARIAFTKIEVKMSESYVNKYNFTPE NIYALVAKKKSNLFGTSLANSDDAYLTG SLTTFNGAYTPANYTHVVWLGRGYTAPS NDAPQGFYVLESAYAQNAGLRPTILCVK GKLTKHDGTPLSSEEMTAAFNAGWIVAN NDPTTYYPVLVNFESNNYTYTGDAVEKG KIVRNHKFDINLTITGPGTNNPENPITE SANLNVNCVVAAWKGVVQNVIW 104 P. NA NGEQQEAIESAENATKIENIKCGAGQRT circumdentaria LVVMANTGGMELAGKTLAEVKALTTVLT B52 FimA EENQEATGLIMTAEPKAIVLKAGKNYIG polypeptide YDGAGEGNHIENAPLEIKRVHARMAFTE sequence IKVQMSAAYDNIYTFTPEKIYGLIAKKQ SNLFGATLVNADANYLTGSLTTFNGAYT PTNYANVPWLSRDYVAPTAGAPQGFYVL ENDYSANSGTIHPTILCVYGKLQKNGAD LTGTDLAAAQAANWVDAEG 105 P. gulae NA MKKTKFFLLGLAALAMTACNKDNEAEPV B69 FimA AA VEGNATISVVLKTSNPNRVFGVADDEAK VAKLTVMVYNGEQQEAIESAENATKIEN IKCGAGQRTLVVMANTGGMELAGKTLAE VKALTTVLTEENQGATGLIMTAEPKAIV LKAGKNYIGYDGAGEGNHIENAPLEIKR VHARMAFTEIKVQMSAAYDNIYTFTPEK IYGLIAKKQSNLFGATLVNADANYLTGS LTTFNGAYTPTNYANVPWLSRDYVAPTA GAPQGFYVLENDYSANSGTIHPTILCVY GKLQKNGADLTGTDLAAAQAANWVDAEG KTYYPVLVNFNSNNYTYDNGYTPKNKIE RNHKYDIKLTITGPGTNNPENPITESAH LNVQCTVAEWVLVGQNATW 106 P. NA NGEQQEAIESAENATKIENIKCGAGQRT circumdentaria LVVMANTGGMELAGKTLAEVKALTTVLT B97 FimA EENQEATGLIMTAEPKAIVLKAGKNYIG polypeptide YDGAGEGNHIENAPLEIKRVHARMAFTE sequence IKVQMSAAYDNIYTFTPEKIYGLIAKKQ SNLFGATLVNADANYLTGSLTTFNGAYT PTNYANVPWLSRDYVAPTAGAPQGFYVL ENDYSANSGTIHPTILCVYGKLQKNGAD LTGTDLAAAQAANWVDAEG 107 P. NA VVEGNATISVVLKTSNPNRAFGVADDEA cangingivalis KVAKLTVMVYKGEQQEAIKSAENAIKVE B98 FimA AA NIKCGAGSRTLVVMANTGGMELAGKTLA EVKALTTELTAENQEATGLIMTAEPVDV TLVAGNNYYGYDGTQGGNQISQGTPLEI KRVHARIAFTKIEVKMSESYVNKYNFTP ENIYALVAKKKSNLFGTSLANSDDAYLT GSLTTFNGAYTPANYTHVVWLGRGYTAP SNDAPQGFYVLESAYAQNAGLRPTILCV KGKLTKHDGTPLSSEEMTAAFNAGWIVA NNDPTTYYPVLVNFESNNYTYTGDAVEK GKIVRNHKFDINLTITGPGTNNPENPIT ESANLNVNCVVAAWK 108 P. salivosa NA AXLTVMVYNGEQQEAIXSAENATKXXXI B104 FimA KCXAGQRTLVVMANTGXMEXXGKTLAEV polypeptide KALTTXLTXENQEAXGLIMTAEPKXIVL sequence KAGKNXIGYXGXGEGXHIENXPLXIXRV HARMAFTEIKVXMSAAYDNIYTXXPEKI YGLIAKKQSNLFGATLVNADANYLTGSL TTFNGAYTPXNYANVPWXSRXYVAPXAX APQGFYVLENDYSANXGTIHPTILCVYG KLQKNGADXXGXDLAXAQAANWVDAEGK TYYPVXVN 109 P. denticanis NA NGEQQEAIESAENATKIENIKCGAGQRT B106 FimA LVVMANTGGMELAGKTLAEVKALTTVLT polypeptide EENQEATGLIMTAEPKAIVLKAGKNYIG sequence YDGAGEGNHIENAPLEIKRVHARMAFTE IKVQMSAAYDNIYTFTPEKIYGLIAKKQ SNLFGATLVNADANYLTGSLTTFNGAYT PTNYANVPWLSRDYVAPTAGAPQGFYVL ENDYSANSGTIHPTILCVYGKLQKNGAD LTGTDLAAAQAANWVDAEG 110 P. NA KGEQQEAIKSAENAIKVENIKCGAGSRT endodontalis LVVMANTGGMELAGKTLAEVKALTTELT B114 FimA AENQEATGLIMTAEPVDVTLVAGNNYYG polypeptide YDGTQGGNQISQGTPLEIKRVHARIAFT sequence KIEVKMSESYVNKYNFTPENIYALVAKK KSNLFGTSLANSDDAYLTGSLTTFNGAY TPANYTHVVWLGRGYTAPSNDAPQGFYV LESAYAQNAGLRPTILCVKGKLTKHDGT PLSSEEMTAAFNAGWIVANNDPT 111 P. gulae NA ACATTCGTTGGAGCTATTGCACTGAATG B43 oprF CAAGTGCACAGGAAAATACTGTACCGGC poly- AACGGGTCAGTTACCCGCCAAAAATGTT nucleotide GCTTTCGCTCGCAACAAAGCAGGCAGCA sequence ATTGGTTCGTAACACTGCAGGGCGGTGT TGCAGCGCAGTTCCTCAATGACAACAAC AACAAAGATTTTGTAGACCGCTTGGGTG CTGCCGGCTCTATTTCAGTTGGAAAATA TCACAATCCATTCTTTGCAACCCGTTTG CAAATTAACGGAGCTCAGGCACACACGT TCCTTGGAAAAAATGCGGAACAAGAAAT TAAGACCAATTTTGGCGCAGCTCACTTT GACTTCATGTTCGATGTGGTTAATTACT TTGCGCCATATCGCGAAAATCGTTTCTT CCATTTAATTCCATGGGTAGGTGTTGGT TACCAGCATAAATTCATTGGCAGCAAAT GGAGTAAAGACAATGTCGAGTCTCTGAC TGCCAATCTGGGTGTTATGATGGCTTTC AGATTAGGAAAACGTGTAGACTTTGTGA TCGAAGCACAAGCAGCACACTCCAATCT CAACTTAAGCCGTGCTTTCAATGCCAAG CCGACTCCTATTTTCCAGGATCAGGAAG GACGTTATTACAATGGATTCCAAGGAAT GGCGACAGCAGGTCTTAACTTCCGCTTG GGTGCTGTAGGCTTCAATGCCATCGAGC CCATGGACTACGCGCTTATCAACGATCT GAATGGTCAGATTAATCGCCTGCGCAGA GAAGTCGAAGAACTCTCCAAGCGTCCTG TATCATGTCCCGAATGCCCCGACGTTAC
ACCCGTTACCAAGACAGAAAACAAGCTA ACCGAGAAGGCTGTACTCTTCCGTTTCG ACAGCTATGTTGTAGACAAAGACCAGCT TATCAATCTGTATGACGTAGCTCAGTTT GTAAAAGAAACCAACGAGCCGATTACTG TTGTAGGCTATGCTGATCCTACGGGTGA CACTCAGTACAACGAAAGATTGTCTGAG CGTCGCGCAAAAGCCG 112 P. cansulci NA ACATTGGCCGGGGTTTACGCCCTTTCAG B46 oprF CCTCTGCTCAGCAGGAGAATATGCCACG poly- AATGGGGCAGACTCCCGCCAAGAATACC nucleotide GCTTACGCTCGCTCTGAAGCCGGTGACA sequence ATTGGTTTGTGACTTTGCAAGGAGGTGC TGCTATGCAGTTTGGGAAAGGTAACGAG GATGCCGACTTCTTCGACCGCCAAACTG TTGCTCCCACTTTTGCCGTAGGTAAATG GCACAATCCTTTCTTCGGGACCAGATTG CAAATGGGCTTGGGGGTATCTCACGACT TCTCGAACAACGAAGCGAAATCCAAGTT GGAGATGAACCACGCTCGCTATGCTAAC GCACACTTTGACTTTATGTTTGATGTGA TTAACTACTTCAAGCCCTACAGTGAGGA CCGCGTATTCCACCTTATTCCGTGGGTA GGTTTGGGTTACGATCACAAGTTTGAGA AAAACAGCAACTTCAAGGTGGATGCTCT TACAGCCAACGCCGGTTTGATGTTTGCT TTCCGTGTGATGGAGCGTATGGACATTG TGTTGGAAAGCCAGGTAATGTATTCTGA CTTCAACCTCAACACAGCTCTGCGCGAG CCTCGCTACACAGCTTGCTCCGGCATGC TCACTGCCGGTTTGAACTTCCGTATAGG AAATATCGGATGGAGCGAGATCCTACCA ATGGATTGGGGCTTGGTAAATGACCTGA ACGGACAAATCAACGCCATGCGTGCTAA GAACGCAGAGTTGAGCAAGCGTCCCGTT TCTTGCCCCGAATGCCCGGAAGTTGAGC CTCGTGTAGAGCGTATCAATATGCTTTC GGACAAGTCTGTTCTTTTCCGTGCCGGC AAGACAACTGTAGACAGCGATCAAATGG TAACGATCTTCGACGTAGCTCAGTTTGC AAAGAAGAATGGCACACAGATCACCGTT ACAGGCTATGCAGACAAGAAGGGCAAAG AAAGCGATCGCACCTCTGAACTTCGTGC AAAAGCCGTAGCCAAGATTCTCACCGAC AAGTACGGTGTACCTT 113 P. NA TCTATAATGGGAGCTACAGCACTCTCCG circumdentaria CGAGTGCTCAACAATCTACGACACCTGA B52 oprF GACTCAAACTTTGCCAGCTCGCAAGACG poly- GCTTTTGACCGTTCCGCGGGTCACTGGT nucleotide TCTTGACTCTACAGGGTGGTGTAAATGC sequence ACAGTTTTTGGAAGAAAACGAGTCTCAA GACATCGTAAATCGTCTCCGTGTGATGC CAACTCTTTCTTTAGGAAAGTGGCACAA TCCCTATTTTGCAACCCGTTTGCAAGTT TTTGGGGGGCCAACCCCTACTTACTACA AGGAGGTTTCTGGGGAGGTTAAGACCCT AAATACCGCCATGGCTGGAGCTCACTTT GATTTTATGTTTGATGTAGTAAACTTCT ATGCAAAGTATAATCCTAAACGAGTATT CCATTTGATTCCTTGGTTCGGTGTGGGA TATGGTTTCAAATACTATAACGATTTTG CTGATTTAGCTGATATGATTCAGTTTAA TGAACCCTTCCGTCACTCAGCAACTGCG AATGCTGGTTTGATGATGAGTTTTCGCT TGGCAAAACGTTTGGATTTGGTTCTGGA AGGGCAGGCTATATATTCTAACTTGAAT ATTGTAAAGCAAGAGATAGATTATAAAG CCCCCATTATGCCCTATTCAAATATCTA CAACGGATTGACAGGTGTCGTTACTGCA GGTCTCAACTTTAATCTCGGTCGTGTTG CTTGGGAGTCCGTAACTCCTATGGATAT GGATCTTATTAATGACCTAAACGGACAA ATTAACCGTTTGCGTTCTGAGAATACAG AGTTGAGAAAACGTCCAGTTTCTTGCCC AGAATGTCCTGAAGTTACTGCAgAGACG GAAGTAGTTACTGAAAACGTTTTAGGTG ATAAGGCGATTGTTTTCAAGTTTAATAG CGCAACTATTGACAAAGATCAACACATT GTTTTGCAGGATATCGCTGACTTTGTTA AAGATGGCAACAAAGCTATTGTTGTAAT AGGCTTCGCAGATACAACAGGTGATATT AATTACAATATGCATT 114 P. gulae NA ACAGGCGTTGGAGCTATTGCACTGAATG B69 oprF CAAGTGCACAGGAAAATACTGTACCGGC poly- AACGGGTCAGTTACCCGCCAAAAATGTT nucleotide GGTTTTGCCCGCAATAAAGCAGGCGGCA sequence ATTGGTTTGTAACACTGCAAGGTGGTGT TGCAGCACAGTTCCTTAATGACAACAAC AACAAAGATCTAGTAGACCGCTTAGGAG CTACCGGATCTATCTCCGTTGGAAAATA TCACAATCCATTCTTTGCGACTCGTTTG CAAATTAACGGAGGTCAAGCACACACGT TCCTTGGGAAGAATGCGGAACAAGAAAT TAACACCAATTTTGGAGCAGCTCACTTT GACTTCATGTTCGATGTGGTTAACTACT TTGCGCCATATCGCGAAAACCGTTTCTT CCATTTAATTCCATGGGTAGGTGTTGGT TACCAACACAAATTCATGGGTAGCGAAT GGAGTAAAGACAACGTCGAGTCGCTGAC CGCAAACATGGGTGTTATGATGGCTTTC AGATTAGGGAAGCGCGTGGACTTTGTGA TCGAAGCACAAGCTGCTCACTCCAATCT TAATTTAAGTCGCGCATTCAATGCCAAG AAAACTCCTATTTTCCACGATCAAGAAG GTCGCTATTACAATGGATTCCAAGGAAT GGCTACAGCGGGTCTTAACTTCCGCTTA GGTGCTGTTGGCTTCAATGCCATCGAGC CAATGGACTACGCGCTTATCAACGATCT GAATGGTCAGATTAACCGTTTGCGCAGA GAAGTTGAAGAGCTCTCTAAGCGTCCTG TATCATGCCCCGAATGTCCCGATGTAAC ACCCGTTACTAAGACAGAAAACAAGCTA ACCGAGAAGGCTGTACTCTTCCGCTTCG ACAGCTATGTTGTAGACAAAGACCAGCT GATCAATCTGTATGACGTTGCTCAGTTC GTAAAAGAAACTAACGAACCGATTACCG TTGTAGGTTATGCCGATCCTACGGGCAG CACTCAGTACAACGAAAGATTGTCTGAG CGTCGCGCAAAAGCCG 115 P. NA TCTGTTATGGGAGCTACAGCACTCACAG circumdentaria TTAGTGCTCAGCAACCTACTACACCTGA B97 oprF GACTCAGACATTGCCTGCTCATAAGACG poly- GCTTTTGACCGTTCTGCAGGACATTGGT nucleotide TCTTGACTCTCCAAGGTGGAGTTAGTGC sequence TCAATTTTTAGAAGAAAATGAAAGTCAA GAAATCTTGAATCGTCTTCATGTTATGC CTACAATCTCTTTAGGCAAGTGGCACAA TCCTTATTTTGCAACTCGTTTGCAAGTG TTCGGAGGTCCTACTCCTACTTTTTATA AGAATGCTGCTGGTAAGGTGATGAAGGA AAATGCGGCTATGGCTGGGGCTCACTTT GACTTTATGTTTGATGTTGTGAACTACT TTGGTAAGTATAATCCAAAGAGAGTCTT TCATCTTGTGCCTTGGTTCGGTGTTGGA TATGGCTTTAAATACCATAATGATTTCG CCGAAATGAGTGATATCATTAAGTTTAA TGAGCCTTATCGCCATTCAGCAACAGCG AATGCAGGGTTGATGATGAGTTTCCGCT TAGCAAAACGTCTTGATTTAGTGCTTGA AGGACAGGCTATATATTCTAATTTGAAT ATTGTTAAGCAAGAAATTGATTATAAAG CTCCTTCTACTCCTTATTCTCCAAATTA TAATGGGCTTTTGGGAGTTGTTACAGCA GGTCTTAACTTTAATCTTGGTCGTGTTG CTTGGGAGACTGTTACTCCCATGGATAT GGATTTGATTAATGATCTTAATGGTCAA ATCAATCGTTTGCGTTCTGAGAATACTG AGTTGAGAAAACGTCCTGTTTCTTGTCC TGAATGCCCAGAAGTTTCTAAAGAAACA ACTGTAGTTACAGAAAATGTATTGGGAG ACAAAGCTATTGTTTTCAAATTTAATAG TGCAACTATCAGCAAAGATCAACATATT GTTTTGCAAGACATTGCGGACTTTGTTA AGAATGGAAATAAGGGGGTTGCCGTGAT AGGTTTCGCAGATGTAACAGGAGATGCC AATTACAATATGCAAC 116 P. NA GGTGGAGTTAGTGCTCAATTTTTAGAAG cangingivalis AAAATGAAAGTCAAGAAATCTTGAATCG B98 oprF TCTTCATGTTATGCCTACAATCTCTTTA poly- GGCAAGTGGCACAATCCTTATTTTGCAA nucleotide CTCGTTTGCAAGTGTTCGGAGGTCCTAC sequence TCCTACTTTTTATAAGAATGCTGCTGGT AAGGTGATGAAGGAAAATGCGGCTATGG CTGGGGCTCACTTTGACTTTATGTTTGA TGTTGTGAACTACTTTGGTAAGTATAAT CCAAAGAGAGTCTTTCATCTTGTGCCTT GGTTCGGTGTTGGATATGGCTTTAAATA CCATAATGATTTCGCCGAAATGAGTGAT ATCATTAAGTTTAATGAGCCTTATCGCC ATTCAGCAACAGCGAATGCAGGGTTGAT GATGAGTTTCCGCTTAGCAAAACGTCTT GATTTAGTGCTTGAAGGACAGGCTATAT ATTCTAATTTGAATATTGTTAAGCAAGA AATTGATTATAAAGCTCCTTCTACTCCT TATTCTCCAAATTATAATGGGCTTTTGG GAGTTGTTACAGCAGGTCTTAACTTTAA TCTTGGTCGTGTTGCTTGGGAGACTGTT ACTCCCATGGATATGGATTTGATTAATG ATCTTAATGGTCAAATCAATCGTTTGCG TTCTGAGAATACTGAGTTGAGAAAACGT CCTGTTTCTTGTCCTGAATGCCCAGAAG TTTCTAAAGAAACAACTGTAGTTACAGA AAATGTATTGGGAGACAAAGCTATTGTT TTCAAATTTAATAGTGCAACTATCAGCA AAGATCAACATATTGTTTTGCAAGACAT TGCGGACTTTGTTAAGAATGGAAATAAG GGGGTTGCCGTGATAGGTTTCGCAGATG TAACAGGAGATGCCAATTACAATATGCA ACTTTCTGAACGTCGTGCTAAGGCTGTT GCGGAAGCTCTTGTGAATCAATTC 117 P. salivosa NA CATTGGTTCTTGACTCTCCAAGGTGGAG B104 oprF TTAGTGCTCAATTTTTAGAAGAAAATGA poly- AAGTCAAGAAATCTTGAATCGTCTTCAT nucleotide GTTATGCCTACAATCTCTTTAGGCAAGT sequence GGCACAATCCTTATTTTGCAACTCGTTT GCAAGTGTTCGGAGGTCCTACTCCTACT TTTTATAAGAATGCTGCTGGTAAGGTGA TGAAGGAAAATGCGGCTATGGCTGGGGC TCACTTTGACTTTATGTTTGATGTTGTG AACTACTTTGGTAAGTATAATCCAAAGA GAGTCTTTCATCTTGTGCCTTGGTTCGG TGTTGGATATGGCTTTAAATACCATAAT GATTTCGCCGAAATGAGTGATATCATTA AGTTTAATGAGCCTTATCGCCATTCAGC AACAGCGAATGCAGGGTTGATGATGAGT TTCCGCTTAGCAAAACGTCTTGATTTAG TGCTTGAAGGACAGGCTATATATTCTAA TTTGAATATTGTTAAGCAAGAAATTGAT TATAAAGCTCCTTCTACTCCTTATTCTC CAAATTATAATGGGCTTTTGGGAGTTGT TACAGCAGGTCTTAACTTTAATCTTGGT CGTGTTGCCTGGGAGACTATTACTCCCA TGGATATGGATTTGATTAATGATCTTAA TGGTCAAATCAATCGTTTGCGTTCTGAG AATACTGAGTTGAGAAAACGTCCTGTTT CTTGTCCTGAATGCCCAGAAGTTTCTAA AGAAACAACTGTAGTTACAGAAAATGTA TTGGGAGACAAAGCTATTGTTTTCAAAT TTAATAGTGCAACTATCAGCAAAGATCA ACATATTGTTTTGCAAGACATTGCGGAC TTTGTTAAGAATGGAAATAAGGGGGTTG CCGTGATAGGTTTCGCAGATGTAACAGG AGATGCCAATTACAATATGCAACTTTCT GAACGTCGTGCTAAGGCTGTTGCGGAAG CTCTTGTGAATCAATTC 118 P. denticanis NA GCTCATAAGACGGCTTTTGACCGTTCTG B106 oprF CAGGACATTGGTTCTTGACTCTCCAAGG poly- TGGAGTTAGTGCTCAATTTTTAGAAGAA nucleotide AATGAAAGTCAAGAAATCTTGAATCGTC sequence TTCATGTTATGCCTACAATCTCTTTAGG CAAGTGGCACAATCCTTATTTTGCAACT CGTTTGCAAGTGTTCGGAGGTCCTACTC CTACTTTTTATAAGAATGCTGCTGGTAA GGTGATGAAGGAAAATGCGGCTATGGCT GGGGCTCACTTTGACTTTATGTTTGATG TTGTGAACTACTTTGGTAAGTATAATCC AAAGAGAGTCTTTCATCTTGTGCCTTGG TTCGGTGTTGGATATGGCTTTAAATACC ATAATGATTTCGCCGAAATGAGTGATAT CATTAAGTTTAATGAGCCTTATCGCCAT TCAGCAACAGCGAATGCAGGGTTGATGA TGAGTTTCCGCTTAGCAAAACGTCTTGA TTTAGTGCTTGAAGGACAGGCTATATAT TCTAATTTGAATATTGTTAAGCAAGAAA
TTGATTATAAAGCTCCTTCTACTCCTTA TTCTCCAAATTATAATGGGCTTTTGGGA GTTGTTACAGCAGGTCTTAACTTTAATC TTGGTCGTGTTGCTTGGGAGACTGTTAC TCCCATGGATATGGATTTGATTAATGAT CTTAATGGTCAAATCAATCGTTTGCGTT CTGAGAATACTGAGTTGAGAAAACGTCC TGTTTCTTGTCCTGAATGCCCAGAAGTT TCTAAAGAAACAACTGTAGTTACAGAAA ATGTATTGGGAGACAAAGCTATTGTTTT CAAATTTAATAGTGCAACTATCAGCAAA GATCAACATATTGTTTTGCAAGACATTG CGGACTTTGTTAAGAATGGAAATAAGGG GGTTGCCGTGATAGGTTTCGCAGATGTA ACAGGAGATGCCAATTACAATATGCAAC TTTCTGAACGTCGTGCTAAGGCTGTTGC GGAAGCTCTTGTGAATCAATTCGGAGTT CCTTCTGATATGATTT 119 P. NA TCAGCACTGGGGGCTTTGGCACTTACAG endodontalis CTAGTGCTCAACAAACTACGAAACCAGC B114 oprF GAATAGTATGCCCGCATTCAAGACTGCA poly- TTTGAACGCAGCGGCGGTCATTGGTTTC nucleotide TGACAATTCAGGGTGGCCTGAGTGCTCA sequence ACTTTTGGGTGAAAATGAAAAGATGGAC TTTGGCAAGCGTCTGCTACATGCTGCCA AGGCCAGTGACAACACCCAAACAGAGGC TAGCTACCTACGCATCATGCCCACGCTC TCTGTAGGTAAATGGCATAATCCCTACT TTGCTACTCGTGTACAGCTCTTCGGTGG TCTCACTCCTCTCTACAATACTGAGGGT GGCGTTAATGTACACACCTACAACACTG CCACGATCGGTGCCCACTATGATTTCAT GTTTGATGTAGTAAACTATTTCGCCAAG TACAACCCCAAACGTTTCTTCCACGTAA TTCCTTGGGTGGGTCTTGGTTACAACTT CAAGTATCATGATGTATTTGGATTCAAG GAGCCCTATCGTCACTCTGTCACAGGTA ACGCAGGCATGGAGTTTGCTTTCCGCCT CGGTAAGCGTGTAGACCTTGTACTCGAA GCTCAGGTAGTGTACAACAACCTGAACC TGATCAAGCAGGAAGTCGACTACGATGT AGTCACTACTCCCTATGTACCTGCTGAT ACATACGCTGGTCTTATGACCATGTTTA CTGCTGGTCTTAACTTCAATCTGGGCAA GGTTGAGTGGGAAACTGTTGAGCCGATG GACTACCAGCTCATAAACGACTTGAACT CTCAGATCAGCCGTCTACGTAGCGAAAA CGCAGAGCTTTCCAAGCGTCCTGCTTTC TGCCCCGAGTGTCCCGAAGTAGAGGAAG TAGAAGATGTTGTTGTTGACCAGTATGT CCTCACCGACAAGGCTATCCTCTTCGAC TTTGACAAGAGCAACATCCGCAAGGACC AACAAGCTCAGCTTGGTATGATTGCTGA ATTCGTGAAGAAGTACAATACGCCTATC GTGGTAGTAGGCTATG 120 P. gulae NA TFVGAIALNASAQENTVPATGQLPAKNV B43 OprF AFARNKAGSNWFVTLQGGVAAQFLNDNN polypeptide NKDFVDRLGAAGSISVGKYHNPFFATRL sequence QINGAQAHTFLGKNAEQEIKTNFGAAHF DFMFDVVNYFAPYRENRFFHLIPWVGVG YQHKFIGSKWSKDNVESLTANLGVMMAF RLGKRVDFVIEAQAAHSNLNLSRAFNAK PTPIFQDQEGRYYNGFQGMATAGLNFRL GAVGFNAIEPMDYALINDLNGQINRLRR EVEELSKRPVSCPECPDVTPVTKTENKL TEKAVLFRFDSYVVDKDQLINLYDVAQF VKETNEPITVVGYADPTGDTQYNERLSE RRAKAVVDVLTGKYGVPSELISVEWKGD TTQPFNKKAWN 121 P. cansulci NA TLAGVYALSASAQQENMPRMGQTPAKNT B46 OprF AYARSEAGDNWFVTLQGGAAMQFGKGNE polypeptide DADFFDRQTVAPTFAVGKWHNPFFGTRL sequence QMGLGVSHDFSNNEAKSKLEMNHARYAN AHFDFMFDVINYFKPYSEDRVFHLIPWV GLGYDHKFEKNSNFKVDALTANAGLMFA FRVMERMDIVLESQVMYSDFNLNTALPE PRYTACSGMLTAGLNFRIGNIGWSEILP MDWGLVNDLNGQINAMRAKNAELSKRPV SCPECPEVEPRVERINMLSDKSVLFRAG KTTVDSDQMVTIFDVAQFAKKNGTQITV TGYADKKGKESDRTSELRAKAVAKILTD KYGVPSDRISIEWKGVSEQVYDNRDWNR VV 122 P. NA SIMGATALSASAQQSTTPETQTLPARKTA circumdentaria FDRSAGHWFLTLQGGVNAQFLEENESQDI B52 OprF VNRLRVMPTLSLGKWHNPYFATRLQVFGG polypeptide PTPTYYKEVSGEVKTLNTAMAGAHFDFMF sequence DVVNFYAKYNPKRVFHLIPWFGVGYGFKY YNDFADLADMIQFNEPFRHSATANAGLMM SFRLAKRLDLVLEGQAIYSNLNIVKQEID YKAPIMPYSNIYNGLTGVVTAGLNFNLGR VAWESVTPMDMDLINDLNGQINRLRSENT ELRKRPVSCPECPEVTAETEVVTENVLGD KAIVFKFNSATIDKDQHIVLQDIADFVKD GNKAIVVIGFADTTGDINYNMHLSERRAK AVAEALVNKFGVSSDMISVEWQGETEQFN PRAWN 123 P. gulae NA TFVGAIALNASAQENTVPATGQLPAKNVA B69 OprF FARNKAGGNWFVTLQGGVAAQFLNDNNNK polypeptide DLVDRLGATGSISVGKYHNPFFATRLQIN sequence GGQAHTFLGKNAEQEINTNFGAAHFDFMF DVVNYFAPYRENRFFHLIPWVGVGYQHKF IGSEWSKDNVESLTANMGVMMAFRLGKRV DFVIEAQAAHSNLNLSRAFNAKKTPIPHD QEGRYYNGFQGMATAGLNFRLGAVGFNAI EPMDYALINDLNGQINRLRREVEELSKRP VSCPECPDVTPVTKTENKLTEKAVLFRFD SYVVDKDQLINLYDVAQFVKETNEPITVV GYADPTGSTQYNERLSERRAKAVVDVLTG KYGVPSELISVEWKGDSTQPFNKKAWN 124 P. NA SVMGATALTVSAQQPTTPETQTLPAHKTA circumdentaria FDRSAGHWFLTLQGGVSAQFLEENESQEI B97 OprF LNRLHVMPTISLGKWHNPYFATRLQVFGG polypeptide PTPTFYKNAAGKVMKENAAMAGAHFDFMF sequence DVVNYFGKYNPKRVFHLVPWFGVGYGFKY HNDFAEMSDIIKFNEPYRHSATANAGLMM SFRLAKRLDLVLEGQAIYSNLNIVKQEID YKAPSTPYSPNYNGLLGVVTAGLNFNLGR VAWETVTPMDMDLINDLNGQINRLRSENT ELRKRPVSCPECPEVSKETTVVTENVLGD KAIVFKFNSATISKDQHIVLQDIADFVKN GNKGVAVIGFADVTGDANYNMQLSERRAK AVAEALVNQFGVPSDMISVEWQGETELFE ARAWN 125 P. NA GGVSAQFLEENESQEILNRLHVMPTISLG cangingivalis KWHNPYFATRLQVFGGPTPTFYKNAAGKV B98 OprF MKENAAMAGAHFDFMFDVVNYFGKYNPKR polypeptide VFHLVPWFGVGYGFKYHNDFAEMSDIIKF sequence NEPYRHSATANAGLMMSFRLAKRLDLVLE GQAIYSNLNIVKQEIDYKAPSTPYSPNYN GLLGVVTAGLNFNLGRVAWETVTPMDMDL INDLNGQINRLRSENTELRKRPVSCPECP EVSKETTVVTENVLGDKAIVFKFNSATIS KDQHIVLQDIADFVKNGNKGVAVIGFADV TGDANYNMQLSERRAKAVAEALVNQF 126 P. salivosa NA HWFLTLQGGVSAQFLEENESQEILNRLHV B104 OprF MPTISLGKWHNPYFATRLQVFGGPTPTFY polypeptide KNAAGKVMKENAAMAGAHFDFMFDVVNYF sequence GKYNPKRVFHLVPWFGVGYGFKYHNDFAE MSDIIKFNEPYRHSATANAGLMMSFRLAK RLDLVLEGQAIYSNLNIVKQEIDYKAPST PYSPNYNGLLGVVTAGLNFNLGRVAWETI TPMDMDLINDLNGQINRLRSENTELRKRP VSCPECPEVSKETTVVTENVLGDKAIVFK FNSATISKDQHIVLQDIADFVKNGNKGVA VIGFADVTGDANYNMQLSERRAKAVAEAL VNQF 127 P. denticanis NA AHKTAFDRSAGHWFLTLQGGVSAQFLEEN B106 OprF ESQEILNRLHVMPTISLGKWHNPYFATRL polypeptide QVFGGPTPTFYKNAAGKVMKENAAMAGAH sequence FDFMFDVVNYFGKYNPKRVFHLVPWFGVG YGFKYHNDFAEMSDIIKFNEPYRHSATAN AGLMMSFRLAKRLDLVLEGQAIYSNLNIV KQEIDYKAPSTPYSPNYNGLLGVVTAGLN FNLGRVAWETVTPMDMDLINDLNGQINRL RSENTELRKRPVSCPECPEVSKETTVVTE NVLGDKAIVFKFNSATISKDQHIVLQDIA DFVKNGNKGVAVIGFADVTGDANYNMQLS ERRAKAVAEALVNQFGVPSDMISVEWQGE T 128 P. NA SALGALALTASAQQTTKPANSMPAFKTAF endodontalis ERSGGHWFLTIQGGLSAQLLGENEKMDFG B114 OprF KRLLHAAKASDNTQTEASYLRIMPTLSVG polypeptide KWHNPYFATRVQLFGGLTPLYNTEGGVNV sequence HTYNTATIGAHYDFMFDVVNYFAKYNPKR FFHVIPWVGLGYNFKYHDVFGFKEPYRHS VTGNAGMEFAFRLGKRVDLVLEAQVVYNN LNLIKQEVDYDVVTTPYVPADTYAGLMTM FTAGLNFNLGKVEWETVEPMDYQLINDLN SQISRLRSENAELSKRPAFCPECPEVEEV EDVVVDQYVLTDKAILFDFDKSNIRKDQQ AQLGMIAEFVKKYNTPIVVVGYADPTGKS KYNMELSKRRAQAVVNELTNRHGVPADLI TMEWEGATNKFTPPTAWN 129 P. gulae NA ACNKDNEAEPVV B43 FimA polypeptide fragment sequence #1 130 P. gulae NA YPVLVNFESNNYTYTGDAVEK B43 FimA polypeptide fragment sequence #2 131 P. gulae NA TGPGTNNPENPITESA B43 FimA polypeptide fragment sequence #3 132 P. gulae NA NDNNNKDFVDRLGA B43 OprF polypeptide fragment sequence #1 133 P. gulae NA DLNGQINRLRREVEELSKRPVSCPECPDV B43 OprF polypeptide fragment sequence #2 134 P. gulae NA ADPTGDTQYNERLSERRAKAV B43 OprF polypeptide fragment sequence #3 135 pBAD-HisA NA MGGSHHHHHHGMASMTGGQMGRDLYDDDD Amino- KDRWGSELEICSQYHMGI terminal polypeptide sequence 136 pBAD-TOPO NA MGSGSGDDDDKLALM Amino- terminal polypeptide sequence 137 I vector NA MGTTTTTTSLHM Amino- terminal polypeptide sequence Note: Lower case nucleotides are not present in the target DNA sequence. They are added to the 5' region of the primer to aid in cloning. NA, Not applicable
[0126]The following companion animal periodontal isolates were deposited with the American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, Va., 20110, USA, on Aug. 9, 2001: P. gulae B43 (PTA-3618), P. cansulci B46 (PTA-3619), P. circumdentaria B52 (PTA-3620), P. gulae B69 (PTA-3621), P. circumdentaria B97 (PTA-3622), P. cangingivalis B98 (PTA-3623), P. salivosa B104 (PTA-3624), P. denticanis B106 (PTA-3625), and P. endodontalis B114 (PTA-3626). In a preferred embodiment of the invention, an isolated polynucleotide molecule of the present invention has a nucleotide sequence selected from the group consisting of SEQ ID NOS: 86 to 102 and 111 to 119. The preferred polypeptides of the present invention have amino acid sequences selected from the group consisting of SEQ ID NOS: 103 to 110 and 120 to 128.
