Nanotechnology




Nanotechnology

█ K. LEE LERNER

Defense programs in many countries are now concentrating on nanotechnology research that will facilitate advances in such technology used to create secure but small messaging equipment, allow the development of smart weapons, improve stealth capabilities, aid in developing specialized sensors (including bio-inclusive sensors), help to create self-repairing military equipment, and improve the development and delivery mechanisms for medicines and vaccines.

Nanotechnology builds on advances in microelectronics during the last decades of the twentieth century. The miniaturization of electrical components greatly increased the utility and portability of computers, imaging equipment, microphones, and other electronics. Indeed, the production and wide use of such commonplace devices such as personal computers and cell phones was absolutely dependent on advances in microtechnology.

Despite these fundamental advances there remain real physical constraints (e.g., microchip design limitations) to further miniaturization based upon conventional engineering principles. Nanotechnologies intend to revolutionize components and manufacturing techniques to overcome these fundamental limitations. In addition, there are classes of biosensors and feedback control devices that require nanotechnology because—despite advances in microtechnology—present components remain too large or slow.

Advances in Nanotechnology

Nanotechnology advances affect all branches of engineering and science that deal directly with device components ranging in size between 1/10,000,000 (one ten millionth of a millimeter) and 1/10,0000 millimeter. At these scales, even the most sophisticated microtechnology-based instrumentation is useless. Engineers anticipate that advances in nanotechnology will allow the direct manipulation of molecules in biological samples (e.g., proteins or nucleic acids) paving the way for the development of new materials that have a biological component or that can provide a biological interface.

In addition to new tools, nanotechnology programs advance practical understanding of quantum physics. The internalization of quantum concepts is a necessary component of nanotechnology research programs because the laws of classical physics (e.g., classical mechanics or generalized gas laws) do not always apply to the atomic and near-atomic level.

Nanotechnology and quantum physics. Quantum theory and mechanics describe the relationship between energy and matter on the atomic and subatomic scale. At the beginning of the twentieth century, German physicist Maxwell Planck (1858–1947) proposed that atoms absorb or emit electromagnetic radiation in bundles of energy termed quanta. This quantum concept seemed counter-intuitive to well-established Newtonian physics. Advancements associated with quantum mechanics (e.g., the uncertainty principle) also had profound implications with regard to the philosophical scientific arguments regarding the limitations of human knowledge.

Planck's quantum theory, which also asserted that the energy of light (a photon) was directly proportional to its frequency, proved a powerful concept that accounted for a wide range of physical phenomena. Planck's constant relates the energy of a photon with the frequency of light. Along with the constant for the speed of light, Planck's constant ( h = 6.626 x 10 −34 Joule-second) is a fundamental constant of nature.

Prior to Planck's work, electromagnetic radiation (light) was thought to travel in waves with an infinite number of available frequencies and wavelengths. Planck's work focused on attempting to explain the limited spectrum of light emitted by hot objects. Danish physicist Niels Bohr (1885–1962) studied Planck's quantum theory of radiation and worked in England with physicists J. J. Thomson (1856–1940), and Ernest Rutherford (1871–1937) to improve their classical models of the atom by incorporating quantum theory. During this time, Bohr developed his model of atomic structure. According to the Bohr model, when an electron is excited by energy it jumps from its ground state to an excited state (i.e., a higher energy orbital). The excited atom can then emit energy only in certain (quantized) amounts as its electrons jump back to lower energy orbits located closer to the nucleus. This excess energy is emitted in quanta of electromagnetic radiation (photons of light) that have exactly the same energy as the difference in energy between the orbits jumped by the electron.

The electron quantum leaps between orbits proposed by the Bohr model accounted for Plank's observations that atoms emit or absorb electromagnetic radiation in quanta. Bohr's model also explained many important properties of the photoelectric effect described by Albert Einstein (1879–1955). Einstein assumed that light was transmitted as a stream of particles termed photons. By extending the well-known wave properties of light to include a treatment of light as a stream of photons, Einstein was able to explain the photoelectric effect. Photoelectric properties are key to regulation of many microtechnology and proposed nanotechnology level systems.

Quantum mechanics ultimately replaced electron "orbitals" of earlier atomic models with allowable values for angular momentum (angular velocity multiplied by mass) and depicted electron positions in terms of probability "clouds" and regions.

In the 1920s, the concept of quantization and its application to physical phenomena was further advanced by more mathematically complex models based on the work of the French physicist Louis Victor de Broglie (1892–1987) and Austrian physicist Erwin Schrödinger (1887–1961) that depicted the particle and wave nature of electrons. De Broglie showed that the electron was not merely a particle but a waveform. This proposal led Schrödinger to publish his wave equation in 1926. Schrödinger's work described electrons as a "standing wave" surrounding the nucleus, and his system of quantum mechanics is called wave mechanics. German physicist Max Born (1882–1970) and English physicist P. A. M. Dirac (1902–1984) made further advances in defining the subatomic particles (principally the electron) as a wave rather than as a particle and in reconciling portions of quantum theory with relativity theory.

