Space Shuttle




Space Shuttle

Although NASA is a civilian space agency, the United States military has used the space shuttle fleet to carry classified military payloads into space. The Department of Defense (DoD) had generally received priority in scheduling national security related flights. In addition to fully classified missions, the Department of Defense (DoD) has contracted shuttle research time and lifted unclassified early warning satellites into orbit. Satellites deployed from the shuttle, or serviced by shuttle crews, are used for electronic intelligence, photographic and radar reconnaissance, and defense communications.

By 1990, at least eight classified military satellites were placed in orbit during classified shuttle missions. Although the shuttle fleet is still used for a range of classified missions, following the loss of Challenger the military shifted emphasis to launching classified military satellites by expendable rockets.

The Shuttle Program

The space shuttle is a reusable spacecraft that takes off like a rocket, orbits the Earth like a satellite, and then lands like a glider. The space shuttle has been essential to the repair and maintenance of the Hubble Space Telescope and for construction of the International Space Station; it has also been used for a wide variety of other military, scientific, and commercial missions. It is not capable of flight to the Moon or other planets, being designed only to orbit the Earth.

The first shuttle to be launched was the Columbia , on April 12, 1981. Since that time, two shuttles have been lost in flight: Challenger , which exploded during takeoff on January 28, 1986, and Columbia , which broke up during reentry on Feb. 1, 2003. Seven crew members died in each accident. The three remaining shuttles are the Atlantis , the Discovery , and the Endeavor . The first shuttle actually built, the Enterprise , was flown in the atmosphere but never equipped for space flight; it is now in the collection of the Smithsonian Museum.

A spacecraft closely resembling the U.S. space shuttle, the Aero-Buran, was launched by the Soviet Union in November, 1988. Buran's computer-piloted first flight was also its last; the program was cut to save money and all copies of the craft that had been built were dismantled.

Mission of the space shuttle. At one time, both the United States and the Soviet Union envisioned complex space programs that included space stations orbiting the Earth and reusable shuttle spacecraft to transport people, equipment, raw materials, and finished products to and from these space stations. Because of the high cost of space flight, however, each nation eventually ended up concentrating on only one aspect of this program. The Soviets built and for many years operated space stations ( Salyut , 1971–1991, and Mir , 1986–2001), while Americans have focused their attention on the space shuttle. The brief Soviet excursion into shuttle design (Buran) and the U.S. experiment with Skylab (1973–1979) were the only exceptions to this pattern.

The U.S. shuttle system—which includes the shuttle vehicle itself, launch boosters, and other components—is officially termed the Space Transportation System (STS). Lacking a space station to which to travel until 1998, when construction of the International Space Station began, the shuttles have for most of their history operated with two major goals: (1) the conduct of scientific experiments in a microgravity environment and (2) the release, capture, repair, and re-release of scientific, commercial, and military satellites. Interplanetary probes such as the Galileo mission to Jupiter (1989–) have been transported to space by the shuttle before launching themselves on interplanetary trajectories with their own rocket systems. Since 1988, the STS has also been essential to the construction and maintenance in orbit of the International Space Station.

One of the most important shuttle missions ever was the repair of the Hubble Space Telescope by the crew of the Endeavor in December, 1993 (STS-61). The Hubble had been deployed, by a shuttle mission several years earlier, with a defective mirror; fortunately, it had been designed to be repaired by spacewalking astronauts. The crew of the Endeavor latched on to the Hubble with the shuttle's robotic arm, installed a corrective optics package that restored the Hubble to full functionality. The Hubble has since produced a unique wealth of astronomical knowledge.

The STS depends partly on contributions from nations other than the U.S. For example, its Spacelab modules—habitable units, carried in the shuttle's cargo bay, in which astronauts carry out most of their experiments—are designed and built by the European Space Agency, and the extendible arm used to capture and release satellites—the "remote manipulator system" or Canadarm—is constructed in Canada. Nevertheless, the great majority of STS costs continue to be borne by the United States.