Cloning of Porphyromonas Nucleotide Sequences
[0127]There are several known methods or techniques that can be used to clone the Porphyromonas nucleotide sequences of the present invention. For example, the sequences can be isolated as restriction fragments and cloned into cloning and/or expression vectors, the sequences can be PCR amplified and cloned into cloning and/or expression vectors, or the sequences can be cloned by a combination of these two methods.
[0128]Standard molecular biology techniques known in the art and not specifically described can be generally followed as described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York (1989); Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Baltimore, Md. (1989); Perbal, A Practical Guide to Molecular Cloning, John Wiley & Sons, New York (1988); Watson et al., Recombinant DNA, Scientific American Books, New York; Birren et al (eds) Genome Analysis: A Laboratory Manual Series, Vols. 1-4 Cold Spring Harbor Laboratory Press, New York (1998); and methodology set forth in U.S. Pat. Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659 and 5,272,057. Polymerase chain reaction (PCR) is carried out generally as described in PCR Protocols: A Guide To Methods And Applications, Academic Press, San Diego, Calif. (1990).
[0129]Examples of methods useful in cloning and sequencing the polynucleotides. of the present invention are provided in the Example.
fimA and oprF-Encoded Polypeptides and Proteins
[0130]The present invention encompasses the use of prokaryotic and eukaryotic expression systems, including vectors and host cells, which may be used to express both truncated and full-length (native protein) forms of the recombinant polypeptides expressed by the nucleotide sequences of the present invention.
[0131]In a preferred embodiment of the invention, an isolated polynucleotide molecule of the present invention has a nucleotide sequence selected from one of the sequences of SEQ ID NO: 95 to 102 and 111 to 119 or degenerate variants thereof; and encoding a corresponding polypeptide selected from the amino acid sequences of SEQ ID NO: 103 to 110 and 120 to 128, respectively.
[0132]A variety of host-expression vector systems may be utilized to express the polypeptides of the present invention. Such host-expression systems also represent vehicles by which the coding sequences of interest may be cloned and subsequently purified. The present invention further provides for host cells which may, when transformed or transfected with the appropriate vector or nucleotide sequence, express the encoded polypeptide gene product of the invention. Such host cells, include but are not limited to, microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing coding sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing the gene product coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing coding sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).
[0133]In a preferred embodiment, the expression system is a bacterial system. A number of expression vectors may be advantageously selected depending upon the use intended for the product being expressed. For example, when a large quantity of such a polypeptide is to be produced, for the generation of vaccine compositions or for raising antibodies, for example, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Preferably, the vectors contain promoters that direct inducible gene expression. Suitable vectors include, but are not limited to, the E. coli pET expression vectors (Studier and Moffatt, 1986, J. Mol. Biol. 189:113; Rosenberg et al., 1987, Gene 56:125-135; Novagen, Madison, Wis.), in which the coding sequence can be fused in-frame to a sequence encoding multiple (e.g., 6) histidine residues; pBAD vectors (Guzman et al., 1995, J. Bact. 177:4121-4130), from which a heterologous protein can be expressed under the control of an arabinose inducible protein; and pGEX vectors (Pharmacia Biotech, USA), used to express heterologous polypeptides as fusion proteins with glutathione S-transferase (GST). The fimA or oprF sequences of the present invention can be cloned into a λ expression vector and expressed in λ.sup.- bacterial strains. In a preferred mode, the bacterial strain is E. coli BL21 (Gibco-BRL, USA). Preferably, the vectors that can be used include, but are not limited to, pLEX expression vectors (LaVallie et al., 1992, Bio/Technology 11:187-193; Mieschendahl et al., 1986, Bio/Technology 4:802-808; Invitrogen) and pRIT2T expression vectors (Nilsson et al., 1985, EMBO 4:1075; Zabeau and Stanley, 1982, EMBO 1:1217; Pharmacia Biotech). Other vectors and bacterial strains can be used and are known to those skilled in the art.
Antibody Production
[0134]Antibodies may either be monoclonal, polyclonal, or recombinant. Conveniently, the antibodies may be prepared against the immunogen or portion thereof, for example, a synthetic peptide based on the sequence, or prepared recombinantly by cloning techniques or the natural gene product and/or portions thereof may be isolated and used as the immunogen. Immunogens can be used to produce antibodies by standard antibody production technology well known to those skilled in the art as described generally in Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1988 and Borrebaeck, Antibody Engineering--A Practical Guide, W.H. Freeman and Co., 1992. Antibody fragments may also be prepared from the antibodies and include Fab, F(ab')2, and Fv by methods known to those skilled in the art.
[0135]In the production of antibodies, screening for the desired antibody can be accomplished by standard methods in immunology known in the art. Techniques not specifically described are generally followed as in Stites et al. (eds), Basic and Clinical Immunology (8th Edition), Appleton & Lange, Norwalk, Conn. (1994) and Mishell and Shiigi (eds), Selected Methods in Cellular Immunology, W.H. Freeman and Co., New York (1980). In general, ELISAs and Western blotting are the preferred types of immunoassays. Both assays are well known to those skilled in the art. Both polyclonal and monoclonal antibodies can be used in the assays. The antibody can be bound to a solid support substrate or conjugated with a detectable moiety or be both bound and conjugated as is well known in the art (for a general discussion of conjugation of fluorescent or enzymatic moieties see Johnstone & Thorpe, Immunochemistry in Practice, Blackwell Scientific Publications, Oxford, 1982.) The binding of antibodies to a solid support substrate is also well known in the art (see for a general discussion, Harlow & Lane Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Publications, New York, 1988 and Borrebaeck, Antibody Engineering--A Practical Guide, W.H. Freeman and Co., 1992). The detectable moieties contemplated for use in the present invention can include, but are not limited to, fluorescent, metallic, enzymatic and radioactive markers such as biotin, gold, ferritin, alkaline phosphatase, b-galactosidase, peroxidase, urease, fluorescein, rhodamine, tritium, 14C and iodination.
[0136]Where appropriate, other immunoassays such as radioimmunoassays (RIA) can be used as known in the art. Available immunoassays are extensively described in the patent and scientific literature. See, for example, U.S. Pat. Nos. 3,791,932; 3,839,153; 3,850,752; 3,850,578; 3,853,987; 3,867,517; 3,879,262; 3,901,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098,876; 4,879,219; 5,011,771; and 5,281,521, as well as Sambrook et al, Molecular Cloning: A Laboratory Manual, Cold Springs Harbor, N.Y., 1989.
Detection, Diagnostic, and Prevention Kits
[0137]The present invention further provides kits for the detection of Porphyromonas spp. The kit includes reagents for analyzing a sample for the presence of Porphyromonas organisms, polypeptides, or Porphyromonas nucleotide sequences of the present invention, wherein the presence of the nucleotide sequence is indicative of the presence of the organism. This method is valuable because disease can be diagnosed prior to the existence of symptoms and can therefore prevent the onset of the disease prior to the occurrence of damage to the patient. The presence of the Porphyromonas spp. Bacteria, polypeptides, or nucleotide sequences can be determined using antibodies, PCR, hybridization, and other detection methods known to those of skill in the art.
[0138]In one embodiment, the kit provides reagents for the detection of antibodies against Porphyromonas. In certain embodiments, the kit can include a set of printed instructions or a label indicating that the kit is useful for the detection of Porphyromonas spp. Minimally, the kit comprises in at least one container a protein having an amino acid sequence comprising at least 30 contiguous amino acids of any of the polypeptides of SEQ ID NO: 103 to 110 and 120 to 128. In one embodiment, the kit further comprises a secondary antibody. In a preferred embodiment, the secondary antibody is conjugated to a detectable moiety, such as, e.g., an enzyme that catalyzes a colorimetric or chemiluminescent reaction, such as alkaline phosphatase or horseradish peroxidase. In a further embodiment, the kit comprises reagents for carrying out a calorimetric or chemiluminescent assay.
[0139]In another embodiment, the kit provides reagents for the detection of Porphyromonas nucleic acids. In one embodiment, the kit provides reagents for the PCR detection of Porphyromonas nucleic acids and comprises in at least one container a first isolated DNA molecule comprising a fragment of at least about 15, 20, 25 or 30 nucleotides, which fragment hybridizes under stringent conditions to a DNA molecule encoding a polypeptide comprising a sequence of at least 5, 10, 15, 20, 25, or 30 contiguous amino acids, or the complete amino acid sequence, of any of the polypeptides of SEQ ID NO: 103-110 or 120-128, and a second isolated DNA molecule comprising a fragment of at least 15, 20, 25, or 30 nucleotides, which fragment hybridizes under stringent conditions to a DNA molecule complementary to a DNA molecule encoding a polypeptide having a sequence of at least 5 10, 15, 20, 25, or 30 contiguous amino acids, or the complete amino acid sequence, of any of the polypeptides of SEQ ID NO: 103-110 or 120-128, which first and second DNA molecules can be used to specifically amplify a Porphyromonas spp. nucleic acid encoding a 16S rRNA which 16S rRNA is encoded by a DNA molecule selected from the group consisting of SEQ ID NOS: 1-9.
[0140]In an further embodiment, the present invention provides a kit comprising in at least one container an isolated DNA molecule comprising a nucleotide sequence of at least about 15 contiguous nucleotides selected from any of SEQ ID NOS: 86 to 94, 95 to 102, and 111 to 119 which hybridizes under highly stringent conditions to the complement of any of the nucleotide sequences depicted in SEQ ID NOS: 86 to 94, 95 to 102, and 111 to 119, and a second isolated DNA molecule comprising in a second container an isolated DNA molecule comprising a nucleotide sequence of at least about 15 contiguous nucleotides selected from the complement of any of the nucleotide sequences depicted in SEQ ID NOS: 86 to 94, 95 to 102, and 111 to 119 which hybridizes under highly stringent conditions to any of the nucleotide sequences depicted in SEQ ID NOS: 86 to 94, 95 to 102, and 111 to 119, wherein the kit further comprises a set of instructions indicating that the kit is useful for the detection of Porphyromonas spp.
Vaccine Formulation and Method of Administration
[0141]The vaccine of the present invention can be is administered to a companion animal in an effective amount such that the vaccine therapeutically treats or confers resistance to or prevents periodontal disease in the companion animal. The vaccine of the present invention is useful in the control of bacteria that cause periodontal disease. The vaccines of the present invention can, in particular, be used in the field of veterinary medicine to treat companion animals and for the maintenance of public health against those bacteria described herein which are known to cause periodontal disease.
[0142]The vaccines of the present invention are of value in the control of bacteria that are injurious to, or spread or act as vectors of disease in man and companion animals, for example those described herein. The vaccines of the present invention are particularly useful in controlling bacteria that are present in companion animals for which purpose they can be administered using any known methods of administration, including, but not limited to, oral, parenteral, intranasal, subcutaneous, or topical.
[0143]According to a further aspect of the present invention, there is provided a composition comprising a vaccine of the present invention, in admixture with a compatible adjuvant, diluent or carrier. In a preferred embodiment, the vaccine formulation of the present invention is composed of an aqueous suspension or solution containing at least one bacteria of the present invention and/or at least one subunit protein, preferably buffered at physiological pH, in a form ready for injection. In another preferred embodiment, the vaccine formulation of the present invention is composed of inactivated whole cell preparations of at least three Porphyromonas spp., for example, P. gulae B43, P. salivosa B104 and P. denticanis B106.
[0144]The present invention further provides a method of treating or preventing a bacterial infection, which comprises treatment with an effective amount of a vaccine or vaccine formulation of the present invention. It is to be appreciated that reference to treatment includes prophylaxis as well as the alleviation of established symptoms of a bacterial infection.
[0145]The vaccines and vaccine formulations of the present invention can used to induce a response that prevents the pathological changes characteristic of periodontal disease caused by periodontal disease-causing bacteria. In a vaccine formulation, an immunogenic amount of the bacteria, purified protein, nucleic acid, or combinations thereof is desirably mixed with a suitable conventional vaccine adjuvants and physiologic vehicles, for use in mammals.
[0146]A vaccine formulation for preventing periodontal disease in companion animals can be produced using at least one of the isolated and purified inactivated or attenuated bacteria, purified polypeptides (such as native proteins, subunit proteins, or polypeptides, and admixing one or more or these with a compatible adjuvant, diluent, or carrier. Preferably, the polypeptide sequences are subunit proteins selected from the group including FimA (SEQ ID NOS: 103 to 110 and OprF (SEQ ID NOS: 120 to 128).
[0147]Examples of fragments of FimA and OprF that can be used for diagnostic polypeptides or for vaccine preparations include, but are not limited to ACNKDNEAEPVV, YPVLVNFESNNYTYTGDAVEK, TGPGTNNPENPITESA, NDNNNKDFVDRLGA, DLNGQINRLRREVEELSKRPVSCPECPDV, and ADPTGDTQYNERLSERRAKAV (SEQ ID NOS: 129-134). The subunit protein can be recombinantly expressed, either alone or fused to another polypeptide sequence or protein. The other polypeptide sequence or protein can include, but is not limited to, a poly-His tag, MBP, thioredoxin, or GST, for example. Also provided by the present invention are the polynucleotide sequences or genes that encode any of the above mentioned subunit proteins. The polynucleotide sequence of the bacteria can be selected from fimA and oprF or a fragment or variant thereof which fragment or variant exhibits at least about 90%, 95%, or 99% homology thereto, or a complementary polynucleotide sequence which hybridizes under high stringency conditions, or a combination of both. Preferably, the polynucleotide sequences of the present invention can be used to amplify a fimA or oprF DNA molecule of the present invention, or encodes an amino acid fragment than can be used to raise antibodies against FimA or OprF.
[0148]For DNA-based therapy, a vehicle capable of delivering or transferring heterologous nucleic acid into a host cell may be used. The expression vehicle may include elements to control targeting, expression and transcription of the nucleic acid in a cell selective manner as is known in the art. The expression vehicle can include a promoter for controlling transcription of the heterologous material and can be either a constitutive or inducible promoter to allow selective transcription. Enhancers that may be required to obtain necessary transcription levels can optionally be included.
[0149]Vectors can be introduced into cells or tissues by any one of a variety of known methods within the art. Such methods can be found generally described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Springs Harbor Laboratory, New York (1989, 1992); Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Baltimore, Md. (1989); Chang et al., Somatic Gene Therapy, CRC Press, Ann Arbor, Mich. (1995); Vega et al., Gene Targeting, CRC Press, Ann Arbor, Mich. (1995); R. L. Rodriguez Vectors: A Survey of Molecular Cloning Vectors and Their Uses, Butterworths, Boston Mass. (1988) and include, for example, stable or transient transfection, lipofection, electroporation and infection with recombinant viral vectors.
[0150]The present invention further provides for combinations vaccines having at least one of the inactivated or attenuated bacteria, nucleotide sequences, or polypeptide sequences of the present invention, in combination with one or more additional immunogenic components. Such a combination vaccine may produce in the vaccinated animal a surprisingly greater effect than that expected by simply adding the effects of each component administered separately. Thus, a combination vaccine may stimulate a synergistic production of antibody in animals.
[0151]In a preferred embodiment, the combination vaccine of the present invention is composed of inactivated whole cell preparations of at least three Porphyromonas spp., for example, P. gulae B43, P. salivosa B104 and P. denticanis B106, in combination with one or more additional bacterial or viral immunogenic components. Additional immunogenic components suitable for use in combination vaccines of the present invention include, but are not limited to Canine Distemper Virus (CDV), Canine Adenovirus-2 (CAV-2), Canine Parvovirus (CPV), Canine Parainfluenza Virus (CPI), and Canine Coronavirus (CCV),
[0152]Vaccines of the present invention can be prepared by combination of at least one of the inactivated or attenuated bacteria, nucleotide sequences, or polypeptide sequences of the present invention, with a pharmaceutically acceptable carrier, an preferably, an adjuvant.
[0153]Suitable preparations of the vaccines of the present invention include injectables, either liquid solutions or suspensions. Solid forms suitable for solution in, or suspension in, a liquid pharmaceutically acceptable carrier prior to injection may also be prepared. The vaccine preparation may be emulsified. The active immunogenic component, is preferably mixed with an adjuvant which is pharmaceutically acceptable and compatible with the active immunogenic component. Suitable adjuvants include, but are not limited to: mineral gels, e.g., aluminum hydroxide; surface active substances such as lysolecithin; glycosides, e.g., saponin derivatives such as Quil A or GPI-0100 (U.S. Pat. No. 5,977,081); cationic surfactants such as DDA, pluronic polyols; polyanions; non-ionic block polymers, e.g., Pluronic F-127 (B.A.S.F., USA); peptides; mineral oils, e.g. Montanide ISA-50 (Seppic, Paris, France), carbopol, Amphigen (Hydronics, Omaha, Nebr. USA), Alhydrogel (Superfos Biosector, Frederikssund, Denmark) oil emulsions, e.g. an emulsion of mineral oil such as BayolF/Arlacel A and water, or an emulsion of vegetable oil, water and an emulsifier such as lecithin; alum, cholesterol, rmLT, cytokines and combinations thereof. The immunogenic component may also be incorporated into liposomes, or conjugated to polysaccharides and/or other polymers for use in a vaccine formulation. Additional substances that can be included in a product for use in the present methods include, but are not limited to one or more preservatives such as disodlum or tetrasodium salt of ethylenediaminetetracetic acid (EDTA), merthiolate, and the like.
[0154]The subject to which the vaccine is administered is preferably a companion animal, most preferably, a dog or cat.
[0155]It is preferred that the vaccine of the invention, when in a vaccine formulation, be present in unit dosage form. For purposes of this invention, an immunogenic amount, when administered comprises about 1×104-1×1013 inactivated bacterial cells, 0.1 μg-1 mg of purified protein, or 0.1 μg-10 mg of nucleic acid. In a vaccine formulation containing multiple components, the same or lesser immunogenic amounts can usefully be employed.
[0156]Appropriate therapeutically effective doses can be determined readily by those of skill in the art based on the above immunogenic amounts, the condition being treated and the physiological characteristics of the animal. Accordingly, a vaccine preparation provides a dosage of a sterile preparation of an immunogenic amount of the active ingredient(s), where the active ingredient is at least one bacteria, protein, nucleic acid, or any combination thereof. In the presence of additional active agents, these unit dosages can be readily adjusted by those of skill in the art.
[0157]A desirable dosage regimen involves administration of at least one dose of desired vaccine composition, where the antigenic content of each fraction is as stated above. Effective doses (immunizing amounts) of the vaccines of the invention may also be extrapolated from dose-response curves derived from model test systems. The mode of administration of the vaccines of the invention can be any suitable route that delivers the vaccine to the host. These include but are not limited to oral, intradermal, intramuscular, intraperitoneal, subcutaneous, intranasal routes, and via scarification (scratching through the top layers of skin, e.g., using a bifurcated needle). However, the vaccine is preferably administered subcutaneously or by intramuscular injection. Other modes of administration can also be employed, where desired, such as intradermally, intravenously, intranasally, or intratonsillarly.
[0158]Studies have shown that, for each of the above described vaccine compositions, a primary immunization of young animals (after 8 weeks of age) is desirably initiated, with booster doses administered at 12 weeks and 16 weeks of age. Annual re-vaccination is recommended.
[0159]The vaccine of the present invention is administered and dosed in accordance with good medical practice, taking into account the clinical condition of the individual subject, the site and method of administration, scheduling of administration, subject age, sex, body weight and other factors known to medical practitioners.
[0160]The invention further provides kits for the prevention periodontal disease in companion animals. In one embodiment, the kit provides a container comprising a therapeutically effective amount of a composition which prevents periodontal disease in companion animals. Also provided in the same or different container is a pharmaceutically acceptable carrier that may be used in the composition. The kit can additionally include an adjuvant that can be used to aid in creating the response to the composition of the present invention. Also, the kit can include a dispenser for dispensing the composition, preferably in unit dosage form. The dispenser can, for example, comprise metal or plastic foil, such as a blister pack. The kit can be accompanied by a label or printed instructions describing administration of the composition to prevent periodontal disease in a companion animal. Compositions comprising a vaccine composition of the present invention formulated in a pharmaceutically acceptable carrier can also be prepared, placed in an appropriate container, and labeled for treatment of the indicated periodontal condition.
Determination of Vaccine Efficacy
[0161]The specific mechanism of protection induced by the vaccines and vaccine compositions of the present invention is the induction of the antibody and/or cellular immune response in vaccinated animals, as indicated by the in vivo animal tests described below.
[0162]The bacteria, polynucleotides, polypeptides, vaccines, and vaccine compositions of the present invention may be useful in treating or preventing companion animal periodontal disease, bovine foot rot, coronary heart disease (dogs), or systemic infections (dogs). In addition, the compositions of the present invention may also be useful in treating or preventing certain illnesses in companion animals corresponding to similar illnesses in humans such as coronary heart (or vascular or artery) disease, parotitis, oral maloder, gingivitis, periodontitis, stroke, atherosclerosis, hyperlipidemia, increased incidence of pre-term delivery of low birth weight infants, bacterial vaginosis and intrauterine growth retardation (IUGR).
[0163]In a further aspect of the present invention, methods of assessing the efficacy of a vaccine against one or more periopathogenic bacteria in an animal are provided. The present invention has shown that a vaccine against one or more periopathogenic bacteria can be assessed in animal species such as mouse or dog, particularly dog.
[0164]According to the present invention, vaccines against a variety of periopathogenic bacteria can be assessed using the methods described hereinabove, including but not limited to, Porphyromonas, Bacteriodes, Prevotella, Tannerella (Tannerella forsythensis, formerly Bacteroides forsythus), and Treponema, which are designed for treating or preventing a periodontal disease in human or companion animals caused by these bacteria. The vaccines can contain inactivated or attenuated bacteria, polypeptides, or polynucleotides of any of these bacterial species.
[0165]The efficacy of a vaccine can be assessed by introducing a challenge culture separately into a vaccinated animal and an unvaccinated animal, and comparing the clinical signs in the two animals. The challenge culture can be composed of the same periopathogenic bacteria as the vaccine. However, the challenge culture can contain bacteria different from those in the vaccine to evaluate any cross protection the vaccine may have against other bacterial species.