Working at about the same time, German physicist Werner Heisenberg (1901–1976) formulated the first complete and self-consistent theory of quantum mechanics. Matrix mathematics was well established by the 1920s, and Heisenberg applied this powerful tool to quantum mechanics. In 1926, Heisenberg put forward his uncertainty principle which states that two complementary properties of a system, such as position and momentum, can never both be known exactly. This proposition helped cement the dual nature of particles (e.g., light can be described as having both wave and particle characteristics). Electromagnetic radiation (one region of the spectrum that comprises visible light) is now understood to have both particle and wave like properties.

In 1925, Austrian-born physicist Wolfgang Pauli (1900–1958) published the Pauli exclusion principle states that no two electrons in an atom can simultaneously occupy the same quantum state (i.e., energy state). Pauli's specification of spin (+ 1 / 2 or − 1 / 2 ) on an electron gave the two electrons in any suborbital differing quantum numbers (a system used to describe the quantum state) and made completely understandable the structure of the periodic table in terms of electron configurations (i.e., the energy-related arrangement of electrons in energy shells and suborbitals).

In 1931, American chemist Linus Pauling published a paper that used quantum mechanics to explain how two electrons, from two different atoms, are shared to make a covalent bond between the two atoms. Pauling's work provided the connection needed in order to fully apply the new quantum theory to chemical reactions.

Advances in nanotechnology depend upon an understanding and application of these fundamental quantum principles. At the quantum level the smoothness of classical physics disappears and nanotechnologies are predicated on exploiting this quantum roughness.

Applications

The development of devices that are small, light, self-contained, use little energy and that will replace larger microelectronic equipment is one of the first goals of the anticipated nanotechnology revolution. The second phase will be marked by the introduction of materials not feasible at larger than nanotechnology levels. Given the nature of quantum variance, scientists theorize that single molecule sensors can be developed and that sophisticated memory storage and neural-like networks can be achieved with a very small number of molecules.

Traditional engineering concepts undergo radical transformation at the atomic level. For example, nano-technology motors may drive gears, the cogs of which are composed of the atoms attached to a carbon ring. Nanomotors may themselves be driven by oscillating magnetic fields or high precision oscillating lasers.

Perhaps the greatest promise for nanotechnology lies in potential biotechnology advances. Potential nano-level manipulation of DNA offers the opportunity to radically expand the horizons of genomic medicine and immunology. Tissue-based biosensors may unobtrusively be able to monitor and regulate site-specific medicine delivery or regulate physiological processes. Nanosystems might serve as highly sensitive detectors of toxic substances or used by inspectors to detect traces of biological or chemical weapons.

In electronics and computer science, scientists assert that nanotechnologies will be the next major advance in computing and information processing science. Microelectronic devices rely on recognition and flips in electron gating (e.g. where differential states are ultimately represented by a series of binary numbers ["0" or "1"] that depict voltage states). In contrast, future quantum processing will utilize the identity of quantum states as set forth by quantum numbers. In quantum cryptography systems with the ability to decipher encrypted information will rely on precise knowledge of manipulations used to achieve various atomic states.

Nanoscale devices are constructed using a combination of fabrication steps. In the initial growth stage, layers of semiconductor materials are grown on a dimension limiting substrate. Layer composition can be altered to control electrical and/or optical characteristics. Techniques such as molecular beam epitaxy (MBE) and metallo-organic chemical vapor deposition (MOCVD) are capable of producing layers of a few atoms thickness. The developed pattern is then imposed on successive layers (the pattern transfer stage) to develop desired three dimensional structural characteristics.

Nanotechnology Research

In the United States, expenditures on nanotechnology development tops $500 million per year and is largely coordinated by the National Science Foundation and Department of Defense Advanced Research Projects Agency (DARPA) under the umbrella of the National Nano-technology Initiative. Other institutions with dedicated funding for nanotechnology include the Department of Energy (DOE) and National Institutes of Health (NIH).

Research interests. Current research interests in nano-technology include programs to develop and exploit nanotubes for their ability to provide extremely strong bonds. Nanotubes can be flexed and woven into fibers for use in ultrastrong—but also ultralight—bulletproof vests. Nanotubes are also excellent conductors that can be used to develop precise electronic circuitry.

Other interests include the development of nanotechnology-based sensors that allow smarter autonomous weapons capable of a greater range of adaptations enroute to a target; materials that offer stealth characteristics across a broader span of the electromagnetic spectrum; self-repairing structures; and nanotechnology-based weapons to disrupt—but not destroy—electrical system infrastructure.

█ FURTHER READING:

BOOKS:

Mulhall, Douglas. Our Molecular Future: How Nanotechnology, Robotics, Genetics, and Artificial Intelligence Will Change Our World. Amherst, NY: Prometheus Books, 2002.

PERIODICALS:

Bennewitz, R., et. al., "Atomic scale memory at a silicon surface." Nanotechnology 13 (2000): 499–502.

ELECTRONIC:

National Science and Technology Council. "National Nano-technology Initiative." < http://www.nano.gov/start.htm > (March 19, 2003).

SEE ALSO

DARPA (Defense Advanced Research Projects Agency)




User Contributions:

Comment about this article, ask questions, or add new information about this topic:

CAPTCHA


Nanotechnology forum