Structure of the STS. The STS has four main components: (1) the orbiter (i.e., the shuttle itself), (2) the three main engines integral to the orbiter, (3) the external fuel tank that fuels the orbiter's three engines during liftoff, and (4) two solid-fuel rocket boosters also used during liftoff.

The orbiter. The orbiter, which is manufactured by Rockwell, International, Inc., is approximately the size of a commercial DC-9 jet, with a length of 122 ft (37 m), a wing span of 78 ft (24 m), and a weight of approximately 171,000 lb (77,000 kg). Its interior, apart from the engines and various mechanical and electronic compartments, is subdivided into two main parts: crew cabin and cargo bay.

The crew cabin has two levels. Its upper level—literally "upper" only when the shuttle is in level flight in Earth's atmosphere, as there is no literal "up" and "down" when it is orbiting in free fall—is the flight deck, from which astronauts control the spacecraft during orbit and descent, and its lower level is the crew's personal quarters, which contains personal lockers and sleeping, eating, and toilet facilities. The crew cabin's atmosphere is approximately equivalent to that on the Earth's surface, with a composition 80% nitrogen and 20% oxygen.

The cargo bay is a space 15 ft (4.5 m) wide by 60 ft (18m) long in which the shuttle's payloads—the modules or satellites that it ports to orbit or back to Earth—are stored. The cargo bay can hold up to about 65,000 lb (30,000 kg) during ascent, and about half that amount during descent.

The shuttle can also carry more habitable space than that in the crew cabin. In 1973, an agreement was reached between the U.S. National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) for the construction by ESA of a pressurized, habitable workspace that could be carried in the shuttle's cargo bay. This workspace, designated Spacelab, was designed for use as a laboratory in which various science experiments could be conducted. Each of Spacelab module is 13 ft (3.9 m) wide and 8.9 ft (2.7 m) long. Equipment for experiments is arranged in racks along the walls of the Spacelab. The whole module is loaded into the cargo bay of the shuttle prior to take-off, and remains there while the shuttle is in orbit, with the cargo-bay doors opened to give access to space. When necessary, two Spacelab modules can be joined to form a single, larger workspace.

Propulsion systems. The power needed to lift a space shuttle into orbit comes from two solid-fuel rockets, each 12 ft (4 m) wide and 149 ft (45.5 m) long, and from the shuttle's three built-in, liquid-fuel engines. The fuel used in the solid rockets is compounded of aluminum powder, ammonium perchlorate, and a special polymer that binds the other ingredients into a rubbery matrix. This mixture is molded into a long prism with a hollow core that resembles an 11-pointed star in cross section. This shape exposes the maximum possible surface area of burning fuel during launch, increasing combustion efficiency.

The two solid-fuel rockets each contain 1.1 million lb (500,000 kg) at ignition, together produce 6.6 million pounds (29.5 million N) of thrust, and burn out only two minutes after the shuttle leaves the launch pad. At solid-engine burnout, the shuttle is at an altitude of 161,000 ft (47,000m) and 212 miles (452 km) down range of launch site. (In rocketry, "down range" distance is the horizontal distance, as measured on the ground, that a rocket has traveled since launch, as distinct from the greater distance it has traveled along its actual flight path.) At this point, explosive devices detach the solid-fuel rockets from the shuttle's large, external fuel tank. The rockets return to Earth via parachutes, dropping into the Atlantic Ocean at a speed of 55 miles (90 km) per hour. They can then be collected by ships, returned to their manufacturer (Morton Thiokol Corp.), refurbished and refilled with solid fuel, and used again in a later shuttle launch.