[0166]According to the present invention, it is desirable to introduce the challenge culture into the root canal of teeth of the animals from which the root material has been extirpated, followed by placement of a restoration. The challenge culture typically contains about 1×102 to about 1×1012 colony forming units (CFU) per challenge dose; preferably, 1×102 to about 1×1011 colony forming units (CFU) per challenge dose; even more preferably, about 5×107 to about 5×1010 colony forming units (CFU) per challenge dose.
[0167]Clinical signs of disease which can be evaluated include increased levels of one or more periopathogenic bacteria in the gingival crevicular fluid, plaque, infected bone, or gingival sulci, or changes in the amount of aveolar bone, particularly in the periapical region of the aveolar bone. The bone changes can be quantitated by, e.g., radiographic measurements.
[0168]The present invention is further illustrated by the following non-limiting example and accompanying figures.
EXAMPLE 1
Companion Animal Crevicular Fluid Sample
[0169]Microbial samples were taken from dogs and cats examined at veterinary clinics for periodontal treatment, or dogs examined at either Pfizer Terre Haute or Pfizer Sandwich facilities for normal check-ups. Dogs with periodontal pockets >3 mm and cats with periodontal pockets >2 mm were included in this study. Dental indices (gingival index and periodontal index) and the periodontal pocket depths were recorded. Individual coarse absorbent paper points (Henry Schein; Melville, N.Y.) were aseptically inserted into the periodontal pocket. Upon removal, the paper points were immediately inserted into vials containing Pre-Reduced Anaerobically Sterile (PRAS) Anaerobic Dental Transport (ADT) Medium (Anaerobe Systems; Morgan Hills, Calif.).
[0170]Vials were transferred into a Bactron IV anaerobic chamber (Sheldon Manufacturing, Cornelius, Oreg.) and processed under 90% N2, 5% H2, 5% CO2. The paper points were aseptically placed into 50 μl of PRAS Brain Heart Infusion (BHI) medium (Anaerobe Systems) and vortexed for 30 seconds. Dilutions of 1:100 and 1:1000 were prepared in BHI medium. Aliquots of 100 μl of the 1:100 and 1:1000 dilutions were spread on PRAS Burcella Blood Agar (BRU) plates (Anaerobe Systems). The plates were incubated at 37° C. in the anaerobic chamber for five to seven days. The total number of bacterial colonies and the number of Black Pigmented Anaerobic Bacteria (BPAB) colonies were counted. Individual BPAP colonies were transferred to new BRU plates and re-incubated as above.
Clinical Isolate Characterization
[0171]Each clinical isolate was subjected to a number of biochemical analyses and 16S rRNA DNA sequence analysis, using primers D0056 and D0057 (Seq. ID No. 1 and Seq. ID No. 2; Table 1), to determine genus and species. Individual isolates were streaked on BRU plates. Kanamycin, Vancomycin, and Colistin disks (Anaerobe Systems) were placed on the agar surface to determine the KVC resistance patterns of each isolate. Purified colonies were also subjected to the indole and catalase tests (Anaerobe Systems). Individual isolates were transferred to Egg Yolk Agar (EYA) plates (Anaerobe Systems) in order to determine lipase and lecithinase production patterns. This data is shown in Table 2.
TABLE-US-00002 TABLE 2 Canine and feline BPAB isolate characterization Genus/species Bact. Tooth Pocket Periodontal Gingivitis by 16S rRNA Log # Source Dog/Cat Breed Age sex sampled depth index index Pigment Hemolysis Kan Vanc Col Indole Lipase Lecith. Catalase sequence B0029 ATCC NA NA NA NA NA ND ND ND Y Y R S R Y N Y ND Porphyromonas gingivalis B0030 ATCC NA NA NA NA NA ND ND ND Y Y R S R Y N Y ND Porphyromonas gingivalis B0031 ATCC NA NA NA NA NA ND ND ND Y Y R S R Y N Y ND Porphyromonas gingivalis B0032 ATCC NA NA NA NA NA ND ND ND Light N ND ND ND ND N N ND Porphyromonas circumdentaria B0033 ATCC NA NA NA NA NA ND ND ND Tan N ND ND ND ND N N ND Porphyromonas salivosa B0034 ATCC NA NA NA NA NA ND ND ND Y Y R R S Y Y Y/N ND Prevotella intermedia B0035 ATCC NA NA NA NA NA ND ND ND Y ND ND ND ND ND ND ND ND Prevotella oralis B0040 NCTC D ND ND ND ND ND ND ND Y Y S S R ND N Y Ne Porphyromonas gingivalis B0041 Pfizer D ND ND ND ND ND ND ND Y Y R R R ND N Y P Porphyromonas gulae B0042 Pfizer D ND ND ND ND ND ND ND Y ND R R R ND N ND P Porphyromonas gulae B0043 Pfizer D ND ND ND ND ND ND ND Y ND S S R ND N ND Ne Porphyromonas gulae B0044 Pfizer C ND ND ND ND ND ND ND Y ND S S R ND N ND P Porphyromonas gulae B0045 Pfizer C ND ND ND ND ND ND ND Y ND S S R ND N ND P Porphyromonas gulae B0046 VHUP1B D YPKT 4.5 F URP4 4 2 2 Y N S S R ND ND ND Ne Porphyromonas cansulci B0047 VHUP1D D YRKT 4.5 F URP4 4 2 2 Y ND R R R ND ND ND Ne Porphyromonas cansulci B0048 VHUP1E D YRKT 4.5 F URP4 4 2 2 Y N R R R ND Y ND P Porphyromonas salivosa B0049 VHUP1G D YRKT 4.5 F URP4 4 2 2 Y ND R R R ND ND N P Porphyromonas cansulci B0050 VHUP1H D YRKT 4.5 F URP4 4 2 2 Y ND S R R ND ND N Ne Porphyromonas salivosa B0051 VHUP1I D YRKT 4.5 F URP4 4 2 2 Y ND ND ND ND ND ND ND Ne Porphyromonas cansulci B0052 VHUP2A C DSHA 2.5 M URP4 5 3 3 Y ND S S R ND ND ND P Porphyromonas circumdentaria B0053 VHUP2B C DSHA 2.5 M URP4 5 3 3 Y ND S S R ND ND ND P Porphyromonas circumdentaria B0054 VHUP2C C DSHA 2.5 M URP4 5 3 3 Y ND S S R ND ND ND P Porphyromonas circumdentaria B0055 VHUP2D C DSHA 2.5 M URP4 5 3 3 Y ND S S R ND ND ND P Porphyromonas circumdentaria B0056 VHUP2E C DSHA 2.5 M URP4 5 3 3 Y ND S S R ND ND ND P Porphyromonas circumdentaria B0057 VHUP2F C DSHA 2.5 M URP4 5 3 3 Y ND S S R ND ND ND P Porphyromonas circumdentaria B0069 VHUP3A C DSHA 12.5 M ULC 2 1 2 Y ND R R R ND N Y P Porphyromonas gulae B0070 VHUP3B C DSHA 12.5 M ULC 2 1 2 Y ND R R R ND N Y P Porphyromonas gulae B0071 VHUP3C C DSHA 12.5 M ULC 2 1 2 Y ND R R R ND N Y P Porphyromonas gulae B0072 VHUP3D C DSHA 12.5 M ULC 2 1 2 Y ND R R R ND N N P Porphyromonas gulae B0073 VHUP3E C DSHA 12.5 M ULC 2 1 2 Y ND R R R ND N N P Porphyromonas gulae B0078 VHUP4A D ND 5 F ULP4 5 3 2 yellow Y S R R N N Y Ne Bacteroides acidofaciens B0080 VHUP4C D ND 5 F ULP4 5 3 2 yellow Y S S R N N Y Ne Bacteroides acidofaciens B0083 VHUP4F D ND 5 F ULP4 5 3 2 yellow N R S R N N Y Ne Bacteroides acidofaciens B0084 DAH1A D TPOO 15 F URCAN 6 3 3 blk N R S R Y Y N P Porphyromonas circumdentaria B0086 DAH1C D TPOO 15 F URCAN 6 3 3 brown N R R S P Y N Ne Bacteroides fragilis B0087 DAH1D D TPOO 15 F URCAN 6 3 3 opaque N R R R N N N Ne Porphyromonas circumdentaria B0089 DAH1F D TPOO 15 F URCAN 6 3 3 dk brn Y S S R N Y N P Porphyromonas gulae B0090 DAH2A D SSHZ 9 M LRCAN 3 ND 2 lt brn N R S R N Y N P Porphyromonas endodontalis B0092 DAH2C D SSHZ 9 M LRCAN 3 ND 2 dk brn Y S S R N N N P Porphyromonas gulae B0093 DAH2D D SSHZ 9 M LRCAN 3 ND 2 dk brn Y R S R N N N P Pasteurella canis B0095 DAH2F D SSHZ 9 M LRCAN 3 ND 2 blk Y R S R N N N P Porphyromonas gulae B0096 TH1aA D ND ND M RPM4 3 ND ND lt blk Y R S R N N Y P Porphyromonas gulae B0097 TH1aB D ND ND M RPM4 3 ND ND blk N R R R N N N P Porphyromonas circumdentaria B0098 TH1aC D ND ND M RPM4 3 ND ND brn N S S R N N N P Porphyromonas cangingivalis B0103 TH1bB D ND ND M LM1 4 ND ND blk/wt Y S S R N N Y Ne Streptococcus bovis JB1 fans B0104 TH1bC D ND ND M LM1 4 ND ND brn Y R R R N Y Y P Porphyromonas salivosa B0105 TH1bD D ND ND M LM1 4 ND ND brn Y R R R N Y Y P Porphyromonas salivosa B0106 TH1bE D ND ND M LM1 4 ND ND blk Y S R S N N N Ne Porphyromonas denticanis B0107 TH1bF D ND ND M LM1 4 ND ND blk Y R R S N N N Ne Porphyromonas denticanis B0109 TH2aB D ND ND M LPM4 4 ND ND dk brn N S S R P Y Y P Porphyromonas cansulci B0110 TH2aC D ND ND M LPM4 4 ND ND brn N R R R N Y Y P Porphyromonas salivosa B0111 TH2aD D ND ND M LPM4 4 ND ND brn N S R S P Y Y P Porphyromonas salivosa B0112 TH2aE D ND ND M LPM4 4 ND ND brn Y R S S P Y Y P Porphyromonas salivosa B0113 TH2aF D ND ND M LPM4 4 ND ND blk Y R R S P N N Ne Porphyromonas denticanis TH2aG D ND ND M LPM4 4 ND ND yellow N N N Ne Porphyromonas endodontalis B0114 TH2bA D ND ND M LM1 4 ND ND dk brn Y R R R N N Y Ne Porphyromonas endodontalis B0117 TH2bD D ND ND M LM1 4 ND ND opaque Y R R R N Y N P Porphyromonas salivosa B0118 TH2bE D ND ND M LM1 4 ND ND yellow N R S R N N Y Ne Eubacterium brachy B0119 TH2bF D ND ND M LM1 4 ND ND blk N R R R N N Y Ne Porphyromonas cansulci B0121 TH2cB D ND ND M RM1 4 ND ND blk N S S R N N N Ne Porphyromonas cansulci B0122 TH2cC D ND ND M RM1 4 ND ND lt brn Y R R R N Y Y P Porphyromonas endodontalis B0123 TH2cD D ND ND M RM1 4 ND ND blk N R S R N N Y Ne Porphyromonas endodontalis B0124 TH2cE D ND ND M RM1 4 ND ND dk brn Y R R R N Y Y P Porphyromonas salivosa B0125 TH2cF D ND ND M RM1 4 ND ND blk N R S R N N Y Ne Porphyromonas endodontalis B0126 TH3aA D ND ND M RM1 4 ND ND blk Y R R S N N N Ne Porphyromonas denticanis B0128 TH3aC D ND ND M RM1 4 ND ND brn Y R R R N N Y P Porphyromonas salivosa B0129 TH3aD D ND ND M RM1 4 ND ND blk Y R R S N N N Ne Porphyromonas denticanis B0131 TH3aF D ND ND M RM1 4 ND ND brn Y R R R N N Y P Porphyromonas salivosa B0132 TH3bA D ND ND M RPM3 4 ND ND blk Y R S R N N N Ne Porphyromonas cansulci B0133 TH3bB D ND ND M RPM3 4 ND ND brn N R R S P Y N P Porphyromonas salivosa B0134 TH3bC D ND ND M RPM3 4 ND ND brn N R R S P Y N P Porphyromonas salivosa B0135 TH3bD D ND ND M RPM3 4 ND ND blk Y R R S P N N Ne Porphyromonas denticanis B0136 TH3bE D ND ND M RPM3 4 ND ND brn N R R S P Y N P Porphyromonas salivosa B0140 TH3cC D ND ND M LM1 4 ND ND blk N R R R N Y Y Ne Porphyromonas denticanis B0142 TH3cE D ND ND M LM1 4 ND ND opaque Y R R R N Y Y P Porphyromonas salivosa B0143 TH3cF D ND ND M LM1 4 ND ND wht Y ND ND ND P N N Ne Eubacterium brachy B0145 TH4aB D ND ND M RM1 4 ND ND blk Y S S R P Y N P Porphyromonas gulae B0146 TH4aC D ND ND M RM1 4 ND ND lt brn N S S S N Y N Ne Enterococcus gallinarum B0148 TH4aE D ND ND M RM1 4 ND ND lt brn N R R S Y N Ne Porphyromonas cansulci B0150 TH4bA D ND ND M LM1 4 ND ND blk Y R R S P N N Ne Porphyromonas denticanis B0151 TH4bB D ND ND M LM1 4 ND ND blk Y R R S N N N Ne Porphyromonas denticanis B0152 TH4bC D ND ND M LM1 4 ND ND blk Y R R S N N N Ne Porphyromonas denticanis B0153 TH4bD D ND ND M LM1 4 ND ND brn N R R S N Y N P Bacteroides forsythus B0154 TH4bE D ND ND M LM1 4 ND ND brn Y R R S P Y N P Porphyromonas salivosa B0155 TH4bF D ND ND M LM1 4 ND ND blk Y R R S N N N Ne Porphyromonas denticanis B0163 TH5bB D ND ND M LPM4 4 ND ND blk Y R R S N Y N Ne Porphyromonas denticanis B0164 TH5bC D ND ND M LPM4 4 ND ND brn N S S S P Y Y P Eubacterium brachy B0171 TH6aD D ND ND M RPM4 7 ND ND blk Y R R S N N N P Porphyromonas denticanis B0172 TH6aE D ND ND M RPM4 7 ND ND blk Y R R S N N Y Ne Porphyromonas denticanis B0174 TH6bA D ND ND M LM1 6.5 ND ND blk Y R R S P N N Ne Porphyromonas denticanis B0183 TH7aD D ND ND M RPM4 2.5 ND ND opaque Y R R S N N N Ne Porphyromonas denticanis B0186 TH7bA D ND ND M LM1 4 ND ND blk/brn N R R R N N Y Ne Porphyromonas endodontalis B0187 TH7bB D ND ND M LM1 4 ND ND brn Y R R R N N N Y Porphyromonas canoris B0188 TH7bC D ND ND M LM1 4 ND ND opaque N R S R N N N Ne Fusobacterium alocis B0190 TH7bE D ND ND M LM1 4 ND ND brn Y R R R N Y Y P Porphyromonas salivosa B0191 TH7bF D ND ND M LM1 4 ND ND wt Y R R R N Y Y P Porphyromonas salivosa B0195 TH8aD D ND ND M RM1 3 ND ND blk Y R S R P Y Y Ne Porphyromonas circumdentaria B0198 TH9aA D ND ND M LPM3 4 ND ND lt brn N R R S P Y Y P Porphyromonas salivosa B0199 TH9aB D ND ND M LPM3 4 ND ND brn Y R S R P Y N P Porphyromonas gulae B0201 TH9aD D ND ND M LPM3 4 ND ND blk Y R R S N N N Ne Campylobacter sputorum B0203 TH9aF D ND ND M LPM3 4 ND ND dk brn Y R S R N Y N P Porphyromonas gulae B0204 TH9bA D ND ND M RPM3 3 ND ND tan N S S N N N P Porphyromonas cangingivalis B0205 TH9bB D ND ND M RPM3 3 ND ND blk N R R R N Y N Ne Porphyromonas cansulci B0206 TH9bC D ND ND M RPM3 3 ND ND brn Y R R R N N Y P Porphyromonas gulae B0207 TH9bD D ND ND M RPM3 3 ND ND blk N R R R N Y N Ne Porphyromonas cansulci B0208 TH9bE D ND ND M RPM3 3 ND ND tan N R S R N N N P Porphyromonas cangingivalis B0210 TH10aA D ND ND M RM1 4 ND ND opaque N R R S N N N Ne Campylobacter sputorum B0211 TH10aB D ND ND M RM1 4 ND ND blk N R R R N N N P Porphyromonas circumdentaria B0212 TH10aC D ND ND M RM1 4 ND ND lt brn Y R R R N N Y P Porphyromonas gulae B0213 TH10aD D ND ND M RM1 4 ND ND blk/brn N R R R N N Y P Porphyromonas circumdentaria B0218 TH10bC D ND ND M LM1 4 ND ND yellow N R S S N Y Y Ne Peptostreptococcus sp. D1 B0222 TH11aA D ND ND F RM1 4 ND ND blk Y R R R N Y N Ne Bacteroides levii B0225 TH11aD D ND ND F RM1 4 ND ND blk N R R R N Y N Ne Bacteroides levii B0232 TH11bE D ND ND F LPM3 2 ND ND lt brn N R S S P N N P Porphyromonas canoris B0233 TH11bF D ND ND F LPM3 2 ND ND brn Y R S R P Y N P Klebsiella oxytoca B0234 TH12aA D ND ND F RPM4 4 ND ND mixed Y R S R P Y Y P Porphyromonas salivosa B0235 TH12aB D ND ND F RPM4 4 ND ND yellow N R R R N N Y Ne Bacteroides forsythus B0236 TH12aC D ND ND F RPM4 4 ND ND lt brn N R R R N Y Y P Porphyromonas salivosa B0238 TH12aE D ND ND F RPM4 4 ND ND blk Y R S S N Y Y Ne Porphyromonas circumdentaria B0241 TH12bB D ND ND F ULPM4 4 ND ND wht N S S R P N N Ne Bacteroides acidofaciens B0242 TH12bC D ND ND F ULPM4 4 ND ND brn N R R S P Y N Ne Bacteroides acidofaciens B0243 TH12bD D ND ND F ULPM4 4 ND ND yellow N S S R P N N Ne Peptostreptococcus sp. D1
B0248 TH13aC D ND ND M RPM4 2 ND ND blk Y R S R N N N Ne Porphyromonas endodontalis B0251 TH13aF D ND ND M RPM4 2 ND ND lt brn N S R S N Y Y P Porphyromonas salivosa B0258 TH14aA D ND ND M URPM2 5 ND ND lt brn Y R R S N Y Y P Porphyromonas endodontalis B0259 TH14aB D ND ND M URPM2 5 ND ND blk N R S S N N N P Porphyromonas endodontalis B0260 TH14aC D ND ND M URPM2 5 ND ND dk brn N R S S P Y Y P Porphyromonas salivosa B0264 TH14bA D ND ND M ULCAN 2 ND ND blk Y S S R N N N Ne Porphyromonas denticanis B0265 TH14bB D ND ND M ULCAN 2 ND ND blk Y R ND ND N N N Ne Porphyromonas denticanis B0266 TH14bC D ND ND M ULCAN 2 ND ND yellow Y S S R P N N Ne Peptostreptococcus sp. D1 B0267 TH14bD D ND ND M ULCAN 2 ND ND blk N R ND ND N N N Ne Porphyromonas denticanis B0269 TH14bF D ND ND M ULCAN 2 ND ND blk N R R N ND ND P Porphyromonas denticanis B0270 TH15aA D ND ND M RM1 4 ND ND brn Y R R R N N Y P Porphyromonas gulae B0271 TH15aB D ND ND M RM1 4 ND ND brn Y R R R N N Y P Porphyromonas gulae B0272 TH15aC D ND ND M RM1 4 ND ND gry brn Y R S R N N Y P Porphyromonas gulae B0273 TH15aD D ND ND M RM1 4 ND ND blk Y R S R N N Y P Porphyromonas gulae B0274 TH15aE D ND ND M RM1 4 ND ND dkbrn Y R S R N N Y P Porphyromonas gulae B0279 TH15bD D ND ND M LM1 2 ND ND blk Y R S R N Y N P Porphyromonas endodontalis B0283 TH16aB D ND ND F RM1 4 ND ND brn ND R S R N N Y P Porphyromonas cansulci B0284 TH16aC D ND ND F RM1 4 ND ND blk ND S S S N N N P Unidentified eubacterium B0285 TH16aD D ND ND F RM1 4 ND ND blk ND S S S N N N Ne Unidentified eubacterium B0286 TH16aE D ND ND F RM1 4 ND ND brn ND S S S N N Y P Porphyromonas gulae B0287 TH16aF D ND ND F RM1 4 ND ND brn ND R S R N N N P Porphyromonas circumdentaria B0290 TH16bC D ND ND F LPM4 2 ND ND blk ND R S R P N N Ne Porphyromonas circumdentaria B0291 TH16bD D ND ND F LPM4 2 ND ND dk brn ND R S R N N Y P Porphyromonas gulae B0323 VHUP5F C DSHA 10 F URCAN 4 2 2 blk Y R S R N N N P Porphyromonas circumdentaria B0336 DAH6A D COLI 10 F URCAN 6 3 3 brn Y R S R N N Y P Porphyromonas gulae B0337 DAH6B D COLI 10 F URCAN 6 3 3 blk N S S S N N N P Unidentified eubacterium B0341 DAH6F D COLI 10 F URCAN 6 3 3 blk Y S S S N N N P Unidentified rumen bacterium B0342 VHUP6A D SCOT 7.5 M LM1 5 3 2 yellow N S R S P N N Ne Bacteroides acidofaciens B0343 VHUP6B D SCOT 7.5 M LM1 5 3 2 lt brn N R S R P Y N Ne Bacteroides forsythus B0344 VHUP6C D SCOT 7.5 M LM1 5 3 2 blk N ND ND ND N Y N P Porphyromonas circumdentaria B0346 VHUP6E D SCOT 7.5 M LM1 5 3 2 brn N R S S N Y Y P Bacteroides forsythus B0348 VHUP7A D CKSP 11 M ULP2 6 1 2 yellow N S S R P N N Ne Peptostreptococcus B0353 DAH8B D YRKT 11 M ULCAN 9 2 2 blk Y ND ND ND N N N P Porphyromonas gulae B0358 DAH19A D YRKT 9 M URPM4 6 3 3 brn N S S S P Y Y Ne Porphyromonas salivosa B0363 DAH19F D YRKT 9 M URPM4 6 3 3 blk Y R R S P N N Ne Porphyromonas denticanis B0365 DAH20B D DACH 10 F ULM1 3 3 3 blk Y R R S P N N Ne Porphyromonas denticanis B0366 DAH20C D DACH 10 F ULM1 3 3 3 blk Y R R S P N N Ne Porphyromonas denticanis B0367 DAH20D D DACH 10 F ULM1 3 3 3 blk Y R R S N N N P Porphyromonas gulae B0368 DAH24D D MIXB 11 M LRM1 3 3 2 blk Y R R S P N N Ne Porphyromonas denticanis B0253 DAH37E C DSHA 11 M URCAN 6 2 3 yel N R S S N N N Ne Bacteroides forsythus B0255 CSU1B C DSHA 17 M ND N ND ND lt brn N R S R N Y Y P Tessaracoccus bendigoniensis B0256 DAH39C D ND ND M LRM1 6 2 2 Blk N R R R N N N Ne Bacteroides levii B0375 UCD2A D DACH 11 M URPM3 5 1 3 brn N ND ND ND P N N Ne Porphyromonas salivosa B0381 UF1A C DSHA 2 F ULPM3 1 1 2 wt N R R R P N N Ne Porphyromonas denticanis B0385 UF1E C DSHA 2 F ULPM3 1 1 2 lt brn N R R S P N N Ne Campylobacter sputorum B0389 UF2C C DSHA 2 F ULPM3 0.5 1 1 brn N S ? R P N N P Porphyromonas circumdentaria B0390 UF2D C DSHA 2 F ULPM3 0.5 1 1 dk brn Y ND ND ND P N N P Staphylococcus warneri partia B0391 UF2E C DSHA 2 F ULPM3 0.5 1 1 dk brn Y ND ND ND P N N P Salmonella bongori B0392 UF2F C DSHA 2 F ULPM3 0.5 1 1 brn N ND ND R P N N Ne Clostridium sp. B0394 UF3B C DSHA 2 F ULPM3 1 1 1 lt brn N R S S N Y Y P Porphyromonas salivosa B0398 UF3F C DSHA 2 F ULPM3 1 1 1 dk brn Y R S R N N N P Porphyromonas gulae B0401 UF4C C DSHA 2 F URPM3 1 1 1 yel N R R R P N N Ne Porphyromonas denticanis B0402 UF4D C DSHA 2 F URPM3 1 1 1 dk brn Y ND ND ND P N N P Porphyromonas gulae B0403 UF4E C DSHA 2 F URPM3 1 1 1 dk brn N S S R N N N P Porphyromonas gulae B0411 UF7A C DSHA 5 F ULPM3 1 1 2 dk brn N S S R P N N Ne Globicatella sp. B0412 UF7B C DSHA 5 F ULPM3 1 1 2 grybrn N S S S P Y Y P Porphyromonas salivosa B0414 UF7D C DSHA 5 F ULPM3 1 1 2 grybrn N S S S P Y Y P Porphyromonas salivosa B0416 UF7F C DSHA 5 F ULPM3 1 1 2 brnfan N ND S R P N N Ne Marine snow assoc. bacterium B0417 UF9A C DSHA ND F ULPM3 2 2 2 yel N R R R P N N Ne Porphyromonas denticanis B0418 UF9B C DSHA ND F ULPM3 2 2 2 grybrn N R R R P N N Ne Porphyromonas denticanis B0421 UF9E C DSHA ND F ULPM3 2 2 2 grybrn N R R R P N N Ne Porphyromonas denticanis B0422 UF9F C DSHA ND F ULPM3 2 2 2 blk N R R R P N N Ne Porphyromonas denticanis B0423 UF10A C DSHA ND F ULPM3 2 2 2 blk Y S S R N Y N P Porphyromonas gulae B0427 UF10E C DSHA ND F ULPM3 2 2 2 blk N ND ND ND N N N P Porphyromonas gulae B0428 UF10F C DSHA ND F ULPM3 2 2 2 blk N R R R P Y N P Porphyromonas gulae B0437 UCD4C D MSHZ 4 F LLM1 ND 2 2 brnfan Y S S S P N N Ne Veillonella sp. oral clone X042 B0438 UCD4D D MSHZ 4 F LLM1 ND 2 2 yel N ND ND ND N N N Ne Prevotella oulora B0439 UCD4E D MSHZ 4 F LLM1 ND 2 2 lt brn ND ND ND ND ND ND ND ND Lactobacillus rimae B0440 UCD4F D MSHZ 4 F LLM1 ND 2 2 lt brn Y S S S N N N Ne Streptococcus suis B0442 UCD5B D BOXE 12 F URI1 3 2 2 ND ND ND ND ND P ND ND Ne Capnocytophaga sp. B0446 UCD6A C DSHA 2 M LRM1 ND 2 2 ltbrn N R S R N N N P Porphyromonas circumdentaria B0447 UCD6B C DSHA 2 M LRM1 ND 2 2 blk N R S S P N N P Porphyromonas circumdentaria B0448 UCD6C C DSHA 2 M LRM1 ND 2 2 blk N R S R P N N P Porphyromonas circumdentaria B0449 UCD6D C DSHA 2 M LRM1 ND 2 2 brn N R S ? P N N P Porphyromonas circumdentaria B0450 UCD6E C DSHA 2 M LRM1 ND 2 2 brn N R S R N N N Ne Porphyromonas circumdentaria B0452 UCD6G C DSHA 2 M LRM1 ND 2 2 blk N R S R P N N P Porphyromonas circumdentaria B0453 UCD6H C DSHA 2 M LRM1 ND 2 2 blk N R S R N N N P Porphyromonas circumdentaria B0456 UCD7B D POOD 8 F URCAN ND ND ND blk N R R S N N N P Porphyromonas denticanis B0457 UCD7C D POOD 8 F URCAN ND ND ND brn N R R S P N N Ne Porphyromonas denticanis B0458 UCD7D D POOD 8 F URCAN ND ND ND yel N R S R P N N Ne Bacteroides acidofaciens B0463 UCD8C C DLHA 6 M LLP4 ND 1 ND brn N S S R P N Y P Peptostreptococcus sp. B0473 UCD10A D WHWT 10 M URP4 3 2 2 wht N R R S P ND ND Ne Bacteroides acidofaciens B0474 UCD10B D WHWT 10 M URP4 3 2 2 wyel N R ND S P ND ND Ne Bacteroides acidofaciens B0476 UCD10D D WHWT 10 M URP4 3 2 2 wht N R R R P ND ND Ne Bacteroides acidofaciens B0477 UCD10E D WHWT 10 M URP4 3 2 2 brn Y R R R P ND ND P Porphyromonas salivosa B0478 UCD10F D WHWT 10 M URP4 3 2 2 brn Y R R R P ND ND Ne Porphyromonas salivosa Abbreviations: D, Dog; C, Cat; NA, Not applicable; ND, Not determined; M, Male; F, Female; Y, Yes; N, No; P, Positive; Ne, Negative
[0172]The isolates were typed based on their 16S rRNA DNA sequence. Individual, well-isolated colonies were utilized as template for polymerase chain reactions (PCR) amplification of the 16S rRNA region using primers D0056 and D0057 (Seq. ID No. 1 and Seq. ID No. 2; Table 1) in triplicate. The PCR was carried out in 50 μl reaction volumes containing 1×PCR buffer (Life Technologies; Rockville, Md.), 1.0 mM MgCl2, 1.25 μM each primer, 300 μM each deoxy-NTP, and 2.5 U Platinum Pfx DNA Polymerase (Life Technologies). The following PCR cycle conditions were utilized: a two minute denaturation step at 94° C.; 30 cycles of denaturation at 94° C. for 40 seconds, annealing at 60° C. for 40 seconds, and extension at 72° C. for one minute; a final extension step at 72° C. for two minutes; and a final cooling step to 4° C. A GeneAmp 9700 thermocycler (Perkin Elmer Applied Biosystems; Foster City, Calif.) was utilized for all PCR amplifications.
[0173]The resulting PCR products were purified using the PCR preps kits (Promega Corp.; Madison, Wis.) and pooled by isolate. The purified PCR products were then desalted by drop analysis against 25 ml sterile water using a 0.025 μm nitrocellulose filter (Millipore Corp.; Bedford, Mass.). The purified, desalted PCR products were subjected to DNA sequence analysis using the DyeDeoxy termination reaction on an ABI automated DNA sequencer (University of Texas Genetics Core Facility, Houston, Tex. and Lark Technologies Inc., Houston, Tex.). Synthetic oligonucleotide primers D0056, D0057, PFZ175-AP1, PFZ175-AP2, and PFZ175-AP3 (Seq. ID No. 1-5, respectively; Table 1) were used to obtain double stranded DNA sequence. The resulting DNA sequences were used to search publicly available DNA databases using A BLAST-N program publicly available from The National Center for Biotechnology Information, USA.
[0174]The bacterial isolates were typed based on the closest match identified by database searches. The B106 isolates did not have a precise match. The nearest match was with an uncultured bacterial type that was identified by random PCR of human periodontal pocket material. This isolate was referred to as Porphyromonas denticanis strain B106. A complete listing of all the isolates and their respective characteristics is located in Table 2. The top nine most frequently isolated strains are exemplified by the following isolates: P. gulae B43 (dog sample Sandwich 4), P. cansulci B46 (dog sample VHUP 1B), P. circumdentaria B52 (cat sample VHUP 2A), P. gulae B69 (cat sample VHUP 3A), P. circumdentaria B97 (dog sample TH 1bC), P. cangingivalis B98 (dog sample TH 1aC), P. salivosa B104 (dog sample TH 1 bC), P. denticanis B106 (dog sample TH 1bE), and P. endodontalis B114 (dog sample TH 2bA).
[0175]The distribution of isolates is shown in Table 3.
TABLE-US-00003 TABLE 3 Summary of the number of dogs and cats identified to harbor indicated bacterial species. # dog # % positive # cat # Isolate isolates dogs dogs isolates cats % positive Porphyromonas gulae 27 16 31 8 6 38 Porphyromonas salivosa 27 17 33 3 2 13 (macacae) Porphyromonas denticanis 24 15 29 0 0 0 Porphyromonas cansulci 12 8 15 0 0 0 Porphyromonas 11 8 15 0 0 0 endodontalis Porphyromonas 10 8 15 15 4 25 circumdendaria Bacteroides acidofaciens 10 5 10 0 0 0 Bacteroides forsythus 4 3 6 1 1 6 Porphyromonas 3 2 4 0 0 0 cangingivalis Bacteroides levii 3 2 4 0 0 0 Eubacterium brachy 3 3 6 0 0 0 ATCC33089 Peptostreptococcus sp. D1 3 4 8 1 1 6 Unidentified eubacterium 3 2 4 0 0 0 Porphyromonas canoris 2 2 4 0 0 0 Campylobacterium sputorum 2 2 4 1 1 6 Porphyromonas gingivalis 1 1 2 0 0 0 Bacteroides fragilis 1 1 2 0 0 0 Uncultured bacterium SHA- 1 1 2 0 0 0 54 Uncultured bacterium SHA- 1 1 2 0 0 0 219 Pasteurella canis 1 1 2 0 0 0 Streptococcus bovis JB1 1 1 2 0 0 0 Enterococcus gallinarum 1 1 2 0 0 0 Fusobacterium alocis 1 1 2 0 0 0 Klebsiella oxytoca 1 1 2 0 0 0 Unidentified rumen 1 1 2 0 0 0 bacterium Uncultured bacterium 0 0 0 6 3 19 AF132259 Prevotella oulora 0 1 2 0 0 0 Tessatacoccus 0 0 0 1 1 6 bendigoniensis Staphyloccus warneri 0 0 0 1 1 6 Salmonella bongori 0 0 0 1 1 6 Clostridium sp. 0 0 0 1 1 6 Globicatella sp. 0 0 0 1 1 6 Marine snow associated 0 0 0 1 1 6 bacterium Veillonella sp. oral clone 0 1 2 0 0 0 X042 Lactobacillus rimae 0 1 2 0 0 0 Streptococcus suis 0 1 2 0 0 0 Capnocytophaga sp. 0 1 2 0 0 0
[0176]The isolates listed above represent those species that were most frequently identified and present in the highest percentages of dogs or cats.
[0177]The following companion animal periodontal isolates were deposited with the American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, Va., 20110, USA, on Aug. 9, 2001: P. gulae B43 (PTA-3618), P. cansulci B46 (PTA-3619), P. circumdentaria B52 (PTA-3620), P. gulae B69 (PTA-3621), P. circumdentaria B97 (PTA-3622), P. cangingivalis B98 (PTA-3623), P. salivosa B104 (PTA-3624), P. denticanis B106 (PTA-3625), and P. endodontalis B114 (PTA-3626).
Culture Conditions for Porphyromonas Sp
[0178]Since the standard growth media for Porphyromonas sp. (Brain Heart Infusion (BHI) and Chopped Meat Carbohydrate (CMC) media) contain animal product, which are not amenable for vaccine production, a growth medium that does not contain these ingredients was sought. Various media compositions, with and without the addition of hemin and vitamin K, were tested for their ability to support growth equivalent to that of growth of BHI or CMC. Both the PYG-complete medium and ME-complete medium supported the growth of P. gulae B43 (PTA-3618) to a level equivalent to that of BHI (FIG. 1). The PYG-complete medium was chosen as the P. gulae B43 (PTA-3618) growth medium due to its ability to yield high density cultures during fermentation. This medium contains the following ingredients: 3% phytone (Becton Dickinson; Cockeysville, Md.), 0.3% yeast extract (Becton Dickinson), 0.3% glucose (Sigma Corp.; St. Louis, Mo.), 0.05% sodium thioglycollate (Becton Dickinson), 0.5% sodium chloride (Sigma Corp.), 5 μg/ml hemin (Sigma Corp.) (added after autoclaving), 0.5 μg/ml menadione (Sigma Corp.) (added after autoclaving), and 0.2% sodium bicarbonate (Sigma Corp.), pH 7.0.
[0179]P. gulae B43 (PTA-3618) was routinely cultivated on Brucella blood agar plates (Anaerobe Systems) or in complete PYG medium or BHI at 37° C. in a Bactron IV anaerobic chamber (Shel Labs; Cornelius, Oreg.) under 90% N2, 5% CO2 for three to five days (plates) or 24 to 48 hours (liquid cultures). For whole cell bacterin preparation, P. gulae B43 (PTA-3618) was cultivated in a BioFlo 3000 Bioreactor using 5 liters of PYG complete medium. The culture medium in the vessel was rendered anaerobic by sparging with 95-99.5% N2 and 0.5-5% CO2 immediately after autoclaving. The reduced culture medium was seeded with 0.02% of P. gulae B43 (PTA-3618) stock and cultivated at 37° C. with an agitation rate of 100 rpm and the pH maintained at 7.0 by the automatic addition of NaOH. During cultivation, the vessel was periodically sparged with both N2 and CO2. The bacterial cells were collected after 36 to 48 hours at an OD600 of 2.0 to 3.5 while cells were still undergoing logarithmic growth.
Pathogenicity Testing of Clinical Isolates in Mice
[0180]The nine isolates (P. gulae B43, P. cansulci B46, P. circumdentaria B52, P. gulae B69, P. circumdentaria B97, P. cangingivalis B98, P. salivosa B104, P. denticanis B106, and P. endodontalis B114) were tested for their pathogenicity in the mouse periodontal bone loss model. Three-week-old, age-matched male Balb/c CyJ mice (Jackson Laboratories; Bar Harbor, Me.) with estimated weights of 14-15 grams were utilized for this study. The animals were housed in positive pressure, barrier cage units. Food pellets, standard for the species, and water were provided ad libitum throughout the experiment. The bedding utilized was granular Bed O'Cobbs to minimize impaction in the gingival tissues. Following receipt, all animals were acclimatized for five to seven days. To reduce competing oral flora, animals were placed on a mixture of sulfamathoxazole and trimethoprim (10 ml drinking water; approximately 2 mg and 0.4 mg/ml, respectively) for ten days followed by a five-day washout period. Serum samples were taken from each mouse tail vein bleed. The animals were infected with 0.5 ml suspension of approximately 1×1010 cfu/ml of the appropriate bacterial strain in 1% carboxymethylcellulose by gavage. Additional drops were placed in the oral cavity. This infection was repeated two more times for a total of three times (Monday, Wednesday, and Friday).
[0181]Day 1 of the experiment was defined as the Tuesday following the first infection. All animals were sacrificed on Day 2. Post-infection serum was collected, as were microbial samples. The jaws of each mouse were defleshed, stained, and scored for horizontal bone loss microscopically. The scoring was repeated three times to reduce operator error. The average bone loss is expressed as the average bone loss/site/jaw in mm. Statistical analysis of the resulting data was done with Systat (version 9), SigmaStat (version 2), and SigmaPlot (version 2000) available from SPSS Science Inc. (Chicago, Ill.). Table 4 shows the numerical results for the top nine isolates.
TABLE-US-00004 TABLE 4 Summary of the mouse periodontal disease pathogenicity trial. Mean Number Source Bone of of Loss Std. Isolate mice bacteria (mm) Deviation SEM Sham 32 N/A 0.0843 0.0118 0.00211 P. gingivalis 53977 16 Human 0.106 0.0139 0.00347 P. gingivalis W50 16 Human 0.0948 0.0116 0.0029 P. gingivalis B40 A 16 Dog 0.106 0.0138 0.00357 P. gingivalis B40 B 16 Dog 0.115 0.0114 0.00284 P. gulae B43 16 Dog 0.112 0.0163 0.00407 P. cansulci B46 16 Dog 0.101 0.014 0.00362 P. circumdentaria B52 16 Cat 0.0924 0.00836 0.00209 P. gulae B69 16 Cat 0.114 0.0129 0.00322 P. circumdentaria B97 16 Dog 0.0855 0.0143 0.00368 P. cangingivalis B98 16 Dog 0.111 0.0136 0.0034 P. salivosa B104 16 Dog 0.102 0.0107 0.00286 P. denticanis B106 16 Dog 0.124 0.0167 0.00417 P. endodontalis B114 16 Dog 0.0994 0.0223 0.00557
[0182]Each of these yielded statistically significant bone loss in this model.
[0183]FIG. 2 graphically shows the net bone loss. The mean alveolar bone levels (cementoenamel junction--alveolar bone crest) were obtained at 14 maxillary sites in mm, and the mean value for each jaw was determined. For each experimental group, the mean values for each jaw were summed and the group mean derived by dividing by the total number of animals in that group.
[0184]FIG. 3 graphically shows the comparison of net bone loss. The mean alveolar bone levels (cementoenamel junctions--alveolar bone crest) were obtained at 14 maxillary sites in mm, and the mean value for each jaw was determined. For each experimental group, the mean values for each jaw were summed and the group mean derived by dividing by the total number of animals in that group. The net bone loss was determined by subtracting the sham infected mean values from each experimental groups. The data is presented as a percentage of the positive control group (P. gingivalis 53977) which is set at 100%. P. gingivalis W50 is a poorly fimbrinated strain that has reduced virulence in this animal model.
[0185]These data indicate that the following clinical isolates are capable of producing high levels of bone loss in the mouse model of periodontal disease: P. gulae B43 (PTA-3618), P. gulae B69 (PTA-3621), P. cangingivalis B98 (PTA-3623) and P. denticanis B106 (PTA-3625). The following clinical isolates yielded moderate bone loss in the mouse periodontal model: P. cansulci B46 (PTA-3619), P. salivosa B104 (PTA-3624), and P. endodontalis B114 (PTA-3626). The following clinical isolates yielded minimal bone loss in the mouse periodontal model: P. circumdentaria B52 (PTA-3620) and P. circumdentaria B97 (PTA-3622). While varying amounts of bone loss were observed between the clinical isolates, it should be noted that in each case, the amount of bone loss observed was well above what was observed in the sham infected mice. Based on these data, it can be concluded that each of the top nine clinical isolates is capable of causing periodontal disease either alone or in concert with other bacteria.
Preparation of Bacterial Cells and Genomic DNA
[0186]Porphyromonas spp. were anaerobically cultivated in BHI or complete PYG at 37° C. for 48 hours. Cells from a 1-3 ml culture were pelleted by centrifugation, washed once in an equal volume of anaerobic PBS, re-centrifuged, and re-suspended in 1/10 volume anaerobic PBS.
[0187]Genomic DNA was purified from 5 ml cultures of Porphyromonas spp. that were anaerobically cultivated in BHI or complete PYG at 37° C. for 48 hours. The Wizard Genomic DNA Extraction kit (Promega Corp.) was utilized for all genomic DNA preparations.
Cloning of the Fimbrial Gene from Clinical Isolates
[0188]The fimA gene was PCR amplified from genomic DNA isolated from the top ten clinical isolates using combinations of the following PCR primers D0067 (forward; Seq. ID No. 6), D0078 (forward; Seq. ID No. 8), D0097 (forward; Seq. ID No. 9), D0068 (reverse; Seq. ID No. 7) and D0098 (reverse; Seq. ID No. 10). The PCR was carried out in 50 ul reaction volumes containing 1×PCR buffer (Life Technologies), 1.0 mM MgCl2, 1.25 μM each primer, 300 M each deoxy-NTP, and 2.5 U Platinum Pfx DNA Polymerase (Life Technologies). The following PCR cycle conditions were utilized: a two minute denaturation step at 94° C.; 30 cycles of denaturation at 94° C. for 40 seconds, annealing at 60° C. for 40 seconds, and extension at 72° C. for 1.5 minutes; a final extension step at 72° C. for five minutes; and a final cooling step to 4° C. A GeneAmp 9700 thermocycler (Perkin Elmer Applied Biosystems; Foster City, Calif.) was utilized for all PCR amplifications. The amplified products were visualized on a 1.2% E-gel (Invitrogen; Carlsbad, Calif.).
[0189]The PCR products were A-tailed using 10 units of KlenTaq polymerase (Ab Peptides, Inc.; St. Louis, Mo.) for five minutes at 72° C. The resultant products were immediately T-tail cloned into the pCR2.1-TOPO vector (Invitrogen) using the manufacturer's protocol and transformed into E. coli Top10F' (Novagen; Madison, Wis.). Transformants harboring recombinant plasmids with the correct insert DNA were identified by a combination of colony PCR, restriction enzyme digestion, and DNA sequence analysis using DyeDeoxy termination reactions on an ABI automated DNA sequence (Lark Technologies, Inc.). Synthetic oligonucleotide primers (Seq. ID No. 6, 7, 8, 11-42) were used to obtain double stranded DNA sequence.
Cloning of the P. gulae B43 FIMA Gene into Expression Plasmids
[0190]For the purpose of high-level protein expression, the P. gulae B43 (PTA-3618) fimA gene was cloned into the pBAD/HisA expression vector (Invitrogen). Genomic DNA was purified from a 5 ml culture of P. gulae B43 in BHI incubated at 3700 for two days anaerobically using the genomic DNA extraction kit (Promega Corp.). The fimA gene was PCR amplified using primers D0097 and D0098 (Seq. ID No. 9 and Seq. ID No. 10) in triplicate. The PCR was carried out in 50 ul reaction volumes containing 1×PCR buffer (Life Technologies), 50 ng P. gulae B43 genomic DNA, 1.0 mM MgCL2, 1.25 μM each primer, 300 μM each deoxy-NTP, and 2.5 U Platinum Pfx DNA Polymerase (Life Technologies, USA).
[0191]The following PCR cycle conditions were utilized: a two minute denaturation step at 94° C.; five cycles of denaturation at 94° C. for 40 seconds, annealing at 58° C. for 40 seconds, and extension at 72° C. for 1.5 minutes; 30 cycles of denaturation at 94° C. for 40 seconds, annealing at 65° C. for 40 seconds, and extension at 72° C. for 1.5 minutes; a final extension step at 72° C. for five minutes; and a final cooling step to 4° C. A GeneAmp 9700 thermocycler (Perkin Elmer Applied Biosystems) was utilized for all PCR amplifications. The PCR products were purified using PCR prep kits (Promega Corp.). The purified PCR products and pBAD/HisA were double digested with HindIII and XhoI for three hours at 37° C. Half way through the digestion, five units of shrimp alkaline phosphatase (SAP) (Amersham Pharmacia Biotech, Inc.: Piscataway, N.J.) were added to the vector digestion. The digested DNA's were purified using the DNA Clean-Up kit (Promega Corp.). The purified HindIII/XhoI digested PCR products were ligated into HindIII/XhoI digested, SAP treated pBAD/HisA with the T4 DNA Ligase enzyme (Life Technologies) in the presence of 1×T4 DNA ligase buffer at 16° C. for 18 hours. A portion of the resulting ligation mixture was transformed into competent E. coli Top10F' cells (Novagen). A recombinant plasmid, pBAD:B43fimA4, was found to contain the fimA gene in the correct orientation. The resulting recombinant FimA contains a terminal, vector-encoded sequence
[0192](MGGSHHHHHHGMASMTGGQMGRDLYDDDDKDRWGSELEICSQYHMGI, SEQ ID NO: 135), followed by the mature portion of FimA beginning at asparagine-20. This plasmid was transformed into competent E. coli BL21 cells (Novagen) for further protein expression analysis.
Expression and Purification of the Recombinant FIMA Protein
[0193]A frozen working stock of the E. coli BL21/pBAD:B43fimA4 was thawed, seeded at a 1:5000 dilution into Luria broth containing 100 μg/ml ampicillin (1% tryptone, 0.5% yeast extract, 0.5% NaCl), and grown in a 5 liter working volume BioFlo 3000 Bioreactor (New Brunswick Scientific; Edison, N.J.) at 37° C. with a 100 rpm agitation rate until A625 was 2.5-3.5. L-arabinose was then added to the culture at a final concentration of 0.1% to induce FimA expression. The culture was incubated for an additional three hours. Expression of the recombinant FimA was detected by SDS-PAGE and Western blot analysis using anti-Express serum (Invitrogen) (FIG. 4). The recombinant FimA protein had a predicted molecular mass of 45 kDa.
[0194]Wet cells of the E. coli BL21 transformant expressing recombinant FimA from the 5 liter fermentation were harvested by centrifugation and re-suspended in phosphate-buffered saline. The cells were mechanically lysed. Following centrifugation, the pellet was discarded. The supernatant was passed over a Ni2+-affinity column, and eluted off using an imidazole gradient. Fractions containing the recombinant protein were pooled, dialyzed to remove the imidazole, and filter-sterilized using a 0.2 μm filter.
Cloning of the OPRF Gene from Clinical Isolates
[0195]Based on sequences of the P. gingivalis strain W50 oprF homolog, gene PG32 (Genbank accession number AF175714), oligonucleotide primers D0086 (SEQ ID No. 43), D0087 (SEQ ID NO. 44), and KWK-Pg-03 (SEQ ID NO. 45) were designed and synthesized (Life Technologies). For PCR, primer D0086 (SEQ ID NO. 43) was used in conjunction with either D0087 (SEQ ID NO. 44) or KWK-Pg-03 (SEQ ID NO. 45) in 1×PC2 buffer (Ab Peptides), 200 μM each dNTP, 7.5 U KlenTaq1 (Ab Peptides) and 0.15 U cloned Pfu (Stratagene; La Jolla, Calif.) thermostable polymerases in a 50111 final sample volume. Reactions were performed in triplicate using either a washed cell suspension or purified genomic DNA as template from P. gulae B43, P. cansulci B46, P. circumdentaria B52, P. gulae B69, P. circumdentaria B97, P. cangingivalis B98, P. salivosa B104, P. denticanis B106, and P. endodontalis B114. Amplification was carried out as follows: denaturation (94° C., 9 minutes); 30-40 cycles of denaturation (94° C., 30 seconds), annealing (55-60° C., 30 seconds), and polymerization (72° C., 1.5 minutes); followed by a final extension at 72° C. for seven minutes.
[0196]For polymerase chain amplification of the oprF homolog from P. cangingivalis B98, primer KWK-Ps-04b (SEQ ID No. 81) was used in conjunction with KWK-Ps-06b (SEQ ID No. 83). For amplification of the homolog from P. salivosa B104, primer KWK-Ps-04b (SEQ ID No. 81) was used with KWK-Ps-05b (SEQ ID No. 82). For amplification of the gene from P. denticanis B106, primer KWK-Ps-02 (SEQ ID No. 79) was used with KWK-Ps-03 (SEQ ID No. 80). Reactions were performed in triplicate using purified chromosomal DNA as template from strains P. cangingivalis B98, P. salivosa B104, and P. denticanis B106. Amplification was carried out as follows: denaturation (94° C., 9 minutes); 30-35 cycles of denaturation (94° C., 30 seconds), annealing (61-72° C., 30 seconds), and polymerization (72° C., 1.5 minutes); this was followed by a final extension at 72° C. for 7 minutes.
[0197]The PCR amplified gene products were visualized by separation on a 1.0% agarose gel (Sigma). The PCR products were purified using a QIAquick® PCR Purification kit (Qiagen; Valancia, Calif.), and each set of triplicate samples pooled. These fragments were then sequenced directly in an attempt to avoid the introduction of sequence artifacts due to mutations that arise during PCR amplification and subsequent cloning steps. The pooled mixtures were then subjected to direct sequence analysis using DyeDeoxy termination reaction on an ABI automated DNA sequencer (Lark Technologies). Synthetic oligonucleotide primers (SEQ ID NO. 46-75) were used to sequence both DNA strands of the amplified products.
[0198]The nucleotide sequences encoding the OprF homolog from P. gulae B43, P. cansulci B46, P. circumdentaria B52, P. gulae B69, P. circumdentaria B97, P. cangingivalis B98, P. salivosa B104, P. denticanis B106, P. cangingivalis B98, P. salivosa B104, P. denticanis B106, and P. endontalis B114 are depicted in SEQ ID NO. 111 to 119. Sequence corresponding the 5' and 3' primers used for PCR amplification of each gene was removed, as it may not represent the actual sequence of the gene in each of the respective strains. The ORFs encoded by SEQ ID NO. 111 to 119 are shown in SEQ ID No. 120 to 128, respectively. For each of the encoded ORFs, the amino terminal sequence, even when that encoded by the 5' primer was excluded, still maintained characteristics of a prokaryotic signal sequence (von Heijne, 1985, J. Mol. Biol. 184:99-105; Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G., 1997 Protein Engineering, 10:1-6). Each ORF was compared against existing nucleotide and protein databases using the Basis Local Align Search Tool (BLAST) programs (Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J., 1990, J. Mol. Biol. 215:403-410). The entry with which each shared the greatest homology was PG32 from P. gingivalis.
Cloning of the P. gulae B43 OPRF Gene into Expression Plasmids
[0199]For the purpose of recombinant protein expression, the gene encoding OprF was cloned with the sequence encoding its signal peptide. OprF was amplified from P. gulae B43 using oligonucleotide primers KWK-Pg-06 (SEQ ID NO. 76) and KWK-Pg-03 (SEQ ID NO. 45). For polymerase chain amplification, duplicate 50 μl reactions were set up containing chromosomal DNA as template, 1×PC2 buffer, 200 μM each dNTP, 50 pMol each primer, 7.5 U KlenTaq1 and 0.15 cloned Pfu thermostable polymerase. Amplification was carried out as follows: denaturation (94° C., nine minutes); 30 cycles of denaturation (94° C., 30 sec), annealing (60° C., 30 sec), and polymerization (72° C., 1.5 min), followed by a final extension at 72° C. for 7 minutes. Following amplification, the samples were purified (QIAquick® PCR Purification kit) and pooled, The purified PCR product was cloned directly into the TA cloning site of both pBAD-TOPO and pBAD/Thio-TOPO (Invitrogen). The ligand products were transformed into Max Efficiency E. Coli DH5a cells. The predicted amino terminal sequence of the encoded protein expressed from pBAD-TOPO:OprF consists of the vector-encoded sequence MGSGSGDDDDKLALM (SEQ ID NO: 136) followed immediately by the sequence beginning at glutamine-13 of OprF (SEQ ID No. 120). A clone containing the appropriate plasmid was identified, and purified plasmid was isolated from a small-scale broth culture using a QIAprep Spin Miniprep kit (Qiagen). This plasmid was transformed into E. coli BL21 cells (Novagen), and a clone was identified that contained the appropriate plasmid.
[0200]The predicted amino terminal sequence of the encoded fusion protein expressed from pBAD/Thio-TOPO: oprF should consist of the thioredoxin protein and a 14 amino acid residue linker followed immediately by the sequence beginning at glutamine-13 of OprF (SEQ ID NO. 120). A clone containing the appropriate plasmid was identified, and purified plasmid was isolated from a small-scale broth culture using a QIAprep Spin Miniprep kit. This plasmid was transformed into E. coli BL21 cells, and a clone was identified that contained the appropriate plasmid.
[0201]The oprF gene lacking the sequence encoding the signal peptide was also cloned into two different λ expression plasmids. Both of these plasmids encode the temperature-sensitive λ repressor c/857, which inhibits expression from λ promoters at 30° C. At 42° C., the repressor is inactivated and expression from the λ promoter is enabled, yielding high-level transcription and translation. For cloning into these vectors, oprF was amplified from P. gulae B43 using oligonucleotide primers KWK-Pgu-14 (SEQ ID NO. 77) and KWK-Pgu-15 (SEQ ID NO. 78). For polymerase chain amplification, duplicate 50 μl reactions were set up containing washed P. gulae B43 cells as template, 1×PC2 buffer, 200 μM each dNTP, 50 pMol each primer, 7.5 U KlenTaq1 and 0.15 U cloned Pfu thermostable polymerases. Amplification was carried out as follows: denaturation (94° C., nine minutes); 45 cycles of denaturation (94° C., 30 seconds), annealing (55° C., 30 seconds), and polymerization (72° C., 1.5 minutes), followed by a final extension at 72° C. for seven minutes. Following amplification, the samples were pooled and digested with restriction enzymes, generating overhangs compatible with the plasmids which had also been linearized using the same enzymes. Following restriction digestion, the PCR fragment and plasmids were purified (QIAquick® PCR Purification kit; Qiagen Corp.), ligated, and transformed into E. coli DH5α cells (Novagen). The predicted amino terminal consisted of the vector-encoded sequence MGTTTTTTSLHM (SEQ ID NO: 137) followed immediately by the sequence beginning at Glutamine-13 of OprF (SEQ ID NO. 120). The protein expressed from the second plasmid would consist only a vector-encoded Met followed by Glutamine-13 of OprF (SEQ ID NO: 120). Clones containing the appropriate plasmids were identified, and plasmids were isolated from small-scale broth cultures using QIAprep Spin Miniprep kits (Qiagen Corp.). These plasmids were transformed into E. coli BL21 cells, and separate clones were identified that contained the appropriate plasmids.