The three liquid-fuel engines built into the shuttle itself have been described as the most efficient engines ever built; at maximum thrust, they achieve 99% combustion efficiency. (This number describes combustion efficiency, not end-use efficiency. As dictated by the laws of physics, less than half of the energy released in combustion can be communicated to the shuttle as kinetic energy, even by an ideal rocket motor.) The shuttle's main engines are fueled by liquid hydrogen and liquid oxygen stored in the external fuel tank (built by Martin Marietta Corp.), which is 27.5 ft (8.4 m) wide and 154 ft (46.2 m) long. The tank itself is actually two tanks—one for liquid oxygen and the other for liquid hydrogen—covered by a single, aerodynamic sheath. The tank is kept cold (below -454°F [-270°C]) to keep its hydrogen and oxygen in their liquid state, and is covered with an insulating layer of stiff foam to keep its contents cold. Liquid hydrogen and liquid oxygen are pumped into the shuttle's three engines through lines 17in (43 cm) in diameter that carry 1,035 gal (3,900 l) of fuel per second. Upon ignition, each of the liquid-fueled engines develops 367,000 lb (1.67 million N) of thrust.

The three main engines turn off at approximately 522 seconds, when the shuttle has reached an altitude of 50 miles (105 km) and is 670 miles (1,426 km) down range of the launch site. At this point, the external fuel tank is also jettisoned. Its fall into the sea is not controlled, however, and it is not recoverable for future use.

Final orbit is achieved by means of two small engines, the Orbital Maneuvering System (OMS) engines located on external pods at the rear of the orbiter's fuselage. The OMS engines are fired first to insert the orbiter into an elliptical orbit with an apogee (highest altitude) of 139 miles (296 km) and a perigee (lowest altitude) of 46 miles (98 km). They are fired again to nudge the shuttle into a final, circular orbit with a radius of 139 miles (296 km). All these figures may vary slightly from mission to mission.

Orbital maneuvers. For making fine adjustments, the spacecraft depends on six small rockets termed vernier jets, two in the nose and four in the OMS pods. These allow small changes in the shuttle's flight path and orientation.

The computer system used aboard the shuttle, which governs all events during takeoff and on which the shuttle's pilots are completely dependent for interacting with its complex control surfaces during the glide back to Earth, is highly redundant. Five identical computers are used, four networked with each other using one computer program, and a fifth operating independently. The four linked computers constantly communicate with each other, testing each other's decisions and deciding when any one (or two or three) are not performing properly and eliminating that computer or computers from the decision-making process. In case all four of the interlinked computers malfunction, decision-making would be turned over automatically to the fifth computer.

This kind of redundancy is built into many essential features of the shuttle. For example, three independent hydraulic systems are available, each with an independent power systems. The failure of one or even two systems does not, therefore, place the shuttle in what its engineers would call a "critical failure mode"—that is, cause its destruction. Many other components, of course, simply cannot be built redundantly. The failure of a solid-fuel rocket booster during liftoff (as occurred during the Challenger mission of 1981) or of the delicate tiles that protect the shuttle from the high temperatures of atmospheric reentry (as occurred during the Columbia mission of 2003) can lead to loss of the spacecraft.

Descent. Some of the most difficult design problems faced by shuttle engineers were those involving the reentry process. When the spacecraft has completed its mission in space and is ready to leave orbit, its OMS fires just long enough to slow the shuttle by 200 MPH (320 km/h). This modest change in speed is enough to cause the shuttle to drop out of its orbit and begin its descent to Earth.

When the shuttle reaches the upper atmosphere, significant amounts of atmospheric gases are first encountered. Friction between the shuttle—now traveling at 17,500 MPH (28,000 km/h)—and air molecules causes the spacecraft's outer surface to heat. Eventually, portions of the shuttle's surface reach 3,000°F (1,650°C).

Most materials normally used in aircraft construction would melt or vaporize at these temperatures. It was necessary, therefore, to find a way of protecting the shuttle's interior from this searing heat. NASA decided to use a variety of insulating materials on the shuttle's outer skin. Parts less severely heated during reentry are covered with 2,300 flexible quilts of a silica-glass composite. The more sensitive belly of the shuttle is covered with 25,000 porous insulating tiles, each approximately 6 in (15 cm) square and 5 in (12 cm) thick, made of a silica-borosilicate glass composite.

The portions of the shuttle most severely stressed by heat—the nose and the leading edges of the wings—are coated with an even more resistant material termed carbon-carbon. Carbon-carbon is made by attaching a carbon-fiber cloth to the body of the shuttle and then baking it to convert it to a pure carbon substance. The carbon-carbon is then coated to prevent oxidation (combustion) of the material during descent.