Expression and Purification of the Recombinant OPRF Protein
[0202]E. coli BL21 cells that express recombinant OprF (fused at its N-terminus to SEQ ID NO: 137) were utilized for expression studies. A frozen stock was thawed, seeded at a 1:5000 dilution into 2×YT medium containing 50 μg/ml kanamycin sulfate (1.6% tryptone, 1% yeast extract, 0.5 NaCL), and grown in a 5 liter working volume BioFlo 3000 Bioreactor (New Brunswick Scientific; Edison, N.J.) at 29° C. with a 100 rpm agitation rate until A625 was 2.5-3.5. The cultures were then shifted to 42° C. to induce OprF expression. The culture was incubated for an additional 3 hours. Aliquots were removed at various time points, centrifuged, and re-suspended in reducing sample buffer. All samples were analyzed on a 10% NuPAGE gel (Invitrogen, USA) (FIG. 5).
[0203]Wet cells of the E. coli BL21 transformant expressing recombinant OprF from the 5 liter fermentation were harvested by centrifugation and re-suspended in phosphate-buffered saline. The cells were mechanically lysed. Following centrifugation, the pellet was discarded. The supernatant was passed over an ion exchange column, and eluted off using a NaCl gradient. Fractions containing the recombinant protein were pooled, dialyzed to remove the NaCl, and filter-sterilized using a 0.2 μm filter.
Whole Cell Bacterin Preparation
[0204]A 5 liter batch of P. gulae B43 was grown in a fermentor as described above and split into 1 liter portions. The cells in each 1 liter fraction (4.4×1012 total P. gulae B43 cells) were inactivated by the following treatments: exposure to 0.4% formalin for 24 hours at 23° C., exposure to 10 mM binary ethylene-imine (BEI) at pH 8.5 for 48 hours at 37° C., heating to 60° C. for 30 minutes on two consecutive days, and exposure to air for 48 hours. Following the BEI treatment, the BEI was inactivated by treatment with 50 mM sodium thiosulfate. The cells were collected by centrifugation. The resultant cells pellets were re-suspended in 220 ml PBS yielding a final concentration of 2×1010 cells per ml. Seven ml of each of the inactivated cells was mixed with 7 ml of MPL+TDM adjuvant (Sigma Corp.) yielding a final concentration of 1.0×1010 cells per ml.
[0205]Whole cell bacterin preparations of the other eight top clinical isolates (P. cansulci B46, P. circumdentaria B52, P. gulae B69, P. circumdentaria B97, P. cangingivalis B98, P. salivosa B104, P. denticanis B106, and P. endodontalis B114) or other pigmented anaerobic bacteria can be prepared in an identical fashion.
Homologous Vaccine Efficacy in Mice
[0206]In homologous vaccine efficacy studies, mice were immunized with two injections of 0.2 ml each of the above mentioned inactivated P. gulae B43 cells in MPL+TDM adjuvant three weeks apart. The mice were infected as previously described with P. gulae B43 two weeks following the booster immunization. Forty-two days following the infection, the mice were sacrificed and processed as previously described. Table 5 shows the numerical results of bone loss measurements.
TABLE-US-00005 TABLE 5 Mouse homologous vaccine efficacy study results. Mean Net % % bone Std. bone bone bone Group Vaccinogen Challenge loss Dev. SEM loss loss (a) loss (b) A PBS with RIBI None 0.0686 0.00862 0.00216 0 NA (c) NA MPL + TDM adjuvant B PBS with RIBI Pg 53977 0.112 0.0107 0.00266 0.0434 100 NA MPL + TDM adjuvant C PBS with RIBI Pg B43 0.093 0.0188 0.00471 0.0244 NA 100 MPL + TDM adjuvant D Formalin Pg 53977 0.098 0.0146 0.00364 0.0294 67.7 NA inactivated P. gingivalis 53977 with Freunds adjuvant E Formalin Pg 53977 0.0932 0.0109 0.00271 0.0246 56.7 NA inactivated P. gingivalis 53977 with RIBI MPL + TDM adjuvant F Formalin Pg B43 0.082 0.0128 0.00319 0.0134 NA 54.9 inactivated P. gulae B43 with RIBI MPL + TDM adjuvant G BEI inactivated Pg B43 0.107 0.0151 0.0039 0.0384 NA 157.4 P. gulae B43 with RIBI MPL + TDM adjuvant H Heat Pg B43 0.0845 0.0113 0.00281 0.0159 NA 65.2 inactivated P. gulae B43 with RIBI MPL + TDM adjuvant I aeration Pg B43 0.0746 0.00691 0.00173 0.006 NA 24.6 inactivated P. gulae B43 with RIBI MPL + TDM adjuvant (a) Percentage calculated based on group B as the positive control group. (b) Percentage calculated based on group C as the positive control group. (c) NA = Not applicable.
[0207]FIGS. 6, 7, and 8 graphically display these results. FIG. 7 shows the percent bone loss for the control experiment. Vaccines containing formalin-inactivated P. gingivalis 53977 and either Freund's complete/incomplete or MPL+TDM adjuvants reduced the bone loss induced by infection with P. gingivalis 53977 by approximately 32% and 43%, respectively. FIG. 8 shows the percent bone loss for the test experiment. Vaccines containing either formalin-, heat-, or air-inactivated P. gulae B43 and MPL+TDM adjuvant reduced the bone loss induced by infection with P. gulae B43 by approximately 45%, 35%, and 75%, respectively. Based on these data, it can be concluded that the formalin-, air-, and heat-inactivated P. gulae B43 vaccines were efficacious in their ability to reduce bone loss induced in this superinfection model. Extrapolating this data into the clinical setting, these three vaccines would likely be efficacious in the prophylactic prevention of periodontal disease and may well prove efficacious in the therapeutic treatment of periodontal disease.
Heterologous Vaccine Efficacy Study in Mice
[0208]In heterologous vaccine efficacy studies, mice were immunized with two injections of 0.2 ml each of either formalin-inactivated P. gulae 643 or formalin-inactivated P. salivosa B104 and P. denticanis B106 cells in MPL+TDM adjuvant three weeks apart. The mice were infected as previously described with either P. gulae B43, P. gulae B69, P. salivosa B104, or P. denticanis B106 two weeks following the booster immunization. Forty-two days following the infection, the mice were sacrificed and processed as previously described. Table 6 shows the numerical results of bone loss measurements.
TABLE-US-00006 TABLE 6 Mouse heterologous vaccine efficacy study results. Mean Net % % % % Inactivation bone Std. bone bone bone bone bone Group Vaccinogen method Challenge loss Dev. SEM loss lossa lossb lossc lossd A PBS NA None 0.088 0.0112 0.00299 0 0 0 0 0 B PBS NA P. gulae B43 0.101 0.0103 0.00266 0.013 100 NAe NA NA C PBS NA P. gulae B69 0.115 0.0112 0.00289 0.027 NA 100 NA NA D PBS NA P. salivosa B104 0.101 0.0132 0.00352 0.013 NA NA 100 NA E PBS NA P. pfizerii B106 0.0994 0.0135 0.0035 0.0114 NA NA NA 100 F P. gulae B43 Formalin P. gulae B43 0.0901 0.016 0.00412 0.0021 16.15 NA NA NA G P. gulae B43 Formalin P. gulae B69 0.104 0.0166 0.00443 0.016 NA 59.26 NA NA H P. gulae B43 Formalin P. salivosa B104 0.0926 0.0119 0.00319 0.0046 NA NA 35.38 NA I P. gulae B43 Formalin P. pfizerii B106 0.102 0.0124 0.00333 0.014 NA NA NA 122.8 J P. salivosa B104/ Formalin P. gulae B69 0.102 0.0124 0.00333 0.014 NA 51.85 NA NA P. denticanis B106 aPercentage bone loss is calculated for the P. gulae B43 infected mice. bPercentage bone loss is calculated for the P. gulae B69 infected mice. cPercentage bone loss is calculated for the P. salivosa B104 infected mice. dPercentage bone loss is calculated for the P. denticanis B106 infected mice. eNA, not applicable.
[0209]FIGS. 9, 10, 11, 12, and 13 graphically display these results. FIG. 9 shows the net bone loss for these experiments. FIG. 10 shows the percent bone loss for the P. gulae B43 infected groups. Formalin-inactivated P. gulae B43 and MPL+TDM adjuvant reduced the bone loss induced by infection with P. gulae B43 by approximately 84%. FIG. 11 shows the percent bone loss for the P. gulae B69 infected groups. The formalin-inactivated P. gulae B43 and formalin-inactivated P. salivosa B104/P. denticanis B106 vaccines containing MPL+TDM adjuvant reduced the bone loss induced by infection with P. gulae B69 by approximately 40% and 49%, respectively. FIG. 12 shows the percent bone loss for the P. salivosa B104 infected groups. Formalin-inactivated P. gulae B43 and MPL+TDM adjuvant reduced the bone loss induced by P. salivosa B104 by approximately 65%. FIG. 13 shows the percent bone loss for the P. denticanis B106 infected groups. Formalin-inactivated P. gulae B43 with MPL+TDM adjuvant failed to cross protect against challenge with P. denticanis B106. Based on these data, it can be concluded that the formalin-inactivated P. gulae B43 vaccine adjuvanted with MPL+TDM was capable of providing protection not only from homologous challenge, but also from heterologous challenge with P. gulae B69. Moreover, protection was observed between two Porphyromonas species as the P. gulae B43 vaccine protected against P. salivosa B104 challenge. Extrapolating this data into the clinical setting, a multi-valent vaccine would likely be efficacious in the prophylactic prevention of periodontal disease and may well prove efficacious in the therapeutic treatment of periodontal disease.
Recombinant FimA and OprF Mouse Serological Study
[0210]In subunit vaccine serology studies, mice were immunized with two injections of 0.2 ml each of either recombinantly expressed, purified P. gulae B43 FimA or recombinantly expressed, purified P. gulae B43 OprF in QuilA/Cholesterol adjuvant three weeks apart. The mice were bled prior to the first vaccination and two weeks following the booster immunization. Table 7 shows the numerical results while FIGS. 14 and 15 show the results graphically.
TABLE-US-00007 TABLE 7 Mouse subunit vaccine serology study. rFimA ELISA rOprF ELISA Group Vaccinogen Pre-vaccination Post-vaccination Pre-vaccination Post-vaccination A Saline 50 50 50 50 B rFimA + QAC 50 138889 NA NA C rOprF + QAC NA NA 50 118
[0211]Throughout this application, various patent and scientific publications, including United States patents, are referenced by author and year and patents by number. The disclosures of these publications and patents are hereby incorporated by reference in their entireties into this application in order to more fully describe the state of the art to which this invention pertains.
EXAMPLE 2
[0212]Ten beagle dogs with adult dentition were used for this study. The animals were anesthetized, and an access was made to the root canal of the mandibular premolars and first molars using a pear-shaped dental burr (Midwest Dental Products Corp; Des Plaines, Ill.) in a Schein Ultima 2000 dental unit with a high-speed handpiece (Henry Schein Inc.; Melville, N.Y.). Access to the root canal was confirmed by passing a veterinary barbed broach (21 mm, size #5; Roydent Dental Products; Johnson City, Tenn.) into the canal to a depth approximating the depth of the root canal. The connective tissue, vessels and nervous tissue were removed using repeated passages of the barbed broach. Hemorrhaging was minor; hemostasis was achieved with sterile paper points (Henry Schein Inc.) placed in the canal. It was important at this point to ensure that any inadvertent contamination of the canal during the drilling and emptying of the canal was removed. Therefore the canal was flushed with a 10% bleach solution. To create an appropriate surface for placement of the restoration, the enamel surrounding the access port was etched using a 40% sulfuric acid gel (Scotchbond Etching Gel, 3M; St. Paul, Minn.). In order to prevent any impact on viability of the challenge material by residual bleach solution or acid gel, the root canal was flushed from the inside out, using an endodontic needle (27ga., Dentsply Pharmaceutical; York, Pa.) and copious amounts of sterile saline. The access area and canal were dried with sterile paper points.
[0213]The challenge material was prepared by growing Porphyromonas gulae strain B69 on Brucella blood agar (Anaerobe Systems; Morgan Hill, Calif.), and incubating at 37° C. in an anaerobic environment (5% H2, 5% CO2, 90% N2). Cells were harvested and resuspended in sterile SSYG media. A challenge dose of approximately 7.5×108 colony forming units (CFU) was then introduced into the exposed root canal cavity of the selected teeth with an endodontic needle. Five animals received the challenge material (T01), while the other five received a sham challenge consisting of sterile SSYG media (T02). The access port was then sealed with a combination of glass ionomer and light-cured dental composite restorative (Revolution 3; 3M).
[0214]Periopathogenicity of the challenge organisms was determined based on changes in the density of periodontal bone surrounding the teeth. This assessment was made by measuring pixel intensities of digital radiographs taken using Schick Computed Dental Radiography (CDR®) sensors and software at study weeks 0, 3, 6, 9 and 12. Radiographs of six to eight teeth were taken in each animal. In order to obtain baseline values, radiographs were taken immediately prior to the procedure. Following challenge, radiographs were taken every three weeks for twelve weeks post-challenge. Radiographs were analyzed via two different methods. The first consisted of a subjective assessment of the radiographs by a veterinarian trained in the analysis of dental radiographs. Briefly, this consisted of a trained observer examining the radiographs, noting abnormalities and marking the degree of abnormality for each dog on a Visual Analog Scale. Secondly, areas of affected bone evident in radiographs taken 0, 6 and 12 weeks following challenge were measured using an area measurement tool within the radiograph software. This consisted of demarcating the rough diameter of visible lesions on the radiograph using the Straight-line measurement tool within Schick CDR software. From the resulting distance, the approximate area of lesion was determined. These areas were totaled for each dog and tabulated.
[0215]Analysis of radiographs using both methods suggested that the T01 group lost more periodontal bone than the T02 group (FIG. 16). It was concluded from this study that a feasible challenge model had been developed. However, because of difficulties in quantitating changes that occurred in a three-dimensional area (periodontal bone) based on two-dimensional measurements (radiographs), improved quantitation methods would be pursued.
EXAMPLE 3
[0216]Following model development, a study was conducted in dogs to test the efficacy of a trivalent vaccine preparation. The trivalent bacterin contained formalin-inactivated Porphyromonas gulae (B43), Porphyromonas salivosa (B104), and Wernerella denticanis (B106), adjuvanted with Quil A and cholesterol at 50 μg of each per dose. Each bacterin strain was assembled at an approximate concentration of 1×1010 CFU/vaccine dose. Three groups of eight animals with adult dentition were used in this study. Dogs in the first group (T01) were vaccinated intramuscularly (IM) with 1 ml of the trivalent vaccine. The second (T02) and third (T03) groups were sham vaccinated with 1 ml of sterile saline. All dogs received three intramuscularly (IM) administrations, with a three week interval between administrations. Three weeks following the final administration, animals were anaesthetized as described above, and the challenge material was introduced into the root canal of the mandibular premolars and first molars following extirpation of the root material. Dogs in the T01 and T02 groups were challenged with 1×1010 CFU of a heterologous P. gulae strain (B69), prepared as described in Example 1. Dogs in the T03 group were challenged with sterile media, in an effort to measure effects of the procedure.
[0217]Radiographs were taken using a Heliodont dental radiograph machine, Schick® CDR (computerized digital radiography) capture system, and standard techniques at three, six, nine, and twelve weeks following challenge. For this study, once the digital radiographs were obtained, sequential images from each dog were first registered against each other through ImageJ (v1.28, NIH; Bethesda, Md.), using the plug-in TurboReg® with a scaled rotation technique. Registered image sets were then calibrated using an external gray scale with a 3rd-degree polynomial function. The area of bone surrounding treated teeth, excluding teeth and air, was then outlined and the mean density of that area was recorded for each image. Thus, a number representing the "whiteness" of the bone surrounding the tooth roots was derived objectively and made available for analysis. This number was termed the "bone reactivity score" and is a representation of the mean bone density.
[0218]The results from this study are shown in FIG. 17. The mean bone scores for animals in group T02 decreased, or became whiter, following challenge until week 12 post-challenge, when they returned to pre-challenge levels. Mean bone reactivity scores in group T01 and T03 also decreased initially, then appeared to recover to near normal values until week 12 post-challenge, when they diverged. The procedural controls in group T03 became whiter, while the vaccinated animals in group T01 maintained a mean value similar to pre-challenge levels. Thus, dogs that received the vaccine were able to recover bone density more quickly than unvaccinated dogs in the face of an endodontic challenge. Additionally, analysis of serum collected at each of the observation points indicated that animals which received vaccine generated high antibody titers against the vaccine strains and had increased antibody cross-reactivity against the challenge strain (data not shown).
[0219]The radiographs became whiter following challenge, as opposed to darker, the more intuitive direction in the case of bone infections. Bone reacts to inflammation and infection in a dual fashion, both losing bone matrix as well as increasing surrounding bone to "wall off" the spreading infection. The mixed lytic-sclerotic lesions are typical of those seen with several bone infections, but are influenced by 1) the virulence of the pathogen, 2) the age of the animal, 3) the genetics of the animal, and 4) the amount of trauma associated with the instigation of inflammation. The animals used in this study were young (10-14 months old), and there was significant trauma to the tooth and surrounding bone associated with the challenge procedure. These factors, when taken into account together with what is known regarding how bone reacts to infection and inflammation, may explain why there was an increase in the density of the surrounding bone.
EXAMPLE 4
[0220]This vaccine efficacy study was similar in design to that described in Example 3. Each treatment group contained ten animals. Dogs in the T01 group were vaccinated and challenged; the T02 group received a sham vaccination prior to challenge, and the T03 group was sham vaccinated and sham challenged. Each vaccine contained formalin-inactivated P. gulae strain B43, P. salivosa strain B104, and W. denticanis strain B106, at a concentration of 1×107 CFU of each strain per dose. The vaccination schedule was identical to that set forth in Example 3. The challenge inoculum was P. gulae strain B69, administered 3 weeks following the third vaccination. Radiographs were again taken at 3 week intervals, but only until nine weeks post-challenge, and were analyzed in a similar manner as described in Example 2. FIG. 18 indicates the results of the bone reactivity analysis.
[0221]In this study, the animals reacted to the challenge procedure with increased mean bone reactivity scores. This means that the radiographs became darker, corresponding to a decrease in bone density (FIG. 19). While the radiographs indicated significant lesions in both the T01 and T02 groups, the bone in the non-vaccinated animals was much less dense overall than the bone in the vaccinates. At nine weeks, mean bone reactivity scores of the non-vaccinated dogs in group T02 were significantly different than the vaccinated group T01 (p=0.05). The dogs in this study were uniformly older than those in Example 2, and the skill of the operator had greatly improved. It is postulated that these factors contributed to reactions that were more typical of those associated with bone infections, that is, a decrease in bone density. Thus, the endodontic model of canine periodontitis is a novel and useful tool for studying periodontitis. Not only is it of value in vaccination/challenge studies associated with vaccine evaluation, but it could also be employed in antimicrobial and topical therapy studies.
EXAMPLE 5
[0222]An evaluation of systemic and local tissue reactions to the trivalent vaccine in combination with other vaccines administered to dogs was undertaken. Two groups of 5 dogs, approximately 6 weeks of age at the initiation of the study, were vaccinated IM at 6, 9 and 12 weeks of age. Blood samples were collected prior to each vaccination. All dogs were examined daily for systemic and local reactions for 1 week following each vaccination. Body temperatures were determined and recorded on these days as well. Group T01 was vaccinated with a combination of the trivalent bacterin (prepared as described in Examples 3 and 4) at a concentration of 3×108 CFU of total antigen and adjuvanted with Quil A and cholesterol at 50 μg of each per dose, and the following modified live and killed viral components: Canine Distemper Virus (CDV), Canine Adenovirus-2 (CAV-2), Canine Parvovirus (CPV), Canine Parainfluenza Virus (CPI), and Canine Coronavirus (CCV). Group T02 received the trivalent bacterin at a concentration of 3×106 CFU and the same combination of viral components. The results in FIG. 20 illustrate that the trivalent vaccine, when added to a combination of viral components typically administered to puppies, did not cause adverse systemic or local reactions in the test groups.
Sequence CWU
1
137121DNAArtificial SequenceDescription of Artificial Sequence D0056
1ggattagata ccctggtagt c
21219DNAArtificial SequenceDescription of Artificial Sequence D0057
2cccgggaacg tattcaccg
19320DNAArtificial SequenceDescription of Artificial Sequence PFZ175-AP1
3ggcttaagtg ccataacgag
20420DNAArtificial SequenceDescription of Artificial Sequence PFZ175-AP2
4ctggcgtctt acgacggctg
20520DNAArtificial SequenceDescription of Artificial Sequence PFZ175-AP3
5tgtcgtcagc tcgtgccgtg
20620DNAArtificial SequenceDescription of Artificial SequenceD0067
6gcgcagcaag gccagcccgg
20720DNAArtificial SequenceDescription of Artificial SequenceD0068
7gagcgaaccc cgctccctgt
20823DNAArtificial SequenceDescription of Artificial SequenceD0078
8gcgacgctat atgcaagaca atc
23933DNAArtificial SequenceDescription of Artificial SequenceD0097
9ggcctcgaga acaaagacaa cgaagcagaa ccc
331034DNAArtificial SequenceDescription of Artificial SequenceD0098
10ggcaagctta ccaaataaca ttttgtacaa cacc
341120DNAArtificial SequenceDescription of Artificial SequencePFZ185-AP1
11tcatccgaca atcctgtgtg
201220DNAArtificial SequenceDescription of Artificial SequencePFZ185-AP2
12agcagctgct aaatcggctc
201320DNAArtificial SequenceDescription of Artificial SequencePFZ185-AP3
13ttggcaagac tcttgcagag
201420DNAArtificial SequenceDescription of Artificial SequencePFZ185-AP4
14ctgcagtcag ttcagttgtc
201520DNAArtificial SequenceDescription of Artificial SequencePFZ186-AP1
15tacgtcaaca ggctctgctg
201620DNAArtificial SequenceDescription of Artificial SequencePFZ186-AP2
16gacaactgaa ctaactgcag
201720DNAArtificial SequenceDescription of Artificial SequencePFZ186-AP3
17aacatagaaa ccttgtggag
201820DNAArtificial SequenceDescription of Artificial SequencePFZ186-AP4
18tgtcgtctgg ttgggaagag
201920DNAArtificial SequenceDescription of Artificial SequencePFZ186-AP5
19aatctgattg cctccctgag
202020DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP1
20gggaaccgat ttagcagcag
202120DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP2
21ccaatacagg gtaataggtc
202220DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP3
22gttgtcaatg cttttacctc
202320DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP4
23gattgagaat atcaaatgtg
202420DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP5
24ttaggcgtat aaccattgtc
202520DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP6
25atttaacggt gcttacacac
202620DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP7
26ccaattggcg gcctgagctg
202720DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP8
27tggcatagtt ggtaggtgtg
202820DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP9
28tgtaagcacc gttaaatgtg
202920DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP11
29ctgacaggtt ctttgaccac
203020DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP12
30tgttccttgg ttgagccgtg
203120DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP13
31gtggtcaaag aacctgtcag
203220DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP14
32cataaacaca caggattgtc
203320DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP15
33ttgcttcttt gcaatgagac
203420DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP16
34agccatgcga gcatgtacac
203520DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP17
35ctgtcatgat caaacctgtg
203620DNAArtificial SequenceDescription of Artificial SequencePFZ187-AP18
36accgtctgca ttcacgagtg
203720DNAArtificial SequenceDescription of Artificial SequencePFZ188-AP1
37gccttccaat gatgctccac
203820DNAArtificial SequenceDescription of Artificial SequencePFZ188-AP2
38ggacgtagac ctgcattctg
203920DNAArtificial SequenceDescription of Artificial SequencePFZ188-AP3
39cgcaatacgg gcatgaacac
204020DNAArtificial SequenceDescription of Artificial SequencePFZ188-AP4
40ttatggttat gatggacctc
204120DNAArtificial SequenceDescription of Artificial SequencePFZ188-AP5
41tggtactcct ttgagttctg
204220DNAArtificial SequenceDescription of Artificial SequencePFZ188-AP6
42cacacttgcg cggtaaccac
204322DNAArtificial SequenceDescription of Artificial SequenceD0086
43atgaaggtaa agtacttaat gc
224425DNAArtificial SequenceDescription of Artificial SequenceD0087
44agatgaatta cttggagcga acgat
254527DNAArtificial SequenceDescription of Artificial SequenceKWK-Pg-03
45ttacttggag cgaacgatta caacacg
274620DNAArtificial SequenceDescription of Artificial SequencePFZ209-AP1
46ttggtgcagc tcacttcgac
204720DNAArtificial SequenceDescription of Artificial SequencePFZ209-AP2
47accacatcaa acataaagtc
204820DNAArtificial SequenceDescription of Artificial SequencePFZ209-AP3
48acattcgggg catgatacag
204920DNAArtificial SequenceDescription of Artificial SequencePFZ209-AP4
49atgccattga gccaatggac
205020DNAArtificial SequenceDescription of Artificial SequencePFZ210-AP1
50ttgacttcat gttcgatgtg
205120DNAArtificial SequenceDescription of Artificial SequencePFZ210-AP2
51tgccaatgaa ttttatgctg
205220DNAArtificial SequenceDescription of Artificial SequencePFZ210-AP3
52cgcttggaga gttcttcgac
205320DNAArtificial SequenceDescription of Artificial SequencePFZ210-AP4
53tatcaacgat ctgaatggtc
205420DNAArtificial SequenceDescription of Artificial SequencePFZ211-AP1
54aactacttca agccctacag
205520DNAArtificial SequenceDescription of Artificial SequencePFZ211-AP2
55cgtaacccaa acctacccac
205620DNAArtificial SequenceDescription of Artificial SequencePFZ211-AP3
56acgggacgct tgctcaactc
205720DNAArtificial SequenceDescription of Artificial SequencePFZ211-AP4
57attggggctt ggtaaatgac
205820DNAArtificial SequenceDescription of Artificial SequencePFZ211-AP5
58atacgctcta cacgaggctc
205920DNAArtificial SequenceDescription of Artificial SequencePFZ212-AP1
59ccgccatggc tggagctcac
206020DNAArtificial SequenceDescription of Artificial SequencePFZ212-AP2
60tttgaaacca tatcccacac
206120DNAArtificial SequenceDescription of Artificial SequencePFZ212-AP3
61agtaacttca ggacattctg
206220DNAArtificial SequenceDescription of Artificial SequencePFZ212-AP4
62acgtccagtt tcttgcccag
206320DNAArtificial SequenceDescription of Artificial SequencePFZ213-AP1
63ttgacttcat gttcgatgtg
206420DNAArtificial SequenceDescription of Artificial SequencePFZ213-AP2
64tttgtgttgg taaccaacac
206520DNAArtificial SequenceDescription of Artificial SequencePFZ213-AP3
65acaggacgct tagagagctc
206620DNAArtificial SequenceDescription of Artificial SequencePFZ213-AP4
66acgcgcttat caacgatctg
206720DNAArtificial SequenceDescription of Artificial SequencePFZ213-AP5
67cttcccaagg aacgtgtgtg
206820DNAArtificial SequenceDescription of Artificial SequencePFZ214-AP1
68actttatgtt tgatgttgtg
206920DNAArtificial SequenceDescription of Artificial SequencePFZ214-AP2
69ccaacaccga accaaggcac
207020DNAArtificial SequenceDescription of Artificial SequencePFZ214-AP3
70tctcaactca gtattctcag
207120DNAArtificial SequenceDescription of Artificial SequencePFZ214-AP4
71taaccttaat tttggtcgtg
207220DNAArtificial SequenceDescription of Artificial SequencePFZ215-AP1
72cacacctaca acactgccac
207320DNAArtificial SequenceDescription of Artificial SequencePFZ215-AP2
73tcaaacatga aatcatagtg
207420DNAArtificial SequenceDescription of Artificial SequencePFZ215-AP3
74ctcggggcag aaagcaggac
207520DNAArtificial SequenceDescription of Artificial SequencePFZ215-AP4
75gacttgaact ctcagatcag
207627DNAArtificial SequenceDescription of Artificial SequenceKWK-Pg-06
76atgcaggaaa atactgtacc ggcaacg
277729DNAArtificial SequenceDescription of Artificial SequenceKWK-Pgu-14
77gtgtgtcata tgcaggaaaa tactgtacc
297831DNAArtificial SequenceDescription of Artificial SequenceKWK-Pgu-15
78gtgtgttcta gattattact tggagcgaac g
317922DNAArtificial SequenceDescription of Artificial SequenceKWK-Ps-02
79acacctgaga ctcagacatt gc
228021DNAArtificial SequenceDescription of Artificial SequenceKWK-Ps-02
80catgcgcgag cctcaaaaag c
218137DNAArtificial SequenceDescription of Artificial SequenceKWK-Ps-04b
81cctgccactc aacagaaatc atatcagaag gaactcc
378234DNAArtificial SequenceDescription of Artificial SequenceKWK-Ps-05b
82ctgctcataa gacggctttt gaccgttctg cagg
348339DNAArtificial SequenceDescription of Artificial SequenceKWK-Ps-06b
83cttttgaccg ttctgcagga cattggttct tgactctcc
398425DNAArtificial SequenceDescription of Artificial SequenceD122
84tggctaaryt gacygtaatg gtyta
258525DNAArtificial SequenceDescription of Artificial SequenceD123
85agttyacyaa tacaggrtaa taggt
2586572DNAArtificial SequenceDescription of Artificial SequenceP. gulae
B43 16S rRNA polynucleotide sequence 86cacgcagtaa acgatgatta
ctaggagttt gcgatatacc gtcaagcttc cacagcgaaa 60gcgttaagta atccacctgg
ggagtacgcc ggcaacggtg aaactcaaag gaattgacgg 120gggcccgcac aagcggagga
acatgtggtt taattcgatg atacgcgagg aaccttaccc 180gggattgaaa tgtagacgac
ggatggtgaa agccgtcttc ccttcggggc gtctatgtag 240gtgctgcatg gttgtcgtca
gctcgtgccg tgaggtgtcg gcttaagtgc cataacgagc 300gcaacccaca tcggtagttg
ctaacaggtt tagctgagga ctctaccgag actgccgtcg 360taaggcgcga ggaaggtgtg
gatgacgtca aatcagcacg gcccttacat ccggggcgac 420acacgtgtta caatgggagg
gacaaagggc agctaccggg cgaccgggtg cgaatctcga 480aacccttccc cagttcggat
cggagtctgc aactcgactc cgtgaagctg gattcgctag 540taatcgcgca tcagccatgg
cgcggtgaat ac 57287571DNAArtificial
SequenceDescription of Artificial SequenceP. cansulci B46 16S rRNA
polynucleotide sequence 87cacgccgtaa acgatgatta ctcggagtat gcgatatgag
tgtatgcttc ttagcgaaag 60cgttaagtaa tccacctggg gagtacgtcg gcaacgatga
aactcaaagg aattgacggg 120ggcccgcaca agcggaggaa catgtggttt aattcgatga
tacgcgagga accttacccg 180ggattgaaat atagatgaca ggcagcgaga gttgttatcc
cttcggggca tctatgtagg 240tgctgcatgg ttgtcgtcag ctcgtgccgt gaggtgtcgg
cttaagtgcc ctaacgagcg 300caacccacat tattagttac taacaggtta agctgaggac
tctaataaga ctgccggcgt 360aagccgtgag gaaggtgtgg atgacgtcaa atcagcacgg
cccttacatc cggggcgaca 420cacgtgttac aatggtaggg acaaagggca gctaccgggc
gaccggatgc gaatctccaa 480accctatccc agttcggatc ggagtctgca actcgactct
gtgaagctgg attcgctagt 540aatcgcgcat cagccatggc gcggtgaata c
57188573DNAArtificial SequenceDescription of
Artificial SequenceP. circumdentaria B52 16S rRNA polynucleotide
sequence 88cacgctgtaa acgatgaata ctagattttt gcgatataca gtaagagtct
aagcgaaagc 60gataagtatt ccacctgggg agtacgccgg caacggtgaa actcaaagga
attgacgggg 120gcccgcacaa gcggaggaac atgtggttta attcgatgat acgcgaggaa
ccttacctgg 180gattgaaatt taggagaacg atttatgaaa gtagattttc ccttcggggc
tcctaagtag 240gtgctgcatg gttgtcgtca gctcgtgccg tgaggtgtcg gcttaagtgc
cataacgagc 300gcaacccgcg ttgatagtta ctaacagata aagctgagga ctctatcgag
acagccgtcg 360taagacgcga ggaaggggcg gatgacgtca aatcagcacg gcccttacat
ccagggcgac 420acacgtgtta caatggcaag gacaaaggga agccacatag cgatatggag
cagatcctca 480aaccttgtcc cagttcggat cggagtctgc aactcgactc cgtgaagctg
gattcgctag 540taatcgcgca tcagccatgg cgcggtgaat acc
57389573DNAArtificial SequenceDescription of Artificial
SequenceP. gulae B69 16S rRNA polynucleotide sequence 89cacgcagtaa
acgatgatta ctaggagttt gcgatatacc gataagcttc cacagcgaaa 60gcgttaagta
atccacctgg ggagtacgcc ggcaacggtg aaactcaaag gaattgacgg 120gggcccgcac
aagcggagga acatgtggtt taattcgatg atacgcgagg aaccttaccc 180gggattgaaa
tgtagatgac agatggtgaa agccgtcttc ccttcggggc gtctatgtag 240gtgctgcatg
gttgtcgtca gctcgtgccg tgaggtgtcg gcttaagtgc cataacgagc 300gcaacccata
tcggtagttg ctaacaggtc aagctgagga ctctaccgag actgccgtcg 360taaggcgaga
ggaaggtgtg gatgacgtca aatcagcacg gcccttacat ccggggcgac 420acacgtgtta
caatgggagg gacaaagggc agctaccggg cgaccggatg cgaatctcga 480aacccttccc
cagttcggat cggagtctgc aactcgactc cgtgaagctg gattcgctag 540taatcgcgca
tcagccatgg cgcggtgaat acc
57390572DNAArtificial SequenceDescription of Artificial SequenceP.
circumdentaria B97 16S rRNA polynucleotide sequence 90cacgctgtaa
acgatgaata ctagattttt gcgatataca gtaagagtct aagcgaaagc 60gataagtatt
ccacctgggg agtacgccgg caacggtgaa actcaaagga attgacgggg 120gcccgcacaa
gcggaggaac atgtggttta attcgatgat acgcgaggaa ccttacctgg 180gattgaaatt
taggagaacg atttatgaaa gtagattttc ccttcggggc tcctaagtag 240gtgctgcatg
gttgtcgtca gctcgtgccg tgaggtgtcg gcttaagtgc cataacgagc 300gcaacccgcg
tcgatagtta ctaacaggta atgctgagga ctctatcgag acagccgtcg 360taagacgaga
ggaaggggcg gatgacgtca aatcagcacg gcccttacat ccagggcgac 420acacgtgtta
caatggcaag gacaaaggga agccacatag cgatatggag cagatcctca 480aaccttgtcc
cagttcggat cggagtctgc aactcgactc cgtgaagctg gattcgctag 540taatcgcgca
tcagccatgg cgcggtgaat ac
57291571DNAArtificial SequenceDescription of Artificial SequenceP.
cangingivalis B98 16S rRNA polynucleotide sequence 91cagtaaacga
tgattactcg gagtatgcga tatatggtat gctcccaagg gaaaccgata 60agtaatccac
ctggggagta cgccggcaac ggtgaaactc aaaggaattg acgggggccc 120gcacaagcgg
aggaacatgt ggtttaattc gatgatacgc gaggaacctt acccgggatt 180gaaatgtaca
tgacggttgg gcgagagcct gacttccctt cggggcatgt atgtaggtgc 240tgcatggttg
tcgtcagctc gtgccgtgag gtgtcggctt aagtgccata acgagcgcaa 300cccacatcgt
cagttactaa caggtagagc tgaggactct gacgagactg ccgtcgtaag 360gcgcgaggaa
ggtgtggatg acgtcaaatc agcacggccc ttacatccgg ggcgacacac 420gtgttacaat
ggtagggaca aagggcagct acctggcgac aggatgcgaa tctccaaacc 480ctatctcagt
tcggatcgga gtctgcaact cgactccgtg aagctggatt cgctagtaat 540cgcgcatcag
ccatggcgcg gtgaatacgt t
57192384DNAArtificial SequenceDescription of Artificial SequenceP.
salivosa B104 16S rRNA polynucleotide sequence 92cagtaaacga
tgataactgg gcgtatgcga tatacagtat gctcctgagc gaaagcgtta 60agttatccac
ctggggagta cgccggcaac ggtgaaactc aaaggaattg acgggggccc 120gcacaagcgg
aggaacatgt ggtttaattc gatgatacgc gaggaacctt acccgggatt 180gaaatttagc
ggactatgta tgaaagtaca tatcctgtca caaggccgct aagtaggtgc 240tgcatggttg
tcgtcagctc gtgccgtgag gtgtcggctt aagtgccata acgagcgcaa 300cccacgttgt
cagttactat cgggtaaagc cgaggactct gacaagactg ccgtcgtaag 360gcgcgaggaa
ggtgtggatg acgt
38493571DNAArtificial SequenceDescription of Artificial SequenceP.
denticanis B106 16S rRNA polynucleotide sequence 93cacgccgtaa acgatgctca
ccggctctat gcgataagac agtatggggc taatagaaat 60aattaagtga gccacctggg
gagtacgtcg gcaacgatga aactcaaagg aattgacggg 120ggcccgcaca agcggaggaa
catgtggttt aattcgatga tacgcgagga accttacccg 180ggtttaaatg tatgttgcat
tatgtagaaa tacgtatttt cttcggaact gcatacaagg 240tgctgcatgg ttgtcgtcag
ctcgtgccgt gaggtgtcgg gttaagtccc ataacgagcg 300caacccttat gattagttgc
taacggttca agccgagcac tctattcaca ctgccaccgt 360aaggtgcgag gaaggagggg
atgatgtcaa atcagcacgg cccttatatc cggggctaca 420cacgtgttac aatggtcggt
acagcgggtt gcatttacgt gagtaacagc taatcccaaa 480aatcggtctc agttcggatt
ggagtctgca actcgactcc atgaagttgg attcgctagt 540aatcgcacat cagccatggt
gcggtgaata c 57194571DNAArtificial
SequenceDescription of Artificial SequenceP. endodontalis B114 16S
rRNA polynucleotide sequence 94caccgcagta aacgatgaat actagatctt
tgcgatatac ggtaagggtc taagcgaaag 60cgataagtat tccacctggg gagtacgtcg
gcaacgatga aactcaaagg aattgacggg 120ggcccgcaca agcggaggaa catgtggttt
aattcgatga tacgcgagga accttacccg 180ggattgaaat ttagcgggcg ggctatgaga
gtagcctttc ctacgggact gctaagtagg 240tgctgcatgg ttgtcgtcag ctcgtgccgt
gaggtgttgg cttaagtgcc ataacgagcg 300caacccacgt tgatagttac taacagttaa
agctgaggac tctatcgaga cagccggcgt 360aagccgtgag gaaggtgtgg atgacgtcaa
atcagcacgg cccttacatc cggggcgaca 420cacgtgttac aatggtgagg acagcgggaa
gcggcctggt gacaggtagc agatccccaa 480acctcatccc agttcggatt ggagtctgca
actcgactct atgaagctgg attcgctagt 540aatcgcgcat cagccatggc gcggtgaata c
571951024DNAArtificial
SequenceDescription of Artificial SequenceP. gulae B43 fimA
polynucleotide sequence 95tctaaatcga aaaagatcct aataaaacaa tattcacttt
taaaacaaaa acgagatgaa 60aaagactaag tttttcttgt tgggacttgc tgcccttgct
atgacagctt gtaacaaaga 120caacgaagca gaacccgttg tagaaggtaa cgctaccatt
agcgtagtat tgaagaccag 180caatccgaat cgtgctttcg gggttgcaga tgacgaagca
aaagtggcta aactgactgt 240aatggtctac aagggtgagc agcaggaagc catcaaatca
gccgaaaatg caattaaggt 300tgagaacatc aaatgtggtg caggctcacg tacgctggtc
gtaatggcca atacgggtgg 360aatggaattg gctggcaaga ctcttgcaga ggtaaaagca
ttgacaactg aactaactgc 420agaaaaccaa gaggctacag gtttgatcat gacagcagag
cctgttgacg taacacttgt 480cgccggcaat aactattatg gttatgatgg aactcaggga
ggcaatcaga tttcgcaagg 540tactcctctt gaaatcaaac gtgttcatgc ccgtattgcg
ttcaccaaga ttgaagtgaa 600gatgagcgag tcttatgtga acaaatacaa ctttaccccc
gaaaacatct atgcacttgt 660ggctaagaag aagtctaatc tattcggtac ttcattggca
aatagtgatg atgcttattt 720gaccggttct ttgacgactt tcaacggtgc ttatacccct
gcaaactata ctcatgtcgt 780ctggttggga agaggctaca cagcgccttc caatgatgct
ccacaaggtt tctatgtttt 840ggagagtgca tacgctcaga atgcaggtct acgtcctacc
attctatgtg taaagggtaa 900gctgacaaag catgatggta ctcctttgag ttctgaggaa
atgacagctg cattcaatgc 960cggctggatt gttgcaaaca atgatcctac gacctattat
cctgtattag tgaactttga 1020gagc
102496733DNAArtificial SequenceDescription of
Artificial SequenceP. circumdentaria B52 fimA polynucleotide
sequence 96taatggagaa cagcaggaag ccatcgaatc agccgaaaat gcgactaaga
ttgagaatat 60caaatgtggt gcaggccaac gtacgctggt cgtaatggcc aatacgggtg
gaatggaatt 120ggctggcaag actcttgcag aggtaaaagc attgacaact gtactgactg
aagaaaacca 180agaggccaca ggtttgatca tgacagcaga gccaaaagca atcgttttga
aggcaggcaa 240gaactatatt ggatacgatg gagccggaga gggcaaccac attgagaatg
ctcctcttga 300aatcaaacgt gtacatgctc gcatggcttt caccgaaatt aaagtacaga
tgagcgcagc 360ctacgataac atttacacat ttacccctga aaagatttat ggtctcattg
caaagaagca 420atctaatttg ttcggggcaa cactcgtgaa tgcagacgct aattatctga
caggttcttt 480gaccacattt aacggtgctt acacacctac caactatgcc aatgttcctt
ggttgagccg 540tgattacgtt gcacctaccg ctggtgctcc tcagggcttc tacgtattag
aaaatgacta 600ctcagctaac agtggaacta ttcatccgac aatcctgtgt gtttatggca
aacttcagaa 660aaacggagcc gacctgacgg gaaccgattt agcagcagct caggccgcca
attgggtgga 720tgcagaaggc aag
733971024DNAArtificial SequenceDescription of Artificial
SequenceP. gulae B69 fimA polynucleotide sequence 97ggcgcagcat
aacctcgacg aactgcgaca ctatatgcag gacaatctct aaatcgaata 60aagattctaa
taaaacaata ttcactttta aaacaaaaac aagatgaaaa agactaagtt 120tttcttgttg
ggacttgctg cccttgctat gacagcttgt aacaaagaca acgaagcaga 180acccgttgta
gaaggtaacg ctaccattag cgtagtattg aagaccagca atccgaatcg 240tgttttcggg
gttgcagatg acgaagcaaa agtggctaag ttgaccgtaa tggtttataa 300tggagaacag
caggaagcca tcgaatcagc cgaaaatgcg actaagattg agaatatcaa 360atgtggtgca
ggccaacgta cgctggtcgt aatggccaat acgggtggaa tggaattggc 420tggcaagact
cttgcagagg taaaagcatt gacaactgta ctgactgaag aaaaccaagg 480ggccacaggt
ttgatcatga cagcagagcc aaaagcaatc gttttgaagg caggcaagaa 540ctatattgga
tacgatggag ccggagaggg caaccacatt gagaatgctc ctcttgaaat 600caaacgtgta
catgctcgca tggctttcac cgaaattaaa gtacagatga gcgcagccta 660cgataacatt
tacacattta cccctgaaaa gatttatggt ctcattgcaa agaagcaatc 720taatttgttc
ggggcaacac tcgtgaatgc agacgctaat tatctgacag gttctttgac 780cacatttaac
ggtgcttaca cacctaccaa ctatgccaat gttccttggt tgagccgtga 840ttacgttgca
cctaccgctg gtgctcctca gggcttctac gtattagaaa atgactactc 900agctaacagt
ggaactattc atccgacaat cctgtgtgtt tatggcaaac ttcagaaaaa 960cggagccgac
ctgacgggaa ccgatttagc agcagctcag gccgccaatt gggtggatgc 1020agaa
102498733DNAArtificial SequenceDescription of Artificial SequenceP.
circumdentaria B97 fimA polynucleotide sequence 98taatggagaa cagcaggaag
ccatcgaatc agccgaaaat gcgactaaga ttgagaatat 60caaatgtggt gcaggccaac
gtacgctggt cgtaatggcc aatacgggtg gaatggaatt 120ggctggcaag actcttgcag
aggtaaaagc attgacaact gtactgactg aagaaaacca 180agaggccaca ggtttgatca
tgacagcaga gccaaaagca atcgttttga aggcaggcaa 240gaactatatt ggatacgatg
gagccggaga gggcaaccac attgagaatg ctcctcttga 300aatcaaacgt gtacatgctc
gcatggcttt caccgaaatt aaagtacaga tgagcgcagc 360ctacgataac atttacacat
ttacccctga aaagatttat ggtctcattg caaagaagca 420atctaatttg ttcggggcaa
cactcgtgaa tgcagacgct aattatctga caggttcttt 480gaccacattt aacggtgctt
acacacctac caactatgcc aatgttcctt ggttgagccg 540tgattacgtt gcacctaccg
ctggtgctcc tcagggcttc tacgtattag aaaatgacta 600ctcagctaac agtggaacta
ttcatccgac aatcctgtgt gtttatggca aacttcagaa 660aaacggagcc gacctgacgg
gaaccgattt agcagcagct caggccgcca attgggtgga 720tgcagaaggc aag
733991024DNAArtificial
SequenceDescription of Artificial SequenceP. cangingivalis B98 fimA
polynucleotide sequence 99ggcctcgaga acaaagacaa cgaagcagaa cccgttgtag
aaggtaacgc taccattagc 60gtagtattga agaccagcaa tccgaatcgt gctttcgggg
ttgcagatga cgaagcaaaa 120gtggctaaac tgactgtaat ggtctacaag ggtgagcagc
aggaagccat caaatcagcc 180gaaaatgcaa ttaaggttga gaacatcaaa tgtggtgcag
gctcacgtac gctggtcgta 240atggccaata cgggtggaat ggaattggct ggcaagactc
ttgcagaggt aaaagcattg 300acaactgaac taactgcaga aaaccaagag gctacaggtt
tgatcatgac agcagagcct 360gttgacgtaa cacttgtcgc cggcaataac tattatggtt
atgatggaac tcagggaggc 420aatcagattt cgcaaggtac tcctcttgaa atcaaacgtg
ttcatgcccg tattgcgttc 480accaagattg aagtgaagat gagcgagtct tatgtgaaca
aatacaactt tacccccgaa 540aacatctatg cacttgtggc taagaagaag tctaatctat
tcggtacttc attggcaaat 600agtgatgatg cttatttgac cggttctttg acgactttca
acggtgctta tacccctgca 660aactatactc atgtcgtctg gttgggaaga ggctacacag
cgccttccaa tgatgctcca 720caaggtttct atgttttgga gagtgcatac gctcagaatg
caggtctacg tcctaccatt 780ctatgtgtaa agggtaagct gacaaagcat gatggtactc
ctttgagttc tgaggaaatg 840acagctgcat tcaatgccgg ctggattgtt gcaaacaatg
atcctacgac ctattatcct 900gtattagtga actttgagag caataattac acctacacag
gtgatgctgt tgagaaaggg 960aaaatcgttc gtaaccacaa gtttgacatc aatctgacga
tcaccggtcc tggtacgaat 1020aatc
1024100783DNAArtificial SequenceDescription of
Artificial SequenceP. salivosa B104 fimA polynucleotide sequence
100tggctaartt gactgtaatg gtttataatg gagaacagca ggaagccatc raatcagccg
60aaaatgcgac taagrttgar rayatcaaat gtrgtgcagg ccaacgtacg ctggtcgtaa
120tggccaatac gggtgsaatg gaaytggytg gcaagactct tgcagaggta aaagcattga
180caactgwact gactgmagaa aaccaagagg cyrcaggktt gatcatgaca gcagagccaa
240aarcaatcgt tttgaaggca ggcaagaact ayattggata crrtggarcc ggagagggya
300aycacattga gaatgmtcct cttraratca arcgtgtwca tgctcgcatg gctttcaccg
360aaattaaagt rcaratgagc gcagcctacg ataacattta cacattyryc cctgaaaaga
420tttatggtct cattgcaaag aagcaatcta atttgttcgg ggcaacactc gtraatgcag
480acgctaatta tctgacaggt tctttgacca catttaacgg tgcttacaca cctrccaact
540atgccaatgt kccttggytg agccgtratt acgttgcacc trccgcygrt gctcctcagg
600gyttctacgt attagaaaat gactactcag ctaacrgtgg aactattcat ccgacaatcc
660tgtgtgttta tggcaaactt cagaaaaacg gagccgacyt grcgggarcc gatttagcar
720cwgctcaggc cgccaattgg gtggatgcag aaggcaagac ctattaccct gtattrgtra
780act
783101733DNAArtificial SequenceDescription of Artificial SequenceP.