Landing. Once the shuttle reaches the atmosphere, it ceases to operate as a spacecraft and begins to function as a glider. Its flight during descent is entirely unpowered; its movements are controlled by its tail rudder, a large flap beneath the main engines, and elevons (small flaps on its wings). These surfaces allow the shuttle to navigate at forward speeds of thousands of miles per hour while dropping vertically at a rate of some 140 MPH (225 km/h). When the aircraft finally touches down, it is traveling at a speed of about 190 knots (100 m per second), and requires about 1.5 miles (2.5 km) to come to a stop. Shuttles can land at extra-long landing strips at either Edwards Air Force Base in California or the Kennedy Space Center in Florida.

Military shuttle missions and the military spaceplane. Many shuttle missions have been partly or entirely military in nature. Eight military missions—the majority—have been devoted to the deployment of secret military satellites in three categories: signals intelligence (i.e., eavesdropping on radio communications), optical and radar reconnaissance of the Earth, and military communications. All these deployments occurred between 1982 and 1990, after which the military chose to use uncrewed launch rockets for all classified missions. The shuttle has also supported several military experimental missions and nonclassified satellite deployments. One such was the Discovery mission (STS-39) launched on April 28, 1991 (STS-39), which carried multi-experiment hardware platforms designed to be released into space then retrieved by the shuttle after having recorded various observations of space conditions. All science aboard STS-39 was related to the Strategic Defense Initiative.

The U.S. military is developing an armed space shuttle system or "military spaceplane" of its own, and says that it intends to deploy such a system by 2012. According to an Air Force status report released in January 2002, "a military spaceplane armed with a variety of weapons payloads (e.g. unitary penetrator, small diameter bombs, etc.) will be able to precisely attack and destroy a considerable number of critical targets while satisfying the requirement for precise weapons (i.e. circular error probable [CEP] of less than or equal to three meters)…. Spaceplanes can support a wide range of military missions including a worldwide precision strike capability; rapid unpredictable reconnaissance; new space control and missile defense capabilities; and both conventional and new tactical spacelift missions that enable augmentation and reconstitution of space assets." The military spaceplane would also enable the military to deploy satellites on short notice. The Air Force envisions a fleet of some 10 spaceplanes stationed in the continental United States as one component of a "Global Strike Task Force" that, it says, will be "capable of striking any target in the world within 24 hours."

The Challenger disaster. Disasters have been associated with both the Soviet (now Russian) and American space programs. The first of the two disasters suffered by the shuttle program took place on January 28, 1986, when the external fuel tank of the shuttle Challenger exploded only 73 seconds into the flight. All seven astronauts were killed, including high-school teacher Christa McAuliffe, who was flying on the shuttle as part of NASA's public-relations campaign "Teachers in Space," designed to bolster young people's interest in human space flight.

The Challenger disaster prompted a comprehensive study to discover its causes. On June 6, 1986, the Presidential Commission appointed to analyze the disaster published its report. The reason for the disaster, said the commission, was the failure of an O-ring (literally, a flexible O-shaped ring or gasket) in a joint connecting two sections of one of the solid rocket engines. The O-ring ruptured, allowing flames from the rocket's interior to jet out, burning into the external fuel tank and causing it to explode.

As a result of the Challenger disaster, many design changes were made. Most of these (254 modifications in all) were made in the orbiter. Another 30 were made in the solid rocket booster, 13 in the external tank, and 24 in the shuttle's main engine. In addition, an escape system was developed that would allow crew members to abandon a shuttle via parachute in case of emergency, and NASA redesigned its launch-abort procedures. Also, NASA was instructed by Congress to reassess its ability to carry out the ambitious program of shuttle launches that it had been planning. The military began reviving its non-shuttle launch options and switched fully to its own boosters for classified satellite launches after 1990.

The STS was essentially shut down for a period of 975 days while NASA carried out the necessary changes and tested its new systems. On September 29, 1988, the first post-Challenger mission was launched, STS-26. On that flight, Discovery carried NASA's TDRS-C communications satellite into orbit, putting the American STS program back on track once more.