denticanis B106 fimA polynucleotide sequence 101taatggagaa cagcaggaag
ccatcgaatc agccgaaaat gcgactaaga ttgagaatat 60caaatgtggt gcaggccaac
gtacgctggt cgtaatggcc aatacgggtg gaatggaatt 120ggctggcaag actcttgcag
aggtaaaagc attgacaact gtactgactg aagaaaacca 180agaggccaca ggtttgatca
tgacagcaga gccaaaagca atcgttttga aggcaggcaa 240gaactatatt ggatacgatg
gagccggaga gggcaaccac attgagaatg ctcctcttga 300aatcaaacgt gtacatgctc
gcatggcttt caccgaaatt aaagtacaga tgagcgcagc 360ctacgataac atttacacat
ttacccctga aaagatttat ggtctcattg caaagaagca 420atctaatttg ttcggggcaa
cactcgtgaa tgcagacgct aattatctga caggttcttt 480gaccacattt aacggtgctt
acacacctac caactatgcc aatgttcctt ggttgagccg 540tgattacgtt gcacctaccg
ctggtgctcc tcagggcttc tacgtattag aaaatgacta 600ctcagctaac agtggaacta
ttcatccgac aatcctgtgt gtttatggca aacttcagaa 660aaacggagcc gacctgacgg
gaaccgattt agcagcagct caggccgcca attgggtgga 720tgcagaaggc aag
733102742DNAArtificial
SequenceDescription of Artificial SequenceP. endodontalis B114 fimA
polynucleotide sequence 102caagggtgag cagcaggaag ccatcaaatc agccgaaaat
gcaattaagg ttgagaacat 60caaatgtggt gcaggctcac gtacgctggt cgtaatggcc
aatacgggtg gaatggaatt 120ggctggcaag actcttgcag aggtaaaagc attgacaact
gaactaactg cagaaaacca 180agaggctaca ggtttgatca tgacagcaga gcctgttgac
gtaacacttg tcgccggcaa 240taactattat ggttatgatg gaactcaggg aggcaatcag
atttcgcaag gtactcctct 300tgaaatcaaa cgtgttcatg cccgtattgc gttcaccaag
attgaagtga agatgagcga 360gtcttatgtg aacaaataca actttacccc cgaaaacatc
tatgcacttg tggctaagaa 420gaagtctaat ctattcggta cttcattggc aaatagtgat
gatgcttatt tgaccggttc 480tttgacgact ttcaacggtg cttatacccc tgcaaactat
actcatgtcg tctggttggg 540aagaggctac acagcgcctt ccaatgatgc tccacaaggt
ttctatgttt tggagagtgc 600atacgctcag aatgcaggtc tacgtcctac cattctatgt
gtaaagggta agctgacaaa 660gcatgatggt actcctttga gttctgagga aatgacagct
gcattcaatg ccggctggat 720tgttgcaaac aatgatccta cg
742103281PRTArtificial SequenceP. gulae B43 FimA
polypeptide sequence 103Met Lys Lys Thr Lys Gly Ala Ala Ala Met Thr Ala
Cys Asn Lys Asp1 5 10
15Asn Ala Val Val Gly Asn Ala Thr Ser Val Val Lys Thr Ser Asn Asn
20 25 30Arg Ala Gly Val Ala Asp Asp
Ala Lys Val Ala Lys Thr Val Met Val 35 40
45Tyr Lys Gly Ala Lys Ser Ala Asn Ala Lys Val Asn Lys Cys Gly
Ala 50 55 60Gly Ser Arg Thr Val Val
Met Ala Asn Thr Gly Gly Met Ala Gly Lys65 70
75 80Thr Ala Val Lys Ala Thr Thr Thr Ala Asn Ala
Thr Gly Met Thr Ala 85 90
95Val Asp Val Thr Val Ala Gly Asn Asn Tyr Tyr Gly Tyr Asp Gly Thr
100 105 110Gly Gly Asn Ser Gly Thr
Lys Arg Val His Ala Arg Ala Thr Lys Val 115 120
125Lys Met Ser Ser Tyr Val Asn Lys Tyr Asn Thr Asn Tyr Ala
Val Ala 130 135 140Lys Lys Lys Ser Asn
Gly Thr Ser Ala Asn Ser Asp Asp Ala Tyr Thr145 150
155 160Gly Ser Thr Thr Asn Gly Ala Tyr Thr Ala
Asn Tyr Thr His Val Val 165 170
175Trp Gly Arg Gly Tyr Thr Ala Ser Asn Asp Ala Gly Tyr Val Ser Ala
180 185 190Tyr Ala Asn Ala Gly
Arg Thr Cys Val Lys Gly Lys Thr Lys His Asp 195
200 205Gly Thr Ser Ser Met Thr Ala Ala Asn Ala Gly Trp
Val Ala Asn Asn 210 215 220Asp Thr Thr
Tyr Tyr Val Val Asn Ser Asn Asn Tyr Thr Tyr Thr Gly225
230 235 240Asp Ala Val Lys Gly Lys Val
Arg Asn His Lys Asp Asn Thr Thr Gly 245
250 255Gly Thr Asn Asn Asn Thr Ser Ala Asn Asn Val Asn
Cys Val Val Ala 260 265 270Ala
Trp Lys Gly Val Val Asn Val Trp 275
280104170PRTArtificial SequenceP. circumdentaria B52 FimA polypeptide
sequence 104Asn Gly Ala Ser Ala Asn Ala Thr Lys Asn Lys Cys Gly Ala Gly
Arg1 5 10 15Thr Val Val
Met Ala Asn Thr Gly Gly Met Ala Gly Lys Thr Ala Val 20
25 30Lys Ala Thr Thr Val Thr Asn Ala Thr Gly
Met Thr Ala Lys Ala Val 35 40
45Lys Ala Gly Lys Asn Tyr Gly Tyr Asp Gly Ala Gly Gly Asn His Asn 50
55 60Ala Lys Arg Val His Ala Arg Met Ala
Thr Lys Val Met Ser Ala Ala65 70 75
80Tyr Asp Asn Tyr Thr Thr Lys Tyr Gly Ala Lys Lys Ser Asn
Gly Ala 85 90 95Thr Val
Asn Ala Asp Ala Asn Tyr Thr Gly Ser Thr Thr Asn Gly Ala 100
105 110Tyr Thr Thr Asn Tyr Ala Asn Val Trp
Ser Arg Asp Tyr Val Ala Thr 115 120
125Ala Gly Ala Gly Tyr Val Asn Asp Tyr Ser Ala Asn Ser Gly Thr His
130 135 140Thr Cys Val Tyr Gly Lys Lys
Asn Gly Ala Asp Thr Gly Thr Asp Ala145 150
155 160Ala Ala Ala Ala Asn Trp Val Asp Ala Gly
165 170105275PRTArtificial SequenceP. gulae B69 FimA
AA 105Met Lys Lys Thr Lys Gly Ala Ala Ala Met Thr Ala Cys Asn Lys Asp1
5 10 15Asn Ala Val Val Gly
Asn Ala Thr Ser Val Val Lys Thr Ser Asn Asn 20
25 30Arg Val Gly Val Ala Asp Asp Ala Lys Val Ala Lys
Thr Val Met Val 35 40 45Tyr Asn
Gly Ala Ser Ala Asn Ala Thr Lys Asn Lys Cys Gly Ala Gly 50
55 60Arg Thr Val Val Met Ala Asn Thr Gly Gly Met
Ala Gly Lys Thr Ala65 70 75
80Val Lys Ala Thr Thr Val Thr Asn Gly Ala Thr Gly Met Thr Ala Lys
85 90 95Ala Val Lys Ala Gly
Lys Asn Tyr Gly Tyr Asp Gly Ala Gly Gly Asn 100
105 110His Asn Ala Lys Arg Val His Ala Arg Met Ala Thr
Lys Val Met Ser 115 120 125Ala Ala
Tyr Asp Asn Tyr Thr Thr Lys Tyr Gly Ala Lys Lys Ser Asn 130
135 140Gly Ala Thr Val Asn Ala Asp Ala Asn Tyr Thr
Gly Ser Thr Thr Asn145 150 155
160Gly Ala Tyr Thr Thr Asn Tyr Ala Asn Val Trp Ser Arg Asp Tyr Val
165 170 175Ala Thr Ala Gly
Ala Gly Tyr Val Asn Asp Tyr Ser Ala Asn Ser Gly 180
185 190Thr His Thr Cys Val Tyr Gly Lys Lys Asn Gly
Ala Asp Thr Gly Thr 195 200 205Asp
Ala Ala Ala Ala Ala Asn Trp Val Asp Ala Gly Lys Thr Tyr Tyr 210
215 220Val Val Asn Asn Ser Asn Asn Tyr Thr Tyr
Asp Asn Gly Tyr Thr Lys225 230 235
240Asn Lys Arg Asn His Lys Tyr Asp Lys Thr Thr Gly Gly Thr Asn
Asn 245 250 255Asn Thr Ser
Ala His Asn Val Cys Thr Val Ala Trp Val Val Gly Asn 260
265 270Ala Thr Trp 275106170PRTArtificial
SequenceP. circumdentaria B97 FimA polypeptide sequence 106Asn Gly Ala
Ser Ala Asn Ala Thr Lys Asn Lys Cys Gly Ala Gly Arg1 5
10 15Thr Val Val Met Ala Asn Thr Gly Gly
Met Ala Gly Lys Thr Ala Val 20 25
30Lys Ala Thr Thr Val Thr Asn Ala Thr Gly Met Thr Ala Lys Ala Val
35 40 45Lys Ala Gly Lys Asn Tyr Gly
Tyr Asp Gly Ala Gly Gly Asn His Asn 50 55
60Ala Lys Arg Val His Ala Arg Met Ala Thr Lys Val Met Ser Ala Ala65
70 75 80Tyr Asp Asn Tyr
Thr Thr Lys Tyr Gly Ala Lys Lys Ser Asn Gly Ala 85
90 95Thr Val Asn Ala Asp Ala Asn Tyr Thr Gly
Ser Thr Thr Asn Gly Ala 100 105
110Tyr Thr Thr Asn Tyr Ala Asn Val Trp Ser Arg Asp Tyr Val Ala Thr
115 120 125Ala Gly Ala Gly Tyr Val Asn
Asp Tyr Ser Ala Asn Ser Gly Thr His 130 135
140Thr Cys Val Tyr Gly Lys Lys Asn Gly Ala Asp Thr Gly Thr Asp
Ala145 150 155 160Ala Ala
Ala Ala Asn Trp Val Asp Ala Gly 165
170107257PRTArtificial SequenceP. cangingivalis B98 FimA AA 107Val Val
Gly Asn Ala Thr Ser Val Val Lys Thr Ser Asn Asn Arg Ala1 5
10 15Gly Val Ala Asp Asp Ala Lys Val
Ala Lys Thr Val Met Val Tyr Lys 20 25
30Gly Ala Lys Ser Ala Asn Ala Lys Val Asn Lys Cys Gly Ala Gly
Ser 35 40 45Arg Thr Val Val Met
Ala Asn Thr Gly Gly Met Ala Gly Lys Thr Ala 50 55
60Val Lys Ala Thr Thr Thr Ala Asn Ala Thr Gly Met Thr Ala
Val Asp65 70 75 80Val
Thr Val Ala Gly Asn Asn Tyr Tyr Gly Tyr Asp Gly Thr Gly Gly
85 90 95Asn Ser Gly Thr Lys Arg Val
His Ala Arg Ala Thr Lys Val Lys Met 100 105
110Ser Ser Tyr Val Asn Lys Tyr Asn Thr Asn Tyr Ala Val Ala
Lys Lys 115 120 125Lys Ser Asn Gly
Thr Ser Ala Asn Ser Asp Asp Ala Tyr Thr Gly Ser 130
135 140Thr Thr Asn Gly Ala Tyr Thr Ala Asn Tyr Thr His
Val Val Trp Gly145 150 155
160Arg Gly Tyr Thr Ala Ser Asn Asp Ala Gly Tyr Val Ser Ala Tyr Ala
165 170 175Asn Ala Gly Arg Thr
Cys Val Lys Gly Lys Thr Lys His Asp Gly Thr 180
185 190Ser Ser Met Thr Ala Ala Asn Ala Gly Trp Val Ala
Asn Asn Asp Thr 195 200 205Thr Tyr
Tyr Val Val Asn Ser Asn Asn Tyr Thr Tyr Thr Gly Asp Ala 210
215 220Val Lys Gly Lys Val Arg Asn His Lys Asp Asn
Thr Thr Gly Gly Thr225 230 235
240Asn Asn Asn Thr Ser Ala Asn Asn Val Asn Cys Val Val Ala Ala Trp
245 250
255Lys108161PRTArtificial SequenceP. salivosa B104 FimA polypeptide
sequence 108Ala Thr Val Met Val Tyr Asn Gly Ala Ser Ala Asn Ala Thr Lys
Lys1 5 10 15Cys Ala Gly
Arg Thr Val Val Met Ala Asn Thr Gly Met Gly Lys Thr 20
25 30Ala Val Lys Ala Thr Thr Thr Asn Ala Gly
Met Thr Ala Lys Val Lys 35 40
45Ala Gly Lys Asn Gly Tyr Gly Gly Gly His Asn Arg Val His Ala Arg 50
55 60Met Ala Thr Lys Val Met Ser Ala Ala
Tyr Asp Asn Tyr Thr Lys Tyr65 70 75
80Gly Ala Lys Lys Ser Asn Gly Ala Thr Val Asn Ala Asp Ala
Asn Tyr 85 90 95Thr Gly
Ser Thr Thr Asn Gly Ala Tyr Thr Asn Tyr Ala Asn Val Trp 100
105 110Ser Arg Tyr Val Ala Ala Ala Gly Tyr
Val Asn Asp Tyr Ser Ala Asn 115 120
125Gly Thr His Thr Cys Val Tyr Gly Lys Lys Asn Gly Ala Asp Gly Asp
130 135 140Ala Ala Ala Ala Asn Trp Val
Asp Ala Gly Lys Thr Tyr Tyr Val Val145 150
155 160Asn109170PRTArtificial SequenceP. denticanis B106
FimA polypeptide sequence 109Asn Gly Ala Ser Ala Asn Ala Thr Lys Asn Lys
Cys Gly Ala Gly Arg1 5 10
15Thr Val Val Met Ala Asn Thr Gly Gly Met Ala Gly Lys Thr Ala Val
20 25 30Lys Ala Thr Thr Val Thr Asn
Ala Thr Gly Met Thr Ala Lys Ala Val 35 40
45Lys Ala Gly Lys Asn Tyr Gly Tyr Asp Gly Ala Gly Gly Asn His
Asn 50 55 60Ala Lys Arg Val His Ala
Arg Met Ala Thr Lys Val Met Ser Ala Ala65 70
75 80Tyr Asp Asn Tyr Thr Thr Lys Tyr Gly Ala Lys
Lys Ser Asn Gly Ala 85 90
95Thr Val Asn Ala Asp Ala Asn Tyr Thr Gly Ser Thr Thr Asn Gly Ala
100 105 110Tyr Thr Thr Asn Tyr Ala
Asn Val Trp Ser Arg Asp Tyr Val Ala Thr 115 120
125Ala Gly Ala Gly Tyr Val Asn Asp Tyr Ser Ala Asn Ser Gly
Thr His 130 135 140Thr Cys Val Tyr Gly
Lys Lys Asn Gly Ala Asp Thr Gly Thr Asp Ala145 150
155 160Ala Ala Ala Ala Asn Trp Val Asp Ala Gly
165 170110177PRTArtificial SequenceP.
endodontalis B114 FimA polypeptide sequence 110Lys Gly Ala Lys Ser Ala
Asn Ala Lys Val Asn Lys Cys Gly Ala Gly1 5
10 15Ser Arg Thr Val Val Met Ala Asn Thr Gly Gly Met
Ala Gly Lys Thr 20 25 30Ala
Val Lys Ala Thr Thr Thr Ala Asn Ala Thr Gly Met Thr Ala Val 35
40 45Asp Val Thr Val Ala Gly Asn Asn Tyr
Tyr Gly Tyr Asp Gly Thr Gly 50 55
60Gly Asn Ser Gly Thr Lys Arg Val His Ala Arg Ala Thr Lys Val Lys65
70 75 80Met Ser Ser Tyr Val
Asn Lys Tyr Asn Thr Asn Tyr Ala Val Ala Lys 85
90 95Lys Lys Ser Asn Gly Thr Ser Ala Asn Ser Asp
Asp Ala Tyr Thr Gly 100 105
110Ser Thr Thr Asn Gly Ala Tyr Thr Ala Asn Tyr Thr His Val Val Trp
115 120 125Gly Arg Gly Tyr Thr Ala Ser
Asn Asp Ala Gly Tyr Val Ser Ala Tyr 130 135
140Ala Asn Ala Gly Arg Thr Cys Val Lys Gly Lys Thr Lys His Asp
Gly145 150 155 160Thr Ser
Ser Met Thr Ala Ala Asn Ala Gly Trp Val Ala Asn Asn Asp
165 170 175Thr1111024DNAArtificial
SequenceDescription of Artificial SequenceP. gulae B43 oprF
polynucleotide sequence 111acattcgttg gagctattgc actgaatgca agtgcacagg
aaaatactgt accggcaacg 60ggtcagttac ccgccaaaaa tgttgctttc gctcgcaaca
aagcaggcag caattggttc 120gtaacactgc agggcggtgt tgcagcgcag ttcctcaatg
acaacaacaa caaagatttt 180gtagaccgct tgggtgctgc cggctctatt tcagttggaa
aatatcacaa tccattcttt 240gcaacccgtt tgcaaattaa cggagctcag gcacacacgt
tccttggaaa aaatgcggaa 300caagaaatta agaccaattt tggcgcagct cactttgact
tcatgttcga tgtggttaat 360tactttgcgc catatcgcga aaatcgtttc ttccatttaa
ttccatgggt aggtgttggt 420taccagcata aattcattgg cagcaaatgg agtaaagaca
atgtcgagtc tctgactgcc 480aatctgggtg ttatgatggc tttcagatta ggaaaacgtg
tagactttgt gatcgaagca 540caagcagcac actccaatct caacttaagc cgtgctttca
atgccaagcc gactcctatt 600ttccaggatc aggaaggacg ttattacaat ggattccaag
gaatggcgac agcaggtctt 660aacttccgct tgggtgctgt aggcttcaat gccatcgagc
ccatggacta cgcgcttatc 720aacgatctga atggtcagat taatcgcctg cgcagagaag
tcgaagaact ctccaagcgt 780cctgtatcat gtcccgaatg ccccgacgtt acacccgtta
ccaagacaga aaacaagcta 840accgagaagg ctgtactctt ccgtttcgac agctatgttg
tagacaaaga ccagcttatc 900aatctgtatg acgtagctca gtttgtaaaa gaaaccaacg
agccgattac tgttgtaggc 960tatgctgatc ctacgggtga cactcagtac aacgaaagat
tgtctgagcg tcgcgcaaaa 1020gccg
10241121024DNAArtificial SequenceDescription of
Artificial SequenceP. cansulci B46 oprF polynucleotide sequence
112acattggccg gggtttacgc cctttcagcc tctgctcagc aggagaatat gccacgaatg
60gggcagactc ccgccaagaa taccgcttac gctcgctctg aagccggtga caattggttt
120gtgactttgc aaggaggtgc tgctatgcag tttgggaaag gtaacgagga tgccgacttc
180ttcgaccgcc aaactgttgc tcccactttt gccgtaggta aatggcacaa tcctttcttc
240gggaccagat tgcaaatggg cttgggggta tctcacgact tctcgaacaa cgaagcgaaa
300tccaagttgg agatgaacca cgctcgctat gctaacgcac actttgactt tatgtttgat
360gtgattaact acttcaagcc ctacagtgag gaccgcgtat tccaccttat tccgtgggta
420ggtttgggtt acgatcacaa gtttgagaaa aacagcaact tcaaggtgga tgctcttaca
480gccaacgccg gtttgatgtt tgctttccgt gtgatggagc gtatggacat tgtgttggaa
540agccaggtaa tgtattctga cttcaacctc aacacagctc tgcccgagcc tcgctacaca
600gcttgctccg gcatgctcac tgccggtttg aacttccgta taggaaatat cggatggagc
660gagatcctac caatggattg gggcttggta aatgacctga acggacaaat caacgccatg
720cgtgctaaga acgcagagtt gagcaagcgt cccgtttctt gccccgaatg cccggaagtt
780gagcctcgtg tagagcgtat caatatgctt tcggacaagt ctgttctttt ccgtgccggc
840aagacaactg tagacagcga tcaaatggta acgatcttcg acgtagctca gtttgcaaag
900aagaatggca cacagatcac cgttacaggc tatgcagaca agaagggcaa agaaagcgat
960cgcacctctg aacttcgtgc aaaagccgta gccaagattc tcaccgacaa gtacggtgta
1020cctt
10241131024DNAArtificial SequenceDescription of Artificial SequenceP.
circumdentaria B52 oprF polynucleotide sequence 113tctataatgg gagctacagc
actctccgcg agtgctcaac aatctacgac acctgagact 60caaactttgc cagctcgcaa
gacggctttt gaccgttccg cgggtcactg gttcttgact 120ctacagggtg gtgtaaatgc
acagtttttg gaagaaaacg agtctcaaga catcgtaaat 180cgtctccgtg tgatgccaac
tctttcttta ggaaagtggc acaatcccta ttttgcaacc 240cgtttgcaag tttttggggg
gccaacccct acttactaca aggaggtttc tggggaggtt 300aagaccctaa ataccgccat
ggctggagct cactttgatt ttatgtttga tgtagtaaac 360ttctatgcaa agtataatcc
taaacgagta ttccatttga ttccttggtt cggtgtggga 420tatggtttca aatactataa
cgattttgct gatttagctg atatgattca gtttaatgaa 480cccttccgtc actcagcaac
tgcgaatgct ggtttgatga tgagttttcg cttggcaaaa 540cgtttggatt tggttctgga
agggcaggct atatattcta acttgaatat tgtaaagcaa 600gagatagatt ataaagcccc
cattatgccc tattcaaata tctacaacgg attgacaggt 660gtcgttactg caggtctcaa
ctttaatctc ggtcgtgttg cttgggagtc cgtaactcct 720atggatatgg atcttattaa
tgacctaaac ggacaaatta accgtttgcg ttctgagaat 780acagagttga gaaaacgtcc
agtttcttgc ccagaatgtc ctgaagttac tgcagagacg 840gaagtagtta ctgaaaacgt
tttaggtgat aaggcgattg ttttcaagtt taatagcgca 900actattgaca aagatcaaca
cattgttttg caggatatcg ctgactttgt taaagatggc 960aacaaagcta ttgttgtaat
aggcttcgca gatacaacag gtgatattaa ttacaatatg 1020catt
10241141024DNAArtificial
SequenceDescription of Artificial SequenceP. gulae B69 oprF
polynucleotide sequence 114acattcgttg gagctattgc actgaatgca agtgcacagg
aaaatactgt accggcaacg 60ggtcagttac ccgccaaaaa tgttgctttt gcccgcaata
aagcaggcgg caattggttt 120gtaacactgc aaggtggtgt tgcagcacag ttccttaatg
acaacaacaa caaagatcta 180gtagaccgct taggagctac cggatctatc tccgttggaa
aatatcacaa tccattcttt 240gcgactcgtt tgcaaattaa cggaggtcaa gcacacacgt
tccttgggaa gaatgcggaa 300caagaaatta acaccaattt tggagcagct cactttgact
tcatgttcga tgtggttaac 360tactttgcgc catatcgcga aaaccgtttc ttccatttaa
ttccatgggt aggtgttggt 420taccaacaca aattcatcgg tagcgaatgg agtaaagaca
acgtcgagtc gctgaccgca 480aacatgggtg ttatgatggc tttcagatta gggaagcgcg
tggactttgt gatcgaagca 540caagctgctc actccaatct taatttaagt cgcgcattca
atgccaagaa aactcctatt 600ttccacgatc aagaaggtcg ctattacaat ggattccaag
gaatggctac agcgggtctt 660aacttccgct taggtgctgt tggcttcaat gccatcgagc
caatggacta cgcgcttatc 720aacgatctga atggtcagat taaccgtttg cgcagagaag
ttgaagagct ctctaagcgt 780cctgtatcat gccccgaatg tcccgatgta acacccgtta
ctaagacaga aaacaagcta 840accgagaagg ctgtactctt ccgcttcgac agctatgttg
tagacaaaga ccagctgatc 900aatctgtatg acgttgctca gttcgtaaaa gaaactaacg
aaccgattac cgttgtaggt 960tatgccgatc ctacgggcag cactcagtac aacgaaagat
tgtctgagcg tcgcgcaaaa 1020gccg
10241151024DNAArtificial SequenceDescription of
Artificial SequenceP. circumdentaria B97 oprF polynucleotide
sequence 115tctgttatgg gagctacagc actcacagtt agtgctcagc aacctactac
acctgagact 60cagacattgc ctgctcataa gacggctttt gaccgttctg caggacattg
gttcttgact 120ctccaaggtg gagttagtgc tcaattttta gaagaaaatg aaagtcaaga
aatcttgaat 180cgtcttcatg ttatgcctac aatctcttta ggcaagtggc acaatcctta
ttttgcaact 240cgtttgcaag tgttcggagg tcctactcct actttttata agaatgctgc
tggtaaggtg 300atgaaggaaa atgcggctat ggctggggct cactttgact ttatgtttga
tgttgtgaac 360tactttggta agtataatcc aaagagagtc tttcatcttg tgccttggtt
cggtgttgga 420tatggcttta aataccataa tgatttcgcc gaaatgagtg atatcattaa
gtttaatgag 480ccttatcgcc attcagcaac agcgaatgca gggttgatga tgagtttccg
cttagcaaaa 540cgtcttgatt tagtgcttga aggacaggct atatattcta atttgaatat
tgttaagcaa 600gaaattgatt ataaagctcc ttctactcct tattctccaa attataatgg
gcttttggga 660gttgttacag caggtcttaa ctttaatctt ggtcgtgttg cttgggagac
tgttactccc 720atggatatgg atttgattaa tgatcttaat ggtcaaatca atcgtttgcg
ttctgagaat 780actgagttga gaaaacgtcc tgtttcttgt cctgaatgcc cagaagtttc
taaagaaaca 840actgtagtta cagaaaatgt attgggagac aaagctattg ttttcaaatt
taatagtgca 900actatcagca aagatcaaca tattgttttg caagacattg cggactttgt
taagaatgga 960aataaggggg ttgccgtgat aggtttcgca gatgtaacag gagatgccaa
ttacaatatg 1020caac
1024116948DNAArtificial SequenceDescription of Artificial
SequenceP. cangingivalis B98 oprF polynucleotide sequence
116ggtggagtta gtgctcaatt tttagaagaa aatgaaagtc aagaaatctt gaatcgtctt
60catgttatgc ctacaatctc tttaggcaag tggcacaatc cttattttgc aactcgtttg
120caagtgttcg gaggtcctac tcctactttt tataagaatg ctgctggtaa ggtgatgaag
180gaaaatgcgg ctatggctgg ggctcacttt gactttatgt ttgatgttgt gaactacttt
240ggtaagtata atccaaagag agtctttcat cttgtgcctt ggttcggtgt tggatatggc
300tttaaatacc ataatgattt cgccgaaatg agtgatatca ttaagtttaa tgagccttat
360cgccattcag caacagcgaa tgcagggttg atgatgagtt tccgcttagc aaaacgtctt
420gatttagtgc ttgaaggaca ggctatatat tctaatttga atattgttaa gcaagaaatt
480gattataaag ctccttctac tccttattct ccaaattata atgggctttt gggagttgtt
540acagcaggtc ttaactttaa tcttggtcgt gttgcttggg agactgttac tcccatggat
600atggatttga ttaatgatct taatggtcaa atcaatcgtt tgcgttctga gaatactgag
660ttgagaaaac gtcctgtttc ttgtcctgaa tgcccagaag tttctaaaga aacaactgta
720gttacagaaa atgtattggg agacaaagct attgttttca aatttaatag tgcaactatc
780agcaaagatc aacatattgt tttgcaagac attgcggact ttgttaagaa tggaaataag
840ggggttgccg tgataggttt cgcagatgta acaggagatg ccaattacaa tatgcaactt
900tctgaacgtc gtgctaaggc tgttgcggaa gctcttgtga atcaattc
948117969DNAArtificial SequenceDescription of Artificial SequenceP.
salivosa B104 oprF polynucleotide sequence 117cattggttct tgactctcca
aggtggagtt agtgctcaat ttttagaaga aaatgaaagt 60caagaaatct tgaatcgtct
tcatgttatg cctacaatct ctttaggcaa gtggcacaat 120ccttattttg caactcgttt
gcaagtgttc ggaggtccta ctcctacttt ttataagaat 180gctgctggta aggtgatgaa
ggaaaatgcg gctatggctg gggctcactt tgactttatg 240tttgatgttg tgaactactt
tggtaagtat aatccaaaga gagtctttca tcttgtgcct 300tggttcggtg ttggatatgg
ctttaaatac cataatgatt tcgccgaaat gagtgatatc 360attaagttta atgagcctta
tcgccattca gcaacagcga atgcagggtt gatgatgagt 420ttccgcttag caaaacgtct
tgatttagtg cttgaaggac aggctatata ttctaatttg 480aatattgtta agcaagaaat
tgattataaa gctccttcta ctccttattc tccaaattat 540aatgggcttt tgggagttgt
tacagcaggt cttaacttta atcttggtcg tgttgcctgg 600gagactatta ctcccatgga
tatggatttg attaatgatc ttaatggtca aatcaatcgt 660ttgcgttctg agaatactga
gttgagaaaa cgtcctgttt cttgtcctga atgcccagaa 720gtttctaaag aaacaactgt
agttacagaa aatgtattgg gagacaaagc tattgttttc 780aaatttaata gtgcaactat
cagcaaagat caacatattg ttttgcaaga cattgcggac 840tttgttaaga atggaaataa
gggggttgcc gtgataggtt tcgcagatgt aacaggagat 900gccaattaca atatgcaact
ttctgaacgt cgtgctaagg ctgttgcgga agctcttgtg 960aatcaattc
9691181024DNAArtificial
SequenceDescription of Artificial SequenceP. denticanis B106 oprF
polynucleotide sequence 118gctcataaga cggcttttga ccgttctgca ggacattggt
tcttgactct ccaaggtgga 60gttagtgctc aatttttaga agaaaatgaa agtcaagaaa
tcttgaatcg tcttcatgtt 120atgcctacaa tctctttagg caagtggcac aatccttatt
ttgcaactcg tttgcaagtg 180ttcggaggtc ctactcctac tttttataag aatgctgctg
gtaaggtgat gaaggaaaat 240gcggctatgg ctggggctca ctttgacttt atgtttgatg
ttgtgaacta ctttggtaag 300tataatccaa agagagtctt tcatcttgtg ccttggttcg
gtgttggata tggctttaaa 360taccataatg atttcgccga aatgagtgat atcattaagt
ttaatgagcc ttatcgccat 420tcagcaacag cgaatgcagg gttgatgatg agtttccgct
tagcaaaacg tcttgattta 480gtgcttgaag gacaggctat atattctaat ttgaatattg
ttaagcaaga aattgattat 540aaagctcctt ctactcctta ttctccaaat tataatgggc
ttttgggagt tgttacagca 600ggtcttaact ttaatcttgg tcgtgttgct tgggagactg
ttactcccat ggatatggat 660ttgattaatg atcttaatgg tcaaatcaat cgtttgcgtt
ctgagaatac tgagttgaga 720aaacgtcctg tttcttgtcc tgaatgccca gaagtttcta
aagaaacaac tgtagttaca 780gaaaatgtat tgggagacaa agctattgtt ttcaaattta
atagtgcaac tatcagcaaa 840gatcaacata ttgttttgca agacattgcg gactttgtta
agaatggaaa taagggggtt 900gccgtgatag gtttcgcaga tgtaacagga gatgccaatt
acaatatgca actttctgaa 960cgtcgtgcta aggctgttgc ggaagctctt gtgaatcaat
tcggagttcc ttctgatatg 1020attt
10241191024DNAArtificial SequenceDescription of
Artificial SequenceP. endodontalis B114 oprF polynucleotide
sequence 119tcagcactgg gggctttggc acttacagct agtgctcaac aaactacgaa
accagcgaat 60agtatgcccg cattcaagac tgcatttgaa cgcagcggcg gtcattggtt
tctgacaatt 120cagggtggcc tgagtgctca acttttgggt gaaaatgaaa agatggactt
tggcaagcgt 180ctgctacatg ctgccaaggc cagtgacaac acccaaacag aggctagcta
cctacgcatc 240atgcccacgc tctctgtagg taaatggcat aatccctact ttgctactcg
tgtacagctc 300ttcggtggtc tcactcctct ctacaatact gagggtggcg ttaatgtaca
cacctacaac 360actgccacga tcggtgccca ctatgatttc atgtttgatg tagtaaacta
tttcgccaag 420tacaacccca aacgtttctt ccacgtaatt ccttgggtgg gtcttggtta
caacttcaag 480tatcatgatg tatttggatt caaggagccc tatcgtcact ctgtcacagg
taacgcaggc 540atggagtttg ctttccgcct cggtaagcgt gtagaccttg tactcgaagc
tcaggtagtg 600tacaacaacc tgaacctgat caagcaggaa gtcgactacg atgtagtcac
tactccctat 660gtacctgctg atacatacgc tggtcttatg accatgttta ctgctggtct
taacttcaat 720ctgggcaagg ttgagtggga aactgttgag ccgatggact accagctcat
aaacgacttg 780aactctcaga tcagccgtct acgtagcgaa aacgcagagc tttccaagcg
tcctgctttc 840tgccccgagt gtcccgaagt agaggaagta gaagatgttg ttgttgacca
gtatgtcctc 900accgacaagg ctatcctctt cgactttgac aagagcaaca tccgcaagga
ccaacaagct 960cagcttggta tgattgctga attcgtgaag aagtacaata cgcctatcgt
ggtagtaggc 1020tatg
1024120375PRTArtificial SequenceDescription of Artificial
SequenceP. gulae B43 OprF polypeptide sequence 120Thr Phe Val Gly
Ala Ile Ala Leu Asn Ala Ser Ala Gln Glu Asn Thr 1 5
10 15Val Pro Ala Thr Gly Gln Leu Pro Ala Lys
Asn Val Ala Phe Ala Arg 20 25
30Asn Lys Ala Gly Ser Asn Trp Phe Val Thr Leu Gln Gly Gly Val Ala
35 40 45Ala Gln Phe Leu Asn Asp Asn
Asn Asn Lys Asp Phe Val Asp Arg Leu 50 55
60Gly Ala Ala Gly Ser Ile Ser Val Gly Lys Tyr His Asn Pro Phe Phe
65 70 75 80Ala Thr Arg
Leu Gln Ile Asn Gly Ala Gln Ala His Thr Phe Leu Gly 85
90 95Lys Asn Ala Glu Gln Glu Ile Lys Thr
Asn Phe Gly Ala Ala His Phe 100 105
110Asp Phe Met Phe Asp Val Val Asn Tyr Phe Ala Pro Tyr Arg Glu Asn
115 120 125Arg Phe Phe His Leu Ile
Pro Trp Val Gly Val Gly Tyr Gln His Lys 130 135
140Phe Ile Gly Ser Lys Trp Ser Lys Asp Asn Val Glu Ser Leu Thr
Ala145 150 155 160Asn Leu
Gly Val Met Met Ala Phe Arg Leu Gly Lys Arg Val Asp Phe
165 170 175Val Ile Glu Ala Gln Ala Ala
His Ser Asn Leu Asn Leu Ser Arg Ala 180 185
190Phe Asn Ala Lys Pro Thr Pro Ile Phe Gln Asp Gln Glu Gly
Arg Tyr 195 200 205Tyr Asn Gly Phe
Gln Gly Met Ala Thr Ala Gly Leu Asn Phe Arg Leu 210
215 220Gly Ala Val Gly Phe Asn Ala Ile Glu Pro Met Asp
Tyr Ala Leu Ile225 230 235
240Asn Asp Leu Asn Gly Gln Ile Asn Arg Leu Arg Arg Glu Val Glu Glu
245 250 255Leu Ser Lys Arg Pro
Val Ser Cys Pro Glu Cys Pro Asp Val Thr Pro 260
265 270Val Thr Lys Thr Glu Asn Lys Leu Thr Glu Lys Ala
Val Leu Phe Arg 275 280 285Phe Asp
Ser Tyr Val Val Asp Lys Asp Gln Leu Ile Asn Leu Tyr Asp 290
295 300Val Ala Gln Phe Val Lys Glu Thr Asn Glu Pro
Ile Thr Val Val Gly305 310 315
320Tyr Ala Asp Pro Thr Gly Asp Thr Gln Tyr Asn Glu Arg Leu Ser Glu
325 330 335Arg Arg Ala Lys
Ala Val Val Asp Val Leu Thr Gly Lys Tyr Gly Val 340
345 350Pro Ser Glu Leu Ile Ser Val Glu Trp Lys Gly
Asp Thr Thr Gln Pro 355 360 365Phe
Asn Lys Lys Ala Trp Asn 370 375121366PRTArtificial
SequenceDescription of Artificial SequenceP. cansulci B46 OprF
polypeptide sequence 121Thr Leu Ala Gly Val Tyr Ala Leu Ser Ala Ser Ala
Gln Gln Glu Asn 1 5 10
15Met Pro Arg Met Gly Gln Thr Pro Ala Lys Asn Thr Ala Tyr Ala Arg
20 25 30Ser Glu Ala Gly Asp Asn Trp
Phe Val Thr Leu Gln Gly Gly Ala Ala 35 40
45Met Gln Phe Gly Lys Gly Asn Glu Asp Ala Asp Phe Phe Asp Arg
Gln 50 55 60Thr Val Ala Pro Thr Phe
Ala Val Gly Lys Trp His Asn Pro Phe Phe 65 70
75 80Gly Thr Arg Leu Gln Met Gly Leu Gly Val Ser
His Asp Phe Ser Asn 85 90
95Asn Glu Ala Lys Ser Lys Leu Glu Met Asn His Ala Arg Tyr Ala Asn
100 105 110Ala His Phe Asp Phe Met
Phe Asp Val Ile Asn Tyr Phe Lys Pro Tyr 115 120
125Ser Glu Asp Arg Val Phe His Leu Ile Pro Trp Val Gly Leu
Gly Tyr 130 135 140Asp His Lys Phe Glu
Lys Asn Ser Asn Phe Lys Val Asp Ala Leu Thr145 150
155 160Ala Asn Ala Gly Leu Met Phe Ala Phe Arg
Val Met Glu Arg Met Asp 165 170
175Ile Val Leu Glu Ser Gln Val Met Tyr Ser Asp Phe Asn Leu Asn Thr
180 185 190Ala Leu Pro Glu Pro
Arg Tyr Thr Ala Cys Ser Gly Met Leu Thr Ala 195
200 205Gly Leu Asn Phe Arg Ile Gly Asn Ile Gly Trp Ser
Glu Ile Leu Pro 210 215 220Met Asp Trp
Gly Leu Val Asn Asp Leu Asn Gly Gln Ile Asn Ala Met225
230 235 240Arg Ala Lys Asn Ala Glu Leu
Ser Lys Arg Pro Val Ser Cys Pro Glu 245
250 255Cys Pro Glu Val Glu Pro Arg Val Glu Arg Ile Asn
Met Leu Ser Asp 260 265 270Lys
Ser Val Leu Phe Arg Ala Gly Lys Thr Thr Val Asp Ser Asp Gln 275
280 285Met Val Thr Ile Phe Asp Val Ala Gln
Phe Ala Lys Lys Asn Gly Thr 290 295
300Gln Ile Thr Val Thr Gly Tyr Ala Asp Lys Lys Gly Lys Glu Ser Asp305
310 315 320Arg Thr Ser Glu
Leu Arg Ala Lys Ala Val Ala Lys Ile Leu Thr Asp 325
330 335Lys Tyr Gly Val Pro Ser Asp Arg Ile Ser
Ile Glu Trp Lys Gly Val 340 345
350Ser Glu Gln Val Tyr Asp Asn Arg Asp Trp Asn Arg Val Val 355
360 365122382PRTArtificial
SequenceDescription of Artificial SequenceP. circumdentaria B52 OprF
polypeptide sequence 122Ser Ile Met Gly Ala Thr Ala Leu Ser Ala Ser Ala
Gln Gln Ser Thr 1 5 10
15Thr Pro Glu Thr Gln Thr Leu Pro Ala Arg Lys Thr Ala Phe Asp Arg
20 25 30Ser Ala Gly His Trp Phe Leu
Thr Leu Gln Gly Gly Val Asn Ala Gln 35 40
45Phe Leu Glu Glu Asn Glu Ser Gln Asp Ile Val Asn Arg Leu Arg
Val 50 55 60Met Pro Thr Leu Ser Leu
Gly Lys Trp His Asn Pro Tyr Phe Ala Thr 65 70
75 80Arg Leu Gln Val Phe Gly Gly Pro Thr Pro Thr
Tyr Tyr Lys Glu Val 85 90
95Ser Gly Glu Val Lys Thr Leu Asn Thr Ala Met Ala Gly Ala His Phe
100 105 110Asp Phe Met Phe Asp Val
Val Asn Phe Tyr Ala Lys Tyr Asn Pro Lys 115 120
125Arg Val Phe His Leu Ile Pro Trp Phe Gly Val Gly Tyr Gly
Phe Lys 130 135 140Tyr Tyr Asn Asp Phe
Ala Asp Leu Ala Asp Met Ile Gln Phe Asn Glu145 150
155 160Pro Phe Arg His Ser Ala Thr Ala Asn Ala
Gly Leu Met Met Ser Phe 165 170
175Arg Leu Ala Lys Arg Leu Asp Leu Val Leu Glu Gly Gln Ala Ile Tyr
180 185 190Ser Asn Leu Asn Ile
Val Lys Gln Glu Ile Asp Tyr Lys Ala Pro Ile 195
200 205Met Pro Tyr Ser Asn Ile Tyr Asn Gly Leu Thr Gly
Val Val Thr Ala 210 215 220Gly Leu Asn
Phe Asn Leu Gly Arg Val Ala Trp Glu Ser Val Thr Pro225
230 235 240Met Asp Met Asp Leu Ile Asn
Asp Leu Asn Gly Gln Ile Asn Arg Leu 245
250 255Arg Ser Glu Asn Thr Glu Leu Arg Lys Arg Pro Val
Ser Cys Pro Glu 260 265 270Cys
Pro Glu Val Thr Ala Glu Thr Glu Val Val Thr Glu Asn Val Leu 275
280 285Gly Asp Lys Ala Ile Val Phe Lys Phe
Asn Ser Ala Thr Ile Asp Lys 290 295
300Asp Gln His Ile Val Leu Gln Asp Ile Ala Asp Phe Val Lys Asp Gly305
310 315 320Asn Lys Ala Ile
Val Val Ile Gly Phe Ala Asp Thr Thr Gly Asp Ile 325
330 335Asn Tyr Asn Met His Leu Ser Glu Arg Arg
Ala Lys Ala Val Ala Glu 340 345
350Ala Leu Val Asn Lys Phe Gly Val Ser Ser Asp Met Ile Ser Val Glu
355 360 365Trp Gln Gly Glu Thr Glu Gln
Phe Asn Pro Arg Ala Trp Asn 370 375
380123375PRTArtificial SequenceDescription of Artificial SequenceP. gulae
B69 OprF polypeptide sequence 123Thr Phe Val Gly Ala Ile Ala Leu Asn
Ala Ser Ala Gln Glu Asn Thr 1 5 10
15Val Pro Ala Thr Gly Gln Leu Pro Ala Lys Asn Val Ala Phe Ala
Arg 20 25 30Asn Lys Ala Gly
Gly Asn Trp Phe Val Thr Leu Gln Gly Gly Val Ala 35
40 45Ala Gln Phe Leu Asn Asp Asn Asn Asn Lys Asp Leu
Val Asp Arg Leu 50 55 60Gly Ala Thr
Gly Ser Ile Ser Val Gly Lys Tyr His Asn Pro Phe Phe 65
70 75 80Ala Thr Arg Leu Gln Ile Asn Gly
Gly Gln Ala His Thr Phe Leu Gly 85 90
95Lys Asn Ala Glu Gln Glu Ile Asn Thr Asn Phe Gly Ala Ala
His Phe 100 105 110Asp Phe Met
Phe Asp Val Val Asn Tyr Phe Ala Pro Tyr Arg Glu Asn 115
120 125Arg Phe Phe His Leu Ile Pro Trp Val Gly Val
Gly Tyr Gln His Lys 130 135 140Phe Ile
Gly Ser Glu Trp Ser Lys Asp Asn Val Glu Ser Leu Thr Ala145
150 155 160Asn Met Gly Val Met Met Ala
Phe Arg Leu Gly Lys Arg Val Asp Phe 165
170 175Val Ile Glu Ala Gln Ala Ala His Ser Asn Leu Asn
Leu Ser Arg Ala 180 185 190Phe
Asn Ala Lys Lys Thr Pro Ile Phe His Asp Gln Glu Gly Arg Tyr 195
200 205Tyr Asn Gly Phe Gln Gly Met Ala Thr
Ala Gly Leu Asn Phe Arg Leu 210 215
220Gly Ala Val Gly Phe Asn Ala Ile Glu Pro Met Asp Tyr Ala Leu Ile225
230 235 240Asn Asp Leu Asn
Gly Gln Ile Asn Arg Leu Arg Arg Glu Val Glu Glu 245
250 255Leu Ser Lys Arg Pro Val Ser Cys Pro Glu
Cys Pro Asp Val Thr Pro 260 265
270Val Thr Lys Thr Glu Asn Lys Leu Thr Glu Lys Ala Val Leu Phe Arg
275 280 285Phe Asp Ser Tyr Val Val Asp
Lys Asp Gln Leu Ile Asn Leu Tyr Asp 290 295
300Val Ala Gln Phe Val Lys Glu Thr Asn Glu Pro Ile Thr Val Val
Gly305 310 315 320Tyr Ala
Asp Pro Thr Gly Ser Thr Gln Tyr Asn Glu Arg Leu Ser Glu
325 330 335Arg Arg Ala Lys Ala Val Val
Asp Val Leu Thr Gly Lys Tyr Gly Val 340 345
350Pro Ser Glu Leu Ile Ser Val Glu Trp Lys Gly Asp Ser Thr
Gln Pro 355 360 365Phe Asn Lys Lys
Ala Trp Asn 370 375124382PRTArtificial
SequenceDescription of Artificial SequenceP. circumdentaria B97 OprF
polypeptide sequence 124Ser Val Met Gly Ala Thr Ala Leu Thr Val Ser Ala
Gln Gln Pro Thr 1 5 10
15Thr Pro Glu Thr Gln Thr Leu Pro Ala His Lys Thr Ala Phe Asp Arg
20 25 30Ser Ala Gly His Trp Phe Leu
Thr Leu Gln Gly Gly Val Ser Ala Gln 35 40
45Phe Leu Glu Glu Asn Glu Ser Gln Glu Ile Leu Asn Arg Leu His
Val 50 55 60Met Pro Thr Ile Ser Leu
Gly Lys Trp His Asn Pro Tyr Phe Ala Thr 65 70
75 80Arg Leu Gln Val Phe Gly Gly Pro Thr Pro Thr
Phe Tyr Lys Asn Ala 85 90
95Ala Gly Lys Val Met Lys Glu Asn Ala Ala Met Ala Gly Ala His Phe
100 105 110Asp Phe Met Phe Asp Val
Val Asn Tyr Phe Gly Lys Tyr Asn Pro Lys 115 120
125Arg Val Phe His Leu Val Pro Trp Phe Gly Val Gly Tyr Gly
Phe Lys 130 135 140Tyr His Asn Asp Phe
Ala Glu Met Ser Asp Ile Ile Lys Phe Asn Glu145 150
155 160Pro Tyr Arg His Ser Ala Thr Ala Asn Ala
Gly Leu Met Met Ser Phe 165 170
175Arg Leu Ala Lys Arg Leu Asp Leu Val Leu Glu Gly Gln Ala Ile Tyr
180 185 190Ser Asn Leu Asn Ile
Val Lys Gln Glu Ile Asp Tyr Lys Ala Pro Ser 195
200 205Thr Pro Tyr Ser Pro Asn Tyr Asn Gly Leu Leu Gly
Val Val Thr Ala 210 215 220Gly Leu Asn
Phe Asn Leu Gly Arg Val Ala Trp Glu Thr Val Thr Pro225
230 235 240Met Asp Met Asp Leu Ile Asn
Asp Leu Asn Gly Gln Ile Asn Arg Leu 245
250 255Arg Ser Glu Asn Thr Glu Leu Arg Lys Arg Pro Val
Ser Cys Pro Glu 260 265 270Cys
Pro Glu Val Ser Lys Glu Thr Thr Val Val Thr Glu Asn Val Leu 275
280 285Gly Asp Lys Ala Ile Val Phe Lys Phe
Asn Ser Ala Thr Ile Ser Lys 290 295
300Asp Gln His Ile Val Leu Gln Asp Ile Ala Asp Phe Val Lys Asn Gly305
310 315 320Asn Lys Gly Val
Ala Val Ile Gly Phe Ala Asp Val Thr Gly Asp Ala 325
330 335Asn Tyr Asn Met Gln Leu Ser Glu Arg Arg
Ala Lys Ala Val Ala Glu 340 345
350Ala Leu Val Asn Gln Phe Gly Val Pro Ser Asp Met Ile Ser Val Glu
355 360 365Trp Gln Gly Glu Thr Glu Leu
Phe Glu Ala Arg Ala Trp Asn 370 375
380125316PRTArtificial SequenceDescription of Artificial SequenceP.
cangingivalis B98 OprF polypeptide sequence 125Gly Gly Val Ser Ala Gln
Phe Leu Glu Glu Asn Glu Ser Gln Glu Ile 1 5
10 15Leu Asn Arg Leu His Val Met Pro Thr Ile Ser Leu
Gly Lys Trp His 20 25 30Asn
Pro Tyr Phe Ala Thr Arg Leu Gln Val Phe Gly Gly Pro Thr Pro 35
40 45Thr Phe Tyr Lys Asn Ala Ala Gly Lys
Val Met Lys Glu Asn Ala Ala 50 55
60Met Ala Gly Ala His Phe Asp Phe Met Phe Asp Val Val Asn Tyr Phe 65
70 75 80Gly Lys Tyr Asn Pro
Lys Arg Val Phe His Leu Val Pro Trp Phe Gly 85
90 95Val Gly Tyr Gly Phe Lys Tyr His Asn Asp Phe
Ala Glu Met Ser Asp 100 105
110Ile Ile Lys Phe Asn Glu Pro Tyr Arg His Ser Ala Thr Ala Asn Ala
115 120 125Gly Leu Met Met Ser Phe Arg
Leu Ala Lys Arg Leu Asp Leu Val Leu 130 135
140Glu Gly Gln Ala Ile Tyr Ser Asn Leu Asn Ile Val Lys Gln Glu
Ile145 150 155 160Asp Tyr
Lys Ala Pro Ser Thr Pro Tyr Ser Pro Asn Tyr Asn Gly Leu
165 170 175Leu Gly Val Val Thr Ala Gly
Leu Asn Phe Asn Leu Gly Arg Val Ala 180 185
190Trp Glu Thr Val Thr Pro Met Asp Met Asp Leu Ile Asn Asp
Leu Asn 195 200 205Gly Gln Ile Asn
Arg Leu Arg Ser Glu Asn Thr Glu Leu Arg Lys Arg 210
215 220Pro Val Ser Cys Pro Glu Cys Pro Glu Val Ser Lys
Glu Thr Thr Val225 230 235
240Val Thr Glu Asn Val Leu Gly Asp Lys Ala Ile Val Phe Lys Phe Asn
245 250 255Ser Ala Thr Ile Ser
Lys Asp Gln His Ile Val Leu Gln Asp Ile Ala 260
265 270Asp Phe Val Lys Asn Gly Asn Lys Gly Val Ala Val
Ile Gly Phe Ala 275 280 285Asp Val
Thr Gly Asp Ala Asn Tyr Asn Met Gln Leu Ser Glu Arg Arg 290
295 300Ala Lys Ala Val Ala Glu Ala Leu Val Asn Gln
Phe305 310 315126323PRTArtificial
SequenceDescription of Artificial SequenceP. salivosa B104 OprF
polypeptide sequence 126His Trp Phe Leu Thr Leu Gln Gly Gly Val Ser Ala
Gln Phe Leu Glu 1 5 10
15Glu Asn Glu Ser Gln Glu Ile Leu Asn Arg Leu His Val Met Pro Thr
20 25 30Ile Ser Leu Gly Lys Trp His
Asn Pro Tyr Phe Ala Thr Arg Leu Gln 35 40
45Val Phe Gly Gly Pro Thr Pro Thr Phe Tyr Lys Asn Ala Ala Gly
Lys 50 55 60Val Met Lys Glu Asn Ala
Ala Met Ala Gly Ala His Phe Asp Phe Met 65 70
75 80Phe Asp Val Val Asn Tyr Phe Gly Lys Tyr Asn
Pro Lys Arg Val Phe 85 90
95His Leu Val Pro Trp Phe Gly Val Gly Tyr Gly Phe Lys Tyr His Asn
100 105 110Asp Phe Ala Glu Met Ser
Asp Ile Ile Lys Phe Asn Glu Pro Tyr Arg 115 120
125His Ser Ala Thr Ala Asn Ala Gly Leu Met Met Ser Phe Arg
Leu Ala 130 135 140Lys Arg Leu Asp Leu
Val Leu Glu Gly Gln Ala Ile Tyr Ser Asn Leu145 150
155 160Asn Ile Val Lys Gln Glu Ile Asp Tyr Lys
Ala Pro Ser Thr Pro Tyr 165 170
175Ser Pro Asn Tyr Asn Gly Leu Leu Gly Val Val Thr Ala Gly Leu Asn
180 185 190Phe Asn Leu Gly Arg
Val Ala Trp Glu Thr Ile Thr Pro Met Asp Met 195
200 205Asp Leu Ile Asn Asp Leu Asn Gly Gln Ile Asn Arg
Leu Arg Ser Glu 210 215 220Asn Thr Glu
Leu Arg Lys Arg Pro Val Ser Cys Pro Glu Cys Pro Glu225
230 235 240Val Ser Lys Glu Thr Thr Val
Val Thr Glu Asn Val Leu Gly Asp Lys 245
250 255Ala Ile Val Phe Lys Phe Asn Ser Ala Thr Ile Ser
Lys Asp Gln His 260 265 270Ile
Val Leu Gln Asp Ile Ala Asp Phe Val Lys Asn Gly Asn Lys Gly 275
280 285Val Ala Val Ile Gly Phe Ala Asp Val
Thr Gly Asp Ala Asn Tyr Asn 290 295
300Met Gln Leu Ser Glu Arg Arg Ala Lys Ala Val Ala Glu Ala Leu Val305
310 315 320Asn Gln
Phe127349PRTArtificial SequenceDescription of Artificial SequenceP.
denticanis B106 OprF polypeptide sequence 127Ala His Lys Thr Ala Phe Asp
Arg Ser Ala Gly His Trp Phe Leu Thr 1 5
10 15Leu Gln Gly Gly Val Ser Ala Gln Phe Leu Glu Glu Asn
Glu Ser Gln 20 25 30Glu Ile
Leu Asn Arg Leu His Val Met Pro Thr Ile Ser Leu Gly Lys 35
40 45Trp His Asn Pro Tyr Phe Ala Thr Arg Leu
Gln Val Phe Gly Gly Pro 50 55 60Thr
Pro Thr Phe Tyr Lys Asn Ala Ala Gly Lys Val Met Lys Glu Asn 65
70 75 80Ala Ala Met Ala Gly Ala
His Phe Asp Phe Met Phe Asp Val Val Asn 85
90 95Tyr Phe Gly Lys Tyr Asn Pro Lys Arg Val Phe His
Leu Val Pro Trp 100 105 110Phe
Gly Val Gly Tyr Gly Phe Lys Tyr His Asn Asp Phe Ala Glu Met 115
120 125Ser Asp Ile Ile Lys Phe Asn Glu Pro
Tyr Arg His Ser Ala Thr Ala 130 135
140Asn Ala Gly Leu Met Met Ser Phe Arg Leu Ala Lys Arg Leu Asp Leu145
150 155 160Val Leu Glu Gly
Gln Ala Ile Tyr Ser Asn Leu Asn Ile Val Lys Gln 165
170 175Glu Ile Asp Tyr Lys Ala Pro Ser Thr Pro
Tyr Ser Pro Asn Tyr Asn 180 185
190Gly Leu Leu Gly Val Val Thr Ala Gly Leu Asn Phe Asn Leu Gly Arg
195 200 205Val Ala Trp Glu Thr Val Thr
Pro Met Asp Met Asp Leu Ile Asn Asp 210 215
220Leu Asn Gly Gln Ile Asn Arg Leu Arg Ser Glu Asn Thr Glu Leu
Arg225 230 235 240Lys Arg
Pro Val Ser Cys Pro Glu Cys Pro Glu Val Ser Lys Glu Thr
245 250 255Thr Val Val Thr Glu Asn Val
Leu Gly Asp Lys Ala Ile Val Phe Lys 260 265
270Phe Asn Ser Ala Thr Ile Ser Lys Asp Gln His Ile Val Leu
Gln Asp 275 280 285Ile Ala Asp Phe
Val Lys Asn Gly Asn Lys Gly Val Ala Val Ile Gly 290
295 300Phe Ala Asp Val Thr Gly Asp Ala Asn Tyr Asn Met
Gln Leu Ser Glu305 310 315
320Arg Arg Ala Lys Ala Val Ala Glu Ala Leu Val Asn Gln Phe Gly Val
325 330 335Pro Ser Asp Met Ile
Ser Val Glu Trp Gln Gly Glu Thr 340
345128395PRTArtificial SequenceDescription of Artificial SequenceP.
endodontalis B114 OprF polypeptide sequence 128Ser Ala Leu Gly Ala Leu
Ala Leu Thr Ala Ser Ala Gln Gln Thr Thr 1 5
10 15Lys Pro Ala Asn Ser Met Pro Ala Phe Lys Thr Ala
Phe Glu Arg Ser 20 25 30Gly
Gly His Trp Phe Leu Thr Ile Gln Gly Gly Leu Ser Ala Gln Leu 35
40 45Leu Gly Glu Asn Glu Lys Met Asp Phe
Gly Lys Arg Leu Leu His Ala 50 55
60Ala Lys Ala Ser Asp Asn Thr Gln Thr Glu Ala Ser Tyr Leu Arg Ile 65
70 75 80Met Pro Thr Leu Ser
Val Gly Lys Trp His Asn Pro Tyr Phe Ala Thr 85
90 95Arg Val Gln Leu Phe Gly Gly Leu Thr Pro Leu
Tyr Asn Thr Glu Gly 100 105
110Gly Val Asn Val His Thr Tyr Asn Thr Ala Thr Ile Gly Ala His Tyr
115 120 125Asp Phe Met Phe Asp Val Val
Asn Tyr Phe Ala Lys Tyr Asn Pro Lys 130 135
140Arg Phe Phe His Val Ile Pro Trp Val Gly Leu Gly Tyr Asn Phe
Lys145 150 155 160Tyr His
Asp Val Phe Gly Phe Lys Glu Pro Tyr Arg His Ser Val Thr
165 170 175Gly Asn Ala Gly Met Glu Phe
Ala Phe Arg Leu Gly Lys Arg Val Asp 180 185
190Leu Val Leu Glu Ala Gln Val Val Tyr Asn Asn Leu Asn Leu
Ile Lys 195 200 205Gln Glu Val Asp
Tyr Asp Val Val Thr Thr Pro Tyr Val Pro Ala Asp 210
215 220Thr Tyr Ala Gly Leu Met Thr Met Phe Thr Ala Gly
Leu Asn Phe Asn225 230 235
240Leu Gly Lys Val Glu Trp Glu Thr Val Glu Pro Met Asp Tyr Gln Leu
245 250 255Ile Asn Asp Leu Asn
Ser Gln Ile Ser Arg Leu Arg Ser Glu Asn Ala 260
265 270Glu Leu Ser Lys Arg Pro Ala Phe Cys Pro Glu Cys
Pro Glu Val Glu 275 280 285Glu Val
Glu Asp Val Val Val Asp Gln Tyr Val Leu Thr Asp Lys Ala 290
295 300Ile Leu Phe Asp Phe Asp Lys Ser Asn Ile Arg
Lys Asp Gln Gln Ala305 310 315
320Gln Leu Gly Met Ile Ala Glu Phe Val Lys Lys Tyr Asn Thr Pro Ile
325 330 335Val Val Val Gly
Tyr Ala Asp Pro Thr Gly Lys Ser Lys Tyr Asn Met 340
345 350Glu Leu Ser Lys Arg Arg Ala Gln Ala Val Val
Asn Glu Leu Thr Asn 355 360 365Arg
His Gly Val Pro Ala Asp Leu Ile Thr Met Glu Trp Glu Gly Ala 370
375 380Thr Asn Lys Phe Thr Pro Pro Thr Ala Trp
Asn385 390 39512912PRTArtificial
SequenceDescription of Artificial SequenceP. gulae B43 FimA
polypeptide fragment sequence #1 129Ala Cys Asn Lys Asp Asn Glu Ala Glu
Pro Val Val 1 5 1013021PRTArtificial
SequenceDescription of Artificial SequenceP. gulae B43 FimA
polypeptide fragment sequence #2 130Tyr Pro Val Leu Val Asn Phe Glu Ser
Asn Asn Tyr Thr Tyr Thr Gly 1 5 10
15Asp Ala Val Glu Lys 2013116PRTArtificial
SequenceDescription of Artificial SequenceP. gulae B43 FimA
polypeptide fragment sequence #3 131Thr Gly Pro Gly Thr Asn Asn Pro Glu
Asn Pro Ile Thr Glu Ser Ala 1 5 10
1513214PRTArtificial SequenceDescription of Artificial
SequenceP. gulae B43 OprF polypeptide fragment sequence #1 132Asn
Asp Asn Asn Asn Lys Asp Phe Val Asp Arg Leu Gly Ala 1 5
1013329PRTArtificial SequenceDescription of Artificial
SequenceP. gulae B43 OprF polypeptide fragment sequence #2 133Asp
Leu Asn Gly Gln Ile Asn Arg Leu Arg Arg Glu Val Glu Glu Leu 1
5 10 15Ser Lys Arg Pro Val Ser Cys
Pro Glu Cys Pro Asp Val 20
2513421PRTArtificial SequenceDescription of Artificial SequenceP. gulae
B43 OprF polypeptide fragment sequence #3 134Ala Asp Pro Thr Gly Asp
Thr Gln Tyr Asn Glu Arg Leu Ser Glu Arg 1 5
10 15Arg Ala Lys Ala Val
2013547PRTArtificial SequenceDescription of Artificial SequencepBAD-HisA
Amino-terminal polypeptide sequence 135Met Gly Gly Ser His His His
His His His Gly Met Ala Ser Met Thr 1 5
10 15Gly Gly Gln Met Gly Arg Asp Leu Tyr Asp Asp Asp Asp
Lys Asp Arg 20 25 30Trp Gly
Ser Glu Leu Glu Ile Cys Ser Gln Tyr His Met Gly Ile 35
40 4513615PRTArtificial SequenceDescription of
Artificial SequencepBAD-TOPO Amino-terminal polypeptide sequence
136Met Gly Ser Gly Ser Gly Asp Asp Asp Asp Lys Leu Ala Leu Met 1
5 10 1513712PRTArtificial
SequenceDescription of Artificial Sequencel vector Amino-terminal
polypeptide sequence 137Met Gly Thr Thr Thr Thr Thr Thr Ser Leu His Met
1 5 10














User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20160374022 | DOWNLINK MULTIPLEXING AND MAC SIGNALING FOR A SYSTEM WITH DEVICES OPERATING WITH AND WITHOUT LOW POWER COMPANION RECEIVERS |
20160374021 | FULLY INTEGRATED WAKE-UP RECEIVER |
20160374020 | Apparatus, system and method of communicating a wakeup packet |
20160374019 | APPARATUS, SYSTEM AND METHOD OF COMMUNICATING A WAKEUP PACKET |
20160374018 | APPARATUS, SYSTEM AND METHOD OF COMMUNICATING A WAKEUP PACKET RESPONSE |