The Columbia disaster. Scores of shuttle missions were successfully carried out between the Challenger 's successful 1988 mission and February 1, 2003, when disaster struck again. The space shuttle Columbia broke up suddenly during re-entry, strewing debris over much of Texas and several other states and killing all seven astronauts on board. At the time of this writing, analysts speculate that the most likely cause of the loss of the spacecraft related to some form of damage to the outer protective layer of heat-resistant tiles or seals that protect the shuttle's interior from the 3,000°F (1,650°C) plasma (superheated gas) that envelops it during reentry. As described earlier, a coating of rigid foam insulation is used to keep the external fuel tank cool; video cameras recording the Columbia 's takeoff show that a piece of this foam broke off 80 seconds into the flight and burst against the shuttle's wing at some 510 MPH (821 km/h). Pieces of foam have broken off and struck shuttles during takeoff before, but this was the largest piece ever—at least 2.7 lb (1.2 kg) and the size of a briefcase.

While Columbia was in orbit, NASA engineers, who were aware that the foam strike had occurred, analyzed the possibility that it might have caused significant damage to the shuttle, but decided that it could not have: computer simulations seemed to show that the brittle tiles covering the shuttle's essential surfaces would not be severely damaged. In any event, there were no contingency procedures to fix any such damage. The shuttle does not carry spare tiles or means to attach them, nor does it carry gear that would make a spacewalk to the bottom of the shuttle feasible.

NASA officials also insisted that it would not have been possible to fly the shuttle in such a way as to spare the damage surfaces, as the shuttle's path is already designed to minimize heating on reentry.

Regardless of the exact reason, the shuttle's skin was breached, whether by mechanical damage or some other cause, and hot gases formed a jet that caused considerable damage to the left wing from inside. During reentry, the wing began to break up, experiencing greatly increased drag. The autopilot struggled to compensate by firing steering rockets, but could only stabilize the shuttle temporarily.

As this book goes to press, the loss of the Columbia has, like the loss of the Challenger in 1986, put a temporary stop to shuttle launches. A moratorium on shuttle launches will also have an impact on the International Space Station, which depends on the shuttle to bring it the fuel it needs to stay in orbit and which cannot be completed without components that only the space shuttle can carry. In the wake of the Columbia disaster, NASA and other governmental officials worked with an independent panel's review of the accident and sought technical improvements to the STS program that might prevent future problems while, at the same time returning the remaining shuttles to flight status as soon as safely possible.

█ FURTHER READING:

BOOKS:

Barrett, Norman S. Space Shuttle. New York: Franklin Watts, 1985.

Curtis, Anthony R. Space Almanac. Woodsboro, MD: Arcsoft Publishers, 1990.

Dwiggins, Don. Flying the Space Shuttles. New York: Dodd, Mead, 1985.

PERIODICALS:

Barstow, David. "After Liftoff, Uncertainty and Guesswork." New York Times. (February 17, 2003).

Broad, William J. "Outside Space Experts Focusing on Blow to Shuttle Wing." New York Times. (February 15, 2003).

Chang, Kenneth. "Columbia Was Beyond Any Help, Officials Say." New York Times. (February 4, 2003).

——. "Disagreement Emerges over Foam on Shuttle Tank." New York Times. (February 21, 2003).

Seltzer, Richard J. "Faulty Joint behind Space Shuttle Disaster." Chemical & Engineering News (23 June 1986): 9–15.

ELECTRONIC:

Space and Missile Systems Center (SMC), United States Air Force. "The Military Space Plane: Providing Transformational and Responsive Global Precision Striking Power." Jan. 17, 2002. < http://www.spaceref.com/news/viewsr.html?pid=4523 > (Feb. 17, 2003).

SEE ALSO

NASA (National Air and Space Administration)
Near Space Environment
Satellites, Non-Governmental High Resolution
Satellites, Spy




User Contributions:

Comment about this article, ask questions, or add new information about this topic:

CAPTCHA


Space Shuttle forum